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A B S T R A C T

A virtual flow meter (VFM) enables continuous prediction of flow rates in petroleum production systems. The
predicted flow rates may aid the daily control and optimization of a petroleum asset. Gray-box modeling is an
approach that combines mechanistic and data-driven modeling. The objective is to create a computationally
feasible VFM for use in real-time applications, with high prediction accuracy and scientifically consistent
behavior. This article investigates five different gray-box model types in an industrial case study using real,
historical production data from 10 petroleum wells, spanning at most four years of production. The results
are diverse with an oil flow rate prediction error in the range of 1.8%–40.6%. Further, the study casts light
upon the nontrivial task of balancing learning from both physics and data. Therefore, providing general
recommendations towards the suitability of different hybrid models is challenging. Nevertheless, the results
are promising and indicate that gray-box VFMs can reduce the prediction error of a mechanistic VFM while
remaining scientifically consistent. The findings motivate further experimentation with gray-box VFM models
and suggest several future research directions to improve upon the performance and scientific consistency.
. Introduction

To optimally control a petroleum asset and maximize the recovery
f oil and gas, it is necessary to have an adequate understanding
f the behavior of the petroleum production system. This consists of
he reservoir, wells, flowlines, pipelines, and separators. Commonly,

mathematical model of the flow through the production system is
eveloped as an aid to information gathering and analysis of the system
esponse to changes in control variables. Such a model is often referred
o as a virtual flow meter (VFM) (Toskey, 2012). A VFM aims to
ontinuously predict the multiphase flow rates (mixture of gas, oil,
nd water) at strategic locations in the asset, for instance in individual
ells. The characteristics of multiphase flow represents a particular

hallenge to prediction. Several types of VFM models exist, ranging
rom mechanistic to data-driven, thus, from white-box to black-box,
espectively (de Prada et al., 2018). Depending on the prior knowledge
bout the system and the available process data, one model type can
e more suitable than others, see Fig. 1.

.1. Virtual flow meter models

Mechanistic models are based on prior knowledge about the process
nd utilize first-principle laws, with possible empirical closure rela-
ions, to describe the relationship between the process input, internal,
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and output variables (Shippen, 2012). Contrarily, data-driven models
require no prior knowledge of the process, and rather exploit patterns
in available process data to describe the input–output relationship.
Therefore, data-driven models often lack scientific consistency. A model
may be considered scientifically consistent if the output of the model is
plausible and in line with existing scientific principles (Roscher et al.,
2020). Although this concept is hard to quantify and dependent on
the user’s scientific knowledge, it is an important characteristic as it
promotes trust in the model. As mechanistic models are derived from
physical laws, their scientific consistency is high. On the other hand,
assumptions and simplifications of the process physics are typically
necessary for a mechanistic model to be computationally feasible and
suitable for use in real-time control and optimization applications (Solle
et al., 2016). Accordingly, mechanistic models often lack flexibility,
which is the ability to adapt to unknown and unmodeled physical
phenomena. Oppositely, due to the generic structure of data-driven
models, the flexibility is high and the models may adapt to arbitrary
complex physical behavior as long as this is reflected in the available
data. Yet, data-driven models are data-hungry and sensitive to the
quality and variability of the data. If care is not taken, overfitting of the
model to data is a frequent outcome that results in poor extrapolation
abilities to future process conditions (Solle et al., 2016).
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Fig. 1. The range of model types from mechanistic, white-box models to data-driven,
black-box models and a few of their characteristics.

Gray-box models, or hybrid models, are a combination of mecha-
nistic and data-driven models. The goal is to achieve a computationally
feasible model that have a high flexibility and a scientifically consistent
behavior. There exist numerous ways of constructing hybrid models.
According to Willard et al. (2020), gray-box models can be divided
into two domains: (1) data-driven modeling to advance first-principle
models, or (2) utilization of first principles to guide data-driven models.
The two domains correspond to either side of the gray-scale illustrated
in Fig. 1 and will be referred to as the white-to-gray and the black-to-
gray approach. Taking VFM as an example, a white-to-gray model is
obtained if a mechanistic model is used as a baseline whereupon data-
driven models are inserted to replace assumptions or simplifications.
For instance, a common approach to estimate the density of gas in a
mechanistic model is with the real gas law. Instead, if this relation
is described with a data-driven model, a white-to-gray VFM model
is obtained. Another example is to introduce a data-driven model to
capture the error between the output of the mechanistic model and
corresponding measurements, see an example in Bikmukhametov and
Jäschke (2020a). In general, the data-driven models may substitute any
factors or terms in the mechanistic model. An example of a black-
to-gray VFM model is if first principles are exploited to calculate
additional features to be applied as input to a data-driven model. This
is commonly referred to as feature engineering. A different approach is
a division into natural submodels, for instance individual wells in an
asset, describe each with a data-driven model and combine the output
using first-principle laws. The two approaches can also be juxtaposed.
For instance, both a mechanistic and a data-driven model can be
developed to predict the multiphase flow rate and the model outputs
combined in an ensemble model. Independent of the gray-box model
type, measures should be taken to determine an appropriate degree
of influence the mechanistic and data-driven part should have on the
model output. In other words, there should exist a pertinent balance
between learning from physics and learning from data. For instance,
if the available process data are inaccurate, the mechanistic part of
the model should influence the gray-box model output the most. If
the process exhibits unknown behavior, the data-driven part should
have the greatest impact. Desirably, the gray-box model should learn
as much as possible from both physics and data.

1.2. Literature review

The literature reports substantial research on mechanistic and data-
driven modeling of VFMs (AL-Qutami, Ibrahim, Ismail, 2017; AL-
Qutami et al., 2017b, 2017c, 2018; AlAjmi et al., 2015; Amin, 2015;
Bikmukhametov & Jäschke, 2019; Ghorbani et al., 2018; Omrani et al.,
2018; Zangl et al., 2014). An extensive review is found in Bikmukhame-
tov and Jäschke (2020b). Some well-known commercial mechanistic
VFMs are Olga, LedaFlow, FlowMananger, ValiPerformance, and Pros-
per. In the study by Amin (2015), it was found that all the above-

mentioned commercial mechanistic VFM achieved an error less than

2

5% and 10% for the prediction of oil and gas flow rates, respec-
tively. The noticeable series of studies on data-driven VFM by AL-
Qutami, Ibrahim, Ismail (2017), AL-Qutami et al. (2017b, 2017c, 2018)
achieved errors of 1.5%, 4.2%, and 4.7% on the predictions of gas, oil,
and water flow rates, respectively.

Despite recent emerging tools for hybrid, gray-box modeling, such
as gPROMS (Siemens Process Systems Engineering, 2021), and even
a commercially available hybrid VFM: TurbulentFlux (Ruden, 2020),
little literature on the performance of gray-box VFMs exist. Turbulent-
Flux reports an error of 4% on multiphase flow rate predictions over
two months for one of the tested wells. However, the robustness in
performance for different wells is not reported. Furthermore, as no
reference model is tested on the available data it is difficult to conclude
whether the hybrid model performs better than alternative approaches.
Nevertheless, some examples exist in the literature (Al-Rawahi et al.,
2012; Bikmukhametov & Jäschke, 2020a; Kanin et al., 2019; Xu et al.,
2011). Most of these studied different gray-box approaches on synthetic
data, either as an experimental set up in a test rig (Xu et al., 2011)
or a multiphase flow loop (Al-Rawahi et al., 2012), or using lab data
available online (Kanin et al., 2019). The study in Bikmukhametov
and Jäschke (2020a) investigated several hybrid VFM variants on real
production data, with a large focus on the black-to-gray modeling
approach. However, their results were based on process data from only
one subsea well and the modeling approach could benefit from a deeper
study of more petroleum wells.

1.3. Contributions

This research contributes to the field of gray-box VFM modeling
with an in-depth study of five white-to-gray VFM models of a petroleum
production choke valve. A mechanistic and data-driven model is de-
veloped for comparison of the performance and scientific consistency.
The study is a significant expansion of the work done in Hotvedt et al.
(2020a, 2020b). The number of tested gray-box models is increased,
the complexity of the model components is higher, and data from more
wells are included. The VFM models are developed for 10 petroleum
wells at Edvard Grieg (Lundin Energy Norway, 2020). Real, historical
production data are used in the model development, thus no experimen-
tal setup or simulator is required for data acquisition. With data from
10 wells, the robustness of the modeling approaches can be investigated
to a certain extent. The results in this research are in respect to the
VFM application, and the generalizability to other application areas is
not considered.

2. Production choke valve models

A production system is illustrated in Fig. 2, from the down-hole,
the closest measurement point to the reservoir, to the separator. The
volumetric flow rate from several wells are commingled and the total
production from the asset is separated into three phases, oil (𝑄𝑂),
water (𝑄𝑊 ), and gas (𝑄𝐺), at the separator. The production choke
valve is located in the wellhead of the production system. The choke
is a key element in the daily control and optimization of a petroleum
production system. By adjusting the choke opening, the multiphase
flow rate through the production system can be controlled to maximize
production while meeting operational requirements such as production
capacity constraints. In this research, only the production choke is
modeled. This results in lesser model complexity and avoids the utiliza-
tion of down-hole sensor measurements. For assets where down-hole
measurements are lacking or faulty, this is advantageous. Naturally, for
assets with good down-hole measurements, the VFM can be expanded.

To model the choke for individual wells, the following measure-
ments are required: the choke opening (𝑢), the pressures (𝑝) and tem-
peratures (𝑇 ) located upstream (1) and downstream (2) the choke
valve, and measurements of the flow rate (𝑞). Measurements of the

phasic flow rates in individual wells 𝒒 = (𝑞𝑂 , 𝑞𝐺 , 𝑞𝑊 ) can be obtained
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Fig. 2. Illustration of the production system, from the down-hole (DH) to the separator. The production choke valve is located in the wellhead. Typically available measurements
are indicated.
a
(

from well tests, for instance using a test separator, or multiphase flow
meters (MPFMs) if these are available. Furthermore, the phasic fluid
mass fractions are required. Ideally, these should be calculated with a
different model for each new sample, for example using a simplified
wellbore model as in Kittilsen et al. (2014). Nevertheless, in this
research, the mass fractions are treated as measurements, calculated
using the flow rates from the MPFM in the previous measurement
sample. Consequently, the utilized mass fraction will lag behind the
true mass fractions. However, under the assumption of a slowly time-
varying process, the mass fractions should not change significantly
between each sample.

2.1. Mechanistic production choke model

Several mechanistic models exist for the production choke, in a
varying scale of complexity in space and time. Mechanistic choke
models are usually developed assuming steady-state, one dimensional
(lumped) flow since increasing the dimensionality of the problem re-
quires a numerical solution of the complex Navier–Stokes equations.
These equations are computationally demanding and may not be suit-
able for use in real-time optimization (Shippen, 2012). There are sev-
eral well-known choke models in literature and industry (Al-Safran
& Kelkar, 2009; Perkins, 1993; Sachdeva et al., 1986; Selmer-Olsen,
1995). In this research, the Sachdeva model is used as the baseline
model for hybridization. The Sachdeva model is one of the less complex
models as it introduces many assumptions and simplifications. Expec-
tantly, introducing data-driven elements into the mechanistic model
should increase the flexibility of the model and possibly supersede some
of the simplifications. The exception is distributed effects in space and
time as the Sachdeva model is assumed lumped and steady-state.

The Sachdeva model is derived from the combined mass and mo-
mentum balance equations (Jansen, 2015, p. 107):
𝑑𝑝
𝑑𝑠

+ 𝜌𝑣𝑑𝑣
𝑑𝑠

= 0, (1)

̇ = 𝐴1𝑣1𝜌1 = 𝐴2𝑣2𝜌2, (2)

n which 𝑠 is the position along a streamline, 𝜌 is the fluid mixture
ensity, 𝑣 is the fluid mixture velocity, �̇� is the mass flow rate, and 𝐴

is the area of the choke valve. Positions (1) and (2) indicate the inlet
and outlet, respectively. By integrating Eq. (1) between location (1) and
(2) and introducing several assumptions, for example:

• no-slip: the gas and liquid travels through the choke with equal
velocity,

• incompressible liquid: liquid densities are constant along 𝑠 result-
ing in the oil and water densities being independent of the process
conditions,
3

• frozen flow: no mass transfers from one phase to another across
the choke resulting in constant mass fractions independent of
process conditions,

• adiabatic gas expansion across the choke: no mass or heat trans-
fers between the fluid and the surroundings,

• thoroughly and homogeneously mixed fluid,
• neglect of momentum effects at (1) due to 𝐴2 ≪ 𝐴1, yielding
𝑣22 ≫ 𝑣21,

model for the mass flow rate through the choke valve is obtained
see Sachdeva et al. (1986) for complete derivation):

�̇� = 𝐶𝐷𝐴2(𝑢)×
√

2𝜌22𝑝1

(

𝜅
𝜅 − 1

𝜂𝐺

(

1
𝜌𝐺,1

−
𝑝𝑟
𝜌𝐺,2

)

+
(

𝜂𝑂
𝜌𝑂

+
𝜂𝑊
𝜌𝑊

)

(1 − 𝑝𝑟)
)

,
(3)

𝜌𝐺,1 =
𝑝1𝑀𝐺
𝑍𝑅𝑇1

, (4)

𝜌𝐺,2 = 𝜌𝐺,1𝑝
1
𝜅
𝑟 , (5)

1
𝜌2

=
𝜂𝐺
𝜌𝐺,2

+
𝜂𝑂
𝜌𝑂

+
𝜂𝑊
𝜌𝑊

, (6)

𝜂𝐺 + 𝜂𝑂 + 𝜂𝑊 = 1. (7)

Here 𝜌𝑖, 𝜂𝑖, 𝑖 ∈ {𝐺,𝑂,𝑊 } are the phasic densities and mass fractions,
respectively, 𝑀𝐺 is the molar mass of gas, and 𝑝𝑟 is the downstream
to upstream pressure ratio. The gas expansion coefficient 𝜅 is in this
article treated as a constant but is in practice a function of pressure
and temperature, 𝜅 = 𝜅(𝑝1, 𝑝2, 𝑇1, 𝑇2). The gas compressibility factor
𝑍 is calculated using the correlation in Sutton (1985). The discharge
coefficient 𝐶𝐷 is commonly introduced to account for modeling errors.
The area of the choke is a function of the choke opening 𝐴2 = 𝐴2(𝑢)
since the choke is adjustable.

The model differentiates between critical and subcritical flow using

𝑝𝑟 =

{ 𝑝2
𝑝1

𝑝2
𝑝1

≥ 𝑝𝑟,𝑐
𝑝𝑟,𝑐 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(8)

In short, critical flow is a phenomenon where the mass flow rate
through the choke is not increasing for decreasing downstream pressure
𝑝2 and fixed upstream pressure 𝑝1. A rule of thumb for the critical
flow boundary 𝑝𝑟,𝑐 for multiphase flow with a mixture of gas, oil, and
water is 𝑝𝑟,𝑐 ≈ 0.6 (Jansen, 2015). The volumetric flow rate may be
obtained using the mass flow rate and the mixture density in standard
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conditions (SC), typically 1 atm and 15 ◦C (International Organization
or Standardization, 1996). In this research, the model output is the oil
olumetric flow rate:

𝑂 =
𝜂𝑂�̇�
𝜌𝑂,𝑆𝐶

, (9)

Mathematically, the mechanistic model (MM) in (3)–(9) is described
ith the generic function 𝑓 that predicts the oil volumetric flow rate

or the input measurements 𝒙 and the set of model parameters 𝝓𝑀𝑀 :

̂𝑀𝑀 = 𝑞𝑂,𝑀𝑀 = 𝑓 (𝒙;𝝓𝑀𝑀 ) ∈ R, (10)

= (𝑝1, 𝑝2, 𝑇1, 𝑇2, 𝑢, 𝜂𝐺 , 𝜂𝑂) ∈ R7, (11)

𝑀𝑀 = (𝜌𝑂 , 𝜌𝑊 , 𝜅,𝑀𝐺 , 𝑝𝑟,𝑐 , 𝐶𝐷) ∈ R6. (12)

he 𝝓𝑀𝑀 are components in the model which are considered constant
ue to certain assumptions or simplifications. For instance, as described
bove, the oil and water densities are constant parameters due to the
ssumption of incompressible liquid.

.2. Hybridization of the mechanistic model

To hybridize the MM, any of the factors or terms in (3)–(9) can be
ubstituted with a data-driven model (DM). Approaching the hybridiza-
ion from a physical point of view, some of the mechanistic model
ssumptions or simplifications can be imprecise, yielding an erroneous
hysical behavior. For instance, in low temperature and high-pressure
onditions, the real gas law relation in (4) may be inaccurate. Instead
f using a different, and possibly more complex, mechanistic relation
uch as van der Waals equation of state, the hybrid model utilizes a DM
o substitute the real gas law. Presumably, by learning the gas density
elation from patterns in the measurements only, a relation that is suit-
ble for the process and adaptable to the current conditions is obtained.
aking another example, the adiabatic gas expansion equation in (5)
ssumes that no heat or mass transfer occurs between the system and
urroundings, yet, in practice, both exist. If the available measurements
eflect these physical phenomena, a DM substituting (5) should, to
ome extent, be able to implicitly capture the effect of, for instance,
eat transfer on the flow rate, even without measurements of the
mbient temperature. Similarly, most of the assumptions listed above
ay be replaced with a data-driven model to account for erroneous
hysics. Consequently, the model should be more generic and suitable
or utilization in a larger range of process conditions. Nevertheless,
ata-driven models are generally only valid in the domain of the data
hey have been exposed to. Hence, if the system is exposed to previously
nseen process conditions, the hybrid models will likely have to be
etrained or recalibrated to adapt to the new data.

There is an abundant number of hybridization options of the mech-
nistic model. Therefore, only a few of the simplifications and as-
umptions of the baseline model are investigated. Further, numerous
ombinations of these simplifications are viable, and for simplicity, only
ne simplification is considered at the time. Thereby, five hybrid model
HM) variants are developed, each addressing and substituting one of
he following simplifications with a DM:

1. The area function, 𝐴2(𝑢)
2. The upstream gas density function, replacing (4)
3. The adiabatic gas expansion function, replacing (5).
4. The homogeneous mixture density function, replacing (6).
5. An additive error model to capture structural errors of the MM

Mathematically, the inserted DM is defined by

̂ = 𝑔(𝒙 ;𝝓 ) ∈ R, (13)
𝐷𝑀 𝐷𝑀 𝐷𝑀

4

here 𝒙𝐷𝑀 ⊆ 𝒙 depends on the HM variant, and 𝝓𝐷𝑀 are a set of
nonphysical parameters defining the structure of the DM. For the inter-
ested reader, if there exist measurements of what the DM represents,
for example, density measurements, these may be incorporated into the
model development by the means of prior parameter specification.

The HM is defined as a combination of the MM and DM by:

�̂�𝐻𝑀 = 𝑞𝑂,𝐻𝑀 = ℎ(𝒙𝐻𝑀 ;𝝓𝐻𝑀 ) ∈ R, (14)

here 𝒙𝐻𝑀 ⊆ 𝒙 and the hybrid model parameters 𝝓𝐻𝑀 is all of
𝐷𝑀 but not necessarily all of 𝝓𝑀𝑀 since some are redundant when

introducing the DM in the MM. For instance, replacing (4) with a DM,
the parameter 𝑀𝐺 is no longer needed in the equations.

The five HMs may be illustrated with the following figures, variant
1–4 in Fig. 3a, here 𝝓′

𝑀𝑀 ⊆ 𝝓𝑀𝑀 , and HM variant 5 in Fig. 3b.
It should be noted that the framework used to develop the gray-box
models are not restricted to the variants in Fig. 3b. For instance, only
small changes to the model are necessary to implement black-to-gray
VFM models.

The applied data-driven model for all the hybrid model variants
is a fully connected, feed-forward neural network. Naturally, other
data-driven methods may be applied such as regression trees or sup-
port vector machines. Nevertheless, as mentioned in Section 1, neural
networks are flexible and can adapt to arbitrarily complex patterns
in data. Furthermore, the neural network is easily integrated into a
model development framework where the model parameters are found
with maximum a posteriori estimation and stochastic gradient-based
optimization. This will be introduced in Section 3. In short, a feed-
forward neural network is a collection of L layers, represented with the
following equations:

Input 𝑧0 = 𝒙𝐷𝑀

Hidden layer(s) 𝒛𝑖 = 𝑎𝑖(𝑾 𝑖𝒛𝑖−1 + 𝑏𝑖), 𝑖 ∈ {1,… , 𝐿 − 1}

Output layer 𝑧𝐿 = 𝑾 𝐿𝒛𝐿−1 + 𝑏𝐿

(15)

At each layer, the inputs are transformed with a linearly affine function
with weight matrix 𝑾 𝑖 and bias 𝑏𝑖 and sent through an activation
unction 𝑎. The rectified linear unit activation function has been used,
hich is the elementwise maximum operator ReLU(𝒛𝑖) = max{0, 𝒛𝑖}.
his results in the neural network being a set of piecewise linear equa-
ions. The nonphysical parameters of the network are the collection of
eights and biases on all layers 𝝓𝐷𝑀 = {(𝑾 1, 𝑏1),…(𝑾 𝐿, 𝑏𝐿)}.

. Parameter estimation of hybrid models

Regardless of the location of the model on the gray-scale in Fig. 1,
he uncertain model parameters should be estimated from data. For
fully mechanistic model, good prior values on the parameters often

xist and parameter estimation is not a requirement, although usually a
ecessity, for high accuracy model predictions. For a fully data-driven
odel, parameters are initialized randomly and parameter estimation is
requirement. Thus, the latter argumentation applies to hybrid models.
arameter estimation is also referred to as model training.

.1. Maximum a posteriori estimation

Consider a dataset  = {𝒙𝑖, 𝑦𝑖}𝑛𝑖=1 with 𝑛 measurements of the
rocess explanatory variables 𝒙𝑖 = (𝑥𝑖,1,… , 𝑥𝑖,𝑑 ) ∈ R𝑑 , and target
ariable 𝑦𝑖 ∈ R. Assume the process to be described by the following
easurement model

𝑖 = ℎ(𝒙𝑖;𝝓) + 𝜖𝑖, 𝜖𝑖 ∼  (0, 𝜎2𝜖,𝑖) 𝑖 ∈ {1,… , 𝑛}, (16)

where �̂�𝑖 = ℎ(𝒙𝑖;𝝓) are the model predictions of the target variable,
with model parameters 𝝓 ∈ R𝑚 and normally distributed measurement
𝜖𝑖 with zero mean and variance 𝜎2𝜖,𝑖. Observe that this measurement
model can incorporate output measurement from different devices,
if available, by changing 𝜎2 appropriately for measurement 𝑖. Even
𝜖,𝑖
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Fig. 3. Illustration of the five hybrid model variants. (a) Hybrid model variant 1–4, (b) Hybrid model variant 5: additive error model.
𝜎

ynthetic data generated with mechanistic simulators may be included
n this approach.

In parameter estimation problems, the parameters 𝝓 of the model
ℎ will be inferred using the available data . This can be done us-
ing Bayesian inference where the prior parameter distribution 𝑝(𝝓) is
pdated to a posterior parameter distribution:

(𝝓 ∣ ) =
𝑝( ∣ 𝝓)𝑝(𝝓)

𝑝()
. (17)

q. (17) includes intractable integrals (Blei et al., 2017) and approxi-
ation techniques are commonly required for a numerical solution. In

his research, maximum a posteriori (MAP) estimation is applied.
In MAP estimation, only the mode of the posterior distribution is

onsidered and the parameters are found with the following optimiza-
ion problem:

𝝓⋆
𝑀𝐴𝑃 = argmax

𝝓
𝑝(𝝓 ∣ ) = argmax

𝝓

[

log 𝑝( ∣ 𝝓) + log 𝑝(𝝓)
]

, (18)

here log 𝑝( ∣ 𝝓) is called the loglikelihood of the model. By further
ssuming normally distributed parameter priors 𝜙𝑖 ∼  (𝜇𝑖, 𝜎2𝑖 ), 𝑖 ∈
1,… , 𝑚} the following optimization problem may be derived (Bishop,
006):

𝝓∗
𝑀𝐴𝑃 = argmin

𝝓

[ 𝑛
∑

𝑖=1

1
𝜎2𝜖,𝑖

(

𝑦𝑖 − 𝑓 (𝒙𝑖;𝝓)
)2 +

𝑚
∑

𝑖=1

1
𝜎2𝑖

(

𝜙𝑖 − 𝜇𝑖
)2
]

. (19)

n short, MAP estimation is a trade-off between minimizing the error
etween target variable predictions and measurements and minimizing
arameter deviation from the prior mean 𝜇. By setting a constant noise
evel 𝜎2𝜖 = 𝑐𝑜𝑛𝑠𝑡., the MAP estimation is equal to maximum likelihood
stimation (MLE) with 𝓁2-regularization, a common approach in the

data-driven modeling domain (Goodfellow et al., 2016). The variance
of the parameters and measurement noise determine the degree of regu-
larization. In Hotvedt et al. (2020b), it was shown that MAP estimation
is necessary for a hybrid model to obtain plausible and physically
consistent values of the physical model parameters after estimation.
Further, regularization must be used to avoid overfitting of the model
and ensure adequate generalization performance (Goodfellow et al.,
2016).

A different perspective of the MAP estimation problem is that it
balances learning from physics and learning from data. With softer
regularization, achieved by setting flat, noninformative prior parameter
distributions 𝜎𝑖 → ∞, the data will have a large influence on the
stimation outcome. This is because the regularization terms are down-
eighted in optimization. The same effect is achieved with a small
oise variance, implying that the measurements are accurate. With
arder regularization, the opposite effect is achieved where the physics,
n this case, the parameter priors, will have a higher influence on the
stimation outcome and the adaption to data down-weighted in the
ptimization.

For the HMs in Section 2, the MAP objective function is divided
nto three terms, the MLE and two parameter regularization terms, one
5

each for the physical and nonphysical parameters. In this research, only
MPFM measurements are used and thus:

𝝓∗
𝑀𝐴𝑃 = argmin

𝝓

𝑛
∑

𝑖=1

(

𝑦𝑖 − ℎ(𝒙𝑖,𝐻𝑀 ;𝝓𝐻𝑀 )
)2

+ 𝜎2𝜖

[ 𝑚1
∑

𝑖=1

(𝜙𝑖,𝑀𝑀 − 𝜇𝑖,𝑀𝑀

𝜎𝑖,𝑀𝑀

)2
+

𝑚2
∑

𝑖=1

(𝜙𝑖,𝐷𝑀 − 𝜇𝑖,𝐷𝑀

𝜎𝑖,𝐷𝑀

)2
]

.

(20)

Here 𝑚1 and 𝑚2 is the number of physical and nonphysical parameters,
respectively.

3.2. Priors on the physical parameters

For the physical model parameters, good prior values of the mean
𝜇𝑖,𝑀𝑀 often exist. For instance, for freshwater density 𝜇𝜌𝑤 ≈ 1000
kg∕m3. The parameter variances may be set to reflect the uncertainty in
the prior mean value. If the assumption of normally distributed param-
eters is exploited, the variance may be approximated using the absolute
maximum and minimum values of the parameters and calculating the
6𝜎 band of the distribution,

𝑖,𝑀𝑀 =
max (𝜙𝑖,𝑀𝑀 ) − min (𝜙𝑖,𝑀𝑀 )

6
, (21)

for which the probability of obtaining values outside the band is ≈
0.03%. For harder regularization of a specific parameter, the variance
may be decreased, resulting in a sharper distribution, and the opposite
for softer regularization.

3.3. Priors on the nonphysical parameters

Finding priors for the nonphysical parameters in the model is
not trivial. However, He-initialization is recommended for neural net-
works with ReLU as activation function (He et al., 2015). With He-
initialization, each element in the weight matrix on each layer 𝑾 𝑖, 𝑖 ∈
𝐿 (see Section 2) is initialized from a normal distribution with mean
and variance

𝜇𝐷𝑀 = 0, 𝜎2𝐷𝑀 =

(√

2
𝑚𝑙,𝑖

)2

, 𝑖 ∈ 2, ..𝐿, (22)

where 𝑚𝑙,𝑖 are the number of inputs on layer 𝑖. On the first layer, no
activation function is applied to the inputs and 𝜎2𝐷𝑀 =

(√

1∕𝑚𝑙,1
)2.

On the other hand, for the hybrid models where the neural net-
work represents a mechanistic relation, more informative priors for
the nonphysical parameters are found by pretraining the network on
synthetic data generated with the mechanistic relation in question. The
obtained values of the weights and biases of the pretrained network are
used as the 𝝁𝐷𝑀 when training the final model. However, the network
is trained on synthetic data only and it assumed that the updated
prior parameter means are just as uncertain as before. Therefore, the
parameter variances in (22) are utilized. If real measurements of the
variable existed, such as density measurements, these could be used in
the pretraining.
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3.4. Priors on the measurement noise

In an industrial setting, a common measure of the error of a mea-
surement device is the mean absolute percentage error (MAPE), com-
paring the measured signal to a known reference value 𝑦𝑟𝑒𝑓 . Following
the derivation in Grimstad et al. (2021), the MAPE may be translated
into the variance of the measurement noise with

𝜎2𝜖 =
(√

𝜋
2
𝛼|𝑦𝑟𝑒𝑓 |

)2

, (23)

where 𝛼 is the MAPE, for instance 𝛼 = 0.1 for 10% MAPE. In this study,
the reference value is not known and the variance of the measurement
noise is approximated by using the available data. Because the MAP
estimation in (20) assumes a constant noise level 𝜎2𝜖 = 𝑐𝑜𝑛𝑠𝑡., the
mean value of the measured target variable in the training data is
used as the reference value, 𝑦𝑟𝑒𝑓 = 1∕𝑛

∑𝑛
𝑖=1 𝑦𝑖. As mentioned in

Section 3.1, in practice the 𝜎2𝜖 may be adjusted to influence the degree
of regularization on the parameters.

4. Case study

The case study develops the five listed white-to-gray VFM models
in Section 2 for 10 petroleum wells on Edvard Grieg (Lundin Energy
Norway, 2020). Edvard Grieg is an asset on the Norwegian Continental
Shelf and consists of under-saturated oil without a gas cap. The asset
is relatively new where production commenced in 2015. The wells,
hereafter referred to as W01-W10, are well-instrumented with available
measurements of the explanatory variables defined in (11). An MPFM
located in the wellhead of each well provides measurements of the
volumetric flow rate. The models are trained with MAP estimation
introduced in Section 3 using real, historical production data from the
10 wells. The number of data samples per well is unequal and spans
approximately 1.5–4 years. No additional experimental or synthetic
data are considered. For comparison, the Sachdeva model in Section 2,
and a fully connected feed-forward neural network, are implemented.
Two aspects of the models are investigated. First, the predictive per-
formance in terms of accuracy is analyzed in Section 4.1. Thereafter,
the scientific consistency is examined in Section 4.2. Considerations for
improvements in future work are discussed in Section 4.3.

The datasets for each well are preprocessed in two steps. First,
the processing technology in Grimstad et al. (2016), is utilized to
generate a compressed dataset of steady-state operating points suitable
for steady-state modeling. Secondly, a set of filters are applied to
remove data samples that likely originate from erroneous sensor data,
such as negative pressures or choke openings. The dataset is split into
training and test set according to time to mimic an industrial setting
where the developed models are used to predict the future responses
of the process. The test set consists of the three latest months of the
data samples. The regularization method early stopping (Goodfellow
et al., 2016) is utilized to train the models. This algorithm monitors
the error on a validation dataset during model training to find the
appropriate number of loops through the training data, called epochs,
to train the model without overfitting. The validation data is 20% of
the training data, extracted in randomly chosen chunks, each chunk
representing data samples from two chronological weeks. Due to the
stochasticity of the training algorithm, the early stopping algorithm is
run several times, and the average number of epochs is used to train
the final model. The optimizer Adam (Kingma & Ba, 2015) is applied
with mini-batches, and the learning rate is 𝛼 = 10−4.

An overview of the seven implemented models is found in Table 1.
The table illustrates which mechanistic model parameters 𝝓′

𝑀𝑀 ⊆
𝝓𝑀𝑀 , are present in the model, which factor or term is replaced by
a neural network 𝑔, and which measurements 𝒙𝐷𝑀 are used as input
to the data-driven element. For short, the hybrid models are named
𝐻𝑀(⋆), where ⋆ is the factor or term the neural network substitutes.
The fully mechanistic and the fully data-driven model are referred to
6

Table 1
An overview of the developed models of the production choke valve: five hybrid, one
fully mechanistic, and one fully data-driven model.

VFM model 𝝓′
𝑀𝑀 𝑔(𝒙𝐷𝑀 ;𝝓𝐷𝑀 ) 𝒙𝐷𝑀

MM 𝜌𝑂 , 𝜌𝑊 , 𝜅,𝑀𝐺 , 𝑝𝑟,𝑐 , 𝐶𝐷 n.a. n.a.
HM(𝐴2) 𝜌𝑂 , 𝜌𝑊 , 𝜅,𝑀𝐺 , 𝑝𝑟,𝑐 Area function 𝑢
HM(𝜌𝐺,1) 𝜌𝑂 , 𝜌𝑊 , 𝜅, 𝑝𝑟,𝑐 , 𝐶𝐷 Upstream gas density 𝑝1 , 𝑇1
HM(𝜌𝐺,2) 𝜌𝑂 , 𝜌𝑊 ,𝑀𝐺 , 𝑝𝑟,𝑐 , 𝐶𝐷 Gas expansion 𝑝1 , 𝑝2 , 𝑇1 , 𝑇2
HM(𝜌) 𝜌𝑂 , 𝜌𝑊 , 𝜅,𝑀𝐺 , 𝑝𝑟,𝑐 , 𝐶𝐷 Mixture density 𝑝1 , 𝑝2 , 𝑇1 , 𝑇2 , 𝜂𝐺 , 𝜂𝑂
HM(𝜀) 𝜌𝑂 , 𝜌𝑊 , 𝜅,𝑀𝐺 , 𝑝𝑟,𝑐 , 𝐶𝐷 Additive error 𝑝1 , 𝑝2 , 𝑇1 , 𝑇2 , 𝜂𝐺 , 𝜂𝑂
DM n.a. Oil flow rate 𝑝1 , 𝑝2 , 𝑇1 , 𝑇2 , 𝑢, 𝜂𝐺 , 𝜂𝑂

Fig. 4. Box plot of the mean absolute percentage error for each model across all wells.
The horizontal line in the box is the median performance.

as the MM and the DM respectively. For all neural networks,
the network depth and width are set to 3 × 100. The size may be
excessive for some of the models. Nonetheless, following recommen-
dations from Bengio (2012) the size can be set arbitrarily large as long
as regularization is employed to prevent overfitting. For the HM(𝐴2),
HM(𝜌𝐺,1), HM(𝜌𝐺,2), and HM(𝜌), the neural networks are pretrained
with synthetic data before utilized in the final model. For each of the
final 70 choke models (for 10 wells and 7 model types), the parameters
are initialized using the prior parameter distributions described in
Sections 3.2 and 3.3. The variance of the measurement noise 𝜎2𝜖 is
calculated assuming a MAPE of 10% and following the procedure in
Section 3.4. A trick is utilized to enforce the positivity of the physical
model parameters. A temporary parameter 𝑆 is learned instead of the
real parameter 𝜙, and the transformation

𝜙𝑖 = exp (𝑆𝜙𝑖 + 𝜁 ), for 𝑖 = 1,… , 𝑚, (24)

is used to obtain the real parameter value. Here 𝜁 is a small constant
to avoid vanishing gradients in the optimization problem.

4.1. Predictive performance

In Fig. 4, the mean absolute percentage error (MAPE) is calculated
for each choke model and illustrated in a box plot comparing the
different model types. Table 2 shows a detailed view of the MAPEs for
the individual choke models. For the interested reader, the predicted
volumetric flow rates are illustrated together with the measured flow
rate (downscaled) in Appendix, Fig. A.1.

There are several interesting observations to make. Firstly, the
median errors are large for all model types and not at the level with the
reported errors in literature, see Section 1. Fig. 4 shows that the DM is
the only model achieving a median MAPE below 10%, though barely
with 9.4%. Secondly, the results indicate that moving the model on the
gray-scale from white to gray does improve the average performance
significantly, see Table 2. The MM achieves an error of 17.2% against
10.3% for the best HM. However, comparing the HMs to the DM
with an error of 10.4%, there is only a small improvement. Thirdly,
large variations in performance for the different choke models are
observed in Table 2. For instance, for W01, all the model types perform
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Fig. 5. Upstream pressure versus choke opening in time for approximately the same volumetric oil flow rate. Dark colors are the earliest time samples, whereas the light colors
are the latest and are included in the test set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 2
Mean absolute percentage error for the individual choke models. The best performing choke model is
highlighted in bold.

MM HM(𝐴2) HM(𝜌𝐺,1) HM(𝜌𝐺,2) HM(𝜌) HM(𝜀) DM

W01 4.7 3.1 1.8 2.4 2.0 4.9 2.4
W02 28.9 16.7 11.2 19.7 14.4 18.0 17.7
W03 20.8 9.3 18.2 16.7 16.1 22.6 15.7
W04 5.7 18.5 11.6 15.5 13.7 13.6 18.5
W05 8.3 11.9 12.5 22.0 16.1 17.4 3.6
W06 40.6 20.9 6.5 9.9 9.3 38.9 3.7
W07 30.7 2.3 4.8 5.5 5.7 6.0 2.1
W08 5.1 5.2 7.7 10.7 3.2 2.4 3.2
W09 12.7 12.8 11.6 12.3 8.8 13.9 21.5
W10 14.7 19.2 22.5 16.3 13.6 21.9 15.8

Across wells 17.2 12.0 10.9 13.1 10.3 16.0 10.4
excellently and are on the level with the reported errors in the literature
(less than 4% MAPE). Yet, for W02, the performance is unsatisfactory
for all model types. The large differences in performance may also be
observed by looking at the cumulative deviation plots in Appendix,
Fig. A.2. This plot shows the percentage of test points that fall within
a certain percentage deviation from the true value (Corneliussen et al.,
2005).

There are several factors that may cause the observed prediction
accuracy of the different models. Three of these will be discussed in
the following. Section 4.1.1 will focus on the impact model simplifi-
cations may have on the accuracy, Section 4.1.2 will elaborate on the
task of balancing learning from physics and learning from data, and
Section 4.1.3 discusses the likely influence of available data.

4.1.1. The possible impact of model simplifications
First of all, it must be kept in mind that only the production

choke valve is modeled, and any effects of the remaining production
system on the multiphase flow, such as the wellbore, are disregarded.
It is believed that the average predictive performance would improve
by modeling a larger part of the production system. Second of all,
several assumptions and simplifications are introduced in the base-
line mechanistic choke model. Dependent on process conditions, flow
regimes, and fluid composition, these may be appropriate to describe
the physical behavior of the flow through the choke in some wells but
imprecise in others. For instance, observe how the HM(𝐴2) for W03
has a much better performance than any of the other model types. This
may indicate that the mechanistic area function is poorly calibrated
for this well in the other model types. For W01, HM(𝜌𝐺,1) has the best
performance and may suggest that the assumption of the real gas law is
inadequate. Naturally, these are only indications and the results could
benefit from a deeper analysis of the suitability of different hybrid
models in different cases.
7

4.1.2. The nontrivial task of balancing learning from physics and data
With adequate design and training, the HMs were expected to

exploit both physics and data to their full extent and thereby perform
better than non-hybrid models. Certainly, on a well level, six wells
perform better with an HM. However, seen from Table 2, wells W04-
W07 perform better with either a mechanistic or a data-driven model.
This may cast light upon the nontrivial task of balancing learning from
physics and data. The HM may be too simplistic, and consequently,
not flexible enough to capture complex physical behavior. Likewise,
the data-driven elements may be erroneously influenced by the data.
Hence, an appropriate approach to control the influence of the mech-
anistic and data-driven component is yet to be discovered, at least for
the white-to-gray hybrid model types investigated in this research.

4.1.3. The influence of the available data
As neural networks have the power to adapt to arbitrarily complex

patterns in the data, the large MAPEs seen for many of the DMs may
indicate that the quality of the available data is inadequate. Real,
historical production data are used in both model training and testing.
It is not uncommon that production data are noisy and biased, which
complicates the modeling process and may yield an unfair indication
of predictive performance for some models. Naturally, different model
types or estimation techniques exist which to a greater extent exploits
uncertainty in the model parameters and measurements. On the other
hand, such methods require specifications of uncertainty that are not
easily available, and the resulting models are usually of higher com-
plexity. Further, it is believed that the large error for several of the
choke models is mainly caused by the datasets originating from the
underlying, nonstationary process. In time with the reservoir being
depleted, the pressure in the down-hole will decrease. If the goal
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Fig. 6. Box plot comparing the mean absolute percentage error for each model across
wells using three months of data in black (right box) and one week of data in gray
(left box).

is to maintain a steady production rate, the operators must increase
the choke opening. Extracting the test dataset chronologically may
therefore result in a set of process conditions that are substantially
different from the conditions seen in the training dataset. If so, a steady-
state model like the baseline mechanistic model or a standard neural
network will not be able to capture the slowly varying, underlying

changes. H

8

Fig. 5 illustrates this issue. Shown is the upstream pressure 𝑝1 versus
the choke opening 𝑢 for approximately the same oil volumetric flow
rate. The coloring indicates time, the lightest colors are the latest time
samples. Notice that for some wells (for example W05, W06, W07), the
coloring is grouped, indicating that in time, different process conditions
are required to maintain the volumetric oil flow rate. Naturally, the
flow rate will also depend on other variables such as the mass frac-
tions. Nevertheless, in a nonstationary situation, using three months
of test data and assuming the model parameters to be constant and
representative for the physical behavior during three months may be
inappropriate. It may also discredit the high accuracy prediction poten-
tial of the models. Using the developed models to predict the process
response only one week ahead greatly increases the accuracy, see the
comparison of three months prediction against one-week predictions in
Fig. 6.

4.2. Scientific consistency

One consideration of a model is the performance in terms of ac-
curacy, another is the scientific consistency. Inconsistent physical be-
haviors may cast doubt about the trustworthiness of the models and
cause the generalization abilities to be poor. First, the outputs from
the neural networks in the hybrid models are investigated. Figs. 7a
and 7b shows the output from the neural network in HM(𝐴2) and
M(𝜌𝐺,1), respectively, as a function of one of the inputs, for three of
Fig. 7. The learned neural network area function in (a) H(𝐴2) (b) H(𝜌𝐺,1), and for three of the wells, illustrated together with a typical mechanistic curve (black, solid). Also
shown are the training and test data points for each well.
Fig. 8. Sensitivity analysis of the different models for W01. Five initial points are picked at random, marked with diamond, and the response of the volumetric oil flow rate when
perturbing the choke opening 𝑢 (upper) and the upstream pressure 𝑝1 (lower) is illustrated.
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the wells. The results are diverse. In some of the choke models, the
output of the neural network has a trend coherent with the expected
physical behavior, illustrated with the mechanistic relation. This is
seen for W01. However, notice that some of the other curves go to
zero or explode, illustrating scientific inconsistency. This effect has also
been observed for the HM(𝜌𝐺,2) and the HM(𝜌). There are two likely
explanations for the nonphysical behaviors. Firstly, the behavior may
be influenced by the lack of data or erroneous data. For instance, for
W03, data are lacking for choke openings greater than 40%. Secondly,
due to the high capacity of neural networks, the data-driven part of
a hybrid model may capture any modeling error and not just the
factor or term the network was intended to represent. For instance,
even though the HM(𝐴2) had the best performance for W03 of all
models, the area function is not in line with the expected physical
behavior. This indicates that the learned neural network area function
may have captured other modeling errors than just a poorly calibrated
area function.

Additionally, a short sensitivity study is conducted to investigate
the scientific consistency of the output of the seven implemented VFM
models. The choke models trained on data from W01 are examined for
which all models achieved a good performance, see Table 2. Five test
points are randomly picked from the test dataset, the choke opening
𝑢 and the upstream pressure 𝑝1 are individually perturbed and the
responses in the oil volumetric flow rate 𝑞𝑂 are investigated. Under
the assumption of constant process conditions and considering the
production choke as an isolated unit without the influence of the
rest of the production system, the oil flow rate should be expected
to (1) increase with increasing choke opening, and (2) increase with
increasing upstream pressure. The sensitivity study is presented in
Fig. 8.

Most of the models seem to mimic the expected physical behavior
except for the DM, for which the oil flow rate decreases with increased
pressure above a certain threshold. This effect is caused by the DM
being influenced by the available data to a larger degree than the
other model types, and that the available data reflects the behavior
of the complete production system and not only the choke. This can
be explained in more detail by looking at the correlation plot of the
available measurements in the dataset corresponding to W01, see Fig. 9.
Observe the negative correlation between the oil flow rate 𝑞𝑂 and the
upstream pressure 𝑝1. By looking at the choke as an isolated unit this
correlation contradicts the expected physical behavior. On the other
hand, additionally considering the wellbore, the observed correlation
has a scientific explanation: increased pressure in the wellhead may
result in a decreased pressure drop in the wellbore and a decreased oil
flow rate. Nevertheless, if the goal of the modeling was to develop a
choke model, the DM would be considered scientifically inconsistent.
These results reflect upon both the positive and negative nature of
models with high flexibility. They may adapt to any behavior seen in
the available data, thus also erroneous data. On the other side, this
sensitivity study is small and only conducted for one well. Conclusions
on the scientific consistency of the general gray-box model cannot
be made. Nevertheless, the results motivate the use of gray-box VFM
models if scientific consistency is of importance to the end-users of the
models.

4.3. Suggestions for improvements in future work

From the results presented in Section 4 there are several aspects that
can be investigated to improve upon both the prediction accuracy and
the scientific consistency of hybrid models in future work.

Firstly, only a few simplifications and assumptions are investigated
as hybridization options in Section 2.2 although numerous exist. It is
likely that other hybrid model types may be better at balancing the task
between learning from physics and learning from data. Further, differ-
ent types of data-driven models or other mechanistic choke models may

yield better performances for these wells. There is also the question

9

Fig. 9. A visualization of the correlation between the explanatory variables and the
target variable measurements in the dataset corresponding to W01.

raised in Section 4.1.1 on the suitability of different hybrid models in
different cases. One approach in this direction is to utilize an advanced
simulator to generate synthetic data, in which process conditions and
other characteristics can be controlled.

Secondly, Section 4.1.3 discussed the influence of the available
data on the prediction accuracy and pointed out noisy and biased
measurements, together with nonstationary process conditions as in-
fluential factors. A future research path is to experiment with different
estimation methods or model types that exploits knowledge regarding
the uncertainty in parameters and measurements. Some examples are
variational inference as estimation method, state estimation techniques
such as the Kalman Filter (Kalman, 1960), or probabilistic models.
In case of nonstationary process conditions, time dependent models
may be utilized. Yet, such models greatly increase the computational
complexity and may not be suitable for real-time applications. Another
possibility is online learning, a learning method that may improve
upon future predictive performance without adding complexity to the
models.

Lastly, in Section 4.2, the scientific consistency of the gray-box
models were discussed and several issues raised. Several possible ap-
proaches may be investigated to improve upon the scientific consis-
tency. Firstly, a stronger regularization of the priors obtained from
the pretrained neural networks could possibly result in the network
replicating the mechanistic relation to a higher degree, whilst avoiding
capturing other modeling errors. Secondly, the inclusion of additional
data-driven elements in a gray-box model, for instance, an error term,
could enable the original data-driven element to capture the proposed
physics only. Thirdly, the utilization of methods that enables learning
from datasets across wells, for instance transfer learning or multitask
learning, may positively change the results as more data are exploited.

5. Concluding remarks

This article contributes towards the development of gray-box virtual
flow meters in the petroleum industry. The focus has been on white-to-
gray box models where a mechanistic model is used as a baseline and
data-driven elements inserted to increase model flexibility. The choke
valve of 10 petroleum wells has been modeled using real production
data spanning at most four years of production.
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Fig. A.1. Illustration of the (downscaled) volumetric oil flow rate for each of the well and all models. Shown in dotted black are the measured flow rate from the multiphase
low meter. Notice, for some of the wells all models have adequate prediction accuracy, whilst for other wells, some model predictions are unsatisfactory.
The results are diverse with a prediction accuracy is in the range
f 1.8%–40.6%, and no recommendations towards the suitability of
ifferent gray-box models may be drawn. The results cast light upon
he nontrivial task of balancing learning from both physics and data. It
s believed that the accuracy is strongly influenced by nonstationarity
n the available data. Nevertheless, the results indicate that gray-box
odels may outperform a mechanistic and a data-driven model if an

ppropriate balance between the model components is identified. In
articular, the gray-box modeling approach seems to increase the ac-
uracy compared to mechanistic models and may improve the scientific
onsistency compared to data-driven models.

While the gray-box modeling approaches are tested on 10 different
ells, these wells, while being fairly typical offshore wells, are hardly

epresentative for all wells. Therefore, a direct generalization of the
esults to other assets is difficult. Assuredly, the results could benefit
rom a deeper analysis of gray-box modeling on wells with significantly
ifferent characteristics. Furthermore, the research has studied the ap-
roach with VFM as application, and generalization to other application
reas is inadmissible without further experimentation. On the other
ide, the gray-box modeling approach itself should apply to any process
ystems where both physical equations and process data exist.

To this end, the results reported in this study are promising, albeit,
he true potential of gray-box modeling is yet to be discovered. For
10
example, hybrid modeling could yield great potential in the small
data regime, where data-driven models are known to struggle. Several
interesting research directions exist for future consideration. Among
these are online learning and multi-task learning.
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Fig. A.2. Cumulative performance of choke models grouped on the model types. The black dotted line shows the median performance across wells.
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