
N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f P
hy

si
cs

Kirsten Kristine Biering Mohr

Temperatures in the mesosphere and
lower thermosphere and the viability
of using non-continuous time series
to derive tides

Master’s thesis in MTFYMA
Supervisor: Patrick J. Espy
June 2022

M
as

te
r’s

 th
es

is





Kirsten Kristine Biering Mohr

Temperatures in the mesosphere and
lower thermosphere and the viability
of using non-continuous time series to
derive tides

Master’s thesis in MTFYMA
Supervisor: Patrick J. Espy
June 2022

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Physics





Acknowledgement

I would like to thank my supervisor, Patrick J. Espy, for amazing guidance, helpful tips
and tricks, and good humour. He has made it fun and perfectly challenging to work on this
thesis. I would like to thank Anders for catering, company, and companionship in Bergen
this year. A big hug is also sent to family in Oslo for offering a nice place to relax and
disconnect. Finally, thank you to all my friends for keeping me sane this spring.



Summary

By using ground-based measurements of the hydroxyl (OH) and meridional wind over
Trondheim, the temperatures for the (3,1) and (4,2) Meinel bands have been calculated.
The calculations presented in this thesis are based on measurements done in 2021. The
procedure was based on fitting a Gaussian to the intensity spectra, and a step-wise ap-
proach to this has been documented. In addition, conditions to determine the accuracy
of the computational temperature calculations have been presented which depend on the
relative root mean square error of the Gaussian fit relative to the standard variation in the
temperatures. The temperatures are found to be in accordance with previous studies and
show that the (3,1) temperature, on average, was slightly higher than the (4,2) temperature.

The tides in the temperatures were derived through a frequency analysis. Using hourly
averages damped the effect of geophysical and statistical noise, but the power spectra were
still difficult to interpret. This led to research on how non-continuous time series affect the
tides derived through a Lomb-Scargle transform. The results showed that sampling data
creates artificial tides that will confuse the conclusion if one is unaware of this effect.
These results would make it possible to use cheaper measurement techniques to derive
atmospheric tides. This thesis also presents results determining the necessary length of the
sampled time as well as the length of the time series for the sampled non-continuous time
series to be able to be used to derive tides. For example, if the sampled time is longer than
fourteen hours, it is sufficient to use one night’s worth of sampled data. If one has four
subsequent days of sampled data, the nights need to be at least eight hours long.
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Sammendrag

Ved å bruke bakkebaserte målinger av hydroksyl (OH) og meridional vind over Trond-
heim er temperaturene for (3,1) og (4,2) Meinel-båndene beregnet. Beregningene som
presenteres i denne oppgaven er basert på målinger gjort i 2021. Prosedyren gikk ut på
å tilpasse en Gaussisk funksjon til intensitetsspektrene, og en detaljert fremgangsmåte er
dokumentert. I tillegg er det presentert betingelser for å bestemme nøyaktigheten av tem-
peraturberegningene som avhenger av den relative feilen til kurvetilpasningen i forhold
til standardvariasjonen i temperaturene. Temperaturene er funnet å være i samsvar med
tidligere studier og viser at (3,1) temperaturen i gjennomsnitt var litt høyere enn (4,2)
temperaturen.

Periodene i temperaturene ble utledet gjennom en frekvensanalyse. Bruk av timegjen-
nomsnitt dempet effekten av geofysisk og statistisk støy, men frekvensspektrene var fort-
satt vanskelige å tolke. Dette førte til en analyse av hvordan ikke-kontinuerlige tidsserier
påvirker periodene fremskaffet gjennom en Lomb-Scargle-transformasjon. Resultatene
viste at å samle data kun om natten skaper kunstige perioder som vil forvirre resultatene
hvis man ikke er klar over denne effekten. Disse resultatene vil gjøre det mulig å bruke bil-
ligere måleteknikker for å utlede atmosfæriske svingninger og perioder. Denne oppgaven
presenterer også resultater som bestemmer nødvendig lengde på den samlede måletiden
samt lengden på tidsserien for at de ikke-kontinuerlige tidsseriene skal kunne brukes i
en frekvensanalyse. For eksempel, hvis måleperioden er lengre enn fjorten timer, er det
tilstrekkelig å bruke én natt med data. Hvis man har fire påfølgende dager med data, må
nettene være minst åtte timer lange.
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Chapter 1
Introduction

Hydroxyl (OH) is an unstable molecule produced by ozone and hydrogen. OH exists in the
atmosphere at altitudes between 80 to 110 kilometres, the region known as the mesosphere
and lower thermosphere (MLT). Initially produced at high vibrational levels, hydroxyl
relaxes through vibrational transitions and releases radiation in the infrared region which
can be seen from space as airglow. The area of the atmosphere in which these processes
happen is also the arena for strongly varying wind systems. These wind systems cause
tides in the atmosphere, which are essential for coupling energy between the lower and
upper atmosphere, and have been researched for many years.

In Trondheim (63.4◦N 10.5◦E), the OH is measured by a spectrometer, and a meteor radar
measures the wind in the MLT-region. These measurement techniques differ in perfor-
mance, price, and infrastructure requirements. The meteor radar is very costly to operate
and requires a large area and a lot of infrastructure, while the spectrometer is relatively
cheap, small, and easy to operate. In addition, OH is produced at night, leaving the spec-
trometer operating only when the sun has set.

This thesis aims at calculating the temperatures for the (3,1) and (4,2) Meinel bands by
using OH measurements. From these calculations, the tides in the temperature can be
derived. Since the OH intensity is measured by a ground-based spectrometer which needs
a clear night sky to get good measurements, the number of days applicable for this kind of
analysis is limited. This thesis considers how the different measurement techniques affect
the derivation of tides.

Since tides are such a significant part of atmospheric physics, an analysis of the derivation
of tides is interesting as it evaluates how data analysis can produce misleading and artificial
results. Such an analysis will comment on previous studies in this field. In addition, this
research can be elaborated on to create a way to analyse tides from non-continuous time
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series. An example is being able to use a time series produced by measuring OH at night
only, compared to using a continuous time series created by continuously measuring the
wind. This may create a cheaper solution to deriving tides in the atmosphere, as it would
be possible to rely on a spectrometer and not a meteor radar.

This thesis presents the theory behind the production and radiation of the OH molecule and
the dynamic processes creating the wind. Since the thesis is heavily based on work done
in a previous project report (Mohr 2021), much of the theory describing the chemical and
dynamical processes, instrumentation description and data handling is extensively taken
from that report. It includes a detailed orientation of how the atmospheric temperatures
are calculated based on OH intensities and presents a few temperature calculations on the
temperature in the MLT above Trondheim. Tides in the temperature are derived, followed
by an analysis of the viability of using non-continuous time series to derive tides. Finally,
some requirements for the measured data are presented, as well as future work on the area.
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Chapter 2
Theory

This theory lays the foundation for understanding the following discussions surrounding
the calculated results. Since this master thesis is heavily based on the project report (Mohr
2021), part of the theory is extensively taken from that report, particularly section 2.1,
section 2.2, section 2.3, section 2.4, and section 2.6.

2.1 The atmosphere and atmospheric structure

In the earth’s atmosphere, the gasses nitrogen (N2) and oxygen (O2) are the predominating
species. Other constituents such as carbon dioxide (CO2), water vapour (H2O) and ozone
(O3) play an essential role in the heath transfer, radiation and reflection of ultraviolet light
from the sun, the seas and land (Andrews 2010). The earth’s atmosphere has been divided
into four primary horizontal layers, defined by the temperature gradient. The temperature
gradient is a measurement of how the temperature changes in relation to the height above
ground.

Closest to earth is the troposphere, which reaches from the ground up to around 15km.
The ground is heated by sunlight, and as the air cools, the temperature decreases. Conse-
quently, it is characterised by a negative temperature gradient. The troposphere contains
about 80% of the total atmospheric mass. The weather phenomena occur in this region of
the atmosphere, as 99% of all water vapour exists here (Atmospheric Structure n.d.).

The troposphere gives way to the tropopause, a band ranging from 8 - 11km in height. The
tropopause is replaced by the stratosphere that reaches the stratopause at 45km. About
90% of all ozone is in the stratosphere. The ozone’s absorption of ultraviolet (UV) radia-
tion from the sun causes the temperature to increase and results in a positive temperature

4



2.2 OH production

gradient.

The mesosphere is bounded by the mesopause, a 10-kilometre region, which is also the
coolest region in the atmosphere. The mesosphere layer ranges from the stratopause to
about 85km above the ground. The temperature decreases with altitude due to reduced
solar heating and increased radiation to space (Andrews 2010).

After the mesopause there is the thermosphere. The thermosphere is characterised by in-
creasing temperatures with altitude and therefore a positive temperature gradient. This is
because the little solar radiation remaining is absorbed by the few atoms and molecules
existing in this region. Due to the tilt and rotation of the earth around the sun, the solar ra-
diation will vary through the seasons, leading to the temperature ranging between 600 and
2000K. The exosphere is the final section, and upward travelling gasses escape the earth’s
gravity. This region depends on solar radiation and will exist from 250-200 kilometres
above ground.

Figure 2.1: The Atmospheric structure and temperature profile. The figure is taken from Andrews
2010.

2.2 OH production

The hydroxyl molecule, OH, is found in the upper mesosphere and lower part of the
thermosphere. It peaks at around 88km with a half-width of 6-8km (Lowe et al. 1996).
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Chapter 2. Theory

Excited hydroxyl is produced by the reaction described by Marsh et al. 2006, seen in
equation (2.1), where hydrogen and ozone combine into an unstable, excited state of the
hydroxyl molecule.

H +O3 −→ OH∗ +O2. (2.1)

The excited state of the hydroxyl (OH∗) is then de-excited through a decrease in vibrational
modes to a more stable state, OH (see section 2.3). This de-excitation causes the OH
molecule to emit radiation viewed as airglow, a glowing layer in the upper atmosphere
visible from space. Marsh et al. 2006 presented how the amount of OH in the atmosphere
is dependent on the amount of hydrogen and ozone present, as can be seen clearly in
figure 2.3. The oxygen in the OH is the atomic oxygen produced when UV radiation splits
ozone during the day. Therefore, the OH population can be calculated by knowing the
atomic oxygen density, molecular oxygen density, and hydrogen density in the atmosphere.
The ozone density at night time is dependent on the recombination of atomic oxygen and
the losses with atomic hydrogen:

[O3] =
kO+O2+M [O] [O2] [M ]

kH+O3 [H]
. (2.2)

This leaves the production rate for excited OH∗

P (OH∗) = kH+O3
[H] [O3] . (2.3)

By combining equation (2.2) and equation (2.3), the production rate of hydroxyl is pro-
portional to the atomic oxygen concentration

P (OH∗) = kO+O2+M [O] [O2] [M ]. (2.4)

Atomic oxygen is mainly produced by the destruction of ozone by the use of ultraviolet
light.

O3 + hν = O2 +O. (2.5)

This happens in the daytime, as it requires sunlight. The recombination process takes a
while and will continue through the night. The intensity of OH will therefore decrease
through the night, as the available O and O2 are decreasing due to the production of O3.
Figure 2.2a shows how the OH intensity typically varies through a night with no clouds
over Trondheim.
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2.3 Spectroscopy of diatomic molecules

(a) Typical OH intensity over Trondheim on a cloudless
night for the (3,1) and (4,2) Meinel bands and the Na-
intensity.

(b) Example of how the OH intensity for the (3,1) and
(4,2) Meinel bands behaves when there are clouds (Na
> 50 counts/second).

Figure 2.2: Examples of the OH intensity for the (3,1) and (4,2) Meinel bands and the Sodium
intensity. When Na is below 50 counts per second, the OH measurements are considered good. An
anti-correlation between the OH and Na intensity can be observed when the Na intensity increases
above this.

The distribution of the atmospheric components used in the production of OH can be
seen in figure 2.3. This example, along with the vibrational emission rate of the different
bands (figure 2.8), is calculated using the MSIS model (Hedin 1991) and an unpublished
atmospheric model. The MSIS model provides the background atmosphere, and the ozone
density was computed using equation (2.2) by knowing the O, O2 and total number density
M. The MSIS was run as an average over the 7th of January 2022 (a night defined for
solar zenith angles greater than 95 degrees). With the ozone calculated, the density of
each vibrational state of the OH is calculated by using equation (2.3), equation (2.4), and
quenching, described in more detail in section 2.4.

2.3 Spectroscopy of diatomic molecules

To understand how and why the excited hydroxyl molecule can result in airglow, it is
necessary to understand some basic quantum mechanics of diatomic radicals.

The energy of a molecule can be expressed as a sum of electronic energy, rotational energy,
and vibrational energy.

E = Ee + Er + Ev (2.6)

The electronic energy Ee is associated with the electromagnetic forces used to hold to-
gether the molecule. Er is the energy resulting from the molecule’s rotation, and Ev is the

7



Chapter 2. Theory

Figure 2.3: The volume emission rate of the atmospheric components used in the production of
OH. The emission rate of the (3,1) and (4,2) OH bands follows the distribution of O3 and H. Data
provided by P. Espy through personal communication.

result of the internal vibrational energies in the molecule. The energies have the properties
Ev ≪ Er ≪ Ee, and the difference in frequencies and subsequent time scale is so big that
each energy can be considered separately from the others. Three kinds of energy spectra
correspond to each energy: Rotational, rotation-vibration, and electronic spectra.

There can be different vibrational and rotational states for one given electronic state. The
theory described below is heavily based on (Herzberg 1971), specifically chapter 2, ”Di-
atomic radicals and ions”. A similar theory can be found in any textbook about quantum
mechanics, such as Hemmer 2005.

2.3.1 The rotational spectra

The rotation spectra is the transition from one rotational level in a given vibrational and
electric state to another rotational level in the same vibrational and electric state.

The simplest way to describe the rotational energy spectrum is to envision a dumbbell
model: two masses m1 and m2 separated by a massless rod with length r. Classical
mechanics then states that the rotational energy of the system is

8



2.3 Spectroscopy of diatomic molecules

Er =
1

2
Iω2. (2.7)

ω is the angular velocity, and I is the moment of inertia, defined as

I = m1r
2
1 +m2r

2
2 = µr2, (2.8)

where r = r1 + r2 and

µ =
m1m2

m1 +m2
(2.9)

is the reduced mass. The angular momentum, P , of the system is then

P = Iω, (2.10)

which reduces the energy to

Er =
P 2

2I
. (2.11)

By looking at the energy solution from a quantum mechanical perspective, it is clear that
the energy can only take specific discrete values. These can be found by solving the
Schrödinger equation. The most widely known solution is

Er =
h2

8π2µr2
J(J + 1) =

h2

8π2I
J(J + 1). (2.12)

J is the quantum rotational number and can take values J = 0, 1, 2, ...

The quantum number is related to the angular momentum by the equation

|P | = h

2π

√
J(J + 1). (2.13)

By substituting equation (2.13) into equation (2.7), equation (2.12) will follow.

In molecular spectroscopy, relevant for this thesis, the energy is usually depicted in term
values, [cm−1], which is obtained by dividing by hc. h is Planck’s constant, and c is the
speed of light in a vacuum.

9



Chapter 2. Theory

F (J) =
Er

hc
= BJ(J + 1), (2.14)

with

B =
h

8π2cI
=

h

8π2cµr2
. (2.15)

B is called the rotational constant, and F (J) is depicted in term values.

If the molecular form allows for small deformations when rotating, the centrifugal force
will also play a part in the rotational energy. The rotational term-value then takes the form

F (J) = BJ(J + 1)−DJ2(J + 1)2 + · · · , (2.16)

where B is as stated in equation (2.15), and D is a small correction term, approximately

D =
4B3

ω2
. (2.17)

2.3.2 The vibrational spectra

As a good first approximation, the vibration of a diatomic molecule can be expressed as a
harmonic oscillator. By operating with reduced mass, equation (2.9), and a displacement
x = r − re from the equilibrium position, the potential energy of the system becomes

V =
1

2
kx2 =

1

2
k (r − re)

2
. (2.18)

The force constant, k is related to the vibrational frequency ν by

k = 4π2µν2. (2.19)

Solving the Schrödinger equation for the harmonic oscillator makes it clear that the vibra-
tional energy, as for the rotational energy, can only take discrete values.

Eν = hν(ν +
1

2
), (2.20)

10



2.3 Spectroscopy of diatomic molecules

where ν = 0, 1, 2, .... In term values ([cm−1]), the vibrational energy becomes

G(v) =
Ev

hc
= ω

(
v +

1

2

)
, (2.21)

where ω = ν
c is the vibrational frequency.

Unlike a perfect harmonic oscillator, a diatomic molecule will not be able to expand r
to infinity. Instead, the spring force will reach a constant value, called an anharmonic
oscillator. The potential can be expressed as

U = f (r − re)
3 − g (r − re)

3
+ . . . , (2.22)

and by solving the Schrödinger equation, it will yield the term values

G0(v) = ω0v − ω0xov
2 + ω0y0v

3 − . . . , (2.23)

with zero-energy v = 0. x0 and y0 is smaller than one, and g ≪ f .

If there exists a dipole moment in the molecule, electrodynamics states that a photon with
a frequency equal to the vibrational frequency will be emitted or absorbed by the molecule.
The wavenumber will be

ν =
E (v′)

hc
− E (v′′)

hc
= G0 (v

′)−G0 (v
′′) . (2.24)

A harmonic oscillator only allows for wavenumbers ∆v = ±1, while an anharmonic
oscillator allows ∆v = ±2,±3, ....

2.3.3 Rotational-vibrational spectrum

In reality, a molecule will vibrate and rotate simultaneously, and the interaction of these
two energies must be considered. There can be transitions from a rotational level for a
given vibrational level to a different rotational level at a new vibrational level, all for the
same electric state. When this occurs, there will be a rotational-vibrational spectrum.

When a molecule vibrates, the distance r changes, and so will the moment of inertia (2.8).
This will change the rotational constant, B = Bν , for a specific vibrational level compared
to the rotational constant B = Be for the same system in equilibrium position. It is
possible to find Bν by averaging over the different internuclear distances r.
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Chapter 2. Theory

Bν =
h

8π2cµ

[
1

r2

]
avg

, (2.25)

which will give

Bν = Be − αe

(
ν +

1

2

)
+ . . . , (2.26)

with
Be =

h

8π2cµr2e
. (2.27)

αe is a small constant compared to Be and depends on the anharmonicity of the vibrations.
Similarly, there will be a corrected rotational constant

Dν = De + βe

(
ν +

1

2

)
+ . . . , (2.28)

where De is the rotational constant at equilibrium.

When the interaction between rotation and vibration is taken into account, the term value
will become

Fν(J) = BνJ(J + 1)−DνJ
2(J + 1)2 + . . . , (2.29)

where the subscript ν refers to which vibrational level to consider.

J and ν are still governed by quantum mechanics and must take discrete values. By
considering ∆ν = 0, the system will behave in a pure rotational spectrum. By looking at
a transition from upper state J ′ to lower state J ′′ and using the term value to account for
the rotational and vibrational part, the result becomes

ν = ν0 +B′
vJ

′ (J ′ + 1)−B′′
vJ

′′ (J ′′ + 1) (2.30)

Here, ν0 is the wavenumber of a pure vibrational (∆J = 0) transition.

Since ∆J = J ′ − J ′′ can take the values 0 and ±1, there will occur a branching of the
transitions. These branches are called the Q-branch, P-branch and R-branch.

The Q-branch happens when ∆J = 0. By choosing J ′ = J ′′ = J , equation (2.30)
becomes

12



2.3 Spectroscopy of diatomic molecules

νQ = ν0 + (B′
ν −B′′

ν ) J + (B′
ν −B′′

ν ) J
2. (2.31)

When ∆J = 1, the transition is called the R-branch. By having J ′′ = J and J ′ = J + 1,
the wave number becomes

νR = ν0 + 2B′
ν + (3B′

ν −B′′
ν ) J + (B′

ν −B′′
ν ) J

2 (2.32)

The P-branch occurs when ∆J = −1. For this to happen, J ′′ = J and J ′ = J − 1. The
wave number for the P-branch then becomes

νP = ν0 − (B′
ν +B′′

ν ) J + (B′
ν −B′′

ν ) J
2. (2.33)

The relation between the vibrational levels ν (in the figure depicted by v), the different
rotational transitions, and its connection to the P-, Q-, and R-branches can be seen in
figure 2.4.

These three equations describe how the different branches will behave as J develops.
When B′′

ν > B′
ν , νQ will decrease slowly as J increases. Since B′

ν − B′′
ν is a very

small factor, the lines will be located very close together, and be seen as one Q-branch
(figure 2.5). The R-branch’s wavenumber will increase as J increases until the factor J2

becomes large enough, at which point the νR will begin to decrease. The P-branches with
wavenumber νP will always decrease with increasing J . The lines are easier to discern
because of the term B′

ν +B′′
ν .

Due to the total electron spin vector, one has to take the angular momentum of the electrons
into account. This leads to corrections in the dumbbell model, and the effect creates a
splitting of the lines. The electronic state of the molecule determines this split. The state
of the molecule can be Λ = 1/2 or Λ = 3/2. The transition between such two states gives
rise to a splitting of the bands. Photons in the same branch created by a transition with the
same ∆J can have different lines in the branch. The branches with their corresponding
peaks in the intensity spectra, and J ′′- and N ′′-values can be seen in figure 2.4. N ′′ is
the integer quantum number, while J ′′ is the sum of nuclear and electron spin angular
momentum, as opposed to in section 2.3.1 where Herzberg 1971 considered J to be the
angular momentum without spin.
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Chapter 2. Theory

Figure 2.4: The different transitions between vibrational and rotational states and the corresponding
peaks in an OH (3,1) intensity spectra. Ω = 3/2 refers to the P1-lines, and Ω = 1/2 refers to the
P2-lines. x′′ refers to the upper level of the relevant entity (x used as a placeholder), while the x′

refers to the lower level. J is the sum of nuclear and electronic spin and is half-integer, while N is
the integer quantum number. Figure from P. Espy through personal communication.

2.4 Meinel lines

The Meinel lines are emission bands discovered by A. B. Meinel in 1950 (Meinel 1950).
The bands are a result of the rotational-vibrational spectra of OH. The initial production
of OH∗ given by equation (2.5) produces OH∗ with vibrational states ν = 6 up to ν = 9
(Sivjee 1992). The molecule will then radiate and end up in a more stable version of OH
with lower vibrational levels. In addition to OH radiating and cascading to a lower vibra-
tional level, it can also happen through a stepwise collision quenching (equation (2.34))
with other molecules in the air, namely N2, O2 and O. (Sivjee 1992) proposes that this
happens by ”sudden death” (equation (2.35)):

OH∗ (v′) +M =→ OH∗ (v′ − 1) +M (2.34)

OH∗ (v′) +M =→ OH∗ (v′ = 0) +M (2.35)

14



2.4 Meinel lines

This thesis will focus on the Meinel lines (3,1) and (4,2). In this is understood the transition
between the vibrational level ν = 3 to ν = 1, and ν = 4 to ν = 2. The intensity spectra
as a function of wavelength can be seen in figure 2.5, and the nightly intensity of the
Q-branches in the bands can be seen in figure 3.3. As described above, each band has
three rotational branches, P , Q, and R-branches. With the resolution of the spectrometer
in Trondheim, it is difficult to discern between the different lines in the R-branch. The
P -lines on the other hand, are clearly defined. The different lines are denoted P1,2(N

′′).
N ′′ = J ′′ ± 1/2 is the integer quantum number. The subscript is either 1 or 2 and refers
to the electronic state of 2Π3/2 and 2Π1/2. P1(N

′′) refers to the 2Π3/2-state with N ′′ =
J ′′−1/2, and are the strongest lines, while P2(N

′′) refers to 2Π1/2 with N ′′ = J ′′+1/2.
The strengths of the different lines can be seen in figure 2.5. J ′′ and N ′′ will be used
interchangeably, and will always refer to the upper rotational state.

Since ∆J = −1 for the P -branches, and J can not be zero in a Π-state, the first line in
the P -branch is the P2(2)-line. From there on follows the P1(2)-line, the P2(3)-line etc.
Since the first five rotational states in the P -lines are easy to discern with the spectrometer
in use, these lines will be used in this thesis when calculating the rotational temperature of
the different Meinel bands.

Figure 2.5: The averaged OH intensity spectrum on the night 7.01-8.01.2021. The R-, P-, and Q-
branches in the (3,1) and (4,2) Meinel bands are visible in this wavelength range.

Figure 2.2a gives an example of how the OH intensity of the (3,1) and (4,2) Meinel band
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Chapter 2. Theory

varies throughout the night. (P J Espy and Stegman 2002) present seasonal variance in
the intensity of OH radiance. This can be seen in figure 2.6 and shows how the (3,1)-
band intensity varies through the year. In addition to this, figure 2.7 depicts the density
distribution of the OH at different vibrational levels. This has been produced by using
the atmospheric model described in section 2.2. As can be seen, the ν′ = 3 is the third
vibrational level and has a maximum at a slightly lower altitude than the fourth vibrational
level, ν′ = 4. The OH varies not only through the night (figure 2.2a), it varies quite a
lot during the year (figure 2.6) and depending on which vibrational level one considers
(figure 2.7).

Figure 2.6: Average yearly OH intensity variation over Stockholm, Sweden. The figure is from P J
Espy and Stegman 2002. The radiance is in kiloreyleighs, with 1kR = 109

4π
[ photons
cm2·sec·sr ] (Baker et al.

2001).

2.5 Temperatures from the OH intensity

Different studies on the temperature in the upper mesosphere and lower thermosphere
have been made, both connecting temperature and wind (Hennum and P. Espy 2013), and
temperature and OH radiation (P. J. Espy et al. 2003). The temperature in the atmosphere
can be found by using the OH intensity through the equation

IJ = N0A2(2J + 1) exp
−ϵJ
kT

. (2.36)

IJ is the measured intensity, N0 is the OH density, A is the Einstein coefficient, also
known as the transition probability, and 2(2J+1) is the degeneracy in the upper rota-
tional state. ϵJ is the energy in the upper rotational state, k is Boltzmann’s constant,
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2.5 Temperatures from the OH intensity

Figure 2.7: Volume emission rate distribution of the OH at different vibrational levels (ν). ν = 3
has a maximum density at a lower altitude than ν = 4. P. Espy provided data through personal
communication by using the MSIS model and an unpublished atmospheric model on the 7th of
January 2022.

k = 0.695 03 cm−1/K, and T is the temperature. The tabulated values can be found in
table 2.1. These values are taken from the HITRAN database (HIgh resolution TRANs-
mission molecular absorption database) (Rothman et al. 2013).

By taking the natural logarithm of both sides and rearranging it, the equation takes the
form

ln

(
IJ

N0A2(2J + 1)

)
= − ϵJ

kT
. (2.37)

The spectrometer in Trondheim has a resolution that makes it possible to isolate the main
Q-branch and the P-branches with J ′′ = 1 to 5 for the (3,1) and (4,2) Meinel lines (as can
be seen in figure 2.5). By applying the equation (2.37) which relates the peak intensity
with temperature, it is possible to estimate the temperature by considering the (3,1) and
(4,2) Meinel lines separately.

One can integrate over the specific peak for each branch to acquire the intensity and use
tabulated values for the Einstein coefficient, degeneracy and energy for that branch. Taking
the natural logarithm of the intensity divided by the line strength and plotting this against
ϵJ
k for every branch, a fitted curve through these points will have the slope −1/T .
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Chapter 2. Theory

Line Einstein coefficient
A

EJ′′

cm−1
Degeneracy
2(2J ′′ + 1)

(3,1)

P1(2) 23,67 10210,5669 8

P1(3) 28,96 10285,4527 12

P1(4) 31,18 10390,9803 16

P1(5) 32,50 10527,5077 20

P2(4) 34,26 10481,6516 12

P2(5) 34,34 10605,4579 16

(4,2)

P1(2) 41,79 13287,1845 8

P1(3) 51,20 13359,1251 12

P1(4) 55,17 13460,4343 16

P2(3) 61,50 13467,2951 8

P2(4) 60,63 13552,4750 12

Table 2.1: The HITRAN values for the (3,1) and (4,2) Meinel bands. J ′′ represents the upper levels.

By using data from the model seen in figure 2.7 on the 7th of January 2022 for the indi-
vidual band volume emission rate, it can be calculated that the average temperature for the
(3,1) band is 205.299K, and for the (4,2) band it is 204.766K. These temperatures are in
accordance with figure 2.9 if one looks at day number 7 in the northern hemisphere (NH).
Temperature calculations using this data also return decreasing temperatures for increas-
ing vibrational bands. The same model gives the temperature profile for mid-winter as
a function of altitude, along with the volume emission rate of the (3,1) and (4,2) Meinel
bands. This can be seen in figure 2.8.

(P J Espy and Stegman 2002) presents a variation in the mesospheric temperature at high
altitudes through the year. These trends include a general seasonal change in temperature
and monthly variations. Figure 2.9 shows how the temperature changes over Trondheim
through the years. The change is more rapid during autumn than during spring.
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2.6 Wind and gravity waves

Figure 2.8: The temperature profile for mid-winter, along with the (3,1) and (4,2) volume emission
rates (VER), as a function of altitude.

2.6 Wind and gravity waves

Wind can be divided into the zonal wind and meridional wind. Zonal wind represents the
wind moving along longitudinal lines, namely in the east-west direction. The meridional
flow is winds moving along the latitudinal circles, north to south. The meridional winds
will generally move northwards during winter and towards the equator during summer
(Andrews 2010). The meridional circulation, including vertical transportation of energy,
is considered a more conceptually important energy circulation in the atmosphere than the
more rapid zonal energy flows (Andrews 2010). The solstitial circulation of the atmo-
sphere is driven by the deposition of momentum from gravity waves propagating upward
from the lower atmosphere and has important implications for the transport of chemicals
in the atmosphere (Andrews 2010).

The wind in the atmosphere is not a stable force but will change intensity and direction
throughout the day in addition to solstitial circulations. The oscillations in the atmosphere,
which have periods within one day, 24 hours, are called atmospheric tides. The 24-hour
component is called the diurnal tide, and the 12-hour component is called the semi-diurnal
tide (Lindzen 1979). When these two tides interact, an 8-hour wave will appear. This 8-
hour tide is called the terdiurnal tide. When analysing winds on an interval over a couple of
days, these diurnal, semi-diurnal and terdiurnal waves will show through a Fourier analysis
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1 31 61 91 121 151 181 211 241 271 301 331 361

Day of Year SH

135

145

155

165

175

185

195

205

215

225

Te
m

pe
ra

tu
re

183 213 243 273 303 333 363 29 59 89 119 149 179

Day of Year NH

Trondheim
Rothera

Figure 2.9: The temperature in the mesosphere and lower thermosphere over Trondheim and
Rothera, Antarctica. Axis depict days in the northern and southern hemispheres (NH and SH) so
that the centre of the figure represents the 1st of January. The figure is from P. Espy, personal com-
munication.

or Lomb-Scargle transform, see section 3.4.1.

Atmospheric gravity waves are the phenomenon of air pressure behaving like internal
ocean waves in the atmosphere. Gravity waves are a significant source of energy transfer in
the middle atmosphere and drive the pole-to-pole circulation. The waves have a significant
impact on spatial and thermal characteristics of the upper atmosphere (Nappo 2013). They
are also the reason the middle atmosphere is so far from radiative equilibrium, as stated in
section 2.1.

Gravity waves are longitudinal waves, which means that the air movement is parallel to the
energy propagation direction. Gravity waves appear due to an initial pressure difference
which might be caused by mountains, cities or thunderstorms. Air hitting such obstacles
will rise on the windward side and sink on the lee side. Rising air will slow down, and
the pressure at the original position will increase. Because of adiabatic expansion, this
air will also cool down. The lee side will experience decreasing pressure as air is moved
downward and away. This initial pressure disturbance causes a shift in the air. There will
be restoring forces trying to correct this initial imbalance; gravity and buoyancy. Gravity
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2.6 Wind and gravity waves

Figure 2.10: An illustration of how a gravity wave behaves. It is visualised through a corrugated
sheet moving through a fluid. As the corrugation moves through the air, the air is forced to oscillate
and propagate away, and waves are created. The figure is taken from Hocking 2001.

will pull air parcels that are heavier than their surroundings downward. This movement
might overshoot, and buoyancy will push the parcel back up. Had the air been stationary,
this would have caused an oscillating effect up and down. An initial horizontal movement
of the air will cause a cascading effect where air columns are affected by imposing air
parcels with higher or lower density. This is illustrated in figure 2.10, where the waves are
caused by moving a corrugated surface through a fluid.

The pressure perturbation and its effect as longitudinal waves result in waves with en-
ergy propagation parallel to airflow and phase velocity perpendicular to group velocity. A
viewer would see a phase front moving downward at one fixed location in time for up-
ward energy propagation. An article from P J Espy and Stegman 2002 presents different
transmissions of upward propagating gravity waves in spring and fall at 60◦N. This effect
might affect the winds over Trondheim.
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Method

Section 3.1, section 3.2, section 3.4.1, and section 3.4.2 are taken from Mohr 2021, a
project report laying the ground work for this thesis.

3.1 OH Spectrometer

The spectrometer used for measuring OH intensity in the mesosphere and the lower ther-
mosphere is a Shamrock spectrograph with an iDus InGaAs detector array from Andor. It
is located at Dragvoll, NTNU, and measures the intensity of the wavelengths that the OH
radiates during nighttime. When the spectrometer is active is automatically determined by
the zenith angle of the sun. The following description of the technicalities and workings of
the spectrometer is based on (Hennum and P. Espy 2013) and (Berge and P. J. Espy 2011).
The parts comprising the spectrometer are listed in table 3.1.

The Shamrock SR-163 has a focal length of 163 mm and a numerical aperture of f/3,6.
The wavelength range can be changed with a micrometre drive. The Andor iDus InGaAs
camera is a linear PDA detector with a weave length cover of 0.6−1.7 µm and a minimum
exposure time of 1.4 µs. To keep the thermal noise to a minimum, the instrument must be
cooled by a built-in thermoelectric element which can cool it down to -90◦C, depending on
the surrounding temperatures. The operating temperature has been set to -50◦C (Hennum
and P. Espy 2013). The instrument’s response to temperature is non-linear and can be seen
in figure 3.1.

The shutter protects the instrument during the day and is used to take background measure-
ments. The spectrometers response to wavelengths are described in (Baker et al. 2001).
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3.1 OH Spectrometer

Part Name

Spectrograph Andor Shamrock SR-163

Camera Andor iDus InGaAs micro 1.7 DU491A

Shutter Melles Griot 04 UTS 201

Shutter control Melles Griot 04 ISC 850

Cooling Koolance Exos-2

Grating Andor SR1-GRT-0600

Slit Andor SR1-ASM-0020

Table 3.1: The different parts that comprise the spectrograph, which measure the OH intensity.

Figure 3.1: The thermal noise in the spectrometer was measured as a standard deviation to the resid-
uals for subsequent background scans as a function of instrument temperatures. Source: (Hennum
and P. Espy 2013).

Equation (3.1) gives the channel to wavelength relation,

Wavelength [nm] = −0.86627 · 106 · SCN2 + 0.2071 · SCN + 1333.6, (3.1)

where SCN is the super-channel-number. The SCN ranges from 1-2080, and the (3,1) can
be found starting at 625. The resulting wavelength measurements range from 1462.7 -
1672.8nm.

23



Chapter 3. Method

The spectrograph works like a camera. To account for background noise, the detector
takes a black snapshot with a closed lens which is refreshed every fifth measurement.
It then takes 4-5 measurements of the atmosphere and subtracts the background noise
retrieved from the black measurement from the atmospheric measurements. The final
result is the average of these measurements. A few seconds later, the camera takes a new
black background snapshot and subsequently new intensity measurements and averages.
The measurements are a function of wavelength and the nightly average is visualised in
figure 2.5.

The spectrometer’s response to channel to wavelength has been described in detail in
(Berge and P. J. Espy 2011). This was done by using the spectrometer on a source of radi-
ation with known intensity results and comparing the spectrometer’s results to the known
values. The result is a response curve on the form figure 3.2. The response curve visualises
how the measurements in the higher nanometer scale are returned as having lower inten-
sities than they actually have. The spectrometer returns the acceptable intensities up until
about 1550nm. At this point, the measured intensities values returned by the spectrometer
decrease rapidly compared to the actual intensity.

Figure 3.2: The response function in the wavelength region is 1460-1672 nm.

The Andor spectrometer measures the OH intensity during the night. The result is time
series of varying lengths, as the time the spectrometer is active depends on the length of
the night. For Trondheim, located at 63◦N, the length of a night varies from 12h 52min
on the 21st of December, with a dark period of 19,5 hours (dark period being the total
night and twilight period), to having no natural night time, but 3,5 hours of twilight on
midsummer, the 21st of June (Soloppgang og solnedgang i Trondheim n.d.).

The spectrometer takes 40-50 measurements an hour. Since the different branches will
radiate at different frequencies (section 2.3, section 2.4), the spectrometer will register the
intensity of the different wavelengths at which these branches radiate. In addition, the
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3.1 OH Spectrometer

Sodium intensity (Na) is measured. Integrating over time for the relevant wavelengths
makes it possible to isolate the relevant OH branch’s intensity throughout the night. Exist-
ing data scripts in MATLAB have been used to read and retrieve the relevant data for this
project report. Here we use the full intensity spectra containing both the (3,1) and (4,2)
lines through the night, as shown in figure 2.5. In addition, the nightly intensity of the
(3,1) and (4,2) Q-branches was considered, as they give a good indication of the weather
and how the intensities change through the night. To go from figure 2.5 to figure 2.2a, a
program in MATLAB integrates under the relevant Q-branch for each time unit, and re-
turns the normalised intensity. The time each measurement is taken is saved along with
the intensities for the different radiations. The time is saved as an array from starting hour
(e.g. 14,57 = time: 17:34) to final measurement after midnight (e.g. 32,27 = time 08:16).

Since the OH exists in the MLT, the spectrograph’s measurements of OH are dependent
on the amount of clouds overhead. It is therefore necessary to only look at cloudless days.
This was done by looking at the Na-intensity. The Sodium intensity is a reflection of the
thickness of the cloud level. This is because the street lamps used in Trondheim are Sodium
based lights, which reflect off of the clouds and can be measured by the spectrograph. An
OH spectrum of the (3,1) and (4,2) on a clear night can be seen in figure 2.2a, compared
to a night with clouds coming in, figure 2.2b. It was discovered that when the sodium
intensity passed 50 counts, an anti-correlation between the sodium intensity and the OH
intensity took place. By looking for days where the level of Na didn’t pass 50 counts
per second more than 20 times during a night, it was possible to pick out the clear nights.
When talking about the time series of OH and wind, it is understood nights with no clouds.

This thesis considers nightly OH intensity. Since the OH is measured almost every second,
it was necessary to average the OH intensity for every hour for comparison with the hourly
radar data. In combination with averaging the intensity, the time series also had to be
converted to hourly based values. The hourly radar integration is given by the central time
of integration, i.e. the half-hour time stamp. To work with compatible data sets, it would
be convenient to start the hourly average for OH in a similar fashion. Therefore, the hourly
average was used, and the corresponding time stamp was set to the half-hour in the relevant
time interval. It was discovered that this time interval retained the general shape of the OH
intensity during the night, as seen in figure 3.3.

In addition to the nightly intensities, the intensity spectra on the form figure 2.5 at a 15-
minute interval were considered. This process is described in more detail in section 3.3.
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Figure 3.3: Example of the OH intensity and hourly averaged OH intensity for the (3,1) and (4,2)
Q-branches. The date measured: January 7-8, 2021.

3.2 SKiMET Meteor Radar

The SKiMET meteor radar uses meteors entering the atmosphere to measure the wind
direction and strength in the mesosphere and lower thermosphere. It is located at Dragvoll,
NTNU, in Trondheim. With the exception of some downtime due to malfunction, the radar
has been operational since 2012. The SKiMET radar consists of 8 transmitting antennas
of 1kW and 5 receiving antennas. The sampling frequency is 34,21Mhz at a wavelength
of almost 9m. Due to the transmitting antennas’ radiation pattern, the radar receives the
strongest signal at 20◦ to 50◦ from the zenith.

When meteors enter the atmosphere, the high speeds at which they enter, combined with
the thickening atmosphere, cause them to leave an ionised plasma trail as they burn up.
This ionised dust will exist in the upper atmosphere from 1 to 4 seconds, and in this period,
it will drift with the wind. The radar emits a transmission signal, compares the location
and phase difference of the signal scattered from the meteor trail affected by the neutral
wind, and returns the desired calculations. The radars measure the meteors entering the
MLT at the altitudes of 82km, 85km, 88km, 91km, 94km, 98km, 103km and 109km. The
frequency of the radar results in a sensitivity to meteors that is roughly Gaussian in shape
and centred near 90 km. As a result, there are generally insufficient meteors recorded
between 103km and 109km to determine a wind on an hourly basis. However, the radar’s
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3.2 SKiMET Meteor Radar

sensitivity curve closely matches the OH intensity versus altitude shown in figure 2.7.

The meteor radar is turned on at all times. It returns an hourly average of the zonal wind,
meridional wind and number of meteors used for the calculation. The average number of
meteors an hour for all altitudes varies from approximately 100 to more than 500. The
meteor runs daily from 00:00 to 23:59, with the timestamps being the central hour of
integration.

(a) Number of counted meteors per hour per altitude
6.-8.01.2021

(b) Number of counted meteors per hour per altitude
1.-4.02.2021

(c) Number of counted meteors per hour per altitude
16.-19.04.2021

Figure 3.4: The number of meteors at different altitudes that were used to calculate the meridional
wind at the different altitudes during the periods in January, February and April 2021.

The quality of the wind will depend on the number of meteors entering the atmosphere. On
average, about 1000 meteors enter the atmosphere each day. The project of Klemsdal 2015
describes the uncertainty of the average wind measurements depending on the number of
meteors. To have wind measurements with an acceptable low error, there must be at least
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50 meteors each hour at each altitude to result in a sufficiently good average. The number
of meteors counted per hour used in the measuring of the meridional wind at different
altitudes can be seen in figure 3.4.

The spectrometer measured the OH intensity in the atmosphere, and the natural OH density
distribution follows a Gaussian distribution with a centre at 88km and a half-width of 6-
8km (section 2.2). This can be seen in figure 2.8. To compare the wind and OH, the wind
has to be weighted by a Gaussian distribution function W (h), which resembles the OH
density distribution. This weight function is on the form

W (z) = exp
(z − z0)

2

2σ2
, (3.2)

where z0 is the centre peak equal to 88km, and σ = 6km. This weight function was then
used to calculate a weighted total wind, by using the formula

w(t) =

∑z=8
z=1 W (z)u(z, t)∑z=8

z=1 W (z)
. (3.3)

Here, the values z = 1...8 are the 8 different heights ranging from 88km to 109km listed
above, u(z) is the wind at height z, and w is the final weighted wind. The weighted wind
can be seen with the 6 wind measurements at different altitudes for the meridional wind,
in figure 3.5. From here on, the term wind will be used for the weighted meridional wind
time series.

3.3 Temperature calculations

This section introduces the numerical approach used to calculate the temperatures for the
(3,1) and (4,2) Meinel bands. A program written in MATLAB does the basic calculations
and may be used as a baseline for further research and temperature calculations. The
routine consists of choosing cloud-free days, as described in section 3.1, and evaluating
the average intensity spectra for OH at 15-minute intervals. Six Gaussian curves were fitted
to the P-branches of the (3,1) band and the P-branches of the (4,2) band for each interval.
The resulting fitted Gaussians representing the intensities of the individual rotational lines
were then used to evaluate the temperature with data from the HITRAN database. A linear
fit to the scaled natural logarithm of the intensities is then applied to the resulting peak
calculations using the method described in section 2.5 and equation (2.37).

The following section explains the procedure by which the nightly temperatures were cal-
culated. As described in section 2.5, the temperature is calculated by using the measured
OH intensity for the different P-branches for the (3,1) and (4,2) Meinel lines. The OH
spectra were split into two series to simplify the numerical process, one containing the
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Figure 3.5: The meridional winds at different altitudes with the calculated weighted wind, on
07.01.2021. The wind strength is in meters/second.

wavelength region spanning the (3,1) band, while another containing the (4,2) band. The
approach described is the same for the (3,1) and (4,2). The aim was to acquire a tempera-
ture calculation at 15-minute intervals through the night. The OH intensity data was read
and processed as described above. To acquire 15-minute intervals, the OH spectra were
averaged over 15 minutes, and the averaged 15-minute spectrum was used for temperature
calculations.

Franzen et al. 2020 presents how a linear temperature fit is a good representation of the
temperature up to J ′ = 3.5. For higher rotational levels, a non-linear temperature fit
should be used. This thesis uses peaks up to J ′ = 5.5. The error these rotational lines
will result in can be seen in figure 3.6 and are deemed to be low enough to warrant using
a linear temperature fit.
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Figure 3.6: Linear vs non-linear temperature fit for different rotational levels (J ′). The figure is
taken from Franzen et al. 2020.

3.3.1 Deciding on branches

The lines within the P-branches suitable for use are chosen based on the transmission
coefficients calculated by P J Espy and Hammond 1995. The high-latitude values during
summer and winter and can be seen in table 3.2. The coefficients have to be high during
both seasons. The result is that the suitable branches for the (3,1) Meinel lines, these were
the lines P1(2), P1(3), P2(4), P1(4), P2(5) and P1(5). For the (4,2) Meinel lines they are
P1(2), P2(3), P1(3), P2(4) and P1(4).

30



3.3 Temperature calculations

Line High-Latitude
Summer

High-Latitude
Winter

(3,1)

P1(2) 0.997 0.995

P1(3) 0.976 0.992

P1(4) 0.978 0.994

P1(5) 0.980 0.996

P2(2) 0.959 0.994

P2(3) 0.819 0.970

P2(4) 0.978 0.994

P2(5) 0.978 0.995

(4,2)

P1(2) 0.970 0.985

P1(3) 0.974 0.992

P1(4) 0.979 0.996

P1(5) 0.972 0.993

P2(2) 0.936 0.985

P2(3) 0.976 0.990

P2(4) 0.979 0.995

P2(5) 0.979 0.996

Table 3.2: The transmission coefficients for the (3,1) and (4,2) Meinel bands, source: (P J Espy and
Hammond 1995).

3.3.2 Response function

The region affected by the spectrometer’s response curve includes the (4,2) P-branches,
as described in section 3.1. The measured intensities are scaled by the response curve for
each wavelength to compensate for this. The resulting intensity spectrum can be seen in
figure3.7 . This clearly shows how the peaks in the (4,2) region, in reality, have intensities
equal to the ones in the (3,1) region. It is relevant to point out that since the (4,2) peaks
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are so affected by the calibration, any changes in the spectrometer will significantly affect
the measurements of the (4,2) branches. If the spectrometer experienced a temperature
change, the results in the (4,2) region would also change drastically. As can be seen in
figure 3.1, a slight change in instrument temperature will affect the spectrometer’s accu-
racy, and especially the measurements of the (4,2) region. However, since the calibration
error in the (4,2) region is constant, the result is a stable error for the (4,2) measurements.
This makes the (4,2) peaks suitable for analysis’ such as anomaly detection. Compared
to the (3,1) region, which is more exposed to water vapour or Rayleigh scattering (due to
its wavelength region), the (4,2) region is more stable. Therefore, it will be used to some
degree in this thesis, but with the knowledge that there may be a systematic bias in the
absolute temperature values.

Figure 3.7: Averaged nightly OH intensity spectrum where blue is the measured intensity recorded
by the spectrometer, while orange is the actual intensity when corrected by the spectrometer’s re-
sponse function.

3.3.3 Removing the baseline

As Endre Hennum explored in his thesis (Hennum and P. Espy 2013), the shape of an
intensity peak around a Meinel line can be seen as a shifted Gaussian. He also pointed
out that a baseline could be fitted along the intensity signal’s null-points, the minimums of
the signal where there should be no radiation measured. The baseline is removed on the
assumption that there is a constant amount of blackbody radiation, scattered light and a
possible offset due to the dark signal of the spectrometer. By approximating this baseline
using a polynomial fitted line and subtracting this from the signal, some noise would be
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filtered out of the original signal. Hennum discovered that the (3,1) Meinel lines followed
a third-degree polynomial, while the (4,2) baselines better fitted a first-degree polynomial.
The null-points were identified by localising the areas between OH lines and assuming any
intensity there to be caused by background radiation. For the (3,1) lines, the null-points
chosen were between the peaks of P2(2) and P1(2), P1(3) and P2(4), P1(4) and P2(5),
and between P1(5) and P2(6). These points and the third-degree polynomial fitted through
them can be seen in figure 3.8a. For the (4,2) lines, these points were between P2(3) and
P1(3), P1(4) and P2(5), and between P1(5) and P2(6). These null-points and the first-
degree polynomial can be seen in figure 3.9a. By fitting the appropriate polynomials and
subtracting from the original signal, the signals were flattened out so that the no-signal
points fell on zero-intensity. This can be seen in figure 3.8b and figure 3.9b.

(a) The null-points that were used to approximate the
baseline, and baseline. (b) Final signal after baseline removal.

Figure 3.8: The null-points being used in the (3,1) Meinel lines, the fitted 3rd polynomial to these
lines, and the final signal after baseline was subtracted from the original signal.

(a) The null-points that were used to approximate the
baseline, and baseline. (b) Final signal after baseline removal.

Figure 3.9: The null-points being used in the (4,2) Meinel lines, the fitted 1st polynomial to these
lines, and the final signal after baseline was subtracted from the original signal.
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Chapter 3. Method

3.3.4 Gaussian fitting

Computational routine

A Gaussian can be expressed as

g(x) = Aexp[
−(x− µ)2

w2σ2
]. (3.4)

A is the amplitude, x is the evaluated wavelength, µ is the wavelength at the maximum
value of a P-branch line, σ is the spectrometer’s maximum spectral line width, and w is
the scaling factor for the line width which can vary with wavelength. This thesis uses a
MATLAB program that has as input the number of Gaussians to be calculated, the mean
value µ, and the width σ. The number of Gaussians is the number of peaks evaluated in
the (3,1) and (4,2) regions. The program fits Gaussians to the signal at wavelength x by
fitting different amplitudes and weights in a least-squares sense. The program runs 10000
fitting routines and chooses the Gaussian wave with the best fit to the signal. The sum of
Gaussians centred at the P-branch line positions was fitted to the (3,1) and (4,2) bands,
separately.

The spectrometer’s line shape is approximated as a Gaussian according to equation (3.4).
This was done in MATLAB with a program from Image Analyst n.d. Each line position µ
is set at the wavelength of the maximum of each spectral line, and the maximum intensity
is used as the initial amplitude, A. σ was set to the largest full-width at half maximum of
the lines divided by four. The initial line width correction, w, was set to one. These values
were used in a non-linear least-squares fitting routine, using the MATLAB optimisation
function fminsearch(). A sum of the Gaussians centred at the desired P-branch lines were
then least-squares fitted to the data as a function of wavelength over the relevant P-branch
regions, as shown in figure 3.10. This procedure was performed separately for the (3,1)
and (4,2) bands.

Due to the nature of the program and a varying degree of noise in the signal, the final
Gaussian did not always include the desired P-branches. To ensure that the final fitted
Gaussian had the necessary intensity information, conditions relating to the number of
peaks present and the accuracy of the fit at the maximum and minimums values were put in
place. In addition to this, the fitting routine described above was implemented twice. After
a first iteration resulting in a fitted Gaussian was conducted, this Gaussian was subtracted
from the original signal. The residual was then fitted with a Gaussian, and this residual
fitting was subtracted from the original signal. The new signal contained less noise. This
signal was used to fit a Gaussian wave in the described procedure, resulting in a better fit
as seen in figure 3.10.
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3.3 Temperature calculations

(a) The first and second Gaussian fit for the P-branches
in the (3,1) Meinel lines

(b) The first and second Gaussian fit for the P-branches
in the (4,2) Meinel lines

Figure 3.10: The Gaussian fits the P-branches for the (3,1) and (4,2) Meinel lines. The first fit is a
Gaussian fit to the original signal, while the second fit is a fit to the original signal with the residual
of the first Gaussian subtracted from it. This example also shows the level of noise present in a 15
minute average of the OH intensity spectrum.

Errors in the Gaussian fits

To evaluate the fit of the Gaussians, the relative root mean square error (RMSE) was used.
The RMSE is a measurement of how far out the residuals are and can be mathematically
expressed as

RMSE(t) =

√
(y(t)− ŷ(t))2

N
. (3.5)

y is the original signal, ŷ is the Gaussian fit, and the overline represents the mean value of
the difference between those two signals. N is the number of points in y and ŷ. The value
t represents which time interval the error was calculated for, as this was done on every 15-
minute average OH intensity spectra through the night. The RMSE was calculated after
the first Gaussian fit (RMSE1) and after the second Gaussian fit when the residual had
been subtracted from the original signal (RMSE2). An example of the errors for the (3,1)
and (4,2) bands can be seen in figure 3.11.

3.3.5 Temperature calculations

The temperature calculations were done by following the theory described in section 2.5.
A 1st-degree polynomial was fitted through the calculated values for each relevant P-
branch. For each 15 minute intervals, a slope was fitted, and the negative inverse slope
number was the average temperature for that Meinel band at that 15-minute interval. The
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(a) The RMSE for the (3,1) band for the first and second
Gaussian fits.

(b) The RMSE for the (4,2) Meinel band for the first and
second Gaussian fit.

Figure 3.11: The RMSE for each 15-minute interval on the night 1st-2nd of February 2021. It is
visualised for the first Gaussian fit of the original signal, and after the residuals were subtracted and
the Gaussian was fitted to the smoother signal.

measured intensity was calculated using the normalised integral for the relevant peak.

As can be seen in figure 3.11, the Gaussian fits did not always converge accurately. One in-
correctly fitted line in the P-branch will result in a significant error in the fitted temperature
due to the logarithmic relation between temperature and line intensities.

To sidestep this problem, the temperatures that exceeded two times the standard deviation
from the median value of the calculated temperature were excluded. The median was
used instead of the mean value, as it is less affected by the extreme temperature resulting
from the incorrectly fitted line. This procedure was repeated until no values were further
than one standard deviation from the median value. The final result was temperatures at
points in time where the Gaussian fit was good enough to result in a decent fitted slope and
subsequently decently good temperature calculation.

3.4 Data analysis

3.4.1 Frequency analysis: The Lomb-Scargle transform

Lomb-Scargle periodogram is a spectral analysis tool used in signal processing to analyse
the frequencies a given signal oscillates at. Similarly to the Fourier transform, it uses
the least squares fit of sinusoidal waves to the data to determine the frequency spectra.
However, unlike the Fourier transform, which demands evenly spaced data points as input,
the Lomb-Scargle transform does not require even measurement intervals. As the OH is
sampled at night only, it becomes necessary to use the Lomb-Scargle periodogram instead
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3.4 Data analysis

of the more known Fourier transform. The result is the same, a frequency spectra. Since
this thesis mainly considers atmospheric tides and periods, the frequency will be converted
to period by the relation T = 1/f . T is the period and will, through this thesis, have the
unit hours. f is the frequency.

(a) The original meridional wind series and with the
mean subtracted. (b) Hamming function.

(c) The wind series is multiplied by the Hamming func-
tion.

Figure 3.12: The necessary manipulation of the wind time series before L-S transforms for the 10th-
15th of April 2019.

The wind is measured continuously, and can be combined into a continuous time series
over many days. The OH data is combined into a time series over several days, but where
the data points are only sampled at night. During the day, when there are no measurements,
there is no data sampled. Since the temperature is calculated using the OH intensity (sec-
tion 2.5), the same procedure will apply for a temperature time series.

The signal subjected to a frequency analysis is manipulated to simplify the transform.
First, the mean is subtracted from the data, bringing the average signal close to zero. The
time series is then multiplied by a window function, in this case, the Hamming function.
The Lomb-Scargle transform expands the signal to infinity by running the signal in an
infinite loop along the time axis. By multiplying the signal with a window function, the
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first and last data points are set close to zero, making the transition to a new signal addition
almost seamless. The window function minimises the edges of the signal while retaining
the general shape. The procedure exemplified with the meridional wind time series can
be seen in figure 3.12. The signal is then padded with zeros until the size of the signal
reaches the length of the original signal, squared. This does not affect the resolution of the
frequency transform but provides a sufficient number of frequencies to be evaluated in the
transform to ensure a smooth spectrum.

The script used to calculate the Lomb-Scargle transform also includes an α-value set to
α = 0.95. This value represents only a 5% chance of peaks reaching this height not being
made by random noise and can therefore be considered significant.

3.4.2 Sine waves

Frequencies can be used to represent data by sine waves on the form

y(x, t) = A sin(kx− ωt+ ϕ). (3.6)

Here, y(x, t) is the resulting wave, A is the amplitude, k is the wave vector, ω is the angular
frequency, ϕ is the phase shift, and x and t is the position and time. Since the calculations
occur at a fixed position (wavelengths), the kx term is dropped. The angular frequency
is measured per day, which means that the diurnal, semi-diurnal and terdiurnal tides will
have frequency values of ω24 = 24/24, ω12 = 12/24 and ω8 = 8/24. This will be similar
to other periods found through frequency analysis.
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Chapter 4
Results and discussion

4.1 Temperatures in the MLT

As described in section 2.5 and section 3.3, one can calculate the temperature as long as
there exists a clear OH spectrum. In other words, for every cloudless night, the atmospheric
temperature in the (3,1) and (4,2) regions can be calculated.

The days and dates used in this thesis will be 06.01.21-08.01.21, 01.02.21-04.02.21, and
16.04.21-19.04.21. These periods are chosen because they consist of long nights or many
successive cloudless nights.

Dates Number of
nights

Number of hours
of OH sampling

Total number
of hours

6.-8. Jan 2021 2 nights 16 hrs 32 hrs

1.-4. Feb 2021 3 nights 14 hrs 42 hrs

16.-19. Apr 2021 3 nights 7 hrs 21 hrs

Table 4.1: The dates, number of nights used, and the average nightly sampling time available where
OH radiation was measured. The total number of hours used when considering a time series based
on consecutive nights of data is also included.
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4.1.1 Nightly temperature calculations

The calculated temperatures are presented as nightly time series with 15-minute intervals
and hourly averages. The nightly averages are also given to compare the results with
previous studies (Hennum and P. Espy 2013, Berge and P. J. Espy 2011, P. J. Espy et al.
2003).

When looking at the nightly temperatures, it is noticeable that some time series have miss-
ing data points. This is due to the procedure explained in section 3.3, where extreme and
unrealistic temperatures were excluded from the final temperature series.

(3,1) (4,2)

T [K] ± T [K] RMSE2 T [K] ± T [K] RMSE2

Date

6.-7. Jan 21 192.99 9.96 0.44 178.50 7.06 0.42

7.-8. Jan 21 194.22 10.13 0.41 173.28 8.47 0.40

1.-2. Feb 21 194.03 13.30 0.33 175.57 8.72 0.34

2.-3. Feb 21 173.19 8.13 0.30 165.63 10.72 0.36

3.-4. Feb 21 198.71 7.18 0.54 168.01 8.20 0.56

16.-17. Apr 21 164.29 15.32 0.53 155.73 7.09 0.41

17.-18. Apr 21 174.49 9.98 0.45 162.84 7.21 0.47

18.-19. Apr 21 128.36 29.55 0.65 158.63 5.89 0.38

Table 4.2: The nightly average temperature T , the error in the nightly temperature ± T, and the
RMSE error of the second Gaussian fit, RMSE2, for the (3,1) and (4,2) Meinel lines.

Table 4.2 presents the average nightly temperatures for the (3,1) and (4,2) bands, as well as
the standard deviation in the nightly temperatures and the relative root mean square errors
for the second Gaussian fits that night. Generally, the temperatures for the (3,1) bands are
higher than for the (4,2). This is in accordance with temperatures calculated by Hennum
and P. Espy 2013. It is also realistic, as the (3,1) density is found at a lower altitude than
the (4,2) density, at which point the temperature is higher, figure 2.8. In addition, com-
paring with temperatures in the mesosphere and lower thermosphere applied by P. Espy in
figure 2.9, the average temperatures presented here seem appropriate. The (3,1) tempera-
ture calculated for the 19th of April can be said to be incorrect. The (3,1) temperature is
low, and the root mean square error is high. It is included as the (4,2) temperature can be
used. Not included here are days in April following the 19th of April 2021. These days
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4.1 Temperatures in the MLT

Figure 4.1: A linear fit to the relation between the standard deviation and relative RMSE in the
second Gaussian fits for the (3,1) and (4,2) average nightly temperatures presented in table 4.2. If
the RMSE2 is greater than 0.55, there is most likely a problem with the fitting of the Gaussians.

consisted of extremely unrealistic temperatures around 40K. A closer inspection of the
15-minute average OH intensity spectra showed that the program in MATLAB was unable
to apply sufficiently good fits to the spectra. In addition, the spectrometer is vulnerable to
small temperature changes or other external factors affecting the instrument. Such changes
would, as described in section 3.3, affect the (4,2) temperatures to a large extent. It is also
important to remember that these numbers are averages and that nightly weather changes
will affect the results.

It is interesting to note the relation between the standard deviation in the temperatures and
the second Gaussian fit error. This is presented in figure 4.1. This can be understood as
as long as the RMSE2 is below approximately 0.55, natural causes can cause the standard
deviation in the temperature. If the RMSE2 reaches above this limit, the variation in the
temperature is likely due to a bad fitting of the Gaussian waves, which resulted in a possible
incorrect temperature fit. We can use this observation to comment on the reliability of the
data used to calculate the temperatures.

One night is attached in figure 4.2 from each period mentioned earlier, to take a closer
look at the nightly temperatures and their behaviours. As can be seen, when considering
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the 15-minute intervals, it is clear that the temperatures vary a lot over a short period of
time. This variation might be due to errors or differences in the Gaussian fits, affecting the
measured intensity and subsequent temperature slope fit. However, the rapid temperature
changes are in accordance with similar results presented by Mulligan et al. 1995, which
also shows relatively large temperature variations for each calculation, for the (3,1) Meinel
band. In addition, other wave motions affect the OH, with gravity waves being a notable
factor. These waves have periods shorter than one day, typically in the range between 5
minutes to a couple of hours, with most occurring at about 20 minutes to an hour (Fritts
and Alexander 2003).

The hourly trend is shown in orange for both Meinel bands. These calculations are in-
cluded to make the temperatures compatible with the meridional wind and show more
stable temperature changes through the night. Even though it is more stable than the 15
minute interval time series, it still varies a lot through the night compared to the meridional
wind (figure 3.5) and the hourly averaged OH intensity (figure 3.3). When considering the
tides in the temperature, it is important to consider how much the 15-minute interval tem-
perature changes as opposed to the hourly interval. When conducting a Lomb-Scargle
transform, it will be better to use the hourly averages to avoid having to analyse a peri-
odogram that depicts all the small oscillation periods making up the nightly temperature.
Effects caused by for example gravity waves (Fritts and Alexander 2003) would be damp-
ened by the use of the hourly temperature average.

4.1.2 Tides in the temperature

A LS-transform for the periods in January-21, February-21 and April-21 have been done
for times series consisting of temperatures with 15-minute intervals and hourly intervals,
seen in figure 4.3. When comparing the Lomb-Scargle transform of the different time
series, it is noticeable that the longer the time series is, the better the transform is. This can
be seen by considering the peaks reaching the 95% level. This line indicates the amplitude
a peak must have to be considered significant and not likely to be a product of noise in the
signal. Interestingly enough, the temperature series in February (figure 4.3e, figure 4.3f)
is the only one where both the (3,1) and (4,2) temperature peaks reach the 95% confidence
level. This is also the longest time series (in number of hours included) out of the three
periods, table 4.1. The transforms of the 60-minute intervals include fewer shorter periods
than the 15-minute intervals. The close correspondence between the (3,1) transform and
the (4,2) transform indicates similar tides in the two temperature series.

It is difficult to divide between what is short period peaks caused by gravity waves (Fritts
and Alexander 2003) and what is statistical noise. Geophysical noise would be the shorter
periods in the temperature resulting from natural OH variations caused by gravity waves. If
these shorter periods have a high amplitude, they might obscure the longer periods entirely.
On the other hand, statistical noise is a result of inaccurate OH measurements caused by
instrument errors and bad temperature fittings. This will lead to more uncertainty and
higher variability in the data and might affect the nightly temperatures when combined in
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(a) Temperature for the (3,1) Meinel band in January. (b) Temperature for the (4,2) Meinel band in January.

(c) Temperature for the (3,1) Meinel band in February. (d) Temperature for the (4,2) Meinel band in February.

(e) Temperature for the (3,1) Meinel band in April. (f) Temperature for the (4,2) Meinel band in April.

Figure 4.2: Nightly temperatures for the (3,1) and (4,2) Meinel bands from one night in January,
February, and April. The temperatures are presented as they are calculated, with 15-minute intervals,
and with the hourly averages.
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a time series and used in a frequency analysis.

The LS transform behaves differently, not only considering geophysical and statistical
noise but also regarding the tides it returns. This brings up how the sampling time, length
of night, and number of days used in the time series affect the results. Since the temper-
atures consist of limited time series only present when the OH is sampled, how does the
sampling time affect the ability to derive tides from the data?

4.2 Viability of using non-continuous time series to derive
tides

A combination of pure sine waves and the meridional wind time series has been used to
investigate how the sampling time affects the tides returned through a frequency analysis.
Since the wind has data creating a continuous time series as long as the meteor radar is
functioning, getting a power spectrum with well-defined peaks representing the tides in the
wind at that time is easy. This was done in the project report, Mohr 2021. Creating a new
time series with wind data only present at the times the OH was sampled makes it possible
to analyse how a Lomb-Scargle transform of the original continuous time series compares
with an LS-transform of the wind at sampled OH time stamps. From here on, a time series
consisting of data only when the OH has been sampled shall be denoted a sampled time
series, or a sampled wave. The original time series will be called a continuous time series.
There are no OH intensity requirements, meaning that all days of sampled OH can be used.

4.2.1 Sampling effect on sine waves

To evaluate the impact of the sampling effect and what the sample time has to say about
the period spectra produced, simple sine waves with periods of 8 hours, 12 hours and
24 hours were analysed. These periods were chosen as they are found in the meridional
wind as the terdiurnal tide, semidiurnal tide, and the diurnal tide. In Mohr 2021 they were
also found to be present in the OH intensity. A power spectrum of a sine wave with the
above mentioned periods spanning over 5 consecutive days, and one including just the
timestamps where the OH has been sampled, were evaluated through the LS transform.
The measurements used were from January 2021. The power spectres for the two waves
can be seen in figure 4.4.

For the sampled wave, the 8 hour period, 12 hour period, and 24 hour period were present
to some degree at all times, (figure 4.4a, figure 4.4b, figure 4.4c). These periods had a
higher signal to noise ratio, as they didn’t reach the 95% confidence level. The continuous
sine wave depicted only the original period in the power spectra output. The inputted
frequency was always the dominating one in the spectra, and reached the 95% confidence
level at all spectra. The fact that the OH was sampled periodically at night might explain
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(a) The LS-transform of the temperature in January, with
15 minute intervals.

(b) The LS-transform of the temperature in January, with
60 minute intervals.

(c) The LS-transform of the temperature in February,
with 15 minute intervals.

(d) The LS-transform of the temperature in February,
with 60 minute intervals.

(e) The LS-transform of the temperature in April, with
15 minute intervals.

(f) The LS-transform of the temperature in April, with
60 minute intervals.

Figure 4.3: Lomb-Scargle transforms of (3,1) and (4,2) temperature time series during the dates
presented in table 4.1. The time series on the left side are with 15 minute intervals, and on the right
side hourly intervals is used. Examples of nightly temperature behaviour can be seen in figure 4.2
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the presence of the 12 hour and 24 hour tide.

The superpositioned LS transformed wave is also visualised in figure 4.4d. The blue curve
shows the continuous signal and the three peaks equally represented, while the orange
signal is the sampled signal. This clearly shows how sampling a signal affects the periods
present and the signal to noise ratio.

(a) Sine wave with a period of 8 hours, the continuous
signal and at sampled times.

(b) Sine wave with a period of 12 hours, the continuous
signal and at sampled times.

(c) Sine wave with a period of 24 hours, the continuous
signal and at sampled times.

(d) Superpositioned sine wave with a period of 8hrs,
12hrs and 24hrs, the continuous signal and at sampled
times.

Figure 4.4: The Lomb-Scargle transformed sine waves with different periods. The length of the
full sine wave is equal to the length of the meridional wind series over five days, while the sampled
signal is present when the OH was sampled those four nights in between.

These results show how sampling will produce artificial tides in a periodogram. In addition
to new periods, some noise will also appear.
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4.2.2 Sampling effect on meridional wind

The sine waves used to produce figure 4.4 were made based on five days of data from
January 2021. The sine waves used are noise-free, returning clear results. To compare how
the meridional wind behaves, the measured meridional wind is used in the same way as
described above. Hibbins et al. 2007 describes how different tides dominate the meridional
wind at different times of the year. By using similar dates as above, the beginning of
January, we should be expected to get a dominating 12-hour tide in the periodogram, as
the semi-diurnal tide is the dominating tide during winter in Norway (Hibbins et al. 2007).
The power spectrum can be seen in figure 4.5a, and can be compared with the LS transform
in figure 4.4b. The continuous wave presents a clear 12 hour period, while the sampled
meridional wind includes the 8 hour and 24 hour period. The only thing differentiating the
two power spectra is that there is some noise in the meridional wind causing some noise
(geophysical or statistical) in the power spectra.

(a) The meridional wind in January LS-transformed as a
continuous time series, and as a time series only consist-
ing of wind data at sampled OH times.

(b) Periodogram of a 12 hour continuous sine wave, and
one sampled at the OH measurements. The sine wave
has been added uniform random noise with an amplitude
of 3 times the sine wave amplitude.

Figure 4.5: Power spectrum from the measured meridional wind and a spectrum from a similarly
simulated case where sine waves with noise are used.

This kind of noise can be simulated in the sine waves transform by trial and error. By
adding noise to a sine wave with a period of 12 hours and doing a frequency analysis of the
continuous and sampled wave, it is possible to see the similar behaviour as in figure 4.5a.
This can be seen in figure 4.5b. The more noise is added, the more noise is visible on
the far left side of the periodogram, and the greater the big period batch on the right side
becomes.

An analysis of the meridional wind at sampled times and as a continuous signal was
done. By calculating the correlation coefficient between the LS-transform of the continu-
ous meridional wind and the sampled meridional wind, it was possible to get a condition
for when the sampled wind was able to provide tides that were in accordance with the tides
returned by the continuous wave. Figure 4.6 shows how the sampled transform matches
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Figure 4.6: Relation between standard deviation in the sampled wind and the correlation between
the LS transform of the sampled wind series and the full wind series.

the continuous LS-transform when only one night is evaluated through an LS-transform.
The correlation coefficients are plotted against the standard deviation in the sampled wind,
and the plot fits a power function. This shows that if the standard deviation in the sampled
wind is above 20, the sampled wind can be a good represenation of the continuous time
series. This makes sense as more variation in a limited wave makes it easier to isolate the
correct tides.

These results show how sampling a wave at night will affect the derivation of tides. In a
frequency analysis, a non-continuous time series will return more than the significant tide.
Therefore, it can be assumed that the OH intensity and the temperature power spectrum
are also subject to this phenomenon. The challenge then becomes distinguishing between
the actual tides in the data and artificial tides due to the sampling effect. Knowing this
effect makes it possible to compare the LS-transform of sampled series such as OH and
temperature with the sampled series of meridional wind at the same instances. One can
then compare the transform of the sampled meridional wind to the power spectrum of the
continuous meridional wind to determine the tide.

To investigate this further, it is relevant to look at how the power spectrum of the merid-
ional wind and the sampled meridional wind appears if one only considers one night. The
dominating tide is known as the semi-diurnal tide by keeping with data gathered in Jan-
uary. Figure 4.7a shows how the meridional wind LS-transform in January is for a 24-hour
long wave and for a wave sampled at night lasting 14 hours. As can be seen in figure 4.7a,
the spectrum appears slightly shifted when considering only the nightly time series val-
ues of the wind. By comparing it with a sine wave of similar length, it is clear that the
meridional wind this night barely contained any geophysical or statistical noise, figure 4.7.

Interestingly enough, when comparing the wind spectrum analysis to the Lomb-Scargle
transform of the temperature simultaneously, it appears that the temperature spectrum is
shifted in the same fashion as the limited wind spectrum. This can be seen in figure 4.8a.
Figure 4.8a shows how the Lomb-Scargle transform of the (3,1) and (4,2) rotational tem-
perature compares with the Lomb-Scargle transform of the continuous and sampled merid-
ional wind. Using the sampled meridional wind spectrum as a signature of the semi-diurnal
tide, one can argue that since the temperature transforms keep a shape and centre similar
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(a) Meridional wind over 24 hours, and data only during
sampled OH time.

(b) Sine wave with a period of 12 hours, the continuous
signal and at sampled wave.

Figure 4.7: The Lomb-Scargle transform of the Meridional wind on the night between the 2nd and
3rd of January 2021. The cross-spectrum analysis uses 24 hours of data and only 14 hours during
which the OH is present and measured. α24h is the 95% confidence level for the time series with 24
hours of data, and similarly for the α12h.

to the sampled meridional wind, the temperatures have a tide of 12 hours this night.

However, this is not always the case. When evaluating two subsequent nights in January,
the temperature transform matches the sampled wind transform on only one of the nights,
figure 4.8. This does not mean that the method mentioned above can not be used. It
means that the temperatures on the night where the power spectrum does not match the
sampled wind, do not have tides in common with the wind. By elaborating on this work
and gathering more examples of how a sampled time series power spectrum would look
compared to the continuous time series power spectrum, it might be possible to create a
database with shapes that depend on the length of sampled time and number of days. This
could then be used to characterise the temperature and OH tides that are affected by the
sampling effect.
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(a) Power spectrum where the temperature transforms
match the sampled wind.

(b) Power spectrum where the temperatures do not
match the sampled wind that night.

Figure 4.8: Examples of how the same temperatures and meridional wind do not necessarily produce
the same tides, seen for two subsequent nights.

4.2.3 The effect of meteor counts on the weighted meridional wind

In this analysis, the meridional wind has been used as a golden standard. However, since
the weighted meridional wind is calculated on an hourly average, the error for each calcu-
lated point in time will depend on the number of meteors at each altitude. Klemsdal 2015
presents results showing how the error in the wind estimate increases logarithmically when
the number of meteors used in the calculations decreases to below 50 counts an hour. The
weighted wind will on an hourly calculation be exposed to inaccuracies and high uncer-
tainties in the contributions from wind contributions at altitudes with periodically fewer
meteors.

deWit et al. 2015 presents how the number of meteors entering the atmosphere and being
measured by the SKiMET radar varies seasonally and daily. The time of day the meteor
intensity is maximum and minimum varies through the year. The meteor count in the
upper atmosphere is maximum during the early morning, from three to nine, and is lowest
between two and six during the afternoon. This can be seen in figure 3.4, where it is clear
that the measurable number of meteors entering at different altitudes varies cyclically over
24 hours.

Such varying errors in the data might have the same effect on the derivation of tides as
the nightly sampling of OH does. Parts of the data with a high uncertainty can affect the
results in almost the same way as missing data, as it can include incorrect or misleading
tides compared to the actual tides.

As can be seen in figure 3.4, some of the altitudes experience meteor counts less than the
limit of 50 counts per hour, each evening. Therefore, these wind measurements will con-
tribute uncertain winds to the total weighted wind. The error in the result will depend on
that altitude’s weight in the weight function, where the altitudes closer to 88km contribute
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more.

Data presenting uncertain results can be treated the same way missing data points affect
a non-continuous time series. If one only considers meridional wind data with measure-
ments with low error, the meridional wind will experience an effect similar to sampling
the OH. Therefore, potential sampling effects should be considered when deriving tides
from a continuous meridional wind time series. The number of meteors used in the mea-
surement of the wind should always be included in a wind analysis, as sampling affects
the tides derived.

4.2.4 The effect of sampling time and length of time series

These results show how the sampling effect affects the tides presented in a power spectrum.
The examples are calculated based on data from different seasons and a different number
of consecutive days. The number of days and the length of the night (i.e. the season)
affects the Lomb-Scargle transform and the resolution and confidence level of the sampled
wave. This can be seen by comparing the power spectrum of a continuous and sampled
sine wave with periods of 8 hours, 12 hours and 24 hours based on five days in January
compared to 3 days in January, and the same when using five days in April and three days in
April. The result can be seen in figure 4.9. This shows how the resolution in the periods is
better for both the sampled wave and continuous wave when five days is used (figure 4.9a,
figure 4.9c). When considering a fewer number of days, the resolution becomes worse, and
the periods returned by the sampled wave do not reach the 95% confidence level. Extra
tides appear for the sampled signal with just three days in April, figure 4.9d. These results
make it clear that the length of the time series and the sampled time available affect the
frequency analysis.

To investigate the sampled time and length of time series’ effect on the sampled signal,
the correlation coefficient between the LS-transform of a continuous sine wave and a sine
wave sampled during the night was calculated. The sine wave was constructed based on
the length of the continuous meridional wind time series and was a superpositioned wave
with periods of 8 hours, 12 hours and 24 hours. The sampled wave was the same sine
wave but with data at the times when the OH was sampled. The length of nights was
varied along with the number of consecutive nights. The length of night was varied from
January, where a night was as long as 17 hours, to April, where it was 7 hours long. The
number of consecutive nights was changed from 1 night to 4 nights.

The result can be seen in figure 4.10. The plot shows a clear connection between the
number of successive days used in the time series and the length of available sampled OH
data, and the sampled waves’ ability to represent the tides in the continuous time series.
These factors play a role in how accurate the tides derived from the sampled signal are
compared to the tides derived from the continuous signal. A tide can be derived using only
one night if one uses data sampled during a season where the nights are long. If the data
is sampled during spring or summer, where the nights are shorter, it is necessary to have

51



Chapter 4. Results and discussion

at least three or four consecutive nights of data to trust the results. A similar study should
be done with a sine wave containing only one major tide, either an 8-hour, 12-hour, or a
24-hour period. The aim should be to investigate the sampling effect on a series with only
one period.

(a) 5 days in January. (b) 3 days in January.

(c) 5 days in April. (d) 3 days in April.

Figure 4.9: The Lomb-Scargle transformed sine waves with periods of 8 hours, 12 hours and 24
hours. A continuous and sampled time series spanning 3 days and 5 days in January and April were
used, illustrating the sampled effect on the frequency analysis.
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4.2 Viability of using non-continuous time series to derive tides

Figure 4.10: The accuracy of the sampled time series power spectrum compared to the periods
returned when analysing a continuous time series. The number of consecutive days used and the
length of the nights was varied.
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Chapter 5
Conclusion

This master’s thesis aimed at calculating the temperatures of the (3,1) and (4,2) Meinel
bands. As a continuation, an analysis of the viability of using non-continuous time se-
ries to derive tides was conducted. The temperatures were calculated by fitting Gaussian
line shapes to the OH intensity spectra at 15-minute intervals. When this fit was suffi-
ciently good, evaluated by looking at the root mean square error of the fit, the resulting
temperature calculations were in accordance with previous studies. Future temperature
calculations should focus on the fitting of the Gaussian line shapes. Generally, bad fits
occurred when there was a lot of noise in the intensity spectra. Using a filter to smooth the
OH intensity spectrum might make it easier to fit the Gaussians. In addition, more research
on how to make sure the program isolates the correct peaks in the spectrum should be con-
ducted. As stated, the peaks in the intensity spectrum take the shape of a shifted Gaussian
rather than a pure Gaussian. To increase the fit, incorporating a shifted Gaussian into the
existing program could be done. In addition to this, some research should be conducted on
the variation in the OH intensity and the temperatures. Since the temperature depends on
the measured OH intensity of the different branches, some research should be conducted
to show how the intensity of these branches changes through the night. It is known that
the Q-branches of the OH (3,1) and (4,2) Meinel bands have varying standard variations.
Research into similar effects on the different P-branches might be worth investigating.

Evaluating the tides in the temperatures was nearly impossible for more extended time
series. By using hourly averages, geophysical and statistical noise effects were dampened,
but most of the peaks in the power spectrum were still well below the 95% confidence
level, and it was difficult to interpret the spectrum. By looking at how the sampling of OH
during the night affected the resulting power spectrum, it was concluded that sampling data
will lead to artificial tides in the power spectrum. This is inconvenient as it affects most of
the tides derived from OH data, as all OH data has been sampled during the night. It was
discovered that sine waves with noise could be used to approximate the measured tides.
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Using sine waves combined with meridional wind measurements would make it possible to
create a data bank of the sampled power spectrum shapes. This could be used to compare
the shape a sampled time series takes in a power spectra and then appropriate the correct
tide to the limited time series. If more research is conducted, it might be possible to derive
tides from non-continuous time series in the atmosphere, such as time series produced
by a spectrometer. This method is cheaper than using continuous time series produced by
meteor radars. To do this, it is necessary to compare with data such as the continuous wind
series. More research into the effect winds at altitudes with periodically low meteor count
have on the weighted wind series should be conducted. The aim should be to discover
if and how much of a sampling effect a low meteor count has and how this affects the
derivation of tides in the weighted meridional wind.

In addition to this, results dictating the necessary length of sampling time, i.e. the length
of the night, and the necessary number of consecutive days included in the time series,
were presented. One either needs one long night lasting fourteen or more hours or three
to four consecutive nights lasting more than eight hours. This should be used to assess the
reliability of previous studies and assist forthcoming studies using non-continuous time
series and data sampled at specific times to derive tides. A similar study using sine waves
with only an eight hour period, twelve hour period, and a twenty-four hour period, as
opposed to a sum of all periods, should be conducted to evaluate how a sampling affects a
series with fewer dominating periods.
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