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Abstract

The Arctic is undergoing rapid environmental changes by warmer temperatures and vanishing sea
ice, leading to longer navigation seasons and alternative transportation routes. Increased maritime
tra�c in the harsh climate conditions leads to a higher probability of incidents that threaten people
and the environment. A thorough understanding of the evolving activity is necessary to mitigate
these threats. However, such insight is di�cult to obtain from limited operational experiences as the
region has historically been inaccessible. Meanwhile, today’s technology o�ers new opportunities
through software and high-quality data from sensors and satellites. The objective of this thesis is to
investigate how machine learning (ML) and real-time vessel tra�c data can be used for identifying
activity trends in the Arctic and how these trends are connected with the Arctic climate changes,
environment, and ecology.

The proposed solution provides the necessary steps from data allocation and processing to ML model
development. In this thesis, the Arctic is represented by a selected area of the Barents Sea. The
relevant period is between 2015 and 2021. Numerous data sources were investigated for potential
ML model predictors. Data about temperature, sea ice, ocean depth, distance to land, and fish
catches were found to be the most applicable according to file size, access, and coverage. The data
were individually analyzed and modified, and the final ML training data set was composed through
aggregation by a created spatiotemporal grid. The prediction target of activity was extracted from
vessel tra�c data, from which two case studies of di�erent activity viewpoints were defined. The
training data of each case study were used to build a Random Forest (RF) classifier and an Extreme
Gradient Boosting (XGBoost) classifier. Whereas the first case study investigated the prediction of
vessel presence, the latter predicted the level of vessel density by operational industry.

The prediction results show that the classifiers behaved similarly during learning and provided
satisfactory performance in precision and recall, mostly above 80% in both case studies. This
verifies the applicability of ML in terms of activity estimation. The detection of vessel presence
achieved the best overall evaluation with an F1-score of 87%. Independently of target prediction
and industry, latitude had the highest impact on prediction outcome. However, in contrast to
expectations from the literature, neither a remarkable correlation between the activity density and
climatic features nor an increase in activity over time was observed. This is most likely related to a
short time frame investigated and a high concentration of vessel presence at the lower latitudes,
where climatic changes are more stable than in the north. The learning process indicated predictions
under uncertainty when the spatial separation between the target classes was less clear. Alternative
regions and time frames should be analyzed, and further investigation of activity-influencing factors
is needed to increase model confidence and capture the trends as expected.
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Sammendrag

Raske miljøendringer i Arktis, i form av varmere temperaturer og smelting av havis, fører til lengre
navigasjonssesonger og alternative transportveier. Økt sjøtrafikk i de tø�e klimaforholdene fører
til en høyere sannsynlighet for at ulykker inntre�er, hvilket truer mennesker og miljø. En grundig
forståelse av aktivitetsutviklingen er nødvendig for å redusere disse truslene. Slik innsikt er imidlertid
vanskelig å oppnå gjennom tidligere erfaringer da Arktis opprinnelig har vært utilgjengelig. Samtidig
tilbyr dagens teknologi nye muligheter gjennom programvare og høykvalitetsdata fra sensorer og
satellitter. Formålet med denne masteroppgaven er å undersøke hvordan maskinlæring (ML) og
trafikkdata fra fartøy i sanntid kan brukes til å identifisere aktivitetstrender i Arktis og hvordan
disse trendene henger sammen med arktiske klimaendringer, miljø og økologi.

Metoden som presenteres følger stegene i en typisk ML-sekvens fra allokering og prosessering av
data til implementering av to ML-modeller. I denne oppgaven er Arktis representert som et utvalgt
område i Barentshavet. Den aktuelle perioden er mellom 2015 og 2021. Flere datakilder ble undersøkt
for potensielle inngangsverdier til ML modellene, hvorav data om havtemperatur, havis, dybde,
avstand til land og fiskefangst var de mest anvendelige i forhold til filstørrelse, tilgang og utstrekning.
Dataene ble individuelt analysert og bearbeidet, og det endelige treningsdatasettet ble komponert
gjennom aggregering til et forhåndsdefinert rutenett i tid og rom. Utgangsverdien for aktivitet ble
definert fra trafikkdata gjennom to ulike case-studier. Treningsdataene fra hver case-studie ble brukt
til å bygge en Random Forest (RF) modell og en Extreme Gradient Boosting (XGBoost) modell.
Den første case-studien undersøkte predikering av aktivitet gjennom tilstedeværelse av fartøy, og
den andre estimerte tettheten av fartøy innenfor en bestemt type skipsaktivitet.

Resultatene viser at modellene hadde tilnærmet lik læringsprosess og predikerte med tilfredsstillende
verdier av presisjon og dekning, i snitt på over 80% i begge case-studiene. Dette illustreter
potensialet av å bruke ML for estimering av aktivitet med tilsvarende inngangsverdier. Prediksjon
av tilstedeværelse oppnådde den beste samlede evalueringen med en F1-score på 87%. Uavhengig av
utgangsverdi og type skipsaktivitet, hadde breddegrad størst innvirkning på prediksjonsresultatene. I
motsetning til forventninger fra litteraturen ble det imidlertid verken observert en tydelig korrelasjon
mellom aktivitetstetthet og klimatiske forhold, eller en økning i aktivitet over tid. Dette er
mest sannsynlig knyttet til den korte tidsrammen undersøkt og høy tilstedeværelse av fartøy ved
lavere breddegrader, hvor klimaendringene er mer stabile enn i nord. Læringsprosessen indikerte
prediksjoner under usikkerhet når det romlige skillet mellom utgangsverdiene var mindre tydelig.
Alternative områder og tidsrammer bør analyseres, og ytterligere undersøkelser av påvirkningsfaktorer
for aktivitet er nødvendig for å øke modellens pålitelighet og fange opp trendene som forventet.
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Chapter 1

Introduction

This thesis aims to investigate the use of machine learning (ML) and tra�c data recorded
from vessels for identifying activity trends in the Arctic waters and how activity is related to
the Arctic surroundings and climate change. The following chapter provides a motivational
introduction and background of the thesis’ objective, followed by a description of the work’s
scope and limitations and a brief report outline.

1.1 Background and motivation

Since 1979 around 3.49 million km2 of the Arctic sea ice has melted. The resulting bare
oceans absorb the sun’s energy instead of reflecting it back, inducing a faster temperature
increase and melting of sea ice, permafrost, and snow cover. As the Arctic plays a crucial role
in climate regulations through the Earth’s oceanographic and atmospheric circulations, the
melting yields numerous impacts on weather, sea level, species, and habitats around the world
(Ocean Conservancy 2017). At the same time, warmer seas lengthen the navigation season
and enable alternative sea routes linking the Atlantic and Pacific oceans. Such increased
access and discoveries of oil and gas resources lead to employment opportunities and facilitate
financial and time savings (Marsh Risk Management Research 2014). As a result, maritime
transportation and industrial operations are encouraged to enter the region, from which a
response of increasing activity has been analyzed and confirmed by several studies (Azzara,
H. Wang, and Rutherford 2019; Paxian et al. 2010; Stephenson, Smith, and Brigham 2013;
M. Liu and Kronbak 2010).

The Arctic is characterized by storms, rough seas, variable sea ice, low temperatures, re-
moteness, and poor visibility. Either individually or combined, these characteristics have
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the potential to damage humans and the environment with severe consequences according to
the region’s vulnerability. Hence, the Arctic involves a complex risk picture, which causes
challenges concerning maritime infrastructure, emergency preparedness, and search and rescue
(SAR) strategies (EPPR 2018). As a result, studies of the changing access to the Arctic
focusing on operational preparedness and risk assessment have received more attention during
the last two decades (Marchenko et al. 2018; Marchenko 2019; Benz, Münch, and Hartmann
2021). One example of such a study published by the Arctic Council in 2009 resulted in the
first Arctic Marine Shipping Assessment (AMSA) report, which addresses Arctic shipping,
maritime infrastructure, and associated environmental and human impacts (Arctic Council
2009). Since then, organizations and governments have been involved in the Arctic Council’s
work regarding Arctic risk-reducing measures. The AMSA report was a catalyst toward
global regulations responding to the increased Arctic shipping, such as the mandatory Polar
Code framework for vessel operations in Polar regions (IMO 2017). Implementations of such
regulations and increased international collaboration form a critical step toward safe ship
operations and environmental protection within the Arctic waters. However, today’s research
and risk assessment approaches rely heavily on past experiences and incidents, making it
challenging to address all Arctic-related safety concerns and environmental threats due to the
region’s historical inaccessibility and lack of benchmarked data (Rusten et al. 2015).

Because of the weak knowledge base, concerns related to the Arctic should be addressed by
alternative approaches that are not necessarily dependent on historical experiences. According
to theory, risk can be expressed as a function of an incident’s frequency multiplied by its
associated consequences (IMO 2007). Implicitly, this means that activity is a prerequisite
for the presence of risk. The more vessels are operating in the Arctic region, the higher
the likelihood of incident occurrences that may a�ect human lives, the vulnerable Arctic
environment, and ecosystems (Peters et al. 2011; Ocean Conservancy 2017). One possible
strategy for minimizing these threats and improving knowledge of Arctic-associated risks is to
target the Arctic tra�c volumes in a broad context by investigating the individual sources
of tra�c growth. Such sources include both impacts from climate change, such as warmer
temperatures and diminishing sea ice, and impacts from commercial operations related to the
creation of new infrastructure and discoveries of gas and oil sources.

Today’s technology provides enormous volumes of sensor data, including real-time marine
tra�c data from Automatic Identification Systems (AIS) and satellite data deriving information
about the Earth’s surface and environment. Moreover, with the evolving technology trends,
there is an increased interest in how modern methodologies and improved data access may
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facilitate and streamline industry procedures. ML is one such computer-based methodology
for data analysis, which automatically learns patterns from large amounts of data and applies
these patterns to new data for future problem solving (Russel and Norvig 2020a). The
benefit of ML is its potential to find complex patterns without making assumptions that
otherwise is challenging by using traditional statistical methods. While learning algorithms
are increasingly being used to facilitate risk assessment within, for example, the financial,
medical, and automotive industries, the use of ML within the maritime domain has received
less attention. However, the increasing amounts of real-time tra�c data from AIS carried by
vessels combined with data sources describing the Arctic climate, physics, and ecology, create
a considerable opportunity for this rich information to be exploited by ML. Consequently,
ML may contribute to understanding the past, present, and future tra�c trends in the High
North, from which derived knowledge may be used to develop proper emergency preparedness
and SAR strategies.

1.2 Research objectives

The overall objective of this master’s thesis is to investigate how to utilize ML and AIS data
for identifying activity trends in the Arctic and how these trends, for di�erent types of vessels,
correlate with factors related to the Arctic environment, ecology, and the climate changes.
This objective is further explained by the following research questions being addressed:

1. How to develop a supervised ML framework for predicting vessel presence and vessel
density in the Arctic waters by time and space?

2. How do ecological and environmental factors in the Arctic a�ect activity presence and
the level of vessel density?

3. Is supervised ML a reliable approach for activity predictions in the Arctic?

1.3 Scope and limitations

To achieve the objective of the thesis by available data and hardware resources, the definition
of the Arctic region in this study is narrowed down to cover an area spanning from the
northern coast of Norway to above the Svalbard island in the Barents sea. The relevant period
is from January 2015 to May 2021, and the di�erent maritime industries investigated are
fishing, commercial shipping, and tourism.

The Barents Sea was selected according to its fast changes in climate and vessel tra�c.
Warm Atlantic water enters the Barents Sea from the southwest, and fresh, cold Arctic water
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enters from the north, creating a separating feature known as the Barents Sea Polar Front.
The polar front has substantial variations in temperatures and salinity, which may impact
di�erent types of maritime activities. Moreover, The Barents Sea is one of the world’s most
productive oceanic areas and has been important for the Norwegian fishing industry for several
decades (Arctic Council 2021). Warmer seas will lead to additional species entering the region,
increased fish stock sizes, and prolonged productive seasons. Hence, an increasing fishing
trend is expected (Norwegian Polar Institute n.d.). In addition, Svalbard has long been a
popular destination for tourism activities. Tourists are attracted to sea ice and the exotic
wildlife existing further north, which has resulted in a significant increase in the number of
visits in recent years (Svalbard Museum n.d.).

The work of this thesis relies on the quality and extent of data. As data quality has a major
impact on an ML model’s prediction performance, an essential part of the thesis is based on
analyzing and understanding the quality and coverage of the di�erent data sources applied.
In addition, AIS data do not cover all vessel tra�c, such as smaller vessels, leisure crafts, and
government and military vessels. Hence, the experimental results underrepresent the actual
vessels operating in the Arctic.

1.4 Contributions

The main contribution of this thesis is to provide an applicable proof of concept where ML
is applied to Arctic environmental and physical features for activity prediction. As such,
the thesis suggests an alternative approach to traditional statistical methods for identifying
potential responses to the multiple changes a�ecting the region.

Projections of activity trends are useful for the global maritime industry and strategic
planning by governments to understand and assess future spatial and temporal ranges of the
Arctic operations. The proposed work aims to serve as a foundation for guidance related to
construction, management, and maritime Arctic infrastructure in order to mitigate Arctic
risks and improve emergency preparedness and SAR strategies.

1.5 Thesis outline

The remaining chapters of this thesis are structured as follows:

• Chapter 2 aims to provide the reader with insight into relevant theory, including
background on the Arctic region and its associated risk, as well as technical and
conceptional foundations on AIS and ML.
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• Chapter 3 briefly presents the individual data sources used for allocating relevant data
that represent the final predictors and prediction targets used in the proposed ML
solution.

• Chapter 4 explains in detail the methodology applied in this project. This includes
domain definitions, retrieval of relevant data, analysis of the data, and the ML model
development process.

• Chapter 5 describes the experimental results from the proposed ML approach applied
to two case studies with di�erent activity viewpoints.

• Chapter 6 includes discussions related to the proposed solution, the validity of the
given results, and its limitations.

• Chapter 7 concludes the work conducted and proposes further work.
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Chapter 2

Theory Foundation

This chapter provides an overview of existing research from the literature combined with
explanations of theoretical foundations in a broad context that serve as background for the
work conducted in this thesis. Relevant papers and publications were retrieved directly from
references and the search engines Engineering Village and Scopus. The keywords applied in
this study were risk, safety activity, mapping, prediction, Arctic, machine learning, maritime,
marine and AIS. Sections 2.1 through 2.4 cover information related to the Arctic region,
including common sea routes, characteristic risk factors, established definitions and regulations,
and an overview of the currently evolving activity trend. Sections 2.5 through 2.7 consider
relevant ML definitions, taxonomies and approaches, and describe the processes from data
gathering to ML model development. Finally, Section 2.7 presents previous studies on ML
applications related to operational vessel activity.

2.1 Arctic sea routes

The original founders of the Arctic were indigenous peoples searching for supplies, food, and
areas to settle. Western marine transport entered the region in the 1500s, initially motivated by
finding alternative sea routes connecting Europe and Asia. Since then, several Arctic voyages
have taken place, and marine shipping has advanced in vessel construction, infrastructure,
governance, and improved crew training (Arctic Council 2009). As a result, there are three
principal shipping routes in the Arctic that connect the Atlantic to the Pacific:
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Figure 2.1: The three major Arctic shipping routes. Illustration adapted from The Arctic
Institute (2015)

The Northwest Passage (NWP) traverses the Arctic Ocean, following the North
American coast. The passage was completed for the first time by Roald Amundsen in 1906,
and the first commercial transit of success occurred in 2013 by a bulk carrier. Some publications
predict ice-free summers by 2050, hence 100% accessibility during July, which will augment
the expansion of transits through the sea route (Marsh Risk Management Research 2014;
Stephenson, Smith, and Brigham 2013; Whiteman et al. 2021). However, channels suitable
for large vessels are expected to have challenging ice conditions for many years ahead (Peters
et al. 2011).

The Northern Sea Route (NSR) connects the Bering Strait to the European waters
along the Russian Arctic coastline, following the edge of the Norwegian Barents Sea. It
reduces the distance between the Asian and European markets by up to 40% compared to the
Suez Canal (M. Liu and Kronbak 2010; Stephenson, Smith, and Brigham 2013). Along with
the melting sea ice, the route has become more attractive commercially and internationally.
It is expected to be the preferred route among the three major Arctic routes toward future
economic activity (Marsh Risk Management Research 2014).
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The Transpolar Sea Route (TSR) is the most direct trans-Arctic shipping route, which
connects the Atlantic and Pacific oceans by passing through the North Pole. Currently, this
route is mainly covered with ice. However, with even warmer temperatures in the future, it is
expected that the route will o�er distance savings and become a popular alternative voyage
(Ocean Conservancy 2017).

2.2 Arctic risk

The Arctic Circle spans around the globe at 66°N. Many scientists specify the Arctic as the
area north of this circle where the sun does not rise or set at least once a year. Further-
more, organizations and institutions have other definitions according to vegetation, political
considerations, or average summer temperature, such as below 10°C (NSIDC 2020). For
example, the IMO identifies the Arctic based on their Polar guidelines, which spans around
the globe at 60°N with deviations around the waters surrounding Iceland and the Norwegian
mainland (IMO 2017). Although there are numerous definitions of the boundaries composing
the Arctic area, many of them share that they are based on unique ecological, environmental,
and physical characteristics, of which some are not to be found anywhere else in the world.

Moreover, the same characteristics make up a complex risk picture and are often referred
to as the Arctic risk influencing factors (RIFs). A RIF is defined as "an aspect, such as an
event or condition of a system or an activity, that a�ects the risk level of this system or
activity" (Øien 2000). On the other hand, risk is an expression of the expected amount of
harm resulting from an event occurrence and is traditionally calculated as the product of
event occurrence multiplied by a measure of the event’s corresponding consequences on people
and the environment (Marchenko et al. 2018). In 2017, the Norwegian Coastal Administration
(NCA) initiated the development of a guideline for marine risk assessment in the Arctic (EPPR
2018). The project involved identifying the major Arctic RIFs. Table 2.1 summarizes these
RIFs and how they individually are sources of increased operational event occurrence and
further contribute to negative impacts from the event’s e�ects.
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Arctic RIF Incident impact (causes) Consequence impact (e�ects)

Sea ice
• Collisions with ice • Hindrance of evacuation
• Vessels being stuck in ice • Structural damage causing
• Changes in vessel stability pollution
• Deviations from planned route

Poor visibility

• Hindrance of visual identification • Challenges in SAR operations
of other objects at sea • Challenges in cleanup of oil spills

• Interruptions of human
performance

• Deviations from planned route

Low temperature
• Icing of equipment • Poor survivability and emergency
• Freezing of fluid performance in cold waters
• Human discomfort

Remoteness
• Poor contact with shore • Hindrance of evacuation
• Insu�cient information of • Nearby assistance less available

surroundings • Delays in SAR operations
Human experience • Poor Arctic knowledge and • Lack of emergency equipment

confidence • Lack of mitigation measures
Violent weather • Uncertain weather forecasts • Escalation in weather conditions

conditions • Maneuver challenges • Challenges in SAR operations

Emissions spills and • Mortality to marine ecosystems
ballast water pollution • Invasive species

• Global warming
Environmental and eco- • Long-term restoration

logical vulnerability • Species of extinction

Table 2.1: Arctic RIFs. Information based on EPPR (2018)

The RIFs associated with temperature conditions and sea ice have caused the Arctic to be
inaccessible for centuries. Consequently, the probability of accidents in the region has been
considered low. On the other hand, the consequence factor in the risk expression has always
contributed to a high-risk product. This is related to the RIFs presented below the double
line in Table 2.1, which concern the fragile Arctic environment and the polar ecosystem’s poor
resilience to human disturbances (Ocean Conservancy 2017; Arctic Portal n.d.). If an incident
arises, emergency performance and cleanup operations from emission spills will be challenging
due to the harsh Arctic conditions and the lack of response capabilities. For example, oil
spills in the Arctic Oceans might remain in the ice for several decades due to the near-zero
temperatures (Lahn and Emmerson 2012). As such, incident scenarios can have catastrophic
and long-lasting impacts on the Arctic compared to southern climates.

In recent times, however, global warming has a�ected the RIFs that previously prevented
maritime tra�c from entering the Arctic. According to new transportation routes and
discoveries of resources, there is a growing interest in entering the region within several
industries (PAME 2021a; PAME 2021c). Such a rapid increase in the number of vessels
leads to similar growth in incidents. Consequently, higher vessel densities make the final risk
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measure more dominated in terms of event probability and not just the outcome of the event.
This emphasizes the strong connection between activity presence and operational risk (Arctic
Council 2009).

2.3 Rules and regulations

Traditionally, the Arctic oceans have not been under any specific authority. However, since
the 1700s, countries have tried to claim parts of the oceans that border their coasts. As a
result, the United Nations Convention on the Law of the Sea (UNCLOS) established various
maritime boundaries of the Earth’s water which encompass maritime limits and zones of
rights over marine and biological resources (Sea Around Us 2015). Still, the activities taking
place in the Arctic are not governed by any single legal appliance, body, or regime. Instead,
the governance is conducted by a composition of international regulations and cooperation
among the eight Arctic states: Canada, Denmark, Finland, Iceland, Norway, Russia, Sweden,
and The United States (AWI 2020).

2.3.1 International Maritime Organization

The International Maritime Organization (IMO) is an agency under the United Nations
responsible for shipping safety and the prevention of marine pollution. The IMO is the
source of global mandatory and voluntary standards and regulations at sea. Their work has
developed technically and legally according to increased activity during the last five decades
(FN-sambandet n.d.).

The International Convention for the Prevention of Pollution from Ships (MARPOL) and the
International Convention for the Safety of Life At Sea (SOLAS) are two fundamental IMO
conventions established to respond to the world becoming more aware of environmental harm
caused by the growing skipping industry. While MARPOL addresses marine and atmospheric
pollution caused by ship operations and accidents, SOLAS works toward safety standards
regarding constructions and procedures of merchant ships (United Nations 2017). According to
the recent growth in vessel activities around the Poles, the IMO adopted the International Code
for Ships Operating in Polar Waters (Polar Code), which is mandatory under both MARPOL
and SOLAS. The code entered into force in 2017 and includes ship-specific requirements and
safety and environmental regulations for vessels with intended operations within the Polar
regions (IMO 2017).
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2.3.2 Arctic Council

The Arctic Council is an intergovernmental forum that promotes and works for sustainable
development and environmental protection of the Arctic region. The forum includes the
members of the eight Arctic States and Indigenous Permanent Participant organizations
(EPPR 2018; Arctic Portal n.d.). Their activities are conducted through six working groups,
each working toward a particular objective. The most relevant working group for this thesis is
the Protection of the Arctic Marine Environment (PAME) group. Their activities are carried
out through a bi-annual work plan and include regional and circumpolar guidelines and sea
and land-based activities aiming to protect the Arctic marine environment. In 2019, PAME
introduced the Arctic Ship Tra�c Data (ASTD) system, which is a repository of reliable,
accurate, and up-to-date information on vessel activities specifically focused within the Arctic
region (PAME - Arctic Ship Tra�c Data 2022). The system aims to support analysis within
the Arctic Council’s working groups for assessing changes, monitoring trends, and reducing
knowledge gaps related to Arctic tra�c in light of the changing environmental conditions
(ASTD PAME 2020).

2.3.3 Automatic Identification System

AIS is a collaborative system that enables a vessel to automatically transmit and communicate
information to shore stations, satellites, and other ships in its neighborhood. The frequency of
transmitted signals varies from two seconds to three minutes, depending on the ship’s speed
and position, where higher speeds correspond to higher frequencies (ASTD PAME 2021).
The system was developed to facilitate collision avoidance and is widely used for maritime
situation awareness, surveillance, and pollution monitoring. It was initially standardized by
the International Telecommunication Union (ITU) before the IMO later adapted it to include
additional ship-specific and safety-related information such as position, current timestamp,
speed, course, and static vessel characteristics. Each vessel is distinguished by its Maritime
Mobile Service Identity (MMSI) number (Zhong, Song, and Yang 2019).
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Figure 2.2: Automatic transmissions of AIS signals from ship to ship, to shore and to satellite.
Illustration retrieved from NATO Shipping Centre (2021)

While the global fleets have carried AIS since the 1990s, the system has received more attention
during the last decade according to new regulations and technological development. The AIS
standards have evolved since SOLAS adopted the first requirement for AIS carriage in 2004.
All vessels of 300 gross tonnages and upwards engaged on international voyages, all cargo
ships of 500 gross tonnages and upwards, as well as passenger ships irrespective of size, are
required to carry an AIS transceiver (IMO n.d.). In 2014, AIS became compulsory for all
fishing vessels above 15 meters in length within the EU fleet (Global Fishing Watch n.d.).

The increased and global use of AIS systems facilitates digitization in the maritime field, as
the high volumes of real-time information constitute a rich data source. However, AIS data
do not cover all ship tra�c, as leisure crafts, smaller vessels, and government and military
vessels are not required to carry the transmitters. Additionally, several factors may a�ect the
signals, resulting in gaps in the data. These include technical failure, manipulations of signals,
data noise, satellite coverage, and incorrect installation (ASTD PAME 2021).

2.4 Related work on Arctic activity trends

New technology trends combined with vanishing sea ice facilitate industrial activities in
the High North, including oil and gas extraction, commercial fisheries, and tourism. It is
believed that the Arctic areas contain spots of undiscovered oil and large quantities of minerals,
potentially leading to more o�shore energy development and mining operations, resulting in
increased trans-Arctic shipments (Peters et al. 2011). The Arctic’s oceans are also known for
their productive fishing grounds, of which the Barents sea supports the world’s largest cod
stock (Loe et al. 2014). Moreover, the exotic wildlife, culture, and pristine Arctic landscape
make the region a popular tourist destination. Consequently, the individual industrial sectors
work as catalysts toward increased vessel tra�c, which several studies have lightened.
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After the ASTD was launched in 2019, the PAME working group performed several statistical
analyses on vessel tra�c in the Arctic. PAME (2021a) analyzed AIS data from 2013 to 2019
with a specific focus on passenger vessels and cruise ships within the Polar Code definition
of the Arctic. Their statistics showed that the overall unique ship count had increased by a
factor of 22, but the relative increase in the tourism segment was small. Cargo ships, on the
other side, had a much higher increase according to PAME (2021b) which revealed a 160%
relative increase by unique ship count of bulk carriers. PAME (2021c) investigated shipping
trends in the NWP by di�erent measurements of activity volume, including unique ship count
and distance sailed. Both measures revealed an increase in activity and confirmed that bulk
carriers had the largest tra�c increase. Similarly, M. Liu and Kronbak (2010) and Stephenson,
Smith, and Brigham (2013) designated the NSR as the future transit between Asia and Europe.
However, due to the lack of economic centers along the route, risks associated with the Arctic
conditions, and the trade-o� between time savings and potential costs from ice breakers, there
is still doubt as to whether the passage will substitute the Suez Canal significantly (Jensen
and Paglia 2021; M. Liu and Kronbak 2010; Peters et al. 2011).

Although multiple analyses of the Arctic tra�c volume have proven a significant tra�c growth
during the last decade, especially within the cargo shipping industry, the future projections
still vary due to uncertainties related to the navigation season, development of regulations,
expansion of resources, and variable sea ice. While future changes in regulatory frameworks
or shifts in political spheres are challenging to foresee, various studies have applied climate
models to project future maritime access to the Arctic. Such models are programmed to
forecast or recreate past climate conditions, including atmosphere, ocean, sea ice, and land
surface models. Hence, they may facilitate understanding future e�ects and impacts of global
warming (NCAS n.d.). One example is the Arctic Transport Accessibility framework developed
by Stephenson, Smith, and Agnew (2011), which integrates climate modeling projections for
quantifying the navigation access to the Arctic oceans, including air temperature, sea-ice
scenarios, topography, hydrotherapy, infrastructure, and human settlements. Their model
revealed that the NSR and the TSR will become 100% accessible for vessels with limited
icebreaking by mid-century.

Other studies have applied the output from climate models to investigate the subsequent
response in vessel tra�c. Peters et al. (2011) developed emission estimations of Arctic shipping
related to petroleum activities in 2030 and 2050. Climate models estimated future ice coverage,
and estimations of transit shipping were based on a cost-benefit analysis comparing alternative
routes through the Suez Canal. Lastly, a global energy market model was used to predict
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future petroleum activities. Their results showed that a decrease in sea ice coverage led to
rapid emissions growth from trans-shipments. Fauchald et al. (2021) performed an estimate
of how fishing activities respond to climate model projections of warmer Arctic climate
and diminishing sea ice. They developed a statistical model for predicting the presence of
trawling vessels using sea surface temperature, sea ice concentration, and bathymetry data
as explanatory variables. Their results proved that trawling activities expanded rapidly by
inter-annual sea ice loss.

Ultimately, it is evident from the investigated literature that activity, either measured by
vessel density, fuel consumption, or emissions, is expected to increase with the changing
climate variables in the Arctic, of which sea ice is considered the most significant obstruction
to vessel navigation.

2.5 Supervised machine learning

ML is a subfield within Artificial Intelligence (AI) that describes computer algorithms that
automatically learn patterns from past experiences provided through vast amounts of training
data. The overall goal of ML is to develop computer systems that are able to use such patterns
and solve complex problems accordingly. Numerous di�erent ML algorithms can be applied
to di�erent types of problems, of which the target of prediction can either be numerical or
categorical.

Supervised learning is a subcategory of ML which covers algorithms that are provided with a
correctly labeled training data set of input-output pairs and learns a function that maps the
input to the output. The input corresponds to the data features, or predictors, and the output
corresponds to the target of prediction. The function to be generated is usually denoted as
the hypothesis (h) which is the ML model’s approximation of the true unknown function (f)
that generates the output (yi) from the input (xi) (Russel and Norvig 2020b). As such, the
supervised learning task can be formulated mathematically as follows:

Given (x1, y1), (x2, y2), ..., (xN , yN ),
where yi = f(xi), N œ R, i œ N ,
find h ¥ f

The performance of the supervised model is measured by testing the hypothesis on new
observations. This is done by applying it to a test set that is distinguished from the original
training set before its exposure to the model learning process.
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Figure 2.3: Illustration of 1) a binary supervised classification problem and 2) a linear
regression problem

Furthermore, supervised ML can be categorized as a classification or a regression problem.
The former uses a model function that separates the data into multiple classes and predicts a
categorical label within this finite set of classes. The latter uses a model function that finds
the correlation between numerical input values and quantifies a number from the continuous
quantity (Goodfellow, Bengio, and Courville 2016). This di�erence is illustrated in Figure 2.3,
which shows a classification task by two classes and a regression problem of linear correlation.
The classification task is considered as binary, as it only has two possible output values.
However, a classification task can also involve three or more potential outcomes, commonly
known as a multiclass problem.

Dependent on the target definition and the desired model performance and execution speed,
several supervised learning approaches may be suitable candidates (Caruana and Niculescu-
Mizil 2006). The algorithms are distinguished by their underlying structures of organizing the
input data and searching through the space of hypothesis (Mitchell 1997). Some of the most
commonly used methods found in the literature search related to this work will be described
in the following.

Decision Tree learning is a practical and widely used method for inductive learning.
Decision Trees map all possible solutions from a preliminary question asked. They are
structured graphs, creating the supervised patterns by a flowchart structure through branches
and nodes. The nodes represent the data features, and the connecting branches correspond to
the features’ values. At each hierarchical level of the tree, a condition on a specific feature is
asked, of which result follows the value through the corresponding branch, moving to the next
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level, i.e., feature. The final level constitutes the leaf nodes which specify the final prediction
(Mitchell 1997).

Random Forest (RF) was first introduced by Breiman (2001), and is an e�cient bagging-
based ensemble learning method that combines multiple decision trees, i.e., a forest, to improve
performance. Instead of relying on the output from one single decision tree, many such trees
are built in parallel from randomly selected subsets of the original data set. This increases the
diversity of the model. The aggregated result from the decision trees yields the final result as
seen in Figure 2.4.

Figure 2.4: The RF learning method. The final result is aggregated from independently built
tree predictors

Gradient Boosted Tree is another ensemble method based upon a set of di�erent decision
trees. However, it di�ers from RFs by how the model is trained and the final aggregation of
the output. As illustrated in Figure 2.5, the trees are built gradually and sequentially, where
the residual between one model and the previous, i.e., the delta between the correct value
and the prediction, is used as further input to enhance performance. As such, this boosting
mechanism aims to minimize the predecessor’s error. Compared to RF, Gradient Boosted
Trees aggregate the final result during the learning process and not after. It is one of the most
commonly used tree models by researchers due to its simplicity and proven high performance
(Chen and Guestrin 2016).
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Figure 2.5: The Gradient Boosted method with level-wise tree growth

Support Vector Machine (SVM) represents the training data as spatial points and
builds a model of N-dimensional boundaries where N i is the number of features in the
data. The boundaries are used for classifying new input labels based on their measured
distances in space (Russel and Norvig 2020a). As illustrated in the binary problem in Figure
2.6, the objective is to find the hyperplane having the maximum distance between points of
di�erent target values such that future predictions may be obtained with more confidence
(Chatzikokolakis et al. 2019).

Figure 2.6: SVM of two classes

Artificial Neural Nets (ANNs) are inspired by the biological neurons of the human
brain and aim to approximate functions in complex data. As seen in 2.7, they are structured
by several interconnected units represented in layers that sequentially transfer data from the
input layer to the final prediction in the output layer. The edges that connect the layers are
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associated with weights that are adjusted during the learning process. These weights define
the strength of data signal from one layer unit to another (Mitchell 1997).

Figure 2.7: ANN with one hidden layer

2.6 Machine learning workflow

The ML workflow serves as the basis for the methodology of this project. It describes the
iterative process of developing the ML model and consists of an end-to-end set of standardized
steps. Firstly, the project domain and the objectives that the model tends to achieve must
be defined. This includes defining the specific target of prediction and identifying desired
predictors from potential data sources. From there, the workflow is divided into 1) pre-
processing the data, which includes data gathering, data cleaning, exploratory data analysis
(EDA), and feature engineering, and 2) model development, which includes training, testing,
and model evaluation (Kuhn and Johnson 2019). Each step should be completed sequentially
in a loop, as given in Figure 2.8.

The aim of the workflow is to understand and prepare the raw data for the intended application
in order to obtain the most optimal prediction performance on new data. In fact, the modeling
technique itself is typically a small part of the model development process. A developer rule
is that only 20% of the time should be spent on model training and predictions, and the
remaining 80% should be spent on data pre-processing (Khalitov 2021a).
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Figure 2.8: The ML workflow

2.6.1 Data gathering and data cleaning

Data collection is commonly defined as one of the major challenges in ML. The data acquired
form the basis of the ML workflow and the model’s final usefulness and plays a vital role
in any ML use case. Therefore, it is essential to search thoroughly through data providers
and databases to allocate the predictors that best suit the purpose of the model (Yellenki
2020). Although some data sets are open source, most providers require account registration
or special permissions due to data confidentiality concerns. Consequently, much of the work
lies in this step.

The features of the raw data collected are typically inconsistent and erroneous and must be
prepared before being exposed to further transformations through feature engineering. The
cleaning process includes joining data from multiple sources, extracting the data by desired
temporal and graphical boundaries, identifying and treating missing values, nonsensical values,
duplicates and improperly formatted data, and so on. The aim is to maximize the data
quality without necessarily losing information (Khalitov 2021b). The cleaning techniques
found relevant in this project will be described in the following.

Data redundancy and irrelevance refer to unnecessary information for enhanced
prediction. Sensor data and data collected from multiple di�erent sources may contain
duplicate observations. Duplicates are data records representing the same entity, such as
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similar positional signals from AIS being captured twice. On the other hand, irrelevant
data are data that do not fit into the purpose of the model. Both duplicates and irrelevant
observations have in common that they increase the ML model’s computational cost without
providing additional valuable information (Kuhn and Johnson 2019). Therefore, it is beneficial
to restrict the data to relevant observations and remove duplicates prior to other modifications.

Noise and Outliers are ML concepts describing data discrepancies. Real-world data most
certainly contain errors or mislabeled samples, for example, caused by unreliable collection
instruments. In ML, these errors are called noise and are either errors in the predictors’ values
or incorrect target values. On the other hand, outliers may contain erroneous data, but not
necessarily. These refer to unrepresentative data and are abnormal labels that di�er from
the remaining data. Hence, there is no direct link between outliers and noise as outliers can
contain valuable information about the underlying system (MIT 2021). This has, for example,
been exploited by several studies in anomaly detection in AIS tracks, potentially indicating
criminal activities or accidents (Wolsing et al. 2022; Li et al. 2017; Goerlandt et al. 2017).
However, outliers in environmental data evolving in time and space are typically errors due to
inconsistency and should be either smoothed or removed.

Missing values refer to lacking information in the data, and are typically encoded as NaN
(Not a Number) values. Such values may lead to a biased ML model, and many algorithms
even require complete predictors (Kuhn and Johnson 2019). Bias occurs when there are
systematic errors in the data which a�ect the learning process’ assumptions and learning
patterns, and skew the predictions towards a wrong idea (Gi�en, Herhausen, and Fahse 2022).
In order to deal with the missing values, it is important to understand why the data are
missing. Some typical reasons could be improper maintenance of past data, information not
provided intentionally, or failure in recording observations due to technical or human error.
Hence, missing values are formally divided into three categories:

• Missing completely at random (MCAR): the missing values are neither related to the
other missing values nor the existing values.

• Missing at random (MAR): the missing values are related to the given observations
but are unrelated to the remaining missing data.

• Not missing at random (MNAR): the missing values are related to other missing data.

Depending on the number of values missing and whether the missing information is MCAR,
MAR, or MNAR, there exist various alternatives of manipulating strategies. As the missingness
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within MNAR values is connected, an option is to encode these to new values. The easiest
solution for cases concerning MCAR and MAR is to exclude the NaN values completely, either
by deleting the a�ected records or removing a feature of many missing values completely.
However, this can lead to a significant loss of valuable information. Hence, imputation, or
filling-in, is usually desirable when there are many records of missing values for a relatively
small number of features. Missing values can e�ectively be imputed by a specific metric, such
as the most frequent value, the mean, or the median of the already represented data. In recent
years, however, more advanced imputation methods have been introduced, which involve
applying supervised models on the represented data using the missing values as prediction
targets (X. Liu 2016).

2.6.2 Feature engineering and exploratory data analysis

The predictors, or features, in the gathered data may be represented in a way that makes
it di�cult for the ML models to achieve good performance. Feature engineering is about
reworking and adjusting the predictors to strengthen the relationships between the predictors
and the target values. For example, this includes feature transformations, interacting multiple
features together, or constructing re-representations of features (Kuhn and Johnson 2019).

Determining and selecting meaningful predictors is an additional important part of feature
engineering, as features of non-informative values decrease the model’s interpretability, training
speed, and performance. An individual feature’s usefulness for target prediction is evaluated by
its degree of information gain. Higher information gain improves the knowledge of the model
and reduces the need of information for further training on the remaining data. In decision
trees, the feature importance is calculated by the Gini impurity metric, which measures the
quality of a split by the likelihood of new observations being misclassified after the split. This
likelihood is calculated by the number of times a randomly chosen sample from the split-subset
would be incorrectly classified. Hence, the lower the impurity, the higher the information gain
(Mitchell 1997).

The best reworking approaches for a given ML problem are typically unknown, and many
alternatives could be searched for in order to find the most appropriate ones (Kuhn and
Johnson 2019). Therefore, EDA is necessary to gain insight into the data. EDA refers
to investigating the data using visual techniques and statistical graphics. The aim is to
understand the underlying feature distributions and their interplay, test assumptions, and
discover data anomalies. The output from the EDA is further used as a basis for any potential

21



Chapter 2 – Theory Foundation

re-representations and the final selection of meaningful predictors to use as input prior to
modeling (Tukey 1977). As such, feature engineering and EDA go hand in hand.

2.6.3 Model development

Once the data are processed, the data set must be split into a training set and a test set. The
model uses the training set for processing information and mapping predictor values to their
target values. The test set is kept unavailable for the model during model training and is used
to evaluate the model performance after training by assessing the accuracy of the predictions
compared to unseen truth values.

The model can be refined during model training until an acceptable level of accuracy is achieved.
Many ML models are provided with a set of predefined settings, given as hyperparameters,
which can be configured explicitly according to the training data and the ML problem’s
objective. Hyperparameters control the model’s trade-o�s and decisions during the learning
process, influencing the model’s time complexity and quality. Tree depth, number of trees,
and the fraction of features used to build a tree are typical examples of hyperparameters
for tree-based models (Kuhn and Johnson 2019; Banarjee 2020). Developing the ML model
involves finding optimal hyperparameters that leverage the model’s maximum power. k-fold
cross-validation is a technique that can be used to assess model performance before exposure to
new observations and choose optimal hyperparameters from predefined sets of configurations
(Russel and Norvig 2020a). In k-fold cross-validation, the training data is split into k number
of subsets (folds), and the model is trained and evaluated in an iterative process. The process
goes on for k times, each time training the model on k ≠ 1 folds and evaluating it with
the last kth fold. An aggregation of the individual evaluations determines the final model
performance (Kuhn and Johnson 2019). The process is summarized in Figure 2.9, which
shows cross-validation by five folds.
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Figure 2.9: 5-fold Cross Validation

The choice of k depends on the ML problem and the training data size, of which common
values are 3, 5, and 10. A higher number of folds means a larger training set relative to the
test set, resulting in a lower prediction error as the model is exposed to more input data.
However, choosing a smaller fold value is often beneficial as it requires less execution time.

2.6.4 Model evaluation

An unbiased evaluation of an ML model’s learning performance is estimated by applying the
model to new observations, either provided by validation sets during model training or a
hold-out test set for a final evaluation after training. The model can be assessed by various
performance metrics, some of which are more appropriate than others depending on the model
domain, the algorithm used, and the prediction target. Furthermore, the metrics measure
model trade-o�s di�erently so that they may perform more optimally by one metric than
another. Therefore, it is recommended to use several metrics to evaluate model (Caruana and
Niculescu-Mizil 2006). Some of the most commonly used metrics for classification tasks are
described in the following.

Logarithmic loss is a measure based on the probability of a sample being classified under
a certain class. It is typically used by gradient boosting methods and ANNs, whose objectives
are to minimize an error function. It describes how close the probability is to the actual
value and, implicitly, how confidently the model predicts its output. Hence, the smaller the
logarithmic loss, the higher the model accuracy (Pedregosa et al. 2011).
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Accuracy is the simplest metric and yields the ratio of correctly predicted records to the
total number of predictions made, as expressed in 2.1. It e�ciently estimates the overall model
performance and works well on balanced data. However, as further elaborated in Section 2.8.2,
most real-life ML cases concern imbalanced data classes that preferably should be subject to
individual evaluation.

Accuracy = #correct predictions

#predictions
(2.1)

Figure 2.10: Confusion matrix of a binary classification problem

Confusion matrix is a tabular representation of the model performance within each class
of a classification problem. Figure 2.10 presents such a matrix for a binary problem, where
each column corresponds to a predicted class, and the rows correspond to the true classes.
The matrix illustrates four possible outcomes of class predictions. In a binary task, in which
the target value is either yes or no, the aim is to predict yes when the true target class is
yes and, similarly, no when the target is no. Hence, the model obtains correct predictions
by true positives (TP) and true negatives (TN), respectively. The opposite outcomes occur
when the model predicts a class value that contradicts the true class value. In this case, the
predicted class is either no while the actual class is yes or the predicted class is yes while the
actual class is no, which yields false positives (FP) and false negatives (FN), respectively. An
optimal learning algorithm would result in a confusion matrix of entries only along the main
diagonal, meaning that all predictions are TP and TN, that is, correctly estimated (Kotu and
Deshpande 2015). Together with the confusion matrix come three additional metrics which
enable investigating performance by each prediction class individually:
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• Precision is the ratio of true positives, or relevant cases, to all positive predictions
made, as given in 2.2. It yields how many true values the model correctly predicted
out of all values the model predicted as true.

Precision = TP

TP + FP
(2.2)

• Recall is the ratio of true positives, or relevant cases, to the actual true classes, as
given in 2.3. It is a measure of sensitivity by the model’s ability to capture all cases
that actually are relevant.

Recall = TP

TP + FN
(2.3)

• F1-score is a weighted combination of both precision and recall. It is less interpretable
than accuracy, however considers both false negatives and false positives which makes
it more suitable for evaluating model performance from uneven data distributions.

F1 ≠ score = TP

TP + 1
2(FP + FN)

(2.4)

2.7 Previous activity estimates by machine learning

The increased use of AIS transceivers has led to more accurate and easily accessible vessel
tra�c information, facilitating knowledge extraction on activity trends using data-driven
methods. This is exemplified by several studies from the literature that combine ML with
historical AIS from around the world. The existing AIS-based ML applications include vessel
type classification, anomaly detection, and prediction of ship characteristics and trajectories
(Wolsing et al. 2022; Li et al. 2017; Mazzarella et al. 2014). Although there is a lack of such
studies with an Arctic-specific focus, the existing research may provide good indicators on
which approaches are suitable for these vast amounts of sensor-based data.

Chatzikokolakis et al. (2019) applied Decision Trees, RFs and Gradient Boosted Trees with a
large volume of AIS data to detect SAR activities. The study aimed to evaluate the learning
approaches’ ability to identify trajectories of SAR vessels. The data were localized from
diverse areas in need of such activity due to migrants reaching for Europe, including the
Central, Eastern, and Mediterranean routes. 5-fold cross-validation was used to determine
the number of trees and their corresponding depth. Their proposed approach proved to
be generic in di�erent areas of interest. Gradient Boosted Trees performed with the best
accuracy by all evaluation metrics but had higher computational demands. Hence, the authors
concluded with RF as the outperforming model according to e�ciency and accuracy. Nguyen
et al. (2018) jointly addressed anomaly detection, vessel type identification, and trajectory
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reconstruction by a multitask ANN approach. The key component of their framework was an
embedded block that converted input streams of AIS data to regularly sampled data. Blocks
of higher levels were task-specific submodels for either anomaly detection, vessel classification
or trajectory reconstruction. The submodels were tested using AIS data from the Gulf of
Mexico from January to March 2014. To detect anomalies, the authors constructed track
divergences and circle-shaped patterns in places where these are not expected. Compared to
state-of-the-art models for similar problems, the ANN approach detected similar abnormal
patterns and slightly improved classification performance by an F1-score of 87.72%.

Multiple studies have applied ML with AIS data from fishing vessels in order to assist the
management of fisheries concerning overfishing and illegal fishing behavior. One example is
the work of Jiang et al. (2016), which used ANNs, SVMs, and RFs to detect fishing activity
from AIS data. Their target was defined by a binary classification problem for the prediction
of fishing vessel presence or absence. Due to imbalanced data in favor of the majority class,
the training data were re-sampled. The results were evaluated by various metrics, which
revealed improved prediction by all three ML approaches after re-sampling. Additionally,
ANNs performed at least as well as SVMs and RFs.

Other studies have addressed inference of vessel types in general, aiming to improve Maritime
Situational Awareness at sea. Kraus, Mohrdieck, and Schwenker (2018) collected AIS data
covering vessel positions from the German Bight for distinguishing between fishing, passenger,
cargo, and tanker vessels. The AIS data were used to extract other features, including vessel
trajectories, the ratio of trajectory per vessel type, and distance to shore, which resulted in a
training data set of both behavioral and spatial properties. RF was chosen for classification
due to its trade-o� between predictive capabilities and e�ciency. Their results proved a
satisfying performance with an overall accuracy of 97.51%. However, several tankers were
misclassified as cargo vessels due to similarities in behavioral patterns. Similar results were
obtained by Zhong, Song, and Yang (2019), which used global, real-world AIS data published
by the National Defense University for vessel type classification between cargo vessels, tankers,
and fishing vessels. The fishing vessels yielded the highest classification precision of 94.5%,
but the model had di�culty distinguishing between cargo vessels and tankers.

As indicated above, several studies of ML predictions using AIS-based training data report
promising results from tree-based learning models. This justifies the applicability of similar
approaches with Arctic AIS data. However, most previous studies target vessel activity
by vessel type or by behavior in terms of speed or trajectory patterns. These targets can
be predicted from vessel-specific characteristics directly available from the AIS streams,
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including size, gear, and positions. However, they are less dependent on factors describing
the surroundings. For example, attributes representing vessel size and gear would be more
explanatory compared to surrounding properties for answering whether a vessel is of type
fishing or cargo. As such, the studies are limited to relying on features extracted from the
AIS data only, without including other data sources as part of their training data. On the
other hand, a quantitative measure of activity is an aggregation of the vessels transmitting the
AIS records and is more dependent on external factors for prediction. Such factors include
context-related information about the environment, ecology, and regulations a�ecting the
activity quantities. For example, identifying the number of vessels traversing from one place
to another would depend on the surroundings rather than the vessel’s speed or gear. Although
activity in this matter has been addressed by statistical methods, as presented in Section 2.4,
there is a lack of attempts where ML approaches are applied in such cases.

2.8 Application challenges

Although supervised learning applications have emerged significantly and proven promising
results in recent years, there are major challenges that may be faced when developing such
applications. Some of the common challenges were experienced throughout the development
of this thesis’ proposed solution and will be described in the following.

2.8.1 Overfitting and underfitting

Overfitting occurs when the ML model obtains a small error on the training set but a large
error on the test set. As a result, the model knows the training data well but cannot be
applied to solve previously unseen problems. Such a situation usually happens when the
model relies heavily on detailed patterns in the given observations that otherwise do not occur,
Hence, the algorithm fails to generalize the learned behavior in future situations, i.e., adapt
the learned patterns appropriately to unseen data. On the other hand, underfitting is when
the model neither manages to fit well to the training data nor is able to generalize to new
data. This happens when the model is not exposed to enough data to capture the underlying
patterns (Goodfellow, Bengio, and Courville 2016).

While underfitting is easily detectable with appropriate performance metrics, overfitting
is more challenging to handle as it may occur from multiple sources. Some well-known
key takeaways for preventing overfitting involve reducing data complexity by properly pre-
processing noise and redundancies and tuning hyperparameters to add randomness to make
the training process more robust. In principle, the more computation allowed for training
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increases the chance of a resulting complex model. Therefore, it is good practice to include
early stopping in the ML model where the training process is stopped once the validation
accuracy does not improve (Mitchell 1997).

2.8.2 Data imbalance

Data imbalance occurs when the target values are not equally represented. In regression
problems, the target distribution is highly skewed towards a specific number, while classification
imbalance is when most of the instances belong to the same class. As a result, the machine
learning algorithm is exposed to more records of a particular target compared to others and
becomes biased towards predicting the most represented target without actually performing
any pattern analysis of the data (Kuhn and Johnson 2019). Consequently, the prediction
output would mostly correspond to the true values of the target, yielding an apparent high
accuracy. Evaluation by the accuracy metric on imbalanced data is therefore misleading as it
does not consider the predictions of minority classes, which, in the case of imbalance, actually
remark the predictive performance (Kotu and Deshpande 2015).

Imbalance occurrence is common in real-world domains where the aim is to detect rare but
important cases, such as anomaly detection and text classification (Kotsiantis, Kanellopoulos,
and Pintelas 2005). Although some ML models provide specific weights to even out the
distributions during training, several solutions are proposed for manipulating the imbalances
at data level. This includes various re-sampling approaches, which rely on either undersampling
or oversampling. The former solution removes samples, i.e., records, from the most represented
classes, while the latter adds more samples to the less represented classes. The di�erent
under- and oversampling approaches are distinguished by their choice of which samples
to remove or how to generate new samples, respectively. For undersampling, the simplest
approach is a random elimination of the majority classes until the ratio of classes is equalized.
Correspondingly, random oversampling aims to balance the class distribution by randomly
replicating samples from the minority classes (Lemaître, Nogueira, and Aridas 2017). Although
these re-sampling methods solve the imbalance problem, they may act as sources of other
pitfalls. For example, the removal of existing records of the majority classes causes a loss of
potentially useful information for pattern recognition, while the creation of duplicates from
the minority classes increases the chance of overfitting as the model is exposed to more similar
information. Additionally, oversampling can result in an extensive computational task when
working with large data sets (Kotsiantis, Kanellopoulos, and Pintelas 2005).
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In order to decrease the likelihood of overfitting and prevent significant loss of information,
there have been proposed alternative solutions to the random approaches and solutions which
combine both oversampling and undersampling. One commonly used approach is the Synthetic
Minority Oversampling Technique (SMOTE) (Chawla et al. 2002), which generates synthetic
samples by interpolating from existing and closely related samples from the minority class.
Consequently, duplicates are avoided, and the decision boundary is spread toward the space of
the majority class. However, a high degree of imbalances may lead to many synthetic samples.
Several researchers have therefore attempted to combine SMOTE with undersampling methods
to even out the proportion of data removal against the generation of synthetic data (Sasada
et al. 2020; Batista, Prati, and Monard 2004). One example is the SMOTETomek approach
which combines oversamples by SMOTE with data removal of samples forming Tomek links.
The concept of Tomek links was first introduced by Tomek (1976), and describes the linkage
between two samples of opposite classes that are each other’s nearest neighbors. These are
used to exclude samples from the majority class close to minority class samples; hence, they
create a more explicit decision boundary. As a result, the target classes become balanced by
SMOTE generation followed by a clean-up based on Tomek Links, which has proven promising
accuracy results (Z. Wang et al. 2019; Goel et al. 2013).
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Data and Technologies

This chapter presents the technologies and data foundation on which the methodology
presented in Chapter 4 is based. The first section summarizes relevant software, and the
second section describes the di�erent data sources applied and their corresponding data sets.

3.1 Software and programming languages

All implementations and analyses behind the proposed methodology presented in Chapter
4 were conducted in Jupiter Notebook (Kluyver et al. 2016) with Python (Van Rossum
and Drake 2009) as the main programming language. Jupyter Notebook is an open-source,
web-based computing platform that enables combining software code with explanatory text
and visualizations in the same document. Therefore, it is suitable for developing learning
models where illustrative EDA combined with data implementations and model development
are necessary. Python was chosen due to its ease of use and supportive online community. In
addition, it comes with several frameworks and libraries that support scientific calculations
and data analysis, of which the most important for this project were Pandas (McKinney
2010), Numpy (Harris et al. 2020) and Matplotlib (Hunter 2007) for data processing and data
analysis and SciPy (Virtanen et al. 2020) for ML development.

3.2 Data foundation

The aim of the conducted data allocation was two-fold. Firstly, it was necessary to collect
information describing vessel activity in the Arctic, which would serve as a basis for the
prediction target in this thesis. Secondly, it was desired to identify explanatory predictors to
Arctic activity patterns according to the research questions, including Arctic environmental
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physics and climatic changes. An overview of all data sources investigated for this purpose
is presented in Appendix A. The sources presented in this section were chosen among these
based on the following criteria:

• The data are easily accessed

• The data have an Arctic coverage

• The data have similar spatial and temporal coverage as the data from the other sources
already chosen

• The data are represented in a format feasible for merging with the data from the other
sources already chosen

3.2.1 ASTD PAME

Vessel tra�c data were collected from the ASTD system developed by PAME. The repository
provides AIS records transmitted between 2013 and 2021 from IMO registered ships operating
in the Arctic region, as marked in Figure 3.1. The ASTD AIS data were preferred over other
activity data sources due to their strong Arctic focus and documented high-quality (PAME
- Arctic Ship Tra�c Data 2022). In addition, the motivation behind launching the system
complies well with the objective of this thesis, as explained in Section 2.3.2.

Access to the ASTD data must be applied for and may be granted through three di�erent
levels. Level 1 gives access to the whole database, including vessel identity information by
the IMO number and the Maritime Mobility Service Identity (MMSI) and detailed ship
information. Level 2 and 3 access di�er from Level 1 by excluding the ship identification
numbers and having less detailed classifications of ship types. While Level 1 data are classified
into over 200 ship types, Level 2 and 3 are aggregated to 50 and 13 ship types, respectively
(PAME 2021d). NTNU was permitted the Level 3 access data containing the attributes given
in Table 3.1. In addition to these attributes, the data include attributes of measurements on
ship emissions and waste substances.

The AIS data are given in comma-separated value (CSV) files, representing the records in a
tabular format. Each row corresponds to an AIS record, i.e., a positional signal given by a
vessel, divided into columns representing the attributes in Table 3.1. The data are accessed
through an FTP server which distributes individual monthly data sets.
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Figure 3.1: Map of the ASTD area (red, dotted line). Note that the data coverage is not
limited to the shadowed area, which is applicable for the Polar Code. Illustration retrieved
from British Antarctic Survey (2020)

shipid An anonymous, unique ship id to each month
date_time_utc The time stamp of a signal

flagname The flag of the ship
iceclass The ice class based on the Finnish-Swedish Ice

Class Rules (FSICR) (TRAFICOM 2019)
astd_cat An aggregated category given by PAME (13 types

in total)
sizegroup_gt A size group by ground tonnage which yields the

ship’s volume or capacity and illustrates its size (7
groups in total)

fuelquality The type of fuel used by the vessel (6 categories)
fuelcons Fuel consumption estimation by an algorithm

based on dynamical and ship specific information
dist_nextpoint Distance to the next signal from the ship
sec_nextpoint Seconds to the next signal from the ship

longitude Positional longitude in WGS84 datum
latitude Positional latitude in WGS84 datum

Table 3.1: List of attributes from the PAME AIS data
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3.2.2 Copernicus

Copernicus is the European Union (EU) Earth observation program that o�ers open-source
information provided by satellites and information collected from ground-based points of
interest (Copernicus 2021). As indicated in Section 2.4, Arctic sea ice retreat is commonly
associated with navigation access in the Arctic. As warmer temperatures and reduced sea ice
are direct e�ects of the changing climate, information about Arctic sea surface temperature
(SST) and sea ice concentration (SIC) was retrieved from the Copernicus Marine Service, the
marine-focused component of Copernicus.

The Copernicus data are processed through four levels starting at the collection stage of
raw satellite inputs to the final stage of an analyzed, interpolated product (Høyer and She
2007). Various pre-processing techniques and quality controls are conducted on the input
data, such as only including cloud-free satellite data, subtracting sensor-specific biases, and
replacing observations of SST with ice surface temperatures where the SIC is more than 70%.
Additionally, the final level measurements have been validated against in-situ measurements
from buoys and ship observations, showing a stable mean SST performance by standard
deviations less than 0.7°C (Høyer, Riebergaard, et al. 2021).

The final analyzed data are spatially represented by geographical coordinates in the WGS84
projection with a 0.05 degrees resolution. The geographical and temporal coverages are north
of 58°N and daily aggregations from January 1982 to May 2021, respectively. The products
are accessed through Copernicus’ FTP server and are given in a Network Common Data Form
(NetCDF). NetCDF is an array-oriented representation commonly used for multidimensional
geospatial data, where each file represents one daily aggregated observation (Høyer, Kolbe,
et al. 2021). The NetCDF files retrieved from Copernicus contain the attributes given in
Table 3.2. SST and SIC are denoted as analysed_st and sea_ice_fraction, respectively.

time The time stamp of measurement
longitude Positional longitude in WGS84 da-

tum
latitude Positional latitude in WGS84 datum

analysed_st Analysed sea and ice surface temper-
ature in Kelvin

sea_ice_fraction Sea ice fraction

Table 3.2: List of attributes from environmental data, Copernicus
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3.2.3 IBCAO

The underwater depth of the seafloor reflects safe vessel passages and may impact activity
di�erently depending on the type of operation. For example, cargo ships may require a
minimum depth for traversal, and fishing activities are attracted to areas of depth where
certain species reside. Hence, geospatial information about the ocean floor was considered
a potential explanatory activity predictor. Such data were retrieved from the International
Bathymetric Chart of the Arctic Ocean (IBCAO) initiative, which has been the authoritative
source of seafloor depth within the Arctic Ocean since 1997 (Jakobsson, L.A. Mayer, and
Bringensparr 2020). Their initiative aims to develop a digital database and contribute toward
increased understanding of tides, fishing resources, tsunami forecasting, ocean circulation,
and environmental change. Their data are calculated through acoustic methods, where the
time between sound pulses and their echos in response are measured from vessels. In addition,
IBCAO uses satellite-derived measures in regions of sparse acoustic data coverage. This is
done by observing anomalies in gravity which are correlated with the topography of the ocean
seabed (Gridded Bathymetry Data - Arctic Ocean (IBCAO) 2020).

The data have a spatial coverage north of 64°N, and are represented as NetCDF files. As
given in Table 3.3, the records are provided in an "xyz" format, where the "x" and "y" variables
represent grid cell positions in Polar Stereographic projection coordinates, and the "z" variable
corresponds to the elevation in meters of which the sea surface has a value of zero. The
latest version of the data is available in regular grid sizes of either 200 meters or 400 meters
(Jakobsson, L. Mayer, et al. 2020).

x Horizontal position in Polar Stereo-
graphic projection

y Vertical position in Polar Stereo-
graphic projection

z Elevation in meters

Table 3.3: List of attributes from bathymetry data, IBCAO

3.2.4 NASA’s OBPG

Distance measures implicitly explain the level of remoteness. As warmer temperatures arise in
the Arctic, it is reasonable to assume that the subsequent increase in navigational access may
cause maneuvers to venture further away from land. Like the bathymetric data, information
regarding distances to the coastline may insinuate the type of industry. Whereas passenger
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ships typically operate close to the coast for observations of species and nature, cargo ships
traverse across deeper waters over longer passages.

The Ocean Biology Processing Group (OBPG) of the National Aeronautics and Space Adminis-
tration (NASA) collects, processes, and distributes ocean-related products from satellite-based
missions. In 2012, the group generated a global data set of distances to the nearest coastline
using Generic Mapping Tools (GMT) software, an open-source collection of software packages
for displaying and processing geospatial data (Wessel et al. 2019). The data have a grid
resolution of 0.04 degrees and are available through a compressed text file. Three attributes
represent the data records: longitude, latitude, and the distance measure, such that each
record corresponds to a distance measured in kilometers from a specific spatial point (NASA
Ocean Biology Processing Group (OBPG) 2012). The measurements provided by NASA will
be denoted as the distance data in the remaining part of this thesis.

longitude Positional longitude in WGS84 da-
tum

latitude Positional latitude in WGS84 datum
distance Distance to the nearest coastline in

km

Table 3.4: List of attributes from distance data, NASA OBPG

3.2.5 NMDC

The Norwegian Marine Data Centre (NMDC) is a marine research infrastructure that coordi-
nates marine data from waters surrounding Norway. They aim to provide seamless access
to historical marine data to contribute toward national and international quality research
within marine science. The data center distributes open-source information describing both
physical ocean characteristics and marine biology (Stenseth n.d.). It is expected that less sea
ice in the Arctic will open up for plankton production, followed by new areas for fish stocks
in the North (Hollowed, Planque, and Loeng 2013). Consequently, ecological changes could
be linked to activity presence, especially within the fishing industry. Hence, it was desired to
incorporate this ecological aspect into the data foundation of this thesis.

The NMDC provides fish catch data from the Barents Sea Ecosystem Survey, which monitors
the status and changes in biological variables from the Barents Sea and adjacent waters. This
is a Norwegian/Russian joint survey that has been run every autumn from 2004, of which data
are available until 2019. The data cover the Barents Sea region and are aggregated by trawl
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stations in a 35nm (nautical mile) grid resolution. The catch is manually measured onboard
the trawl stations by count and weight (Johannesen et al. 2021). The resulting data files are
provided by year in a tabular format where each row, or record, corresponds to measures
from a specific trawl station given time and space. The first data columns, or attributes,
represent physical and temporal information about the point of measurement, including
latitude, longitude, time, station identification number, gear, depth, and tow distance. The
remaining 84 columns represent the species of which cell entries are the catch measurements.
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Methodology

This chapter describes the methodology applied in this thesis which seeks to answer the first
research question. The procedure is based on the technologies and the data foundation from
Chapter 3 and structured according to the ML workflow explained in Section 2.6. In order to
validate the applicability of the proposed solution and answer the remaining research questions,
two case studies were defined from the processing steps and exposed to two tree-based ML
models. The output from the models constitutes the experimental results of this thesis, which
are further described in Chapter 5.

4.1 Definition of project domain

Activity as a measure of time and space is a broad term and needs a precise definition to qualify
as an ML target. As expressed in Section 2.4 and 2.7, there are multiple ways of measuring
the volume of vessel tra�c. Hence, the ML problem can be formulated either as a regression
or a classification problem. Potential activity measures for regression problems could be values
directly regarding ship presence, such as vessel density, vessel frequency, and operational time
spent, or measures coming as a result of ship presence, such as fuel consumption, vessel speed,
and emissions. On the other hand, activity prediction by classification could be considered as,
for example, the binary task of classifying activity presence or absence, vessel type, or size
group.

4.1.1 Prediction target

To answer the second and third research questions, the target was identified through two
case studies representing di�erent activity perspectives. The first case study addresses the
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binary task of predicting vessel presence within the chosen period and area. The second case
study considers the spatial locations of vessel presence only, and targets the vessel density
by unique ship count from the aspects of three di�erent industries: fishing, cargo shipping,
and tourism. As such, the two case studies, or ML tasks, satisfy the fact of being entirely
dependent on external climatic changes and not vessel characteristic information provided
by AIS transmitters. In addition, a target definition based on vessel density contributes
toward understanding the changing Arctic risk picture, as discussed in Section 2.2. Due
to discontinuities in the distribution of unique ship count, which is further elaborated in
Section 4.2.6, the target of Case Study 2 was binned into a classification problem considering
three degrees of vessel density: high, medium, and low. The tasks of each case study are
explicitly formulated in Table 4.1. The I notation conveys that the temporal and geographical
boundaries are dependent on the given industry. While G considers the whole geographical
boundary as explained in Section 4.1.3, GI is restricted to only considering the respective
industry’s spatial locations of vessel presence.

Case study 1 Case study 2

Given time intervals T and spatial
grid cells G,

Given time intervals TI , spatial grid cells
GI and industries I,

predict class y1ab fore each ta, gb predict class y2abc for each tIa, gIb, ic

where y1ab œ {presence, absence} where y2abc œ {low, medium, high}

Table 4.1: Classification task formulations

4.1.2 Temporal boundaries

The temporal and geographical boundaries, corresponding to T and G, respectively, were
defined in order to put the classification tasks into context. This thesis covers a time region
from January 1st, 2015, to June 1st, 2021, except for the fishing industry in Case Study 2,
where the upper boundary is January 1st, 2020. The boundaries were selected according to
the temporal coverage of the data records collected. Although the ASTD AIS data cover
vessel tra�c from 2013 until the present, this thesis is focused on the records from 2015 and
above due to fewer AIS ground stations and satellites in the early years as well as the new
AIS requirements taking place from 2014, as stated in Section 2.3.3. The upper time limit
was restricted by the SST and SIC data from Copernicus. However, the temporal coverage of
the NMDC fish catch data further restricted the upper boundary for fishing vessel density
prediction. Hence, Tfishing di�ers from the rest.
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Figure 4.1: Spatial boundaries of the target area. Restricted by longitudes 20¶ and 30¶ and
latitudes 71¶ and 81¶

4.1.3 Geographical boundaries

The spatial area selected is a region in the Barents Sea extending from the northern coast of
Norway to above the Svalbard islands, more specifically defined by the longitudes 20¶ and
30¶ and latitudes 71¶ and 81¶ as seen in Figure 4.1. In order to discover environmental and
physical impacts on vessel presence and density, it was desired to choose a spatial area a�ected
by such variations. The Barents Sea was considered a suitable area according to the climatic
changes caused by the polar front and the various industries operating in the region. The
fishing and tourism industries are well represented due to high fish productivity and cruise
o�ers to Svalbard to the northwest and Franz Josef Land to the northeast. Moreover, the
Barents Sea is exposed to cargo shipping activities as the NSR passes through the region.

Due to time processing issues and computer memory errors caused by the vast amounts of data
from the whole Barents Sea region, there was a need for further spatial reduction. To include
the climatic variations separated by the polar front, tourism associated with Svalbard and
Franz Josef, as well as shipping activities related to the passage close to the Norwegian coast,
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it was decided to perform a longitudinal reduction, resulting in the final spatial boundaries as
given.

4.2 Data processing

The methodology in this thesis relies on real-world information from multiple sources, measured
by sensors and satellites. Geographical and temporal gaps and erroneous samples most certainly
hide within such large volumes of data. Hence, a thorough EDA was conducted in order to gain
insight into the data and discover potential irregularities. According to this analysis, the data
were subject to several processing steps to increase prediction capabilities, reduce unnecessary
information and facilitate data management and applicability. The following section explains
the actions applied to obtain the proposed training data set, which are justified by a selection
of relevant plots from the EDA. Additional outcomes from the analysis are further attached
in Appendix B.

4.2.1 Data allocation and size reduction

As elaborated in Chapter 3, the data are provided in di�erent data formats from, in total,
five sources. Monthly AIS streams, SST, and SIC data were downloaded individually from
PAME’s and Copernicus’ FTP servers. Yearly fish catch data, distance data, and bathymetry
data by a 400 meters grid resolution were gathered directly from their respective web pages.
The IBCAO 400-meter grid spacing has a favorable file size and the highest resolution among
all data sources. Hence, it was chosen over the even higher 200-meter grid spacing alternative.
Both SST, SIC, and bathymetry data are provided in NetCDF formats and were converted by
the netCDF4 (2015) library to CSV files to coincide with the other data sources. The CSV
format was preferred due to its compatibility with the Python libraries for data analysis and
ML modeling. Further, the data files from each source were restricted to only cover measures
within the spatial boundaries.

As recommended by PAME (2021d), all vessel signals with less than ten positions per month
were filtered out from each data file. This ensured exclusion of signals most likely transmitted
from outside the Arctic area yet randomly picked up by satellites. The records from outside the
spatial boundaries were removed from each monthly data file before the data were concatenated
to a final CSV file covering all months within the selected period from Section 4.1.2. As a
result, the initial file size of all AIS samples was reduced from 263 GB to 7 GB, and a final
CSV file of approximately 29 million records.
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Thesis category ASTD category

Fishing vessels Fishing vessels

Passenger ships Passenger ships
Cruise ships

Cargo ships General cargo ships
Refrigerated cargo ships
Ro-Ro cargo ships
Container ships
Bulk carriers
Gas tankers
Chemical tankers
Oil product tankers
Crude oil tankers

Table 4.2: Aggregation of ASTD categories

As stated in Chapter 3, the ASTD Level 3 data distinguish ship types according to 13 ASTD
categories. However, Case Study 2 focuses on three main vessel types, namely fishing vessels,
cargo ships, and passenger ships. Hence, a further aggregation of the 13 ship types was
conducted, as presented in Table 4.2. The division was based on the overall objectives of
the three main ship types, where all ship types within cargo ships were considered as related
to sea freight. The final "Other activities" ASTD category was not included within any of
the main categories as it covers over 20 di�erent vessel types of di�erent behavior, including
mooring buoys, yachts, sailing vessels, research vessels, and others.

4.2.2 Gridding

The individual data sources provide di�erent information corresponding to features important
for target prediction. Whereas all sources include a pair of two-dimensional spatial coordinates,
the AIS streams, the fish catch data, and the SIC and SST measures have an additional
temporal dimension. These three dimensions constituted the common key variables for joining
the multiple sources into one composite data set. However, as stated in Chapter 3, the spatial
and temporal values have di�erent resolutions and granularity, respectively. Hence, it was
necessary to assign the records into grids to enable data merging from the di�erent sources.
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Gridding is the procedure of interpolating data samples onto a regular grid, in this case
by three dimensions, as both space and time are considered. Each grid cell, or data pixel,
corresponds to a value associated with a time frame and region on the surface of earth (Davis
and Sampson 1986). When several data samples fall within the same grid cell, a mathematical
function will calculate the associated grid cell value, such as the mean, the maximum, or
the minimum of the belonging values. Hence, the level of detail represented by the grids is
dependent on the cell size, i.e., the spatial and temporal resolution.

In order to calculate vessel densities by unique ship count, it was necessary to separate the
vessels from each other. However, the ASTD Level 3 data does not provide the identifying
MMSI numbers but an alternative ship-id unique to each month. This means that each
ship-id within a specific month corresponds to one vessel only, but AIS transmissions between
months may share the same id although they originate from di�erent vessels. As such, the
temporal resolution was defined as a monthly time-frequency according to the ship-ids validity.
The choice of spatial resolution, on the other hand, was determined by a trade-o� between
being small enough to capture necessary data details but large enough to prevent issues
related to computer storage and execution time. A trial-and-error approach was conducted by
testing several spatial cell sizes, of which a 15kmx15km resolution yielded the most acceptable
precision and time complexity.

The regular spatial grid was created by dividing the area restricted by the geographical
boundaries into equal squares of the predefined cell size. Each pixel was assigned a unique
grid index and an individual pair of coordinates, represented by the coordinates of the cell’s
center. The bathymetry data were used to neglect grid cells located on land, as all bathymetry
values below or equal to zero correspond to spatial locations at sea. As such, land-based
measures and potential erroneous AIS messages from land could be tracked by the data
points not belonging to any grid cell. However, in contrast to the other data sources, the
original bathymetry data are given in meters by the Polar Stereographic projection. Hence,
the data were transformed to the WGS84 projection using PyProj (2022), as illustrated
in Figure 4.2. Then, all bathymetry values above zero were rejected and used to remove
the corresponding land-based grid cells. The resulting spatial grid data were stored as a
two-dimensional DataFrame, which is a tabular data structure supported by the Pandas
library (McKinney 2010), with a total of 21486 spatial grid cells located at sea. When paired
with the temporal dimension of months within the chosen period, the total number of grids in
three dimensions became 1654422.
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(a) Meters by Polar Stereographic projection (b) WGS84 coordinate system with reference code
EPSG4326

Figure 4.2: Before and after geographical transformation of IBCAO data. The transformation
was performed before further spatial restriction by the selected boundaries within the Barents
Sea

4.2.3 Irrelevance and noise

The created regular grid was used to map the samples from the data sets to their belonging
grid index. As such, AIS messages, SST and SIC measures, and distance data on land were
removed by extracting the samples not associated with any grid index. This procedure is
illustrated by the distance data in Figure 4.3 where the samples located at the Svalbard island,
in the upper left corner, were removed. However, the islands at latitude 28¶ and longitude
77¶ were not removed because they were too small according to the created grid resolution,
meaning that the grid cells covering the islands involve bathymetry values both above and
below the sea surface.

746700 duplicates were discovered among the AIS records. As further elaborated in Section
2.6.1, the duplicates would provide no additional valuable information for target prediction
and were therefore removed. In addition, it was desired to investigate whether there were cases
of di�erent vessels within the same month having similar ids. This was done by extracting a
subset from the AIS data, which included the static features only, i.e., flagname, ice class,
category, and size group, and inspecting whether similar ids within a month di�ered by these
static features. However, no such instances were identified, which justifies the ASTD data’s
documented quality.
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Figure 4.3: Removal of land-based positions from distance data by grid mapping. The
background map of the grid in the middle corresponds to the ocean depths which were used
for removal of grid cells positioned on land

4.2.4 Missing values

Both the SST and SIC data involve several NaN values, as illustrated by space in Figure
4.4 which covers the entire Barents Sea region. Whereas the plots show that the clusters
of non-recorded sea ice values are restricted to land, which is reasonable, the sea surface
temperatures are spread over the whole region. Therefore, it was assumed that the missing
SIC values are MNAR while the missing SST are MCAR. Consequently, many MNAR values
were neglected when the data samples were mapped to the spatial grids, and land-based
records were removed. However, there remained temporal gaps by dates in both measures.
The 21486 grid cells combined with 2342 dates within the selected months from 2015 to 2021
constitute 2342 · 21486 = 50320212 three-dimensional combinations. By comparing these
combinations with the corresponding combinations of existing measures in the data, it was
detected that a total of 19407615 SIC values and 20038560 SST values were missing. The
missing values were handled by spatial and temporal interpolation, represented by grid cells
and dates, respectively, where a linear relationship was assumed for small changes in time
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(a) Missing SIC values by space (b) Missing SST values by space

Figure 4.4: Spatial plots of missing sea surface temperature and sea ice measures. NaN values
within the whole time frame are included, which, altogether, cover the entire area by SST

and space. A multidimensional piecewise interpolation package from Virtanen et al. (2020)
was applied, which creates a reference object, i.e., a convex hull, by the existing values for
triangulation of the missing values. However, some of the requested interpolation points
remained outside the three-dimensional convex hull and were handled by the nearest neighbor
technique. The nearest neighbor returns the closest value to the point of interpolation in
time and space, hence was considered a suitable approach as temperature and ice extent are
expected to have minor local variations.

The NMDC fish catch data have a coarser distribution both spatially and temporally compared
to the other data sources. This is because the fish catches are measured manually instead
of continuously tracked by satellites or sensors. As illustrated by Figure 4.5a, the fish catch
data resolution of 35nm corresponds to 64.82km. Hence, multiple cells of missing fish catch
measures were created when the data were assigned to the spatial grids. However, as the fish
catch resolution corresponds to the distributions of trawl stations, it is reasonable to assume
that the missing cell values do not refer to a lack of catch. Instead, they correspond to the
sources of the final fish catches measured by their nearest station. Consequently, the missing
cell values were handled by interpolation by the same approach described above, resulting in
the spatial catch distribution as given by Figure 4.5b.

Figure 4.6a shows that the ASTD data su�er from high ratios of missing vessel characteristic
values, especially within the iceclass attribute. However, according to the objective of this
thesis and the target values defined as such, the interior features of the ASTD data were not
considered meaningful predictors. This is because they are provided along with the vessel’s
AIS streams, hence are unknown unless the vessel and its location are identified. Consequently,
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(a) Original spatial dis-
tribution. The blue
background area corre-
sponds to the sea

(b) Spatial distribution after
interpolation

Figure 4.5: Before and after interpolation of the NMDC fish catcg data

their ratios of missing values were irrelevant for the final composition of the ML data set. On
the other hand, it was necessary to track any discrepancies in the astd_cat attribute, as the
training data sets of Case Study 2 are based on the ASTD Level 3 category. In fact, it was
identified only one single vessel categorized by NaN. The AIS signals transmitted from this
vessel were plotted and resembled a typical cargo ship traversal through the NSR. The plot
is not presented in this report according to vessel identity confidentiality. In addition, the
vessel’s value of sizegroup_gt yields "10000-24900 GT", which is only represented among the
other labels categorized as cargo ships except for a few cruise ships. Hence, it is reasonable to
assume that the NaN categorized vessel corresponds to a type of cargo ship, and the value
was thereby manually replaced by this category.
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(a) All AIS records (b) Records within "Unknown" category

Figure 4.6: Missing value ratios of static ASTD values

In addition to the NaN-categorized vessel, it was discovered from the EDA that 5772041 AIS
records, transmitted from 4729 unique vessels, are categorized as "Unknown" by the PAME
group. Figure 4.6b also proves that most of the static features describing vessel characteristics
within the "Unknown" category are missing. In fact, all missing values of sizegroup_gt within
the AIS streams are related to this category. Moreover, Figure 4.7 illustrates that there is no
apparent connection between the overall movement patterns of the "Unknown" vessels. This
observation substantiates the assumption that the "Unknown" category is randomly missing,
i.e., it does not belong to one specific type of vessel. However, classifying the "Unknown"
labels to an industry based on their ship characteristic features would have caused erroneous
assumptions and induced a biased model due to their respective high ratios of missing values.
One potential solution involves applying more advanced ML approaches, such as deep learning,
to distinguish the vessels by their spatial behavior. However, such applications go beyond the
scope of this thesis. Consequently, the "Unknown" vessels were excluded entirely from Case
Study 2 but remained part of the training data for Case Study 1 as this classification task is
irrespective of type.

4.2.5 Feature transformations

Similar length units: Values of bathymetry, distance data, and towing distance are
represented by length units. However, these metrics are expressed by meters, kilometers, and
nautical miles, respectively. In order for the ML models to better understand the relationship
between the distances, the features were transformed into kilometer distances. In addition, the
bathymetry values were converted to positive values to better interpret potential correlations
with the prediction target. Similarly, the SST values were transformed from Kelvin to Celsius.
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Figure 4.7: Trajectories from "Unknown" categorized vessels year 2017 (left) and 2020 (right).
The years are randomly selected for illustration. The blue background area corresponds to
the sea

Biomass per distance: The fish catch data cover biomass from 84 di�erent species,
represented by the individual columns. However, the biomass per specie varies significantly
according to the specie’s rarity. In addition, having many input features increases the data
dimensionality, causing the predictive modeling task to become more challenging (Goodfellow,
Bengio, and Courville 2016). Ultimately, it is reasonable to assume that only the commercial
species constitute meaningful predictors for fishing activities. Based on these considerations,
it was determined to subset the fish catch data to commercial species only and extract a
new feature as the aggregated sum of the total commercial biomass. Table 4.3 presents the
commercial species identified in the data according to ICES (2022) and Shevelev and Gjøsæter
(1999). The catches of the corresponding subset data were standardized by their respective
towing distance in kilometers and aggregated to a final biomass feature in kilograms per
kilometer towed.
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Common name Scientific name

Arctic skate Amblyraja hyperborea
Arctic cod Boreogadus saida

Atlantic wol�sh Anarhichas lupus
Beaked redfish Sebastes mentella

Capelin Mallotus villosus
Cod Gadus morhua

Golden redfish Sebastes norvegicus
Greenland halibut Reinhardtius hippoglossoides

Haddock Melanogrammus aeglefinus
Herring Clupea harengus

Leopardfish Anarhichas minor
Long rough dab Hippoglossoides platessoides

Lumpfish Cyclopterus lumpus
Northern wol�sh Anarhichas denticulatus

Norway redfish Sebastes viviparus
Saithe Pollachius virens

Spinytail skate Bathyraja spinicauda
Thorny skate (starry ray) Amblyraja radiata

Table 4.3: Commercial species extracted from NMDC data

Cyclic time dimension: The temporal dimension of the data is represented by categorical
time encoding through the year and month attributes. Whereas the years constantly increase
from 2015 to 2021, the months occur in cycles. However, this natural cyclic time behavior is
not apparent to the ML model. When the months are encoded as integers ranging from 1
(January) to 12 (December), there are discontinuities in the feature distribution at year-end
due to the sudden reset point, visualized in Figure 4.8a. Hence, the cyclic behavior was
encoded explicitly so that the model could understand the connection between January and
December.

xsin = sin ( 2fix

max(x))

xcos = cos ( 2fix

max(x))
(4.1)

As expressed in 4.1, the cyclic encoding was performed by transforming the months, x œ [1, 12],
into two dimensions using the sine and cosine periodic functions. Both dimensions were
necessary, as the periodic symmetry from only one dimension would cause two records to have
the same transformed value. Consequently, the cyclic month pattern presented in Figure 4.8b
was obtained.
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(a) Original evolution of month values with jump discontinuities (b) Month values in two dimen-
sions

Figure 4.8: Cyclic transformation of month

4.2.6 Data aggregation and target extraction

After the individual data files were processed and mapped to grids, they were ready to be
combined into complete ML training sets. The common key variables used for data merging
were year, month and grid_index. Since the original data files are represented by di�erent
time and space resolutions, it was necessary to down-sample the data by the key variables to
enable proper merging. In addition, the classification targets presented in Section 4.1.1 were
not expressed explicitly by the AIS streams and had to be quantified through data aggregation.
Hence, the data from each source were grouped by the grid_index attribute and the temporal
attributes if these existed. Then, the numerical features, i.e., bathymetry, distance, SST, SIC,
and biomass, were aggregated by the mean values of their respective samples associated with
a given combination of key variables. On the other hand, vessel density, denoted as unique
ship count, was extracted from the AIS streams by counting the number of unique vessels
operating within each year, month and grid_index. The final number of aggregated records
according to the key attributes represented in each data set are presented in Table 4.4. Since
the upper boundary of the period is May 2021, the last five months are added separately for
the calculations on the Copernicus data sets. On the other side, the number of total records
within the AIS data is not similarly calculated by the number of grids and months since vessel
activity is neither present in all 21486 grid cells nor in all possible combinations of time and
space. This also explains why the number of unique grid_index values in the AIS data di�ers
from the other sources.
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Data source

(feature)

#years #months #grid cells #total records

IBCAO None None 21486 21486

(bathymetry)
NASA None None 21486 21486

(distance)
NMDC 5 None 21486 5 · 21486

(biomass) = 107430

Copernicus 7 12 21486 (6 · 12 + 1 · 5) · 21486
(SIC & SST) = 1654422

ASTD 7 12 20030 463162

(unique ship count)

Table 4.4: Number of records ("#") within each data set as a result of unique years, months
and grid cells

Before the individual data sets were merged, the AIS streams of all vessel types were subdivided
into four di�erent representations according to the case studies: whereas all processed AIS
records remained for Case Study 1, three additional subsets were extracted according to the
fishing, cargo shipping, and tourism industries in Case Study 2. Then, each of the four AIS
data sets was separately combined with the other data sources as follows:

Case study 1

1. SST and SIC data were merged together by year, month and grid_index.

2. ASTD data were merged into the composite SST and SIC data by year,
month and grid_index.

3. Bathymetry and distance data were individually merged into the composite
SST, SIC and ASTD data by grid_index.

Case study 2

1. SST and SIC data were individually merged into the ASTD data by year,
month and grid_index.

2. Bathymetry and distance data were individually merged into the composite
ASTD, SST and SIC data by grid_index.

3. Fishing vessels only: biomass data were merged into the composite ASTD,
SST, SIC, bathymetry and distance data by year and grid_index.
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Figure 4.9: Target distribution of Case study 1. The percentages correspond to the respective
class’ proportion of records within the data set

Since the SST and SIC data cover the entire spatial region and time, these were first combined
according to Case Study 1. When the AIS records were joined into this data set, several
combinations of values of month and grid_index remained without any unique ship count
value, i.e., NaNs, meaning activity absence. Correspondingly, the samples that resulted with
existing unique ship count values were related to activity presence. By replacing the NaNs
and unique ship count values with 0 and 1, respectively, the target values of Case Study 1
were obtained, yielding the distribution as given in Figure 4.9. In total, the data set for Case
Study 1 contains 16554422 instances, of which 463162 are presence values. According to Table
4.4, the former corresponds to the total number of values in the spatiotemporal grid, while
the latter corresponds to the aggregated AIS records.

In Case study 2, on the other hand, the aim is to target the amount of activity given
activity presence and type of industry. Since the AIS records cover all spatial and temporal
combinations of activity presence, the other data sources were merged into the AIS data.
Hence, the unique ship count value has a minimum of at least one unique vessel. The upper
level of Figure and 4.10 shows the number of data records of each unique ship count value for
Case Study 2. The plots are color-coded according to industry. The data set of fishing vessels
contains the most instances of 391567 records, followed by cargo ships and passenger ships of
140107 and 28881 records each, respectively. The distributions evolve rather similarly and
contain discrete integers that are lower bounded by one vessel by month and grid cell and
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(a) Fishing vessels (b) Cargo ships (c) Passenger vessels

(d) Fishing vessels (e) Cargo ships (f) Passenger vessels

Figure 4.10: Original distributions of unique ship count (a, b, c) and binned classes of unique
ship count (d, e, f). The percentages correspond to the respective class’ proportion of records
within the data set

upper bounded by 37, 71, and 95 unique ships for passenger ships, fishing vessels, and cargo
ships, respectively. However, each distribution involves several gaps within the value range.
Hence, the initial target distributions may confuse any regression model due to expectations
of predicting continuous quantities within an infinite set of values. Consequently, it was
decided to transform the unique ship count values into categorical bins of three target classes
representing di�erent levels of activity density. This would create a more confident prediction
and remove noise caused by discontinuities in the data.

The bin edges were defined based on the distributions seen in the upper level of Figure 4.10
and are presented below. Due to the significant dominance of one unique vessel by month and
grid cell, followed by a rapid decrease toward ten unique vessels, as well as rare occurrences of
unique ship counts above 30 within all industries, the division was conducted as such. The
classes in ascending order refer to low, medium, and high levels of activity, respectively. The
lower level of Figure 4.10 shows the resulting binned distributions.

• Class 0 (low) corresponds to records where unique_ship_count = 1

• Class 1 (medium) corresponds to records where unique_ship_count œ [2, 10]

• Class 2 (high) corresponds to records where unique_ship_count > 10
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4.2.7 Data imbalance

Real-world data commonly exhibit uneven class distributions, and the AIS streams used in
this thesis are no exception. The ship movements di�er in space and time, causing the class
imbalances as visualized in Figure 4.9 and 4.10 for Case Study 1 and 2, respectively. Whereas
Case Study 1 and cargo ships within Case Study 2 have fairly mild degrees of imbalance,
fishing vessels and passenger ships are significantly a�ected by a 5% and 6% proportion of
their respective minority classes (Class 2). As described in Section 2.8.2, it is preferable to
resolve the imbalance problem prior to ML modeling as an uneven target distribution may
confuse the model toward erroneous predictions of the majority class. Hence, improved ratios
of the target classes were created using the SMOTETomek sampling method provided by
the Python library Imblearn (Lemaître, Nogueira, and Aridas 2017). The SMOTETomek
technique was selected based on the trade-o� between achieving an evenly distributed target
while neither overexposing the data to synthetically generated samples nor removing excessive
amounts of valuable information.

(a) Oversampling by SMOTE (111%
increase in samples)

(b) Undersampling by TomekLinks
(14% decrease in samples)

(c) Hybrid sampling by SMOTE-
Tomek (47% increase in samples)

Figure 4.11: Testing of resampling methods on passenger vessel data. The percentages
correspond to the respective class’ proportion of records within the data set

The data were first exposed for oversampling by SMOTE, which provided even target distri-
butions, yet, significant data size increases. This is illustrated by Figure 4.11a, which shows
a 111% increase in passenger vessel records, being the most unevenly distributed data set.
On the other hand, undersampling by TomekLinks reduced the data by 14%. However, it
did not significantly reduce the majority class compared to the minority classes. Finally, the
hybrid method SMOTETomek proved the most favorable distribution. Figure 4.11c shows the
passenger ship records resampled by SMOTETomek. The increase of records by 47% mainly
a�ected the minority class, yet, the natural relationship between the classes was maintained.
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4.2.8 Overview of data pre-processing

The steps described in this Chapter for developing the ML prediction data sets for each case
study are summarized in Figure 4.12. All four data sets are based on the same predictors,
but the prediction targets di�er. The fishing vessels data include biomass as an additional
predictor, which limits the upper time boundary to January 1st 2020. The composition of
predictors and target values used for the respective ML tasks are provided in Table 4.5.

Figure 4.12: Flowchart of the data pre-processing phase. The stippled line in the merging
step refers to the inclusion of NMDC data for the fishing industry in Case Study 2

4.3 Model development

After the data were investigated, processed, and combined, the final composite data sets were
ready for individual model learning. This section explains how the second central part of the
ML workflow, namely the ML model development, was performed in this thesis. This includes
selecting suitable learning algorithms, exposing the algorithms for training data, testing their
learning capabilities, and evaluating them. Similar approaches were applied for both case
studies; hence, the notations "data" or "data sets" refer to all data irrespective of case study,
unless stated otherwise.
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Predictor attribute Type Description

year int Year within the time period of 2015 to 2021
(upper bounded by 2019 for fishing vessels)

month_sin float Sine transformed month value œ [≠1, 1]

month_cos float Cosine transformed month value œ [≠1, 1]

latitude float Positional latitude coordinate of a grid cell’s
center (WGS84)

longitude float Positional longitude coordinate of a grid
cell’s center (WGS84)

analysed_st float SST in degrees Celsius

sea_ice_fraction float SIC in percentage œ [0, 1]

bathymetry float Depth of the ocean floors in km, lower
bounded by 0

dist_to_shore float Distance to nearest coastline in km, lower
bounded by 0

biomass float Biomass of commercial species in kg/towed
(fishing vessels only) km

Target attribute

Case study 1

unique_ship_count_cat
int Class 0 and 1 yield absence and presence

of activity, respectively
Case study 2

unique_ship_count
int Class 0, 1 and 2 yield low, medium and

high levels of activity, respectively

Table 4.5: Final composition of predictors and target for ML modelling

4.3.1 Model selection

Reputations and previous documented experiences from the literature where ML problems of
similar predictors are investigated were used as a starting point for selecting suitable supervised
models for the given classification tasks. As presented in Section 2.7, many similar approaches
are being applied in various contexts of AIS-based ML prediction. These include ANN, SVM,
Decision Tree, Extreme Gradient Boosting (XGBoost), and RF, which additionally have
proven to be among the most commonly used within several domains (Cracknell and Reading
2014; M. Liu, M. Wang, et al. 2013). XGBoost is a Gradient Boosted algorithm developed by
Chen and Guestrin (2016), which scales well to extensive data as it creates branches in parallel
while constructing each sequential tree. Compared to general Gradient Boosted methods,
it uses more advanced computations for optimizing the model, such as the second-order
gradients of the sequential residual for error minimization. In addition, the algorithm includes
a regularization term which increases model simplicity and prevents overfitting (Sarker 2021).
In order to detect which of the algorithms to use, a systematic comparison was performed,
which is summarized in Table 4.6.
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ML model Strengths Weaknesses

ANN
• Works well with large data sets • Complex to interpret

(many records) • Sensitive to hyperparameters
• Supports complex, untructered • Computationally demanding

non-linear data • Learns slowly

SVM
• Works well with high-dimensional data • Sensitive to hyperparameters

(many features) • Ine�cient on large data sets
• Supports non-linear data • Memory intensive

XGBoost
• Works well with large data sets • Sensitive to hyperparameters

(many records) • Sensitive to outliers
• Robust to overfitting
• Robust to irrelevant features

RF

• Works well with high-dimensional data • Complex to interpret
(many features) • Computationally demanding

• Robust to overfitting • Learns slowly
• Robust to noise and outliers
• Stable against hyperparameters

Decision Tree
• Works well with large data sets • Prone to overfitting

(many records) • Learns slowly
• Highly interpretable • Sensitive to changes in the data

Table 4.6: Comparison of ML models by strengths and weaknesses

The data sets for model training consist of several hundred thousand records but have a
low-dimensional feature space. In addition, the targets su�er the imbalance problem, being
skewed towards the lower classes. Based on these considerations and the outcomes from Table
4.6, the SVM and Decision Tree algorithms were rejected as the former handles dimensionality
better than large data sizes, and the latter may easily overfit and prefer the majority class.
RF and XGBoost were considered better candidates as these improve the robustness of one
decision tree by generating multiple trees. ANN was also evaluated as a good candidate based
on its ability to handle large data files of complex and potentially noisy data (Mitchell 1997).
Conversely, ANNs require feature scaling and high processing power; hence, the ensemble
methods were considered more feasible according to available data and hardware sources.
Moreover, XGBoost has proven to outperform ANN in multiple winning solutions of data
mining competitions (Chen and Guestrin 2016).

In the end, it was decided to explore both ensemble methods, RF and XGBoost, for further
model training. A major benefit of the tree-based models is that they work well with
uneven target distributions and non-linear data. Both models were selected as they share
the fundamental concept of generating multiple decision trees for prediction. However, their
strengths and weaknesses may o�set each other (Sarker 2021). Whereas RF is stable to
changes in hyperparameters, easy to tune, and di�cult to overfit, the performance of XGBoost
may fluctuate according to the choice of hyperparameters, and is more sensitive to overfitting.
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On the other hand, XGBoost has the advantage of detecting and handling prediction errors
during learning and often stands out in model performance (Chen and Guestrin 2016).

4.3.2 Model training and hyperparameter optimization

The ensemble classifiers were built by using the estimators RandomForestClassifier from the
Scikit-Learn library (Pedregosa et al. 2011) and XGBoostClassifier from the XGBoost library
(Chen and Guestrin 2016) which is compatible with Scikit-learn Application Programming
Interface (API). First, the pre-processed data were split into a test set and a training set
by a 20%/80% ratio, respectively. The split was performed by a stratified approach, which
preserves a similar proportion of samples within each class as the original data set. Hence, a
representative test set for evaluation was obtained according to the class distribution of the
training set.

As explained in section 2.5 the test set yields an unbiased evaluation of model performance
and should therefore not be exposed to any modifications after the split is done. In order to
obtain resampling by SMOTETomek on the training data only, a pipeline for each classifier
was constructed, which applies the resampling transformation and the learning process to the
training data in sequence. Before individually tuning the classifiers’ hyperparameters, each
pipeline was trained and validated by cross-validation and compared against the validation
of a corresponding pipeline without the resampling step. Whereas the pipelines related to
fishing vessels and passenger ships from Case Study 2 indicated better performance with
SMOTETomek transformation, Cargo ships and Case Study 1 did not improve according to
their milder degrees of uneven distributions. Consequently, the transformation step was not
applied within these models, and the original records were preserved.

Both RandomForestClassifier and XGBClassifier are provided with long lists of default
configured hyperparameters. These are not guaranteed optimal for the given problem and
should be tuned explicitly. However, the absolute best hyperparameters are impossible to
determine in a decent time. The process requires a trial-error-based approach that can emerge
extensively with all combinations within large sets. Therefore, it is common to only tune the
hyperparameters considered as having the greatest impact on the learning process. According
to Pedregosa et al. (2011) and Chen and Guestrin (2016) the most important hyperparameters
and their respective impact on the classifiers are presented in Table 4.7.

Hyperparameter tuning was performed using the Scikit-library functions Kfold for cross-
validation and the search spaces RandomizedSearchCV and GridSearchCV. The former
method randomly selects samples from a wide grid of predefined hyperparameter values
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Hyperparameter Description

RandomForestClassifier
n_estimators: Number of trees in the forest. The default is 100
{100, 200, 300, 400, 500, 600} More trees improve learning but increase time

complexity
max_depth: Maximum number of levels in each decision tree.
{5, 12, 19, 26, 33, 40} The default is "None", i.e., splitting will continue

until all data belong to one class. Deeper trees are
prone to overfit

min_samples_split: Min. number of samples to be considered when
{2, 5, 8} splitting an internal node. The default is 2. Small

values may lead to overfitting
min_samples_leaf: Minimum number of samples allowed in a leaf
{1, 2, 4} node. The default is 1. Small values may lead to

overfitting
max_features: Maximum number of features considered when
{2, 3, "auto"} performing a split. The default is equal to the

total number of features in the data ("auto"). High
values may lead to overfitting

XGBClassifier
n_estimators: Number of trees in the tree growth. The default
{100, 200, 300, 400, 500, 600} is 100. More trees improve learning but increase

time complexity
max_depth: Maximum number of levels in each decision tree.
{5, 8, 11, 14, 17, 20} The default is 6. Deeper trees are prone to overfit
min_child_weight: Minimum sample size threshold for further parti-
{1, 2, 5, 8} tioning. The default is 1. Small values may lead

to overfitting
colsample_bytree: The fraction of features to be considered when
{0.4, 0.7, 1} constructing each tree. The default is 1. Exclu-

sion of features when generating trees can prevent
overfitting.

learning_rate: Weighting factor used in the update of the next
{0.05, 0.1, 0.15, 0.25} boosting step. The default is 0.3. High values may

lead to overfitting
gamma Weighting factor of minimum reduction in the loss
{0.0, 0.15, 0.3} function required to make a further split in the

tree. The default is 0. The larger the value, the
more conservative the model

Table 4.7: The selection of hyperparameters exposed for tuning and their corresponding initial
value ranges
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and performs cross-validation of each combination. The combination that provides the best
model performance from cross-validation is returned as the most optimally tuned choice.
Randomized search does not attempt to try all combinations within the predefined search space
and was therefore considered a suitable approach for identifying initial estimates of optimal
hyperparameters. As presented in the curly brackets in Table 4.7, candidate values of wide
ranges for Randomized search were defined for each hyperparameter. The defaults were used as
a starting point for selecting the values within each range, complemented by recommendations
from the libraries’ documentation and experiences from the ML community platform, Kaggle
(Banarjee 2020; Mohit 2020). Next, the outputs from Randomized search were used to narrow
the search space before Grid search was applied to the narrowed value ranges for further tuning
to the final, optimal configurations. Grid search evaluates all hyperparameter combinations
instead of sampling in a random manner and is therefore computationally more extensive
(Kuhn and Johnson 2019). Three folds of cross-validation were applied in both search spaces
to validate the di�erent combinations. The low number of folds was chosen according to the
execution time required to run the algorithm caused by the large amounts of data in the
search spaces.

The individual outputs from Grid search for each classifier defined the final hyperparameter
values applied. The models were individually trained on the training set with their respective
hyperparameters using the fit method from the Scikit-learn API (Pedregosa et al. 2011).
The XGBoostClassifier supports an early stopping technique that stops the fit function from
training when the loss reduction does not improve for a certain number of iterations. This
number is provided as input for the classifier and may overwrite the value of the n_estimators
hyperparameter if the model performance does not improve. Hence, early stopping ensures
that the model does not overfit due to an unnecessary amount of constructed trees. The
stopping criterion was defined by observing the evolution in loss reduction during model
learning. In all cases, the loss did not reduce further after being stable for ten iterations, and
the stopping criterion was set as such.

4.3.3 Model evaluation

Although the resampling approach increased the presence of the minority classes, the training
data were not fully balanced. As explained in Section 2.8.2, evaluation by the standard
accuracy metric on unevenly distributed data may mislead the actual model performance.
Therefore, several performance metrics were applied to assess the models correctly. As
confusion matrices support evaluating each class irrespective of class proportions, the precision,
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recall, and F1-score were used, in addition to accuracy, as the primary performance metrics
for cross-validation during model training and the final evaluation on the test set.

4.3.4 Overview of model development

Figure 4.13 summarizes the steps described in this chapter for applying the RF and XGBoost
classifiers to the pre-processed data presented in Section 4.2.8.

Figure 4.13: Flowchart of the ML development phase. h and hú refer to default and optimized
hyperparamters, respectively
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Results

The presented case studies aim to demonstrate and validate how to apply supervised ML for
identifying activity patterns in an Arctic area based on surrounding explanatory variables
describing the environment and ecology. This section presents the results from the case studies
and provides the foundation for validating the proposed methodology. The ensemble classifiers’
tuning, learning performance, and predictive capabilities are presented in light of each target
definition.

5.1 Case study 1: Predicting presence or absence of activity

Case Study 1 targets vessel presence and absence in the period from 2015 to May 2021 within
an area of the Barents Sea, spanning from the Norwegian coast above latitude 71¶ to 81¶

and longitude 20¶ to 30¶. Figure 5.1a presents the spatial contrasts between absence (0)
and presence (1) of activity within all years of the period, viewed as black and white points,
respectively. The upper left areas in light grey correspond to the Svalbard islands. The plot
indicates that activity presence stands out in the southern latitudes. Although there are cases
of presence further north, these are dominated by the absence points within the whole time
frame; hence, these cases are not directly visible.

Figure 5.1b shows a heat-map describing the relationship between the features of Case Study 1,
where the target is represented by unique_ship_count_cat. Each pair of features is connected
by their Pearson product-moment coe�cient, representing their linear correlation by a value
between -1 and 1. The higher the absolute covariance value, the more correlated the features
are. The heat map shows that latitude is the target’s most correlated feature by a value of
-0.57, meaning that higher latitudes correspond to less activity. This confirms the southern
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(a) Spatial plot of target dis-
tribution

(b) Heat map of feature correlations

Figure 5.1: Case Study 1 - Target distribution

dominance of activity presence viewed in Figure 5.1a. analysed_st (SST) is the next most
correlated (0.48), followed by sea_ice_fraction (SIC) (-0.36) and bathymetry (0.30). Their
respective values indicate that vessel presence is more likely with higher temperatures and, to
some extent, less sea ice and deeper waters. Whereas dist_to_shore (distance) and seasonal
variations by month show less correlation, yearly changes and activity presence have no
significant relationship.

The internal correlations between the predictors are also presented in Figure 5.1b, of which
the relationships between the SST and SIC features (-0.86) and the bathymetry and distance
features (0.71) stand out the most. The former yields that higher temperatures reduce the
ice concentration, whereas the latter yields that the distance to the nearest coast increases
with the underwater depth. According to the earth’s natural physics, these deductions are
reasonable, which justifies the predictors’ credibility. Moreover, both SST and SIC have higher
seasonal correlations by month than year. Their coe�cients by year of -0.18 and 0.17 are
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rather small. However, they indicate that the sea surface temperature decreases and the sea
ice increases by year.

5.1.1 Hyperparameter optimization

Table 5.1 illustrates the outcome of sequentially applying RandomizedSearchCV and Grid-
SearchCV to each classifier for hyperparameter optimization. The classifiers were validated
before and after applying the generated hyperparameters from each search space. Hence, the
percentages yield the corresponding improvement in validation score from replacing the default
hyperparameters with the tuned values. The models were validated by balanced accuracy,
which yields the average evaluation of recall obtained on each class (Pedregosa et al. 2011).

Hyperparameter tuning by the search spaces improved the validation scores of both models,
especially XGBoost, where the final optimization increased the validated accuracy by 2.32%.
However, the e�ect of further narrowing the search space and applying GridSearchCV did not
improve the RF performance and only slightly increased the validated accuracy of XGBoost.

RandomForestClassifier XGBClassifier
RandomSearchCV 0.30% 2.12%
GridSearchCV 0.27% 2.32%

Final n_estimators: 200 n_estimators: 250
hyperparameters max_depth: 40 max_depth: 25

min_samples_split: 2 min_child_weight: 5
min_samples_leaf: 2 colsample_bytree: 1
max_features: 3 learning_rate: 0.05

gamma: 0.1
Table 5.1: Case Study 1 - Hyperparameter tuning: improvement in balanced accuracy by
replacing the default hyperparameter values with tuned values from each search space

The tuning process proved that Randomized search tends to choose high values of n_estimators
and max_depth. For example, it generated 500 trees (estimators) and "None" depth for the
RF classifier. A high number of trees improves performance but may slow down the training
process. Similarly, deeper trees capture more information but are prone to overfitting due to
increased specificity on particular samples (Mitchell 1997). Hence, to increase model simplicity,
the value ranges for n_estimators and max_depth were manually reduced before applying Grid
search, despite the high outputs from Randomized search. The finally optimized XGBoost
classifier resulted to be more risk-averse than RF according to the small maximum depth,
the small learning rate, and the high gamma value. Additionally, it required a high sample
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threshold for further partitioning, while RF had a low number of minimum leaf and split
samples.

5.1.2 Learning curves

Insight into the classifiers’ learning performance was obtained by continuously cross-validating
the training process. The learning curves in Figure 5.2 express this performance by plots
of the evaluation metrics on the y-axis along with the number of generated trees on the
x-axis. The RF and XGBoost classifiers in Figure 5.2a and 5.2b, respectively, are evaluated
by classification error, which yields the percentage of misclassified labels in the data. The
remaining plot in Figure 5.2c shows XGBoost evaluated by logarithmic loss.

(a) RFClassifier: (balanced) classifi-
cation error

(b) XGBClassifier: classification er-
ror

(c) XGBClassifier: logarithmic loss

Figure 5.2: Case Study 1 - Learning curves by number of generated trees

The blue and orange curves in Figure 5.2 correspond to the train and validation learning
curves, respectively. The former yields model evaluation on the training data and expresses
how well the model "learns" the given observations. The latter corresponds to model evaluation
on a hold-out validation set from three-fold cross-validation and describes how well the model
"generalizes" to new data. As seen, the evaluation metrics score better on the training data,
as these observations are familiar to the model. Both curves within each plot evolve similarly
and decrease with time towards relatively small error values meaning that the models improve
with experience. However, there is a notable gap between the curves. Enhanced learning stops
when the curves reach their respective plateaus. Whereas the error curves converge quite fast
at around 20 decision trees, the logarithmic loss decreases toward 100 decision trees.
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5.1.3 Prediction performance

20% of the initial data, equivalent to 330885 records, was used as a test set for a final
evaluation of the models’ prediction performances. Both classifiers performed identically by
the evaluation metrics provided for each class in Table 5.3. The class of most support, i.e.,
absence, obtained high values of both precision and recall, summarized by an F1-score of 93%.
This means that the models managed to predict almost all absence labels correctly as well as
captured most of the absence labels that actually are absence. On the other side, prediction
of presence obtained a slightly better precision score than recall, and an F1-score of 80%,
which indicates that the models were better at correctly predicting presence than identifying
all actual presence cases in the data.

Precision Recall F1-score Support
Class 0 (absence) 0.91 0.94 0.93 238252

Class 1 (presence) 0.84 0.77 0.80 92633

average 0.88 0.86 0.87
accuracy 0.90

Table 5.3: Case Study 1 - Classification report of prediction metrics (similar results from both
classifiers)

The model performance described above can be summarized for each classifier by the confusion
matrices presented in Figure 5.3. The values are normalized by the number of true labels
within each class, meaning that the values of the diagonal correspond to the recall values from
Table 5.3. Although the overall accuracy proves that the models correctly predicted 90% of all
samples, the confusion matrices reveal that 22% of the actual presence values were incorrectly
classified as absence. However, the overall performance given by the F1-score average of 87%
does not di�er significantly from the accuracy.
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(a) RFClassifier (b) XGBClassifier

Figure 5.3: Case Study 1 - Prediction performance

5.1.4 Feature importance

Feature importance refers to which features the ensemble models prefer when generating the
individual decision trees. These features are selected based on their expected contribution
toward model interpretation against new data, given by their information gain or impurity
decrease, as described in Section 2.6.2. The importance is calculated for each decision tree,
and the total value across all trees of the ensemble model yields the final feature importance
(Brownlee 2020).

Figure 5.4 shows the normalized importance values for the RF and XGBoost classifiers.
The plot shows that latitude is the most important feature, followed by analysed_st (SST),
bathymetry, and dist_to_coast (distance). On the other side, longitude, sea_ice_fraction
(SIC), and the time-encoded features are those of less model preference. The order of important
features corresponds well to the target’s coe�cients in absolute values presented in Figure 5.1.
However, the feature importances of RF have a more even distribution than XGBoost, where
latitude and SST stand out significantly compared to the rest.
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(a) RFClassifier (b) XGBClassifier

Figure 5.4: Case Study 1 - Feature importance

5.2 Case study 2: Predicting activity density by industry

This section presents the results from the second case study, which aims to estimate vessel
density by three classification levels within one of the industries: fishing, cargo shipping, and
tourism. The case study considers cases of vessel presence, meaning that the region bounded
by latitudes 71¶ and 81¶ and longitudes 30¶ to 20¶ is further restricted to the spatial grids
where at least one ship is observed. The time frame ranges from 2015 to May 2021, except
for the fishing industry, which is upper bounded by year-end 2019. Whereas fishing vessels
constitute the highest share of AIS messages, the total number of individual Cargo ships is
higher.

5.2.1 Target distribution

Figure 5.5a shows the evolution in the number of all AIS transmissions within the period,
except from 2021, as only half of the year is represented. Figure 5.5b shows a similar
distribution excluding multiple messages from the same vessel. It is observed that the number
of AIS messages drops from 2016 to 2017 before it tends to increase toward 2020. However,
the number of unique ships transmitting the messages does not change significantly from year
to year.

Figure 5.6 shows each industry’s monthly numbers of AIS transmissions. The y-axis’ upper
limit on the individual plots changes by industry; hence, fishing vessels stand out in the
total number of transmissions. Whereas Figure 5.6a and 5.6b match the yearly evolution
expressed in Figure 5.5, the distribution of messages from passenger ships in Figure 5.6c shows
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(a) AIS messages by industry

(b) Number of unique vessels by month

Figure 5.5: Case Study 2 - Yearly distributions of ASTD data by industry

(a) Fishing vessels

(b) Cargo ships

(c) Passenger ships

Figure 5.6: Case Study 2 - Monthly distributions of AIS messages by industry. The red
marks indicate the beginning of each year (January). Note that the ranges of the y-axis di�er
according to industry
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a significant increase from year-end 2018. The plot is distinguished by regular passenger
ships and cruise ships, as defined by the ASTD Level 3 category, and reveals a high seasonal
trend in cruise ship activity. As seen, the summer season of 2020 contains far fewer cruise
ship messages than the rest. In contrast, the seasonal variations in AIS messages among the
smaller passenger ships are less clear.

(a) Fishing vessels (b) Cargo ships (c) Passenger ships

Figure 5.7: Case Study 2 - Spatial distributions of target values. The dark blue background
area corresponds to the sea

Figure 5.7 presents the spatial target class distributions within each industry. Cargo ships
constitute the most obvious distinction in ship density level by space, mainly concentrated
at the lower latitudes where the pattern of the shipping route stands out significantly by
the highest density class (Class 2). Fishing vessels, however, have an arbitrary distribution,
spread over the region. Lastly, the densities of passenger ships resemble straight-line patterns
across the deep sea but tend to stay near the coast. A combined overview of the industries’
mean activity distribution by time and space is provided in Figure 5.8. The plot indicates
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that cargo vessels remain at the lower latitudes, while fishing and tourism activities further
north have a seasonal variation. Moreover, there is a slight increase in tourism activities
during summer at higher latitudes from 2015 to 2018. However, the line plot does not reveal
any overall changes in seasonal variations over time.

Figure 5.8: Case Study 2 - Evolution in mean positional latitudes from AIS records by industry

5.2.2 Hyperparameter tuning

Similar to Case Study 1, hyperparameter tuning proved more valuable for the XGBoost model
than RF. Table 5.5 presents an overview of the results from the tuning process, where the
improvement in balanced accuracy corresponds to the final output from GridSearchCV. The
hyperparameter tuning of RF did not improve the accuracy, of which changes are essentially
negligible. However, the XGBoost classifier improved within all industries. The table shows
that the fishing industry stands out the most, with a 5.96% improvement compared to the
default model. In contrast, the accuracy improvement of the passenger ships classifier is
minor.

It is observed that the classifiers of fishing vessels and cargo ships have the most similar
outputs of finally tuned hyperparameters. The XGBoost classifier of passenger ships preferred
a relatively low number of trees and a small depth, by 50 trees and 15 levels, respectively,
and both classifiers applied all possible features when splitting the trees. In contrast, the
hyperparameters of the fishing and cargo classifiers involved smaller samples of features in each
split, as well as lower learning rates and higher sample size thresholds for further partitioning
with XGBoost.
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RandomForestClassifier XGBClassifier

Fishing Cargo Tourism Fishing Cargo Tourism
Percentage

improvement -0.15% 0.13% -0.11% 5.96% 3% 0.82%

Hyperparameters

n_estimator: 400 400 350 n_estimators: 200 400 50
max_depth: 30 40 25 max_depth: 20 25 15

min_samples_split: 4 3 6 min_child_weight: 8 5 3
max_features: 2 3 "auto" colsample_bytree: 0.8 0.8 1

min_samples_leaf: 2 2 1 learning_rate: 0.05 0.05 0.15
gamma: 0.05 0.0 0.0

Table 5.5: Case Study 2 - Outcome of hyperparameter tuning

5.2.3 Learning curves

The ensemble classifiers’ learning processes within each data set by industry evolved rather
similarly. Subsequently, they performed relatively equivalent, such as in Case Study 1, except
in some of the less supported class predictions where XGBoost outperformed RF by minor
percentages in precision and recall. Therefore, the remaining part of this chapter will focus
on the learning process and prediction performance of the XGBoostClassifier.

The learning curves of Case Study 2 are presented in Figure 5.9, where the y-axis corresponds
to the score of the evaluation metrics along with the number of generated trees on the
x-axis. The plots of the logarithmic loss function by industry in the upper level of the
figure prove that the classifier increases certainty by the number of decision trees generated.
Whereas the validation loss from fishing vessels stabilizes at 0.52, the classifier performs
slightly better against the cargo ships and the passenger ships by values of 0.34 and 0.37,
respectively. Correspondingly, the plots in the lower level of Figure 5.9 prove that cargo ships
and passenger ships outperform fishing vessels by lower classification errors. Furthermore, the
curves representing passenger ships converge faster than the others, at around 50 boosting
rounds, which corresponds well to the output from the hyperparameter tuning. Although the
curves behave stably, similar gaps as observed in Case Study 1 also apply to the industries in
Case Study 2.

5.2.4 Prediction performance

The train-test split resulted in test sets of 61398, 28022, and 5777 records of fishing vessels,
cargo ships, and passenger ships, respectively. Table 5.6 presents each XGBoost classifier’s
performance accuracy, class evaluation metrics, and their individual support. It should be
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(a) Fishing vessels (b) Cargo ships (c) Passenger ships

(d) Fishing vessels (e) Cargo ships (f) Passenger ships

Figure 5.9: Case Study 2 - Learning curves of XGBoost by number of generated trees

noted that the support values correspond to the initial class proportions before resampling my
SMOTETomek, as the test set preserved data originality to obtain a proper evaluation of the
model performance. The values of the table indicate that the classifiers performed promising
and somewhat similarly against cargo and passenger ships with an overall accuracy of around
85%. However, the prediction of fishing vessel class densities obtained the lowest accuracy
and F1-score of 77%.

The recall value in this context corresponds to the proportion of instances within each density
level that the classifier managed to detect, while the precision yields the proportion of correctly
labeled density classes from all predictions made. All classes within the three industries
obtained close precision and recall values which means that the classifier predicted accurately
and detected relevant cases to a similar extent. Consequently, the weighted average of the
two metrics, i.e., the F1-score, did not di�er either. An interesting observation is that the
F1-score yields the best result by the minority class for all industries, of which cargo ships
and passenger ships obtained high scores of 95% and 93%, respectively.
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Accuracy Precision Recall F1-score Support

Fishing vessels

Class 0
0.77

0.76 0.76 0.76 26754
Class 1 0.77 0.78 0.77 31142
Class 2 0.84 0.77 0.80 3502

Cargo ships

Class 0
0.85

0.85 0.86 0.86 12388
Class 1 0.80 0.78 0.79 10103
Class 2 0.96 0.95 0.95 5531

Passenger ships

Class 0
0.84

0.88 0.90 0.89 4057
Class 1 0.68 0.66 0.67 1442
Class 2 0.93 0.94 0.93 278

Table 5.6: Case Study 2 - Classification report of prediction metrics by industry

The confusion matrices in Figure 5.10 provide further visual insight into which density levels
the misclassifications are related to. The matrices indicates that distinguishing between Class
0 (low) and Class 1 (medium) densities was the most challenging for the classifiers. This is
viewed by the high fractions of Class 0 predictions which actually belong to Class 1, and the
corresponding fractions of Class 1 predictions which actually are Class 0. For example, 33%
of the incorrect predictions of Class 0 in Figure 5.10c actually belong to Class 1, meaning
that the classifier struggled with distinguishing these two classes. Conversely, Class 2 (high)
was less misinterpreted than the other classes, except for the fishing vessel classifier, where
23% of the Class 1 predictions were actually Class 2.

(a) Fishing vessels (b) Cargo ships (c) Passenger ships

Figure 5.10: Case Study 2 - Normalized confusion matrices by industry

5.2.5 Feature importance

It is evident from Figure 5.11 that the outstanding feature of importance continues to
be latitude. Additionally, dist_to_coast (distance) to the nearest coast is the second most
important feature within all industries. Hence, the classifiers primarily depended on the spatial
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features for prediction. analysed_st (SST) is approximately equally moderately important
for all industries. On the other hand, the sea_ice_fraction (SIC) attribute remains the least
popular attribute.

(a) Fishing vessels (b) Cargo ships (c) Passenger ships

Figure 5.11: Case Study 2 - Most important features for each classifier given industry

The classification tasks of the fishing vessel and passenger ship densities depended more on the
temporal features than the classification of cargo ship density, which is further justified by the
target distributions provided in Section 5.2.1. Furthermore, 5.11c indicates that the classifiers
identified bathymetry as less important for passenger ships compared to the others. Figure
5.11a shows no clear linkage between biomass and the prediction of fishing vessel densities.
This is further described by the correlation plot in Figure 5.12, which also shows that the
number of unique vessels by year has decreased relative to biomass.

Figure 5.12: Case Study 2 - Correlation plot between biomass and unique ship count of fishing
vessels (i.e., target before binning)
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Discussion

In this chapter, the ML learning processes and outcomes of the case studies are compared
and evaluated, and the predictors’ validity is assessed. Finally, a discussion of the proposed
solution’s applicability is provided.

6.1 Model performance review

According to experiences presented in Section 2.7 and 4.3.1, it is expected that XGBoost would
outperform RF by its ability to minimize the error from the predecessor tree. The benefit from
this optimization step is primarily observed by Case Study 2, where XGBoost behaved more
o�ensively than RF in capturing the minority classes of activity density prediction by industry.
Compared to XGBoost, the RF classifier could not identify the classes of low participation
similarly since it builds the decision trees independently of each other. However, except for
the few additional correctly labeled classes by XGBoost, the results show that the classifiers
performed somewhat similarly during learning and that the overall final prediction outputs
did not diverge significantly. The common behavioral patterns can be related to the fact that
the classifiers share the same foundational building block, the decision tree, and target the
features similarly.

6.1.1 Model learning

As expressed in Section 4.3.1, a higher impact of tuning XGBoost is expected according to
the classifier’s sensitivity to hyperparameters. This is further confirmed by Table 5.1 and 5.5,
which prove that XGBoost better benefited from hyperparameter tuning than RF in both
case studies. Furthermore, the minor changes in the RF performances can be explained by the
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narrowing of value ranges after Randomized search, which potentially led to too conservative
combinations of hyperparameters values compared to RFs preference for high n_estimators
and max_depth values. However, such a narrowing was considered necessary to reduce time
complexity according to the large amounts of data and prevent overfitting caused by perfectly
learned training data from unnecessary splits in deep trees. Moreover, overfitting tendencies
are not observed from the learning curves as both the train and validation curves have similar
behavior without sudden discrepancies. The early stopping technique in XGBoost ensured
that the training process stopped before the validation error trended from descending to
ascending.

A comparison of the results from hyperparameter tuning by industry in Table 5.5 proves
that the classifiers against the fishing and cargo industries had more similar outputs from
tuning compared to passenger ships. The reason for this can be related to the respective large
data sets of fishing vessels and cargo ships as well as their class distributions, which spatially
tend to evolve similarly, as seen in Figure 5.7. On the other hand, the passenger ships data
contain fewer records, which led to fewer trees and less depth. In addition, its optimized
XGBoost hyperparameters di�ered less from the default values stated in Table 4.7, which
may explain the minor percentage improvement after hyperparameter tuning compared to the
other industries.

As observed in Figure 5.2 and 5.9, the validation and train curves behave similarly and
converge for both case studies. However, the noticeable gap between the curves may indicate
that the training data did not provide adequate information relative to the validation data set.
This can be explained by the uneven target distribution not being considered when extracting
the hold-out validation set. Alternatively, the unrepresentative data is a consequence of only
using three folds in cross-validation, causing the proportion of the validation set to be too
large relative to the remaining training set. The fact that the learning process was a�ected by
the uneven class distributions can be justified by the fast convergence in the classification
error curve relative to the logarithmic loss, which is visualized by fewer tree generations on
the x-axis. Whereas the former expresses the percentage of incorrectly predicted labels, the
latter yields the likelihood of correct predictions, i.e., how confidently the XGBoost model
predicts the class of a given record. Hence, the fast convergence in classification error might
be a�ected by uncertain guesses that provided the correct output according to the majority
class, as elaborated in Section 2.8.2. However, according to the logarithmic loss, it is evident
that more training is required to improve model certainty.
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6.1.2 Predictive capabilities

As presented in Table 5.3, the final evaluation from the test set of Case Study 1 yields better
model performance in predicting the absence class, which is the class of most support in
the data. Although the data set has a mild degree of imbalance by a 72%/28% ratio of the
absence and presence classes, respectively, the high F1-score of the majority class relative
to the minority indicates that the final prediction performance was a�ected by confusion
from the uneven class distribution. However, despite the imbalance, the model performed
satisfactorily, proven by the averaged F1-score of 87% being only minor percentages below
the 90% accuracy.

In contrast to Case Study 1, the classifiers provided the best predictive performance on the
minority classes of Case Study 2. This performance can be a result of the SMOTETomek
resampling, as explained in Section 4.2.7, which was not applied on the test set to maintain
the original distribution, and evaluate the performance properly. Hence, the support values in
Table 5.6 correspond to the initial class proportions. As previously justified in Section 4.2.7,
resampling was not performed on the data of cargo ships in Case Study 2 nor the data of
Case Study 1, which further explains the high attraction to the absence class in the latter
case. However, although the minority class support of cargo ships is higher compared to the
other original data sets by industry, the corresponding models’ satisfactory results can be
related to the clear spatial separation between the cargo ship density classes, as seen in Figure
5.7b. The overall distributions from Figure 5.7 may further explain why the classifiers of Case
Study 2 struggled with distinguishing between Class 0 (low) and Class 1 (medium), as these
have less conspicuous patterns compared to Class 2 (high).

Overall, the relatively high F1-scores and the small fluctuations in precision and recall
within each classification task of the case studies prove that the classifiers managed to detect
patterns and predict activity-related targets by external predictors assembled from di�erent
sources. However, although RF and XGBoost were considered suitable learners according to
this thesis’s purpose and scope, there exist several potential classifier candidates that most
certainly would have obtained similar results as these ensemble learners. As the field of
ML evolves continuously, there will constantly be developed more advanced methods that
outperform others in either evaluation metrics, time complexity, or even both. However,
instead of comparing di�erent classifiers by their prediction performances, this thesis aims to
illustrate the feasibility of applying such learners in an activity-predictive context focused on
the Arctic region. Hence, the fact that both the RF and XGBoost classifiers provided close to
similar and relatively high evaluation scores, despite imbalance, justifies the performance of
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one another, not to mention the possibilities such supervised learners have to o�er in this
context.

6.2 Assessment of the predictors

Figure 5.4 shows that the classifiers’ respective proportions of feature importance di�er, which
can be explained by how the classifiers build their trees. Two well-correlated features may
contain similar information, hence have equal classification importance (Chen and Guestrin
2016). Since XGBoost generates the trees in sequence, it will choose one feature among several
correlated and tend to apply this specific learned link between the selected feature and the
outcome along the learning process. On the other hand, RF builds each tree independently
from the others and may choose randomly among several correlated features for each tree
generation. This is why the features were frequently applied in RF and provided more overall
importance.

Although the RF importance values were more evenly distributed than XGBoost, the two
classifiers had similar orders in feature preference, which is reasonable as both learners
construct decision trees by information gain. The overall performance presented by the
averaged F1-score proves that the classifiers performed best in Case Study 1, followed by
density prediction of cargo ships, passenger ships, and fishing vessels in Case Study 2. The
reason why Case Study 1 was the most predictable can be explained by the fact that only
two classes of di�erent distributions were considered, while the latter involved an extra class
which further contributed to imbalance uncertainties. Another explanation regards the fact
that the features potentially are more significant in terms of determining whether there is
activity rather than how much activity.

Figure 5.4 shows that the most outstanding features of importance in Case Study 1 are
latitude and SST. The order of importances is further justified by the heat map presented
in Figure 5.1b, which yields that latitude and SST have the highest correlation coe�cients
with the target. Whereas the classifiers of Case Study 2 similarly preferred latitude, Figure
5.11 indicates that the climatic factors changing by time were less preferred. In particular,
SIC proved to be of the lowest importance, which contradicts the expectation according to
experiences from the literature provided in Section 2.4. However, the other spatial features,
including bathymetry and distance to the nearest coastline, had higher importance scores.
The di�erence in the SST and SIC preferences can be explained by the fact that Case Study 1
has a higher spatial and temporal coverage than Case Study 2, which led to higher impacts
of changes in sea ice extent and temperature according to the Barents Sea Polar Front. In
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contrast, Case Study 2 is restricted to the spatial regions where activity presence is a fact,
making it reasonable to assume that the associated climatic features are more stable. Another
reason why Case Study 2 preferred spatial features over the others can be related to the
industries’ objectives. For example, the high importance of bathymetry and distance to the
coast within the fishing vessels and cargo ships can be connected to the locations and depths
of common fisheries and the shipping passage close to the Norwegian coast, respectively. On
the other hand, passenger ships had lower bathymetry importance than the others, which is
reasonable considering that tourists may prefer staying on shallow seas to observe species and
nature. Nevertheless, the outstanding importance of latitude justifies the classifiers’ abilities
to classify better the density levels that are clearly distinguished by their respective spatial
patterns.

An interesting observation is that the ecological aspect included as part of the fishing vessel data
did not contribute remarkably to density prediction. Instead, it increased the dimensionality of
the fishing vessel data, which may explain why the corresponding evaluation metrics from the
prediction of fishing vessel densities are lower than the others. The fact that not all features
were useful in this context is further justified by the choice of values of max_features and
colsample_bytree from hyperparameter tuning, provided in Table 5.5. Although the fishing
vessel density is expected to increase with higher biomass values, the plot in Figure 5.12
slightly illustrates the opposite. However, as elaborated in Section 4.2.4, the biomass data set
was manipulated due to its insu�cient resolutions in space. Consequently, the poor ecological
significance may be caused by unrepresentative data values generated by interpolation rather
than the information the original data aims to convey.

6.3 Activity trends over time

According to the studies presented in Section 2.4, it is expected to see an increasing activity
trend over time. Whereas such an increase is not observed by unique ships in Figure 5.5b,
Figure 5.5a shows a gradual increase in AIS transmissions before and after the sudden drop
between 2016 and 2017. This comparison indicates that the individual vessels operate more
frequently by year. For example, while fishing vessels transmit messages more frequently than
cargo ships, the number of individual fishing vessels is lower. According to Section 2.3.3, this
means that individual fishing vessels operate more often and at higher speeds compared to
cargo ships.

The sudden drop in AIS messages can have many reasons. ICES (2018) reported a stock
collapse of capelin in 2016 in the Barents Sea. The pelagic fish is an important prey for various
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predators, including cod, seals, seabirds, and whale species. Hence, fluctuations in the capelin
stock have impacts higher up in the food chain. The capelin collapse in 2016 caused the fishery
to temporally close, which is a potential reason for the significant decline in AIS messages
from fishing vessels. The fishery restrictions were, however, lifted for 2018, which may justify
the subsequent increase. Furthermore, it was reported that 2016 was a�ected by significantly
high temperatures compared to other years and that 2017 was a year of record-high storm
activity. These observations may explain the sudden peak in 2016, followed by the subsequent
reduction in AIS messages within all industries.

In addition to the distribution in Figure 5.5b, the heat map in Figure 5.1b and the feature
importances in Figure 5.4 and 5.11 substantiate a weak relationship between the time-encoded
year feature and the activity target of both case studies. However, it is worth pointing
out that AIS was not compulsory for all vessels until recent years, making it reasonable to
question whether the distribution in records is a�ected by the continuous growth in AIS ground
stations, satellites, and vessels having such a system. The unclear temporal relationship
may additionally be influenced by third variables such as the Covid-19 breakout, which, for
example, is expressed through the decline in passenger ships in 2020 in Figure 5.5b and 5.8.
Ultimately, the time frame in this thesis is limited and does not capture the yearly changes in
climatic variables. For example, Figure 5.1b neither shows increased SST nor reduced SIC by
time, which otherwise has been proven in the literature. This may further explain the low
importance of climatic variations and the model predictions.

Despite the limitations of the time frame, it seems plausible that monthly variations influence
activity according to the Arctic navigation season. Figure 5.1b and the feature importances
of Case Study 1 in Figure 5.4 indicate a poor correlation between activity presence and the
month-encoded feature. This is potentially caused by the cargo ships, which constitute the
highest proportion of unique ships in the overall data, but have no obvious seasonal variations,
according to Figure 5.6b and the low feature importance in Figure 5.11b. On the other
hand, the fishing vessels and cruise ships correlate better with the seasonal variations. These
di�erences can be explained by Figure 5.8 which shows that cargo ships, on average, remain
at the lower latitudes throughout the years. In contrast, the fishing vessels and the passenger
ships operate further north according to the navigation access during summer and the seasonal
demand in fishing areas and tourism, respectively.
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6.4 Applicability of the proposed solution

This thesis attempts to establish an ML-aided basis for estimating activity presence and
vessel densities by industry from independent factors describing the Arctic surroundings.
The fundamental motivation is that increased insight into activity patterns will contribute
to understanding the Arctic risk picture that follows from an increased number of vessels
operating in the region. Although this thesis investigates the possibility of using ML for
activity prediction and how di�erent activity targets correlate with independently extracted
predictors, the next step, in terms of risk prevention, would be to apply similar predictors for
estimating future activity.

Whereas spatial coordinates, ocean depth, and distance measures are independent of time,
climatic variations such as ice and temperature evolve by both time and space. However, as
mentioned in Section 2.4, the future conditions of such variables are easily retrieved from
climate models. Consequently, these features may be transferred to scenarios considering
other spatial regions and even time frames not yet observed. Nevertheless, the main obstacle
in further applying the proposed solution relies on the sudden events that are not as easily
transferable to ML features. However, they may have significant impacts on the actual
activity measure. These events include economic and political shifts, evolved infrastructure,
restrictions, regulations, and fish fluctuations. Covid-19 is another example from which
consequences in tourism activities have already been mentioned. As elaborated in Section 2.3,
the Arctic is not governed by one single regime. Therefore, it is reasonable to assume that
such events frequently will appear in the future of an open Arctic.

In the proposed solution, the year feature acts as a simple proxy that measures up these
multiple, sudden impacts on activity. Whereas year itself does not necessarily change activity,
there exist a relationship derived by the disruptive circumstances that occur within each year.
However, as this underlying information is neither provided explicitly to the model nor follows
a specific trend over time, patterns will be missed according to the sudden changes that the
ML model cannot foresee and control. This further substantiates the activity targets’ obscure
dependencies with time.
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Conclusions and Further Work

This master thesis has targeted the feasibility of applying supervised learning methods for
estimating activity and evaluating sources of activity trends in a part of the Barents Sea
within the Arctic region. Based on data coverage, the selected period is from January 2015 to
May 2021. The work was driven by three research questions, which were investigated through
systematic background studies, data allocation, data processing, model implementations, and
experimental tests by two case studies. This chapter concludes the thesis in light of the
research questions and suggests further work.

7.1 Conclusions

The first research question addressed was "How to develop a supervised ML framework for
predicting vessel presence and vessel density in the Arctic waters by time and space?" The
proposed solution was described by an ML workflow covering the steps of ML training data
development and algorithm implementation. Explanatory predictors describing the Arctic
environment and climate were collected from multiple sources. The data sets were individually
processed according to data formats, missing values, irrelevance, and erroneous values detected
on land. However, they were provided in di�erent resolutions by time and space. Therefore, a
spatiotemporal grid was created to manage assembling the data into a composed ML training
data set. The grid cells were used as key variables for data aggregation and merging. In
addition, ASTD AIS data were used to extract the number of unique vessels within each grid
cell, which formed the basis for the ML prediction target.

For performance review of the proposed solution and validation of the remaining research
questions, two case studies were defined from di�erent viewpoints of activity. Whereas Case
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Study 1 investigated the detection of vessel presence within the spatiotemporal region, Case
Study 2 was restricted to the case of vessel presence only and considered estimation of vessel
density within fishing, cargo shipping, and tourism. Based on background from the literature,
the supervised ensemble models RF and XGBoost were selected and applied to the case
studies with functionality support from their respective Python libraries. Although the data
su�ered from imbalanced target distributions, the analyses of the results proved that the
classifiers performed with averaged F1-scores of around 80% in both case studies. The binary
task of Case Study 1 obtained the best accuracy and F1-scores, by 90% and 87%, respectively.
The recall and precision values did not diverge significantly, which further substantiates the
satisfactory performance. The classifiers’ relatively similar results and learning behavior
justifies their individual performance.

The second research question addressed was "How do ecological and environmental factors
in the Arctic a�ect activity presence and the level of vessel density?" The ecological and
environmental factors were represented by the predictors of the training data, from which
impact on prediction was verified by investigating their correlation with the target values and
assessing which predictors the classifiers applied the most during model training. The most
significant predictor was latitude, which negatively correlated with both activity presence and
vessel density. In addition, SST proved to have a high impact on classification in Case Study
1, which verified the expectation of more activity presence in warmer temperatures. Such
a temperature influence was not observed in Case Study 2 due to its concentration at the
lower latitudes where the vessel densities are primarily present and the temperature changes
according to the polar front are less distinct. Similarly, the SIC attribute did not contribute
significantly to prediction, yet, no yearly reduction in sea ice was identified for the given
period. Whereas the fishing and tourism industries proved to extend toward the north during
the summer season, a general northern activity increase by year was not observed. Moreover,
cargo ships behaved independently of the season but showed a clear connection with closer
distances to the coast. The latter also applied to the fishing vessel densities.

The final research question addressed was "Is supervised ML a reliable approach for activity
predictions in the Arctic?" Despite irregular target distributions, the overall classifiers predicted
by relatively high scores in both recall and precision, which justifies the power of ML to
recognize activity patterns in vast amounts of unstructured data. However, deviations were
observed between the training and the validation processes from model learning, meaning that
the provided data were insu�cient for confident predictions. In addition, the model relied
mainly on the latitude feature, which caused erroneous predictions of classes where the spatial
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separation was less clear. Ultimately, the model is limited to only learning patterns from what
information it is provided and is unable to foresee disruptive circumstances such as rules,
regulations, and political shifts that most certainly will a�ect the future Arctic. Consequently,
there remains a challenge in explicitly encapsulating all influential factors a�ecting activity in
one single ML model and applying it for long future time scales. Therefore, the results should
not be fully trusted but viewed as indicators of activity.

7.2 Further work

There are various measures that can be applied in order to increase the reliability and
applicability of the proposed supervised learning solution. Firstly, the Unknown ASTD
categorized vessels could be imputed by using deep learning for pattern recognition of the
vessels’ trajectories. Consequently, the deviations from the actual amount of vessel activity
represented in the Arctic will be reduced, and more realistic activity estimations will follow.

Secondly, as real-world data always will involve imbalance challenges, alternative resampling
approaches should be investigated. The SMOTETomek algorithm applied in this thesis follows
the nearest neighbor approach. However, there exist various validated candidate approaches
that are based on other clustering methods.

Thirdly, individual investigations of the predictors’ impact on model performance could be
conducted, such as the investigation of model performance by excluding the latitude feature.
Then, it should be considered to apply additional features to the training data to contribute
explicit information toward activity estimation. Such features would include industry-specific
features describing supply and demand, as well as spatiotemporal climatic changes, including
humidity, windiness, fogginess, and atmospheric pressure, which are expected to fluctuate and
a�ect the Arctic region.

Finally, a better impression of how activities a�ect the pristine Arctic could be obtained by
transforming the ML model to a region not a�ected by operations close to the mainland coast-
line. In addition, more years could be included to capture the climatic changes appropriately.
However, the application of the model for future activity estimations should be performed
carefully and over a short time scale due to the possibility of sudden political or regulatory
changes that the model cannot foresee.
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A Data sources

The table below presents an overview of all data sources investigated as potential candidates
for constructing the ML data sets of predictors and targets.

Source Description Format(s)
Vessel tra�c data
PAME – Arctic Ship
Tra�c Data

Historical data of ship tracks, ship types, ports,
ship characteristics, emissions and fuel consump-
tion in the Arctic. Restricted access, permission
required. Provided by ASTD PAME.

Tabular
(CSV)

Norwegian Direc-
torate of Fisheries

Norwegian fishing vessel VMS data from 2011
until the present. Includes ship tracks, ship char-
acteristics and ownership information.

Tabular
(CSV)

Norwegian Coastal
Administration
(Kystdatahuset)

Data covering vessel activities and tra�c around
the Norwegian coast. Ability to download AIS
samples from small time ranges. Account required.
Provided by The Norwegian Coastal Administra-
tion.

Tabular
(CSV)

Barents Watch AIS data from the Norwegian coast and sea areas.
Data from the past 24 hours. Account required.

Tabular
(CSV)

Global Fishing Watch Data covering global fishing activity. Account
required.

Tabular
(CSV)

Metocean and ecological data
Svalbard Integrated
Arctic Earth Observ-
ing System

Data from long-term measurements in/ around
the Norwegian archipelago of Svalbard. Earth
System Science in Svalbard. Data on bathymetry,
atmospherical, environmental conditions at sea
surface. Some data with restricted access.

Raster,
Tabular
(NetCDF,
CSV)

International Bathy-
metric Chart of the
Arctic Ocean

Digital database of bathymetric data north of 64
degrees.

Raster
(NetCDF)

NASA’s Ocean Biol-
ogy Processing Group

Provide collected and processed satellite-based
information of ocean biology and climate-related
inquiries.

Raster
(NetCDF)

Barents Watch Digital information service, ArcticInfo. Spatial
data describing ice concentration, icebergs and
ice edges. Account required.

Raster
(Shape)

Polar View Sea ice charts and concentration. Provided by U.S.
National Ice Centre and AMSR2 from University
of Bremen.

Raster
(GeoTi�,
ESRI)
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Norwegian Maritime
Data Centre

Maritime data covering sea areas important for
Norway.

Raster,
tabular
(Shape,
CSV)

Norwegian Polar
Data Centre

Various of ecological and physical data. Poor
filtering mechanism.

Raster,
tabular
(Shape,
CSV)

MAREANO Data describing depth, sea bed conditions, biodi-
versity and pollution at sea.

Photography
(ti�)

Ocean Biodiversity
Information System

Open-access data providing global information
on marine biodiversity. Pulls together data from
sources around the world. Spatial and temporal
gaps.

Tabular
(CSV)

Global Biodiversity
Information Facility

Open-access data on biodiversity and wildlife. Ac-
count required.

Not applica-
ble

National Snow and
Ice Data Center

Scientific data for research on snow, glaciers, sea
ice, frozen ground etc. Easy filtering mechanism.
Access to NASA Earthdata required for some of
the data sets.

Raster,
Tabular
(NetCDF,
Shape,
binary,
GeoTi�,
CSV)

General Bathymetric
Chart of the Oceans

Gridded bathymetry data sets for the world’ s
oceans.

Raster
(NetCDF,
GeoTi�)

Copernicus Marine
Service

Open access marine data, physical and environ-
mental. Account required.

Raster
(NetCDF)

Norwegian Coastal
Administration
(Kystdatahuset)

Data on Norwegian ports, navigation and wave
forcasts. Provided by The Norwegian Coastal
Administration and Geonorge.

Raster
(Shape)

Table A.1: Data sources investigated during data allocation
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B EDA output

The plots and graphs provided below are a subset of the output carried out from the EDA. In
addition to the other output presented previously, the plots were used to gain insight into the
data in terms of data quality, errors, attribute connections, and coverage. Most of them are
related to the ASTD AIS data set, which involves several attributes.

Copernicus

(a) SST (b) SIC

Figure B.1: Spatial plots of gridded Copernicus data within the whole time frame. A connection
between lower temperatures and higher sea ice concentrations is observed according to the
polar front around latitude 76°
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(a) Mean SST evolution. Higher temperatures during summer time (middle of each year)

(b) Mean SIC evolution. Higher sea ice concentrations during winter time

Figure B.2: Temporal plots of Copernicus data (spatial mean). A comparison of the two plots
indicates a negative correlation by season

ASTD - All Records

Figure B.3: Heat map of Pearson product-moment coe�cients between the static attributes.
Only positive correlations are observed. Size group and ASTD category have the highest
correlation
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Figure B.4: Distribution in flag names. Most flag name values are NaN-categorized. Norway
and Russia are the most represented countries

Figure B.5: Distribution in original ASTD categories (by unique vessels). Fishing vessels have
the highest share
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Figure B.6: Distribution in registered ice classes. Most ice class values are missing, including
all values of 2018 and 2019

Figure B.7: Box plot combining size and overall category (as defined in this thesis). The
higher the size group number, the larger the vessel. Fishing vessels constitute smaller size
groups. Cargo ships and passenger ships span all sizes according to di�erent ASTD categories
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ASTD - Fishing vessels

Figure B.8: Distribution in size group among fishing vessels (number of samples). Most fishing
vessels are small

(a) Unique ship count vs. bathymetry (km) and year:
no clear tendency

(b) Mean distance from vessels to coast vs. time: most
distances are above 70 km. Slight increase from 2015
to 2020

Figure B.9: Fishing vessels vs. spatial features

(a) SST: increase in activity with higher temperatures.
Looks like there was more activity for colder tem-
peratures in 2015 compared to the present. Higher
activities around 5 degrees

(b) SIC: the highest densities are observed where there
is no sea ice concentration. 2015 involves several cases
of high sea ice concentrations (above 0.6)

Figure B.10: Fishing vessels vs. climatic features
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ASTD - Cargo ships

(a) ASTD category distribution. Numerous ASTD
cargos/tankers/carriers included. General cargo ships
have the highest share

(b) Size group distribution. The size range covers all
sizes according to the many ASTD categories repre-
sented. The second smallest group stands out

Figure B.11: Cargo ships distributions by count plots (number of samples)

(a) Unique ship count vs. bathymetry (km) and year:
there is a higher share of unique cargo ships where
the ocean is deep

(b) Mean distance from ships to coast vs. time: there
is an increasing tendency for larger distances by year.
Sudden peaks to smaller distances at year-end in re-
cent years

Figure B.12: Cargo ships vs. spatial features

(a) SST: most cargo ships operate when the temper-
ature is above 0¶C. No specific pattern by year is
observed

(b) the highest densities are observed where there is no
sea ice concentration. However, no clear correlation
is observed

Figure B.13: Cargo ships vs. climatic features
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ASTD - Passenger ships

(a) ASTD category distribution. Both general passen-
ger ships and cruise ships are well represented

(b) Size group distribution. Cruise ships are repre-
sented among all groups and constitute the largest
ships. Most passenger ships are within the medium
size group

Figure B.14: Passenger ships distributions by count plots (number of samples)

(a) Unique ship count vs. bathymetry (km) and year:
more activity in shallow water, but no clear tendency
by year

(b) Mean distance from ships to coast vs. time: dis-
tance increases by season. There is a notable peak in
the distance at the year-end of 2020

Figure B.15: Fishing vessels vs. spatial features

(a) SST: increase in activity by higher temperatures (b) SIC: the highest densities are observed where there
is no sea ice fraction. Higher concentration in 2015
compared to other years (above 0.8)

Figure B.16: Fishing vessels vs. climatic features
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