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Summary and Conclusions

Soil is a complex medium. Its inhomogeneous nature means that the physical parameters of

soil vary spatially both vertically and laterally. Traditionally soil properties is modeled with a

representative value, usually some kind of mean value or similar. In probabilistic methods, this

variability, or uncertainty is taken into account by treating the soil as a random variable sam-

pled from a probability distribution. By using random field theory and statistics one can try

to describe how the soil parameters are distributed in space and how they vary with distance.

In a slope stability or a bearing capacity problem, the spatial distribution of the soil strength

governing parameters has a direct impact on the development of the failure surface, the failure

mechanism and therefore the over all stability. To simulate stability a finite element program

can be used with the soil model parameters input to the finite element mesh based on statis-

tical spatial correlated random fields. To simulate variability and uncertainty, the modeling is

repeated many times with different random fields. This is the random finite element method.

Current modern commercial soil modeling software do not support random finite element

method, and published research random finite element software code do not have the advanced

functionality and soil behaviour models as modern commercial geotechnical software. How-

ever, since the random finite element method does not change the way the problem is simu-

lated, only the input parameters change, modern software packages can be used by automati-

cally generating input data and running the calculation steps in loops. Plaxis, a modern software

package developed by Bently, has capabilities like this through its application program interface

and python scripting.

This thesis presents a method to run the random finite element method in Plaxis geotechni-

cal software package using python API scripting interface, and demonstrate the versatility and

verifies the validity of the implementation of the random finite element method on a slope sta-

bility and a bearing capacity problem. The thesis reproduce and expand on result from litera-

ture. It is further used to investigate the nature and geometry of failure mechanisms in soil and

tries to demonstrate the power of fully coupled flow-deformation analysis.
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Chapter 1

Introduction

1.1 Background

The inhomogeneous nature of soil means that the physical parameters vary spatially both verti-

cally and laterally. Common cause of deviation of expected performance of geotechnical design

is variability in soil properties at the site. Traditionally soil properties is modeled with a repre-

sentative value, called the characteristic value, usually some kind of mean value or similar. To

account for unfavorable deviations from the characteristic value the design codes introduce a

partialfactor which is multiplied with the characteristic value [Bond et al., 2013]. In probabilis-

tic methods, this spatial variability, or uncertainty is taken into account by treating the soil as

a random variable sampled from a probability distribution. Traditional probabilistic methods

like First order second moment (FOSM) and First Order reliability Method (FORM) are analyt-

ical solutions of limit equilibrium states, the analytical solution is limited in the complexity of

the problems it can model and the assumptions of limit state allows no study of i.e magnitude

of deformations. By using random field theory and statistics one can try to describe how the

soil parameters are distributed in space and how they vary with distance. In a slope stability or

a bearing capacity problem, the spatial distribution of the soil strength governing parameters

has a direct impact on the development of the failure surface, the failure mechanism and there-

fore the overall stability. To simulate stability a finite element program can be used with the soil

model parameters input to the finite element mesh based on statistically and spatially corre-

lated random fields. The Finite Element Method (FEM) allows no prior assumption of how the

failure surface looks, like FORM/FOSM, who must assume a fixed failure surface shape e.g a cir-

2
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cular or ellipsoid slip surface. To simulate variability and uncertainty, the modeling is repeated

many times with different random fields in a Monte Carlo simulation. This is the random finite

element method.

Problem Formulation

Current modern soil modeling software does not support random finite element method, and

published research random finite element software code do not have the advanced functional-

ity like complex soil models and soil structure interactions as modern commercial geotechnical

software. However, since the random finite element method does not change the way the prob-

lem is simulated, only the input parameters vary spatially, modern software packages can be

used if a way to specify the input and the simulation run parameters can be controlled in an au-

tomatic and efficient manner. Plaxis, a modern software package developed by Bently, or Optum

G2, has capabilities like this through its application program interface and python scripting. It

is of great interest to research on spatially varying soil modeling to utilize the advanced func-

tions and ease of access of existing software. Gaining this ability will expand the complexity of

the problems allowed to be simulated by the Random Finite Element Method (RFEM). The cur-

rent userbase of geotechnical engineers using Plaxis is large and providing a RFEM tool in plaxis

could allow for them to incorporate probabilistic methods in their designs.

Literature Survey

The random finite element method (RFEM) has been in use since the mid-1990s [e.g, see Grif-

fiths and Fenton, 1993]. RFEM combines random field theory to represent the spatially varying

soil with finite element method (FEM) for deformation analysis. Stochastic analysis in FEM

methods can be built into the finite element equations themselves [e.g., see Vanmarcke and

Grigoriu, 1983], or a Monte Carlo approach can be used were multiple realizations of different

spatial soil models can be analyzed together. The Monte Carlo approach can be computation-

ally demanding, but can be very flexible by utilizing arbitrary FEM code changing just the input.

The Monte Carlo RFEM and its application to many geotechnical problems including seepage,

bearing capacity, earth pressure and settlement is described in more detail in book by Fenton,

Griffiths, et al. [2008]. Examples of RFEM analysis for slope stability can be found in the litera-

ture [e.g, see Fenton, Griffiths, et al., 2008, Chapter 13] based on FEM code developed by Smith,
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Griffiths, and Margetts [2013]. The RFEM code is publicly available and extensive research has

been conducted using it. A list of all but the most recent publications using the code is available

here: (http://random.engmath.dal.ca/rfem/rfem_pubs.html). The RFEM code is for two-

dimensional plane strain analysis of elastic perfectly plastic soils with a Mohr Coulomb failure

criterion. For a detailed discussion of the method [e.g, see Griffiths and Lane, 1999]. The limita-

tion of the failure criteria and the soil model can restrict the application of the method to more

complex soils who displays different characteristics. Software with a range of failure criteria and

soil models exist, such as Plaxis by Bently [Brinkgreve et al., 2010] or Optum G2 [Krabbenhøft

et al., 2016]. Plaxis do not have built-in random field functionality.

What Remains to be Done?

To be able to describe more complex geotechnical problems, a method to unify material models

and numerical methods is needed. Implementation of new soil models into FEM code is not

straightforward. Plaxis allows for python scripting through an application programming inter-

face (API). The RFEM Monte Carlo method could be implemented in Plaxis by scripting random

field input and automating simulation.

1.2 Objectives

The main objectives of this thesis are

1. Implement The RFEM Monte Carlo method in Plaxis using python API interface

2. Demonstrate and verify the implementation on a simple slope stability problem

3. Demonstrate versatility by extending the implementation to a simple bearing capacity prob-

lem

4. Compare results to analytical results where available

5. Reproduce literature results produced by different software

6. Utilize the power of Plaxis by unifying advanced soil model and coupled flow deformation

analysis with random soil field input in a Monte Carlo simulation.

http://random.engmath.dal.ca/rfem/rfem_pubs.html
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1.3 Limitations

The field of random behavior of soils in geotechnical problems is extensive and this project work

scope only scratches the surface. The methodology of finite element numerical computations

and random fields are only described briefly and beyond the scope of this project course to go

into in detail.

The python code presented is not attempted optimized in any way, the focus is on proof of

concept. The result presented is a tool, further work, research and application will prove its

usability.

1.4 Approach

A literature search was conducted to get an overview of the current implementations of the

RFEM code. Source code and accompanying documentation was also studied where available.

The main part of the project was to code the implementation of the RFEM method into the Plaxis

2D software using the python scripting API. Study of the Plaxis 2D software manual and online

documentation was key to get familiar with Plaxis and the API functions to control and auto-

mate the program execution from the python code. Example problems from literature is used to

verify the validity of the implementation. Results from other software is reproduced to compare

results. Analytical results is compared to the implementation. To demonstrate versatility a slope

stability and bearing capacity problem is used.

1.5 Structure of the Report

The rest of the report is structured as follows. Chapter 2 gives a brief introduction to random

field theory and finite element analysis. In chapter 3 the implementation of the RFEM method

in Plaxis using python API script is discussed. Chapter 4 compares results of simulations using

the python API implementation of the RFEM method in Plaxis. Chapter 5 gives a summary and

discussion of the results and main findings of the thesis.



Chapter 2

Theory

This chapter gives a brief introduction to the soil models, random field theory and finite element

analysis used in this thesis.

2.1 Soil strength and failure criteria

A failure criteria is a mathematical model that describes the strength of a material. The failure

criterion is governed by the stress components acting on the material and the material proper-

ties themselves.

2.1.1 Tresca failure criterion

In a clay, and to some extent for other low permeable soils, during and immediately after rapid

load application, in undrained condition, when pore water is trapped and unable to drain due to

low permeability, the failure criterion can be described as normal stress independent and total

stress based, as:

su = cu = 1

2
(σ1 −σ3) (2.1)

where the subscript u stands for undrained condition. The Tresca failior criterion is inde-

pendent of confining pressure. A illustration of the Tresca failure criterion is shown in figure 2.1

[Tresca, 1864]

Table 2.1 shows typical values for undrained shear strength for Norwegian clays

6
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Figure 2.1: The Tresca failure criterion

Table 2.1: Typical values for undrained shear strength for Norwegian clays

Soil Clay

Strength/stiffness Soft Medium Stiff

su <25 kPa 25 to 50 kPa >50 kPa

2.1.2 Mohr Coulomb failure criterion

In drained conditions, the strength of soils is controlled by the effective normal stresses defined

as the total stress minus the pore pressure as:

σ′ =σ−u (2.2)

Coulombs law [Coulomb, 1773] defines the strengt limit and gives the Mohr Coulomb failure

criteria as:

τ f = c +σ′t an(φ) = (σ′+a)t an(φ) (2.3)

where t an(φ) is the friction coefficient, a the attraction, and c = a · t an(φ) is the cohesion.

see figure 2.2 for a illustration of the parameters and the failure criterion. Experimental results
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on soils show a modest strength non-linearity, when Mohr Coulomb criterian is applied, the

parameters is used as curve fitting parameters to fit a straight line to the experimental results in

the relevant stress range.

Figure 2.2: The Mohr Coulomb failure criterion

From figure 2.2, considering the right triangle given by the intersection of the Mohr Coulomb

line, the center of the Mohr circle and the tangent point of the Mohr circle and the Mohr Coulomb

line, the Mohr Coulomb criterion ,using the law of sines, can be reformulated based on principal

effective stresses as:

1

2
(σ′

1 −σ′
3) = (a + 1

2
(σ′

1 +σ′
3)si n(φ) (2.4)

Rearanging:

(σ′
1 +a) = N (σ′

3 +a) (2.5)

N = (1+ si n(φ))

(1− si n(φ))
(2.6)

Mohr Coulomb is independent of the intermediate stress, σ2. For plain strain, 2D, problems

described in this project, the out of plane stress component is normally the intermediate stress,
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σ2. A convenient formulation of the Mohr Coulomb criterion for plane strain is:

s = σ1 +σ3

2
(2.7)

t = σ1 −σ3

2
(2.8)

The inclination of the Mohr Coulomb line is then si n(φ):

t

s +a
= (σ1 +a)− (σ3 +a)

(σ1 +a)+ (σ3 +a)
= N −1

N +1
= si n(φ) (2.9)

The plot s vs t is often called NGI or MIT plot and is used in this project when estimating the

friction angle from 2 dimensional plain strain "biaxial"-tests at different confinement pressures.

See figure 2.3 for illustration.

Figure 2.3: The Mohr Coulomb failure criterion for plain strain displayed in a "NGI-plot"

Table 2.2 shows typical values for attraction and friction angle for Norwegian clays
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Table 2.2: Typical values for attraction and friction angle for Norwegian clays

Soil Clay

Strength/stiffness Soft Medium Stiff

a 5-10 kPa 15-25 kPa 30-60 kPa
φ 20 ° 25 ° 30 °

2.2 Soil models

2.2.1 Colombian - Linear elastic, perfectly plastic

In elasto-plasticity, total strain can be separated into elastic strain and plastic strain, equation

2.10.

ε= εel ast i c +εpl ast i c (2.10)

Elastic strains are reversible, plastic strains are permanent. In a linearly elastic, perfectly

plastic soil model, all strains are elastic when the stress state is below the failure criteria.

The linear elastic perfectly plastic coulomb model is good when focus is on shear strength

problems on materials with small volumetric deformation, like undrained clay with incom-

pressible pore water or densly packed sand. The colombian model will be used in this project to

study shear strength.

2.2.2 Modified Cam Clay Model - Volumetric hardening

The coulomb model is not suitable when large permanent volumetric strains are to be consid-

ered, like for soft clay in drained conditions. Figure 2.5 shows a sketch of a clay sample in a

oedometer compression test. It can be seen that the clay sample shows a non-linear relation-

ship between stress and strain. The clay sample also exhibit a change in stiffness around the

preconsolidation pressure, p′c .

A better soil model to describe soil with large voumetric changes, like clays that behaves like

in figure 2.5, is the Modified Cam Clay Model (MCCM) Wood [1990]. In a oedometer condition,

as used in this project, the MCCM is given with the following equations:

ν= 1+e = vol umeo f por es + vol umeo f sol i d s

vol umeo f sol i d s
= Vp +Vs

Vs
(2.11)
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Figure 2.4: Stress path and deformation curve for a linear elastic perfectly plastic soil model

dεp =−dV

V
= dVp

Vp +Vs
= d(Vp +Vs)/Vs

(Vp +Vs)/Vs
=−dν

ν
(2.12)

σ′ < p′c : OCr ang e :∆ν=−κ∆lnσ′ = −κln
σ′
σ′0

(2.13)

σ′ > p′c : NCr ang e :∆ν=−λ∆l nσ′ = −λln
σ′
σ′0

(2.14)

where ν is the spesific volume, e is the void ratio, ∆ν is the change in spesific volume when

loading from σ′0 to σ′.
The Janbu modulus:

∆ε=∆εp = 1

mNC
ln

σ′
σ′0

(2.15)

comparing equation 2.15 to 2.14 and using equation 2.12 we get:



CHAPTER 2. THEORY 12

Figure 2.5: Sketch of Stress vs strain plot (top) and oedometermodulus (bottom) from a oedometer compression
test on a overconsolidated clay

λ= ν

mNC
= 1+e

mNC
(2.16)

Similarly if we interpret a linear modulus in the OC range:

κ= ν

mOC
= 1+e

mOC
(2.17)

Tabel 2.3 shows example MCCM parameters for some Norwegian clay.
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Table 2.3: Typical values for MCCM-parameters for Norwegian clays

Soil Clay

Strength/stiffness Soft Medium Stiff

mNC 10 20 30
mOC about 5mNC 50 100 150
w(%) 70 35 25
e = 2.7w 1.9 0.95 0.70
λ 0.30 0.10 0.06
κ 0.06 0.02 0.01

2.3 Random Fields

To model the spatial variability of soils random fields are used. To describe the random field

of a soil parameter, e. g. the undrained shear strength of the soil, three parameters are com-

monly used. The Mean, µ, Standard deviation, σ of the soil parameters underlying probability

distribution and the Spatial correlation length, θ also known as the scale of fluctuation. The

underlying probability distribution of the random variable can be any distribution that fit the

observed data. Examples are the Gaussian distribution or the log-normal distribution. Both of

these parametric distributions can be described only with two parameters, mean and standard

deviation. More complex distributions can be used but require more parameters. The mean

is a measure of around which value the soil strength parameter is distributed. The standard

deviation tells how much the values in the soil random fields varies in values. The spatial corre-

lation length, or scale of fluctuation, is a measure of how similar in strength points in the spatial

random field are depending on how far away the points are from each other. Large spatial cor-

relation length vary smoothly and slowly over a given distance, while a small scale of fluctuation

is jagged and rapidly varying. Soil samples taken close together is more likely to be similar than

soil samples taken far apart. Due to the process of soil deposition the soil tend to have different

properties in differing direction, soil is anisotropic. Typically for layered soils, the soil proper-

ties are more similar in the horizontal direction than in the vertical direction. This anisotropy

can be represented by having a longer scale of fluctuation in the horizontal direction than in the

vertical direction.

Remark: There is a difference between homogeneous media and isotropic media, a homoge-

neous media can be anisotropic, but the anisotropy parameter does not change depending on

where it is measured.
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2.3.1 SRM - Spectral Representation Method

Various methods exist for generating random fields that can be used to represent spatially vari-

able soil. [see e.g. Fenton, Griffiths, et al., 2008, Chapter 6]. The methods differ in their efficiency

and accuracy and complexity e.g. ability to describe anisotropy. In this project work the spectral

representation method is used. It is showed by Shinozuka and Deodatis [1996] how to simulate

multi-dimensional homogeneous stochastic fields using the spectral representation method.

Sample functions of the stochastic field can be generated using a cosine series formula. These

sample functions accurately reflect the prescribed probabilistic characteristics of the stochastic

field when the number of terms in the cosine series,N1 and N2 in equation 2.18, is large.

f0(x1, x2) =p
2

N1−1∑
n1=0

N2−1∑
n2=0

An1n2 [cos(κ1n1
x1+κ2n2

x2+Φ(1)
n1n2

)+cos(κ1n1
x1−κ2n2

x2+Φ(2)
n1n2

)] (2.18)

where:

An1n2 =
√

2S f0 f0 (κ1n1
,κ2n2

)∆κ1∆κ2 (2.19)

κ1n1
= n1∆κ1 and κ2n2

= n2∆κ2 (2.20)

∆κ1 = κ1u

N1
and ∆κ2 = κ2u

N2
(2.21)

and:

A0n2 = An10 = 0 for n1 = n2 = 0,1, . . . , N1 −1 (2.22)

Φ(1)
n1n2

and Φ(2)
n1n2

are random phase angles distributed uniformly over the interval. [0,2π].

S f0 f0 (κ1n1
,κ2n2

) is the power spectral density function and is a real non-negative function of the

wave numbers κ1 and κ2. κ1u and κ2u are the upper cut-off wave numbers.

To avoid aliasing, the following condition must be true:

∆x1 ≤ 2π

2κ1u
and ∆x2 ≤ 2π

2κ2u
(2.23)
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See chapter 3 for details on implementation.

Using the Wiener-Khinchine relation, for a single sided one dimensional spectral density

function G(κ) = 2S(κ) the following relations exist between G , variance σ2 and scale of fluc-

tuation θ:

G(κ) = 2σ2

π

∫ ∞

0
ρ(τ)cos(κτ)dτ (2.24)

σ2 =
∫ ∞

0
G(κ)dκ (2.25)

θ = πG(0)

σ2
(2.26)

Equation 2.18 generates a field with mean µ = 0. To get the field to the desired mean value

the mean value is added to the values of the field.

2.4 Finite Element Method

The Finite Element method is a numerical method that can be used to solve a multitude of

geotechnical and other engineering problems. Being a numerical method, FEM gives approx-

imate solution, care should be used when constructing the model to be calculated. Things to

keep in mind when running FEM analysis is the volume extent and the boundary interface of

the model, element type, density of mesh and criteria of convergence. In comparison to limit

equilibrium methods (LEM), FEM methods can give deformations in a state before ultimate

limit state i.e. before failure. Contrary to analytical methods like FOSM/FORM wich assumes

the geometry of the slip surface, FEM have no prior assumptions of the failure mechanism i.e.

no assumption of a circular failure surface in a LEM slope stability analysis. It is a very attractive

property of FEM analysis combined with spatial variable soil, to allow slope failure to develop

naturally by finding the path of weakest soil.

Seven steps of a finite element program is described by Nordal [2020]:

1. Element modeling, equations are built for each element, integration in points inside the

element is used to form stiffness matrix

2. Global modelling, all element stiffness matrices are assembled into a system of equations

to form a global stiffness matrix. An incremental load vector is found
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3. Equation solving of the global equation system for the load increment. This gives a dis-

placement increment

4. Stress evaluation of the calculated displacement increment. The displacements are used

to find the strains which is used to find the stress increments

5. Testing for numerical accuracy. If the calculations show too high unbalanced forces, it will

be necessary to adjust the load increment and/or add more iterations. If so step 1-5 must

be recalculated. When the results converges the program proceeds to step 6

6. Updating of results by adding the deformations and stress to form total deformations and

total stresses.

7. Calculation of new load increment. The response of the new load increment is found by

repeating 1 to 6. The load is gradually ramped up in increments until the specified external

load is reached, or failure occur

Remark: Plaxis measures the fraction of the applied loadstep according to step 7 above and will

stop if a numerical convergence cannot be reached. The numerical inconvergence is usually a

sign of failure because the applied load cannot be balanced by the model. This property is used

as a failure criterion, a variable stores the fraction of the applied load and is accessed automat-

ically to tell if we have failure or not. As mentioned above, care in the FEM parametrization,

e.g choice of meshing, should be appropriate to avoid numerical instability resulting in other

failure modes than the ones being studied.



Chapter 3

RFEM implementation in Plaxis 2D using

python API

This chapter discusses the implementation of the RFEM method in Plaxis using python API

scripting. An overview can be seen in figure 3.1, more details are given in the following sub-

sections.

Start

Set up problem
geometry and

boundary
conditions

Set up line
loads or line
displacement

Choose
soil model

Generate
FEM mesh

Add required
simulation
phases &

activate desired
loads and
geometry

Generate ran-
dom field (SRM)

Run deforma-
tion calculation
and store result

Desired number
of realizations

reached?

Write results to
file & plot data

No

Yes

Figure 3.1: flowchart
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3.1 SRM implementation

In generating the random soil strength field an implementation of the SRM method written in

MATLAB code by Yutao Pan out of Deodatis, Shinozuka, and Papageorgiou [1990] is converted

to python code. The implementation in this project uses a Gaussian spectral density function

given below in equation 3.5. Other spectral density functions exists and can be implemented.

S f0 f0 (κ1n1
,κ2n2

) = 1

4

θx

π

θy

π
e(−(

θ2
xκ

2
1

4π )e(−(
θ2

yκ
2
2

4π ) (3.1)

Figure 3.2 shows example output of the SRM implementation for different input mean µ,

coefficient of variation CoV and scale of fluctuation θ, together with estimates of same param-

eters from the generated field. The estimates shows reasonable good comparisons to the input

values.

1 import numpy as np

2 def srm():

3 inmiu =20

4 incov =0.1

5 sig=inmiu*incov;

6 SOFx=8

7 SOFy=3

8 b1=SOFx/np.sqrt(np.pi)

9 b2=SOFy/np.sqrt(np.pi)

10 m1=64 #integration mesh

11 m2=64

12 m11=m1 -1

13 m22=m2 -1

14 bk1u=5

15 bk2u=5

16 k1u=bk1u/b1

17 k2u=bk2u/b2

18

19 detak1=k1u/m1

20 detak2=k2u/m2

21 g=0.0

22 nrep=1

23

24 nnx =30 #50#x direction number of mesh X

25 nny =10 #50#y dir number of mesh

26

27 nnx1=nnx +1

28 nny1=nny +1
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29 tt=np.zeros((nnx1 ,nny1))

30 RR=np.zeros((nnx1 ,nny1))

31 gg=np.zeros((nrep ,nnx1 ,nny1)) #realization at different points

32 xx=np.zeros(nnx1) # x dir coor

33 yy=np.zeros(nny1) # y dir coor

34

35 lx=30 # length x dir

36 ly=10 # length y dir

37 spx=lx/nnx

38 detax=np.pi/k1u

39 spy=ly/nny

40 detay=np.pi/k2u

41 sq2=np.sqrt (2)

42 intsd=0

43 intsdf=np.zeros ((nnx ,nny)) #integrate sdf at different points

44 lx

45 limitx=period1 /4

46 ly

47 limity=period2 /4

48 rng = np.random.default_rng (42)

49

50 for nround in range(0,nrep):

51 rand1=np.random.rand(m1 ,m2)

52 rand2=np.random.rand(m1 ,m2)

53 fai1=rand1 *2*np.pi

54 fai2=rand2 *2*np.pi

55 for nx in range(0,nnx+1):

56 for ny in range(0,nny+1):

57

58 nx1=nx#+1 -py

59 ny1=ny#+1 -py

60 x=nx*spx

61 y=ny*spy

62 xx[nx1]=x

63 yy[ny1]=y

64

65 for n1 in range(0,m11):

66 for n2 in range(0,m22):

67 n1j=n1+1

68 n2j=n2+1

69 k1=n1*detak1

70 k2=n2*detak2

71 k3=(n1+1)*detak1

72 k4=(n2+1)*detak2

73 sdf=b1*b2*(np.e**(-(b1*k1/2)**2-(b2*k2/2) **2)+np.e**(-(b1*k3/2)**2-(

b2*k4/2) **2)+np.e**(-(b1*k1/2)**2-(b2*k4/2) **2)+np.e**(-(b1*k3/2)**2-(b2*k2/2) **2))
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/16.0/ np.pi

74

75 A1=np.sqrt (2*sdf*detak1*detak2)

76 A2=A1#sqrt (2* sdf2*detak1*detak2)

77

78 g=g+A1*np.cos(k1*x+k2*y+fai1[n1j ,n2j])+A2*np.cos(k1*x-k2*y+fai2[n1j ,

n2j])

79

80 intsd=intsd+sdf*detak1*detak2 *4

81

82 if ((n1==0) and (n2==0)):

83 sdf00=sdf

84 intsd =0;

85 gg[nround ,nx1 ,ny1]=inmiu+g*sq2*sig

86 tt[nx1 ,ny1]=g*sq2

87 g=0

88 tt=(tt*incov +1)*inmiu;

89 tttrans=np.transpose(tt)

90 return tttrans

Listing 3.1: SRM code

The estimates of the scale of fluctuation in figure 3.2 is given by [Fenton et al., 2008]. For the

x-direction:

ρ̂( j∆τ1) = 1

σ̂2(n2(n1 − j )−1)

n2∑
k=1

n1− j∑
i=1

(Xi k )(Xi+ j ,k ) for j = 0,1, . . . ,n1 −1 (3.2)

where for the random field sample value x at at coordinate indexes i ,k, Xi k = x − µ̂, j is the

distance between samples and ∆τ1 is the increment distance in the grid for a n1 ×n2 grid.

Similarly for the y-direction:

ρ̂( j∆τ2) = 1

σ̂2(n1(n2 − j )−1)

n1∑
k=1

n2− j∑
i=1

(Xki )(Xk,i+ j ) for j = 0,1, . . . ,n2 −1 (3.3)

The estimated scale of fluctuation is then the area under the correlation function, symmetric

around 0 on the x-axis. For the x-direction and similar for y-direction:

θ̂x = 2
n1−1∑
j=1

ρ̂( j∆τ1) for j = 0,1, . . . ,n1 −1 (3.4)

It is assumed that the principal axis of anisotropy is aligned with the x and y directions of

the grid and the correlation function is seperable. It is worth noting that in real site exploration,
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lack of data at scale is most often the case and parameter estimations is only done at a single

sampling program of the soil. As a result statistical parameters used to model a real random

field can be uncertain and probabilities derived equally so.

1 varians=np.std(randomfield)**2

2 mean=np.mean(randomfield)

3 n1=10

4 n2=30

5 rho=np.zeros (10)

6 for j in range(len(rho)):

7 for k in range(n2):

8 for i in range(n1-j):

9 rho[j]=rho[j]+( randomfield[i,k]-mean)*( randomfield[i+j,k]-mean)

10

11 rho[j]=rho[j]/( varians *(n2*(n1-j) -1))

12

13 theta = 2*np.sum(rho)

Listing 3.2: Estimating scale of fluctuation in python for a random field. only x-direction shown
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(a) Realization of SRM for µ= 20 ,CoV = 0.1, θx = θy = 2

(b) Estimation of correlationfunction, µ = 19.9, CoV = 0.1,
θx = 3.01, θy = 2.99 from figure 3.2a

(c) Realization of SRM for µ= 20 ,CoV = 0.1, θx = θy = 4

(d) Estimation of correlationfunction, µ = 20.0, CoV = 0.09,
θx = 4.2, θy = 4.24 from figure 3.2c

(e) Realization of SRM for µ= 20 ,CoV = 0.1, θx = θy = 6

(f) Estimation of correlationfunction, µ = 20.0, CoV = 0.07,
θx = 4.8, θy = 6.11 from figure 3.2e

Figure 3.2: Three different realizations of random fields created by SRM and estimates of µ, CoV , θx , θy . Blue curve = x-
direction, Orange curve = y-direction. At small distances between samples the correlation function is high and goes towards
zero correlation when the distance increase.
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3.2 Local averaging

The input parameters in modeling, in the case of RFEM, the mean, standard deviation and spa-

tial correlation length are assumed to be point measures. Therefore when populating a RFEM

model, spatial averaging needs to be taken into account, since the element sizes is in general

much greater than the size of the sample from where the parameter was derived. Similarlly,

when e.g. a clay sample is sheared in the laboratory to determine strength parameters, failure

develops over the whole sample when the bonds of the sample yield. The measured strength is a

function of the average bond strength of the sample. The greater the sample size the stronger is

the averaging effect. Therfore, going from a sample average to a point statistic, averaging needs

to be considered.

It can be shown [Vanmarcke, 2010] that the reduction in variance due to local averaging is

given by:

σA =σ
p
γ (3.5)

where σA is the new spatially averaged variance that is to be used when drawing samples

from the distribution to put into the finite element mesh and γ is the variance reduction func-

tion, defined for a rectangular soil element as:

γ= 4

T 2
x T 2

y

∫ Tx

0

∫ Ty

0
(Tx −τx)(Ty −τy )ρ(τx ,τy )dτxdτy (3.6)

where Tx and Ty is the size of the element in the x and y direction respectively, ρ is the

correlation function and τx and τy is the difference between the the x and y coordinates of any

two points in the random field (in the interval 0 to T ).

γ has the value of 1.0 when T = 0 [see Fenton et al., 2008, chapter 3]. Setting T =αθ (i.e some

scalar α times the scale of fluctuation θ) leads to the conclusion that elements much smaller

than the scale of fluctuation is affected to small degree by variance reduction.

For the popular simple Markovian correlation function

ρ(τx ,τy ) = e
− 2τx

θx
− 2τy

θy (3.7)

the integral in equation 3.6 is seperable, and for a 1 by 1 soil element with the same scale of

fluctuation θx = θy = 1 in both vertical and horizontal direction, the variance reduction factor γ
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becomes

γ=
∫ 1

0

∫ 1

0
4(1−τy )(1−τx)exp(−2τx −2τy )dτy dτx = 0.322 (3.8)

As an illustration, figure 3.3 shows two different realizations of a random fields with the same

input parameterization, given in table 3.1, and its estimates. Without local averaging the vari-

ance is over estimated.

Table 3.1: Impact off variance reduction on a 100 by 100 meter random field sampled with 1 by 1 meters soil ele-
ments

Element size 1 by 1 meters

Input distribution Output with variance reduction Output without variance reduction

µ 30 29.9 30.3
CoV = σ

µ 0.5 0.49 0.87

σ 15 14.8 26.4
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(a) Realization of SRM without variance reduction for input:
µ= 30 ,CoV = 0.5

(b) Realization of SRM with variance reduction for input µ=
30 ,CoV = 0.5

(c) Histogram of randomfield from 3.3a, without variance re-
duction. Measured µ= 30.3 ,CoV = 0.87

(d) Histogram of randomfield form 3.3b, with variance re-
duction. Measured µ= 29.9 ,CoV = 0.49

Figure 3.3: Difference of applying local averaging to a random field of size 100 by 100 meters with 1 meter grid cells. Notice
differnce in axis and color scales
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3.3 Covariance

Soils when tested in the laboratory often show correlations between properties and index pa-

rameters, see e.g [Karlsrud and Hernandez-Martinez, 2013]. The pairwise correlation informa-

tion allows for constraining the uncertainties in parameters that otherwise may not be known or

is experience based. [Ching and Phoon, 2012] It will be useful to be able to input random fields

that show these correlations into RFEM simulations. Figure 3.4 shows the pyton implementa-

tion for two correlated random fields using the numpy multivariate function [Harris et al., 2020].
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(a) Realization of SRM for input: µ = 5 ,CoV = 0.2. Notice
peaks and trough locations corresponds to peak and trough
locations in the field in figure 3.4b

(b) Realization of SRM for input µ = 30 ,CoV = 0.2. Notice
peaks and trough locations corresponds to peak and trough
locations in the field in figure 3.4a

(c) Histogram of randomfield from 3.4a (d) Histogram of randomfield form 3.4b

(e) Scatter plot of samples from 3.4a plotted against sam-
ples from field in 3.4b shows a linear positive correlation.
Each point in in the scatter plot represent the same (x,y)-
coordinates from the respective fields.

Figure 3.4: Correlation of two spatially variable random fields.
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3.4 Monte Carlo

Monte Carlo is a method that can estimate the means, variances and probabilities of the re-

sponses of complex systems to random input [see Fenton et al., 2008, chapter 6.6]. Consider the

random response of a system g (X1, X2) where X1 and X2 are random variables. The system fails

if the value of g (X1, X2) > gcr i t i cal . Monte Carlo simulates a sequence of realizations of X1 and

X2, evaluates g (X1, X2) and checks if g (X1, X2) > gcr i t i cal .

The method is very versatile and can be applied to most kinds of systems. A drawback is that

there are no analytical solutions, if the system, e.g. the input is changed, the simulation must be

rerun, we can not predict the response to a change in input. Also, to simulate rear events, a lot

of simulations are needed which can be computational demanding.

3.5 Plaxis 2D

The following procedure to run the RFEM Monte Carlo analysis is implemented in Plaxis using

the python API. The user specify the input soil parameters, the problem geometry and the de-

sired number of realizations. One realization is one stability simulation on one random field.

The procedure is run fully autonomous without user interaction.

1. The script starts by creating a new empty Plaxis project

2. Next, the problem geometry is generated i.e. the slope height, inclination and extent

3. Then Plaxis grids the geometry generating the FEM mesh

4. The random field representing the soil property is generated based on the user specified

mean, standard deviation (or CoV) and scale of fluctuation

5. The soil elements are populated with the soil parameter values from the random field

6. Next a new phase is added after the initial phase, activating the geometry represented by

the soil

7. Finally the deformations are calculated and a result is stored, i.e. failure or no failure in a

slope stability problem
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8. Now step 4 to 7 is repeated generating a new realization of the random field, a user specified

number of times

9. In the end statistics are gathered and written to a file, and plots of the results can be dis-

played
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Results

To investigate the geometry of the failure mechanism and to test the validity of the python Plaxis

2D API implementation, a series of simulations are run. The results from these simulations are

presented in the following sections.

4.1 "Biaxial cell" Tresca failure criterion - Homogeneous isotropic soil - Zero

variance

The idealization done in many formulations of geotechnical problem descriptions and designs,

namely assigning an average value to a soil profile, was investigated by Ching and Phoon [2013].

Some of the results of the study is reproduced here. The goal is to show that the slip curve gov-

erns the strength of the soil sample and that the slip curve trajectory depends on the realization

of the random soil field.

As a control, a homogeneous isotropic soil with zero variance is tested to verify the model

based on known analytical solutions. See table 4.1 for input parameters. Experiment is done in

a staged construction in Plaxis 2D, first isotropically consolidating the sample, then increasing

the axial applied load pressure to failure. The simulation is repeated for three different confining

pressures, 50, 100 and 150 kPa. The sample is 18 meters high and 6 meters wide. The soil cells

are 1 meters by 1 meters. The FEM grid is done automatically by the software. The boundaries

on the side are free to move, the top and bottom are horizontally fixed. See figure 4.1 for mesh

detail and experiment geometry. Figure 4.2 shows stress strain curves for the three simulations.

Figure 4.3 shows the stress paths in a "NGI-plot".

30
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The NGI plot shows a predicted undrained shear strength of 50 kPa and no dependence of

the confinement stress on the shear strength. The result is in accordance with equation 2.1 and

shows a good fit to theory and good ability to predict input strength.

Table 4.1: Soil parameters for homogeneous isotropic soil in biaxial Tresca test

Soil model Mohr Coulomb - Undrained(B)

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 0 kN /m3 0 -
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.3 0 -
Undrained Shear Strength,Su 50 kPa 0 -
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(a) Input soil undrained shear strength Su (b) Deformed mesh after shearing, confinment
pressure is 150kPa

(c) Sample incremental deveatoric strain just be-
fore failure

Figure 4.1: Biaxial isotropic compression test on uniform soil with a Tresca failure criterion
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Figure 4.2: Applied loads vs vertical displacement for the three isotropically confined compression tests with a
Tresca failure criterion.
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Figure 4.3: "NGI-plot" of three isotropically confined compression tests with a Tresca failure criterion.
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4.2 "Biaxial cell" Tresca failure criterion - Spatially varying soil

Spatial variability is introduced in the setup from section 4.1. Table 4.2 shows the input param-

eters. 300 realizations of a spatially varying random soil strength field is run. Figure 4.4 shows

the FEM mesh and geometry for a single realization. Figure 4.5 shows stress strain curves and

figure 4.6 shows a "NGI-plot" of a single realization of the random field. The failure slip surface

is estimated by taking the FEM nodes with the highest incremental deveatoric strain at the mo-

ment just before failure, see figure 4.4c and 4.7. These nodes locations are used to look up the

input soil strength at these nodes and averaged to estimate the slip surface shear strength. This

line average is compared to the domain average, which is calculated from the average strength

of all the input nodes in the FEM mesh. The Mobilized strength is calculated from the theory

and the applied load. Figure 4.8 shows the 300 results plotted together reproduces the results of

Ching and Phoon [2013] well and shows that the line average estimated strength is much closer

to the actual mobilized strength than the domain averaged strength, indicating that the domain

average simplification can be a poor idealization.

Table 4.2: Soil parameters for spatially varying soil in biaxial Tresca test

Soil model Mohr Coulomb - Undrained(B)

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 0 kN /m3 0 -
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.3 0 -
Undrained Shear Strength,Su 50 kPa 0.02 5,5 meter s

(a) Input soil undrained shear
strength Su . Domain average
strength estimated to 49.6kPa

(b) Deformed mesh after shear-
ing, confinment pressure is
150kPa

(c) Sample incremental de-
veatoric strain just before failure,
indicating the failure surface

Figure 4.4: Biaxial isotropic compression test on spatially variable soil with a Tresca failure criterion
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Figure 4.5: Applied loads vs vertical displacement for the three isotropically confined compression tests with a
Tresca failure criterion.
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Figure 4.6: "NGI-plot" of isotropically confined compression tests with a Tresca failure criterion. The same spatially
varying soil sample as in figure 4.4 at three difrent confinement pressures. Mobilized strength estimated to 47.7kPa
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Figure 4.7: Python extraction of failure band. Line average strength estimated to 47.6kPa
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Figure 4.8: Results of 200 iterations showing that the line average strength is a better estimate of the soil sample
strength than the domain average
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4.3 "Biaxial cell" Mohr-Coulomb failure criterion - Homogeneous isotropic

soil

To the authors knowledge there has been no study veryfing if the results from section 4.2 and

from papers like Ching and Phoon [2013] holds for simple stress cases in c −φ soils.

The set up from section 4.1 is repeated, this time with input according to table 4.3 See figure

4.9 for mesh detail and experiment geometry. Figure 4.10 shows stress strain curves for the three

simulations. Figure 4.12 shows the extracted failure band. Figure 4.11 shows the stress paths in

a "NGI-plot".

The measured mobilized friction angle is 29.7 °and fits well with the input friction angle, the

measured mobilized cohesion is 4.6 kPa, lower than the input value of 5 kPa.

Table 4.3: Soil parameters for hogeneous isotropic soil in biaxial MC test

Soil model Mohr Coulomb - drained

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 0 kN /m3 0 -
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.3 0 -
Friction angle, φ 30 ° 0 -
Cohesion, c 5 kPa 0 -

(a) Input soil cohesion. Domain
average cohesion and phi esti-
mated to c = 5.0kPa and φ= 30.0

(b) Deformed mesh after shear-
ing, confinment pressure in this
figure is 150kPa

(c) Sample incremental de-
veatoric strain just before failure

Figure 4.9: Biaxial isotropic compression test on spatially variable soil with a Mohr-Coulomb failure criterion
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Figure 4.10: Applied loads vs vertical displacement for the three isotropically confined compression tests with a
Mohr-Coulomb failure criterion.
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Figure 4.11: "NGI-plot" of isotropically confined compression tests with a Tresca failure criterion. The same spa-
tially varying soil sample as in figure 4.13 at three difrent confinement pressures. Mobilized c and phi estimated to
c = 4.6kPa and φ= 29.7
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Figure 4.12: Python extraction of failure band. Line average c and phi estimated to c = 5.0kPa and φ= 30.0
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4.4 "Biaxial cell" Mohr-Coulomb failure criterion - Spatially varying soil

Spatial variability is introduced in the setup from section 4.3. Table 4.4 shows the input pa-

rameters. The input random variabels, the cohesion and the friction angle, is positively linearly

correlated (see section 3.3). 300 realizations of a spatially varying random soil strength field is

run. Figure 4.13 shows the FEM mesh and geometry for a single realization. Figure 4.14 shows

stress strain curves and figure 4.15 shows a "NGI-plot" of a single realization of the random

field. The failure slip surface is estimated as explained in 4.2, see figure 4.13c, 4.16 and 4.17. The

failure slip surface nodes locations are used to look up the input soil strength at these nodes

and averaged to estimate the slip surface friction angle and cohesion. This line average is com-

pared to the domain average, which is calculated from the c and φ of all the input nodes in the

FEM mesh. The Mobilized c and φ is calculated from the theory and the applied load. Figure

4.18 shows the 300 results plotted together and shows that the line average estimated friction

angle is much closer to the actual mobilized friction angle than the domain averaged friction

angle. Figure 4.19 shows that the simulations was also able, although the results is more noisy,

to find the same relationship between the input cohesion, slip surface averaged cohesion and

the domain average cohesion as for the friction angle and undrained strength cases. The input

pairwise c-phi correlation is also to some degree reproduced in the measurments as can be seen

in figure 4.20.

Table 4.4: Soil parameters for spatially varying soil in biaxial MC test

Soil model Mohr Coulomb - drained

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 0 kN /m3 0 -
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.3 0 -
Friction angle, φ 30 ° 0.02 5,5 meter s
Cohesion , c 5 kPa 0.02 5,5 meter s
c and φ positive linear correlated
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(a) Input soil cohesion. Domain
average cohesion and phi esti-
mated to c = 4.9kPa and φ= 29.1

(b) Deformed mesh after shear-
ing, confinment pressure in this
figure is 150kPa

(c) Sample incremental de-
veatoric strain just before failure,
indicating the slip surface

Figure 4.13: Biaxial isotropic compression test on spatially variable soil with a Mohr-Coulomb failure criterion

Figure 4.14: Applied loads vs vertical displacement for the three isotropically confined compression tests with a
Mohr-Coulomb failure criterion.
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Figure 4.15: "NGI-plot" of isotropically confined compression tests with a Tresca failure criterion. The same spa-
tially varying soil sample as in figure 4.13 at three difrent confinement pressures. Mobilized c and phi estimated to
c = 4.5kPa and φ= 27.4
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Figure 4.16: Python extraction of failure band. Line average c and phi estimated to c = 4.7kPa and φ= 27.6
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Figure 4.17: 15 extracted slip surfaces from the 300 realizations showing variation in failure surfaces. The lines are in most
cases fairly straight. They seem to be flatter towards the edges of the sample and steeper in the middle.
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Figure 4.18: Results of 300 iterations showing that the line average shear strength is a better estimate of the soil
sample friction angle than the domain average also for the case of a Mohr-Coulomb failure criteria
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Figure 4.19: Results of 300 iterations showing that the line average cohesion estimate does correlate with the Mohr-
Coulomb interpreted cohesion from the mobilized results of the biax test, but the results are noisy
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(a) Histogram of mobilized cohesion as esti-
mated from the measurements

(b) Histogram of mobilized friction angle as esti-
mated from the measurements

(c) cross plot Mobilized cohesion vs Mobilized
friction angle, some evidence of the input cor-
relation can be seen in these results

Figure 4.20: Output mobilized / measured estimates of cohesion and friction angle for 300 spatially variable soil samples
undergoing isotropically consolidated compression biaxial tests.



CHAPTER 4. RESULTS 52

4.5 Slope Stability problem - Homogeneous isotropic soil - Zero variance

To check the base case of spatially invariant soil with known analytical solutions. This is to

validate the input to the random field generation, the FEM mesh and calculation. The sim-

ulation is a elasto-plastic FEM simulation with Mohr-Couloumb material model using Plaxis

undrained(C) behaviour. 15-Node triangular FEM elements are used. The slope is 5 meter high

with a 2:1 gradient. The soil parameters are presented in Table 4.5. The resulting random field,

or in this particular case a constant field, is shown in Figure 4.21 and the 2:1 slope geometry and

Plaxis 2D mesh is shown in Figure 4.22.

Table 4.5: Soil parameters for Homogeneous isotropic soil

Soil model Mohr Couloumb - Undrained(C)

ooo Input distribution Output with variance reduction Output without variance reduction
Parameters µ CoV = σ

µ θ

µ 20 kN /m3 0 -
CoV = σ

µ 10 MPa 0 -

σ 0.49 0 -

Running a Plaxis c-reduction calculation phase, result graph plotted in 4.23, on the uniform

soil slope gives a Factor of Safety, Fs = 1.14. The corresponding Fs obtained by slope stability

charts after Janbu [1968] is Fs = 1.16. Figure 4.24 shows the classical circular failure mechanism.

Figure 4.21: Su Random field, in this particular case the soil strength is uniform
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Figure 4.22: Slope geometry, with soil strength property from the random field mapped to the soil Plaxis soil ele-
ments and triangular FEM elements displayed
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Figure 4.23: Plaxis Safety factor

(a) Deformed mesh showing the classic circular failure
mechanism

(b) Shear band showing the classic circular failure mecha-
nism

Figure 4.24: Failure mechanism for the homogeneous isotropic spatially invariant soil example
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4.6 Slope stability problem - Homogeneous anisotropic soil - Scale of Fluc-

tuation 20 and 10 meters, CoV=0.3 - Monte Carlo 250 realizations

Following are the results from 250 realizations and simulations using random field as undrained

strength parameters. The simulations are elasto-plastic FEM simulation with Mohr-Coulomb

material model using Plaxis undrained(C) behaviour. 15-Node triangular FEM elements are

used. The slope is 5 meter high with a 2:1 gradient. The soil parameters are presented in Ta-

ble 4.6. Examples of resulting random field is shown in 4.25.

Figure 4.26 shows the probability of failure of the slope vs iteration number. Taking the real-

izations through a c −φ-reduction step to determine the factor of safety, gives the histogram in

4.27. The mean value of the factor of safety is around 1.1 with a standard deviation of 0.3. The

mean value is a little less than that for the homogeneous isotropic soil of 1.14 and the analyt-

ical value of 1.16. Based on the shape of the histogram, assuming FOS is normally distributed

gives, P (FOS < 1) = 0.37, about the same failure probability as the Monte Carlo estimate. More

iterations in the simulation is needed to give a more robust result.

Table 4.6: Soil parameters for anisotropic soil

Soil model Mohr Coulomb - Undrained(C)

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 20 kN /m3 0 -,-
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.49 0 -
Undrained Shear Strength,Su 20 kPa 0.3 20,10
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(a) Realization of undrained strength field, iteration 45 of 100

(b) Realization of undrained strength field, iteration 45 of 250

(c) Realization of undrained strength field, iteration 70 of 250

(d) Realization of undrained strength field, iteration 70 of 250

(e) Realization of undrained strength field, iteration 81 of 250

(f) Realization of undrained strength field, iteration 81 of 250

Figure 4.25: Three different realizations of random fields created by SRM and their mapping to the FEM mesh grid.
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Figure 4.26: Iteration number vs probability of failure for the Monte Carlo RFEM slope stability problem. The failure
probability converges towards a value of around 0.38. More iterations might be needed to see if the result is stable.
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Figure 4.27: Histogram of the safety factor for the realizations in the Monte Carlo simulation
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4.7 Slope stability problem - Scale of Fluctuation 5 meters, CoV=0.3 - Failure

mechanism analysis

To show the effect of a complex failure mechanism in spatially varying soil a series of realization

using isotropic SOF of 5 meters and a CoV of 0.3 and mean value of 20 was run. The results are

presented in figure 4.28. Compared to figure 4.24 we see that for the spatially varying soil, the

failure mechanism is not a given shape, and that it seems to seek out the weak soil.
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(a) Undrained soil strength, blue is weak soil
(b) Failure mechanism for the soil in a, the failure mecha-
nism is complex and seem to seek out the weak soil

(c) Undrained soil strength, blue is weak soil
(d) Failure mechanism for the soil in c, the failure mecha-
nism is complex and seem to seek out the weak soil

(e) Undrained soil strength, blue is weak soil
(f) Failure mechanism for the soil in e, the failure mechanism
is complex and seem to seek out the weak soil

Figure 4.28: Different realizations of random fields with isotropic SOF of 5 meters and a CoV of 0.3 and mean value of 20kPa
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4.8 Bearing Capacity Problem - Homogeneous isotropic soil - CoV=0.0 - Known

analytical solution

To illustrate the versatility of the implementation, the slope stability problem is changed to a

bearing capacity problem by specifying a flat topology and adding a line load. This change is

done with the change of 2 lines of code. To verify the validity, again a base case with an analytical

solution is set up. Undrained bearing capacity for a smooth foundation with the known bearing

capacity:

q = 5.14Su (4.1)

The simulation is a elasto-plastic FEM simulation with Mohr-Coulomb material model using

Plaxis undrained(C) behaviour. 15-Node triangular FEM elements are used. A line load of

1000kPa and length of 9 meters is applied to the top of the soil. The soil parameters are pre-

sented in Table 4.7. Internal in the Plaxis code, ref step 6 in chapter 3.3, the 1000 kPa load is

applied in increments, the fraction of the load applied is given in in the Plaxis variable called∑
M st ag e. see Figure 4.29 for simulation result. The bearing capacity of the soil is given as:

q = 1000∗∑
MSt ag e = 1000∗0.103 = 103 (4.2)

Equation 4.1 gives for Su = 20 , q = 5.14Su = 5.14∗20 = 102.8. The result of the simulation

gives a good approximation.

The soil field, in this particular case a constant homogeneous field, is shown in Figure 4.30

and bearing capacity geometry, load and Plaxis 2D mesh is shown in Figure 4.31. The failure

mechanism is illustrated in 4.32

Table 4.7: Soil parameters for anisotropic soil

Soil model Mohr Coulomb - Undrained(C)

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx and θy

Unit weight, γsat = γunsat 20 kN /m3 0 -,-
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.49 0 -
Undrained Shear Strength,Su 20 kPa 0 0 and 0
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Figure 4.29: Bearing Capacity problem for uniform soil. Plaxis 2D Load step vs fraction of applied load. Failure
occur at 0.103 times the applied load of 1000 kPa

Figure 4.30: Uniform undrained soil shear strength of 20 kPa used in bearing capacity verification simulation
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Figure 4.31: Bearing capacity problem geometry, load and FEM mesh.



CHAPTER 4. RESULTS 64

Figure 4.32: Illustration of failure mechanism for the bearing capacity verification simulation. Due to numerical
approximations the failure seem to go to one side while the theoretical is symmetrical.
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4.9 Bearing Capacity Problem - Homogeneous anisotropic soil - Scale of Fluc-

tuation 8 and 3 meters, CoV=0.1, Monte Carlo 250 realizations

The bearing capacity problem is repeated with a random field input representing the soil undrained

strength. The soil parameters are given in table 4.8. 250 iterations are run in a Monte Carlo

simulation. The FEM parametrisation is the same as for the other problems, repeated here:

Elasto-plastic FEM simulation with Mohr-Coulomb material model using Plaxis undrained(C)

behaviour. 15-Node triangular FEM elements are used.

Table 4.8: Soil parameters for anisotropic soil

Soil model Mohr Coulomb - Undrained(C)

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 20 kN /m3 0 -,-
Modulus of elasticity, E 10 MPa 0 -
Poissons ratio, ν 0.49 0 -
Undrained Shear Strength,Su 20 kPa 0.3 8,3

The resulting bearing capacities from the 250 realizations of the random finite element run

is displayed in a histogram in Figure 4.33. Note that all bearing capacities is lower than that for

uniform soil with constant undrained shear strength equal to the mean Su in the RFEM run. The

mean bearing capacity of the 250 iterations is around 95 kPa compared to the theoretical value

of about 103 kPa.

Figure 4.34 shows three random realizations from the RFEM run and the corresponding va-

riety in failure mechanism.
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Figure 4.33: Histogram of Bering Capacities from 250 iterations of RFEM. The vertical line shows the theoretical
value of 103 kPa
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(a) Realization of undrained strength field, iteration 201 (b) Failure load 97.3 kPa, iteration 201

(c) Realization of undrained strength field, iteration 121 (d) Failure load 98.9 kPa, iteration 121

(e) Realization of undrained strength field, iteration 33 (f) Failure load 97.6 kPa, iteration 33

Figure 4.34: Three different realizations of random fields (Left) created by SRM, their FEM mesh and their corresponding failure
mechanism (right) after incremental loading.
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4.10 Oedometer test spatially varying soil - Modified Cam Clay soil model -

fully coupled flow

To demonstrate more advanced features of the plaxis/RFEM script interface a constant rate of

strain (CRS) oedometer test was simulated with a modified cam clay soil model and a fully cou-

pled flow - deformation calculation. A sample of 6 centimeters in height and 12 centimeters in

width was deformed by a line displacement at a constant rate of 1.0 %/hour for a total test dura-

tion of 0.416 days (10 hours) leading to a total deformation of 10 % (0.6 cm). The soil grid is 0.5

by 0.5 centimeters with on average two triangular FEM elements per soil cell. The sample is one

way drained at the top of the sample. The pore pressure is recorded at the middle of the sample

base. The displacement and the resulting force on the sample was recorded for each time step.

Studies have shown water content variations in samples after storage impacts the sample

quality [Amundsen and Thakur, 2018]. Water content can be linked with void ratio. 300 sim-

ulations was run for two different values for CoV for the initial void ratio, that maybe could

represent a disturbed or undisturbed sample. Figure 4.35 shows the void ratio at the end of the

test for one realization. Figure 4.36 shows the ground water flow for the realization in 4.35, the

ground water flow is predominantly upwards. The groundwater flow seem to be higher at the

left side of the sample where the void ratio is lower. Figure 4.37 shows the pore pressure at the

base of the sample at the last time step for one realization. The cross section of the pore pres-

sure distribution resemble a parabola, fitting with the theoretical assumptions. There are small

lateral variations in pore pressure.

Equation 4.3 was used for changing permeability. The initial permeability was constant and

uniform:

l og (
k

k0
) = ∆e

ck
(4.3)

where k is the permeability, e is the void ratio and ck is a constant chosen to be equal to 0.25.

Figure 4.38 and figure 4.39 shows the result from 300 realizations of the random field with

parameters from table 4.9. A larger CoV gives a larger range in most interpreted parameters

from the oedometer tests.
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Table 4.9: Soil parameters for spatially varying soil in oedometer MCCM test

Soil model Modified Cam Clay Model

Statistical Soil Mean Coefficient of Variation Scale of fluctuation
Parameters µ CoV = σ

µ θx , θy

Unit weight, γsat = γunsat 20 kN /m3 0 -
λ 0.1 0 -
κ 0.02 0 -
permeability,kx = ky 0.1 -
strength, M 1 0 -
preoverburden preasure, POP 100 0 -
void ratio, e 0.95 0.02 and 0.05 5,5 cm

Figure 4.35: Oedometer test Void ratio at time = 10 hours
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Figure 4.36: Oedometer test ground water flow at time = 10 hours, the flow is much greater vertically than horizon-
tally

(a) Pore pressure distribution, the lateral variation is small
(b) Cross section of the pore pressure through the middle of
the sample

Figure 4.37: Pore pressure at time = 10 hours.
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(a) CoV = 0.02 (b) CoV = 0.05

Figure 4.38: Oedometer plots for 300 realizations for two different coefficients of variations for a spatially varying void ratio.
Notice different axis scales
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(a) CoV = 0.02
(b) CoV = 0.05

Figure 4.39: Oedometer parameters for 300 realizations for two different coefficients of variations for a spatially varying void
ratio. Notice different axis scales



Chapter 5

Summary and Recommendations for

Further Work

This final chapter presents a summary of the results, a discussion of the findings and recom-

mendations for further work.

5.1 Summary and Conclusions

In this project a method is implemented in Plaxis 2D using python API interface to run Random

Finite Element simulations on geotechnical problems with advanced soilmodels and advanced

analysis tools on spatially variable soils. The method is verified by controlling input parame-

ters, fixing them to constrains giving known analytical solutions, by replicating well established

laboratory experiments and successfully reproduce and expand on results from literature. The

versatility of the implementation is demonstrated by verification on a slope stability and a bear-

ing capacity problem.

5.2 Discussion

The major limitation of the implementation in its current form is its execution time per real-

ization. The execution time for one realization of the problems described in this thesis is in

the order of one minute, and the completion of a simulation with hundreds of realizations is in

the order of hours. The processing speed improvement is needed for Monte Carlo simulations

73
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of rare events which demands thousands of realizations to gather the statistics needed for de-

scribing small probabilities with confidence. Rare events may also be the most interesting to

study as they often could have the greatest consequences. Some speed up, like the actual Plaxis

to python connection efficiency, is out of the users hands and must be handled by the Plaxis

software developers, others can be done in more efficient implementation of the scripting.

The studied problems, except for the oedometer test which tested two inputs and the biaxial

tests that tested two different failure criteria, did not change the input parametrization to see

what effects the change in e.g the CoV or the scale of fluctuation of the random soil property

field have on the results. The reason being that the main focus was on the implementation, and

the implemented simulation results are adequate to prove the validity of the work done. The

studies could easily be extended to study these effects, but are mostly reserved for specialized

studies to isolate impacts of specific soil conditions.

There are multiple interesting observations that could be made from the results presented

in this thesis. One of these studies could be the effect of soil sample disturbance on laboratory

tests. The oedometer test presented could represent a disturbed and undisturbed sample, or

represent uncertainty in sample acquisition. There is very little flow in the lateral direction of

the oedometer test compared to the vertical direction. The vertical scale of fluctuation of per-

meability related parameters is the most influential in the oedometer simulation, which is also

most prominent in earth samples due to sedimentation processes. But in a real loading situa-

tion the lateral flow is not restricted (like the impermeable steel ring zero lateral flow boundary

condition of the oedometer test).

For the Mohr-Coloumb biaxial compression test, the slip surface cohesion and the mobilized

cohesion measured in the experiments looks correlated but the results is noisy (does follow the

1:1 relation line but shifted to the left, indicating the mobilized cohesion is measured lower

4.19). The cohesion in the experiment is low given the high friction angle and effective stress

level, and according to columbs law (equation 2.3) the friction angle term is dominating the

shear strength. For the Tresca case the cohesion is dominating (friction angle equals zero). The

mobilized strength of a sample is determined by the undrained strength (for the Tresca case),

and the friction angle for the Mohr-Coloumb case (where friction angle greater than zero), of

the slip surface (figures 4.8 and 4.18). The friction angle and the undrained shear strength is, as

the names suggests, shear force resisting. Cohesion is a resistance against tension, the forces on
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the slip surface in the experiments are compressional shear, and never experience tensile forces

so the cohesion is relevant only as a curve fitting parameter for the height of the Mohr-Coloumb

failure line above the x-axis, impacting the ultimate failure stress state. More tests could be done

to find at what ratio the different contributions dominate.

The geometry of the failure lines are mostly continuous curves with small undulations (figure

4.17), seeking weak soil but curvature and shape seems more related to mechanics and place-

ment seems more determined by soil variability. More experiments are needed to study this

under more soil conditions.

The load steps and tolerated error of the FEM calculation must be adequately low to allow

for the needed precision when the sample approaches the failure surface.

The domain average cohesion (average of all sample node points) displays a narrower distri-

bution than the slip surface average (figure 4.19). This is likely because there are more samples

in the whole soil sample than in the slip surface alone. The slip surface intersects the random

field and may omit peak or trough values that the domain average includes.

The estimation of the interpreted parameters from the experiments are automatically picked

by an algorithm and could be cause of measurement uncertainty. Looking at the mobilized

cohesion from the Mohr-Couloumb biaxial test, the range in the measured mobilized friction is

greater than the range in the domain and line average (figure 4.19), suggesting that the estimate

of the mobilized cohesion is prone to measurement noise. It still is able to pick up the pairwise

positively correlated cohesion and friction angle input (figure 4.20c), but again the results are

noisy. This also goes for the approximation to the failure surfaces, better more accurate ways

exist to extract this. It is believed that the relative results presented, compared to each other for

high number of experiments, is within statistical significance.

It is uncertain to what degree these implementations can be applied for use in production

design in industry. The implementation, although quite simple, require a certain level of coding

skill but the wide spread familiarity of engineers to FEM software and increased focus on pro-

gramming and automation, and more awareness of the benefits of reliability based design and

probabilistic methods suggests more solutions like the ones presented will appear in the near

future.
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5.3 Recommendations for Further Work

Recommendation for further work is given below. The focus of the list below is in improvement

of the method implemented in this project work. Though the application of the method may be

the most interesting. . .

The recommendations are classified by time as:

• Short-term further work

– Stress testing by extending problem size, smaller earth elements and denser mesh.

What is the limit of the program? And what size of problems can practically be ana-

lyzed?

– Performance optimization.

• Medium-term further work

– More advanced soil models with more random input parameters and correlated ran-

dom fields. Is it possible to simulate strength softening or sensitivity?

– More geometries and geotechnical problems like earth pressure problems. The imple-

mentation proposed can easily be extended with user input like excavation stages in

a staged construction. Also possible to add and study forces on anchors, plates, sheet

piles etc.

• Long-term further work

– Performance optimization, parallelization. RFEM is a highly parallel process that can

benefit by computing realizations in parallel for big performance gains and lower ex-

ecution time. It is not believed to be straight forward to implement this, but maybe

multiple instances of Plaxis can be started and run on different compute nodes.



Appendix A

Acronyms

CoV Coefficient of Variation

FEM Finite Element Method

FORM First Order Reliability Method

FOSM First Order Second Moment

RFEM Random Finite Element Method

SRM Spectral Representation Method
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Appendix B

Source code

This appendix contains the source code to run one example of the RFEM Plaxis implementation.

B.1 Slope example

1 import random

2 import numpy as np

3

4 def get_RGB_number(R, G, B):

5 # get colour number from RGB using BIT LEFT SHIFT

6 iB = B<<16 # left shift 16 bits for Blue

7 iG = G<<8 # left shift 8 bits for Green

8 iR = R # left shift 0 bits for Red

9 return iB + iG + iR

10

11 def normaliser(x,xmin ,xmax):

12 if xmax -xmin ==0:

13 return x

14 return (x-xmin)/(xmax -xmin)

15

16 def create_geometry(s_i , g_i):

17 """

18 Takes the plaxis variables s_i , g_i and performs a series of operations

19 to create a soil layer , assign a test material to soil , create a line load

20 with dynamic multiplier

21 """

22 s_i.new()

23 g_i.SoilContour.initializerectangular (0, 0, 10, 10)

24

25

78
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26

27

28 #g_i.borehole (3)

29 #g_i.Soillayer_1.Zones [0]. Bottom = -3

30 nx1 =15

31 nx2 =15

32 ny1=5

33 ny2=5

34 n=nx1+nx2

35

36 #topo =[10,10,10,10,10,10,10,10,10,10,9.5,9,8.5,8,7.5,7,6.5,6,5.5,5,5,5,5,5,5,5,5,5,5]

37 #interpoler topografi

38

39 H=5 #Hoeyde slope

40 D=2 #dybde

41 topoy = [D*H,D*H,D*H-H,D*H-H]

42 topox = [0,2*H,4*H,6*H]

43 #topo = np.interp(np.linspace (0,30 ,30),topox ,topoy)

44 topo = np.interp(np.arange (31),topox ,topoy)

45

46 print(topo)

47

48

49 m=ny1+ny2

50 matnum =0

51 tttrans=srm() #generate random field

52

53 sumin=np.min(tttrans)

54

55 sumax=np.max(tttrans)

56

57 for i in range(n):

58 for j in range(m):

59 if(j+1>=topo[i]):

60

61 #g_i.polygon ((0+i,0+j) ,(0+i,topo[i]) ,(1+i,topo[i+1]) ,(1+i,0+j))

62 g_i.polygon ((0+i,0+j) ,(0+i,topo[i]) ,(1+i,topo[i+1]) ,(1+i,0+j))

63

64

65

66

67

68

69 su=tttrans[j,i]

70 farge=int(normaliser(su ,sumin ,sumax)*255)
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71 material = g_i.soilmat("MaterialName", "Test"+str(i)+str(j), "SoilModel", "

Mohr -Coulomb",

72 "gammaUnsat", 20, "gammaSat", 20, "DrainageType","

Undrained (C)",

73 "Eref" ,10e3, "nu" ,0.49, "cref",su ,

74 "Colour",get_RGB_number(farge , farge , farge)) #nu=

poisson -ratio

75

76 g_i.Soils[matnum ]. Material = material ######## virker ikke saa bra med n!=m

77 matnum += 1

78 break

79

80

81 g_i.polygon ((0+i,0+j) ,(0+i,1+j) ,(1+i,1+j) ,(1+i,0+j))

82 # material = g_i.soilmat (" MaterialName", "Test"+str(i), "SoilModel", 1,

83 # "gammaUnsat", 17, "gammaSat", 20, "Gref", 2000)

84

85 su=tttrans[j,i]

86 farge=int(normaliser(su ,sumin ,sumax)*255)

87 material = g_i.soilmat("MaterialName", "Test"+str(i)+str(j), "SoilModel", "Mohr -

Coulomb",

88 "gammaUnsat", 20, "gammaSat", 20, "DrainageType","Undrained (

C)",

89 "Eref" ,10e3, "nu" ,0.49, "cref",su ,

90 "Colour",get_RGB_number(farge , farge , farge)) #nu=poisson -

ratio

91

92 g_i.Soils[matnum ]. Material = material ######## virker ikke saa bra med n!=m

93 matnum += 1

94

95 g_i.gotostructures ()

96 #g_i.lineload ((2.5, 0+m), (7.0, 0+m))

97 #lineload_g = g_i.LineLoads [-1]

98 #lineload_g.qy_start = -100

99

100

101 def simple_test_case(s_i , g_i):

102 """

103 Takes the plaxis variables s_i , g_i and performs a series of operations

104 to create geometry features and generate the mesh

105 """

106 create_geometry(s_i , g_i)

107

108 g_i.gotomesh ()

109 g_i.mesh (0.1)

110
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111 output_port = g_i.viewmesh ()

112 s, g = new_server('localhost ', port=output_port , password=s_i.connection._password)

113

114 return s, g

Listing B.1: Create geometry and soil model

1 from plxscripting.easy import *

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from math import atan2

5

6

7 slopeStatus = np.zeros (1)

8

9 for n in range(len(slopeStatus)):

10

11 s_o , g_o = simple_test_case(s_i , g_i)

12

13

14 # Changes the mode and define phases

15 g_i.gotostages ()

16 phase0_s = g_i.InitialPhase

17 phase1_s = g_i.phase(phase0_s)

18 phase1_s.Identification = 'phase1_iteration ' + str(n)

19

20 # Activate all geometry

21 g_i.Geometry.activate(phase1_s)

22

23 g_i.calculate ()

24 g_i.view(phase1_s)

25 print(phase1_s.Reached.SumMstage)

26 slopeStatus[n]=float(str(phase1_s.Reached.SumMstage))

27 #f=phase1_s.Reached.SumMstage

28 #slopeStatus = np.append(slopeStatus ,f)

29 newest_plot = g_o.Plots[-1]

30 newest_plot.ResultType = g_o.ResultTypes.Soil.C

31 newest_plot.PlotType = 'shadings '

32 newest_plot.Phase = g_o.Phases [-1]

33 newest_plot.DrawFrame = False

34 #image_wrapper is an object that can save the created

35 #image or, if Pillow is installed , you can get the internal

36 #Pillow.Image object and use that.

37 image_wrapper = newest_plot.export (1600, 1200)

38 try:

39 from PIL import ImageFilter
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40 pil_image = image_wrapper.image

41 new_image = pil_image.filter(ImageFilter.DETAIL)

42 new_image.save("C:\\ Users\\ olewei \\ Desktop \\testp"+str(time.strftime("%Y%m%d-%H%M%S"

))+".png")

43 except ImportError:

44 #Just save if we don't have Pillow

45 image_wrapper.save("C:\\ Users \\ olewei \\ Desktop \\ testp"+str(time.strftime("%Y%m%d-%H%

M%S"))+".png")

46 print(slopeStatus)

Listing B.2: Loop calculation

1 for it in range (145):

2 phase2_s = g_i.phase(phase0_s)

3 phase2_s.Identification = 'phase1_iteration ' + str(n+len(slopeStatus))

4

5

6 nx1 =15

7 nx2 =15

8 ny1=5

9 ny2=5

10 n=nx1+nx2

11

12 #topo =[10,10,10,10,10,10,10,10,10,10,9.5,9,8.5,8,7.5,7,6.5,6,5.5,5,5,5,5,5,5,5,5,5,5]

13 #interpoler topografi

14

15 H=5 #Hoeyde slope

16 D=2 #dybde

17 topoy = [D*H,D*H,D*H-H,D*H-H]

18 topox = [0,2*H,4*H,6*H]

19 #topo = np.interp(np.linspace (0,30 ,30),topox ,topoy)

20 topo = np.interp(np.arange (31),topox ,topoy)

21

22 print(topo)

23

24 m=ny1+ny2

25 matnum =0

26 tttrans=srm() #generate random field

27 sumin=np.min(tttrans)

28

29 sumax=np.max(tttrans)

30 g_i.gotosoil ()

31

32 for i in range(n):

33 for j in range(m):

34 if(j+1>=topo[i]):
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35

36 #g_i.polygon ((0+i,0+j) ,(0+i,topo[i]) ,(1+i,topo[i+1]) ,(1+i,0+j))

37 #g_i.polygon ((0+i,0+j) ,(0+i,topo[i]) ,(1+i,topo[i+1]) ,(1+i,0+j))

38

39

40

41

42

43

44 su=tttrans[j,i]

45 #su = 100

46 farge=int(normaliser(su ,sumin ,sumax)*255)

47

48 g_i.Soils[matnum ]. Material.cref = su

49 #g_i.Soils[matnum ]. Material.Colour = get_RGB_number(farge , farge , farge)

50

51

52 matnum += 1

53 break

54

55

56 # g_i.polygon ((0+i,0+j) ,(0+i,1+j) ,(1+i,1+j) ,(1+i,0+j))

57 # material = g_i.soilmat (" MaterialName", "Test"+str(i), "SoilModel", 1,

58 # "gammaUnsat", 17, "gammaSat", 20, "Gref", 2000)

59

60 su=tttrans[j,i]

61 #su = 100

62 farge=int(normaliser(su ,sumin ,sumax)*255)

63

64 g_i.Soils[matnum ]. Material.cref = su

65 #g_i.Soils[matnum ]. Material.Colour = get_RGB_number(farge , farge , farge)

66 matnum += 1

67

68 g_i.gotostages ()

69 # Activate all geometry

70 g_i.Geometry.activate(phase2_s)

71

72

73

74 g_i.calculate ()

75 #g_i.view(phase2_s)

76

77 slopeStatus = np.append(slopeStatus ,float(str(phase2_s.Reached.SumMstage)))

78 print(slopeStatus)
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79 print(it)

Listing B.3: Update soil parameters and loop

1 ppfail = np.array ([])

2 for n,s in enumerate(slopeStatus):

3 ss=slopeStatus [0:n+1]

4 #print(ss)

5 nonfail = np.count_nonzero(ss > .99)

6 print("number of non failures ",nonfail ," of ",len(ss)," iterations")

7 pfail = (len(ss)-nonfail)/len(ss)

8 print("probability of failure",pfail)

9 ppfail = np.append(ppfail ,pfail)

10 plt.figure ()

11 plt.title('Monte Carlo simulations vs probability of failure ')

12 plt.xlabel('Iteration number ')

13 plt.ylabel('Probability of failure ')

14 plt.plot(ppfail)

15 plt.savefig("C:\\ Users\\ olewei \\ Desktop \\ pfailit"+str(time.strftime("%Y%m%d-%H%M%S"))+".png"

, dpi=300, bbox_inches='tight ')

16 plt.show()

17 np.savetxt("C:\\ Users\\ olewei \\ Desktop \\ slopestatus.txt",slopeStatus)

Listing B.4: Results: graph of probability of failure

1 print(slopeStatus)

2 nonfail = np.count_nonzero(slopeStatus > .99)

3 print("number of non failures ",nonfail ," of ",len(slopeStatus)," iterations")

4 pfail = (len(slopeStatus)-nonfail)/len(slopeStatus)

5 print("probability of failure",pfail)

Listing B.5: Results: probability of failure
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B.2 Starting Python scripting interface - Jupyter notebook

Figure B.1: How to start the scripting interface in Plaxis 2D
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B.3 Plaxis version information

Figure B.2: Plaxis 2D version used in this project
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