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Abstract

An ensemble-based method for seismic inversion to estimate elastic attributes is considered, namely the iterative ensemble
Kalman smoother. The main focus of this work is the challenge associated with ensemble-based inversion of seismic
waveform data. The amount of seismic data is large and, depending on ensemble size, it cannot be processed in a single
batch. Instead a solution strategy of partitioning the data recordings in time windows and processing these sequentially
is suggested. This work demonstrates how this partitioning can be done adaptively, with a focus on reliable and efficient
estimation. The adaptivity relies on an analysis of the update direction used in the iterative procedure, and an interpretation
of contributions from prior and likelihood to this update. The idea is that these must balance; if the prior dominates, the
estimation process is inefficient while the estimation is likely to overfit and diverge if data dominates. Two approaches to
meet this balance are formulated and evaluated. One is based on an interpretation of eigenvalue distributions and how this
enters and affects weighting of prior and likelihood contributions. The other is based on balancing the norm magnitude of
prior and likelihood vector components in the update. Only the latter is found to sufficiently regularize the data window.
Although no guarantees for avoiding ensemble divergence are provided in the paper, the results of the adaptive procedure
indicate that robust estimation performance can be achieved for ensemble-based inversion of seismic waveform data.
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1 Introduction

The motivation behind this work is seismic waveform inver-
sion, where the goal is to predict theelastic attributes of
the subsurface, in the form of acoustic- and shear wave
velocities and density, conditional on records of seismic
reflection data. Seismic inversion thus provides an image
of the subsurface and its interpretation can, combined with
other geophysical analysis, be used to establish a geological
model.

Phrased in a Bayesian setting, where initial knowledge
is incorporated via a prior probability distribution and a
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likelihood model is used for the specific data, the solution to
this Bayesian inversion problem is available as the posterior
probability distribution. However, with the non-linearity and
complexity of the forward model, there is no closed-form
solution to this posterior. In theory, the posterior can be
explored by Markov chain Monte Carlo (McMC) sampling,
see e.g. [12] for a recent proof-of-concept contribution.
However, McMC approaches are difficult to run in parallel
and they would require tremendous computing time to
ensure convergence and mixing of the output Markov chain.

With the growing availability of diverse data types in
complex spatio-temporal systems, there is currently much
focus on data assimilation methods that scale well with
high-dimensional spaces. One such method is the ensemble
Kalman framework [1, 8, 17] which is increasingly applied
to problems in the geosciences [5] and has a succesful
track record in history matching applications. In particular,
the method referred to as the iterative ensemble Kalman
smoother (IEnKS), introduced by Bocquet and Sakov [3],
is here used for the case of static parameter estimation. The
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IEnKS combines aspects of ensemble-based and variational
approaches to data assimilation. Notably, it avoids the
need for an available tangent linear model, an attractive
feature when using black-box forward models. Instead
the linearization is indirectly provided by the ensemble
evaluation.

Recent developments indicate that ensemble-based
approaches can be used for inversion of seismic tomography
data [20] and seismic waveform data [13, 28]. However, it is
not obvious how to assimilate the massive data in a reliable
manner.

The inversion is formulated as a sequential data
assimilation problem, where disjoint subsets or batches of
the seismic data records, are used to update the ensemble
in a series of assimilation cycles. If the batches are way too
large, the ensemble collapses and the estimation procedure
is stuck. If the batches are somewhat smaller but still too
large, the IEnKS procedure is likely to diverge due to
spurious updates to the estimate. On the other hand, if the
batches are too small, the inversion run time will grow
because of the computational time of the forward model.
Hence a key issue is to find efficient batch sizes, and to do
so automatically. An efficient batch size is maximizing the
amount of data while minimizing the risk of divergence.

With the tuning of data batch windows, the work partially
relates to that of [10] who used a data assimilation window
in time, but their focus was on chaotic dynamics rather
than high-dimensional data. The current work also relates
to [19] who studied the information content of data in a
history matching setting, but they used subspace pseudo
inversion, data coarsening or front extraction, which is
very different from the automatic batch window tuning.
Notably, the approach used here is clearly different from
any kind of partitioning done on the ensemble space
[24]. A general issue with ensemble-based methods is
rank deficiency of estimated covariance matrices, which is
often addressed using localization and/or inflation. Neither
of these techniques are considered here, as the focus is
solely on the data dimension aspect and how to select this
appropriately.

Analysis of the iterative update as a vector in the Hessian
eigenbasis has been considered by others, e.g. [27] that
used it to guide the choice of a Levenberg-Marquardt
regularization parameter. The focus in this work is also on
the update vector whereas the angle of analysis here is on
how it is made up of contributions from prior and likelihood,
and how these change when the amount of data increases.
The prior is a regularizing component and maintaining
enough of its influence is the aimed balance.

An example with synthetic seismic data is used
throughout the paper to give intuition around concepts
and methods. Albeit in a synthetic setting, the challenges
addressed are realistic and so is the described solution.
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The paper is structured as follows: In Section 2 the
main building blocks for sequential seismic inversion are
introduced. In Section 3 the IEnKS method is outlined. In
Section 4 two alternative methods for adaptive batch size
selection are presented. In Section 5 one of the methods
are applied to examplify the seismic inversion problem. In
Section 6 a discussion and analysis of the two methods is
provided.

2 Seismic inversion by sequential data
assimilation

The seismic inverse problem is that of inferring the
subsurface properties from measured seismic reflection
data, in the light of a physical model predicting the seismic
experiment. The inverse problem is ill-posed and can have
multiple solutions, as non-unique subsurface properties can
result in a nearly identical seismic response in a smaller
time frame. This poses problems to seismic inversion. After
describing the Bayesian approach to inversion, a sequential
method is presented as an important building block in the
suggested ensemble-based solution.

2.1 Seismic waveform model and Bayesian inversion

The elastic properties sought inferred are acoustic wave
velocity v, shear wave velocity vy and density p. Common
midpoint (CMP) seismic gathers are considered here for
inferring these elastic properties. Such gathers represent
partly processed waveform data, obtained by stacking shot-
receiver data to a common mid-point location along the
seismic acquisition line and sorted in the time-offset domain
[26]. Assuming a subsurface consisting of layers, such data
can be simulated by a seismic forward model that maps a
depth profile of layers with associated elastic properties, to
reflection seismograms at offset points from the source. A
commonly used forward model is the reflectivity method
[16]. Under the layered subsurface assumption, the elastic
wave equation can be transformed and solved in the
slowness-frequency domain, and mapped to time domain
seismograms via (inverse) Fourier transformation. The full
recording time of the gather is thus calculated at once.
Several implementations of the reflectivity method exist,
the one used here is ERZSOL3 [15]. While the reflectivity
method is quite fast compared to other numerical methods
for elastic wave propagation, it is still time consuming and
the number of simulations as part of solving the inverse
problem is a limiting factor.

The seismic gather that will provide the example in this
paper is shown in Fig. 1. Here, the seismic CMP data are
semi-synthetic in the sense that processed data from a well
log of elastic measurements have been forward propagated
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Fig. 1 Example of seismic CMP gather data

with the same forward model. The strongest reflections in
Fig. 1 represent major gradients in the elastic properties
at shallower layers. These reflections appear as hyperbolic
lines in the time-offset plot as the seismic waves take longer
time to reach far offsets. At early arrival times and far
offsets, the gather contains no records of a reflected wave,
and such data are typically zeroed out (muted). In this work,
such data points which includes the direct source-to-receiver
wave propagation, are excluded and referred to as a mute
region. The seismic gather record has a set end time after
which measurements are no longer used for the inversion.

Because the acoustic wave travels faster than the
shear wave, the earlier parts of the data are dominated
by the acoustic wave velocity differences between the
subsurface layers, while the reflection from differences in
shear properties arrive later in the data and with smaller
amplitude. The seismic reflection data indicate the changes
in products of elastic properties. For instance, the acoustic
impedance is defined as the product of acoustic wave
velocity and density. It is hence difficult to split a reflection
event in a causal underlying change in lower wave velocity
and higher density, or vice versa. The data sensitivities
to density perturbations are somehow masked behind the
sensitivity to wave velocities, and these must be known quite
accurately before one can target density. These ambiguities
are smaller with plenty of offset information available in
time-offset plots as in Fig. 1, but it is still difficult to infer
elastic properties from seismic CMP data.

Framed as a Bayesian inverse problem, the random
variable of interest is the parameter state vector X, with an
assigned prior probability density function p(x). This state
consists of elastic properties in / homogeneous layers of
the subsurface, and the prior distribution is represented by

a multivariate Gaussian process with mean and covariance
terms specified from initial knowledge. To ensure valid
physical values of the elastic attributes, positivity of these
is enforced by the state vector being the log-transform of
elastic properties x = [log v, logvs,logp]| € R™. The
parameter dimension m is three times the number of layers
1, and the number of layers and their thickness depth profiles
are held fixed.

Data are denoted y and are measurements of the reflected
wave amplitude as function of, besides the subsurface
model, arrival time and offset relative to source position,
as well as the source signal and boundary conditions. The
data are linked to the state via the forward model h(x),
which represents the elastic wave propagation as simulated
by the reflectivity method. The observation model for data
y is assumed to be unbiased (perfect model assumption) and
with an additive noise component y = h(x) + e, where e
is an independent zero-mean Gaussian measurement noise
vector with covariance matrix R. The resulting likelihood is
p(ylx) = N(y; h(x), R). The solution to the probabilistic
inverse problem is then, from Bayes’ rule, the posterior
probability density function p(x|y) o« p(y|x) p(x). Due
to the non-linear relationship between parameter state
and observations, the posterior distribution is not directly
available.

The non-uniqueness of the inverse problem means that
the posterior distribution principally can be multimodal at
certain depth regions. The ensemble Kalman method as such
is incapable of updating into a multimodal posterior as the
ensemble is updated using a common gradient. Thus the
resulting posterior ensemble will converge to either of the
local modes.

2.2 Sequential data integration

The seismic gather can be split in disjoint subsets or
batches yx,k = 1,..., K such thaty = {yi,...,¥x}
The partitioning of data into batches is expressed as
different arrival time windows, which are referred to as
partitions, windows, batches, or batch windows. Partition
k of data is extracted by selecting suitable elements of
the forward operator for the data, denoted by #hg(x).
Assuming conditionally independent measurement noise
terms, given the state vector, the likelihood function can
also be partioned as p(y|x) = [[; p(ykIx), with kth
batch likelihood p(yilx) = N(yi; hi(x), R;) and Ry
is the covariance matrix of the observation error in the
corresponding window. When data is partitioned in such
arrival time windows, by the nature of the reflection signal,
it confines the influence region to a limited depth range
and thereby regularizes the problem of estimating the
parameters. This influence region is here referred to as the
observed depth region.

@ Springer
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Data are assimilated sequentially over these disjoint
partitions. At the first assimilation cycle, the prior forms
the forecast model, which is updated using data y; in the
first batch. The analysis model from the first cycle is then
p(x]y1). This procedure of going from a forecast model to
an analysis model continues at the subsequent cycles. Using
Bayes’ rule;

L Yi-1) ()

repeatedly for k = 2,..., K, and at cycle K all data has
been assimilated. The main contribution of this paper is to
robustly scale the size of a batch window when initiating
an assimilation cycle. With this focus, the cycle index k is
ignored in the following where the method is outlined for
one assimilation cycle only.

PX|y1, ..., ¥k) < p(yelx) p(Xly1, - ..

3 Iterative Ensemble Kalman Smoother

This section introduces the IEnKS and its components, of
which some are fundamental for the adaptive batch window
selection. First, its ensemble aspect is presented followed
by outlining the iterative solution to the variational problem
and the stopping criteria of this iterative scheme. Finally,
the method is put in the current context of elastic seismic
waveform inversion.

The IEnKS shares the feature of other iterative ensemble
smoothers (see e.g. [9]) of using the (negative) log-posterior
—log p(x|y) as target for minimization. The single state
that minimizes such an objective function corresponds to
the maximum a posteriori solution and this is used in the
IEnKS as the estimate for the ensemble mean.

The method can be regarded as an iterative version of
the Ensemble Transform Kalman Filter (ETKF, [2, 14]),
a deterministic square-root filter whose formulation makes
it efficient in high-dimensional observation spaces with
respect to the required matrix inversion. The approach being
deterministic means that it avoids random perturbations of
observation as is used in stochastic versions of ensemble
filters.

3.1 Ensemble-based Data Assimilation

The density functions in Eq. 1 are approximated by
ensembles of realizations from these distributions, and
their moments approximated by sample moments. In an
assimilation cycle the forecast ensemble is input while the
output is an analysis ensemble. For the static parameter
estimation problem considered here, the analysis ensemble
then forms the forecast for the next cycle, and this continues
until all data batches are processed.

The members of a forecast ensemble denoted xf, i =
1,...,n, where n is the ensemble size, are collected as
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columns in the m x n forecast ensemble matrix Ef. The state
estimate is the ensemble mean:

ln
<t E:f
= — A )
X X; ()

i=1
The second moment is defined via the m x n normalized
state anomaly matrix

X = (B =%1") /0 = D', 3)
which is the square root of the error covariance estimate
Pr = XX} . )

Turning (3) around, the forecast ensemble matrix assembles
the mean and anomalies as

E =x1" + - D2 X;. 5)

Conditioned to data y, an assimilation cycle updates the
forecast ensemble to an analysis ensemble, described by the
analysis mean x* and analysis anomaly matrix Xj.

The analysis state is found as a linear combination
x4 € {if +Xew | w e R”} within the span of the ensemble
anomalies Xy, referred to as the ensemble subspace. With
this parameterization of the analysis state, the control
vector w replaces the state vector (the elastic parameters)
as the variable of interest. The state that maximizes the
posterior distribution is equivalent to the control vector that
minimizes the negative log-posterior expressed in terms
of this subspace reparameterization. This is the variational
aspect of IEnKS. Hence, the change of variable x — w
induces a change of the log-prior term [|x — xf||%,f — |lwli3,
with the notation ||a||123 — a'B!a. The analysis mean is
then x* = X' 4+ X;w? with the optimal weight vector being

the solution w* = argmin,, J(w), where the objective
function is given as
Jw) = 3lly = (" + Xew)lIg + 3llwll* 6)

As in the ETKF, the analysis anomaly matrix is updated
using an ensemble transform matrix T such that the square
root update is X, = XfT. The analysis covariance can
be expressed as XaXz = Xf(H|wa)_1X1T where H|ya
is the Hessian of the objective function (6) evaluated at
the optimum [14]. Therefore the transform matrix T =
(H|wa)~'/? provides the analysis update for the covariance
square root. With the analysis mean x* and anomalies X, in
place, the analysis ensemble is assembled similarly to Eq. 5
and thereby closes an assimilation cycle.

3.2 Iterative procedure
Letting index j indicate iteration number, the variational

problem of minimizing J (W) is solved iteratively as w; | =
w; + Aw;, where the search direction is taken as the
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Gauss-Newton update Aw; = —H;l vJ I This involves the
n x 1 gradient (Jacobian) VJ and the n x n (approximative)
Hessian H, of the objective function:

VI =w YR (y-3,) . (7a)

H; =1L, +Y;R'Y,. (7b)

The gradient and Hessian calculation notably involves
ensemble evaluations only.

The value of iterating comes from a reevaluation of
the forward model gradient Vxh|y, around the iteratively

improved mean state X; = X+ Xgw j- Ensemble based
assimilation does not require this model gradient explicitly,
instead the prior observation anomalies Y ; are assumed to
be the image of the prior state anomalies, mapped through
an iteratively reevaluated model gradient Y; = (Vxh |xj ) Xr.
This reevaluation is attained using the IEnKS transform
variant [25]. Therein an intermediate ensemble is used to
evaluate the observation anomalies, where this ensemble is
preconditioned to data in the sense that it uses the currently

available mean x; and transform matrix T; = H;_l?. The
iterative ensemble
E; =x;1"+ (n— D'XT; ®)

is consequently used to evaluate the p x n observation
anomaly matrix

Y = (h(Ej)—yle)/(n— 2, 9)

with y; = h(E;)1/n being the mean of the observation
ensemble. The observation anomalies (9) are conditional to
the iterative ensemble E;, but should relate to the prior Ef.
For this reason they are untransformed (or “deconditioned”,
[21]) as Y ;= YT]TI, before being used in the sensitivities
().

The iterations are initialized with wy = 0 and To = I, so
that Eg = E' and the prior distribution on w is a standard
normal distribution. This will be utilized later.

The matrix power operations applied to the Hessian are
facilitated when this matrix is factorized in a eigen-decom-
position. In this work, the singular value decomposition
(SVD) is applied to the p x n ensemble of standardized
observation anomalies R™!/2Y, and with p > n
generally being the case, ‘economic’ SVD offers significant
computational savings. Ignoring the subscript j, the
decomposition is

n
RT2Y =USV' =) “auv; (10)
i=1
where the p x n matrix U has left singular vector u;
as ith column, and correspondingly for the n x n matrix
of right singular vectors V. The n x n diagonal matrix
S holds the sorted singular values (S);; = X;, A1 >
A2 > ...A; > 0. Equation 10 involves the inverse

square root of the error covariance matrix R™1/2, which is

straightforward to compute when R is a diagonal matrix.
Inserting this decomposition into Eq. 7b, and using the
orthogonal properties VV' = U'U = I, which holds when
p > n, the Hessian becomes

H=VAV withA =1+S'S.

Here, the diagonal matrix A has elements (A);; = (1 + Al.z).
The inverse and square root of the Hessian are then obtained

from the corresponding operations on the diagonal matrix
A:

H!=VA 'V and H /2 = VA~ V/2VT |

which are used in the search direction and as the transform
matrix, respectively.

3.3 Stopping criteria

A termination criteria is needed to stop the iteration process
when continued iteration does not improve the solution
significantly. Such a criteria is most often expressed as
an absolute or relative change in either objective function
evaluation or some norm of the control variable, falling
below a given tolerance level. In the considered application,
it was found challenging to set an appropriate tolerance
level for any commonly used measure (on J(W;) or w;)
that resulted in consistent termination across varying data
dimension, signal-to-noise ratios and ensemble sizes.

The reflection data assimilated in an analysis cycle is
related to a (local in depth) observation region. The optimal
w? controls the full depth analysis mean and is supposed
to form the estimate of the elastic parameters in this
observed region, while keeping the prior mean more or less
unchanged outside this region. The scale of the cost function
is dominated by the data misfit term and is insensitive to
(smaller) adjustments in w that acts on the state mean X
outside the observed region. Thus basing termination on
changes in J(w;) does not necessarily express that a steady
global mean has been reached. Norms on either w; or Aw;
are very dependent on the time window span and on the
“distance” between forecast and analysis mean. Suitable
threshold on changes in these would vary for different
depths of observed region, making them difficult to set
beforehand.

One measure was seen to have a consistent behavior
across the data batch window lengths and position within the
gather and across different ensemble sizes. Importantly, the
measure might have different scale but behaved similarly
when it seemingly was a good time to stop iterating, i.e.
when ||w;| or ||Aw;| had reached stationary levels. This
measure is the mutual information (or Shannon information
content), originating from information theory but also used
within data assimilation [11, 23], which addresses the

@ Springer
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reduction in entropy/improvement of knowledge. It can be
evaluated from the eigenvalues of the n x n matrix YTR_IY,
referred to as the information matrix in ensemble subspace
[29], as

1 & 5
Mlzi;log(l—i-)»i) : (11)
i=

with A; the singular values of Eq. 10. This quantity
decreases during (converging) iterations, flattens out and
eventually increase slightly. The point where the measure
reaches a minimum level is associated with stationarity in
that the eigenvalues Al.z do not change, meaning that Y
and thus T; do not change either. Hence the stopping rule
was formulated as when MI; > MI;_y, iterations are
terminated. This stopping criterion is complemented by a
maximum allowed number of iterations.

3.4 Elastic inversion with IEnKS

Estimation of the elastic parameters is complicated by the
different sensitivity of the reflection data to the different
elastic properties. The control variable w determines the full
depth mean of all three elastic parameters. So the focusing
of its effect onto only the observed region relates to how
well the cross-covariances between the parameter state and
the seismic data is resolved.

The iterative ensemble (8) represents a sequence
of ensembles going from forecast to analysis, where
the sequence reflects the gradual change in parameter
estimation and its uncertainty over iterations. The gradual
change in the ensemble used to evaluate the sensitivities
(7) is important. The implicit ensemble approximation
of the tangent linear model again depends on the cross-
covariance between each elastic parameter and the seismic
waveform being well estimated. Within a batch window
of seismic data, the variability in acoustic velocity affects
the variability in seismic waveforms more strongly than
shear velocity and density. So the preconditioning to data
in the iterative ensemble gradually accounts for the stronger
reflections from shallower layers, reduces their effect and
enhances the sensitivity to shear velocity and density, as
well as the variables in layers further down in the observed
region. This is the reason for partitioning data into arrival
time windows and sequentially processing these in an
ordered manner. The parameters and their variability at
shallower depths must be accounted for before the ensemble
smoother can estimate the sensitivity to parameters at
deeper layers in the seismic waveforms.

The sample estimate of cross-covariances between data
and density perturbations in particular is more susceptible
to rank-deficiency issues (“spurious correlations”). This
occurs when either the ensemble size is too small, the data

@ Springer

batch size too large or the observation errors are large.
In these situations, the update to the density profile has a
higher risk of divergence in the sense that the ensemble
no longer represents the true error statistics. As the density
couples with the velocities in the reflection/transmission
coefficients, a diverging density estimate during iterations
also has a negative influence on the estimation of velocities.
Moreover, a divergent solution in the observed region leads
to problems for all parameters at larger depths because the
parameters above are incorrect.

4 Selection of batch window

The amount of data included in an analysis step can be a
challenge for ensemble-based methods. In the application
with seismic gathers, the massive waveform data available
must be assimilated sensibly to avoid problems: first, the
ensemble linearization becomes a limiting assumption when
a large time span of data are integrated, and the iterative
procedure might not converge. Second, a large dataset
can lead to over-fitting as in underestimation of the state
uncertainty.

When performing the kth analysis cycle, the data parti-
tion expressed through /; must be known, so determining
this is the first step when entering a cycle. The focus is
on choosing a batch window that results in a stable initial
iteration as this is fundamental for later convergence.

In what follows, a method for automatic selection of the
batch window is presented. A window size is considered
acceptable if a criteria is fulfilled, and the window expanded
until this acceptance condition is broken. The acceptance
criteria is formulated based on an analysis of the initial
update, and two alternatives are presented, each with a
different angle of interpretation.

4.1 Spectral interpretation

Inserting the singular value decomposition (10) into the
gradient and Hessian expressions (7) along with the
normalized innovations Ay = R™Y2(y — §), the Gauss-
Newton update direction can be written as

Aw = —VA~IVT (w - V):TUTAy)

n

-3

i=1

i (u] AY)
1+ 27

—V;rW
1+ 27

12)

The update direction is evidently within the span of right
singular vectors V. The coefficient of each basis vector v;
is composed of (projected) contributions from the prior (via
w) and from the likelihood (via Ay). The update vector
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can be split into the vector components Aw, = Va and
Aw, = Vb, with ith coefficients

a; = —v,w)(1+ 12" and b; = A; (u; AF)(1 +22) 7",

The control vector is initialized with wo = 0 hence the first
update w; = Awy is solely determined by the likelihood
contribution with basis coefficients b.

Each of the vector components consists of projection
coefficients with a weighting factor derived from the
eigenvalues of the information matrix Y'R~'Y. Figure 2
shows the eigenspectra and weighting curves as a function
of an increasing window span. They are obtained by
using a sequence of time windows with identical start and
increasing length, and provides a useful visualization to the
argumentation. The distribution in Fig. 2a is the information
matrix eigenspectrum A? from which eigenvalues of the
Hessian 1 + Al.z, inverse Hessian (1 + )Ll-z)_l and the

. . —-1/2 .
transform matrix eigenvalues (1 +Al.2) /2 are derived

(Fig. 2b). Their eigenbasis are the right singular vectors, as
explained in Section 2. Figure 2c shows the weighting curve
that enters the likelihood component coefficient b.

While the specific shape of the Al.z distribution and hence
also of the derived spectra will depend on the prior ensemble
characteristics and configuration of the forward model, the
general behavior is well represented by these displays.

Referring to the information matrix, [29] divide its
eigenspectrum into a region of signal, where )»12 > 1
and the forecast errors are larger than observational noise,
and a noise region with Al.z < 1 and the forecast errors
being smaller than the noise. According to this, the weigh-
ting curves (1 + )\1.2)’1 and X (1 + )»1.2)’1 to the left
and right of kl.z = 1, have relation to the influence
from observation and from prior. In the contribution from
the prior to the basis coefficient a; + b;, this division
into likelihood and prior influences corresponds to (1 +
)»12)_1 < 1/2 and > 1/2 respectively. This interpretation

1010

of influence regions also applies to the transform matrix
with eigenvalues (1 + k?)_l/ 2 (Fig. 2b), where components
with eigenvalues approaching 1 contributes to preserving
ensemble spread. These eigenvalues are associated with
states where observations are non-informative and the prior
should dominate. The opposite occurs for components
approaching 0, which are related to the data conditioning,
providing information for improved estimation and reduced
uncertainty. For the likelihood contribution, this division
into influence regions corresponds to either side of the
“center” point with peak value of 1/2.

When the amount of data increases, the prior contribution
to the update Aw is reduced as more and more of its
projection coefficients (viTw) are weighted with values
approaching zero (Fig. 2b). In the likelihood contribution,
the weighting of the coefficients (ul.TASI) is also shifted but
not downweighted similarly, and generally increases the
likelihood contribution to the update. The region of peak
weighting moves to higher indices and amplifies projections
onto singular components uw; with more high-frequency
content, relative to components with lower indices. Basing
the search direction Awg on projections of Ay onto
higher-frequency components can overfit to noise rather than
structural eigenbasis components of the observation error
covariance. This could render the mean update x; highly
varying with values that are unacceptable for the forward
solver, or so far from the true profile that the error
covariances evaluated around this new mean are useless for
the linearization.

The singular value index i for which k% ~ 1 is
close in value to another information theoretic measure
referred to as the degree of freedom for signal ds. This
measure can be viewed as the influence of observations
to the analysis or entropy reduction [4, 18]. The ensemble
subspace version of this quantity can be expressed as
dg = Y A7 (1+ Al.z)_l [29]. Both the measure d; and
the particular singular value index can thus be thought of
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as indicating the information content of the observations
within a batch, and one can control either to restrain the
information content. Approaches to obtaining a balance
between ensemble degree of freedom and observation
information content was also considered in [19] within the
context of history matching. While seismic inversion and
the history matching problem do not have the same means
available of approaching this balance, the target of stable
updates is the same.

Next, the algorithm to select a batch window is presented.
This uses an acceptance criteria to evaluate the window
with the aim of balancing likelihood influence with prior
restrainment. Following this, the two alternative criteria are
described.

4.2 Batch selection strategy

The batch selection searches for an end time 7g of a time
window so that the kth data batch is Ay y(t,-),t €
[Ts, Telx. That is, seismic data for arrival times Tg to Tg
for all offsets. The exclusion of data in the mute region is
implicit in &y. The subsequent assimilation cycle then starts
at Ts x+1 = Tgr + At. Simplicity is sought by using a
minimum of user-supplied tuning parameters. The approach
involves repeated use of singular value decomposition, but
this cost is negligible compared to the benefit of having
selected an adequate batch of seismic data that reduces the
risk of diverging iterations.

The principle of the algorithm is to keep extending the
time window until a criteria is no longer respected, as
illustrated by the flowchart in Fig. 3. The algorithm is inde-
pendent of the particular acceptance criteria. The extension
is done in step sizes of AT. For efficiency, a larger step
size (ATmax) for the time window elongation can be used
initially. Once the criteria is no longer satisfied, the latest
time window increase is reverted, the step size decreased

AT = ATnax Ts, Trmax
art
Te=Ts AThwin, ATmax
‘ AT = max (| $AT |, ATpin) }—>

Tg = min(Tg + AT , Tinax)

Fig.3 Flowchart of data batch size selection
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and the loop repeats until a minimum step size (ATpyin) or
the end time of the gather T, is reached.

4.2.1 Weight criteria

This criteria uses the interpretation of the weighting curves
and their division into likelihood/prior influence regions.
The initial update Awg equals Awy, but by controlling
the initial distribution of the weight curves (Fig. 2b and
c), the aim is that the initial likelihood contribution is
restrained sufficiently to let the prior retain its influence at
the following iteration, balancing their contributions.

As explained, the point A> = 1 has a central
interpretation and its location is useful for controlling the
weight distributions. The relative location of this point is
therefore taken as the key variable in the window acceptance
criteria. Setting ic = max {i |A7 > 1;i=1,...,n} the
weight criteria is expressed as

l’l—lc

- =B, 13)
Ic

where B = 1 means ic &~ n/2. The ratio parameter S

must naturally be positive, and for 8 > 1 the window size

selection will be smaller than for 8 = 1 and vice versa for

B <1

4.2.2 Norm criteria

This alternative approach is based on the update direction
(12), where the focus of argument is shifted from the
weighting curves to the prior and likelihood vector
components. With Aw = Aw, + Aw,, all that is known
is that the inequality [[Aw|| < [[Aw,]| + [|[Aw,]| holds,

. 1/2
using the standard 2-norm ||z| = [Zl |zi |2] / . The second
strategy to accept a batch window is based on the criteria

AWl

=B, (14)
AWy ||

where again B is a preset threshold parameter. This
indirectly sets a bound on the ratio [[Aw]|/[|Aw,]
and consequently restrains the likelihood component
contribution to the update vector. The initial control
variable w is considered to have a standard normal prior
distribution, and a Monte Carlo estimate of a fictitious prior
component vector a can be generated. For a given partition
selection with associated set of singular components
{Xi, u;}, a large batch of B samples w? ~ N(O, I) is used
to form

B T, b

- 1 —u; W
A= — i, 15
=2 I; 7 (15)
which subsequently sets ||[Aw,| = |[a]| used to evaluate

the criteria Eq. 14. The Monte Carlo expectation is taken
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on the norm argument instead of the norm due to Jensen’s
inequality. The absolute value operator of the 2-norm is
taken within the estimator (15) as otherwise the expectation
would average out to nearly a zero vector.

Figure 4 illustrates a typical development of these norms
during a batch window search. At the initial window
expansion (as described in Section 4.2), the fictitious
prior component norm dominates. Continuing the window
expansion (with increasing data dimension p) enlarges
the likelihood component norm and eventually this will
dominate, consistent with the evolution of the weight curves
in Fig. 2b and c. The point where these norms cross in Fig. 4
is the conditional branch where the selection algorithm
(Fig. 3) reverts the window increase and decreases the
stepsize.

In contrast to the weight curve approach, this approach
takes into account the innovations which makes it more
sensitive to their contribution to the update. The actual
Aw, | j=1 will still be zero but the aim is that at the following
iteration, the magnitude of the prior component will be in
the vicinity of that of the likelihood component and thereby
reducing the risk of observations dominating the update on
behalf of the prior constrainment.

5 Numerical example

Results of applying the IEnKS to seismic data inversion are
presented next. First, the seismic data acquisition design is
outlined, followed by the prior model description, and then
results of the adaptive partitioning for sequential inversion.
This section uses the norm criteria with a ratio parameter of

——[[Aw, || ——||Aw,|]

15 T T

10 |+ .

0 Il 1 -
102 10% 104

Data dimension p

Fig. 4 Evolution of vector components norm during time window
search. Prior component |[Aw,| in blue, likelihood component
[[Awy || in red. Here 8 =1

B = 1, while results using the weight criteria is discussed in
Section 6.1.

5.1 Description of setup

The measurement configuration consists of 100 receiver
locations, at offsets distributed in the range 50 m to 5 km
with a uniform spacing of 50 m. The source is located
in the top layer at 5 m below the top surface, which has
the boundary condition of a free surface. This top layer of
500 m depth has fixed properties. The source time signal is
a fifth order Butterworth wavelet with frequency bandpass
2-50 Hz and time sampling is 2 ms. The seismic traces has a
limited frequency bandwidth compared to the source signal,
where these are generated with a frequency content 5-32
Hz, with linear in- and out-tapering from 5-7 Hz and 30—
32 Hz. The gather data up to 4 s is used for the inversion,
excluding data in a mute region defined by normal move-out
in the top layer. The total number of data points is ~ 10°.

Data from a processed well log are used as the true
subsurface model m' and using this as input for the forward
model a simulated data set is considered the true seismic
CMP gather, with a sample of measurement noise added. A
constant noise level R = ¢ 21 is used in the measurement
model, where the noise variance oez is set to have a signal-
to-noise ratio of 13 dB with respect to a reference signal
power. This reference signal power is set as an averaged
power in the time interval 1-3 s and offset range 0-3
km of the true seismic gather. As the amplitude of the
seismic signal decays with time, this means a very non-
uniform signal-to-noise ratio will be present in the data to
be assimilated.

Larger ensemble size had a tendency to make the
system unstable. The reason is growth of the largest
eigenvalues of the information matrix during iterations. This
propagates into a corresponding largest eigenvalue of the
inverse transform matrix, so that observation anomalies
were upscaled unreasonably causing problems for the used
SVD routine. This is a numerical issue and was handled by
clipping eigenvalues of the transform matrix below a certain
threshold which propagates into its inverse. This approach
is the same as applied in [25].

5.2 Specification of prior

As the analysis mean is found as a linear combination
within the ensemble subspace, the trends and smoothness
specified in the prior structure influence the ability to
form combinations of sufficient variability to fit the true
underlying profile of elastic parameters. Consequently, the
prior specification is a cornerstone for a succesful inversion.

The prior ensemble is here specified by samples from
a multivariate Gaussian distribution of the log-elastic

@ Springer
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parameters. This initial distribution for the ensemble is
defined through a mean vector and a covariance matrix.
The log-units domain is not the most intuitive domain for
prior specification, and instead, linear depth trends for the
mean and standard deviation are set in the physical domain
of the three elastic parameters. Using the relation between
arithmetic moments of normal and log-normal distributions,
these trends are mapped into normal-domain mean u,
and standard deviation o,. A cross-correlation structure
between the three parameters and a spatial correlation must
also be specified. Using a separable structure, the final
covariance matrix is

1 nps O
covx = X, = diag (o) nps 1 0| ®TI |diag(oy) ,
0 0 1

where the spatial (depth) correlation structure I' is taken
as a Matérn function of order 3/2 with a range parameter
such that correlation is 5% at 500 m distance. The cross-
correlation between velocities is 7,y = 0.5, and ® is the
Kronecker product.

Initially, the ensemble consists of 7 independent samples
from this Gaussian model. For the benchmark case
presented here, an ensemble size of n = 300 is used. In the
discussion, ensemble sizes of n = 150 and n = 600 are also
studied for comparison.

The support of the prior ensemble when mapped to the
log-normal domain, is presented in Fig. 5. This displays the
ensemble median and the span of 90% empirical coverage
of the prior ensemble.

5.3 Results

The gather data were limited to the time interval 0.6—4s.
By running the algorithm this interval was partitioned into
5 blocks, as displayed in Fig. 6. The time lengths of
these windows were 556, 690, 798, 528, and 828 ms, with
corresponding number of data points 4247, 13635, 25304,
22125, and 40809. Ensemble evaluation was performed

1 2 3 4 5
Offset [km]

Fig. 6 Partition into batch windows of seismic gather data

in parallel using 20 cores, and computation time for the
inversion was around two and a half hours.

The resulting posterior ensemble is displayed in Fig. 5,
along with the truth and the prior ensemble. This shows
that acoustic and shear velocities are estimated well down
to around 4 km depth, whereas density is only estimated
well down to 3.5 km. Generally, the density estimate is
less accurate than that of velocities, consistent with the
expected smaller sensitivity of the waveform data to density
perturbations.

The assimilation statistics are presented further in Fig. 7.
Here, the estimation bias |[m — m'| is shown. The physical
state estimate m = median (exp(E?)) is seen to correlate
well with the (marginal) standard deviation from the
analysis ensemble. For the shear velocity in Fig. 7b,
estimation results stand out in two areas at shallower depths
(at 0.6 km—0.8 km and 1 km-1.2 km depth). In these areas,
the bias deviates largely and this can also be seen in the
standard deviation where there is a local increase. Both

Depth [km)]
Depth [km]

vp k]

(a)

@ Springer

vs [km/s|

Depth [km]

p [g/cm’]
(b) (c)

Fig.5 Ensemble and truth; blue is prior, red is posterior, black is truth. a Acoustic velocity b Shear velocity ¢ Density
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Fig.7 Estimation statistics. a Acoustic velocity b Shear velocity ¢ Density

cases are associated with very low values of true shear
velocity. The estimation is there seen to be more difficult,
possibly associated with challenging parts in the forward
model. The consistent correlation between the (unknown)
estimation bias and the ensemble spread shows that an
indicative quantification of the estimation uncertainty can
indeed be extracted from the ensemble solution.

Figure 8 shows how the sequential estimation proceeds,
by displaying the ensemble (marginal) standard deviation
for the three parameter types over the course of assimilation
cycles. Each analysis cycle reduces the acoustic velocity
uncertainty to slightly larger depths than shear velocity
and density. This is expected due to the higher acoustic
wave speed. A given window of data contains acoustic
wave reflections from deeper layers, and the estimation of
acoustic velocity therefore occurs slightly further in depth
than for the other two parameters. The sensitivity to the
three parameter types is also somehow visible from these
plots, where the reduction in uncertainty of acoustic velocity
is changing in more focused steps, compared to especially
density. For each assimilation cycle, the ensemble spread
below the observed region is maintained. This implies that
the low uncertainty in Fig. 7 is not a result of ensemble

collapse but indeed indicates estimation uncertainty in
this synthetic example, as ensemble collapse would affect
throughout the full depth and consequently the ensemble
spread below an observed region. Evidently, this is not the
case.

Figure 9 shows the iteration history of the objective
function, the mutual information measure used as stopping
criteria, and norms of control vector and its update, for
each of the five batches. The objective function consistently
reaches a stationary level faster than the other measures.
The objective is dominated by the data misfit, and it flattens
out when continued iteration does not update the ensemble
mean X; in the observed region. Still, the changes below
the observed region could be substantial, where the analysis
mean ideally should not be far from the prior mean. Hence,
much of the later effort of iterating does not contribute to
reduce the data misfit, but rather to focusing the analysis
update to the relevant parameters in the observed region.
This is reflected in the continued change in magnitude of
lw;ll and its update || Aw;||, which continues long after a
stationary level of data misfit is observed. The MI measure
also reaches a stationary level later than the objective
function, but the (iteration) onset of this flattening out

Depth [km)]
Depth [km]

Depth [km]

1071 1073 102 107! 10° 1073
v, [km/s|

()

1072
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107t 10° 1073 1072 107t 10°
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(b) (©)

Fig.8 Ensemble standard deviation over analysis cycles. Order is from lightest (initial ensemble) to darkest (final analysis). a Acoustic velocity

b Shear velocity ¢ Density
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Fig.9 Iterative history of (a) objective function, (b) mutual information and Euclidean norm of (c¢) w and (d) Aw, over the 5 batch windows. a

J(wij)bMI; c|w;lld[[Aw,]l

correlates much better with ||w || converging, than with data
misfit. Which support the choice of using this measure as
stopping criterion. Not shown here is the iterative evolution
of the measure of degree of freedom for signal measure dj
(Section 4.1), which is very similar to that of the mutual
information.

Another apparent feature is the large dependency of
relative difference between initial and final level of
objective value, on the overall signal-to-noise ratio within
the data window. Seismograms will always have decaying
amplitude with traveltime and the measurement error might
not decay in a similar manner, so this issue will generally be
present. In Fig. 9a the first batch window has much larger
difference than the others as measurement noise is relatively
low compared to signal amplitude. In contrast, the data of
the fifth assimilation cycle is masked by noise to a degree
that the data misfit has very little reduction, but nevertheless

@ Springer

contributes to better estimation of parameters in the 3.5—4
km depth range.

6 Discussion

The challenge of non-unique solutions to the inverse
problem are discussed first, continuing the numerical
example using the weight rather than the norm criteria.
Then a replicate study is presented for both the weight
and norm criteria, comparing stability, batch sizes and
the number of forward evaluations. The replicate study
is performed to evaluate the strategies in the light of a
reduced dependency on the particular initial ensemble.
Stability, or rather divergence, is considered in the sense
of inessential/spurious updates where the estimation fails
due the ensemble no longer representing the true error or
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forward model crashing due non-physical input. Divergence
as in ensemble collapse was not encountered in any of the
repeated trials as the batch size was never increased to a
degree where collapse occurs.

6.1 Challenge of non-uniqueness

The example presented in the previous section used the
norm approach to finding the window lengths. Using the
same sample of prior ensemble and measurement noise, the
inversion was performed using the weight curve strategy
instead, with a ratio parameter 8 = 1. This approach
generally chooses larger windows thus making it more
exposed to entering another local mode of the posterior
distribution.

Figure 10 shows the results after the third assimilation
cycle, which indicates divergence and exemplifies a case of
misestimation. The observable region starts at around 2.5
km depth, and the top of this region is well estimated. Down
the observed region around 3 km, the divergence starts. The
data time window covers 2.326-3.184 s with 34052 data
points. This partition is larger than both the third and fourth
batch in Section 5.3.

Below the depth where a wrong local mode is found,
the mean is highly spurious. The mechanism driving the
misestimation in this case is the ensemble linearization
of the density gradient/tangent linear model. The cross-
covariances between waveform data and densities are much
more susceptible to being poorly estimated, i.e. “spurious
correlations”, than for the velocities. The density effect
on the reflected waveform amplitudes is more obscure,
and acts in combination with the velocities. Ambiguity in
the estimation of density sensitivity can lead to an update
direction Aw that points towards a local and erroneous
mode. And the chance of this occuring increases with the
batch size. Once a local mode is discovered through the
control vector w, the mean x below that local misestimation
will diverge. A false mode has p > p' and velocities

0.5

~ ; . . . .
Up,s < VU, ¢ Or vice versa in some localised depth region. In

which “direction” the false mode is estimated is seemingly
a question of the position of the prior mean X' of the
assimilation cycle.

To illustrate this, a closer look at the course of the iter-
ative mean is displayed in Fig. 11. Focusing on the depth
range 2.5-3.5 km, Fig. 11a shows the estimation bias for
each of the elastic properties over the course of the first 5
iterations. The top 2-3 layers are seen to be well estimated
within the first few iterations, whereas divergence takes
place from layer 4 or 5 and downwards. The density bias
indicates that the onset of misestimation is from the very
first iteration, starting at depth around 3.2 km from where
the bias evolves consistently into adjacent layers reaching
a fixed value. This is in contrast to the estimation bias of
the velocities that varies over iterations, and implies that it
indeed is density that drives the estimation divergence. The
objective function, Fig. 11b, shows that the data misfit is
reduced while the mean is updated towards an erroneous
local solution. So the minimization problem is converging
in the sense of reducing the data misfit, just at the wrong
solution.

The norm criteria seeks to assure that ||Aw, ;|| and
|Awy ;|| for j = 2 are of comparable size (for B = 1)
in the hope that this is a good start for stable iterations.
In comparison, the weight criterion has no notion of this.
Figure 12 shows the norm components for this divergent
3rd window, along with the corresponding components from
the 4th assimilation cycle in Section 5.3. It is not a fair
comparison, as the previous section’s 4th cycle is shorter
with fewer data points, but it highlights an observation
that is fairly consistent across encountered examples of
divergence and exemplifies a characteristic of convergent
versus divergent solutions. The main difference is the
continued dominance of ||Awy ;|| when the estimation is
diverging. While the norm criterion starts out with a slightly
lower ||Aw, »|| than ||[Aw, »||, the following iterations has
a larger prior component magnitude until they equalize,

(a)

(b) (c)

Fig. 10 Prior and analysis ensemble of the 3rd batch window; blue is prior, red is posterior, black is truth. a Acoustic velocity b Shear velocity ¢

Density
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Fig. 11 Over iterations: a the estimation bias |m; — m'| for the first 5 iteration for each elastic attribute and j = 0 is prior estimate, and b the

objective function. a |[m; —m'| b J(w;)

which is the point where ||w| reaches a stationary level
(Fig. 9c). Contrary for the divergent weight criterion, the
likelihood component keeps dominating until they equalize.
From our experience, the pattern is that the relation between
these vector norms in the first 2 to 4 or 5 iterations
determines whether the estimation is converging or not.

We speculate whether monitoring the course of the
update vector components’ magnitude could effectively be
used as a running diagnostic. A diagnostic that indicates
divergence with the potential to stop iterating and restart
the assimilation cycle with a shorter data window. The
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Fig. 12 Norm over iterations of vector components Aw, ; and Aw, ;.
In legend, ‘w’ (weight) refers to 3rd batch in Fig. 10, while ‘n’ (norm)
refers to 4th batch of Fig. 5
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monitoring has a cost though, as the left singular vector
u; must be available for calculating Aw, while not strictly
necessary for elements of the IEnKS as such. Yet, this
could be outweighed by the possible robustness added to an
inversion routine.

As a final remark on the issue of non-uniqueness and
misestimation of a gradient towards a false local mode. The
general observed picture is as seen in this case, where the
top of the observed region is well estimated but the mean
updates towards a local mode further down, it was thought
that dampening the update could help by the mean moving
less (at deeper depths), giving an opportunity to reevaluate
the sensitivities when the top of the observed region had
been accounted for. To dampen the update step, the principle
of Multiple Data Assimilation (MDA, see e.g. [6, 7]) was
applied. A sequence of MDA iterations with its inflation of
the observation error covariance matrix, was used for a fixed
number of initial iterations. The sequence choice of inflation
factors was based on a geometric serie [22]. The MDA error
inflation changes both the update direction and dampen its
magnitude, and it was hoped that it could downplay the
contributions from observations to the control vector that
locked the mean state in a wrong mode. But the results
showed no effective improvement as it did not guarantee
against misestimation. This might be due that MDA inflates
the error for all data points equally, whereas it probably
would be benefial to have inflated them differently,
in order to downplay data at later time points within
the window. This could be achieved through covariance
(R-) localization, by upscaling the observation error at later
time instances and reducing this inflation gradually over the
initial iterations. How the upscaling should be distributed
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across time and offsets is a complicated question and this
approach has not been pursued any further.

The use of a comparable stochastic method (the sto-
chastic iterative ensemble smoother [21]) was also tried
out to check whether the perturbed observations would
have a positive effect with respect to the false local mode
estimation. While the stochastic version gives comparable
results when successful, there was an observed tendency
that misestimation towards a local mode occurred more
frequently.

6.2 Replicate study

The example presented so far was for a particular sample
of prior ensemble and measurement noise. If these were
resampled and the inversion done again, another outcome is
obtained. In order to examine the general robustness of the
strategies, the parameter 8 and dependency on the ensemble
size, repeated estimation trials was performed. Independent
replicate trials that randomize the initial prior ensemble
and the additive noise in the synthetic measurement data,
are used to evaluate estimation performance. The statistical
model and forward model configuration are kept fixed, so
the results are in light of those. For each of the ensemble
sizes used, a batch of 20 samples are used across the f
parameter variation and the strategies. For each strategy,
the configurations are combinations of three ensemble sizes
n = (150,300,600) and 8 = (3/2,1,3/4). The larger
B = 3/2 is a slightly more conservative choice with shorter
time span of windows and smaller § increases the window
lengths.

Each replicated estimation is accepted or rejected. If
the solver was not able to compute with the given model
input, the replicate is naturally rejected. Otherwise, to
classify a posterior as an acceptable estimation, only
the state subset z = logv,|depth <3.5km € R» is
considered. The reason is that the estimation of acoustic
velocity will generally be better than for the other two
elastic properties, especially for smaller ensemble sizes. As
estimation measure the Mahalanobis distance of the true z!
subset is used, with respect to the distribution represented
by the posterior ensemble:

1/2
MD = (@ -2'c'@ -9) ", (16)
where Z is the ensemble mean. The covariance matrix C
is the ensemble sample covariance, but with an important
modification as it will use a truncated eigenbasis that
retains only 75% of the total variance. The reason for
doing this truncation is to make the distance measure more
robust. The eigen-components with the smallest 25% of
total variance are associated with the shallower layers, and
smaller estimation error at these layers between different

Table 1 Number of accepted inversion runs out of 20 replicates

n 150 300 600

B\ Criteria w n w n w n
312 11 17 9 20 15 20
1 8 19 8 17 12 17
3/4 4 12 9 13 5 15

ensembles makes the measure more volatile and less
useful for this purpose. This is a consequence of the low
estimation uncertainty/ensemble spread at the shallower
layers. Alternatively, the depth range of the state subset used
for the estimation measure could be limited to e.g. 1.5-3.5
km as this would roughly give the same effect.

To set a (per replicate) threshold for the accept/reject
classification, each ensemble member is distance-measured
as MD; against the same (z, C), which gives a level
of within-ensemble distance. If MD;, < MD; + 4 x
std(MD;), it is accepted as a satisfactory solution. Thus each
replicate has its own threshold value. No false positive, i.e.
an accepted divergent solution, was confirmed by visual
inspection. On the contrary, especially for the smallest
ensemble size considered, some cases could have been
judged acceptable but did not pass the classification rule.

According to this rule, the number of accepted runs
among the 20 replicates is listed in Table 1 and the average
number of resulting windows K is listed in Table 2. In the
header of these tables, the strategy ‘w’ and ‘n’ refers to the
weight and norm criteria respectively.

The general pattern is that the norm strategy is much
more robust than the weight strategy, and that estimation
performance decays with g decreasing (larger batch
windows). The case 8 = 3/2 versus § = 1 for n = 150
deviates from this pattern, but the cause is more related to
ensemble size than to window size.

From these results, the emphasis on controlling the
norm magnitude of the likelihood vector component is
definitely more influential on stable updates than the
weighting curve argument. The latter, with its focus on
the weighting distribution, is not addressing the mechanism
that controls the potential spurious update. As the norm

Table 2 Average number K, rounded to nearest integer, of batches

n 150 300 600
B\Criteria w n w n w n
3/2 7 18 5 8 3 5
1 6

3/4 6 7 4 5 3 3
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Table 3 Total number of forward model evaluation

n 150 300 600

B\Criteria w n w n w n

312 9122 (327) 15908 (1146) 16766 (1054) 19230 (967) 29120 (903) 32640 (2548)
1 8643 (375) 10318 (762) 15450 (578) 17311 (1111) 25900 (668) 29188 (819)
3/4 8812 (495) 9200 (390) 14866 (400) 16223 (1063) 24000 (1200) 25840 (1350)

The table entries is the average over accepted replicates, while in parenthesis is the standard deviation. Numbers are rounded to nearest integer

approach utilizes the actual likelihood vector component, its
better performance is expected.

The expected correlation between shorter windows and
estimation stability is present for all ensemble sizes. The
norm approach is generally more conservative than its
alternative, resulting in a higher number of windows, as
Table 2 shows. Where perturbing the B-parameter for the
weight approach seemingly does not do much for the
number of windows, the difference lies in their distribution,
where for 8 = 3/4 the last window just becomes shorter (up
to the gather end time). The norm criteria on the other hand,
is more sensitive to the ratio § setting along with a stronger
dependency on ensemble size.

The number of accepted estimation (for n-criteria) are
comparable for § > 1 and n = 300 and 600, and one
could get the impression that there is no benefit of using the
largest ensemble size. Especially when considering the total
number of forward model evaluations, as listed in Table 3.
But the estimation results (not shown here) show that n =
600 performs much better than n = 300, at estimating
density generally and all elastic properties at the bottom 1
km depth. So size does matter for sufficiently alleviate rank
issues in resolving the gradients when data has a high level
of noise.

The numbers in Table 3 are quite high and this implies
and demands parallel ensemble evaluation. The number
of evaluation decreases with longer windows, so it is not
the case that shorter data windows results in an earlier
termination of iterating, sufficient to counterbalance the
larger number of windows. In terms of efficiency, the 8 =
1 case is preferable, while not as consistent in accepted
estimations as 8§ = 3/2 (for n > 300). If combined with
a monitoring and handling of divergence as described in
previous section, the more intuitive case of § = 1 is deemed
a good choice.

7 Summary and conclusions

In this paper an ensemble-based sequential method for
seismic inversion is presented. The iterative ensemble

@ Springer

Kalman smoother is the core method that uses the ensemble
to evaluate sensitivites, thus no tangent linear model is
needed and suitable for black-box forward models.

The approach for assimilating the high-dimensional
seismic data builds on a strategy of partitioning the data in
windows of traveltime, and the inversion is stable if these
windows are selected wisely.

A method for automatically selecting an appropriate
data window when entering an assimilation cycle is
introduced. The method is based on an analysis of the
iterative update to the control variable of the variational
problem, and on an interpretation of how this update is
influenced by the prior and likelihood. Two alternative
angles of interpretation are presented and their performance
evaluated through a repeated trials simulation study. Only
one of the alternatives showed robust with respect to
estimation performance, the approach based on norms of
prior and likelihood vector. This aspect was highlighted and
discussed in a comparison of a converging and a divergent
estimation.

A synthetic example was used in this paper. Future
work includes testing on field data. In doing so, one
must likely also use auxiliary data such as well logs for
tuning parameters in the forward model. Well log data can
also be used together with seismic recordings to estimate
parameters in noise covariance matrix. An assumption of the
presented work is independent measurement errors. Even
though within-batch correlations could be included easily,
adjustments are required to handle possible between-batch
correlations.

While the motivation for this work is reliable nonlinear
elastic inversion, the need to partition the data set and
assimilate these sequentially is expected to be present
in other types of parameter estimation problems. In the
geoscience domain there is for instance potential for similar
inversion methods for electromagnetic data, gravimetric
data, fiber optical data and ground penetrating radar data,
which all involves large-size data, complex physical forward
models and static state parameters. As a consequence, the
observations from this study might be applicable to and of
use in other domains.
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