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ABSTRACT
Procedurally-defined implicit functions, such as CSG trees and recent neural shape representations, offer compelling

benefits for modeling scenes and objects, including infinite resolution, differentiability and trivial deformation, at a low
memory footprint. The common approach to fit such models to measurements is to solve an optimization problem involving
the function evaluated at points in space. However, the computational cost of evaluating the function makes it challenging
to use visibility information from range sensors and 3D reconstruction systems. We propose a method that uses visibility
information, where the number of function evaluations required at each iteration is proportional to the scene area. Our
method builds on recent results for bounded Euclidean distance functions by introducing a coarse-to-fine mechanism to
avoid the requirement for correct bounds. This makes our method applicable to a greater variety of implicit modeling
techniques, for which deriving the Euclidean distance function or appropriate bounds is difficult.
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1. INTRODUCTION
An implicit surface represents a geometric object as a function fx : R3 × X → R, where the object’s interior, exterior

and surface are defined implicitly by the function’s value in space. Procedurally-defined functions, in particular, enable a
powerful framework of constructive modeling techniques [1–5], and have recently led to breakthroughs in shape learning
[6, 7]. For computer vision purposes, the function may be parameterized by shape-controlling parameters x ∈ X to span a
space of possible shapes, which can be searched for a specific instance that best fits incoming measurements. However, the
lack of an explicit surface and the computational cost of evaluating the function makes this search challenging. Specifically,
in the absence of an explicit surface, a commonly used approach for determining the best fitting parameters is to solve an
optimization problem of the form

x∗ = argmin
x∈X

E(x), (1)

where E is an objective function that involves the function fx evaluated at points in space [8–12]. Depending on the
domain X , solving (1) may require substantial sampling of the search space [9–12]. Thus, when fx is computationally
costly to evaluate, the number of evaluations becomes a bottleneck affecting the choice of E. A common choice, given a
set of surface point measurements p ∈ R3, is the sum of squared function values at each point:

E(x) =
∑
p

f2x(p). (2)

When fx is a distance function to the surface, the optimization of (2) is a point-to-implicit Iterative Closest Point (ICP)
method [13–15]. Such methods are efficient in the sense that the required number of function evaluations is proportional
to the scene’s surface area. However, it is known that the model can be ill-constrained by surface measurements alone
when the surface is only partially visible, e.g. due to capturing data from an inadequate set of viewpoints, occlusions,
sensor noise or specular reflections [8]. Regularization [18], such as penalizing description length, penalizing volume or
surface area, or imposing parameter constraints can alleviate the issue [8, 11, 19], but are model-specific strategies that do
not generalize.
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Figure 1. We are given a geometric model (a) as a parameterized implicit function and seek to fit it to incomplete range sensor data (b).
To resolve ill-constrained parameters (e.g. x1 and x7), previous work [16, 17] use visibility information (c) to derive a set of free space
consistency constraints (d). For general implicit functions, this derivation relies on bounding the associated Euclidean distance function
to the model’s surface. Incorrect bounds can lead to a poor fit (e).

Alternatively, one could make use of visibility information (Fig. 1 (c)), that is often provided by sensors and 3D
reconstruction systems. For example, a finite range value from a laser scanner indicates not only that there is a surface at
that distance from the sensor, but also that there are no surfaces in-between. This imposes additional free space constraints;
besides fitting the surface measurements, the model must also not occupy space observed to be empty. These constraints
have been utilized for fitting both implicit and explicit representations in various ways, such as volume matching [12,20,21],
minimizing reprojection error [22–25] or matching of occluding contours or silhouettes [26–28]. For general implicit
models, these methods require dense sampling of fx in the volume or along viewing rays, which can be prohibitively
expensive. More efficient methods have recently been proposed for the special case when fx is either exactly the signed
Euclidean distance function to the surface, or when fx can be bounded from above and below by known functions of the
Euclidean distance [16, 17]. However, there is no closed-form expression for the Euclidean distance to several implicit
modeling techniques of interest, including set operations, blending and non-isometric deformations [1, 3]. Deriving the
necessary upper and lower bounds can also be challenging [17] and the use of incorrect bounds can lead to an inaccurate
fit (Fig. 1 (e)).

Contributions. We propose a fitting method for implicit functions that efficiently integrates visibility information. Like
previous work [17], our method requires only that an approximation of the Euclidean distance to the model surface can be
computed at a given point. However, our method is robust against errors in this approximation. Specifically, we formulate
a sequence of problems in which free space constraints are progressively satisfied. In the limit of this sequence, these
constraints become non-negativity constraints, which do not depend on the magnitude of the Euclidean distance function.
Hence, the influence of any approximation error diminishes to zero. This relaxes the need for correct bounds and makes
our method more easily applicable to practical implicit modeling techniques. Additionally, the previous works [16, 17]
are efficient in the sense that they compute and utilize the smallest set of function evaluation points to test if the free
space constraints are satisfied (i.e. necessary and sufficient conditions). We prove that our method has a similar theoretical
complexity in terms of the number of function evaluations, and provide experimental results suggesting that our method in
practice may require fewer function evaluations.

2. METHOD
Our work builds on results from [16,17]. We therefore summarize their relevant findings in Section 2.1 while introduc-

ing necessary notation. We describe our method in the subsequent sections.
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2.1 Notation and problem formulation
Let S be a solid representing the scene and let V be a domain of interest containing S. Free space Vfree is a closed

subset of V that is observed to be empty. The free space boundary ∂Vfree is the boundary between free and unobserved
space. The visible surface R is the observed subset of the physical scene surface ∂S. We denote points in R3 by c, p, and
q. The signed Euclidean distance to a solid D is denoted dD(p) := ±minq∈∂D ||p− q||2, where the sign is negative for p
inside D and positive outside. A ball with center c and radius r is denoted (c, r).

We assume that a geometric model is given as a function fx(p) : R3 → R. Our goal is to estimate the parameters
x ∈ X such that the resulting solidMx = {p ∈ R3 : fx(p) ≤ 0} is consistent with the observed surfaces and free space
(e.g. the thick lines and un-shaded region in Fig. 1 (b) and (c) respectively). Formally:

fx(p) = 0,∀p ∈ R and (3)
fx(p) > 0,∀p ∈ int Vfree. (4)

It has been shown that these conditions can be turned into an optimization problem of the form [16]

min
x

E(x) =
∑
p∈R

fx(p)
2 (5)

subject to fx(c) ≥ r(c) ∀c ∈ I, (6)

where I is a set of points in Vfree and r(c) is the radius of the largest ball at c that is empty with respect to Vfree (i.e. its
interior contains no point of ∂Vfree). When the model is the Euclidean distance function (fx = dMx ), it has been shown
that letting I be the medial axis of Vfree gives a necessary and sufficient set of free space constraints (6), to ensure that a
feasible solution is consistent with free space [16].

A generalization of the above optimization problem has also been proposed for bounded distance functions satisfying
[17]

g(dMx(p)) ≤ λ−1fx(p) ≤ dMx(p), ∀(c, x) ∈ (R3,X ) : fx(c) > 0, (7)

where g : R → R is a non-decreasing function (g(a) ≥ g(b) for all a > b) and λ > 0 is a Lipschitz constant, which
have both been derived for various implicit modeling techniques and primitives [3,17]. This leads to a corrected set of free
space constraints of the form

λ−1fx(c) ≥ g(r(c)), (8)

which shrinks each ball (c, r(c)) to have a radius equal to the lower bound g(r(c)), as illustrated in Fig. 2. If the constraint
(8) is satisfied,Mx is guaranteed to be outside the shrunk ball (c, g(r(c))). If the constraint is violated, a subset ofMx

is contained by the original ball (c, r(c)), though not necessarily by the shrunk ball. A necessary and sufficient set of
constraints (i.e. the set of points I) has also been derived for the corrected constraints [17].

2.2 Progressive formulation
To support the case when fx is not the Euclidean distance function, the above method requires the determination of a

function g for the lower bound and a Lipschitz constant λ for the upper bound. If either g or λ is incorrect, i.e. (7) does not
hold everywhere, then the resulting constraints can lead to a poor fit, as shown in Fig. 1 (e) compared with Fig. 1 (b). As a
conservative estimate, one may choose a large Lipschitz constant and a lower bound close to zero. However, this increases
the number of free space constraints and is limited by computational cost. We therefore seek a reformulation of the above
method which is robust against incorrect bounds. Our method still assumes that an upper and lower bound is given in the
form of a function g and a Lipschitz constant λ, but we ensure that any error in g and λ that causes (7) to not hold will not
affect the final model fit.
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Figure 2. Left: Correcting a constraint at c involves shrinking the ball (c, r(c)) to accommodate the largest possible error between fx
and dMx . The shaded region indicates the subset of free space that is “covered” by the new constraint, i.e. guaranteed to not contain the
model solid Mx when satisfied. Right: Example of a sequence of optimization problems for the scene in Fig. 1.

2.2.1 Sequence of optimization problems

Our method is based on progressively covering free space, rather than all at once. We achieve this by solving a sequence
of constrained optimization problems, k = 0, 1, ..., in which the k’th problem instance is of the form

min
x

E(x) =
∑
p∈R

fx(p)
2 (9)

subject to λ−1fx(cp,k) ≥ g(r(cp,k)) ∀p ∈ Pk, (10)

where

cp,k = p+ tp,knp (11)

is an extension of point p along its associated normal vector np by the amount tp,k. The set Pk ⊆ ∂Vfree is a subset of
points on the free space boundary. A straightforward choice is Pk = ∂Vfree,∀k. However, we discuss the issues of this and
propose an improvement in Section 2.2.3. The extension amounts tp,k are initialized to tp,0 = r(cp), such that the balls
are initially on the medial axis. They are decreased per instance k according to a reduction schedule, which we describe in
Section 2.2.2.

Fig. 2 shows an example problem sequence for the scene in Fig. 1, using a correct g and λ. The shaded region is the
subset of free space covered by the inequality constraints in the k’th problem instance. When satisfied,Mx is guaranteed
to be outside the union of balls {cp,k, g(r(cp,k))}p∈Pk

. A subset of these balls are drawn with their outline and center for
illustration. In the limit, as k → ∞, the inequality constraints become non-negativity constraints (λ−1fx(p) ≥ 0) on the
free space boundary. These only depend on the sign of fx and not its magnitude. Consequently, the influence of an error
in g or λ diminishes as k progresses.

2.2.2 Choosing the reduction schedule

The reduction schedule should ensure that each point in free space is covered by an inequality constraint from at least
one problem instance in the sequence. To achieve this, we use the following result [17]. Consider the line segment [0, r(cp)]
connecting a point p ∈ ∂Vfree to the point cp on the medial axis along the boundary normal np. A necessary and sufficient
set I, that fully covers free space, can be obtained by generating additional balls on and along each line segment, such that
each line segment is fully contained and none of the balls on a particular line segment overlap. This is achieved by solving

min
lp,i

lp,i subject to lp,i + g(r(cp,i)) ≥ lp,i−1 − g(r(cp,i−1)) (12)

successively for lp,i starting with lp,0 = r(cp). Solving (12) for lp,i gives the center cp,i = p+ lp,inp of the i’th ball, which
has radius g(r(cp,i)), on the line segment [0, r(cp)]. We can use this result to obtain a reduction schedule by letting the
extension amounts tp,k in the k’th problem instance be the solutions of (12), where i = k and lp,i−1 = tp,k−1. Depending
on g, this may produce an infinite sequence of problem instances, which may be truncated in different ways. For example,
by terminating once the remaining distance (maxp tp,k) is less than a given threshold, or by setting tp,k to its limit value
(0) when below a given threshold.
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Figure 3. Scenes used in the experiments. In Scene A-C, the colors indicate observed free space (white), unobserved space (gray) and
the visible surface (black lines). In Scene D, the colors indicate the measured depth from the range sensor, with the completely black
regions being missing (“corrupt”) measurements.

2.2.3 Approximate cover and choosing Pk

In a straightforward implementation, one can let Pk = Vfree in each problem instance k. However, this can be un-
necessarily computationally expensive, as the inequality constraints can overlap and therefore be redundant. The amount
of redundancy is greater in the earlier instances when the balls are closer to the medial axis. In [16], it was proposed to
compute an approximate cover of free space—a simplified set of inequality constraints that cover an approximation of free
space using fewer constraints. We can likewise compute an approximation of the covered region in each problem instance
k. We apply a similar heuristic as [16], where redundant balls are identified by checking if a given ball can be completely
covered by enlargening any one of its neighboring balls by adding an amount δ to their radius. The amount δ controls the
degree of simplification. Using the reduction schedule from Section 2.2.2, the approximate cover for each instance k can
be pre-computed, as the ball locations and radii are determined from the input data alone.

3. EXPERIMENTS
In order to evaluate the proposed approach, we compare our “progressive method” against the method of Haugo and

Stahl [17] for bounded distance functions, which we refer to as the “full cover method” in the following. In particular, we
investigate the proposed robustness and show that the full cover method has an unstable global solution when (7) does not
hold (i.e. the upper and lower bounds are incorrect), whereas our progressive method still has a stable global solution. We
also compare the computational cost of the two methods.

3.1 Experiment protocol
3.1.1 Data sets

We consider scenes captured by a range image sensor (Figure 3). Each scene has an associated implicit function model
fx. Scenes A-D are synthesized by simulating a range sensor observing a model from a single viewpoint, for a set of model
parameters x∗ (ground-truth). In these scenes, the ground-truth parameters can only be inferred when free space constraints
are included, and cannot be inferred from surface measurements alone. The models are created using constructive solid
geometry and analytical distance bounds to various geometric primitives [3]. We implement set operations using the
min/max operators, which have been shown [3] to preserve the upper bound |fx| ≤ |dMx

|, such that λ = 1. However, fx
can still underestimate dMx

. A lower bound g for solids produced by min/max operators, is of the form [17]

g(d) = αd, (13)

where α ∈ [0, 1] is a constant, which we determined by sampling the value of fx(p)/dMx(p) at the ground-truth parameters
x∗ and with p sampled regularly in a box enclosing the model solid. For Model A-D this gave a value α of 0.45, 0.09, 0.7
and 0.45, respectively.

3.1.2 Implementation details

Pre-processing pipeline. Both methods require a sampling of the visible surface R and the set of free space constraints
I (full) or Pk (progressive). For range images we can backproject the depth pixels into the scene, resulting in a dense point
sampling ofR. In our scenes, some points belong to unmodeled structures, such as the ground plane. We identify and skip
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Figure 4. Global solution obtained with the full cover method for different bound errors (increasing left to right).

over these points in the objective functions (5) and (9). The free space constraints can be computed from the medial axis
of Vfree, if this is represented by a set of medial ball centers cp, each lying along the normal of a point p ∈ ∂Vfree. The
method of Ma et al. [29] produces this representation, given an oriented point sampling of the free space boundary ∂Vfree.
We obtain this oriented point sampling by connecting the adjacent backprojected pixels into a piecewise linear surface,
then sampling evenly-distributed points from the surface, and finally estimating their normals by local plane fitting.

The free space constraints for the full cover (I) are then obtained by collecting the sequence of balls produced by
solving (12), for each line segment pcp between the free space boundary and the medial axis. We truncate infinite sequences
when the i’th ball is within a tolerance τ of the surface, i.e. tp,i < τ . We set the final ball in the sequence to the limit
ball (tp,i = 0 and r(cp,i) = 0). Of these, we exclude balls of zero radius that lie on the visible surface R, as these do not
contribute any information. We simplify the constraints by computing an approximate cover using the heuristic described
in Section 2.2.3, with δ equal to the inverse of the sampling density of ∂Vfree. To compute Pk, we assume that the reduction
schedule described in Section 2.2.2 is used. Then, Pk is simply the k’th solution of (12), combined for all segments pcp.
We likewise truncate the sequence as described above.

Optimization problem solver. We reformulate each constrained problem into the unconstrained problem

min
x

∑
p∈R

fx(p)
2 + µ

∑
c∈C

[min(fx(c)− g(r(c)), 0)]2 , (14)

where C = I for the full cover method and C = Pk for our method. The penalty factor µ is initialized to a value µ0

and increased during optimization. To solve the unconstrained problem, we use a derivative-free solver. When the change
in x in two consecutive iterations is less than a threshold, ||x − xprev||2 < τx, we increase µ by a factor of 10 until µ
reaches a maximum value of 108. We terminate the optimization when ||x − xprev||2 < τx and µ = 108. For our method,
rather than solving a new unconstrained problem at each instance k, we apply a single step of the reduction schedule when
||x−xprev||2 < τx. This is done together with increasing µ0. We terminate our method when ||x−xprev||2 < τx, µ0 = 108

and all free space constraints have been at their limit value (maxp tp,k = 0).

3.1.3 Evaluation variables and metrics

Normalized lower bound error (eg). By construction, the models satisfy the upper bound |fx| ≤ |dMx |. The lower
bound g is determined by the constant α. To evaluate how the two methods compare with incorrect bounds, we study their
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Figure 5. Success rate of our progressive method as a function of lower bound error eg for each scene and initialization uncertainty. For
comparison, we include the success rate of the full cover method at eg = 0 (no bound error).

performance when the constant α varies between its correct value (described in Section 3.1.1 and hereon denoted α∗) and
the maximum value α = 1. We define the normalized lower bound error eg ∈ [0, 1] and let

α = (1− eg)α∗ + eg . (15)

Thus, when eg = 0, the lower bound is correct. When eg = 1, the lower bound is assumed to be equal to dMx .

Initialization uncertainty (σ0). To assess the stability of our results to different starting points and optimization trajec-
tories, we repeat our experiments using different initializations of x. In each run, we initialize x by uniformly sampling
from a hypercube of width σ0 centered around the ground-truth parameters x∗.

Success rate. Each scene has a ground-truth solution x∗. We define success rate as the number of times that the acquired
solution is sufficiently close to ground-truth, as measured by ||x− x∗||2 < τs, divided by the total number of trials. We set
the success threshold τs by inspecting the distribution of solutions based on ||x− x∗||2 and identifying a threshold below
which solutions are indistinguishable from ground-truth. Because the optimization behavior depends on the choice of µ0,
we try µ0 ∈ {0.01, 0.1, 1, 10} in each experiment and report the highest success rate.

3.2 Stability in the presence of incorrect bounds
First, we demonstrate the instability of the full cover method in the presence of incorrect bounds. We consider five

different values of the normalized lower bound error eg between 0 and 1. Fig. 4 shows the global solution for the different
scenes and bound errors. In the absence of bound error (eg = 0), the solution is identical to ground-truth and consistent
with surface measurements and free space. However, the solution is unstable since it diverges from ground-truth as the
bound error increases.
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Figure 6. Number of iterations until convergence for successful runs.

Next, we study the stability of our method, using the same bound error magnitudes as above. We perform 100 runs
with different initializations, for multiple initialization uncertainty magnitudes (σ0 ∈ {0.25, 0.5, 0.75, 1}), and compute
the success rate. As a baseline comparison, we include the full cover method’s success rate at the given initialization
uncertainty and at zero bound error (its success rate would be zero for all non-zero bound errors due to diverging). Fig. 5
shows that our method converges to the ground-truth solution (i.e. the left-most column in Fig. 4) even in the presence of
incorrect bounds. The success rate is often similar to the baseline, although a significant drop is observed in Scene B and
D as the bound error increases. We found in these scenes that the reason for failure was typically by falling into a local
optimum early in the optimization, in the attempt to satisfy grossly incorrect free space constraints. These results indicate
that our method has a stable global solution in the presence of incorrect bounds, and also that this solution may, depending
on the scene and model, be obtained at a similar frequency as the full cover method with correct bounds.

3.3 Computational efficiency
As our method does not involve all free space constraints in each optimization iteration, we expect that our method

will require more iterations in total to converge, compared with the baseline (full cover method at zero bound error). Fig. 6
shows that this was the case in almost every experiment. Despite this, Fig. 7 shows that our method used fewer function
evaluations. We may compare the expected computational complexity of both methods at zero bound error, by considering
the required number of evaluations Nf of the model function fx, which is typically the dominating cost. Here we will
assume that the approximate cover is disabled for both methods. Consider the full cover method and letNiter be the number
of optimization iterations until convergence. The resulting number of function evaluations is then

Nf = Niter · (|I|+ |R|). (16)

The size of I is determined by the length of the ball sequences generated by (12). Let Lp be the length of the ball sequence
for point p ∈ ∂Vfree. In the worst case, each ball sequence has length equal to that of the longest sequence Lmax = maxpLp.
The total number of function evaluations in the worst case is therefore

Nf = Niter · (Lmax · |∂Vfree|+ |R|). (17)
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Figure 7. Number of evaluations of the model function fx until convergence for successful runs.

In our method, the number of problem instances is equal to the maximum ball sequence length Lmax. Each optimization
iteration in the k’th problem instance involves |Pk| + |R| function evaluations. Without the approximate cover, |Pk| =
|∂Vfree|. Hence, the total number of function evaluations, assuming each instance requires Niter iterations to converge, is

Nf = Lmax ·Niter · (|∂Vfree|+ |R|). (18)

Based on this analysis, our method therefore requires an additional (Lmax − 1) ·Niter · |R| function evaluations compared
with the full cover method. However, in our experiments we found that our method did not require Niter in each problem
instance k = 0...Nk, which explains why our method used fewer iterations than expected by this worst case analysis.

4. CONCLUSION
We have presented a method for efficiently integrating visibility information in implicit surface fitting. Our method

requires only that an upper and lower bound of the distance to the model surface can be computed at a given point.
By satisfying free space constraints progressively rather than all simultaneously, our method is robust against incorrect
bounds. This enables a rich class of implicit representations and modeling techniques to more easily be used in applications
involving fitting to incomplete data, e.g. in 3D reconstructions of scenes viewed from a limited set of viewpoints or in 3D
scans of objects with specular surfaces.
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