
M
asteroppgave

Sim
on Julian N

agelsaker Lexau

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Simon Julian Nagelsaker Lexau

Masteroppgave

Combining Reinforcement Learning and Robotic
Vision for Human-Machine Cooperation

Masteroppgave i Kybernetikk og Robotikk
Veileder: Anastasios Lekkas
Juni 2022M

as
te
ro
pp

ga
ve

Simon Julian Nagelsaker Lexau

Masteroppgave

Combining Reinforcement Learning and Robotic
Vision for Human-Machine Cooperation

Masteroppgave i Kybernetikk og Robotikk
Veileder: Anastasios Lekkas
Juni 2022

Norges teknisk-naturvitenskapelige universitet
Fakultet for informasjonsteknologi og elektroteknikk
Institutt for teknisk kybernetikk

Preface

This master’s thesis is submitted as a part of the requirements for the

master’s degree at the Department of Engineering Cybernetics at the

Norwegian University of Science and Technology. The work presented

in this thesis has been carried out under the supervision of Associate

Professor Anastasios Lekkas, NTNU.

This master’s thesis is a continuation of a specialization project I conducted

during the autumn of 2021. As is customary, the specialization project is

not published. This means that important background theory and methods

from the project report will be restated in full throughout this report to

provide the best reading experience. Below, a complete list of the material

included from the specialization project is listed.

• Chapter 2, sections 2.1.1, 2.3.2, 2.5

• Chapter 3, sections 3.2, 3.3

• Chapter 4, section 4.3

During the project, I have been provided multiple tools through Omega

Verksted who also gave me access to their workshop and 3D printers. The

Reinforcement Learning Environments package was developed by Ph.D. can-
didate Sindre B. Remman, Department of Engineering Cybernetics, NTNU,

and was an invaluable starting point for training of the reinforcement

i

learning agent. During the master´s project, I have further extended this

training platform to be compatible with the MuJoCo simulator. Anastasios

Lekkas, NTNU, providedmewith theOpenManipulator-X, two stereoscopic
depth sensors of the type Intel RealSense D435, a lever, and a Raspberry Pi 3
Model B 1GB RAM. Parts were designed and 3D-printed as part of this work

to facilitate robotic vision in the physical setup. The Human-Machine

Cooperation Interface is based on the Human-Machine Interface from

the project thesis and was developed on a desktop computer supplied by

NTNU, with an Intel i7-8700 CPU, 32 GB RAM, and running 64-bit Ubuntu
20.04. Open-source Python, and ROS, packages were used to build the

system, and a comprehensive list is given in Table 3.1

Unless otherwise stated, all figures and illustrations have been created by

the author.

I would like to thank my fellow graduates for the many lunches, quizzes,

Sudoku riddles, and the support they have provided, my supervisor for

setting me on the right track, Sindre Remman for answering all of my

technical questions, and my family for the encouraging words towards the

end of my last semester as an M.Sc student at NTNU.

Simon Julian Nagelsaker Lexau
Trondheim, June 2022

ii

Abstract

Machines have affected our lives for millennia, arguably since the Romans

first constructed water turbines for powering mechanical devices used in

the production of flour on industrial scales. Advancements in science and

technology keep bringing new appliances into our society with promises

to alleviate humans from tedious, repetitive, and dangerous jobs. With

the combined increase in computational power and research within artifi-

cial intelligence, the possibility of automating even more advanced and

dynamic jobs have emerged. Tesla and other car manufacturers are devel-

oping self-driving cars. Simultaneously, a global race is ongoing between

companies and governments to create the first autonomous ships. These

advances do not come without problems, however. It is often difficult

for humans to understand the “thought process” of artificial intelligence,

which leads to a problem of trust and responsibility. This thesis focuses

on solving these problems through active cooperation between artificial

intelligence and humans. The solution presented includes a hand-tracking

powered Human-Machine Interface, structured as a finite state machine,

which an operator uses to collaborate with a reinforcement learning agent.

The system is tested in a cooperation challenge, where a robotic manip-

ulator is used to pull a lever in a specific angular position while relying

on visually estimated angle values. By assigning full responsibility to the

human overseer who plays an active role in the loop, one avoids designing

a bulletproof system that also deals with risk assessment.

iii

Sammendrag

Maskiner har påvirket livene våre i årtusener, helt siden romerne først

konstruerte vannturbiner for å drive mekaniske enheter brukt i produksjon

av mel i industriell skala. Fremskritt innen vitenskap og teknologi bringer

stadig nye apparater inn i samfunnet vårt med løfter om å frigjøre men-

nesker fra kjedelige, repeterende og farlige jobber. Med den kombinerte

økningen i beregningskraft og forskning innen kunstig intelligens, har

muligheten for å automatisere enda mer avanserte og dynamiske jobber

dukket opp. Tesla og andre bilprodusenter utvikler selvkjørende biler.

Samtidig pågår et globalt kappløp mellom selskaper og myndigheter for å

skape de første autonome skipene. Disse fremskrittene kommer imidlertid

ikke uten problemer. Det er ofte vanskelig for mennesker å forstå «tanke-

prosessen» til kunstig intelligens, som fører til et problem innen tillit og

ansvar. Denne oppgaven fokuserer på å løse disse problemene gjennom

aktivt samarbeid mellom kunstig intelligens og mennesker. Løsningen som

presenteres inkluderer et håndsporingsdrevet menneske-maskin grenses-

nitt, strukturert som en endelig tilstandsmaskin, som en operatør bruker

til å samarbeide med en forsterkningslæringsagent. Systemet er testet i en

samarbeidsutfordring, der en robotisk manipulator brukes til å trekke en

spak i en spesifikk vinkelposisjon mens vinkelen estimeres visuelt. Ved

å legge hele ansvaret til den menneskelige tilsynsmannen som spiller en

aktiv rolle i loopen, unngår man å designe et skuddsikkert system som

også omhandler risikovurdering.

iv

Contents

Preface i

Abstract iii

Sammendrag iv

1 Introduction 1

1.1 Background and Motivation 1

1.2 Objectives and Research Questions 5

1.3 Contributions . 6

1.4 Outline . 8

v

2 Theory 11

2.1 Robotic Manipulators . 12

2.1.1 Forward Kinematics 13

2.1.2 Inverse Kinematics 16

2.1.3 FABRIK . 17

2.2 Finite State Machine . 21

2.3 Reinforcement Learning 22

2.3.1 Elements in an RL algorithm 22

2.3.2 Artificial Neural Networks 27

2.3.3 DDPG . 29

2.3.4 Hindsight Experience Replay 35

2.4 Robotic Vision . 37

2.4.1 Perspective-n-Point Pose Estimation 37

2.5 ROS - Robot Operating System 42

vi

3 Experimental Setup 45

3.1 Overview . 46

3.2 Robotic Manipulator . 50

3.3 Depth Sensor . 52

3.4 Simulator environments 53

3.4.1 Gazebo . 53

3.4.2 MuJoCo . 54

3.4.3 Gym Environments 55

3.5 RL Agent . 55

3.6 Lever Pose Estimation . 60

3.6.1 Potentiometer . 61

3.6.2 Visual Estimation 65

4 Problem Formulation and System Design 71

4.1 Problem Formulation . 72

4.2 System Overview . 73

vii

4.3 Human Machine Interface 76

4.3.1 Finite State Machine 79

4.3.2 Hand Tracking . 81

4.3.3 Controller . 86

4.3.4 Operator Panel . 89

4.4 OpenManipulator RL Environments 92

4.5 Human Machine Cooperation Interface 95

4.5.1 Porting the Code 96

4.5.2 Extensions to the RL Environments 99

4.5.3 Extensions to the HMI 103

4.5.4 System Execution 106

5 Results and Discussion 109

5.1 Training the RL Agent . 109

5.2 Cooperation Challenge . 112

5.2.1 Measured Lever . 113

viii

5.2.2 Visually Estimated Lever 120

5.3 Discussion . 125

5.3.1 RL Agent . 125

5.3.2 Measured Lever . 126

5.3.3 Visually Estimated Lever 127

6 Conclusions and Future Work 131

Bibliography 137

A 147

A.1 OpenManipulator-X Dimensions 148

A.2 Class Diagrams . 149

A.3 Levels of Autonomy . 151

A.4 Code . 152

ix

List of Tables

3.1 The packages used to develop the HMCI and RL training

environment. 49

3.2 The DH parameters used for FK 51

3.3 List of hyperparameters . 57

4.1 The input signals determining the state of the FSM 81

4.2 The states of the FSM, the variables that are controlled

when they are active, and the respective references. 88

4.3 Some practical differences between ROS 1 and ROS 2, see

[61] and [62] . 98

4.4 The input signals determining the state of the FSM 103

x

4.5 The states of the FSM, the variables that are controlled

when they are active, and the respective references. 104

xi

List of Figures

1.1 A high absraction map of the thesis, with relevant sections 9

2.1 A model of the OpenManipulator-X with coordinate sys-

tems. Borrowed from [25] and modified. 14

2.2 Forward reaching (a) - (d), and Backward reaching (e) - (f)

of the FABRIK method visualized in a 2D plane. Image

borrowed from [33]. 18

2.3 An example of an FSM description of an elevator system . 21

2.4 (a): A neural network. (b): A close up of a single neuron

in a fully connected network

Image borrowed from [38] 27

2.5 Work flow for the PnP pose computation problem. Image

borrowed from OpenCV [45] 38

xii

3.1 Left: The lever setup with a potentiometer and Aruco

indices. Right: the OpenManipulator-X with an Intel Re-

alSense D435 stereoscopic sensormounted on its end-effector. 47

3.2 The plywood camera stand for hand gesture detection. . . 48

3.3 The stereoscopic depth camera 52

3.4 Left: Actor Network. Right: Critic Network. Drawn with

NN-SVG. The hidden layers have been simplified in this

drawing due to size constraints. 56

3.5 Information flow of the lever angle measurement using a

potentiometer . 61

3.6 Pins of the ADC MCP3001. Borrowed from the datasheet . 62

3.7 Circuit design for the potentiometer readings of the lever

angle . 63

3.8 Detected corners of the Aruco indices, as seen from the

RGB sensor mounted on the manipulator’s end-effector. . . 66

4.1 An overview of the Mimir system. Drawn with draw.io . . 74

4.2 Information flow, and system overview 78

xiii

4.3 FSM diagram depicting all system states and transitions.

WS is short for WorkSpace location, see Table 4.1 80

4.4 How the hand landmarks from MediaPipe are structured.

Image borrowed from [56] 82

4.5 The operator panel in action, with the Ungrip gesture active. 89

4.6 More examples of the operator panel in action 91

4.7 Class diagram of the Open Manipulator RL Environments
package . 93

4.8 Simplified class diagram of the additions made to the Open
Manipulator RL Environments package 100

4.9 The updated operator panel 105

4.10 A UML activity diagram of the complete system developed

in this thesis . 107

5.1 The OpenManipulator-X in the MuJoCo environment dur-

ing training. Left: Manipulator approaches the lever. Right:

The agent is successfully placing the lever in its goal position. 110

5.2 Model trained on a sparse reward. Left: Success rate. Right:

Reward . 111

xiv

5.3 Model trained on a sparse reward with 50% grip chance,

then further trained with a 0% grip chance. Left: Success

rate. Right: Reward . 111

5.4 Model trained on a dense reward. Left: Success rate. Right:

Reward . 112

5.5 The path of the manipulator’s end-effector plotted together

with the path of the uppermost point of the lever (green).

The paths are represented as gradients with respect to time. 114

5.6 Left: Path of the end-effector in the 𝑋𝑊𝑌𝑊 -plane, repre-

sented with polar coordinates. Right: Path of the lever in

the 𝑋𝑊𝑍𝑊 -plane, represented with polar coordinates. The

threshold is plotted around the goal angle as two dotted

lines. 116

5.7 End-effector pose and active FSM state over time. 117

5.8 From top: Estimated and measured lever angle, 𝑋𝑊 -, 𝑌𝑊 -

, and 𝑍𝑊 -positions measured and estimated, cumulative

reward, and success. 119

5.9 The path of the manipulator’s end-effector plotted together

with the path of the uppermost point of the lever (green).

The paths are represented as gradients with respect to time. 121

xv

5.10 Left: Path of the end-effector in the 𝑋𝑊𝑌𝑊 -plane, repre-

sented with polar coordinates. Right: Path of the lever in

the 𝑋𝑊𝑍𝑊 -plane, represented with polar coordinates. The

threshold is plotted around the goal angle as two dotted

lines. 122

5.11 End-effector pose and active FSM state over time. 123

5.12 From top: Estimated and measured lever angle, 𝑋𝑊 -, 𝑌𝑊 -

, and 𝑍𝑊 -positions measured and estimated, cumulative

reward, and success. 124

A.1 Dimensions of the OpenManipulator-X. From Robotis e-

Manual [25] . 148

A.2 Class diagram depicting the most important parts of the

system. 149

A.3 Extended class diagram of the Open Manipulator RL Envi-
ronments package. Green parts were written as part of this

thesis . 150

A.4 Levels of Autonomy according to LLoyd’s Register. Image

borrowed from [66] . 151

xvi

Acronyms

ADC Analog to Digital Converter. xiii, 61, 62, 64

AI Artificial Intelligence. 2, 4, 7, 73, 75, 120

ANN Artificial Neural Network. 27

AUV Autonomous Underwater Vehicle. 134

BFGS Broyden, Fletcher, Goldfarb and Shanno. 17

CNN Convolutional Neural Network. 29, 77

DDPG Deep Deterministic Policy Gradient. 29, 30, 32, 59

DH Denavit-Hartenberg. 15, 50, 67, 84

DLS Damped Least Squares. 16

DOF Degrees of Freedom. 12, 16

xvii

FABRIK Forward And Backward Reaching Inverse Kinematics. 17, 18

FK Forward Kinematics. x, 13, 50, 51

FOV Field Of View. 52

FSM Finite State Machine. x–xii, 21, 73, 75, 79, 81, 84, 88, 103, 104, 112,

113, 116

GUI Graphical User Interface. 89

HER Hindsight Experience Replay. 35, 125

HMC Human-Machine Cooperation. 2, 4, 5, 72

HMCI Human Machine Cooperation Interface. x, 5, 45, 48, 49, 51, 73, 95,

106, 109, 132, 134

HMI Human Machine Interface. 2, 5, 6, 8, 71, 76, 95, 96, 98, 99, 112, 132

IK Inverse Kinematics. 16, 17, 19, 50

IR InfraRed. 52

ML Machine Learning. 81

MPC Model Predictive Control. 126, 133

MSBE Mean-Squared Bellman Error. 31, 32

OM-X OpenManipulator-X. 5, 75

xviii

OS Operating System. 95

PnP Perspective-n-Point. xii, 11, 37–39, 60, 65, 128

RGB Red Green Blue. xiii, 53, 60, 66, 73, 131

RL Reinforcement Learning. x, 2, 5–8, 17, 25, 29, 45, 49, 53, 54, 72, 75, 92,

94–96, 99, 103, 106, 108–110, 112, 113, 118, 120, 127, 129, 132–134

ROS Robot Operating System. 5, 6, 17, 42, 48, 50, 53, 75, 77, 78, 86, 92,

94–99, 101

SDK Software Development Kit. 53

SDLS Selectively Damped Least Squares. 16

SPI Serial Peripheral Interface. 62, 64

STL Standard Triangle Language. 50

SVD-DLS Damped Least Squares with Singular Value Decomposition. 16

UDP User Datagram Protocol. 65

URDF Unified Robot Description Format. 101

xix

xx

Chapter 1

Introduction

1.1 Background and Motivation

The first machines that significantly improved our lives were driven by

water or wind and ground our grain [1]. Later machines revolutionized

large-scale production by reducing the human workload on assembly

lines and simultaneously increasing productivity [2]. Today, machines

and robots are becoming increasingly capable of solving more complex

problems. The Tesla car factories are great examples of how robots are

being used in modern assembly lines [3].

Human-Machine Interaction is important today and will become even

more important in the future as more and more jobs begin utilizing the

1

2 CHAPTER 1. INTRODUCTION

advancements within robotics. These interactions happen mainly through

Human-Machine Interfaces (HMIs) which include traditional interfaces

such as keyboard, mouse and buttons, to more unconventional interfaces

like speech control [4], gesture control [5] [6], and brain interfaces [7].

These newer systems allow for more intuitive interactions, which is ad-

vantageous as the human operator interacts with increasingly capable and

intelligent robots.

The last decade has seen a boom in innovation related to artificial intelli-

gence, with [8] revealing a tremendous increase in artificial intelligence

(AI) related patents since 2013. A great deal has been done on implement-

ing reinforcement learning, a branch of AI, in simulations, but the same

cannot be said for physical robotic manipulators. In [9], Deep Reinforce-

ment Learning for vision-based robotic manipulation is utilized to grasp

unknown objects with a 96% success rate. Yet robots can still only perform

simple manipulation tasks given enough samples to learn [10], and the

demonstrations of model-based reinforcement learning (RL) techniques in

real applications remain of limited practical use [11]. Another challenge

with AI in robotics is the task of gathering enough experience from which

the agents can learn. [12] suggests overcoming this obstacle by training

on multiple robotic manipulators in parallel. In contrast, [13] delves into

the sim-to-real transfer, which is the approach taken in this thesis.

In [14] the term Human-Machine Cooperation (HMC) is introduced and

debates the necessity of humans and autonomous machines to cooperate

more closely to combat unforeseen challenges. Concerns about the loss

1.1. BACKGROUND AND MOTIVATION 3

of expertise due to automation, the dangers of over-reliance, and issues

regarding trust in the system, and self-confidence of the human opera-

tors were discussed. In a case where pilots were first confronted with

an automatic system for landing, they either used the system blindly or

shortcutted it. Advancements have been made since the paper was written

in 2000, and the need for cooperation between humans and machines has

not decreased. Self-driving cars and autonomous ships are some of the

groundbreaking innovations around the corner, yet these technologies

often have different levels of automation, which demands different levels

of cooperation. A total of seven (0 - 6) levels of autonomy for ships is

presented by Lloyd’s Register [15]. Even though the work presented in

this thesis does not fathom marine vessels, it can be classified as a level

4: “Human on the loop - operator/supervisory.” See Appendix A.3 for all

levels of autonomy.

When developing an autonomous system, it is crucial to evaluate the ethical

concerns. In 2017 teachers in Houston had their performance assessed

by an AI [16]. The agent made predictions based on their students’ test

results compared to the average score in Texas. The teachers who received

a good performance were awarded bonuses, while those with low scores

risked getting fired. The company responsible for the AI refused to reveal

how it made predictions, calling it a trade secret. Thus the teachers could

not tell if the predictions were fair or faulty. Later, a federal judge ruled

that the AI program could be violating their civil rights. The school district

stopped using it and paid the teachers’ fees.

4 CHAPTER 1. INTRODUCTION

Some critical aspects of AI technologies employed in the real world are

accountability, explainability, robustness, and safety [17]. The points of

accountability and safety are most relevant to this thesis. Accountability

is the fact of being responsible for your decisions or actions and expected
to explain them when you are asked, as defined in [18]. Explainability is

linked to the definition of accountability and describes to which degree the

AI can explain its decisions. Robustness is the the quality of being strong
and unlikely to break or fail [19]. The safety aspect fathoms not causing

damage to any equipment and, most importantly, not harming humans

and animals that may be affected by the decisions of an AI algorithm.

Not much work has been done on cooperative control of robotic manipula-

tors to solve complex real-world tasks. Relevant work includes [20], where

robotic manipulators are used during surgery. The system can seamlessly

execute automated tasks before giving control back to the surgeon. Other

examples of HMC (Human-Machine Cooperation), such as [21] describe

situations with humans inside the manipulator’s workspace and the fa-

cilitation of safe work environments. Thus, this thesis will explore the

notion of Human-Machine Cooperation in robotics, tested on a practical

lever-pull challenge.

1.2. OBJECTIVES AND RESEARCH QUESTIONS 5

1.2 Objectives and Research Questions

The scope of the thesis is defined in this section through three research

questions and a list of objectives. These questions will be revisited in

Chapter 6.

• Can a human operator cooperate with an RL agent through an HMCI

to solve a manipulation task with a robotic manipulator?

• How transferable is an RL agent trained in a simulated environment

to a physical one?

• Can a noisy visually estimate of the lever pose replace reliable direct

measurements as input signals for an RL agent?

Note that HMCI is an acronym introduced in this thesis, and is a combi-

nation of the acronyms HMI and HMC, it is short for Human-Machine

Cooperation Interface. To answer the research questions, the objectives

listed below are outlined.

1. Convert the OpenManipulator RL Environments developed by the

author of [22] to ROS Noetic and Python 3. The package was initially

built as a framwork to train RL agents on the OpenManipulator-X.

2. Create a gym environment for the OM-X in MuJoCo, which was

re-released as open-source software in 2021.

6 CHAPTER 1. INTRODUCTION

3. Port the HMI of [23] into a ROS Noetic package and extend it to be

compatible with an RL agent. The HMI allows operators to control

the OpenManipulator-X with hand gestures through an intuitive

interface.

4. Design a method for continuous measurements of the physical lever

angle.

5. Design an algorithm for estimating the lever angle and position from

camera images.

6. Train an RL agent in the MuJoCo environment, and transfer it to the

physical system.

1.3 Contributions

The thesis contributes to the fields of robotic control systems, reinforce-

ment learning, robotic vision, Human-Machine Interface and Human-

Machine Cooperation. More specifically, the thesis introduces:

• A novel, intuitive, and responsive Human-Machine Cooperation

Interface for improved Human-Robot Interaction

• A vision-based estimation technique for lever poses

• A reinforcement learning environment for the OpenManipulator-X

in the MuJoCo simulator

1.3. CONTRIBUTIONS 7

TheHuman-Machine Cooperation Interface is based on theHuman-Machine

Interface developed by the author in the project thesis [23], but the ex-

tended and more advanced version presented in this thesis allows for direct

and intuitive cooperation between a reinforcement learning agent and a

human operator.

The vision-based estimation technique is designed to work as the RL

agent’s eyes and extracts meaningful information about the lever in the

manipulator’s workspace. The lever is a part of the cooperation challenge,

meant to illustrate how a human can cooperate with an AI to accomplish

complex goals; it is presented in Section 5.2.

The OpenManipulator-X had to be ported into the MuJoCo simulator as no

official or unofficial model known to the author exists. The reinforcement

learning environment is based on the work done in [22], but extended and

altered to suit the research questions of this thesis.

8 CHAPTER 1. INTRODUCTION

1.4 Outline

The thesis is partitioned into six chapters. Chapter 1 is the introduction,

and Chapter 2 introduces the most relevant theory, which is useful for

understanding the later chapters. Chapter 3 describes the physical setup,

as well as the simulation environment for the training of the RL agent. Two

methods of measuring the pose of physical lever are also presented here.

In Chapter 4, the problem is formulated and a physical test is introduced. A

summary of the system is given in the SystemOverview section. Following,

the HMI from [23] and the OpenManipulator RL Environments package
from [22] is presented. Further, Chapter 5 presents and discusses the

results from the cooperation challenge.

Figure 1.1 outlines the thesis as a high abstraction block diagram, displaying

the interactions between the most important parts of the system, and their

relevant sections.

1.4. OUTLINE 9

Figure 1.1: A high absraction map of the thesis, with relevant sections

10 CHAPTER 1. INTRODUCTION

Chapter 2

Theory

This chapter presents theory which is relevant for the solution introduced

in the next chapters. Firstly, the forward- and inverse kinematics problems

needed to control the robotic manipulator are reviewed. Next, the concept

of Finite State Machines are described. Further, the most important parts of

Reinforcement Learning is presented, together with the DDPG algorithm

used to train the agent in this thesis. The next section introduces the PnP

algorithm, which is necessary during the visual estimation of the lever pose.

The final section describes the most relevant parts of the Robot Operating

System, which is used for communications and package structuring.

11

12 CHAPTER 2. THEORY

2.1 Robotic Manipulators

Material from this section has been reused from the project thesis [23] and

modified to better fit this thesis.

Robotic manipulators are mechanical devices designed to perform a wide

range of automated tasks. Most manipulators consist of a series of rigid

links connected by joints with one adjustable parameter, commonly re-

ferred to as one DOF (Degrees of Freedom). DOF are explained in [24] as

the number of scalar variables that are necessary and sufficient to describe
the locations of all the components in a mechanical system. Thus, a robotic

manipulator with 4 movable joints will have four DOF. In some cases,

the manipulator might be restricted, however. For instance, a pendulum

attached to a rigid body can only move in a spherical space and has only

two DOF instead of three. Its DOF is the difference between its DOF in

an unrestricted system and the number of constraints. In this case, the

pendulum has originally three DOF, but loses one since the body it is

attached to is rigid. Furthermore, typical robotic manipulators have six

DOF, which means the end-effector of the arm has free translational and

rotational movement in the three axes X, Y, and Z.

There exist many different types of joints, but the two most common are

prismatic and revolute joints.

2.1. ROBOTIC MANIPULATORS 13

Prismatic joint
Often also labeled linear joints, the movements from these joints are trans-

lational along a single axis, where the axes of the connected links remain

parallel.

Revolute joint
The relative movement between the connected links is rotational, perpen-

dicular, or parallel to the input link.

2.1.1 Forward Kinematics

Forward kinematics (FK) is the process of computing the end-effector’s

position by using the geometry of the robotic manipulator together with

the varying link orientations. These varying angles are commonly known

as generalized coordinates.

14 CHAPTER 2. THEORY

Figure 2.1: A model of the OpenManipulator-X with coordinate systems.

Borrowed from [25] and modified.

In Figure 2.1 a total of six coordinate frames represented by vectors of the

type ®𝑋𝑖, ®𝑌𝑖, ®𝑍𝑖 has been drawn. The world frame is represented by the 𝑖 = 0

frame, while the 𝑖 = 1 frame has been drawn in the first joint and is static

within the world frame. The subsequent three frames move in relation to

2.1. ROBOTIC MANIPULATORS 15

each other and are drawn to represent the movement from all joints in a

straightforward manner. Lastly, the sixth frame has been drawn suitably

on the end-effector. The frames have all been assigned according to the

Denavit-Hartenberg (DH) convention [26].

𝑯𝑾
𝑬𝑭 = 𝑯 0

𝒏 =


𝑹0
𝒏 𝒐0𝒏

0 1

 ∈ 𝑆𝐸 (3) (2.1)

By using the representation depicted in Figure 2.1, we can introduce ho-

mogeneous transformations between the frames. These transformation

matrices can be multiplied to produce a single transform from zero frame

to end-effector frame, as presented in Equation (2.1), where 𝑹0
𝒏 is the

rotation from 0-frame to end-effector frame, 𝒐0𝒏 is the position of the end-

effector in 0-frame, and 𝑛 is the number of movable joints. Thus we can

acquire the end-effector coordinates in the static zero frame if we know the

DH-parameters. In short, forward kinematics involves calculating the 𝑯 0
𝒏

matrix which transforms coordinates from 0 frame to 𝑛 frame. The 𝑯𝑾
𝑬𝑭

notation will be used in this thesis instead of 0- and 𝑛-frames. The reverse

transformation can be found by inverting the matrix, see Equation (2.2).

𝑯 𝑬𝑭
𝑾 =

(
𝑯𝑾

𝑬𝑭

)−1
(2.2)

16 CHAPTER 2. THEORY

2.1.2 Inverse Kinematics

While forward kinematics can be used to calculate the end-effector position,

given joint and link parameters, IK (Inverse Kinematics) is the opposite

operation: estimating the variable joint parameters needed to move the

end-effector to a pre-determined position. The inverse kinematics problem

is usually not as straightforward as the forward kinematics.

𝒙𝑾𝑬𝑭 = 𝑓 (𝜽) (2.3)

𝜽 = 𝑓 −1(𝒙𝑾𝑬𝑭) (2.4)

Analytically, the solution is to invert the direct kinematics equation, given

by Equation (2.3) where 𝑥𝑊
𝐸𝐹

is the end-effector position in the world frame

and 𝑓 is a function of rotations and translations dependant on the joint

values 𝜽 , and calculate all possible solution branches, see Equation (2.4).

However, this only works if the number of constraints is the same as the

number of DOF of the robot. A range of methods that overcomes the

challenge exists, where the most popular class utilizes the Jacobian matrix

to find a linear approximation to the inverse kinematics problem. A few

of these algorithms include DLS (Damped Least Squares) [27], SVD-DLS

(Damped Least Squares with Singular Value Decomposition) [28], and

SDLS (Selectively Damped Least Squares) [29]. They produce smooth

2.1. ROBOTIC MANIPULATORS 17

postures but suffer from high computational costs, singularity issues, and

complex matrix calculations.

Another class of IK solutions are based on Newton’s method. The most

well known algorithms include Powell’s method [30], Broyden’s method

[31], and the BFGS (Broyden, Fletcher, Goldfarb and Shanno) method [32].

These methods avoid erroneous discontinuities while producing smooth

motions. However, they suffer from complexity and high computational

costs per iteration and are difficult to implement.

Further, [33] proposes another method called FABRIK (Forward And Back-

ward Reaching Inverse Kinematics) which is the method that will be used

to solve the IK problem in the MuJoCo simulator environment. The IK

solver in MuJoCo does not have to produce exactly the same poses as the

solver implemented by Robotis for the OpenManipulator-X in ROS. Thus

the same technique for IK does not have to be implemented in MuJoCo.

Nevertheless, an implementation is needed to control the manipulator to

different initial positions for the RL training.

2.1.3 FABRIK

FABRIK [33] is an iterative method that finds each joint position on a

line and readjusts the manipulator accordingly. See Figure 2.2 for an

intuition of the process. The method removes the need to find rotational

and translational matrices, resulting in convergence within a few iterations,

18 CHAPTER 2. THEORY

and does not suffer from singularities. Another advantageous feature of

FABRIK is the possibility of adding joint restrictions as well.

Figure 2.2: Forward reaching (a) - (d), and Backward reaching (e) - (f) of

the FABRIK method visualized in a 2D plane. Image borrowed from [33].

2.1. ROBOTIC MANIPULATORS 19

The algorithm divides the IK problem into two phases: forward and back-

ward reaching. During the forward reaching stage, the end effector is

translated to the target, and the previous joint is moved to a new position

along a straight line to the new location of the end-effector. The procedure

repeats itself for all joints. The backward reaching stage is necessary as

the root joint cannot move its position and must be held in place. It follows

the same rules as forward reaching, except it starts at the root and iterates

outwards to the end effector. A tolerance is set to end the loop when

the error between target- and end-effector position is small enough. The

algorithm is presented in Algorithm 1.

20 CHAPTER 2. THEORY

Algorithm 1 The FABRIK algorithm

Input: The joint positions p𝑖 for i = 1,...,n, the target position t and the distances

between each joint 𝑑𝑖 = |p𝑖 − p| for i = 1,...,n-1.

Output: The new joint positions p𝑖 for i = 1,...,n.

dist = |p
1
− t| ⊲ The distance between root and target

Check whether the target is within reach

if dist > 𝑑1 + 𝑑2 + ... + 𝑑𝑛−1 then
for i = 1,...,n-1 do

𝑟𝑖 = |t − p𝑖 | ⊲ Distance between target and the joint position

𝜆𝑖 = 𝑑𝑖/𝑟𝑖
p𝑖+1 = (1 − 𝜆𝑖)p𝑖 + 𝜆𝑖t ⊲ Find the new joint positions p𝑖+1

end for
else ⊲ The target is reachable

b = p
1

𝑑𝑖 𝑓𝐴 = |p𝑛 − t|
while 𝑑𝑖 𝑓𝐴 > 𝑡𝑜𝑙 do

STAGE 1: Forward reaching

p𝑛 = t
for i = n-1,...,1 do

𝑟𝑖 = |p𝑖+1 − p𝑖 |
𝜆𝑖 = 𝑑𝑖/𝑟𝑖
p𝑖 = (1 − 𝜆𝑖)p𝑖+1 + 𝜆𝑖p𝑖 ⊲ Find the new joint positions p𝑖

end for
STAGE 2: Backward reaching

p
1
= b ⊲ Set the root p

1
to its initial position

for i = 1,...,n-1 do
𝑟𝑖 = |p𝑖+1 − p𝑖 |
𝜆𝑖 = 𝑑𝑖/𝑟𝑖
p𝑖+1 = (1 − 𝜆𝑖)p𝑖 + 𝜆𝑖p𝑖+1 ⊲ Find the new joint positions p𝑖+1

end for
𝑑𝑖 𝑓𝐴 = |p𝑛 − t|

end while
end if

2.2. FINITE STATE MACHINE 21

2.2 Finite State Machine

An FSM (Finite State Machine) is a mathematical model of computations

that can be in exactly one state out of a limited number of states. The FSM

can change between states in response to some inputs, in what is called

a transition [34]. An FSM is defined by a list of its states, the inputs that

trigger each transition between all states, and its initial state. Figure 2.3

displays an FSM of an elevator, where the black dot indicates the starting

state. All states are represented by circles and a description. The arrows

indicate all transitions between states, and the triggering inputs are labeled.

State machines can be designed at a high abstraction level as the elevator

example, but they can also be far more complex and detailed.

Figure 2.3: An example of an FSM description of an elevator system

22 CHAPTER 2. THEORY

2.3 Reinforcement Learning

Reinforcement Learning is a relatively new field within optimization and

control problems and has shown great potential. A task in the RL task

space is generally defined by the following elements: agent, policy, actions,

states, and rewards. Actions and states can either be discrete or continuous.

2.3.1 Elements in an RL algorithm

Agent
The agent is the entity in the environment that the computer is allowed to

control. In the autonomous vacuum cleaner example, one would assume

that the agent could be the robotic cleaner, but this is a simplification. In

reality, the robot is a part of the environment, as it consists of physical

components such as wheels, motors, and a battery, enabling the agent to

get around. These parts can exist in different states, impacting the agent’s

decision-making process. The agent cannot be allowed to directly control

its environment, such as increasing the battery percentage without first

charging.

Policy
The agent’s policy, 𝜋 , is the strategy that the agent follows when deciding

on which action to take. The challenge is that the agent must visit all the

states before being able to choose the actions leading to the optimal states.

2.3. REINFORCEMENT LEARNING 23

In most cases, it will be too computationally demanding for the agent to

explore all possible states, so a middle ground between exploration and

exploitation must be found.

Action
For every accessible state in the environment, a set of actions is available

to the agent. Taking an action can result in the agent transitioning to

another state.

State
A state defines the environment in a given timestep and can be both

dependent and independent on time. States contain information describing

the agent’s spatial and temporal location in the environment and the

environment itself, such as the battery percentage for a robotic vacuum

cleaner.

Reward
Some states are defined to give rewards to the agent, both positive and

negative. The rewards are designed such that the agent can learn to do

intended tasks. A robotic vacuum cleaner is supposed to clean the entire

floor and return to its charging station before running out of battery. Thus

a negative reward is given each time the robot fails to return before the

battery depletes, and a positive reward is calculated based on how much of

the floor areawas swept. Perhaps it is desired to clean the floor as efficiently

24 CHAPTER 2. THEORY

as possible. The robot could get a small negative reward for each time

step spent cleaning, incentivizing accurate and faster cleaning sessions. It

is important to stress that the reward is defined in the environment and

not in the agent, as the agent would then be able to modify its reward,

achieving optimal accumulated reward while not doing the intended tasks.

That is the reasoning behind moving physical parts such as battery status

from the agent to the environment.

Off- and On-Policies
Off-Policy models differ from On-Policy models in the sense that Off-Policy

models rely on one policy to choose which action to take, while another

policy provides the most rewarding action based on current knowledge

of the environment. We introduce the exploration-exploitation trade-off

problem to understand why one would desire a suboptimal policy instead

of the optimized one.

Exploration - Exploitation
The multi-armed bandit problem [35] describes the issue neatly. Imag-

ine a row of slot machines, each with its own possibly unique reward

distribution. The challenge is to choose which device to gamble on, as

some of them will have a higher expected reward. The agent could be

unlucky when selecting the best machine and lucky when choosing the

worst performing one. A consequence of too little exploration means too

much exploitation of the wrong devices. Thus, if it was lucky and got good

2.3. REINFORCEMENT LEARNING 25

rewards from the slot machine with the lowest expected reward, too much

exploitation would cause it to not explore the other, better options. On the

other hand, too much exploration would suggest choosing a random slot

machine each time, and the agent would miss out on most of the rewards

from the better ones, leaving it to chance.

A common technique within RL is the 𝜖-greedy method [36], which in-

volves choosing the optimal action out of a set of n actions at a rate of

(1 − 𝜖). Further, the method will also select one of the other actions at a

rate of 𝜖/𝑛, increasing the exploration of the environment.

Model- VS Model Free Methods
Model-free methods do not use predictions of the environment’s response

during training or acting. Typical model-based methods include the classi-

cal Policy Iteration and Value Iteration algorithms [37], which use models

to calculate the reward signals.

Q-Value and Bellman Equation
Multiple value functions exists, but the most relevant is called the optimal

action-value function, Equation (2.5). It gives the expected reward if you

start in state 𝑠 , take an arbitrary action 𝑎, and follow the optimal policy 𝜋

forever, resulting in the trajectory 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, ...). 𝜏 ∼ 𝜋 is short for

𝜏 ∼ 𝜋 (·|𝑠).

26 CHAPTER 2. THEORY

𝑄∗(𝑠, 𝑎) = max

𝜋
𝐸
𝜏∼𝜋
[𝑅(𝜏) |𝑠0 = 𝑠, 𝑎0 = 𝑎] (2.5)

All value functions have their special self-consistency equations, known as

Bellman equations. The idea is to let the reward be distributed over larger

areas from some reward-yielding source. Thus, if an agent finds a path

that leads to the reward, it is known which parts of the path were most

vital for reaching the goal. More generally, Equation (2.6) describes the

value of the starting state, plus the value of wherever you land next, 𝑠′. 𝑎′

is the next action. 𝑠′ ∼ 𝑃 is shorthand for 𝑠′ ∼ 𝑃 (·|𝑠, 𝑎), where 𝑃 describes

the environment’s transition rules. 𝛾 ∈ (0, 1) is a discount factor.

𝑄∗(𝑠, 𝑎) = 𝐸
𝑠 ′∼𝑃
[𝑟 (𝑠, 𝑎) + 𝛾max

𝑎′
𝑄∗(𝑠′, 𝑎′)] (2.6)

2.3. REINFORCEMENT LEARNING 27

2.3.2 Artificial Neural Networks

Material from this section has been reused from the project thesis [23] and

modified to better fit this thesis.

Figure 2.4: (a): A neural network. (b): A close up of a single neuron in a

fully connected network

Image borrowed from [38]

ANNs (Artificial Neural Networks) are computational models that intend to

simulate biological neurons. A typical ANN, shown in Figure 2.4, consists

of an input layer, n hidden layers, and an output layer. The network in

the figure has exactly one hidden layer but they can have many more.

Looking at figure (b), we can see that for all the neurons in a layer, all the

inputs from the previous layer are multiplied by weights, summed, and

passed through an activation function. A bias, not shown in the figure,

28 CHAPTER 2. THEORY

is normally multiplied by a weight and summed together with the inputs

before the activation function. The activation function mimics whether

the neuron is activated or not, like in a physical brain. The ReLU activation

function, for instance, makes all negative inputs zero while returning the

positive ones. See Equation (2.7), where 𝑓 is the activation function, and 𝑥

the input signal.

𝑓 (𝑥) =𝑚𝑎𝑥 (𝑥, 0) (2.7)

Another commonly used activation function is the Sigmoid, which maps

all real values into the range [0, 1]. See Equation (2.8).

𝑓 (𝑥) = 1

1 + 𝑒−𝑥 (2.8)

While calculating the output from some input is called forward propagating,

the distinctive learning algorithm is called backpropagation. For example,

assuming we have a set of images of either cats or dogs which are labeled,

we perform a forward propagation on a single image and compare the

output with the corresponding label. The output is a vector with two

decimals, each having a value between 0 and 1, where 1 means that the

network is certain that a cat or a dog is present. Thus we can calculate

the error between prediction and label with a loss function. The weights

are updated according to how much they contributed to the error metric

in question. This thesis will not delve into further details concerning the

2.3. REINFORCEMENT LEARNING 29

backpropagation algorithm.

A class of neural networks commonly referred to as convolutional neural

networks (CNN) is popularly utilized to analyze visual imagery. [39]. These

CNNs consist of hidden convolutional layers, where the term convolutional

comes from the convolving process. A filter, or kernel, is initialized with

random numbers for each convolutional layer and slides across the input,

often an image. The dot product between the input image and the kernel

is thus outputted from the convolutional layer. These filters are good at

pattern recognition. By having multiple such layers consecutively, one

layer can detect corners, circles, or squares while the next can detect more

complex shapes such as hands, eyes, or hair. Further, each filter is trained,

removing the need for designing each one by hand, which is a substantial

advantage over traditional filtering methods.

2.3.3 DDPG

The DDPG algorithm is used to train the RL agent in this thesis.

Deep Deterministic Policy Gradient (DDPG) [40] is an off-policy, model-

free, critic-actor reinforcement learning algorithm. It uses the Bellman

equation and off-policy data to learn the Q-function, which is used to learn

the policy 𝜋 . See Algorithm 2 for the pseudo code of the DDPG algorithm.

It is similar to Q-learning in the sense that if you know the optimal action-

value function 𝑄∗(𝑠, 𝑎) you can acquire the optimal action by solving

30 CHAPTER 2. THEORY

Equation (2.9).

𝑎∗(𝑠) = 𝑎𝑟𝑔max

𝑎
𝑄∗(𝑠, 𝑎) (2.9)

The issue is thus to find an estimate of the optimal action value, which

DDPG learns concurrently with the optimal action 𝑎∗(𝑠) approximator.

As DDPG is designed specifically for continuous action spaces, it is not

straightforward how we should compute the max over actions in Equa-

tion (2.9).

For finite action spaces, to find the optimal action is simply computing the

action value for all actions and choosing the action which yields the highest

value. There is no such trivial solution for continuous actions spaces,

and common optimization techniques become far too computationally

demanding to be calculated at each iteration.

𝑄∗(𝑠, 𝑎) is regarded as differentiable with respect to its action argument,

allowing us to set up an efficient, gradient-based learning rule for a policy

𝜋 (𝑠). Thus, instead of computationally demanding subroutines, we can

take advantage of the approximation Equation (2.10).

max

𝑎
𝑄 (𝑠, 𝑎) ≈ 𝑄 (𝑠, 𝜋 (𝑠)) (2.10)

Going one step further, suppose that the approximator is a neural network,

𝑄𝜙 (𝑠, 𝑎). Where 𝜙 are the parameters, and we have collected a set D of

2.3. REINFORCEMENT LEARNING 31

transitions (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑). 𝑑 notes if 𝑠′ is a terminal state. Using such an

approximation, we can set up Equation (2.11), an MSBE (Mean-Squared

Bellman Error), which indicates how close 𝑄𝜙 comes to satisfying the

Bellman equation.

𝐿(𝜙,D) = 𝐸
(𝑠,𝑎,𝑟,𝑠 ′,𝑑)∼D

[(
𝑄𝜙 (𝑠, 𝑎) −

(
𝑟 + 𝛾 (1 − 𝑑)max

𝑎′
𝑄𝜙 (𝑠′, 𝑎′)

))
2

]
(2.11)

Replay Buffers
The setD is an experience replay buffer and contains previous experiences.

The buffer should be large enough to include a wide range of experiences

to ensure that the algorithm exhibits stable behavior. However, it is not

wise to store everything due to computational limits. If you only keep the

most recent data, the model will overfit. Tuning is needed to find a good

trade-off.

Target Networks
Equation (2.12) is called the target since the minimization of the MSBE

loss involves making the Q-function as similar as possible to this target.

𝑟 + 𝛾 (1 − 𝑑)𝑚𝑎𝑥
𝑎′
𝑄𝜙 (𝑠′, 𝑎′) (2.12)

Unfortunately, the target depends on the same parameters we are trying

32 CHAPTER 2. THEORY

to train, making the training unstable. To overcome this challenge, we can

use a set of parameters that come close to 𝜙 , called 𝜙𝑡𝑎𝑟𝑔. In practice, we

can achieve this by updating the parameters of the target network once

per main network update by Polyak averaging [41]. See Equation (2.13),

where 𝜌 is a hyperparameter between 0 and 1.

𝜙𝑡𝑎𝑟𝑔 ← 𝜌𝜙𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜙 (2.13)

Due to the fact that the parameters of the target network are lagging behind

𝜙 , we say that the DDPG algorithm is off-policy. Similarly, the parameters

of the target policy network, 𝜃𝑡𝑎𝑟𝑔 is updated according to Equation (2.14)

𝜃𝑡𝑎𝑟𝑔 ← 𝜌𝜃𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜃 (2.14)

Due to the difficulties mentioned above when optimizing on continuous

action spaces, a target policy network is used to compute an action that

approximately maximizes 𝑄𝜙𝑡𝑎𝑟𝑔 . The Q-learning in DDPG is performed

by minimizing the MSBE given in Equation (2.15) with stochastic descent.

𝜋𝜃𝑡𝑎𝑟𝑔 is the target policy.

𝐿(𝜙,D) = 𝐸
(𝑠,𝑎,𝑟,𝑠 ′,𝑑)∼D

[(
𝑄𝜙 (𝑠, 𝑎) −

(
𝑟 + 𝛾 (1 − 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔 (𝑠′, 𝜋𝜃𝑡𝑎𝑟𝑔 (𝑠′))

))
2

]
(2.15)

2.3. REINFORCEMENT LEARNING 33

Policy Learning
We want to find a deterministic policy 𝜋𝜃 (𝑠) that maximizes 𝑄𝜙 (𝑠, 𝑎). As-
suming the Q-function is differentiable with respect to the action, we can

perform gradient ascent on Equation (2.16), since the action space is con-

tinuous. The parameters of the Q-function is treated as constants during

this step.

𝑚𝑎𝑥
𝜃

𝐸
𝑠∼D

[
𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠))

]
(2.16)

34 CHAPTER 2. THEORY

Algorithm 2 The DDPG algorithm

Input: Initial policy parameters 𝜃 , Q-function parameters 𝜙 , empty replay

buffer D
Set target parameters equal to main parameters 𝜃𝑡𝑎𝑟𝑔 ← 𝜃 , 𝜙𝑡𝑎𝑟𝑔 ← 𝜙

while no convergence do
Observe state s and select action 𝑎 = 𝑐𝑙𝑖𝑝 (𝜋𝜃 (𝑠) + 𝜖, 𝑎𝐿𝑜𝑤 , 𝑎𝐻𝑖𝑔ℎ),

where 𝜖 ∼ N
Execute a in the environment

Observe 𝑠′, 𝑟 , 𝑑

Store (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑) in replay buffer D
if s’ is terminal then

Reset environment state

end if
if it’s time to update then

for however many updates do
Randomly sample a batch of transitions, B = (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑)

from D
Compute targets

𝑦 (𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾 (1 − 𝑑)𝑄𝜙𝑡𝑎𝑟𝑔 (𝑠′, 𝜋𝜃𝑡𝑎𝑟𝑔 (𝑠′))
Update Q-function by one step gradient descent using

∇𝜙 1

|B|
∑

(𝑠,𝑎,𝑟,𝑠 ′,𝑑)∈B
(𝑄𝜙 (𝑠, 𝑎) − 𝑦 (𝑟, 𝑠′, 𝑑))2

Update policy by one step of gradient ascent using

∇𝜙 1

|B|
∑
𝑠∈B
𝑄𝜙 (𝑠, 𝜋𝜃 (𝑠))

Update target networks with

𝜙𝑡𝑎𝑟𝑔 ← 𝜌𝜙𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜙
𝜃𝑡𝑎𝑟𝑔 ← 𝜌𝜃𝑡𝑎𝑟𝑔 + (1 − 𝜌)𝜃

end for
end if

end while

2.3. REINFORCEMENT LEARNING 35

2.3.4 Hindsight Experience Replay

Hindsight Experience Replay (HER), developed by the authors of [42], seeks

to deal with the problem of sparse rewards, which is a considerable problem

for reinforcement learning, and especially so for robotics challenges. The

method allows sample-efficient learning from sparse and binary reward

signals, neglecting the need for complex reward functions. It can be

implemented with any off-policy RL method.

The reward function must be carefully designed to describe the task at

hand but also guides the policy optimization. Sometimes we do not know

which behavior to expect, making it challenging to develop a proper reward

function. In such cases, sparse rewards are preferred, as everything is left

for the agent to decide.

HER will, for some of the state sequences in the replay buffer, replace the

goal with the last state of that sequence. The trajectory does not teach us

how to reach g, but it does tell us how to reach the last state, 𝑆𝑡 . Algorithm 3

provides a pseudo code for the HER method.

36 CHAPTER 2. THEORY

Algorithm 3 The HER algorithm

Given:

• an off-policy RL algorithm A,

• a strategy S for sampling goals for replay,

• a reward function 𝑟 : S × A × G → R

Initialize A

Initialize replay buffer 𝑅

for episode=1,𝑀 do
for t = 0, T-1 do

Sample an action 𝑎𝑡 ← 𝜋𝑏 (𝑠𝑡 | |𝑔)
Execute the action 𝑎𝑡 and observe a new state 𝑠𝑡+1

end for
for t = 0, T-1 do

𝑟𝑡 := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔)
Store the transition (𝑠𝑡 | |𝑔, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 | |𝑔) in 𝑅
Sample a set of additional goals for replay 𝐺 := S(current

episode)
for 𝑔′ ∈ 𝐺 do

𝑟 ′ := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔′)
Store the transition (𝑠𝑡 | |𝑔′, 𝑎𝑡 , 𝑟 ′, 𝑠𝑡+1 | |𝑔′) in R

end for
end for
for t = 1, 𝑁 do

Sample a minibatch 𝐵 form replay buffer 𝑅

Perform one step of optimization using A and minibatch 𝐵

end for
end for

2.4. ROBOTIC VISION 37

2.4 Robotic Vision

Robotic vision encompasses visual sensor information, advanced object

detection, and orientation algorithms. SINTEF provides the following

description: “The aim of robot vision is to make a wide range of robot

platforms able to interact with the world around them through visual

inputs” [43]. One such detection algorithm used for finding the camera’s

orientation and position is the PnP (Perspective-n-Point) algorithm [44].

2.4.1 Perspective-n-Point Pose Estimation

Perspective-n-Point (PnP) is the problem of estimating the camera pose

from a set of𝑛 image points and corresponding object points, whose coordi-

nates are usually measured. It is tightly linked with the camera calibration

problem, where one would want to estimate a set of distortion parameters

describing the physical imperfections of the camera lens. Mainly two types

of distortions are considered: radial and tangential. Numerous methods for

estimating these parameters exist, but Zhang’s method [46] is perhaps the

most widespread one. Figure 2.5 shows an overview of the PnP problem.

The 𝑋 -axis points to the right in the camera coordinate system, the 𝑌 -axis

points downwards, and the 𝑍 -axis points outwards.

38 CHAPTER 2. THEORY

Figure 2.5: Work flow for the PnP pose computation problem. Image

borrowed from OpenCV [45]

2.4. ROBOTIC VISION 39

𝑠


𝑢

𝑣

1


= 𝑯𝑶

𝑪



𝑥𝑊
𝑜𝑏 𝑗

𝑦𝑊
𝑜𝑏 𝑗

𝑧𝑊
𝑜𝑏 𝑗

1


(2.17)

In Equation (2.17) object points [𝑥𝑊
𝑜𝑏 𝑗
𝑦𝑊
𝑜𝑏 𝑗
𝑧𝑊
𝑜𝑏 𝑗
]𝑇 are transformed into image

points [𝑢, 𝑣]𝑇 by the homography 𝑯𝑶
𝑪 , which is based on the pinhole

camera model [47]. The object points describe known points in world

coordinates, often corners in checkerboard patterns or QR-codes, while the

image points are pixel coordinates. Thus, one can estimate the homography

by knowing the image- and object points given in world coordinates.

𝑯𝑶
𝑪 = 𝑲


𝑹3𝒙3 𝑻3𝒙1

01𝒙3 1

 (2.18)

𝑯𝑶
𝑪 is given by Equation (2.18), where 𝑲 is the camera’s intrinsic parame-

ters and the [𝑹3𝒙3 𝑻3𝒙1] matrix is referred to as the extrinsics. For the PnP

problem, we are mainly interested in obtaining the extrinsic parameters

that describe the pose of the camera.

40 CHAPTER 2. THEORY

𝑲 =


𝑓𝑥 𝛾 𝑢0 0

0 𝑓𝑦 𝑣0 0

0 0 1 0


(2.19)

For camera calibration, the intrinsic parameters 𝑲 see Equation (2.19) are

also estimated along with a set of distortion parameters. 𝑓𝑥 and 𝑓𝑦 are the

scaled focal lengths, while 𝑢0 and 𝑣0 is the principle point. 𝛾 is the skew

parameter, typically assumed at 0. 𝑠 is a scale factor that arises because of

the homogeneous vectors.

Due to the limitation of measuring the object coordinates by hand, patterns

with known object coordinates are usually photographed. In this thesis,

Aruco indices are utilized, see Section 3.6.2. The intrinsics are given by the

camera manufacturer. We assume the camera sensor has been calibrated

correctly, and that no distortion is present.

Once all points have been detected in the image, usually by extensive

filtering, and the object points are measured, the transformation matrix

[𝑹3𝒙3 𝑻3𝒙1] can be found. In Zhang’s camera calibration method, the object

points on checkerboards are always defined with zero 𝑍𝑊
𝑜𝑏 𝑗

value. We will

use the same trick here such that the expression is simplified as shown in

Equation (2.20), reducing the number of [𝑹3𝒙3 𝑻3𝒙1] parameters we need

to find from 12 to 9.

2.4. ROBOTIC VISION 41

𝑠


𝑢

𝑣

1


= 𝐾



𝑟11 𝑟12 𝑟13 𝑡1

𝑟21 𝑟22 𝑟23 𝑡2

𝑟31 𝑟32 𝑟33 𝑡3

0 0 0 1





𝑥𝑊
𝑜𝑏 𝑗

𝑦𝑊
𝑜𝑏 𝑗

0

1


= 𝐾



𝑟11 𝑟12 𝑡1

𝑟21 𝑟22 𝑡2

𝑟31 𝑟32 𝑡3

0 0 1




𝑥𝑊
𝑜𝑏 𝑗

𝑦𝑊
𝑜𝑏 𝑗

1


(2.20)

𝑟𝑖 𝑗 and 𝑡𝑖 are the elements of the rotation and translation matrices. Each

image-object point correspondence will then yield three equations in the

form of Equation (2.21). Following these equations, we see that a minimum

of three image-object point correspondences are needed to acquire the

sufficient amount of equations to solve for 𝑟𝑖 𝑗 and 𝑡𝑖 .

𝑠𝑢 = (𝑓𝑥𝑟11 + 𝑢0𝑟31)𝑥𝑊𝑜𝑏 𝑗 + (𝑓𝑥𝑟12 + 𝑢0𝑟32)𝑦
𝑊
𝑜𝑏 𝑗
+ 𝑓𝑥𝑡1 + 𝑢0𝑡3

𝑠𝑢 = (𝑓𝑦𝑟21 + 𝑣0)𝑥𝑊𝑜𝑏 𝑗 + (𝑓𝑦𝑟31 + 𝑣0𝑟32)𝑦
𝑊
𝑜𝑏 𝑗
+ 𝑓𝑦𝑡2 + 𝑣0𝑡3

𝑠 = 𝑟31𝑥
𝑊
𝑜𝑏 𝑗
+ 𝑟32𝑦𝑊𝑜𝑏 𝑗 + 𝑡3

(2.21)

42 CHAPTER 2. THEORY

2.5 ROS - Robot Operating System

This section has been reused from the author’s project thesis [23] with

minor adjustments.

The Robot Operating System is a general open source framework for

writing robotic applications. It contains conventions, libraries and tools

that are helpful when working with a robotic manipulator. In this project,

ROS is used due to its tools for communicating with the manipulator, which

has custom built packages specifically for use with ROS. The framework

is available in multiple distributions, but here ROS Noetic is used due to its

compatibility with Python, the OpenManipulator-X, and the Ubuntu 20.04

operating system.

To communicate with the manipulator, one should have a general un-

derstanding of the following modules in ROS: Nodes, Topics, Services and
Actions.

Nodes
A node is responsible for a single modular operation, which could be to

control the wheels in a car, or in our case to control a robotic manipulator.

Another node could handle user input, and would probably want to trans-

mit this information to the controller node. Which is what Nodes, Topics
and Services are used for.

2.5. ROS - ROBOT OPERATING SYSTEM 43

Topics
Nodes use topics to either publish data, or subscribe to data being published

by other nodes. Topics can either be one-to-one, one-to-many, many-

to-one or many-to-many communication and are meant for continuous

streams of data. There are however no handshakes between the nodes,

and one node does not know how many nodes has successfully received

the data being pushed on a topic.

Services
A service is a more direct way of communicating than a topic, and is based

on a call-and-response model. Each Service has exactly one server node

that waits on requests from one or more client nodes, and transmits a

response to the client that made a request. A client can for example ask

for the joint positions of a robotic arm with one dedicated service.

Actions
Actions combine topics and services into a third communication type,

meant for longer running tasks. Every action consists of three parts, a

goal, a feedback and a result. The goal and result are services while the

feedback is a topic. An action client first sends a goal to the server, which

responds and acknowledges the goal. Next, the client asks for a result, and

while the action is being performed, the server streams data though the

feedback topic. Once the goal has been achieved, or is cancelled, a result

is transmitted to the client.

44 CHAPTER 2. THEORY

Chapter 3

Experimental Setup

To test the system developed in Chapter 4, a robotic manipulator is used

to pull a lever into a specific angular position. This section describes

the experimental setup of that test: The lever-manipulator setup, how

the HMCI from Section 4.5 records the operator’s hand, the third-party

software needed to run the system, the robotic manipulator and depth

sensors, the different simulators and how the RL agent is trained, how the

lever angle and position is measured.

45

46 CHAPTER 3. EXPERIMENTAL SETUP

3.1 Overview

The setup consists of the OpenManipulator-X, two Intel RealSense D435
depth sensors, a lever connected to a potentiometer, and a Raspberry Pi
3 Model B 1GB RAM, as illustrated by Figure 3.1. Three Aruco indices

were attached to the lever by a 3D-printed holder, as seen in Figure 3.1.

A custom-made 3D printed adapter also attaches one stereoscopic sensor

to the manipulator’s end-effector. Both attachments were designed in

FreeCAD and printed using a Prusa i3 MK3S 3D printer.

3.1. OVERVIEW 47

Figure 3.1: Left: The lever setup with a potentiometer and Aruco indices.

Right: the OpenManipulator-X with an Intel RealSense D435 stereoscopic

sensor mounted on its end-effector.

The manipulator was mounted on a wooden platform, together with a

lever constructed by the author of [22]. The lever is approximately 24𝑐𝑚

in front of the manipulator, along the 𝑋𝑊 -axis. Figure 3.1 depicts both

the lever and the manipulator. Further, Figure 3.2 exhibits a stand for

48 CHAPTER 3. EXPERIMENTAL SETUP

the stereoscopic depth sensor, made during the project thesis [23]. Three

grooves can be seen in the vertical arm, at approximately 58𝑐𝑚, 72𝑐𝑚, and

85𝑐𝑚. Experiments were carried out to determine at what distance the

depth sensor worked optimally, but in the end, the middle notch yielded

the most reliable hand tracking.

Figure 3.2: The plywood camera stand for hand gesture detection.

Ubuntu 20.04.3 LTS was selected as the operating system due to dependen-

cies by the provided control system for the OpenManipulator-X and ROS.

Table 3.1 lists all the dependencies necessary to run the HMCI developed

in this thesis.

3.1. OVERVIEW 49

Name Version

Ubuntu 20.04.03 LTS

ROS NOETIC

OpenManipulator 2.0.2

OpenManipulator Msgs 1.0.1

OpenManipulator Dependencies -

Robotis Manipulator 1.1.1

Python 3.8.10

Rospy 1.15.14

PyQt5 5.14.1

QDarkStyle 3.0.3

Gym 0.21.0

Numpy 1.20.0

Matplotlib 3.1.2

OpenCV2 4.5.5

MediaPipe 0.8.9.1

Scipy 1.8.0

PyRealSense2 2.50.0.3812

Pillow 9.0.1

mpi4py 3.0.3

PyTorch 1.10.2

rospkg 1.4.0

mujoco-py 2.1.2.14

Table 3.1: The packages used to develop the HMCI and RL training envi-

ronment.

50 CHAPTER 3. EXPERIMENTAL SETUP

3.2 Robotic Manipulator

This section is reused, with modifications, from the author’s project thesis

[23].

The robotic manipulator OpenManipulator-X was used in the experimental

setup. The manipulator is cost-effective, consisting of both open-source

software and hardware. The software uses ROS packages for communica-

tion and control, while most of the manipulator parts are available as STL

CAD models, allowing for 3D printing. The manipulator is mounted on a

wooden platform, as seen in Figure 3.1.

In Section 2.1, the manipulator was briefly introduced as part of the For-

ward Kinematics section. Both FK and IK are handled by the supplied

ROS packages for both the physical model, and the Gazebo environment.

Appendix A.1 displays the dimensions of the manipulator, while fig. 2.1

shows the coordinate frames drawn by the author, according to the DH

convention. The DH parameters are given in Table 3.2, and are used by

the controller developed for the MuJoCo environment.

3.2. ROBOTIC MANIPULATOR 51

Link 𝜃𝑖 𝑑𝑖 𝑎𝑖 𝛼𝑖

1 𝜃1 = 𝛽 0.077m 0
𝜋
2

2
𝜋
2
− 𝑎𝑟𝑐𝑠𝑖𝑛(0.024

0.130
) + 𝜃2 0 0.130m 0

3 𝜃3 − 𝜋
2

0 0.124m 0

4 𝜃4 0 0.126m -
𝜋
2

Table 3.2: The DH parameters used for FK

Further, the manipulator is connected to the computer running the HMCI

through a USB communication converter, U2D2.

52 CHAPTER 3. EXPERIMENTAL SETUP

3.3 Depth Sensor

This section is partly reused from the author’s project thesis [23].

A depth sensor is used together with the hand tracking software to utilize

depth information from the hand. Seen in Figure 3.3 is the stereoscopic

sensor, Intel RealSense Depth Camera D435. It is powered by a USB 3.0

cable and consists of a pair of depth sensors, one plain RGB camera, and an

IR (Infrared Projector). Further, the camera has a wide depth FOV (Field Of

View) of 87° x 58° and a range of 30𝑐𝑚 to 10𝑚. But since we are relying on

the RGB sensor information when tracking hands and Aruco indices, we

are constrained by the RGB sensor’s FOV of 69° x 42°. The IR projector is

handy for improving depth accuracy in environments with lower texture

gradients.

Figure 3.3: The stereoscopic depth camera

3.4. SIMULATOR ENVIRONMENTS 53

Because the depth and RGB sensor are not perfectly overlapping with the

depth sensors, we cannot directly extract depth information from pixels in

the RGB image. Luckily, Intel has supplied the depth camera with an SDK:

Intel RealSense SDK 2.0 for Python.

Since the minimum range of the sensor is 30𝑐𝑚, the depth information

cannot be scrutinized in the lever estimation process, as the lever is usually

closer than 30𝑐𝑚. Thus, only the RGB sensor on the camera mounted on

top of the manipulator’s end-effector is used.

3.4 Simulator environments

3.4.1 Gazebo

Gazebo is a popular open-source simulation environment maintained by

Open Robotics. The environment is a collection of libraries targetting robot

developers, designers, and educators. Gazebo has a set of ROS packages

that provide wrappers around the standalone Gazebo version, allowing

for easy integration with ROS. Unfortunately, it is difficult to train an RL

agent in Gazebo, as increasing the timesteps of the simulation to speed up

training yields an unstable simulation [48].

54 CHAPTER 3. EXPERIMENTAL SETUP

3.4.2 MuJoCo

MuJoCo (Multi-Joint dynamics with Contact) [49] is a general-purpose

physics engine. It is a platform for research and development within

robotics, machine learning, and graphics, to name a few. Fast and accu-

rate simulations are crucial, especially within reinforcement learning, as

models are often first trained in simulators before being applied in the real

world. MuJoCo was initially developed by Roboti LLC but was acquired

by DeepMind in 2021 and made open-source and free of charge.

The library is written in C/C++, but Python bindings have been made

available by OpenAI. A built-in XML parser and compiler preallocates low-

level data structures, tuning the runtime simulation module to maximize

performance. Models are user-defined in the native MJCF scene description

language - a humanly readable XML file format.

MuJoCo was chosen as the simulation environment for the training, due

to its computational speed and stability [48]. Gazebo was initially tested

for this purpose, but the author arrived at the conclusion that the training

took too long, deeming Gazebo subpar for RL-training applications. The

author of [22] chose to train the model in PyBullet and transfer the model

to Gazebo for final training before testing it on the real-world manipulator.

In this thesis, MuJoCo is used for all RL training.

3.5. RL AGENT 55

3.4.3 Gym Environments

Gym is an open-source Python library by OpenAI and facilitates the devel-

opment and comparison of reinforcement learning algorithms. It provides

a standard API for communicating between environments and learning

algorithms. The API includes methods for resetting the environment and

stepping one action at a time. Reset is used at the start of each episode,

while step ensures that the intended action is successfully performed in

the environment.

3.5 RL Agent

An environment was set up in the MuJoCo simulator, as discussed in

Section 4.5.2, to train the reinforcement learning agent to pull the lever

correctly. The DDPG algorithm was used with the same set of hyperpa-

rameters used in [22], listed in Table 3.3. The DDPG method employs an

actor-critic neural network pair, with the structure outlined in Figure 3.4.

The eight inputs of the actor network are the joint positions, lever angle,

goal, and relative position to the lever along the 𝑋𝑊 and 𝑍𝑊 axes. The

outputs are control signals in the range of [−1, 1] which are multiplied by

a tuned scale factor of 0.2 before being applied on the manipulator’s joints.

Further, the inputs to the critic network are the same inputs the actor uses,

including the outputs from the actor, a total of 12 values. The critic output

is an estimate of the optimal action-value function, Equation (2.6).

56 CHAPTER 3. EXPERIMENTAL SETUP

Figure 3.4: Left: Actor Network. Right: Critic Network. Drawn with NN-

SVG. The hidden layers have been simplified in this drawing due to size

constraints.

3.5. RL AGENT 57

Hyperparameter Value

Nr. of epochs 50

Nr. of cycles 50

Nr. of batches 40

save interval 5

replay strategy future

clip return 50

noise 𝜖 0.2

random 𝜖 0.18

buffer size 1000000

replay k 4

clip obs 200

batch size 128

𝛾 0.98

action l2 1

lr actor 0.001

lr critic 0.001

polyak 0.95

n test rollouts 30

clip range 5

num rollouts per mpi 2

Table 3.3: List of hyperparameters

58 CHAPTER 3. EXPERIMENTAL SETUP

The manipulator has two different starting scenarios for each training

cycle, inspired by the work from [22]. In one case, the manipulator starts

by grabbing onto the lever. The gripper is locked for the first 75 timesteps

of this initial position, ensuring that the manipulator will not release the

lever too early. This initial position is implemented to increase exploration.

In the second initial position, the manipulator is adjusted to the joint values

of [0.0, 0.0,−1.05, 0.35, 0.70] given in radians. The first value is the gripper

position, while the remaining four are the other joints, from Joint 1 to Joint
4. Joint 1 controls the horizontal angle 𝛽 . Gaussian noise of +/−0.2 rad
is then appended to the initial position’s last three joint values to further

increase exploration. The manipulator is assumed to already point towards

the lever, meaning that Joint 1 always has an actuator value of 0. Either of

these initial positions has a 50% chance of occurring.

For each episode, the lever is spawned at a random location in the range

[0.23𝑚, 0.28𝑚] along the 𝑋𝑊 -axis, 𝑌𝑊 -position is always 0𝑚, and 𝑍𝑊 -

position is always 0.04𝑚. This is done to mimic measurement errors from

the physical setup.

The agent is trained for 50 epochs with 50 cycles in each epoch and two

rollouts per cycle, meaning that the manipulator is tasked with placing the

lever in 50 ∗ 50 ∗ 2 = 5000 different goal angles for each training session.

The validation success ratio is produced on 30 new cycles.

During training, it was noticed that there was a gap between validation

errors and training errors. The agent successfully achieved the goal in

3.5. RL AGENT 59

every training cycle but had a lower success rate during evaluation. Likely

due to the exploration noise added to the steps taken during training

and not during evaluation, which is standard procedure in the DDPG

algorithm. The DDPG implementation used in this thesis is based on an

implementation developed by OpenAI [50]. In an effort to minimize the

difference in training/evaluation success, the constant Gaussian noise was

replaced by the diminishing version given by Equation (3.1).

𝜖𝑖 =
0.2

𝑖
, 𝑖 ∈ [1, 51] (3.1)

𝑖 is the current epoch number, and 𝜖𝑖 is the Gaussian noise appended to

the action in that epoch. With a diminishing action noise, we utilize the

exploration advantage but also push the agent to be more precise with

its actions when it becomes more confident. The validation success rate

steadily increased to adequate levels afterward.

𝑟 (𝑠, 𝑎) = −1 − ∥𝜔𝑘 − 𝜔𝑔∥ − ∥𝑿𝑊
𝐸𝐹 − 𝑿

𝑊
𝑙𝑒𝑣𝑒𝑟
∥ (3.2)

Two reward functions were tested, one sparse and one dense. The dense

reward function is given by Equation (3.2), where 𝜔𝑘 is the measured

(𝑘 =𝑚) or estimated 𝑘 = 𝑒 lever angle, while 𝜔𝑔 is the goal angle. 𝑿𝑊
𝑒𝑓

is

the position of the manipulator’s end-effector in world coordinates and

𝑿𝑊
𝑙𝑒𝑣𝑒𝑟

is the position of the lever case also in the world frame.

60 CHAPTER 3. EXPERIMENTAL SETUP

𝑟 (𝑠, 𝑎) =

0, if ∥𝜔𝑘 − 𝜔𝑔∥ ≤ 0.025

−1, otherwise

(3.3)

The second reward function is sparse and given by Equation (3.3). It is

either 0 if the goal angle 𝜔𝑔 has been reached, or −1 otherwise.

3.6 Lever Pose Estimation

The physical lever, depicted in Figure 3.1, shall be controlled by the manip-

ulator to a pre-determined angle. Thus, we introduce two different ways

of acquiring values for the lever angle and position. First, potentiometer

readings give an angle estimate which can be useful in scenarios where the

RL agent has access to continuously measured lever or valve positions. The

second method uses an RGB camera lens together with the PnP algorithm

and Aruco indices physically attached to the lever, to estimate both the

lever angle and relative position to the manipulator’s end-effector.

3.6. LEVER POSE ESTIMATION 61

3.6.1 Potentiometer

Figure 3.5: Information flow of the lever angle measurement using a po-

tentiometer

A 10𝑘Ω potentiometer was connected to the lever axis as depicted in figure

Figure 3.1, similar to what was done by the author of [22]. The resistance

in the potentiometer changes linearly as the lever angle varies. Applying a

DC current on the potentiometer, the voltage over the resistor will also vary

linearly with the lever angle, according to Ohms law, Equation (3.4), where

I is the current and R the resistance. Figure 3.5 describes the information

flow from physical lever angle to measured lever angle being sent to the

Control System.

𝑉 = 𝐼 ∗ 𝑅 (3.4)

A Raspberry Pi 3 Model B 1GB RAM is used to power the potentiometer and

record the digital voltage signal. The Pi, not able to read analog signals,

requires the use of an ADC (Analog to Digital Converter). In this project

62 CHAPTER 3. EXPERIMENTAL SETUP

the MCP3001 [51] is used, see Figure 3.6 for the pin layout. The ADC

represents the voltage signal with 10 bits, but due to physical limitations,

not all bits are used. The accuracy of the measured lever angles is estimated

to be 0.24 deg.

Figure 3.6: Pins of the ADC MCP3001. Borrowed from the datasheet

The complete circuit is presented in Figure 3.7. The Raspberry Pi is not

drawn in, but all 20 even-numbered GPIO pins are given, where GPIO2 is

the leftmost pin. Three of the odd-numbered pins are shown explicitly in

the figure as SPI pins. The correct pins were found using the schematic

provided on the official Raspberry Pi webpage [52].

3.6. LEVER POSE ESTIMATION 63

Figure 3.7: Circuit design for the potentiometer readings of the lever angle

64 CHAPTER 3. EXPERIMENTAL SETUP

The circuit is powered by the +5𝑉 and ground pins from the Raspberry

Pi. Both voltage values are sent to the plus and minus columns on the

breadboard such that both the potentiometer and the ADC receive power.

The voltage over the variable resistor is presented to the ADCs 𝐼𝑁+ pin,
while ground is sent to 𝐼𝑁− pin. The converted voltage signal is sent out

from the 𝐷𝑂𝑈𝑇 to the SPI_MISO pin on the Raspberry using an SPI (Serial

Peripheral Interface) [53].

SPI is primarily used for short-distance communication such as embedded.

The SPI bus specifies the following four logic signals:

• SCLK: Serial Clock

• MOSI: Master Out Slave In

• MISO: Master In Slave Out

• CS: Chip Select

Only SCLK, MISO, and CS are necessary for our circuit. The data pin can

send one bit at a time, which happens at either falling or rising SCLK edges.

Instead of reading each bit manually, Python’s spidev library was used

together with the Raspberry Pi’s dedicated SPI pins in a script added to

the Pi’s startup procedure. The digital voltage signal, a number between

124 and 917, is linearly related to the analog voltage. The lever angle was

measured to have a maximum value of 98° and a minimum value of −96°.
The lever angle can be calculated readily by utilizing this relationship. Next,

3.6. LEVER POSE ESTIMATION 65

the lever angle, given in radians, is sent over an ethernet cable connected

to the host computer with the communications protocol UDP [54]. The

script is attached in the appendix, see Appendix A.4. The notation for the

lever angle measured by this method is 𝜔𝑚 .

3.6.2 Visual Estimation

The other method for estimating the lever angle can be helpful for robots

altering actuators on systems where the actuator position is not directly

measured. We rely on a live stream of images from a camera on the end-

effector to estimate the lever angle from afar. Three Aruco indices are

mounted on the lever as seen in Figure 3.1. They provide points with known

relative distances and are extracted from the images with OpenCV’s Aruco

framework [55]. Next, the detected image points and their corresponding

object points, which are measured physically, are sent to the OpenCV’s

implementation of the PnP algorithm.

𝑹𝑶
𝑪 , 𝒕

𝑶
𝑪 = solvePnP(𝑿𝑂

𝑜𝑏 𝑗
,𝑿 𝐼

𝑖𝑚𝑔), 𝑿𝑂
𝑜𝑏 𝑗
∈ R3𝑥𝑛, 𝑿 𝐼

𝑖𝑚𝑔 ∈ R2𝑥𝑛 (3.5)

The output given by Equation (3.5) is a translational, 𝒕𝑶𝑪 , and a rotational,

𝑹𝑶
𝑪 , vector, describing the pose of the object points related to the camera.

To find the angle of the Aruco board in the𝑿𝑊𝑍𝑊 -plane and thus the angle

of the lever, we have to transform the detected points into our world frame.

66 CHAPTER 3. EXPERIMENTAL SETUP

The object points 𝑿𝑂
𝑜𝑏 𝑗

are measured and given in the object frame, while

the corresponding image points 𝑿 𝐼
𝑖𝑚𝑔 are pixel coordinates, outputted by

the Aruco framework, see the visualized points in Figure 3.8.

Figure 3.8: Detected corners of the Aruco indices, as seen from the RGB

sensor mounted on the manipulator’s end-effector.

𝑯𝑶
𝑪 =


𝑹𝑶
𝑪 𝒕𝑶𝑪

0 1

 (3.6)

𝑹𝑶
𝑪 and 𝒕𝑶𝑪 are used to construct the homography 𝑯𝑶

𝑪 from object frame

to camera frame in Equation (3.6).

3.6. LEVER POSE ESTIMATION 67

𝑯 𝑪
𝑬𝑭 =



0 0 1 −0.067

0 1 0 −0.076

−1 0 0 0.0325

0 0 0 1


(3.7)

Next, Equation (3.7) gives us the transformation from camera frame to

end-effector frame. The translational parameters were measured with a

ruler and are prone to be inaccurate.

𝑯 𝑬𝑭
𝑾 = 𝑯 𝑱 1

𝑾 𝑯 𝑱 2
𝑱 1𝑯

𝑱 3
𝑱 2𝑯

𝑱 4
𝑱 3𝑯

𝑬𝑭
𝑱 4 (3.8)

Further, to obtain a transformation from the end-effector to world coor-

dinates, the DH transforms of the manipulator are used in Equation (3.8).

These matrices are dependent on the joint positions and physical dimen-

sions of the manipulator, see Section 3.2.

𝑯𝑶
𝑾 = 𝑯 𝑬𝑭

𝑾 𝑯 𝑪
𝑬𝑭𝑯

𝑶
𝑪 (3.9)

Finally, by combining the results from Equation (3.6), Equation (3.7), and

Equation (3.8) we arrive at a transformation from object space to world

space, Equation (3.9).

68 CHAPTER 3. EXPERIMENTAL SETUP

𝑿𝑊
𝑜𝑏 𝑗,𝑖

=


𝑥𝑊
𝑘,𝑖

𝑦𝑊
𝑘,𝑖

𝑧𝑊
𝑘,𝑖


= 𝑯𝑶

𝑾𝑿𝑂
𝑜𝑏 𝑗,𝑖

(3.10)

Equation (3.10) gives us the object points represented in the world frame,

𝑿𝑊
𝑜𝑏 𝑗

, where 𝑘 is either 𝑙 for the corners detecetd on the left column, or 𝑟

for the points detected on the right column.

𝜔𝑒,𝑙 = arctan

©­­«
∑𝑛
𝑖=1

(
𝑥𝑊
𝑙,𝑖
− 𝑥𝑊

𝑙,𝑖−1

)
∑𝑛
𝑖=1

(
𝑧𝑊
𝑙,𝑖
− 𝑧𝑊

,𝑖−1

) ª®®¬
𝜔𝑒,𝑟 = arctan

©­­«
∑𝑛
𝑖=1

(
𝑥𝑊
𝑟,𝑖
− 𝑥𝑊

𝑟,𝑖−1

)
∑𝑛
𝑖=1

(
𝑧𝑊
𝑙,𝑖
− 𝑧𝑊

𝑙,𝑖−1

) ª®®¬
𝜔𝑒 =

1

2

(
𝜔𝑒,𝑙 + 𝜔𝑒,𝑟

)
(3.11)

An estimate for the lever angle is found by taking 𝑎𝑟𝑐𝑡𝑎𝑛 of the mean of

the differences in 𝑥𝑊 coordinates of adjacent points, over the mean of the

differences in 𝑧𝑊 coordinates as shown in Equation (3.11).

3.6. LEVER POSE ESTIMATION 69

Finally, an estimate of the lever position in the world frame is given by

Equation (3.12). The lever position in object coordinates, 𝑿𝑂
𝑙𝑒𝑣𝑒𝑟

, is mea-

sured with a ruler and may be prone to some inaccuracies.

𝑿𝑊
𝑙𝑒𝑣𝑒𝑟

= 𝑯𝑶
𝑾𝑿𝑂

𝑙𝑒𝑣𝑒𝑟
= 𝑯𝑶

𝑾


−0.05𝑚

0.0085𝑚

−0.095𝑚


(3.12)

70 CHAPTER 3. EXPERIMENTAL SETUP

Chapter 4

Problem Formulation and
System Design

This chapter starts by describing the problem addressed in this thesis.

The system is briefly presented as a whole before each part is dissected

into subsections. The first parts of the system design fathoms the HMI

developed in the author’s project thesis [23], and the OpenManipulator RL
Environments package developed in [22]. The final section weaves the last

two parts into a complete system.

71

72 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

4.1 Problem Formulation

The research questions in Section 1.2 generally outline the scope of the

thesis. A challenge to test if a human and a trained RL agent can cooperate

to solve a complex task is presented in this section. In short, the manip-

ulator is used as a tool to manipulate a lever into a pre-determined goal

angle. The setup is tested in two scenarios:

1. The RL agent receives measurements of the lever pose, and the

manipulator is automatically guided such that the relative y-position

between end-effector and lever is close to zero. 𝑦𝑊
𝐸𝐹
− 𝑦𝑊

𝑙𝑒𝑣𝑒𝑟,𝑚
≈ 0.

The agent is triggered by a hand signal from the human operator

and disabled when the hand signal is no longer present.

2. The RL agent relies on visually estimated values for lever pose, and

the manipulator is automatically guided such that 𝑦𝑊
𝐸𝐹
− 𝑦𝑊

𝑙𝑒𝑣𝑒𝑟,𝑒
≈

0. The agent is triggered by a hand signal and stopped when the

operator discontinues the signal.

An essential aspect of HMC is the notion of safety. Who is responsible? For

instance, who would be accountable if the agent did something dangerous,

like turning the valve on an offshore installation in the wrong direction

and, instead of lowering the pressure, increasing it? This situation serves

as an example, and will not be further addressed. These are nevertheless

difficult ethical questions, and they need practical answers.

4.2. SYSTEM OVERVIEW 73

4.2 System Overview

A simplified information flow diagram of the HMCI system is presented

in Figure 4.1. From a system design perspective, the FSM (Finite State

Machine) is the logical decision-making part of the system. It receives

processed signals from a stereoscopic camera sensor and decides the sys-

tem’s state based on that. The camera sensor outputs both RGB and depth

images. The former is sent to the Hand Detection module, which relies on

MediaPipe’s AI-powered hand tracking software. Next, the hand detection,

represented by 3D points, is sent to the Hand Model module. Here the

angles of each finger joint are calculated, and threshold values are used

to decide on the current user-inputted hand gesture. These modules are

further elaborated in Section 4.3.

74 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Figure 4.1: An overview of the Mimir system. Drawn with draw.io

4.2. SYSTEM OVERVIEW 75

The estimated hand gesture is sent to the FSM, which again decides on

the state based on this information. The manipulator pose is used by the

FSM to look for collisions with obstacles, which will stop the FSM from

sending dangerous control signals to the Controller module. Meanwhile,

the depth images are used to generate a control signal for the manipulator’s

𝑍 -position during the Move Height gesture.

The Controller module receives control signals and function calls, which

calls one of the four listed ROS clients. The module sends the end-effector

pose and joint state values to the FSM by subscribing to the two given ROS

topics. ROS clients and topics are described in Section 2.5.

Finally, the Flip Hand gesture sets the FSM in the AI-controlled state for as

long as the hand gesture is detected. Therefore it is labeled as an ON/OFF

signal in the figure. The RL agent and its environment are displayed as a

black box in this diagram and will be further elaborated in Section 4.4. In

short, the RL environment has a separate controller of its own, which talks

to the OM-X through a similar set of topics and services as the Controller

module shown in Figure 4.1. The control signals are reference angles and

positions for motor joints, or reference poses for the end effector for both

control modules.

The low-level control system is fully integrated into the OpenManipulator-

X framework. It is a standard PID controller that utilizes both velocity and

positional control. When the RL MuJoCo environment was developed, it

was necessary to recreate the low-level control system for the modeled

76 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

manipulator, as no OpenManipulator-X model existed for the MuJoCo

physics engine.

4.3 Human Machine Interface

Listed below are the research questions from the author’s project thesis of

August - December 2021 [23].

• Can a hand tracking software powered by CNNs, such as the Medi-

aPipe Hands framework, be applied to construct an intuitive HMI

system based solely on hand movements and gestures?

• Can the HMI be used to perform any meaningful work with a robotic

manipulator?

• How can XAI methods be used online to help users understand the

system?

The HMI developed to answer these questions is introduced in this section.

The following material is reused with adjustments, from the author’s

project thesis.

Figure 4.2 depicts the information flow and overall workings of the control

system. The camera sensor is the red block in the upper right corner and

records the operator workspace, outputting both RGB- and depth images.

4.3. HUMAN MACHINE INTERFACE 77

The black box CNN is theMediaPipe Handsmachine learningmodel, which

receives the RGB image on its input, and yields estimated locations for

21 3D points where the third dimension is a synthetic height. The points

are used to produce 2D and 3D skeleton hands, visualized in the operator

panel. Meanwhile, the points are fed into a finite state machine, which

also receives the depth image and tunable parameters from the operator

panel. The information is scrutinized to determine the system state, which

the controller uses to activate the correct proportional velocity controller.

The controller communicates with the manipulator through the ROS 2

framework. Further, a feedback loop is incorporated into the system by

the presence of a human operator. The user sees the movement of the

robotic manipulator and the interpretations of their hand gesture in the

operator panel. Based on this information, the user provides the system

with new gestures to achieve the intended manipulator movement.

78 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Figure 4.2: Information flow, and system overview

The FSM has exactly one Controller object, one HandTracking object,

and one HandModel object. There is no limit for how many Obstacle
objects it can have, but the implementation discussed in this thesis has five

obstacles. TheControllermodule communicates with the robotic manipu-

lator through ROS with two topics and four services. The HandTracking
module, which produces the 21 3D landmarks, has oneCameraStream ob-

ject, which communicates with the depth sensor. TheHandModelmodule

estimates current gestures based on the landmarks from the HandTrack-

4.3. HUMAN MACHINE INTERFACE 79

ingmodule. In the project thesis, a class diagram with further information

on these modules was presented [23], it is available in Appendix A.2.

4.3.1 Finite State Machine

The states of the FSM implemented in this thesis are visualized in Figure 4.3.

The diagram is a simplified state diagram, where transitions between the

major states are not drawn for readability. The removed transitions are,

however, easily described by an extra transition within STOP. The text
along the arrows represents the input necessary to trigger the transition.

Should these signals no longer be active, the state will transition to the

STOP state. The signals are generated in the HandModel class, Table 4.1

displays all different signals.

80 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Figure 4.3: FSM diagram depicting all system states and transitions. WS is

short for WorkSpace location, see Table 4.1

4.3. HUMAN MACHINE INTERFACE 81

Hand gestures Workspace locations

Stop Turn Left

Grip Turn Right

Ungrip Move Forward

Precision Move Backward

Tilt Up Misc

Tilt Down Hand Not Present

Move Height

Table 4.1: The input signals determining the state of the FSM

4.3.2 Hand Tracking

MediaPipe
MediaPipe [56] is an open source ML library provided by Google, where

the Hand Tracking API is the part we are interested in. Researchers at

Google have trained a neural network to recognize human hands, and

estimate the position of joints from a single image frame. The software

detects initial hand locations, with the ability to recognize occluded hands

in various sizes and environments. Next, a hand landmark model localizes

21 3D coordinates inside the detected hand via regression. According to the

MediaPipe team, the model "learns a consistent internal hand pose repre-

sentation and is robust even to partially visible hands and self-occlusions."

82 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

𝑿𝑊
𝑘
(𝑡) =


𝑥𝑊
𝑘
(𝑡)

𝑦𝑊
𝑘
(𝑡)

𝑧𝑊
𝑘
(𝑡)


, 𝑘 ∈ [0, 20] and 𝑡 > 0 (4.1)

The joint positions are outputted as 21 3D landmarks on the form given

by eq. (4.1). The notation for the points is as follows: A hand point in

coordinate system of joint (𝑖 − 1), with an index 𝑘 ∈ [0, 20] is written as

𝑿 (𝑖−1)
𝑘

. 𝑥𝑊
𝑘

and𝑦𝑊
𝑘

are normalized pixel coordinates. 𝑧𝑊
𝑘

is a representation

of the depth of the landmarks, where 𝑧𝑊
0

= 0 at the location of the wrist.

Note that the information given by 𝑧𝑊
𝑘

only describes the estimated depth

of the joints in relation to each other. Further, since the depth information

is artificially constructed by a machine learning model, it is referred to

as synthetic information. Figure 4.4 illustrates how the landmarks are

structured.

Figure 4.4: How the hand landmarks from MediaPipe are structured.

Image borrowed from [56]

4.3. HUMAN MACHINE INTERFACE 83

According to [57], the machine learning pipeline is a two step Convolu-

tional Neural Network consisting of a single-shot detector, followed by a

regression model. The input can either be a single image frame, or a video

stream, while the outputs are: "21 3-dimensional screen landmarks", "A

float scalar represents the handedness probability of the predicted hand",

"21 3-dimensional metric scale world landmarks." Note that for both sets

of predicted 3D points, the z-screen value and z coordinate, are provided

by synthetic data based on the GHUM hand model ([58]). Due to the

synthetic nature of the depth information outputted from the model, both

the synthetic- and measured depth from a stereoscopic depth sensor can

be used.

The detector model detects the palm location(s) in the input data. A crop of

the input data, containing the hand, is then used as input to the regression

model, that outputs a hand skeleton as the 3D points discussed above.

The authors have done extensive evaluations on the method, where the

hand tracking algorithm was tested on 14 different groups of peoples

from around the world, divided into groups based on the United Nations

geoscheme. The results from this test yielded no error pattern with respect

to regions, but showed that the error metric was smaller at the base of

each finger, with larger values closer to the finger tips. Another test did

not confirm any error pattern with respect to skin tone or gender.

84 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Hand Gestures
Based on the hand tracking information, seven different gestures and

six hand locations are defined in the operator workspace. These are the

input signals listed in Table 4.1, which are used to transition between

states in the FSM. To separate the gestures from one another, a coordinate

system for the hand representation was designed and implemented in the

HandModel module. A human hand consists of revolute joints, where the

joints between fingers and palm are more complicated, rotating around

two axes. Transformation matrices for each finger were designed, inspired

by the convenient DH-convention. The landmarks from the hand tracker

are given in workspace coordinates, Equation (4.1). We are, however, more

interested in the relative angles between the finger links.

For every finger, each transformation is represented by an angle 𝛿
(𝑖−1)
𝑖

,

from joint (𝑖 − 1) to 𝑖 in the 𝑋
(𝑖−1)
𝑖

𝑌
(𝑖−1)
𝑖

-plane, an angle 𝛾
(𝑖−1)
𝑖

in the

𝑋
(𝑖−1)
𝑖

𝑍
(𝑖−1)
𝑖

-plane, and a translation 𝑡
(𝑖−1)
𝑖

from joint (𝑖 − 1) to 𝑖 .

𝑯𝑾
0 =


𝑹 (𝛿𝑊

0
) 𝒕𝑾0

0 1

 , 𝒕𝑾0 =


𝑥𝑊
0

𝑦𝑊
0

0


(4.2)

The first transformation matrix, from workspace coordinates𝑊 to point 0

coordinates (from Figure 4.4) is given by Equation (4.2), and is the same

for all fingers. The general transformation matrices from joint (𝑖 − 1) to 𝑖 ,
are on the form Equation (4.3).

4.3. HUMAN MACHINE INTERFACE 85

𝑯 (𝒊−1)
𝒊 =


𝑹 (𝛿 (𝑖−1)

𝑖
)𝑹 (𝛾 (𝑖−1)

𝑖
) 𝒕 (𝒊−1)𝒊

0 1

 , 𝒕 (𝒊−1)𝒊 =


𝑥
(𝑖−1)
𝑘

𝑦
(𝑖−1)
𝑘

𝑧
(𝑖−1)
𝑘


(4.3)


𝑥7
8

𝑦7
8

𝑧7
8


= 𝑯𝑾

7 𝑿𝑊
8

= 𝑯 6
7𝑯

5
6𝑯

0
5𝑯

𝑾
0


𝑥𝑊
8

𝑦𝑊
8

𝑧𝑊
8


(4.4)

As an example, Equation (4.4) shows how the coordinates for the fingertip

of the index finger, represented in the second to last joint, can be ac-

quired. The angles are the essential results from this process, however, and

are found iteratively by Equation (4.5) and Equation (4.6). To determine

whether a finger is extended, we are interested in 𝛿
(𝑖−1)
𝑖

and 𝛾
(𝑖−1)
𝑖

of the

two outer joints for each finger.

𝛿
(𝑖−1)
𝑖

= 𝑎𝑟𝑐𝑡𝑎𝑛

(
𝑦
(𝑖−1)
𝑖

𝑥
(𝑖−1)
𝑖

)
(4.5)

𝛾
(𝑖−1)
𝑖

= −𝑎𝑟𝑐𝑡𝑎𝑛
©­­«

𝑧
(𝑖−1)
𝑖√︃

(𝑥 (𝑖−1)
𝑖
)2 + (𝑦 (𝑖−1)

𝑖
)2

ª®®¬ (4.6)

86 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

By trial and error, threshold values were found to separate between an

open and a closed finger. The threshold values were the same for all fingers

and angular variables, except the thumb, which responded better to other

thresholds. To check if the thumb is extended, 𝛿
(𝑖−1)
𝑖

for both joints must

be greater than −15°. Meanwhile, for the remaining fingers, if either of

𝛿
(𝑖−1)
𝑖

and 𝛾
(𝑖−1)
𝑖

for any of the outer two joints are larger than 25°, the

finger is marked as closed.

Further, the mean position of landmarks 𝑿𝑊
0
, 𝑿𝑊

1
, 𝑿𝑊

5
, 𝑿𝑊

9
, 𝑿𝑊

13
and 𝑿𝑊

17

is used when deciding on where in the operator workspace the hand is

located.

4.3.3 Controller

This section describes the Controllermodule. The Robotis OpenManipulator-

X comes equipped with controllers dealing with motor control and inverse

kinematics. The results are positional controllers for the end-effector, ab-

stracted into ROS topics. Thus, the controllers presented in this section

use these topics to control the manipulator to velocity references. The

Controller object consists of four proportional velocity controllers, each

with a default reference velocity of 0𝑚/𝑠 . The controllers set the velocity
of the manipulator by requesting a new pose and a path time, which is set

at 0.6𝑠 .

4.3. HUMAN MACHINE INTERFACE 87

One controller sets the reference velocity for the horizontal radius of the

manipulator, and is activated in theMOVE FORWARD,MOVE BACKWARD,
MOVE FORWARD SLOW, and MOVE BACKWARD SLOW states. For the

former two, the speed is set at 8.33𝑐𝑚/𝑠 , while the latter controllers op-
erate at 1.67𝑐𝑚/𝑠 . Another controller sets the reference velocity for the

horizontal turning angle 𝛽 , which is used by the states TURN LEFT, TURN
RIGHT, TURN LEFT SLOW, and TURN RIGHT SLOW. As for the previous

controller, the reference speed is set at 19.10°/𝑠 for the former states, and

3.82°/𝑠 for the latter two. A third controller is used for the second to last

revolute joint, effectively adjusting the tilt angle of the end-effector. When

active, the end-effector will tilt by 14.32°/𝑠 . The last controller, respon-
sible for setting the end-effector’s velocity along the 𝑍 0

-axis, calculates

the reference velocity based on the positional height of the operator’s

hand, using information from the depth sensor. The numerical values

described here, were found through tuning of the proportional constants,

𝐾𝑝,𝛽, 𝐾𝑝,𝑟 , 𝐾𝑝,𝑍𝑊
𝐸𝐹
, 𝐾𝑝,𝜃 . 𝛽 and 𝑟 represents the position of the manipulator’s

end-effector in polar coordinates, while 𝑍𝑊
𝐸𝐹

is the end-effector’s relative

altitude. 𝜃 is the angle of tilt between the end-effector and the ground level

𝑋𝑤𝑌𝑤 -plane.

Meanwhile the end-effector, also known as gripper, is controlled in a binary

fashion, and is either closed or opened. Unlike the previously discussed

controllers, it has a positional reference, the distance, 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 . Possible

values are of −1𝑐𝑚 to close the gripper, and 1𝑐𝑚 to fully open it.

88 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

In Table 4.2 the states of the FSM, and their respected controllers are listed

together with the velocity reference signals.

State Controlled variable Reference

MOVE FORWARD r 8.33𝑐𝑚/𝑠

MOVE BACKWARD r −8.33𝑐𝑚/𝑠

MOVE FORWARD SLOW r 1.67𝑐𝑚/𝑠

MOVE BACKWARD SLOW r −1.67𝑐𝑚/𝑠

TURN LEFT 𝛽 19.10°/𝑠

TURN RIGHT 𝛽 −19.10°/𝑠

TURN LEFT SLOW 𝛽 3.82°/𝑠

TURN RIGHT SLOW 𝛽 −3.82°/𝑠

TILT UP 𝜃 14.32°/𝑠

TILT DOWN 𝜃 −14.32°/𝑠

MOVE HEIGHT 𝑍𝑊
𝐸𝐹

Dynamic

GRIP 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 −1.0𝑐𝑚

UNGRIP 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 1.0𝑐𝑚

Table 4.2: The states of the FSM, the variables that are controlled when

they are active, and the respective references.

4.3. HUMAN MACHINE INTERFACE 89

4.3.4 Operator Panel

Figure 4.5: The operator panel in action, with the Ungrip gesture active.

The GUI was designed using the Qt 5 Designer and implemented with

PyQt 5, a set of Python bindings for the Qt Company’s Qt application

framework [59]. The result can be seen in Figure 4.5. The GUI, or operator

panel, consists of a video stream, known as the operator workspace, where

a depth sensor is recording the operator’s hand. Colored, curved boxes

are drawn in the video frame to provide the user with a set of different

commands by placing their hand inside these boxes. Further, a 2D hand

skeleton is drawn on top of the detected hand, visualizing where the

machine learning model estimates the position of the hand’s joints.

90 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Above the video stream, seven hand gestures are displayed on grey back-

grounds. When the system selects a given hand gesture based on the

information provided by the machine learning model, the gesture’s back-

ground switches from grey to green, notifying the user how their hand

gestures are being interpreted. This information is not needed to control

the manipulator but certainly elevates the user’s trust in the hand track-

ing model and overall system. The control panel also works as a user

interface for new users unfamiliar with the different commands. For more

experienced users and developers, a 3D hand skeleton and a metric of

the measured distance to the hand palm from the stereoscopic sensor are

provided. The additional information is toggled in the settings file.

Just below the operator workspace, three tunable parameters are accessible.

The wrist thresholds are used to differentiate between Tilt Up and Tilt
Down, where the angle between the wrist and fingertips must surpass the

thresholds for the gestures to be detected. Similarly, the thumb thresholds

are angles that the two outer thumb joints must surpass before the thumb

is registered as extended. The finger threshold functions similarly to the

thumb threshold, but it was experimentally determined that the same

threshold worked for both outer joints for all remaining fingers.

4.3. HUMAN MACHINE INTERFACE 91

Figure 4.6: More examples of the operator panel in action

With the exception of Slow and Stop gestures, all commands using hand

gestures are only in effect while the palm is located within the green

section of the operator workspace. The green and yellow sections are

shaped like half-circles, allowing the operator to keep his shoulder and

elbow more or less stationary when performing rotations in a natural

movement. The yellow areas control the manipulator’s polar coordinate

𝛽 , turning the robot arm left or right. Further, the blue sections control

the manipulator’s radius, 𝑟 , where the upper blue area increases it, and

the smaller region reduces it. Figure 4.6 displays a few user commands in

action.

92 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

4.4 OpenManipulator RL Environments

To train an RL agent on the lever pull challenge, the OpenManipulator RL
Environments package, developed by the author of [22] was extended and

updated. In this section, the original package will be explained. Section 4.5

will elaborate on the extensions and changes made to adapt it for this

thesis.

The software is designed as a ROS Kinetic package, since ROS is used for

communicating with the OpenManipulator-X. It is structured hierarchi-

cally, with the three following main modules:

• Gym Environments

• Robot Environment

• Task Environments

4.4. OPENMANIPULATOR RL ENVIRONMENTS 93

Figure 4.7: Class diagram of the Open Manipulator RL Environments pack-
age

94 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Not all classes from the environments are mentioned here, as they are not

relevant to this project. Figure 4.7 provides a class diagram of all pertinent

modules that will later be extended to encompass the needed functionality

for this thesis. All public methods are listed, and all private methods have

been excluded for readability.

OpenManipulatorGymConnection inherits from the gym.Env class to

make it compatible with OpenAI’s Gym framework, which was briefly re-

viewed in Section 3.4.3. The module defines the important step() and reset()

methods. They are used by RL agents to interact with the environment.

Next, OpenManipGazeboRobot and OpenManipPhysicalRobot, from
the Robot Environment module, inherits from OpenManipGymConnec-
tion. For both classes, the methods joints_callback() and task_callback()

update the manipulator pose and joint values by listening to ROS topics

defined by the official OpenManipulator Controller provided by Robotis.

A set of ROS services are used for maneuvering the manipulator to re-

quested positions. The Gazebo class has another service for spawning

the lever into the simulation. The simulated model and the physical ma-

nipulator have the same topics and services, making these classes very

similar. OpenManipPhysicalRobot has a few more methods used to

control the manipulator to starting positions. These were not needed for

the Gazebo case, as the simulator can turn off physics and instantaneously

move the manipulator to the desired location and pose, which is why the

OpenManipGazeboRobot has a relation with the GazeboConnection
from the helper functions module.

4.5. HUMAN MACHINE COOPERATION INTERFACE 95

In the Task Environments module, OpenManipulatorLeverPullEnvi-
ronment sets up the action- and observation spaces used by the gym

environment to define inputs and outputs to the machine learning model.

It establishes the reward function, accessed through the compute_reward()

method. Further, it handles setting the lever angle goal and determining

when the task is finished. The observation outputted by the step() and re-

set() methods from the OpenManipulatorGymConnection is computed

in this module.

By using these modules to set up an RL learning environment, one can

train a model in a simulated environment before applying the very same

model with only minor adjustments to the physical setup. This package

was, however, written in Python 2 for ROS Kinetic on an Ubuntu 18.04 OS,

and thus incompatible with the HMI from Section 4.3 - which was written

in Python 3 for ROS 2 Foxy on an Ubuntu 20.04 OS. Thus work was put

into porting the OpenManipulator RL Environments package over to ROS

Noetic.

4.5 Human Machine Cooperation Interface

The complete system can be considered an HMCI (Human Machine Coop-

eration Interface) since it is a graphical interface that allows for greater

cooperation between a human operator and a machine - in this case, the

OpenManipulator-X.

96 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

4.5.1 Porting the Code

The graphical interface is based on the HMI from the author’s project

thesis [23], while the machine learning part builds on the OpenManipulator
RL Environments package by the author of [22]. As mentioned in the

last section, the HMI was built with Python 3 for ROS 2 Foxy, which is

compatible with Ubuntu 20.04. Meanwhile, the RL environments were

designed for ROS Kinetic with Python 2, which are incompatible with

Ubuntu 20.04. Thus it was decided to convert the RL Environments to ROS

Noetic and Python 3, as it would have taken too much time to convert it

over to ROS 2. The HMI, being best known to the author, was ported from

ROS 2 to ROS Noetic.

Porting the RL Environments
Python 3 is not backward compatible with Python 2. Thus, much of the

Python 2 code from the RL package had to be rewritten and adequately

tested. The Robotis supplied OpenManipulator-X packages renamed its

topics and services for ROS Noetic, thus all service calls and subscribers in

the RL environments needed to be renamed.

Porting the HMI
ROS 2 was created for several reasons. New use cases that were not

apparent back in 2007 when work first began on ROS have since then

appeared. For example, in ROS 1, there is no standard approach to having

4.5. HUMAN MACHINE COOPERATION INTERFACE 97

multiple robots communicate with each other. Further, ROS 1 device

driver dependencies do not allow microchips to communicate over ROS.

See [60] for more examples. To overcome these challenges, ROS 2 does

not use the TCPROS protocol employed in ROS 1 but instead builds its

communications on top of the already existing middleware interface DDS,

leveraging existing and well-developed standards. A few more differences

between ROS 1 and ROS 2 are listed in Table 4.3.

98 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

ROS 1 ROS 2

Python

ROS 1 is targeting

Python 2

Supports Python 3.5

and higher

Communications

ROS 1 uses the custom

TCPROS protocol

ROS 2 uses a middleware

interface on top of the well

developed DDS solution

Build system catkin (CMake) ament (CMake or Python)

Python packages

Restricted set of features

from the setup.py file

Python packages can use

anything in the setup.py file

Python client library rospy rclpy

Table 4.3: Some practical differences between ROS 1 and ROS 2, see [61]

and [62]

Thus, to port the HMI from ROS 2 Foxy to ROS Noetic, more extensive

changes were going to be made, compared to porting between two ROS 1

versions. The module that needed the most significant changes was the

Communicationmodule, which handles topics and service calls. Previously,

4.5. HUMAN MACHINE COOPERATION INTERFACE 99

in ROS 2, the Python client library rclpy was used for these purposes, but

it is not available for ROS 1. rospy is a similar library meant for ROS 1

versions, thus the Communicationmodule was properly ported by adapting

it for rospy. Finally, the code was restructured into a ROS Noetic package,

as the HMI was not previously fully integrated with ROS.

4.5.2 Extensions to the RL Environments

The most notable new feature added to the OpenManipulator RL Envi-
ronments package was support for the MuJoCo simulator environment,

presented in Section 3.4.2. MuJoCo was used instead of PyBullet, as the Py-

Bullet environment from [22] would have to be ported to Python 3, which

would likely take some time. Further, MuJoCo used to be licensed but be-

came open-source and available for everyone in late 2021. It was chosen as

the simulator in this thesis, as it runs faster, and is more stable, than Gazebo

- allowing for faster training of the RL agent [48]. MuJoCo is not integrated

with ROS to the same extent as Gazebo is, and the OpenManipulator-X

does not officially support MuJoCo. The new modules that integrates

MuJoCo into the codebase is illustrated in Figure 4.8.

100 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

Figure 4.8: Simplified class diagram of the additions made to the Open
Manipulator RL Environments package

4.5. HUMAN MACHINE COOPERATION INTERFACE 101

The MujocoGymConnection handles the MuJoCo simulator environ-

ment and implements methods for getting the position and velocities of

the angular joints, as well as the standard step() and reset() methods. No

MuJoCo compatible model of the OpenManipulator-X had previously been

made. In Gazebo, the model is represented by two XML files, one on the

URDF format describing the parts of the robot and a DAE file for collisions

and visuals. MuJoCo does not support either of the URDF or DAE files

from Gazebo without some workarounds. The URDF file first needed to

be converted to an MJCF file with the compile script from MuJoCo. Next,

a few more additional MuJoCo tags were added to specify the actuators

of the model, light and a surface plane. Friction in the lever joint also

needed tuning to prevent it from succumbing to the simulated gravity. The

DAE files were converted to STL files by using the open-source software

MeshLab [63].

Further, the manipulator controller also needed to be recreated in MuJoCo.

In Gazebo and the physical environment, the pre-built controller is accessed

by sending reference values through ROS. The class MuJoCoController
was designed to be iterative, and compute a new control signal, 𝑢, that

would be summed with the previous actuator value, 𝑢𝑝𝑟𝑒𝑣 , and assigned

as a new actuator value 𝑢𝑎𝑐𝑡 , at each time step of the simulation, see

Equation (4.7).

𝑢𝑎𝑐𝑡 = 𝑢𝑝𝑟𝑒𝑣 + 𝑢 (4.7)

102 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

The purpose of the control signal is to guide the joint to its reference

angle with a tolerated error of 0.8°. Two instances of the class are used by

MujocoGymConnection, where one controls the lever, and the other -

being six-dimensional - controls the joints of the manipulator. The simu-

lated manipulator has two actuators representing the physical end-effector

actuator, giving rise to the sixth dimension.

OpenManipMujocoRobot encompasses methods for setting joint values,

goal pose of end-effector, and manipulation of the lever angle. Further,

the module has one object of the FabrikSolver3D class, which is neces-

sary to calculate reference values for the controllers from the goal pose.

The solver implements the algorithm discussed in Section 2.1.3. OMX-
ForwardKinematics is used to calculate the spatial coordinates of each

joint.

Finally, OpenManipulatorMujocoLeverPullEnvironment was created
as a new module instead of adding the new features to the OpenMa-
nipulatorLeverPullEnvironment due to implementation differences

between simulated and physical measurements of the lever angle, and

MuJoCo controller.

4.5. HUMAN MACHINE COOPERATION INTERFACE 103

4.5.3 Extensions to the HMI

Table 4.4 displays all valid hand gestures, and lists the new hand gesture

Flip Hand, meaning the operator’s palm is facing down. Table 4.5 shows the

states of the system, now extended to include the AI Control state, which
is activated by the Flip Hand gesture. During the state, the four last joints

of the manipulator are controlled by an RL agent, which can send control

signals in the range specified. The agent stops sending control signals

should the operator’s hand gesture change to something else. Should the

hand gesture return, the agent will continue controlling the manipulator.

Hand gestures Workspace locations

Stop Turn Left

Grip Turn Right

Ungrip Move Forward

Precision Move Backward

Tilt Up Misc

Tilt Down Hand Not Present

Move Height

Flip Hand

Table 4.4: The input signals determining the state of the FSM

104 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

State Controlled variable Reference

MOVE FORWARD r 8.33𝑐𝑚/𝑠

MOVE BACKWARD r −8.33𝑐𝑚/𝑠

MOVE FORWARD SLOW r 1.67𝑐𝑚/𝑠

MOVE BACKWARD SLOW r −1.67𝑐𝑚/𝑠

TURN LEFT 𝛽 19.10°/𝑠

TURN RIGHT 𝛽 −19.10°/𝑠

TURN LEFT SLOW 𝛽 3.82°/𝑠

TURN RIGHT SLOW 𝛽 −3.82°/𝑠

TILT UP 𝜃 14.32°/𝑠

TILT DOWN 𝜃 −14.32°/𝑠

MOVE HEIGHT 𝑍𝑊
𝐸𝐹

Dynamic

GRIP 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 −1.0𝑐𝑚

UNGRIP 𝑑𝑔𝑟𝑖𝑝𝑝𝑒𝑟 1.0𝑐𝑚

AI Control joint states ∈ [−1, 1]

Table 4.5: The states of the FSM, the variables that are controlled when

they are active, and the respective references.

4.5. HUMAN MACHINE COOPERATION INTERFACE 105

Figure 4.9: The updated operator panel

The new operator panel can be seen in Figure 4.9. New features include

lever angle measurements and an option for setting the goal position of

the lever angle. A bulb icon was added to indicate when the goal angle

has been reached by lighting up.

106 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

4.5.4 System Execution

To get the system running one would first need to run

open_manipulator_controller.launch, then lever_angle_pose.launch,
open_manipulator_lever_pull_load_params.launch, and finally startmimir.launch,
in four different terminals. The first script starts the manipulator controller,

while the second starts publishing measured and estimated lever poses

to the topic mimir/lever_angle_pose. The third script loads parameters

describing the environment for the RL agent. The final script starts the

HMCI system.

4.5. HUMAN MACHINE COOPERATION INTERFACE 107

Figure 4.10: A UML activity diagram of the complete system developed in

this thesis

108 CHAPTER 4. PROBLEM FORMULATION AND SYSTEM DESIGN

The diagram in Figure 4.10 illustrates how the system works, using one of

the manual control states, and the special AI Control state as examples.

The diagram divides the system into four different actors, which does a

good job of explaining the system logic. For a deeper insight into the

system, the reader can study the class diagrams in Appendix A.2, or visit

the GitHub repositories [64]

The operator initiates the program and controls the system states by per-

forming hand gestures. A set of pre-determined velocity control signals,

see Table 4.5, are sent to the manipulator through service calls upon activat-

ing corresponding hand gestures. When the operator starts the RL agent,

the manipulator is automatically steered such that the manipulator points

in the direction of the lever. Once in position, the lever pose is evaluated,

and the agent decides on control signals for the joints in the Step activity.

These controls are sent to the manipulator through a service call, and the

lever pose is evaluated once more. This loop continues until the goal is

reached, or the operator halts the agent by switching to a different hand

gesture. When the goal has been reached, the agent resets the manipulator

and moves it safely away from the lever without accidentally adjusting

the lever position.

Chapter 5

Results and Discussion

The first section of this chapter presents the results from the training of

the RL agent in the simulated environment. Next, the trained agent is

integrated with the HMCI, and the system is tested on the manipulator-

lever setup, at two difficulty levels.

5.1 Training the RL Agent

Figure 5.1 displays the simulated environment during training. Training

takes far less time when the MuJoCo window is not rendered, so the author

had to rely on statistics printed in the terminal to evaluate ongoing training

sessions. The images are from an evaluation of a trained model.

109

110 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.1: The OpenManipulator-X in the MuJoCo environment during

training. Left: Manipulator approaches the lever. Right: The agent is

successfully placing the lever in its goal position.

The agent was first trained for 50 epochs with a 50% chance of grabbing

the lever in the initial position and diminishing action noise, as seen in

Figure 5.2. During the collaboration challenge, however, the RL agent will

never take control of the manipulator when it is already grabbing the lever.

With this intuition, the agent was trained for another 50 epochs with a 0%

grip chance. The results from the training are displayed in Figure 5.3. A

sparse reward function was used for this training session as well. Figure 5.4

plots the statistics from a training session using dense rewards.

5.1. TRAINING THE RL AGENT 111

0 10 20 30 40 50
0.00

0.20

0.40

0.60

0.80

1.00

Su
cc

es
s r

at
e

Validation Success Rate
s

0 10 20 30 40 50
-400.00

-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

Re
wa

rd

Average Validation Reward
r

Figure 5.2: Model trained on a sparse reward. Left: Success rate. Right:

Reward

0 20 40 60 80 100
0.00

0.20

0.40

0.60

0.80

1.00

Su
cc

es
s r

at
e

Validation Success Rate
s

0 20 40 60 80 100
-400.00

-350.00

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

0.00

Re
wa

rd

Average Validation Reward
r

Figure 5.3: Model trained on a sparse reward with 50% grip chance, then

further trained with a 0% grip chance. Left: Success rate. Right: Reward

112 CHAPTER 5. RESULTS AND DISCUSSION

0 20 40 60 80
0.00

0.20

0.40

0.60

0.80

Su
cc

es
s r

at
e

Validation Success Rate
s

0 20 40 60 80

-300.00

-250.00

-200.00

-150.00

-100.00

-50.00

Re
wa

rd

Average Validation Reward
r

Figure 5.4: Model trained on a dense reward. Left: Success rate. Right:

Reward

5.2 Cooperation Challenge

In the cooperation challenge, the system developed in this thesis is tested.

A human operator takes control of the manipulator through the HMI

system and controls it to arbitrary positions, demonstrating that it works.

Next, the operator sets a goal angle for the lever through the operator

panel before performing the Flip Hand gesture and setting the FSM in the

AI Control state. Ideally, the RL agent should at this point take control over

the manipulator and pull the lever into the goal angle position. Should

anything go wrong, the operator can always switch hand signal, stopping

the RL agent instantly.

5.2. COOPERATION CHALLENGE 113

5.2.1 Measured Lever

In this scenario, the measured lever pose is used as input to the RL agent.

The position of the lever base was measured using a ruler, while the angle

measurements were produced by the potentiometer setup discussed in

Section 3.6.1. The reader is advised to study Figure 5.7 before continuing

to read. The operator first controlled the manipulator to tilt downwards

and lower its height by about 8𝑐𝑚. Next, the manipulator turned left 77°

and reduced its elevation by another 3𝑐𝑚. The operator typed a goal angle

of −45° into the operator panel before setting the FSM in the AI Control
state.

114 CHAPTER 5. RESULTS AND DISCUSSION

X (m)

0.05 0.10 0.15 0.20 0.25 0.30

Y (
m

)

0.00
0.01
0.02
0.03
0.04
0.05
0.060.07

Z
(m

)

0.10

0.15

0.20

0.25

10

20

30

40

50

60

70

Ti
m

e
(s

)

Figure 5.5: The path of the manipulator’s end-effector plotted together

with the path of the uppermost point of the lever (green). The paths are

represented as gradients with respect to time.

5.2. COOPERATION CHALLENGE 115

The path of the end-effector during the test is shown in Figure 5.5 as a

line that transitions from purple into yellow. Yellow being the position it

had at the end of the test. Meanwhile, the path of the uppermost point

on the lever is drawn in the same plot and can be seen as a green curve.

The two polar plots in Figure 5.6 visualize the planar movement of the

end effector in the 𝑋𝑊𝑌𝑊 -plane and the planar movement of the lever in

the 𝑋𝑊𝑍𝑊 -plane. The goal angle is −45°, and the success threshold of 1.4°

has been drawn as two dotted lines. Both the lever and end-effector have

been colored in gradients related to the relative time, and the lever’s end

position can be seen as a yellow line.

116 CHAPTER 5. RESULTS AND DISCUSSION

180°

135°

90°

45°

0°

-45°

-90°

-135°

0.000.050.100.150.200.250.30

Radius (m)

Trajectory

10

20

30

40

50

60

70

Ti
m

e
(s

)

90°

45°

0°

-45°

-90°
0.00 0.05 0.10

(m)

Lever Trajectory

10

20

30

40

50

60

70

Ti
m

e
(s

)

Figure 5.6: Left: Path of the end-effector in the 𝑋𝑊𝑌𝑊 -plane, represented

with polar coordinates. Right: Path of the lever in the 𝑋𝑊𝑍𝑊 -plane, repre-

sented with polar coordinates. The threshold is plotted around the goal

angle as two dotted lines.

Further, Figure 5.7 display the end-effector’s pose through time.The upper-

most plot presents the height or positional value on the 𝑍𝑊 -axis, 𝑍𝑒 . The

following two plots give the position in polar coordinates, 𝑟 , 𝛽 , while the

next plot represents the end-effector’s orientation in Euler angles,𝜓 , 𝜃 , 𝜙 .

The last one is a step plot, showing the transitions between the states in

the FSM that occurred during the test.

5.2. COOPERATION CHALLENGE 117

0 10 20 30 40 50 60 70 80

0.10

0.20

(m
)

Height
ZWEF

0 10 20 30 40 50 60 70 80
0.10

0.20

0.30

Ra
di
us
 (m

)

Polar Coordinates
r

0 10 20 30 40 50 60 70 80
0.00

20.00

40.00

60.00

Ho
riz
on
ta
l r
ot
 (D

eg
)

β

0 10 20 30 40 50 60 70 80
-25.00

0.00

25.00

50.00

75.00

Eu
le

r a
ng

le
s (

De
g)

Orientation
ψ
θ
ϕ

0 10 20 30 40 50 60 70 80
Time (s)

STOP
UNGRIP

TILT D
MOVE H
TURN L

RL AGENT

St
at

es

State
State

Figure 5.7: End-effector pose and active FSM state over time.

118 CHAPTER 5. RESULTS AND DISCUSSION

Finally, Figure 5.8 exhibit plots related to the lever and RL agent. In the first

plot, the visually estimated angle, 𝜔𝑒 , is plotted next to the potentiometer

read angle, 𝜔𝑚 . For the next three plots, the estimated and measured lever

position on 𝑋𝑊 -axis, 𝑙𝑥,𝑒 , 𝑙𝑥,𝑚 , 𝑌
𝑊
-axis, 𝑙𝑦,𝑒 , 𝑙𝑦,𝑚 , and 𝑍

𝑊
-axis, 𝑙𝑧,𝑒 , 𝑙𝑧,𝑚 , are

given. Next, the cumulative reward is plotted, followed by the binary

Success plot.

5.2. COOPERATION CHALLENGE 119

0 10 20 30 40 50 60 70 80

-40.00

-20.00

0.00

(d
eg
)

Lever angle
ωe

ωm

0 10 20 30 40 50 60 70 80

0.10

0.20

X-
ax
is
(m

)

Estimated lever position along X-axis

lWx, e
lWx,m

0 10 20 30 40 50 60 70 80

-0.04

-0.02

0.00

Y-
ax
is
(m

)

Estimated lever position along Y-axis
lWy, e
lWy,m

0 10 20 30 40 50 60 70 80
0.00

0.05

0.10

Z-
ax
is
(m

)

Estimated lever position along Z-axis
lWz, e
lWz,m

0 10 20 30 40 50 60 70 80
-20.00

-10.00

0.00

Re
wa

rd

Cumulative reward
reward

0 10 20 30 40 50 60 70 80
Time (s)

False

True

Su
cc
es
s

Goal reached?
Success

Figure 5.8: From top: Estimated and measured lever angle, 𝑋𝑊 -, 𝑌𝑊 -, and

𝑍𝑊 -positions measured and estimated, cumulative reward, and success.

120 CHAPTER 5. RESULTS AND DISCUSSION

5.2.2 Visually Estimated Lever

In this scenario, a visually estimated lever pose is used as input to the

RL agent. The angle and position are estimated based on readings from

the detected Aruco corners and generated homogeneous transformation

matrix, as described in Section 3.6.2.

Again, the reader is advised to study Figure 5.11 before reading further.

The test started with the human operator in charge of the manipulator.

First, the end-effector was tilted and moved downwards until all three

Aruco indices appeared in the camera view, and the lever pose could be

estimated. Next, the manipulator was turned left by approximately 55°

and moved forward by roughly 18𝑐𝑚. Afterward, the operator moved the

manipulator down by 8𝑐𝑚 and reduced its radius by around 8𝑐𝑚. After

this demonstration of manual control, the operator typed in a goal angle

of −25°, activated the RL agent, and observed the actions of the AI.

The results from the test can be seen in the figures: Figure 5.9, Figure 5.10,

Figure 5.11, Figure 5.12, which are the same type of plots described in the

previous section.

5.2. COOPERATION CHALLENGE 121

X (m)

0.05 0.10 0.15 0.20 0.25 0.30

Y (
m

)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Z
(m

)
0.10
0.12
0.15
0.18
0.20
0.23
0.25
0.28

10

20

30

40

50

60

70

Ti
m

e
(s

)

Figure 5.9: The path of the manipulator’s end-effector plotted together

with the path of the uppermost point of the lever (green). The paths are

represented as gradients with respect to time.

122 CHAPTER 5. RESULTS AND DISCUSSION

180°

135°

90°

45°

0°

-45°

-90°

-135°

0.000.050.100.150.200.250.30

Radius (m)

Trajectory

10

20

30

40

50

60

70

Ti
m

e
(s

)

90°

45°

0°

-45°

-90°
0.00 0.05 0.10

(m)

Lever Trajectory

10

20

30

40

50

60

70

Ti
m

e
(s

)

Figure 5.10: Left: Path of the end-effector in the 𝑋𝑊𝑌𝑊 -plane, represented

with polar coordinates. Right: Path of the lever in the 𝑋𝑊𝑍𝑊 -plane, repre-

sented with polar coordinates. The threshold is plotted around the goal

angle as two dotted lines.

5.2. COOPERATION CHALLENGE 123

0 10 20 30 40 50 60 70 80
0.10

0.15

0.20

0.25

0.30

(m
)

Height

ZWEF

0 10 20 30 40 50 60 70 80

0.10

0.20

0.30

Ra
di

us
 (m

)

Polar Coordinates
r

0 10 20 30 40 50 60 70 80
0.00

20.00

40.00

Ho
riz

on
ta

l r
ot

 (D
eg

)

β

0 10 20 30 40 50 60 70 80
-20.00

0.00

20.00

40.00

Eu
le

r a
ng

le
s (

De
g)

Orientation
ψ
θ
ϕ

0 10 20 30 40 50 60 70 80
Time (s)

STOP
UNGRIP
TILT D

MOVE H
TURN L
GRIP

MOVE F
MOVE B

RL AGENT

St
at
es

State
State

Figure 5.11: End-effector pose and active FSM state over time.

124 CHAPTER 5. RESULTS AND DISCUSSION

0 10 20 30 40 50 60 70 80

-40.00

-20.00

(d
eg
)

Lever angle

ωe

ωm

0 10 20 30 40 50 60 70 80
0.15

0.20

0.25

X-
ax
is
(m

)

Estimated lever position along X-axis

lWx, e
lWx,m

0 10 20 30 40 50 60 70 80
-0.03

-0.02

-0.01

0.00

Y-
ax
is
(m

)

Estimated lever position along Y-axis

lWy, e
lWy,m

0 10 20 30 40 50 60 70 80
0.04

0.06

0.08

0.10

Z-
ax
is
(m

)

Estimated lever position along Z-axis

lWz, e
lWz,m

0 10 20 30 40 50 60 70 80

-10.00

-5.00

0.00

Re
wa

rd

Cumulative reward
reward

0 10 20 30 40 50 60 70 80
Time (s)

False

True

Su
cc
es
s

Goal reached?
Success

Figure 5.12: From top: Estimated and measured lever angle, 𝑋𝑊 -, 𝑌𝑊 -, and

𝑍𝑊 -positions measured and estimated, cumulative reward, and success.

5.3. DISCUSSION 125

5.3 Discussion

5.3.1 RL Agent

Training the agent with a dense reward function did not yield adequate

results. The best success ratio of around 80% was achieved after 85 epochs,

as can be seen in Figure 5.4. The success ratios varied greatly during

training, showing little signs of stabilizing at a high percentage. The

considerable variation required the implementation of early stopping, as

training for too long often resulted in a low success rate. The early stopping

threshold parameter was set at 80%.

The sparse reward function fared far better. The success ratio steadily

climbed to a high success ratio of 96.67%, which is 29 out of 30 successful

validations, see Figure 5.2 and Figure 5.3. There was no need for early

stopping when training with the sparse reward function. The noticeable

drop in reward and success rate at epoch number 51 in Figure 5.3 is because

the replay buffer is not saved after one training session. This might seem

strange since the actor-network does not need a replay buffer to perform

good actions when not training. Still, an empty replay buffer during the

first epochs of a new training session can lead to unwanted behavior, as

the transitions the network is trained on are drawn from this buffer. The

sparse reward works better than the dense since HER is implemented. HER

creates synthetic goals during the learning phase, which works well for

sparse rewards. In the experiments carried out in [42], HER performed

126 CHAPTER 5. RESULTS AND DISCUSSION

better on sparse than dense rewards.

During the collaboration challenge, it was noted that the retrained agent

in Figure 5.3 performed worse than the one from Figure 5.2 that had only

been trained for 50 epochs, even though the success rate was closer to 100%

in the simulated environment. The agent’s behavior was inspected in the

MuJoCo environment, and an explanation was found. It had learned that

it did not matter for the reward signal if it pushed the lever in a smooth

and safe motion or dragged the end-effector along the ground towards the

lever before pulling it. This is a flaw in the training procedure since the

agent is allowed to learn behavior not tolerated in the real world. Solutions

to this problem could be adding a larger negative reward every time the

end-effector collides with anything other than the lever itself. Yet, by doing

such a thing, the reward function will become denser, possibly affecting

the training as seen in Figure 5.4. Another option is to implement Model

Predictive Control (MPC) instead of the traditional PID controller on the

manipulator. MPC allows for the control of a process while simultaneously

satisfying a set of constraints [65]. With such a controller, the physical

obstacles could be represented as constraints in the MPC, and we avoid

the problem of reward shaping.

5.3.2 Measured Lever

In Figure 5.8, the measured lever position is constant, while the measured

angle signal is stable at around −5° for the first 40 seconds. Some spikes are

5.3. DISCUSSION 127

present, which are likely caused by inaccuracies from the moving parts of

the potentiometer. After 40 seconds, the lever angle starts gradually falling

to around −52°. Meanwhile, looking at Figure 5.7, we note that the agent is

slowly increasing the manipulator’s radius while simultaneously reducing

its height. Figure 5.6 seems to agree with this description, even though the

exact timescale is not possible to read from that plot. Just before the 60

seconds mark, the lever angle is steadily increased until it comes within

the threshold of the −45° goal. Simultaneously, we can see in Figure 5.7

that the manipulator’s tilt grows while the radius decreases. The height of

the manipulator is also slightly reduced. Since the lever angle is negative

when it points away from the manipulator, these actions seem sensible.

As soon as the measured lever angle hits its target angle of 45 + /−1.4°, the
Success plot steps from ‘False’ to ‘True’. It is impressive that even though

the agent initially pushed the lever too far, it corrected itself by picking it

up again and slowly increasing the angle. Note that it is possible for the

agent to push the lever too far as it does not evaluate the lever angle when

a step is being performed in the environment.

5.3.3 Visually Estimated Lever

The difficulty increased when switching from measured to estimated lever

values. The operator had to intervene several times to cancel the operation

since the RL agent often positioned the manipulator too close to the lever

base and risked dealing damage to the equipment.

128 CHAPTER 5. RESULTS AND DISCUSSION

The estimated lever angle, seen in the first plot of Figure 5.12, is reasonably

close to the measured value, with the most significant difference of around

10°. The estimated value depends on the camera recording the Aruco

indices attached to the lever. When these indices are not detected, the

previous set of detections are used in the estimation.

The estimated 𝑋𝑊 - and 𝑍𝑊 -position are noticeably affected by errors. The

error in 𝑋𝑊 -position becomes smaller as the end-effector approaches the

manipulator at around 45 seconds, yet the difference in 𝑍𝑊 -position is

only barely improved. This suggests that the 𝑋𝑊 -position is more critical

information to the agent, as it managed to manipulate the lever even

though the 𝑍𝑊 -position was off by around 5𝑐𝑚. The 𝑌𝑊 estimate was

fairly accurate during the entire test, but suffered minor errors between 10

and 35 seconds. Inspecting Figure 5.11 revealed that the manipulator was

turning horizontally such that the Aruco indices moved out of the camera

frame during this time.

The PnP algorithm relies only on four detected points in the worst case

and 12 points in the best case. With such a small set of points, inaccuracies

in the camera, or a bad camera calibration distorting the image, will impact

the transformation matrix. Further, the author did not calibrate the camera,

since the supplied camera matrix was assumed to be correct. Distortion

was not taken into account as well. Additionally, the translations of the

transformation matrix from camera space to end-effector space were mea-

sured using a ruler and are prone to inaccuracies. These are likely the

main contributing factors to the 𝑋𝑊 - and 𝑍𝑊 -positional errors.

5.3. DISCUSSION 129

The agent is somewhat robust towards unreliable estimates. The agent

reports success at approximately 61 seconds into the test. However, as

the end-effector retracts, the estimate is updated to −20°, and the success

signal falls to False. Meanwhile, the measured lever angle still stands at

−25°. During other tests, it was noticed that when the estimates stopped

updating, the agent still managed to put the lever in its correct position

and was seemingly confused when it failed to receive a success signal,

moving the lever carefully up and down from the goal angle.

Once the success signal becomes active, the agent resets the manipulator’s

position by reducing the radius, opening the gripper, and increasing the

height, as seen in Figure 5.11.

The RL agent was trained on measured lever poses with no simulated noise

or offsets. Distorting the lever pose during training would better mimic

the visually estimated values, and could have contributed to better stability

while performing the cooperation challenge. Nevertheless, it is impressive

that the agent still managed to complete the challenge.

130 CHAPTER 5. RESULTS AND DISCUSSION

Chapter 6

Conclusions and Future Work

This thesis introduces a Human-Machine Cooperation Interface, demon-

strated on a lever pull task, using a robotic manipulator and a simulation-

trained RL agent. The cooperation challenge was completed using two

different sets of lever poses. The first challenge used potentiometer read-

ings and manually measured distances as input parameters for the agent.

The second method used an RGB camera for visual detection and esti-

mation of the lever pose. Both challenges were completed, but placing

the lever at its wanted angle on estimated values was more challenging.

Estimated values are preferred as one cannot assume that the object to

be manipulated is continuously measured. To give the agent information

extracted from a camera through robotic vision mimics the human ability

to perceive objects and distances and is a valuable tool for Human-Machine

Cooperation.

131

132 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

The next paragraphs are dedicated to answering the research questions

from Section 1.2.

Can a human operator cooperate with an RL agent through an
HMCI to solve complex challenges with a robotic manipulator?
From the results, we can clearly state that a human operator, in fact, can

cooperate on an intuitive level with an RL agent through an HMCI to solve

complex challenges with a robotic manipulator. The agent is overseen

by a human while performing a difficult task, that is, placing a lever in a

pre-determined position, and is stopped by the operator when it performs

strange actions that might cause damage to the setup. The human operator

is not able to operate the manipulator accurately enough, with the HMI

from the author’s project thesis [23], to push the lever into its goals position.

Yet the human can perceive and calculate risks far better than the RL agent.

Thus a symbiosis of mutual benefit is created, illustrating the value of

Human-Machine Cooperation.

How transferable is anRL agent trained in a simulated environment
to a physical one?
The RL agent was trained in the MuJoCo environment and was applied to

the physical setup without any further training. To the author’s surprise,

the agent performed well. The largest hiccups were rooted in learned

policies that worked well enough in the simulation but risked causing

damage in the real world. Hitting the floor with the end-effector is perfectly

acceptable behavior in the simulation, but increasing the physical actuator

in a direction in which the manipulator cannot move, causes unnecessary

133

and undesirable stress and wear.

Can a noisy visually estimate of the lever pose replace reliable
direct measurements as input signals for an RL agent?
Running the RL agent on estimated values did indeed increase the difficulty

for the agent, which resulted in more work for the operator, who was

required to interfere at a higher rate than before. However, considering

that the estimates, and especially the𝑍𝑊 -position of the lever, were affected

by large offsets, it is still impressive that the agent successfully managed

to manipulate the lever into its goal position.

The manipulator employed PID controllers in both the simulation and real

life. By exchanging these controllers with MPC, one could include the

physical constraints directly in the controller, thereby avoiding many of

the dangerous actions taken by the RL agent without the need to design

a dense reward function. Such a controller would alleviate much of the

risk assessment required by the human operator and probably increase the

success rate of the RL agent in the real-world setup due to the assumed

decrease in dangerous situations.

To increase the robustness of the RL agent, work could be put into making

the digital simulation closer to the physical one. Noise could be added to

the lever pose measurements mimicking inaccuracies, but also, a time lag

simulating the Aruco indices disappearing from the camera frame would

increase the realism.

134 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

In Chapter 1, it was claimed that the HMCI developed here would classify

as a level 4 system on the levels of autonomy by Lloyd’s Register, Ap-

pendix A.3. The author still believes this to be true when the RL agent

receives measured lever pose values on its inputs. The system is stable

most of the time and completes its task without too much intervention

from the human operator. However, when the system uses estimated lever

pose values, it is somewhere between level 3 and level 4. The RL agent’s

rate of failure, or rate of performing a nonsensical action that might dam-

age the equipment, is increased, resulting in a higher workload on the

human operator, who must be ready to intervene at any moment.

The work presented in this thesis can be considered relevant for AUVs

(Autonomous Underwater Vehicles), which human operators might over-

see while they are performing tasks at an offshore platform or seabed

installation. Disturbances from waves and currents are active in such

scenarios and make the problem even more complex. Further, the AUV is

moving relative to the platform as well. These challenges could be simu-

lated by improving the physical setup. By placing the lever on a different

platform and applying wave motions to the lever, the manipulator, or both,

one could simulate such an environment and demonstrate the system’s

usefulness in a setup more true to a real-life scenario.

NASA plans to send humans back to the Moon within the next three

years, and the humans will most definitely be accompanied by robots that

can perform routine scientific and maintenance-related tasks. Going on

spacewalks are risky endeavors that can cause irreparable radiation damage

135

to the astronauts and is a risk that should be mitigated. Research within

Human-Machine Cooperation could contribute to keeping the astronauts

safe by facilitating cooperation between the humans fromwithin the Lunar

outpost and autonomous robots out on the surface.

136 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] K. Donners, M. Waelkens, and J. Deckers. “Water mills in the area of

Sagalassos: a disappearing ancient technology”. In:Anatolian Studies
52 (2002), pp. 1–17. doi: 10.2307/3643076.

[2] Marilyn Palmer. “The Portsmouth Block Mills: Bentham, Brunel and

the Start of the Royal Navy’s Industrial Revolution. By Jonathan

Coad”. In: Archaeological Journal 163.1 (2006), pp. 289–290. doi:

10.1080/00665983.2006.11020695.

[3] Maite Aparicio Latorre. “Cockpit assembly line for the model 3,

Tesla”. MA thesis. Public University of Navarra, 2017.

[4] Brandi House, Jonathan Malkin, and Jeff Bilmes. “The VoiceBot: a

voice controlled robot arm”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. Boston, Massachusetts,

Apr. 2009, pp. 183–192.

137

https://doi.org/10.2307/3643076
https://doi.org/10.1080/00665983.2006.11020695

138 BIBLIOGRAPHY

[5] Siddharth Narayanan and C Ramesh Reddy. “Bomb defusing robotic

arm using gesture control”. In: International Journal of Engineering
Research and Technology 4.02 (2015), pp. 89–93.

[6] Peter Vamplew and Anthony Adams. “Recognition of sign language

gestures using neural networks”. In: Australian Journal of Intelligent
Information Processing Systems 5.2 (1998), pp. 94–102.

[7] Hong Zeng et al. “Semi-autonomous robotic arm reaching with

hybrid gaze-brain machine interface”. In: Frontiers in neurorobotics
13 (2020), p. 111.

[8] Vincent Van Roy, Daniel Vertesy, and Giacomo Damioli. “AI and

robotics innovation”. In: Handbook of Labor, Human Resources and
Population Economics (2020), pp. 1–35.

[9] Dmitry Kalashnikov et al. “Scalable deep reinforcement learning for

vision-based robotic manipulation”. In: Conference on Robot Learning.
Zürich, Switzerland, 2018, pp. 651–673.

[10] Hai Nguyen and Hung La. “Review of deep reinforcement learning

for robot manipulation”. In: 2019 Third IEEE International Conference
on Robotic Computing (IRC). Naples, Italy, Feb. 2019, pp. 590–595.

[11] Athanasios S Polydoros and Lazaros Nalpantidis. “Survey of model-

based reinforcement learning: Applications on robotics”. In: Journal
of Intelligent & Robotic Systems 86.2 (2017), pp. 153–173.

BIBLIOGRAPHY 139

[12] Shixiang Gu et al. “Deep reinforcement learning for robotic manip-

ulation”. Version 2. In: 1 (2016). arXiv: 1610.00633.

[13] Wenshuai Zhao, Jorge Peña Queralta, and TomiWesterlund. “Sim-to-

real transfer in deep reinforcement learning for robotics: a survey”.

In: 2020 IEEE Symposium Series on Computational Intelligence (SSCI).
Canberra, Australia, Nov. 2020, pp. 737–744.

[14] Jean-Michel Hoc. “From human–machine interaction to human–

machine cooperation”. In: Ergonomics 43.7 (2000), pp. 833–843.

[15] Lloyd’s Register.Cyber-Enabled Ships Shipright Procedure—Autonomous
Ships. 2016. url: http://info.lr.org/l/12702/2016- 07-
07/32rrbk (visited on May 29, 2022).

[16] Ian Sample. Computer says no: why making AIs fair, accountable
and transparent is crucial. url: https://www.theguardian.com/
science/2017/nov/05/computer-says-no-why-making-ais-

fair-accountable-and-transparent-is-crucial (visited on

Nov. 10, 2021).

[17] Thilo Hagendorff. “The ethics of AI ethics: An evaluation of guide-

lines”. In: Minds and Machines 30.1 (2020), pp. 99–120.

[18] Oxford Dictionary. Definition: Accountability. url: https://www.
oxfordlearnersdictionaries.com/definition/english/accountability

(visited on June 16, 2022).

https://arxiv.org/abs/1610.00633
http://info.lr.org/l/12702/2016-07-07/32rrbk
http://info.lr.org/l/12702/2016-07-07/32rrbk
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://www.theguardian.com/science/2017/nov/05/computer-says-no-why-making-ais-fair-accountable-and-transparent-is-crucial
https://www.oxfordlearnersdictionaries.com/definition/english/accountability
https://www.oxfordlearnersdictionaries.com/definition/english/accountability

140 BIBLIOGRAPHY

[19] OxfordDictionary.Definition: Robustness. url: https://www.oxfordlearnersdictionaries.
com/definition/english/robustness?q=robustness (visited

on June 16, 2022).

[20] Nicolas Padoy andGregoryDHager. “Human-machine collaborative

surgery using learnedmodels”. In: 2011 IEEE International Conference
on Robotics and Automation. Shanghai, China, May 2011, pp. 5285–

5292.

[21] Suncheol Kwon and Jung Kim. “Real-Time Upper Limb Motion Esti-

mation From Surface Electromyography and Joint Angular Velocities

Using an Artificial Neural Network for Human–Machine Coopera-

tion”. In: IEEE Transactions on Information Technology in Biomedicine
15.4 (2011), pp. 522–530. doi: 10.1109/TITB.2011.2151869.

[22] Sindre Benjamin Remman. “Robotic manipulation using deep rein-

forcement learning”. MA thesis. NTNU, 2020.

[23] Simon Julian Nagelsaker Lexau. Hand Tracking for Robotic Control
through Deep Convolutional Neural Networks. Project Thesis. Nov.
2021.

[24] Leonid B. Freidovich. Lecture Notes from Modelling in Robotics and
Control Methods for Robotic Applications. Umeå: Umeå University,

2021.

https://www.oxfordlearnersdictionaries.com/definition/english/robustness?q=robustness
https://www.oxfordlearnersdictionaries.com/definition/english/robustness?q=robustness
https://doi.org/10.1109/TITB.2011.2151869

BIBLIOGRAPHY 141

[25] Robotis. OpenManipulator-X e-Manual. url: https://emanual.
robotis.com/docs/en/platform/openmanipulator_x/overview/

(visited on May 9, 2022).

[26] Wikipedia.Denavit-Hartenberg parameters. Mar. 17, 2022. url: https:

//en.wikipedia.org/wiki/Denavit-Hartenberg_parameters

(visited on Mar. 22, 2022).

[27] Charles W. Wampler. “Manipulator Inverse Kinematic Solutions

Based on Vector Formulations and Damped Least-Squares Methods”.

In: IEEE Transactions on Systems, Man, and Cybernetics 16.1 (1986),
pp. 93–101. doi: 10.1109/TSMC.1986.289285.

[28] Yoshihiko Nakamura and Hideo Hanafusa. “Inverse Kinematic Solu-

tions With Singularity Robustness for Robot Manipulator Control”.

In: Journal of Dynamic Systems, Measurement, and Control 108.3
(1986), pp. 163–171. doi: 10.1115/1.3143764.

[29] Samuel R Buss and Jin-Su Kim. “Selectively damped least squares

for inverse kinematics”. In: Journal of Graphics tools 10.3 (2005),

pp. 37–49. doi: 10.1080/2151237X.2005.10129202.

[30] Michael JD Powell. “An efficient method for finding the minimum of

a function of several variables without calculating derivatives”. In:

The computer journal 7.2 (1964), pp. 155–162. doi: 10.1093/comjnl/
7.2.155.

https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://emanual.robotis.com/docs/en/platform/openmanipulator_x/overview/
https://en.wikipedia.org/wiki/Denavit-Hartenberg_parameters
https://en.wikipedia.org/wiki/Denavit-Hartenberg_parameters
https://doi.org/10.1109/TSMC.1986.289285
https://doi.org/10.1115/1.3143764
https://doi.org/10.1080/2151237X.2005.10129202
https://doi.org/10.1093/comjnl/7.2.155
https://doi.org/10.1093/comjnl/7.2.155

142 BIBLIOGRAPHY

[31] Charles G Broyden. “A class of methods for solving nonlinear si-

multaneous equations”. In: Mathematics of computation 19.92 (1965),

pp. 577–593.

[32] Roger Fletcher. Practical Methods of Optimization. Second Edition.

Chichester: John Wiley & Sons, 1987.

[33] Andreas Aristidou and Joan Lasenby. “FABRIK: A fast, iterative

solver for the Inverse Kinematics problem”. In: Graphical Models
73.5 (2011), pp. 243–260.

[34] Jiacun Wang. Formal Methods in Computer Science. New York: CRC

Press, 2019.

[35] John Gittins, Kevin Glazebrook, and Richard Weber. Multi-armed
Bandit Allocation Indices. Second Edition. Chichester: John Wiley &

Sons, 2011.

[36] Volodymyr Mnih et al. Playing Atari with Deep Reinforcement Learn-
ing. Version 1. 2013. arXiv: 1312.5602.

[37] Elena Pashenkova, Irina Rish, and Rina Dechter. “Value iteration

and policy iteration algorithms for Markov decision problem”. In:

AAAI’96: Workshop on Structural Issues in Planning and Temporal
Reasoning. Portland, Oregon, Aug. 1996.

[38] Svajone Bekesiene, Rasa Smaliukiene, and Ramute Vaicaitiene. “Us-

ing artificial neural networks in predicting the level of stress among

military conscripts”. In: Mathematics 9.6 (2021), p. 626.

https://arxiv.org/abs/1312.5602

BIBLIOGRAPHY 143

[39] Maria V Valueva et al. “Application of the residue number system

to reduce hardware costs of the convolutional neural network im-

plementation”. In: Mathematics and Computers in Simulation 177

(2020), pp. 232–243.

[40] Timothy P Lillicrap et al. Continuous control with deep reinforcement
learning. Version 6. 2015. arXiv: 1509.02971 [cs.LG].

[41] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochas-

tic approximation by averaging”. In: SIAM journal on control and
optimization 30.4 (1992), pp. 838–855.

[42] Marcin Andrychowicz et al. “Hindsight Experience Replay”. In: Ad-
vances in Neural Information Processing Systems. Long Beach Con-

vention & Entertainment Center, California: Curran Associates, Inc.,

Nov. 2017.

[43] Sintef. Definition of the term: Robotic Vision. url: https://www.
sintef.no/en/expertise/digital/optical- measurement-

systems/robot-vision/ (visited on May 5, 2022).

[44] Martin A Fischler and Robert C Bolles. “Random sample consensus:

a paradigm for model fitting with applications to image analysis

and automated cartography”. In: Communications of the ACM 24.6

(1981), pp. 381–395.

https://arxiv.org/abs/1509.02971
https://www.sintef.no/en/expertise/digital/optical-measurement-systems/robot-vision/
https://www.sintef.no/en/expertise/digital/optical-measurement-systems/robot-vision/
https://www.sintef.no/en/expertise/digital/optical-measurement-systems/robot-vision/

144 BIBLIOGRAPHY

[45] OpenCV. Perspective-n-Point (PnP) pose computation. url: https:
//docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html

(visited on May 6, 2022).

[46] Zhengyou Zhang. “A flexible new technique for camera calibration”.

In: IEEE Transactions on pattern analysis and machine intelligence
22.11 (2000), pp. 1330–1334.

[47] Wikipedia. Pinhole Camera Model. June 16, 2021. url: https://en.
wikipedia.org/wiki/Pinhole_camera_model (visited on May 5,

2022).

[48] Marian Körber et al. Comparing popular simulation environments
in the scope of robotics and reinforcement learning. Version 1. 2021.

arXiv: 2103.04616.

[49] Roboti LLC.MuJoCoDocumentation. url: https://mujoco.readthedocs.
io/en/latest/overview.html (visited on Mar. 17, 2022).

[50] OpenAI. GitHub repository of the DDPG + HER implementation. 2022.
url: https://github.com/openai/baselines/tree/master/

baselines/her (visited on June 2, 2022).

[51] Microchip. MCP3001, Single Channel ADC. url: https : / / www .
microchip. com/ en- us/ product/ MCP3001 (visited on May 2,

2022).

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html
https://en.wikipedia.org/wiki/Pinhole_camera_model
https://en.wikipedia.org/wiki/Pinhole_camera_model
https://arxiv.org/abs/2103.04616
https://mujoco.readthedocs.io/en/latest/overview.html
https://mujoco.readthedocs.io/en/latest/overview.html
https://github.com/openai/baselines/tree/master/baselines/her
https://github.com/openai/baselines/tree/master/baselines/her
https://www.microchip.com/en-us/product/MCP3001
https://www.microchip.com/en-us/product/MCP3001

BIBLIOGRAPHY 145

[52] Raspberry Pi. Raspberry Pi 3 Model B Schematic. 2022. url: https:
//datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-

reduced-schematics.pdf (visited on June 2, 2022).

[53] Wikipedia. Serial Peripheral Interface. Apr. 20, 2022. url: https:
//en.wikipedia.org/wiki/Serial_Peripheral_Interface

(visited on May 2, 2022).

[54] Wikipedia. User Datagram Protocol. Apr. 14, 2022. url: https://
en.wikipedia.org/wiki/User_Datagram_Protocol (visited on

May 2, 2022).

[55] OpenCV. OpenCV Aruco Markers Documentation. url: https://
docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.

html (visited on May 5, 2022).

[56] Google.MediaPipe GitHub repository. url: https://google.github.
io/mediapipe/ (visited on Dec. 16, 2021).

[57] Google.Model Card:MediaPipe Hands. url: https://drive.google.
com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview

(visited on Nov. 4, 2021).

[58] Hongyi Xu et al. “Ghum & ghuml: Generative 3d human shape and

articulated pose models”. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. Virtual, June 2020,
pp. 6184–6193.

https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-reduced-schematics.pdf
https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-reduced-schematics.pdf
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://docs.opencv.org/4.x/d5/dae/tutorial_aruco_detection.html
https://google.github.io/mediapipe/
https://google.github.io/mediapipe/
https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview
https://drive.google.com/file/d/1-rmIgTfuCbBPW_IFHkh3f0-U_lnGrWpg/preview

146 BIBLIOGRAPHY

[59] The Qt Company. Qt application framework. url: https://www.qt.
io/ (visited on Dec. 11, 2021).

[60] Brian Gerkey.Why ROS 2. May 2022. url: https://design.ros2.

org/articles/why_ros2.html (visited on May 14, 2022).

[61] Dirk Thomas. Changes between ROS 1 and ROS 2. June 2017. url:
http://design.ros2.org/articles/changes.html (visited on

May 12, 2022).

[62] Open Robotics. Python migration guide from ROS 1. url: https:
//docs.ros.org/en/foxy/Contributing/Migration-Guide-

Python.html (visited on May 12, 2022).

[63] Visual Computing Laboratory. MeshLab Software. 2022. url: https:
//www.meshlab.net/ (visited on June 2, 2022).

[64] Simon Julian Nagelsaker Lexau. GitHub repository of the Human-
Machine Cooperation Interface. 2022. url: https://github.com/
Nagelsaker/mimir (visited on June 2, 2022).

[65] Eduardo F Camacho and Carlos Bordons Alba. Model predictive
control. Second Edition. London: Springer-Verlag, 2007, pp. 13–26.

[66] PERO Vidan et al. “Autonomous Systems & Ships-Training and

Education on Maritime Faculties”. In: 8th International Maritime
Science Conference. Budva, Montenegro, Apr. 2019, pp. 91–101.

https://www.qt.io/
https://www.qt.io/
https://design.ros2.org/articles/why_ros2.html
https://design.ros2.org/articles/why_ros2.html
http://design.ros2.org/articles/changes.html
https://docs.ros.org/en/foxy/Contributing/Migration-Guide-Python.html
https://docs.ros.org/en/foxy/Contributing/Migration-Guide-Python.html
https://docs.ros.org/en/foxy/Contributing/Migration-Guide-Python.html
https://www.meshlab.net/
https://www.meshlab.net/
https://github.com/Nagelsaker/mimir
https://github.com/Nagelsaker/mimir

147

148 APPENDIX A.

Appendix A

A.1 OpenManipulator-X Dimensions

Figure A.1: Dimensions of the OpenManipulator-X. FromRobotis e-Manual

[25]

A.2. CLASS DIAGRAMS 149

A.2 Class Diagrams

O
bstacle

+ xR
ange: Array

+ yR
ange: Array

+ zR
ange: Array

+ radiusR
ange: Array

+ collidesW
ith()

C
ontroller

+ K_p_beta: Float

+ K_p_r: Float

+ K_p_z: Float

+ K_p_theta: Float

+ pose: D
ict

+ jointPositions: D
ict

+ desiredPose: D
ict

+ jointSubscriber: JointPositionSubscriber

+ poseSubscriber: PoseSubscriber

+ positionC
lient: SetPositionC

lient

+ orientationC
lient: SetO

rientationC
lient

+ gripperD
istanceC

lient: SetG
ripperD

istanceC
lient

+ jointPositionC
lient: SetJointPositionC

lient

+ requestPose()

+ requestO
rientation()

+ requestJointPositions()

+ requestG
ripperD

istance()

+ increm
entR

adius()

+ increm
entH

eight()

+ turnH
orizontally()

+ increm
entTilt()

+ increm
entO

rientation()

+ increm
entG

ripper()

+ getPose(): D
ict

+ getJointPositions(): D
ict

+ updateR
obotPose()

+ endC
ontroller()

SetPositionC
lient

+ sendR
equest()

SetO
rientationC

lient

+ sendR
equest()

SetJointPositionC
lient

+ sendR
equest()

SetG
ripperD

istanceC
lient

+ sendR
equest()

PoseSubscriber

+ getPose(): D
ict

JointPositionSubscriber

+ getPositions(): D
ict

C
am

eraStream

+ start()

+ end()

+ getIm
ages(): Array

+ getAlignedIm
ages(): Array

+ getC
olorM

ap(): Array

+ show
Im

ages()

H
andM

odel

+ w
orkspace: D

ict

+ w
ristAngle_threshold: Array

+ thum
bAngle_threshold: Array

+ fingerAngle_threshold: Float

+ fingerAngles: D
ict

+ openFingers: Array

+ gesture: Int

+ setW
ristThreshold()

+ setFingerThreshold()

+ setThum
bThreshold()

+ addM
easurem

ent()

+ getPalm
Location(): Array

+ getH
andD

epth(): Float, Float

+ getH
andD

epthSensor(): Float

+ getW
orkspaceLocation(): Int

+ getFingerAngles(): D
ict

+ getC
urrentG

esture(): Int

+ calculateFingerAngles()

+calculateTransform
ation()

+ estim
ateW

ristAngle()

+ estim
ateG

esture()

H
andTracking

+ cam
SN

: String

+ handPoints: D
ict

+ im
age: Array

+ cam
Stream

: C
am

eraStream

+ startStream
()

+ endStream
()

+ getLiveLandam
arks():

D
ict, Array, m

pH
ands.hands.process

+ draw
Landm

arks()

FSM

+ depthR
ange: Array

+ pathTim
e: Float

+ im
gW

idth: Int

+ im
gH

eight: Int

+ cam
SN

: String

+ Kp_default: Array

+ handTracker: H
andTracking

+ hm
: H

andM
odel

+ controller: C
ontroller

+ obstacles: Array

+ im
gLM

: Array

+ setW
ristThreshold()

+ setFingerThreshold()

+ setThum
bThreshold()

+ getC
urrentIm

age()

+ run()

1

1

1

1

1

1

1

0..n

1
1

1

1

1

1

1

1

1

1
1

1

1

1

Figure A.2: Class diagram depicting the most important parts of the system.

150 APPENDIX A.

Figure A.3: Extended class diagram of the Open Manipulator RL Environ-
ments package. Green parts were written as part of this thesis

A.3. LEVELS OF AUTONOMY 151

A.3 Levels of Autonomy

Figure A.4: Levels of Autonomy according to LLoyd’s Register. Image

borrowed from [66]

152 APPENDIX A.

A.4 Code

Listing A.1: Python code for reading digital angle voltage, converting it to

lever angle and publishing the result over UDP

import numpy as np

import logging

log_format = "%(levelname)s | %(asctime)-15s | %(message)s"

logging.basicConfig(format=log_format, level=logging.DEBUG)

import RPi.GPIO as GPIO

import time

import socket

import spidev

def transmit(value, sock, ip, port, freq):

'''

Transmit value over UDP

'''

message = bytes(f"{value}", "utf-8")

try:

sock.sendto(message, (ip,port))

except:

pass

time.sleep(1/freq)

def main():

Setup UDP connection

DST_IP = "10.42.0.1"

A.4. CODE 153

DST_PORT = 20000

sock = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)

freq = 10 # Hz

SPI

min_angle = -96

max_angle = 98

min_val = 124 #50

max_val = 917 #450

bus = 0

device = 0

n = 10

spi = spidev.SpiDev()

spi.open(bus, device)

SPI settings

spi.max_speed_hz = int(2.8e6)

spi.mode = 0b11

vref = 5.0

try:

while True:

out = spi.readbytes(4)

b1 = int(bin(out[0] << 5),2)

b2 = int(bin(out[1])[:7],2)

b3 = int(bin(out[2]),2)

val = int(bin(b1 | b2),2)

154 APPENDIX A.

angle = np.deg2rad((val - min_val)/

(max_val-min_val) * (max_angle-min_angle) +

min_angle)

transmit(angle, sock, DST_IP, DST_PORT, freq)

print(f"bits:\t{bin(b1 | b2)}\tangle:

{angle}\tval:\t{int(bin(b1 | b2),2)}")

except KeyboardInterrupt:

spi.close()

sock.close()

if __name__ == "__main__":

main()

M
asteroppgave

Sim
on Julian N

agelsaker Lexau

N
TN

U
N

or
ge

s
te

kn
is

k-
na

tu
rv

ite
ns

ka
pe

lig
e

un
iv

er
si

te
t

Fa
ku

lte
t f

or
 in

fo
rm

as
jo

ns
te

kn
ol

og
i o

g
el

ek
tr

ot
ek

ni
kk

In
st

itu
tt

 fo
r t

ek
ni

sk
 k

yb
er

ne
tik

k

Simon Julian Nagelsaker Lexau

Masteroppgave

Combining Reinforcement Learning and Robotic
Vision for Human-Machine Cooperation

Masteroppgave i Kybernetikk og Robotikk
Veileder: Anastasios Lekkas
Juni 2022M

as
te
ro
pp

ga
ve

	Preface
	Abstract
	Sammendrag
	Introduction
	Background and Motivation
	Objectives and Research Questions
	Contributions
	Outline

	Theory
	Robotic Manipulators
	Forward Kinematics
	Inverse Kinematics
	FABRIK

	Finite State Machine
	Reinforcement Learning
	Elements in an RL algorithm
	Artificial Neural Networks
	DDPG
	Hindsight Experience Replay

	Robotic Vision
	Perspective-n-Point Pose Estimation

	ROS - Robot Operating System

	Experimental Setup
	Overview
	Robotic Manipulator
	Depth Sensor
	Simulator environments
	Gazebo
	MuJoCo
	Gym Environments

	RL Agent
	Lever Pose Estimation
	Potentiometer
	Visual Estimation

	Problem Formulation and System Design
	Problem Formulation
	System Overview
	Human Machine Interface
	Finite State Machine
	Hand Tracking
	Controller
	Operator Panel

	OpenManipulator RL Environments
	Human Machine Cooperation Interface
	Porting the Code
	Extensions to the RL Environments
	Extensions to the HMI
	System Execution

	Results and Discussion
	Training the RL Agent
	Cooperation Challenge
	Measured Lever
	Visually Estimated Lever

	Discussion
	RL Agent
	Measured Lever
	Visually Estimated Lever

	Conclusions and Future Work
	Bibliography
	
	OpenManipulator-X Dimensions
	Class Diagrams
	Levels of Autonomy
	Code

