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Abstract

Natural gas is a resource that is getting more convenient to use as an energy
resource with the ever-changing world as humans realize that the world has
to move towards a more friendly attitude to the climate. Today the oil and
gas industry stands tall in the competition of energy generation together
with coal, and for the most part, oil has been the alpha since the first big
discovery of the resource in 1969 at Ekofisk and has been one of the most
severe oilfields to be extracted to this day. Natural gas has been discovered
to have less C02 emissions and is therefore growing more popular to use in
replacement for oil and coal in different areas. This thesis takes a look at
the liquefaction of natural gas, more specifically a single mixed refrigerant
process. The relatively new process software tool IDAES have been applied
together with ASPEN HYSYS to model and simulate the SMR process. Lastly,
an optimization of the process by the genetic algorithm Particle swarm has
been tested to find optimum control variables to reduce energy consump-
tion in the process.
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Sammendrag

Naturgass er en ressurs som stadig blir mer beleilig å bruke som ressurs for
energi med en verden som bestandig forandrer seg og med menneskeheten
som innser at verden må gå mot et mer vennlig standpunkt i forhold til
klimaet. I dag står olje & gass industrien høyt i konkurransen om generer-
ing av energi sammen med kull, og for det meste, har olje gass industrien
vært alfaen siden den første store oppdagelsen i 1969 på Ekofisk og har vært
et av de mest ekstraktede oljefeltene så langt. Naturgass har blitt oppdaget
å ha lavere C02 utslipp, og har derfor blitt mer populært til å erstatte olje
og kull som energikilder i forskjellige områder. Denne tesen tar en kikk på
likvifisering av naturgass, mer spesifikt en singel mikset kjølemedie prosess.
Den relativt nye prosess programvaren IDAES har blitt implementert sam-
men med ASPEN HYSYS til å modellere og simulere SMR prosessen. Til
slutt har en optimalisering av prosessen ved bruk av en genetisk algoritme,
Particle swarm, blitt testet for å finne optimale kontroll variabler for å red-
usere energi forbruk i prosessen.
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Chapter 1

Introduction

As hydrocarbons generally are a great source of energy, the need for both
small and large-scale processing systems are necessary to extract the most of
the energy out of them in an efficient way. To make it as effective as possible
one could experiment with simulation and modeling tools to find the op-
timal working conditions of the processing systems. One major player in the
field is ASPEN HYSYS, which of from now on will be referred to as HYSYS,
is probably the number one software in the market today. HYSYS needs li-
censing and could be costly for the average person or small businesses. The
relatively new open software IDAES, short for Institute for the Design of Ad-
vanced Energy Systems, has come to fight for a place on the board, and the
key difference between the two is that HYSYS offers an exceptional visual-
ization and inbuilt unit models with a property package base which is ex-
tensive, while IDAES is almost completely built upon coding/programming,
which in turn perhaps can give more freedom and possibility for customiz-
ation. HYSYS can also be viewed as a black box system, meaning that the
information coming in is transformed into some information coming out
without really getting to know what happens within. HYSYS consists of a
sequential modular approach where each stream and unit model is solved
sequentially and uses mathematical models to predict the performance. ID-
AES is an equation-oriented software where a flowsheet is treated as a set
of equations to be solved simultaneously and is purely mathematical. ID-
AES is still under development and has yet a far way to go in terms of what
HYSYS can do, but it certainly has great potential to compete later.

Background

In advance of this thesis, the author had a project where IDAES was re-
viewed and it was found that some problems were met due to initializa-
tion and simulation of the flowsheet which was modeled. A literature study
on how the Poly Refrigerant Integrated Cycle Operations (PRICO) process
could be optimized was also performed and it was found that pressuriz-
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Chapter 1: Introduction 2

ing the natural gas and changing the composition of the mixed refrigerant
was important driving factors to reduce the power consumption of the com-
pressor.
In this report, a more thoroughly try to get the model to work in IDAES is
tried and implementation of a genetic algorithm called partcle swarm op-
timization, or PSO, is applied together with a hybrid function called pattern
search to find the optimal values for the control variables of a single mixed
refrigerant process, referred to as SMR from now on.

1.1 Research question and objective

The objective of the thesis will be to find out if IDAES can be a sensible
alternative as a process simulation and modeling software compared to the
likes of supreme software such as HYSYS by modeling an SMR process and
simulating it. In particular to investigate its possibilities and limitations.
The other objective of this thesis will be to optimize the SMR process with
a set of given decision variables in HYSYS and make sense of the results,
especially concerning the composition of the mixed refrigerant.

1.2 Scope

IDAES offers a great portion in terms of operations, to mention a few is
modeling, simulation, optimization, surrogate modeling, and dynamics &
control. Also, the possibility to customize property packages and unit mod-
els is an opportunity. In this thesis, the usage of IDAES is limited to modeling
and simulation of a simple mixed refrigerant process to liquefy natural gas
as well as implementing a configuration dictionary including the compon-
ents of the natural gas and refrigerant which is utilized with an existing
cubic equation of state property package in the IDAES property package
library. For the optimization part of the project, the optimization is limited
to the use of a particle swarm optimization algorithm with a hybrid pattern-
search function for a similar single mixed refrigerant process with the use
of Matlab and HYSYS.

1.3 Outline

The theory chapter will explain a bit of what natural gas is in 2.1 and how
to process it to a liquefied fluid in 2.2 for an SMR process. Section 2.3 and
2.4 describe shortly how IDAES and HYSYS work and what capabilities they
provide. Section 2.5 displays the theory of calculating the equations of state
of the fluid utilized in the property package implemented in the IDAES and
HYSYS simulation. Lastly in the chapter, section 2.6 explains what optimiza-
tion is and some of the types of optimization there are, such as deterministic
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and stochastic optimization. The particle swarm optimization algorithm is
part of the latter. The methodology chapter explains how the model was
set up in IDAES and HYSYS with the property package applied. A general
workflow is included in section 3.4 where the procedure of creating a flow-
sheet and how to solve it is carried out in IDAES. Finally, a brief oversight
of how Matlab and HYSYS have been used together with the PSO algorithm
concludes this chapter. Chapter 4 displays the result gathered from the sim-
ulation in IDAES and HYSYS as well as the results from the optimization
part. In chapter 5 the results are discussed and whether the objective of the
thesis has been accomplished or not. Then a brief conclusion is made at the
very end together with a suggestion for future work.



Chapter 2

Theory

2.1 Natural gas

Natural gas is gas that contains hydrocarbons, mostly methane and ethane,
and is a result of high pressure, temperature, and fossils packed together
over a long time below the ground. The gas is often found dissolved in the
oil from reservoirs, but can also lay like a cap above the oil, which often
will also contain some propane and butane.
In the earlier days, about the 19th century, it was mainly the crude oil and
coal that were used for the industrial improvements, the reason being that
the natural gas was hard to transport in large quantities. However, pipelines
were built in the late 19th century, but these were restricted to only reach
for about 160km because the technology at the time was not too great. It
was in the 20th century, especially when world war 2 broke out, that the
pipeline technology became fierce. Russia has the largest pipeline, reaching
a distance of 5470km, and is shipping natural gas to big parts of Europe for
energy consumption.
Natural gas can be used to heat homes, for cooking, for generation of elec-
tricity and as fuel for some vehicles [1].
According to the Center for climate and energy solutions, it is estimated that
the carbon dioxide emission is half that of coal and one-third of oil and it is
the largest source of electric power generation in the U.S. The transporta-
tion sector is dominated by oil, and the C02 emission from it reaches almost
28 percent of the total emission in the U.S. Natural gas is mostly used in
vehicles such as buses and trucks using compressed natural gas (CNG) or
LNG and if these had been used more widely it would have a big impact on
the emission from this sector. [2].
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2.2 SMR process

The SMR process is implemented in process systems to liquefy natural gas.
Often for small-scale LNG plants, such as offshore export terminals. There
are several methods to produce LNG, the SMR process is one of them. It
was first developed by Black & Veatch Company. Production of LNG is very
energy extensive, and the potential to increase the efficiency of the produc-
tion is great. The mixture of the refrigerant is nitrogen, methane, ethane,
and butane. Process unit components for the SMR process include a heat
exchanger where heat is transferred between the cold SMR and the hot
natural gas, a compressor where the refrigerant is compressed isentropic-
ally, and a cooler where the refrigerant is condensed, and expansion valves
where the pressure is relieved and phase change occurs again. The behavior
of the mixture in these components is dependent on the composition and
its chemical constituency [3]. A small model of the SMR process system is
shown in Figure 2.1

Figure 2.1: SMR process

2.3 IDAES

IDAES is short for Institute for the Design of Advanced Energy Systems and
is an open-source modeling and simulation software tool, and it was de-
veloped by a team of scientists and engineers. Their vision is to design a new
world energy system. The integrated IDAES platform contains advanced
modeling and optimization capabilities and it uses advanced algorithms to
solve complex process systems. The IDAES framework is built upon 3 main
branches of computation, these are shown in figure 2.2.
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The top row describes different applications that can be solved in the in-
tegrated platform of IDAES. These include surrogate modeling, conceptual
design, process dynamics & control, uncertainty quantification, plant design
& process optimization, materials optimization and enterprise optimization
[4]. The middle row shows the principle of how the modeling framework
works, mainly that one will first choose whether the model should be dy-
namic or steady-state, that one connects each unit of the process elements
with arcs and that for each element there is a control volume. More of this
will be explained more thoroughly in the next section. The last row shows
the optimization solvers that are implemented in the IDAES framework,
such as PYOMO, which is a python based optimization language, and ipopt
which is mainly used for solving the model after it is initialized.

Figure 2.2: IDAES framework [4]

Optimization

An initial solution is hopefully found, and the user may now try to optimize
a problem of interest. This usually includes unfixing some of the variables
specified earlier, to give the solver some degrees of freedom to work with.
Further one would add bounds and constraints to narrow down the solution
area and finally call for the solver and check for the termination conditions
as described in the last section.

Visualization of results

To conclude the typical workflow, the user may want to visualize their res-
ults. IDAES provides different visualization tools to create plots, reports, and
flowsheet visualization. A flowsheet visualization can be displayed with the
following code snippet

m.fs.visualize(m)
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2.4 HYSYS

Aspen HYSYS is the leading Simulation and modeling software in the pro-
cess industry developed by AspenTech. Its capability includes modeling small
and large process systems including unit operations and can do calculations
of mass balances, energy balances, vapor-liquid equilibrium, heat and mass
transfer, kinetics, and more. It can do both steady and dynamic simula-
tion and is generally used for optimization, process design and performance
modeling [5][6].

2.5 Cubic equations of state

The cubic equations of state are modifications of Van der Waal´s equation of
state, which correlates the pressure of a gas with temperature and density
in terms of the molar volume. Wan der Waal´s equation of state is stated in
Eq 2.1

�

P + a
1

V 2
m

�

(Vm − b) = RT (2.1)

The constants a and b represents the attraction and repulsion parameter
of the effective molecular volume respectively and is given by Eq 2.2 and
Eq 2.5 in terms of the critical temperature and pressure with the ideal gas
constant.

a =
27(RTc)2

64pc
(2.2)

b =
RTc

8pc
(2.3)

Wan der Waal´s equation was formulated in 1873 and was considered to be
much better than the ideal gas law, in fact, it was called the "improved ideal
gas law" as it could predict the formation of a liquid phase, but based on
the experimental data, is limited and does not work with higher pressures
and temperatures [7].

Peng-Robinson

In 1976 Peng and Robinson developed a new two-constant equation of state
where the empirical attractive constant term is modified. They proposed the
following equation as of Eq 2.4. This equation can be used to predict the
vapor pressure of pure substances and the ratio equilibrium of mixtures. [8]
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p =
R T

Vm − b
−

aα
V 2

m + 2bVm − b2

a ≈ 0.45724
R2 T2

c

pc

b ≈ 0.07780
R Tc

pc

α=
�

1+κ
�

1− T
1
2

r

��2

κ≈ 0.37464+ 1.54226ω− 0.26992ω2

Tr =
T
Tc

(2.4)

Or in polynomial form

Z3 − (1− B)Z2 + (A− 2B − 3B2)Z − (AB − B2 − B3) = 0

A=
aα p
R2T2

B =
bp
RT

Z =
pV

nRT

(2.5)

where ω is the acentric factor of the species.

2.6 Optimization

The mission to make processes and functions of objects more effective is al-
ways something that will never stop endure. A small tweak on a geometrical
surface, such as the surface of a streamlined body will have an impact on the
aerodynamic properties. A change in how many products from a factory that
is shipped to each warehouse may have an impact on transportation costs
when delivered to the customer from the warehouse. To decide whether to
buy a new automated machine, or to keep the two workers that are doing
the same job, could be hard to know keeping in mind that the machine is
more effective, but can potentially be a liability if it breaks down. All these
examples are examples of potential optimization problems. It turns out that
optimization is a great tool in engineering problems and can reduce costs
and increase effectivity and functionality of different problems. The tech-
nical definition of optimization is according to the oxford English dictionary
"The action of making the best or most effective use of a situation or resource"
[9] and a "A mathematical technique for finding a maximum or minimum
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value of a function of several variables subject to a set of constraints, as lin-
ear programming or systems analysis", according to the online dictionary,
WordReference [10].
In an optimization problem, it is important to identify what is going to be
optimized, which is going to be the objective function, and what variables
which are to be used, which are called the decision variables. The complex-
ity of an optimization problem grows with the number of variables, which
may have an impact on the time it takes to solve the problem. Another im-
portant aspect of an optimization problem is the range with of the decision
variables are allowed to work with or the constraints which are to be in-
cluded if any. To sum up, an optimization problem would normally look
like this as of Eq 2.6, where gi and h j represent the inequality and equality
constraints respectively, of the problem.

min/max f (x)

sub jec t to

gi(x)≤ 0 i = 1, ..., m

h j(x) = 0 j = 1, ..., p

(2.6)

Many different optimization algorithms possess distinct methods and unique
abilities to solve problems. Some of those are presented in the next section.

2.6.1 Deterministic optimization

Deterministic optimization, also called mathematical programming is used
extensively in mathematics. It relies heavily on linear algebra as they are
frequently used to compute gradients and Hessians, which is the slope and
a square matrix with second partial derivatives, respectably [11]. There are
upsides and downsides to deterministic optimization. One positive is that
the convergence to a solution is highly faster than that of a stochastic al-
gorithm, which is based on randomness. It needs fewer function evaluations
to reach a solution. As deterministic optimization is a rigorous mathem-
atical algorithm not involving any stochastic elements in it, the result is
unique and unambiguous. The algorithm will look for stationary points and
the optimal solution may be either a local optimum or a global optimum. A
downside of deterministic optimization is that it requires a complete defined
model and rigorous software which is very hard to build as all dependencies
need to be formulated rigorously as well. [11]

2.6.2 Stochastic optimization

Randomness may be the most precise definition of stochastic optimization.
The search procedure will contain randomness and a solution may be found
rather quickly or can take a longer time based on how close the random con-
figurations are to a feasible solution. There are many branches in stochastic
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optimization, some of these are simulated annealing, particle swarm op-
timization, game theory-based optimization, evolutionary algorithms, and
genetic algorithms [11]. The main source of inspiration for these methods is
nature itself. By observing nature concerning biology, physics, and geology,
a formulation for these methods can be brought to life and implemented
into the algorithms in a simplified manner. The majority of these algorithms
are population-based where a population can be taken as a set of samples
that evolves to convergence. Implementation of rules for the evolution is set
and will include randomness and ruled by the inspiration from the imple-
mented natural observations. Collective behavior of the population may be
based on animal or insect behavior and tries to mimic this. Terminology for
this collective behavior is called swarm intelligence [11]. An advantage of
stochastic optimization is that it will continue to search beyond a local op-
timum as the algorithm includes randomness. A disadvantage of stochastic
optimization is that it will continue to search and won’t stop if there are no
limitations set, so it may be hard to know when a solution is good enough
within a reasonable time [11].

2.6.3 Particle swarm optimization

The particle swarm optimization algorithm was created by Kennedy and
Eberhart in 1995. They describe it as a simple algorithm for many optim-
ization problems and a unique concept of the method is that there are
many solutions through hyperspace, and acceleration happens towards bet-
ter solutions. They further describe that the success of the particle swarm
optimization lies in the particle’s ability to hurtle past their target.
The stochastic aspect of the algorithm comes from what is called "craziness",
which has the effect of making the particles spread beyond a clustered solu-
tion that tends to attract most of the particles. In this way, it will spread
beyond these points and look for other solutions. Particle swarm optimiza-
tion can be related to artificial life, and most notably to bird flocking, fish
schooling, and swarm theory. The behavior of the algorithm can be com-
pared with evolutionary and genetic programming [12]. Figure 2.3 shows
the particles at an initial position moving towards solutions.

The algorithm is partly inspired by the work of Heppner and Grenander
[13], which researched how bird flocking works, especially the synchroniza-
tion of the birds and finding the leader of such flocks. Experimental research
on finding those leaders have not yet found any success. They proposed a
bird flocking simulation in which the synchronization of movement was set
by some rules by a stochastic algorithm that simulated realistic flock beha-
vior. Similarly in the paper of Reynolds [14], such a simulation was also
made where the path of the individual bird was calculated. The birds were
taken as particles and the simulated motion of the flock was created by a
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distributed model of behavior, similar to that of a natural flock.

Figure 2.3: Particles spread about space moving towards better solutions.
Retrieved from [15]
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Methodology

This chapter will describe the methodology for this thesis regarding model
setup in IDAES and HYSYS and the optimization for the SMR process using
the particle swarm optimization algorithm.

3.1 Model setup

The SMR process was to be modeled, and a simple process system was
achieved by the author’s supervisor. The model is based on Figure 2.1 but
had to be modified for it to work in IDAES. It had to be modified since
the IDAES unit model library did not include a multistream heat exchanger
(MHEX) as what HYSYS did, where it is named as an LNG heat exchanger.
An MHEX consist of 2 or more hot/cold streams and is typical in the form of
a plate, fin, or spiral wound configuration, however, there are also multistream
shell and tube heat exchangers. IDAES do have shell and tube heat ex-
changers with two streams in their unit model library and has been used in
some of the tutorials they have provided.
With this in mind, a solution could be to replace the MHEX with a config-
uration of two-stream shell and tube heat exchangers to represent a similar
case as with the MHEX. It should be noted that it does not replicate the
MHEX exactly, but is intended as a possible case scenario. In an article of
Rao et al. [16], it was proposed an operational optimization of processes
with MHEX´s where it was developed a predictive model for the heat ex-
changers followed by an optimization procedure. It was said that MHEXs
could be compared with black-box systems, as the MHEXs usually have com-
plex geometries and unique designs. A non-linear programming model was
implemented to synthesize a similar network of two-stream heat exchangers
to best represent an MHEX. Results from the article are shown in Fig 3.1
where an equivalent configuration of two shell and tube heat exchangers
represent a three-stream MHEX shown in Fig 3.2. The idea is to split the
refrigerant into the two heat exchangers and the molar flow rate can be ad-
justed to each heat exchanger to possibly get a low minimum temperature

12
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approach for both the exchangers.

Figure 3.1: Equivalent configuration of two shell and tube heat exchangers
to represent a MHEX.

Figure 3.2: Multistream heat exchanger.

This system of two shell and tube heat exchangers does not represent all
of the heat transfer parameters of an MHEX because the composite curves
would look different when there are only two streams compared to several
streams. For example, the individual temperature-enthalpy curves for each
stream in an MHEX could look like as displayed in Fig 3.3 where the black
stipulated curve represents the effectively hot composite curve.
It is not possible to implement an effective composite curve for a system of
two shell and tube heat exchangers as the flow is separated and not working
within the same unit. However, for simplification, assuming that it does not
implicate errors to a high degree, this configuration has been established
in the model of the SMR process to be built in IDAES for the intention of
learning purposes and to have a case to work with.
The final modification of the model will look like as of Figure 3.4, and this is
what has been simulated in HYSYS and IDAES except that there is a break-
ing point in the flow streams into the Compressor and one of the heat ex-
changers in the IDAES model, the reason being that it did not work well to
simulate when there was a loop involved. This will be explained in more
detail in section 4.4
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Figure 3.3: Individual Temperature-enthalpy curves for each stream in a
MHEX

Figure 3.4: Flow chart model with modification
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3.2 Property package

The property package used for simulation in the SMR process model has
included a natural gas package consisting of components of nitrogen, meth-
ane, ethane, propane, and n-butane. The hot natural gas consists of all of
these components while the mixed refrigerant consists of the same except
for n-butane. Appendix E displays the complete configuration dictionary
in the property package. The method for the equations of state has been
the Peng-Robinson cubic equations of state. The state variables in the prop-
erty package have been pressure, temperature, molar flow, and component
molar fraction. Another aspect that needed to be specified in the package
for the IDAES software was the methods to be used for the calculation of
different parameters, those parameters are listed in Table 3.1.

Table 3.1: Methods and references for parameter calculations

Parameters Method Reference
0 Molar liquid density Perrys [17]
1 Ideal liquid molar enthalpy Perrys [17]
2 Ideal liquid molar entropy Perrys [17]
3 Ideal liquid molar heat capacity Perrys [17]
4 Ideal gas molar enthalpy RPP4 [18]
5 Ideal gas molar entropy RPP4 [18]
6 Ideal gas molar heat capacity RPP4 [18]
7 Saturation pressure RPP5 [19]

3.2.1 Methods for calculating parameters

Listed below are all the equations corresponding to the methods utilized by
the different references which are implemented in the IDAES software.

Molar liquid density:

ρl iq =
C1

C
1+(1− T

C3
)C4

2

ρl iq = C1 + C2 × T + C3 × T2 + C4 × T3

(3.1)

Ideal liquid molar enthalpy:

hliq − hliq ref = C1 × (T − Tre f ) +
C2

2
× (T2 − T2

re f ) +
C3

3
× (T3 − T3

re f )

+
C4

4
× (T4 − T4

re f ) +
C5

5
× (T5 − T5

re f ) +∆hform, Liq

(3.2)
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Ideal liquid molar entropy:

sliq − sliq ref = C1 × ln(T/Tre f ) + C2 × (T − Tre f ) +
C3

2
× (T2 − T2

re f )

+
C4

3
× (T3 − T3

re f ) +
C5

4
× (T4 − T4

re f ) + sform, Liq

(3.3)

Ideal liquid molar heat capacity:

cp liq = C1 + C2 × T + C3 × T2 + C4 × T3 + C5 × T4 (3.4)

Ideal gas molar enthalpy:

hig − hig ref = A× (T − Tre f ) +
B
2
× (T2 − T2

re f ) +
C
3
× (T3 − T3

re f )

+
D
4
× (T4 − T4

re f ) +∆hform, Vap

(3.5)

Ideal gas molar entropy:

sig = A× ln(T/Tre f ) + B × (T − Tre f ) +
C
2
× (T2 − T2

re f )

+
D
3
× (T3 − T3

re f ) + sform, Vap

(3.6)

Ideal gas molar heat capacity:

cp ig = A+ B × T + C × T2 + D× T3 (3.7)

Saturation pressure:

Log(Psat) = A−
B

T + C
(3.8)

3.2.2 Units of measure

All units must be consistent when working with a large number of expres-
sions and equations. The property package must consist of metadata de-
fining the units of measure for the quantities including time, length, mass,
amount of substance, and temperature. All units in the property package
are in the SI international system format for units. The units are defined by
PYOMO´s unit container and are all based on the base units listed above.

3.3 Read the docs

Read the docs is the documentation provided by IDAES and contains large
amounts of information on most of the concepts that the software is con-
taining. It is an important tool to benefit from when trying to understand
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how the equations, unit models, property packages, simulation, initializ-
ation, optimization, syntax, and raw code, and much more, are working.
As the IDAES software is constantly improving, so does the read the docs
library. Also, the tutorials and examples provided by IDAES, which is also
part of the "read the docs", have frequently been used to get to know how
the syntax of the coding should be carried out in different process system
problems. The resulting model is heavily based upon these examples.

3.4 IDAES

3.4.1 Installation

First of all, one needs to install the programming language that IDAES is
based upon, namely Python. This best works in the Jupyter notebook, which
is a programming environment that works in correlation with Python. The
reason is that all of the tutorials and examples provided by IDAES are shown
in the Jupyter notebook. The author has installed the ANACONDA navigator
app, which is a library of self-chosen programming environments, including
the Jupyter notebook. Once Python is installed, the IDAES module can be
found on GitHub, which is an open-source community that shares results
of coding and software produced from coding, and is installed by using
the general installation pseudo-code "pip install idaes-pse" in the command
window. It is advisable to install the IDAES module in a folder that is easy
to find, such as on the desktop of the computer.

3.4.2 General workflow

Now as the software is installed, one is ready to start with the fun part,
to set up the model and solve it. The general workflow of how to achieve
this will be described in the following subsections. This is a general proced-
ure referenced from the documentation of the IDAES "read the docs" [20],
which was briefly mentioned in section 3.3.

Importing modules

IDAES contains many code modules that work together to achieve the func-
tions that are desired since this will greatly reduce the amount of coding
compared to if one would write all the code in the same code cell block. ID-
AES is based on object-oriented classes. This means that most of the objects
must be imported from the modules, where all components are defined.
These components include PYOMO environment components, PYOMO net-
work components, IDAES flowsheet block, the property packages of interest,
unit models, data visualization tools, and external user components if de-
sired.
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Building the model

Once all the modules are imported, the building of the model can start. This
is done by using the environmental component from PYOMO,
ConcreteModel(). As the model has been produced, the next step is to add
a flowsheet. This is done by using the IDAES flowsheet block,
FlowsheetBlock(). To define the module as steady or dynamic, one will
enter "dynamic": True/False in the parenthesis of the FlowsheetBlock().
Many commands are based on keys in dictionaries which are more described
in detail later.

Property package

The next step is to add a property package to the model, this can either be
customized, in which the user must define all state variables & expressions,
methods of calculation such as the Peng Robinson equation of state, meth-
ods of calculation for the parameters included in property package, con-
stants for calculation of parameters based on what methods is used, units
of measure and other. Or one could simply use the already produced collec-
tions of property packages defined by IDAES if the user finds this sufficient
enough. The property package will then be defined in its own module, and
it can be imported to the flowsheet by using a general parameter block.

Unit models

Unit models can now be added to the model by importing the desired mod-
ules in which they are defined as components. Some of the unit models of
IDAES consist of Heat exchanger, Pressurechanger(Compressor, Valve, Tur-
bine), Reactor, Mixer, Separator, and Flash columns. However, if the user
is interested, it is possible to create your own customized unit model, but
this requires some extensive coding ability. An example of implementation
of the heat exchanger is given with the following code

m.fs.My\_heat\_exchanger = HeatExchanger()

The property packages must also be assigned to the unit model in the form
of a key in the paranthesis. For example

m.fs.My_heat_exchanger = HeatExchanger(default=
{"property_package": My_property_package})

Connect unit models

As the unit models are defined in the model, the next step is to connect
them. This is done by using Arcs, which is a PYOMO type of object that
is lines with control volumes connecting each unit model. This means that
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whatever flows into the arc is the same flowing out of the arc. For example,
connecting the heat exchanger shell outlet to a valve is done by

m.fs.S01 = Arc(source=m.fs.My_heat_exchanger.shell_outlet,
destination=m.fs.My_Valve.inlet)

Expanding the arcs

An important task is to expand the arcs after they are connected with the
unit models. The purpose of expanding the arcs is to produce the constraints
that the arcs are to hold, such as control volume properties. The expansion
of the arcs is done by using TransformationFactory, which is a component
found in the PYOMO module. An example of a code snippet fulfilling this is

TransformationFactory("network_expand_arcs").apply_to.m

where m is the name of the model.

Adding variables, constraints and objectives

Now the user can add the desired variables, constraints, and objectives that
one wishes to implement into the model. This is simply done by writing
code snippets and assigning them to the unit models or variables as one
sees fit. An example of an expression calculating the purity of benzene in
the outlet of a flash unit model is given in Figure 3.5

Figure 3.5: Expression for purity of benzene in an outlet of a flash unit
model

Scaling of the model

Scaling of the model is important to achieve a reliable and efficient solution
from the solvers. If the user decides to write their constraints or add vari-
ables to the model, it is general good advice to scale these. PYOMO provides
a tool which is called Scaling_factor. The scaling factor is multiplied by
the variables or constraints they scale, for example, a pressure in Pa usually
in the order of 106, is multiplied by 10−5. IDAES does have inbuilt scaling
factors in most of the unit model scripts, so that scaling occurs automatic-
ally. The user should anyway be aware of this if it is desired to add their
variables and constraints to the model.
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Specification of the model

It is time to specify the model by fixing the variables. The variables that
need to be fixed is depending on the application but usually include the
feed state variables. It is advisable to fully specify the model to prepare for
initialization so that there are no degrees of freedom, but it is not necessary
for all situations. However, it is safer to do so, as the model will be well
defined when it is passed on to the solver.

Initialization

The next step is to initialize the model. All unit models have inbuilt initial-
ization routines and are executed by the following code snippet for a heat
exchanger

m.fs.My_heat_exchanger.initialize(outlvl=idaeslog.INFO)

Here the outlvl is the information output from the IDAES logging tool and
can be set to 8 different levels based on how much information the user
would like to see, here it is set to INFO. Figure 3.6 shows all the different
output levels for the IDAES logging tool.

Figure 3.6: Output levels for the IDAES logging tool

Now if the model contains a whole system of connected unit models, one
should use a sequential modular approach to initialize the model. Here the
unit models are initialized sequentially where the state of the outlet of a unit
model is passed on to the inlet of the next unit model. PYOMO provides a
sequential decomposition tool, which handles the initialization of the flow-
sheet based on a heuristic method.
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Solving of the model

As the model has been initialized, the preparation for the solver is ready and
a feasible solution is passed on to the solver. The solver will iterate until it
finds an optimal solution for the process. To solve the model, the PYOMO
environment component which was imported in the start, SolverFactory
is utilized. An example code snippet would look like

Solver = SolverFactory("solver_name")
results = solver.solve(m)

To verify that the solver has found a feasible solution, it is appropriate to
check this by using the command

print(results.solver.termination_condition)

If everything is fine, a report can be printed out to see the results. An ex-
ample of such a report for solving a heat exchanger is given in Figure 3.7

Figure 3.7: Output report for a heat exchanger

3.5 Python

The Python coding language has been extensively used in correlation to the
IDAES software, which is based on this language. Jupyter notebook have
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been used as the environment in Python, which displays the coding inter-
actively and clearly. All of the tutorials and examples provided by IDAES are
also given in the Jupyter Notebook environment, which further strengthens
this choice of environment to use when coding. Appendix F shows the com-
plete code for the IDAES model that was made by the python environment.

3.6 Matlab & HYSYS

HYSYS has been an important tool for the verification and validation of res-
ults found in the IDAES model. HYSYS has also been exploited to do the PSO
together with Matlab where a global optimization toolbox has been utilized.
A script was written in Matlab including the objective function & constraints
and the run-function itself with all the parameters necessary, such as the size
of the swarm, tolerance, maximum iterations as well as the initial swarm
matrix. Figure 3.8 shows all the options that were set for the algorithm.
The swarm size was set to be 100, as this was a reasonable amount to give
relatively good results and effective time management. Stall iterations are
iterations giving the same function value as the iteration before. Some nice
visuals on the trend of the function value were also established.

Figure 3.8: Options for the PSO

The decision variables, constraints and the objective function is shown in
Figure 3.9 and were defined based on a spreadsheet produced in HYSYS.
The spreadsheet is displayed in Figure 3.10. "x" represents the swarm vector,
consisting of all the decision variables. See Appendix G for the complete
Matlab script.
All the values found from the PSO were sent to this spreadsheet and expor-
ted into the HYSYS model. A nice feature of the spreadsheet is that it gives
an oversight of all the desired variables and can be monitored during the
optimization.
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Figure 3.9: Decision variables, constraints and objective function

Figure 3.10: Spreadsheet called "Efficiency", displaying most variables
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3.6.1 Optimization cases

Three cases were optimized with the PSO algorithm. The first two are re-
lated to the model as of in Figure 3.11. Here the first case was simulated
with the simple end point model for the heat exchanger and the second with
the simple weighted model. These models represent the number of intervals
which was used to calculate the minimum temperature approach for the
heat exchangers. The simple end point model only calculate the min T. ap-
proach at the ends and the simple weighted model calculated the min T.
approach at the set intervals, which in this case were 100. The difference
between the two models is given in Figure 3.12 and Figure 3.13.

Figure 3.11: SMR process
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Figure 3.12: Simple end point model for min T. approach, calulated at the
ends
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Figure 3.13: Simple weighted model for min T. approach, calulated at each
interval

The last case to be optimized was the same SMR process, but instead of the
two shell and tube heat exchangers, an MHEX was modeled. Figure 3.14
displays the model. Here the simple weighted model for the MHEX was
chosen with a set of 100 intervals.

Figure 3.14: SMR process with a multistream heat exchanger
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3.7 Particle swarm optimization algorithm

The particle swarm optimization algorithm has been utilized to optimize the
operational conditions in the HYSYS models for the three cases mentioned
in the last section. The methodology of implementation of this model has
been inspired by son et al. [21]. The objective function has been to minimize
the power output from the main power-consuming component in the SMR
process, namely the compressor unit. To do this a set of decision variables
has been determined and also provided is a set of lower and upper bounds
of these variables. In addition, some constraints are set and defined to be
that the inlet temperature to the compressor must be higher than that of the
dew temperature of the fluid and that the minimum temperature approach
for each heat exchanger is not less than 3 kelvin such that there would be
no liquid in the compressor and a realistic performance could be achieved.
The decision variables with bounds are displayed in Table 3.2. More precise
they are the mole fraction of each component, low and high pressure, the
molar flow rate and the flow ratio asserted to the heat exchangers from
the splitter unit. The flow ratio variable only applies to the cases with the
s&t heat exchangers. It should be noted that the molar fraction of the total
composition cannot exceed 1, and the lower and upper bounds for each
of the components is normalized when sent to HYSYS for simulation. The
initial swarm matrix can contain an optional value for each variable within
the bounds, these were chosen randomly.

Table 3.2: Decision variables with lower and upper bounds

Decision variables Lower bound Upper bound
0 nN2 0.0001 1
1 nCH4 0.0001 1
2 nC2H6 0.0001 1
3 nC4H10 0.0001 1
4 LP 1 5
5 HP 10 25
6 Molar flowrate 2000 10000
7 FR1 0.1 0.9

Pattern search

The general particle swarm solution will find a relatively coarse solution. To
find even better solutions, a hybrid function was inserted into the algorithm,
where the usual particle swarm simulation routine will be followed by an-
other function of choice, in this case, a patternsearch function was added to
refine the solution even further. It is a numerical optimization algorithm that
does not require any gradients and can be employed on non -continuous
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functions, which fits well with the problem at hand.



Chapter 4

Result

In this chapter, the results from the particle swarm optimization are presen-
ted for the different modifications and the resulting IDAES model. Firstly the
results where the minimum temperature approach is defined by the simple
end point method in HYSYS, are given in 4.1. To follow, the simulations
where the minimum temperature approach defined by the simple weighted
method is given in section 4.2. Finally, the epilogue of the optimization part
of this project is given in section 4.3 where the configuration with the LNG
heat exchanger is optimized by the PSO algorithm. The cyan color in the
following tables marks the best solution found.
At last the IDAES model is presented in section 4.4, with a short explan-
ation of how the results were obtained including some challenges which
were met along the way. Also included is a comparison with HYSYS for the
similar IDAES model.

4.1 PSO with S&T Simple end point modification

Results from the particle swarm optimization where the end-to-end tem-
perature difference of the heat exchangers is defined for the calculation of
the minimum temperature approach are given in Table 4.1, where all the
decision variables and the power output are listed from all 20 simulations.
Table 4.2 shows the corresponding constraints. It can be seen that simu-
lation # 3, has the lowest power output and hence is the best result. By
taking the variables found from this best solution, a new simulation was
completed to further improve this configuration. The refined solutions are
given in Table 4.3 with the corresponding constraints in Table 4.4.

29
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Table 4.1: Resulting decision variables & power output from simulation

# nN2 nCH4 nC2H6 nC4H10 FR Molarflow LP HP Power
[-] [-] [-] [-] [-] [mol/s] [bar] [bar] [kW]

0 0.3048 0.1785 0.1694 0.3473 0.1561 3965.81 5 10.0006 8220.96
1 0.2378 0.0098 0.3951 0.3573 0.2162 2455.5 4.8902 12.3817 6736.07
2 0.3648 0.2359 0 0.3993 0.2034 3123.2 3.9717 10 8789.7
3 0.1506 0.033 0.3942 0.4221 0.2402 2015.42 4.3256 10.1273 5028.77
4 0.2239 0.0175 0.4506 0.3079 0.1174 4656.13 4.9999 10.0004 9420.47
5 0.2114 0.058 0.2945 0.4361 0.2559 2000 3.4028 10.493 6783.55
6 0.2737 0.0004 0.3242 0.4018 0.2435 2167.07 4.7028 11.2966 5640.07
7 0.5099 0.0128 0.023 0.4543 0.2875 2154.58 4.2748 10.5396 5938.85
8 0.4438 0.1067 0.0253 0.4242 0.2433 2591.49 4.2655 10.1721 6837.92
9 0.149 0.1822 0.3263 0.3425 0.1458 3696.1 5 10.0019 7491

10 0.3521 0 0.2936 0.3542 0.1702 3400.96 5 10.1052 7083.8
11 0.13 0.1908 0.2749 0.4043 0.2111 2415.13 4.7284 10.0409 5359.6
12 0.1532 0.1944 0.2213 0.4311 0.2341 2194.69 4.3741 10 5378.86
13 0.2227 0.0001 0.4484 0.3289 0.1567 3397.1 4.9908 10.3161 7284.67
14 0.2405 0.1269 0.1901 0.4425 0.2448 2153.45 4.0687 10 5773.65
15 0.1563 0.1075 0.3748 0.3614 0.1744 2998.94 4.9999 10 6071.68
16 0.3026 0.0177 0.3264 0.3533 0.1673 3357.15 4.9905 10.0564 6928.59
17 0.1353 0.0192 0.4222 0.4233 0.2385 2000.3 4.0961 10.0453 5241.14
18 0.122 0.0112 0.4842 0.3826 0.2402 2006.65 4.859 11.7779 5178.33
19 0.4221 0 0.2104 0.3674 0.1885 3371.84 4.7393 10 7510.65
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Table 4.2: Resulting constraints from simulation

# > Dew T Min Temp. Approach HE1 Min Temp. Approach HE2
[K] [K] [K]

0 1.7012 3.979 3.341
1 0.0096 4.1647 4.1647
2 2.2255 5.5262 5.5262
3 0.3183 3.0091 3.0091
4 2.0481 3.0001 3.0001
5 4.25 4.0716 4.0716
6 0.0022 3.1381 3.2249
7 0.0018 3.3569 3.0588
8 0.0791 4.552 4.552
9 0.1242 3.6099 3.6099

10 0.2061 2.9871 3.0001
11 0.0022 3.0012 3.017
12 0.0012 3.7072 3.0053
13 3.8667 3 3
14 0.0009 3.1278 3.8615
15 0.1481 3.1376 3.1376
16 0.0599 3 3
17 0.0232 3.0002 3.0002
18 0.0017 3.0009 3.0042
19 0.0016 3.2198 3.0052

Table 4.3: Refinement of solutions

# nN2 nCH4 nC2H6 nC4H10 FR Molarflow LP HP Power
[-] [-] [-] [-] [-] [mol/s] [bar] [bar] [kW]

0 0.1504 0.0333 0.3936 0.4227 0.2402 2015.34 4.3368 10.1252 5005.46
1 0.1505 0.0332 0.3933 0.423 0.2404 2012.57 4.3361 10.1264 5000.95
2 0.1501 0.0337 0.3934 0.4227 0.2405 2011.75 4.3402 10.1257 4995.31
3 0.1509 0.033 0.3931 0.423 0.2401 2014.92 4.3285 10.119 5012.17
4 0.1502 0.0331 0.3936 0.4232 0.2422 2007.41 4.3334 10.1272 4994.32
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Table 4.4: Resulting constraints from refinement

# > Dew T Min Temp. Approach HE1 Min Temp. Approach HE2
[K] [K] [K]

0 0.0005 3 3
1 0.0113 3 3
2 0.1366 3 3
3 0 3.0001 3.0001
4 0.1209 3 3

It seems in this case that a higher composition of ethane and n-butane is
favored and the amount of methane is nearly 5 times lower than that of
nitrogen. A relatively low molar flow in the system just above 2000 mol/s is
also observed. Noticeably is also the remarking low power output produced,
which is likely due to the configuration of the method for calculation of the
minimum temperature approach. This result could be expected, and in the
next two sections where the method is set to be the simple weighted method
for both cases, we can expect a higher power output as this is perhaps more
precise and displays a higher degree of realism.

4.2 PSO with S&T Simple weighted modification

Provided here are the results from ten simulations with the simple weighted
method for calculation of the minimum temperature approach. The res-
ult yields quite a difference from the result in the previous section with the
simple end point method. From Table 4.5 simulation #0 gives the best result.
It seems that the composition of the SMR in simulation #0 is more balanced
between the three heavier hydrocarbons and prefers lesser nitrogen. Com-
bined with a relatively low LP and high HP with a flow ratio that exceeds
most of the other simulations. Table 4.6 shows the related constraints from
the simulation.
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Table 4.5: Resulting decision variables from simulation

# nN2 nCH4 nC2H6 nC4H10 Flow ratio Molarflow LP HP Power
[-] [-] [-] [-] [-] [mol/s] [bar] [bar] [kW]

0 0.0888 0.3181 0.3053 0.2878 0.2028 3766.92 2.5498 17.5441 22071.4
1 0.1294 0.2976 0.3545 0.2186 0.1487 5395.65 4.4244 19.454 24093.9
2 0.1361 0.2919 0.3353 0.2366 0.12 6921.61 4.8489 14.8743 22821.7
3 0.1387 0.2623 0.3853 0.2137 0.1105 7474.11 4.9259 15.9047 26034
4 0.2074 0.2676 0.2799 0.2451 0.1116 7557.05 4.4519 14.2837 26111.4
5 0.0728 0.1811 0.3945 0.3516 0.2303 2990.43 1.1813 13.3352 22344.9
6 0.2667 0.2092 0.3172 0.2069 0.131 6513.06 5 20.4384 27609.4
7 0.1352 0.3226 0.2937 0.2485 0.1 8376.54 4.9854 12.855 23231.6
8 0.2078 0.2291 0.2319 0.3312 0.18 4462.83 1.6619 13.515 28177.9
9 0.1016 0.2323 0.34 0.3262 0.1501 5198.03 2.4715 10.6805 22289.2

Table 4.6: Resulting constraints from simulation

# > Dew T Min Temp. Approach HE1 Min Temp. Approach HE2
[K] [K] [K]

0 2.2599 3.0011 3.0009
1 2.8172 3.0003 3.0034
2 0.0487 3.0005 3.0409
3 3.5624 3.0005 3.0021
4 0.0016 3.0006 3.0007
5 10.3559 3.0007 3.0004
6 0.0025 3.0089 3.0002
7 0.0001 3 3.0002
8 0.0025 3.0002 3.0017
9 0.0656 3 3

4.3 PSO with LNG heat exchanger

This section is the last of the optimization part and displays the simulations
with the case for the LNG heat exchanger. According to Table 4.7 simulation
# 1, 3, and 5 gives the best result with a power output just below 17000kW.
It looks like the composition of the SMR is relatively close to each other with
a slight change in the molar flow. The low pressure and high pressure also
seem to be rather close when compared. As usual, the resulting constraints
follow in Table 4.8.
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Table 4.7: Resulting decision variables & power output from simulation

# nN2 nCH4 nC2H6 nC4H10 Molarflow LP HP Power
[-] [-] [-] [-] [mol/s] [bar] [bar] [kW]

0 0.1104 0.2525 0.3546 0.2825 3275.98 3.2982 18.529 17106.7
1 0.1042 0.2648 0.3542 0.2767 3343.76 3.1798 15.8316 16967.1
2 0.1136 0.2635 0.3636 0.2593 3270.97 3.5543 18.4432 17031.7
3 0.1047 0.2627 0.3553 0.2774 3218.17 3.1069 16.4152 16986.3
4 0.0848 0.2409 0.3433 0.331 2698.84 1.8866 14.1025 17469
5 0.1088 0.2695 0.3573 0.2644 3658.26 3.6059 15.8217 16967.5
6 0.1316 0.2665 0.3765 0.2254 3441.04 4.4794 21.8315 17338.4
7 0.1264 0.2745 0.3628 0.2363 4148.29 4.4466 16.7536 17277
8 0.1159 0.2631 0.3649 0.2561 3521.04 3.8435 18.27 17040.5
9 0.09 0.2488 0.3383 0.323 3055.02 2.2965 14.0224 17207.7

10 0.1329 0.2755 0.3638 0.2278 4305.06 4.7405 17.2272 17429
11 0.1228 0.271 0.369 0.2372 3682.1 4.2033 18.1211 17105.9
12 0.1302 0.2626 0.3641 0.2431 4299.95 4.6401 17.8523 17439.1
13 0.1021 0.2516 0.3507 0.2956 2892.15 2.6687 17.6565 17179.7
14 0.106 0.2679 0.3466 0.2795 4001.12 3.5412 14.4352 17128.1
15 0.1159 0.2707 0.3611 0.2523 3789.52 3.9377 16.5452 17059
16 0.0758 0.2421 0.3325 0.3497 3099.08 1.7886 10.6578 17741.6
17 0.0891 0.2527 0.3307 0.3275 3489.48 2.4905 12.7119 17236.3
18 0.0724 0.2155 0.3165 0.3957 2536.18 1.2919 13.7672 17988
19 0.1022 0.2608 0.3501 0.287 3356.9 3.0612 15.5718 17000
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Table 4.8: Resulting constraints from simulation

# > Dew T Min Temp. Approach HE
[K] [K]

0 2.1204 3
1 15.6815 3
2 14.2706 3
3 15.9114 3
4 20.5937 3
5 14.224 3
6 15.0516 3
7 15.0909 3
8 9.9252 3
9 11.958 3

10 14.9811 3
11 17.1046 3
12 3.2885 3
13 11.9353 3
14 7.4161 3
15 14.1072 3
16 23.4657 3
17 6.2145 3
18 1.758 3
19 11.5594 3

4.4 IDAES model

It was quite challenging to achieve a converged solution in the IDAES model
with the given initial values. First, the initialization had to converge, so it
could be sent to the solver. For the initialization to converge, the need to set
good initial values for the different variables in the model was important.
Once the solver had found an optimal solution, it was necessary to unfix
different variables to get the values for the variables that were desired. Es-
pecially the temperature for the shell outlets of the heat exchangers had to
be low enough so that all the fluid through these had become liquid. Fig-
ure 4.1 displays the resulting model and Figure 4.2 gives an oversight of
the state variables and the composition of the fluid at each arc in a stream
table. Both figures are created by the IDAES visualization tool.
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Figure 4.1: Modified IDAES model

Figure 4.2: Streamtable
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The model had to be modified several times for achieving a final result,
which is not perfect, but still resembles a valid solution. Referring back to
Figure 3.4, it can be seen that the final model looks differently. The reason it
had to be modified is a result of many factors. A summary of the challenges
met, and how they were dealt with follows in the next section. A short report
of both the heat exchangers is given in Figure 4.3 and Figure 4.4. A report
for all the unit models in the system can be found in Appendix A.

Figure 4.3: Report for HE101
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Figure 4.4: Report for HE102

4.4.1 Comparison with HYSYS

To validate the results a similar model was constructed in HYSYS with the
same specifications. Figure 4.5 shows the model and Figure 4.6 shows the
corresponding stream table. The bold blue numbers represent the variables
that were specified in the model. In an ideal model, stream 12 is supposed
to be stream 1, and stream 14 is supposed to be stream 10, but as a closed
configuration did not work in IDAES this configuration had been made.
Some values resembles what is found in IDAES, such as the temperature in
the outlet of the compressor and the tube outlet streams from the heat ex-
changers. Hysys find that the temperature in the tube inlet of HE102 should
be around 109K but IDAES find it to be around 111.8K. The outlet temperat-
ure for the mixer unit found in IDAES is according to the report in Figure A.6
245K and in HYSYS about 246.7K, which is not too far off. The temperature
of valve101 from the report in FigureA.3 shows an increase in temperature
between the outlet and inlet of about 1.25K while in HYSYS a decrease of
about 0.5K.
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Figure 4.5: Model in HYSYS

Figure 4.6: Stream table HYSYS

4.4.2 Challenges along the way

Here are some of the more troublesome challenges encountered with the
model listed and a short explanation of how they were dealt with are presen-
ted.

• Degrees of freedom
• Initialization
• Overflow
• Solving and refinement of solution

Degrees of freedom

As the model was built up corresponding to Figure 3.4, the flowchart was
created and arcs connecting all the unit models were established. When
expanding the arcs, which is a very important task due to fixing the con-
straints related to each unit model and physical properties within each arc,
the degrees of freedom were too few to be able to get the model initialized
due to under specification of the model. The reason was that model was
in a closed-loop, and a breakpoint had to be implemented. This breakpoint
was chosen to be between the Mixer unit and the Compressor unit. Once
done, the degrees of freedom increased and the model could be specified.
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Initialization

As the model had been specified the initialization procedure could take
form. This was done by the SequentialDecomposition tool, which initializes
each unit model in a heuristic manner based on the arc connections. The
initialization went smoothly up until the heat exchangers, where an error
occurred. This was yet again a degree of freedom error that turned out to
be caused by specifying the outlet temperatures in the shell outlet of the
heat exchangers. Specifying outlet temperatures of the heat exchanger can
only be done after the model is solved by unfixing some of the degrees of
freedom of the heat exchanger, such as the overall heat transfer coefficient
or area, and fixing the outlet temperature followed by utilizing the solver.

Overflow

The Wegstein method in the initialization procedure performs when there
is a loop involved, which was still the case, as the shell outlet of heat ex-
changer HE102 was indirectly connected to the tube inlet. This loop will be
initialized several times until it converges. As the initialization had run sev-
eral times, an overflow error occurred, see Appendix B for the output error.
This is due to a mathematical error occurring in the calculations, which was
not fully understood by the author. To overcome this error a new breakpoint
was tried and implemented by unfixing the original arc connecting the Split-
ter102 to the tube inlet of heat exchanger HE101. This seemed to fix the
problem, but it comes with a slight fallacy. Namely that the mass balance in
the Compressor101 is not the same as the mass balance in the Mixer101.
On the other hand, this solved issues related to scaling of the heat ex-
changers, as there was trouble getting them to converge when inputting
a given flow ratio, see Appendix C for an example of an output of such an
error. The Splitter102 would now assign a flow ratio to the tube inlet of
HE102 that was appropriate to solve the heat exchanger.

Solving and refinement of solution

At this point the model looks as in Figure 4.1, the initialization can converge
to a solution and the solver found the optimal solution. However, the tem-
peratures in the shell outlets of both heat exchangers were not the desired
ones and needed to be fixed. This was done by unfixing the heat transfer
coefficient and the inlet flow ratio at the tube inlets of the heat exchangers,
followed by fixing the temperature shell outlets of the heat exchangers. The
difference in value between the previous value for the shell outlet temperat-
ure and the newly set outlet temperature could not be high, for the model to
converge when sent to the solver. This resulted in repeating this procedure
until the desired temperature was reached. To avoid multiple initializations
and solving routines when doing this refinement, a .json file was created
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and put in the same path as the model. This file includes previous results
for initialization and solving, and resulted in quick solving steps when re-
fining the shell outlet temperatures.
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Discussion and conclusion

The IDAES model offered some nice results in regards to the production
of LNG in the end, but still included some small inconsistencies from the
HYSYS model. There is not a single answer to why this is but is due to
several factors the author believes. First off is the property package which
had to be created. The package included lots of parameters that had to be
defined by given values in different literature, and some of these are not
the same as defined in HYSYS. Figure D.1 is an example of the coefficients
used to calculate the ideal gas enthalpy in HYSYS, which differs from that
of the found values in the package applied in IDAES, see Appendix E. The
reason is that HYSYS uses different methods to calculate properties than
that of IDAES for some properties. The complexity of HYSYS is more dis-
tinguished in its way than IDAES complexity is in its own. HYSYS relies on
inbuilt property packages and brute force calculations with distinct optimiz-
ation methods and a rather simple way of setting up a model and solving it.
The unit models in HYSYS have a tremendous amount of design inputs and
customization of different settings. IDAES relies almost everything on cus-
tomized coding and object-oriented formulation. The degree of complexity
related to the unit models in IDAES and design parameters does not come
close to that of HYSYS. The methodology in the procedure of solving the
model in IDAES is unique in one perspective as asserting desired values
for variables in some unit models can only be done after a general valid
solution has been obtained from the specified inputs, and the user must
solve the model several times until the preferred result occurs. In HYSYS
the assertion of values for variables for the majority of the unit models is
independent of first finding a generic solution for the model.
From the results of the optimization of the different HYSYS models, it was
interesting to see the difference in the power output from each of the mod-
els. Perhaps the most interesting results came from the simulations done
with the simple weighted method for the heat exchangers as these offered
the most realistic outcomes. However, the result from the simple end point
method for the heat exchangers can be used to explore the main factors con-

42
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tributing to the best solution based on the decision variables found. It should
also be mentioned that if the results from the simple end point method were
put into the model with the simple weighted method, it would appear as an
infeasible solution. Maybe more exclusively the best results in this config-
uration yielded on average a lesser mole fraction of methane than that of
the other two configurations. In these, it was quite similar distributions of
the heavier elements for the best solutions. It should be noted that all the
values found from the optimization most likely do not correspond to global
minimums, but firmly local minimums. If the population of the swarm had
been increased as well as the maximum iterations, the algorithm would find
even better solutions, the dilemma becomes of how much time should be
assigned to achieve a good enough result.

Conclusion

The IDAES framework offers a good way to simulate and model a process
system and provides the user with a high portion of customizability for cre-
ating their unit models and property packages as well as methods to calcu-
late different functions and variables. IDAES also offers a variety of libraries
of defined unit models and some property packages that could be changed
or edited if desired. Perhaps the most noteworthy downside of the IDAES
software as it stands today is that it is not generic enough to reach out to all
possible clientele within the industry. It requires good knowledge of coding
and the use of correct syntax in different operations. They do have tutorials
provided, but once the user is to set up their own model everything doesn’t
necessarily work just as planned. Errors occurring without a proper formu-
lation of what is causing it is not clear and this leads to troubleshooting.
However, a discussion forum on troubleshooting is present on the IDAES
GitHub page, which has been utilized for some of the troubleshooting in
this thesis. IDAES is still a relatively new software, and version 2.0 has just
been released. In that perspective, it has the potential to reach great heights
in the coming future in its goals to become one of the leading process and
modeling software in the industry.

Optimization is an outstanding tool to find the best configuration for many
problems. Learning to understand how nature works and in this thesis, par-
ticularly how birds interact with each other and a small implementation of
craziness or perhaps more formally said, stochastic features, forms the basis
of an optimization algorithm. By studying these fields, the genetic algorithm
can be implemented in many engineering problems to solve difficult non-
linear functions. The particle swarm optimization showed that the power
output from the compressors depended on the composition of the fluid, the
pressure ratio of the compressor, and the flow rate of the fluid. From the
results, it can be concluded that higher mole fractions of the heavier com-
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ponents reduce the power output and that the distribution between the
mole fractions is almost universal.

Future work

Future work should consist of investigating further how to solve complete
closed-loop systems in IDAES, as this was what caused a relatively size-
able amount of trouble in the model. Also interesting would be to create a
multistream heat exchanger by utilizing the tools IDAES provides to accom-
plish this. Perhaps by borrowing some inspiration from how the LNG heat
exchanger is built and designed in HYSYS. IDAES provides some informa-
tion regarding this in the documentation and as for the raw code, it would
be possible to look at how the existing unit models are built in the IDAES
library. It would be interesting to also include optimization within IDAES,
by utilizing the different optimization solvers they offer.
Another aspect of future work could include the use of different genetic
algorithms to optimize the SMR process or other liquefaction processes of
natural gas, followed by a comparison of the results to find the most suited
algorithm that best comes close to a global optimum.
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Unit model reports

Figure A.1: Compressor report
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Figure A.2: Heater/Cooler report

Figure A.3: Valve101 report
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Figure A.4: Valve101 report

Figure A.5: Splitter report

Figure A.6: Valve101 report
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Figure A.7: HE101 report

Figure A.8: HE102 report
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-----------------------------------------------------------------------

---- 

OverflowError                             Traceback (most recent call l

ast) 

~\AppData\Local\Temp/ipykernel_19748/845197630.py in <module> 

     39 def function(unit): 

     40         unit.initialize(outlvl=idaeslog.DEBUG) 

---> 41 seq.run(m, function) 

     42  

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\network\decomposi

tion.py in run(self, model, function) 

    284  

    285         try: 

--> 286             return self._run_impl(model, function) 

    287         finally: 

    288             # Cleanup 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\network\decomposi

tion.py in _run_impl(self, model, function) 

    343                     kwds["accel_min"] = self.options["accel_min

"] 

    344                     kwds["accel_max"] = self.options["accel_max

"] 

--> 345                     self.solve_tear_wegstein(**kwds) 

    346  

    347                 else: 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\network\foqus_gra

ph.py in solve_tear_wegstein(self, G, order, function, tears, outEdges, 

iterLim, tol, tol_type, report_diffs, accel_min, accel_max) 

    211  

    212             logger.info("Running Wegstein iteration %s" % iterc

ount) 

--> 213             self.run_order(G, order, function, ignore) 

    214  

    215             gofx = self.generate_gofx(G, tears) 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\network\decomposi

tion.py in run_order(self, G, order, function, ignore, use_guesses) 

    391                     self.load_values(port, default, fixed_ins, 

use_guesses) 

    392  

--> 393                 function(unit) 

    394  

    395                 # free the inputs that were not already fixed 

 

~\AppData\Local\Temp/ipykernel_19748/845197630.py in function(unit) 

     38  

     39 def function(unit): 

---> 40         unit.initialize(outlvl=idaeslog.DEBUG) 

     41 seq.run(m, function) 

     42  

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\idaes\generic_models\un

it_models\heat_exchanger.py in initialize(self, state_args_1, state_arg

s_2, outlvl, solver, optarg, duty) 



    552         init_log.info_high("Initialization Step 1a (hot side) C

omplete.") 

    553  

--> 554         flags2 = cold_side.initialize( 

    555             outlvl=outlvl, optarg=optarg, solver=solver, state_

args=state_args_2 

    556         ) 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\idaes\core\control_volu

me0d.py in initialize(blk, state_args, outlvl, optarg, solver, hold_sta

te) 

   1365  

   1366         # Initialize state blocks 

-> 1367         in_flags = blk.properties_in.initialize( 

   1368             outlvl=outlvl, 

   1369             optarg=optarg, 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\idaes\generic_models\pr

operties\core\generic\generic_property.py in initialize(blk, state_args

, state_vars_fixed, hold_state, outlvl, solver, optarg) 

   1340                         c.activate() 

   1341                         for p, j in blk[k].params._phase_compon

ent_set: 

-> 1342                             calculate_variable_from_constraint( 

   1343                                 blk[k].log_mole_frac_phase_comp

[p,j], 

   1344                                 blk[k].log_mole_frac_phase_comp

_eqn[p,j]) 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\util\calc_var_val

ue.py in calculate_variable_from_constraint(variable, constraint, eps, 

iterlim, linesearch, alpha_min) 

    143         if slope: 

    144             variable.set_value(-intercept/slope, skip_validatio

n=True) 

--> 145             body_val = value(body, exception=False) 

    146             if body_val is not None and abs(body_val - upper) < 

eps: 

    147                 # Re-set the variable value to trigger any warn

ings WRT 

 

pyomo\core\expr\numvalue.pyx in pyomo.core.expr.numvalue.value() 

 

pyomo\core\expr\numeric_expr.pyx in pyomo.core.expr.numeric_expr.Expres

sionBase.__call__() 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\core\expr\visitor

.py in evaluate_expression(exp, exception, constant) 

    890         visitor = _EvaluationVisitor(exception=exception) 

    891     try: 

--> 892         return visitor.dfs_postorder_stack(exp) 

    893  

    894     except ( TemplateExpressionError, ValueError, TypeError, 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\core\expr\visitor

.py in dfs_postorder_stack(self, node) 

    589             # Process the current node 

    590             # 



--> 591             ans = self.visit(_obj, _result) 

    592             if _stack: 

    593                 # 

 

~\Anaconda3\envs\my-idaes-env\lib\site-packages\pyomo\core\expr\visitor

.py in visit(self, node, values) 

    785     def visit(self, node, values): 

    786         """ Visit nodes that have been expanded """ 

--> 787         return node._apply_operation(values) 

    788  

    789     def visiting_potential_leaf(self, node): 

 

pyomo\core\expr\numeric_expr.pyx in pyomo.core.expr.numeric_expr.UnaryF

unctionExpression._apply_operation() 

 

OverflowError: math range error 
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2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: This program contains Ipo

pt, a library for large-scale nonlinear optimization. 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Ipopt is released as open 

source code under the Eclipse Public License (EPL). 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: For more information visi

t http://projects.coin-or.org/Ipopt 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: This version of Ipopt was 

compiled from source code available at 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: https://github.com/IDAES/

Ipopt as part of the Institute for the Design of 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Advanced Energy Systems P

rocess Systems Engineering Framework (IDAES PSE 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Framework) Copyright (c) 

2018-2019. See https://github.com/IDAES/idaes-pse. 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: This version of Ipopt was 

compiled using HSL, a collection of Fortran codes 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: for large-scale scientifi

c computation.  All technical papers, sales and 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: publicity material result

ing from use of the HSL codes within IPOPT must 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: contain the following ack

nowledgement: 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: HSL, a collection of Fort

ran codes for large-scale scientific 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: computation. See http://w

ww.hsl.rl.ac.uk. 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: *************************

***************************************************** 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: This is Ipopt version 3.1

3.2, running with linear solver ma27. 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Number of nonzeros in equ

ality constraint Jacobian...:     1127 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Number of nonzeros in ine

quality constraint Jacobian.:        0 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Number of nonzeros in Lag

rangian Hessian.............:      572 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Total number of variables

............................:      214 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: variables with only lower 

bounds:       45 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: variables with lower and 

upper bounds:      121 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: variables with only upper 

bounds:       36 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Total number of equality 

constraints.................:      213 



2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: Total number of inequalit

y constraints...............:        0 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: inequality constraints wi

th only lower bounds:        0 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: inequality constraints wi

th lower and upper bounds:        0 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: inequality constraints wi

th only upper bounds:        0 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: iter    objective    inf_

pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls 

2022-06-16 16:22:10 [DEBUG] idaes.solve.fs.HE101: 0  0.0000000e+00 3.28e+08 

1.00e+00  -1.0 0.00e+00    -  0.00e+00 0.00e+00   0 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 1  0.0000000e+00 1.62e+08 

2.47e+01  -1.0 3.79e+06    -  6.86e-01 4.95e-01h  2 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 2  0.0000000e+00 1.13e+08 

4.48e+04  -1.0 2.08e+06    -  6.90e-01 2.40e-01h  3 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 3  0.0000000e+00 9.90e+07 

4.44e+04  -1.0 2.58e+06    -  3.13e-01 6.05e-02h  5 



2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 4  0.0000000e+00 1.44e+07 

4.37e+06  -1.0 8.92e+02  -4.0 8.32e-01 9.69e-01h  1 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 5  0.0000000e+00 1.01e+07 

4.10e+06  -1.0 9.84e+05    -  1.01e-01 6.19e-02h  5 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 6  0.0000000e+00 1.01e+07 

4.10e+06  -1.0 7.00e+02  -4.5 3.43e-01 1.18e-04h  1 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 



2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 7  0.0000000e+00 8.07e+06 

4.07e+06  -1.0 9.25e+05    -  8.51e-02 7.74e-03h  8 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 



2022-06-16 16:22:11 [DEBUG] idaes.solve.fs.HE101: 8  0.0000000e+00 6.27e+06 

4.06e+06  -1.0 9.98e+05    -  1.94e-05 9.67e-04f 11 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 



2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Error in an AMPL evaluati

on. Run with "halt_on_ampl_error yes" to see details. 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: Warning: Cutting back alp

ha due to evaluation error 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: 9  0.0000000e+00 5.74e+06 

4.06e+06  -1.0 1.35e+06  -4.1 5.69e-04 4.24e-05h 15 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: iter    objective    inf_

pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls 

2022-06-16 16:22:12 [DEBUG] idaes.solve.fs.HE101: 10  0.0000000e+00 5.48e+0

6 4.06e+06  -1.0 2.04e+05  -2.7 8.99e-01 9.71e-05h  1 

 

Last 10 iterations 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 351r 0.0000000e+00 2.43e+

00 9.05e+02  -7.0 1.68e+04    -  2.10e-01 1.31e-03h  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 352r 0.0000000e+00 2.43e+

00 8.95e+02  -7.0 4.87e+01    -  5.10e-04 7.23e-04h  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 353r 0.0000000e+00 2.39e+

00 1.42e+03  -7.0 6.07e+00    -  7.43e-01 1.53e-02h  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 354r 0.0000000e+00 1.75e+

00 1.04e+03  -7.0 5.98e+00    -  3.60e-01 2.54e-01h  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 355r 0.0000000e+00 1.75e+

00 1.04e+03  -7.0 4.49e+00    -  0.00e+00 6.23e-08R  2 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 356r 0.0000000e+00 4.03e-

01 5.31e+02  -7.0 4.78e+00    -  5.51e-01 4.89e-01f  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 



2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 357r 0.0000000e+00 3.99e-

01 5.26e+02  -7.0 2.66e+00    -  7.69e-03 9.48e-03f  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 358r 0.0000000e+00 1.04e-

01 2.98e+02  -7.0 2.30e+00    -  1.02e-01 6.63e-01f  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 359r 0.0000000e+00 2.06e-

02 1.63e+02  -7.0 5.77e-01    -  4.94e-01 8.08e-01f  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: iter    objective    inf_

pr   inf_du lg(mu)  ||d||  lg(rg) alpha_du alpha_pr  ls 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 360r 0.0000000e+00 3.70e-

03 5.30e+00  -7.0 5.02e-02    -  1.00e+00 9.43e-01f  1 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: Scaling factors are inval

id - setting them all to 1. 

2022-06-16 16:23:05 [DEBUG] idaes.solve.fs.HE101: 361r 0.0000000e+00 3.70e-

03 2.41e-05  -7.0 5.61e-03    -  1.00e+00 1.00e+00f  1 
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################################################################################# 

# The Institute for the Design of Advanced Energy Systems Integrated Platform 

# Framework (IDAES IP) was produced under the DOE Institute for the 

# Design of Advanced Energy Systems (IDAES), and is copyright (c) 2018-2021 

# by the software owners: The Regents of the University of California, through 

# Lawrence Berkeley National Laboratory,  National Technology & Engineering 

# Solutions of Sandia, LLC, Carnegie Mellon University, West Virginia University 

# Research Corporation, et al.  All rights reserved. 

# 

# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and 

# license information. 

################################################################################# 

""" 

Hydrocarbon processing phase equilibrium package using Peng-Robinson EoS. 

 

Example property package using the Generic Property Package Framework. 

This example shows how to set up a property package to do hydrocarbon 

processing phase equilibrium in the generic framework using Peng-Robinson 

equation along with methods drawn from the pre-built IDAES property libraries. 

 

The example includes the dictionary named configuration contains parameters 

for calculating VLE phase equilibrium and properties for hydrocarbon processing. 

""" 

 

# Import Python libraries 

import logging 

 

# Import Pyomo units 

from pyomo.environ import units as pyunits 

 

# Import IDAES cores 



from idaes.core import LiquidPhase, VaporPhase, Component 

from idaes.core.phases import PhaseType as PT 

from idaes.generic_models.properties.core.state_definitions import FTPx 

from idaes.generic_models.properties.core.eos.ceos import Cubic, CubicType 

from idaes.generic_models.properties.core.phase_equil import SmoothVLE 

from idaes.generic_models.properties.core.phase_equil.bubble_dew import \ 

        LogBubbleDew 

from idaes.generic_models.properties.core.phase_equil.forms import log_fugacity 

 

from idaes.generic_models.properties.core.pure import Perrys 

from idaes.generic_models.properties.core.pure import RPP4 

from idaes.generic_models.properties.core.pure import RPP5 

 

# Set up logger 

_log = logging.getLogger(__name__) 

 

 

# --------------------------------------------------------------------- 

# Configuration dictionary for a Peng Robinson natural gas system 

 

# Data Sources: 

# [1] The Properties of Gases and Liquids (1987) 

#     4th edition, Chemical Engineering Series - Robert C. Reid 

# [2] Perry's Chemical Engineers' Handbook 7th Ed. 

#     Converted to J/mol.K, mol/m^3 

# [3] Engineering Toolbox, https://www.engineeringtoolbox.com 

#     Retrieved 15th september, 2020 

# [4] The Properties of Gases and Liquids (2001) 

#     5th edition, Chemical Engineering Series - Robert C. Reid 

 

configuration = { 



    # Specifying components 

    "components": { 

        "nitrogen": {"type": Component, 

                     "elemental_composition": {'N': 2, 'C': 0}, 

                     "dens_mol_liq_comp": Perrys, 

                     "enth_mol_liq_comp": Perrys, 

                     "enth_mol_ig_comp": RPP4, 

                     "entr_mol_ig_comp": RPP4, 

                     "pressure_sat_comp": RPP5, 

                     "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, 

                     "parameter_data": { 

                         "mw": (28.0135E-3, pyunits.kg/pyunits.mol),  # [1] 

                         "pressure_crit": (34e5, pyunits.Pa),  # [1] 

                         "temperature_crit": (126.2, pyunits.K),  # [1] 

                         "omega": 0.04,  # [1] 

                         "dens_mol_liq_comp_coeff": { 

                            "1": (3.2091, pyunits.kmol*pyunits.m**-3),  # [2] pg. 2-98 

                            "2": (0.2861, None), 

                            "3": (126.2, pyunits.K), 

                            "4": (0.2966, None)}, 

                         "cp_mol_ig_comp_coeff": { 

                             "A": (3.115E1, 

                                   pyunits.J/pyunits.mol/pyunits.K),  # [1] 

                             "B": (-1.357E-2, 

                                   pyunits.J/pyunits.mol/pyunits.K**2), 

                             "C": (2.680E-5, 

                                   pyunits.J/pyunits.mol/pyunits.K**3), 

                             "D": (-1.168E-8, 

                                   pyunits.J/pyunits.mol/pyunits.K**4)}, 

                         "cp_mol_liq_comp_coeff": { 

                            "1": (2.8197e5, pyunits.J*pyunits.kmol**-1*pyunits.K**-1),  # [2] 



                            "2": (-1.2281e4, pyunits.J*pyunits.kmol**-1*pyunits.K**-2), 

                            "3": (2.4800e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-3), 

                            "4": (-2.2182, pyunits.J*pyunits.kmol**-1*pyunits.K**-4), 

                            "5": (7.4902e-3, pyunits.J*pyunits.kmol**-1*pyunits.K**-5)}, 

                         "enth_mol_form_liq_comp_ref": ( 

                            0, pyunits.J/pyunits.mol), # [3] 

                         "enth_mol_form_vap_comp_ref": ( 

                             0.0, pyunits.J/pyunits.mol),  # [3] 

                         "entr_mol_form_vap_comp_ref": ( 

                             191.6, pyunits.J/pyunits.mol/pyunits.K),  # [3] 

                         "pressure_sat_comp_coeff": { 

                             "A": (3.61947, None),  # [4] 

                             "B": (255.68, pyunits.K), 

                             "C": (266.55, pyunits.K)}}}, 

 

        "methane": {"type": Component, 

                    "elemental_composition": {'H': 4, 'C': 1}, 

                    "dens_mol_liq_comp": Perrys, 

                    "enth_mol_liq_comp": Perrys, 

                    "enth_mol_ig_comp": RPP4, 

                    "entr_mol_ig_comp": RPP4, 

                    "pressure_sat_comp": RPP5, 

                    "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, 

                    "parameter_data": { 

                        "mw": (16.043E-3, pyunits.kg/pyunits.mol),  # [1] 

                        "pressure_crit": (46e5, pyunits.Pa),  # [1] 

                        "temperature_crit": (190.4, pyunits.K),  # [1] 

                        "omega": 0.011, 

                        "dens_mol_liq_comp_coeff": { 

                            "1": (2.9214, pyunits.kmol*pyunits.m**-3),  # [2] pg. 2-98 

                            "2": (0.28976, None), 



                            "3": (190.56, pyunits.K), 

                            "4": (0.28881, None)}, 

                        "cp_mol_ig_comp_coeff": { 

                            "A": (1.925e1, pyunits.J/pyunits.mol/pyunits.K), # [1] 

                            "B": (5.213e-2, pyunits.J/pyunits.mol/pyunits.K**2), 

                            "C": (1.197e-5, pyunits.J/pyunits.mol/pyunits.K**3), 

                            "D": (-1.132e-8, pyunits.J/pyunits.mol/pyunits.K**4)}, 

                        "cp_mol_liq_comp_coeff": { 

                            "1": (6.5708e1, pyunits.J*pyunits.kmol**-1*pyunits.K**-1),  # [2] 

                            "2": (3.8883e4, pyunits.J*pyunits.kmol**-1*pyunits.K**-2), 

                            "3": (-2.5795e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-3), 

                            "4": (6.1407e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-4), 

                            "5": (0, pyunits.J*pyunits.kmol**-1*pyunits.K**-5)}, 

                        "enth_mol_form_liq_comp_ref": ( 

                            0, pyunits.J/pyunits.mol), # [3] 

                        "entr_mol_form_vap_comp_ref": ( 

                            186, pyunits.J/pyunits.mol/pyunits.K), # [3] 

                        "enth_mol_form_vap_comp_ref": ( 

                            -75000, pyunits.J/pyunits.mol), # [3] 

                        "pressure_sat_comp_coeff": { 

                             "A": (3.76870, None),  # [4] 

                             "B": (395.7440, pyunits.K), 

                             "C": (266.681, pyunits.K)}}}, 

 

        "ethane": {"type": Component, 

                    "elemental_composition": {'H': 6, 'C': 2}, 

                    "dens_mol_liq_comp": Perrys, 

                    "enth_mol_liq_comp": Perrys, 

                    "enth_mol_ig_comp": RPP4, 

                    "entr_mol_ig_comp": RPP4, 

                    "pressure_sat_comp": RPP5, 



                    "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, 

                    "parameter_data": { 

                        "mw": (30.070E-3, pyunits.kg/pyunits.mol),  # [1] 

                        "pressure_crit": (48.8e5, pyunits.Pa),  # [1] 

                        "temperature_crit": (305.4, pyunits.K),  # [1] 

                        "omega": 0.099, 

                        "dens_mol_liq_comp_coeff": { 

                            "1": (1.9122, pyunits.kmol*pyunits.m**-3),  # [2] pg. 2-98 

                            "2": (0.27937, None), 

                            "3": (305.32, pyunits.K), 

                            "4": (0.29187, None)}, 

                        "cp_mol_ig_comp_coeff": { 

                            "A": (5.409e0, pyunits.J/pyunits.mol/pyunits.K), # [1] 

                            "B": (1.781e-1, pyunits.J/pyunits.mol/pyunits.K**2), 

                            "C": (-6.938e-5, pyunits.J/pyunits.mol/pyunits.K**3), 

                            "D": (8.713e-9, pyunits.J/pyunits.mol/pyunits.K**4)}, 

                        "cp_mol_liq_comp_coeff": { 

                            "1": (4.4009e1, pyunits.J*pyunits.kmol**-1*pyunits.K**-1),  # [2] 

                            "2": (8.9718e4, pyunits.J*pyunits.kmol**-1*pyunits.K**-2), 

                            "3": (9.1877e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-3), 

                            "4": (-1.886e3, pyunits.J*pyunits.kmol**-1*pyunits.K**-4), 

                            "5": (0, pyunits.J*pyunits.kmol**-1*pyunits.K**-5)}, 

                        "enth_mol_form_liq_comp_ref": ( 

                            0, pyunits.J/pyunits.mol),  # [3] 

                        "entr_mol_form_vap_comp_ref": ( 

                            229.2, pyunits.J/pyunits.mol/pyunits.K), # [3] 

                        "enth_mol_form_vap_comp_ref": ( 

                            -84000, pyunits.J/pyunits.mol),  # [3] 

                        "pressure_sat_comp_coeff": {"A": (3.95405, None),  # [4] 

                                                    "B": (663.720, pyunits.K), 

                                                    "C": (256.681, pyunits.K)}}}, 



 

        "propane": {"type": Component, 

                    "elemental_composition": {'H': 8, 'C': 3}, 

                    "dens_mol_liq_comp": Perrys, 

                    "enth_mol_liq_comp": Perrys, 

                    "enth_mol_ig_comp": RPP4, 

                    "entr_mol_ig_comp": RPP4, 

                    "pressure_sat_comp": RPP5, 

                    "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, 

                    "parameter_data": { 

                        "mw": (44.094E-3, pyunits.kg/pyunits.mol),  # [1] 

                        "pressure_crit": (42.5e5, pyunits.Pa),  # [1] 

                        "temperature_crit": (369.8, pyunits.K),  # [1] 

                        "omega": 0.153, # [1] 

                        "dens_mol_liq_comp_coeff": { 

                            "1": (1.3757, pyunits.kmol*pyunits.m**-3),  # [2] pg. 2-98 

                            "2": (0.27453, None), 

                            "3": (369.83, pyunits.K), 

                            "4": (0.29359, None)}, 

                        "cp_mol_ig_comp_coeff": { 

                            "A": (-4.224e0, pyunits.J/pyunits.mol/pyunits.K), # [1] 

                            "B": (3.063e-1, pyunits.J/pyunits.mol/pyunits.K**2), 

                            "C": (-1.586e-4, pyunits.J/pyunits.mol/pyunits.K**3), 

                            "D": (3.215e-8, pyunits.J/pyunits.mol/pyunits.K**4)}, 

                        "cp_mol_liq_comp_coeff": { 

                            "1": (6.2983e1, pyunits.J*pyunits.kmol**-1*pyunits.K**-1),  # [2] 

                            "2": (1.1363e5, pyunits.J*pyunits.kmol**-1*pyunits.K**-2), 

                            "3": (6.3321e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-3), 

                            "4": (-8.7346e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-4), 

                            "5": (0, pyunits.J*pyunits.kmol**-1*pyunits.K**-5)}, 

                        "enth_mol_form_liq_comp_ref": ( 



                            0.0, pyunits.J/pyunits.mol),  # [3] 

                        "entr_mol_form_vap_comp_ref": ( 

                            270.3, pyunits.J/pyunits.mol/pyunits.K), # [3] 

                        "enth_mol_form_vap_comp_ref": ( 

                            -103800, pyunits.J/pyunits.mol),  # [3] 

                        "pressure_sat_comp_coeff": {"A": (3.92828, None),  # [4] 

                                                    "B": (803.9970, pyunits.K), 

                                                    "C": (247.040, pyunits.K)}}}, 

        "nbutane": {"type": Component, 

                    "elemental_composition": {'H': 10, 'C': 4}, 

                    "dens_mol_liq_comp": Perrys, 

                    "enth_mol_liq_comp": Perrys, 

                    "enth_mol_ig_comp": RPP4, 

                    "entr_mol_ig_comp": RPP4, 

                    "pressure_sat_comp": RPP5, 

                    "phase_equilibrium_form": {("Vap", "Liq"): log_fugacity}, 

                    "parameter_data": { 

                        "mw": (58.124E-3, pyunits.kg/pyunits.mol),  # [1] 

                        "pressure_crit": (38.0e5, pyunits.Pa),  # [1] 

                        "temperature_crit": (425.2, pyunits.K),  # [1] 

                        "omega": 0.199, 

                        "dens_mol_liq_comp_coeff": { 

                            "1": (1.0677, pyunits.kmol*pyunits.m**-3),  # [2] pg. 2-98 

                            "2": (0.27188, None), 

                            "3": (425.12, pyunits.K), 

                            "4": (0.28688, None)}, 

                        "cp_mol_ig_comp_coeff": { 

                            "A": (9.487e0, pyunits.J/pyunits.mol/pyunits.K), # [1] 

                            "B": (3.313e-1, pyunits.J/pyunits.mol/pyunits.K**2), 

                            "C": (-1.108e-4, pyunits.J/pyunits.mol/pyunits.K**3), 

                            "D": (-2.822e-9, pyunits.J/pyunits.mol/pyunits.K**4)}, 



                        "cp_mol_liq_comp_coeff": { 

                            "1": (6.473e1, pyunits.J*pyunits.kmol**-1*pyunits.K**-1),  # [2] 

                            "2": (1.6184e5, pyunits.J*pyunits.kmol**-1*pyunits.K**-2), 

                            "3": (9.8341e2, pyunits.J*pyunits.kmol**-1*pyunits.K**-3), 

                            "4": (-1.4315e3, pyunits.J*pyunits.kmol**-1*pyunits.K**-4), 

                            "5": (0, pyunits.J*pyunits.kmol**-1*pyunits.K**-5)}, 

                        "enth_mol_form_liq_comp_ref": ( 

                            0, pyunits.J/pyunits.mol),  # [3] 

                        "entr_mol_form_vap_comp_ref": ( 

                            310, pyunits.J/pyunits.mol/pyunits.K), # [3] 

                        "enth_mol_form_vap_comp_ref": ( 

                            -125700, pyunits.J/pyunits.mol),  # [3] 

                        "pressure_sat_comp_coeff": {"A": (3.93266, None),  # [4] 

                                                    "B": (935.7730, pyunits.K), 

                                                    "C": (238.789, pyunits.K)}}}}, 

         

 

    # Specifying phases 

    "phases":  {"Liq": {"type": LiquidPhase, 

                        "equation_of_state": Cubic, 

                        "equation_of_state_options": { 

                            "type": CubicType.PR}}, 

                "Vap": {"type": VaporPhase, 

                        "equation_of_state": Cubic, 

                        "equation_of_state_options": { 

                            "type": CubicType.PR}}}, 

 

    # Set base units of measurement 

    "base_units": {"time": pyunits.s, 

                   "length": pyunits.m, 

                   "mass": pyunits.kg, 



                   "amount": pyunits.mol, 

                   "temperature": pyunits.K}, 

 

    # Specifying state definition 

    "state_definition": FTPx, 

    "state_bounds": {"flow_mol": (0, 3000, 7000, pyunits.mol/pyunits.s), 

                     "temperature": (100, 300, 500, pyunits.K), 

                     "pressure": (1e5, 20e5, 85e5, pyunits.Pa)}, 

    "pressure_ref": (101325, pyunits.Pa), 

    "temperature_ref": (298.15, pyunits.K), 

 

 

    # Defining phase equilibria 

    "phases_in_equilibrium": [("Vap", "Liq")], 

    "phase_equilibrium_state": {("Vap", "Liq"): SmoothVLE}, 

    "bubble_dew_method": LogBubbleDew, 

    "parameter_data": {"PR_kappa": {("nitrogen", "nitrogen"): 0.000, 

                                    ("nitrogen", "methane"): 0.000, 

                                    ("nitrogen", "ethane"): 0.000, 

                                    ("nitrogen", "propane"): 0.000, 

                                    ("nitrogen", "nbutane"): 0.000, 

                                    ("methane", "nitrogen"): 0.000, 

                                    ("methane", "methane"): 0.000, 

                                    ("methane", "ethane"): 0.000, 

                                    ("methane", "propane"): 0.000, 

                                    ("methane", "nbutane"): 0.000, 

                                    ("ethane", "nitrogen"): 0.000, 

                                    ("ethane", "methane"): 0.000, 

                                    ("ethane", "ethane"): 0.000, 

                                    ("ethane", "propane"): 0.000, 

                                    ("ethane", "nbutane"): 0.000, 



                                    ("propane", "nitrogen"): 0.000, 

                                    ("propane", "methane"): 0.000, 

                                    ("propane", "ethane"): 0.000, 

                                    ("propane", "propane"): 0.000, 

                                    ("propane", "nbutane"): 0.000, 

                                    ("nbutane", "nitrogen"): 0.000, 

                                    ("nbutane", "methane"): 0.000, 

                                    ("nbutane", "ethane"): 0.000, 

                                    ("nbutane", "propane"): 0.000, 

                                    ("nbutane", "nbutane"): 0.000}}} 
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Objective function with constraints and decision 

variables 
 
 
function Obj= Obj_func(x) 
 
    global count_num 
    count_num = count_num +1; 
    global RESULT 
    Error = 0; 
    tic 
 
    hysys = actxserver ('HYSYS.Application'); 
    hyCase = hysys.ActiveDocument; 
    hysolver = hysys.ActiveDocument.Solver; 
    hyf=hyCase.Flowsheet; 
 
     
    % variables 
 
    hysolver.Cansolve=0; 
 
    hyf.Operations.Item('Efficiency').Cell('D2').CellValue = x(1); 
    hyf.Operations.Item('Efficiency').Cell('D3').CellValue = x(2); 
    hyf.Operations.Item('Efficiency').Cell('D4').CellValue = x(3); 
    hyf.Operations.Item('Efficiency').Cell('D6').CellValue = x(4); 
    hyf.Operations.Item('Efficiency').Cell('B13').CellValue = x(5); 
    hyf.Operations.Item('Efficiency').Cell('D18').CellValue = x(6); 
    hyf.Operations.Item('Efficiency').Cell('B8').CellValue = x(7); 
    hyf.Operations.Item('Efficiency').Cell('B9').CellValue = x(8); 
    hysolver.Cansolve=1; 
 
    % constraints 
 
    try 
        c(:,1)=hyf.Operations.Item('Efficiency').Cell('B17').CellValue; 
        c(:,2) =hyf.Operations.Item('Efficiency').Cell('G9').CellValue; 
        c(:,3) =hyf.Operations.Item('Efficiency').Cell('G11').CellValue; 
        Power =hyf.Operations.Item('Efficiency').Cell('G4').CellValue; 
  
      
        if (c(:,1) +273.15) < 0 | c(:,2) < 3 | c(:,3) < 3 
            Obj=Power+100000; 
            Error = 1; 
            cpu_time = toc; 
            RESULT(count_num,:) = [count_num Error cpu_time x c Power Obj]; 
            save('RESULT','RESULT'); 
        else 
            Obj=Power; 
            Error = 0; 
            cpu_time = toc; 
            RESULT(count_num,:) = [count_num Error cpu_time x c Power Obj]; 
            save('RESULT','RESULT'); 
 
        end 
 



    catch exeption 
 
        Obj=10000; 
        Power=10000; 
        Error=2; 
        cpu_time = toc; 
        RESULT(count_num,:) = [count_num Error cpu_time x c Power Obj]; 
        save('RESULT','RESULT'); 
        return  
    end 

 

PSO run-script 

 

clear all; 
clc; 
close all; 
 
hysys = actxserver ('HYSYS.Application'); 
hyCase = hysys.ActiveDocument; 
hysolver = hyCase.Solver; 
hyf=hyCase.Flowsheet; 
 
global count_num 
global RESULT 
RESULT = []; 
count_num = 0; 
 
x0 = [0.3 0.2 0.7 1 0.2 6500 4.5 13.5]; %nN2, nCh4, nC2H6, nC4H10, FR1, 
% Molflow, LP, HP 
 
LB =[ 1e-4; 1e-4; 1e-4; 1e-4; 0.1; 2000; 1; 10];  
UB =[ 1; 1; 1; 1; 0.9; 10000; 5; 25]; 
 
options = optimoptions('particleswarm') 
options = optimoptions('particleswarm','SwarmSize',100); 
options = optimoptions(options,'FunctionTolerance', 1e-6); 
options = optimoptions(options,'MaxIterations', 100); 
options = optimoptions(options,'MaxStallIterations', 20); % default=20 
options = optimoptions(options,'Display', 'iter'); 
options = optimoptions(options,'PlotFcn',@pswplotbestf); 
options = optimoptions(options,"HybridFcn","patternsearch"); 
options.InitialSwarmMatrix = x0; 
 
tic 
[x,fval,exitflag,output]= particleswarm(@Obj_func,8,LB,UB,options); 
toc 
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