
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Sviatoslav Eroshkin

Volatile Organic Components
Adsorption on Activated Carbon

Master’s thesis in Natural Gas Technology
Supervisor: Even Solbraa
Co-supervisor: Eivind Johannessen
June 2022

M
as

te
r’s

 th
es

is

Sviatoslav Eroshkin

Volatile Organic Components
Adsorption on Activated Carbon

Master’s thesis in Natural Gas Technology
Supervisor: Even Solbraa
Co-supervisor: Eivind Johannessen
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Energy and Process Engineering

Preface

This master thesis was completed at the Norwegian University of Science and Technology

in 2022. The master thesis consists of a literature study, theory evaluation, derivation of

the main equations, simulation, and validation of volatile organic components adsorption

on activated carbon using Python.

The master thesis is done in collaboration with Equinor. I greatly appreciate the work

of my supervisors, Even Solbraa and Eivind Johannessen, who guided me through this

project.

v

Summary

Some volatile organic components may cause serious human health and environmental

threats. These components are ”global warming agents” that contribute to climate

change. While the negative impact of methane and carbon dioxide on climate is highly

studied, the influence of non-methane volatile organic components is less known. These

gases affect the earth-atmosphere energy balance by the production of ozone and a re-

action with the hydroxyl radical, which in turn leads to a longer atmospheric lifetime of

methane. A more efficient purifying is thus becoming critical for companies that use such

components in their processes. Adsorption is one of the most used techniques for this.

The proper development of the adsorption process with high performance involves the

design of a model that can describe the dynamic of adsorption, considering all relevant

transport phenomena.

The primary purpose of the study is to simulate the adsorption of methane, ethane, pro-

pane, butane, nitrogen, and carbon dioxide on an activated carbon bed. The vacuum

pressure swing adsorption model in Python is developed. It is based on the Extended

Langmuir isotherm, a linear driving force approximation for mass transfer, and mass,

momentum, and energy balance equations. One cycle consists of 4 steps: co-current pres-

surization, adsorption, counter-current blowdown, and counter-current nitrogen purge.

The model is validated by comparison with the commercial software Aspen Adsorption

and available experimental results. An experimental comparison is implemented with

multi-component and two-component adsorption results. Still, some adjustments are re-

quired to get a good comparison with experimental data. Furthermore, it was shown that

the model gives a good result with adsorption phenomena understanding. The model has

been applied to analyze the adsorption dependence on various crucial parameters, such as

adsorption and desorption pressure, inlet and purge gas flow rates, adsorption step time.

vi

Table of Contents

Preface v

Summary vi

List of Figures ix

List of Tables xi

Abbreviations xiv

1 Introduction 1

2 Literature Review 3

3 Background 6

3.1 Basic Definitions . 6

3.2 Activated Carbon . 8

3.3 Process . 9

3.4 Governing transport phenomena . 11

3.4.1 Langmuir equilibrium theory . 11

3.4.2 Mass transfer considerations . 12

3.4.3 Mass Balance Equations . 15

3.4.4 Energy Balance Equations . 18

3.4.5 Boundary and initial conditions . 20

3.5 Developed models summary . 21

4 Experiments 22

4.1 Cavenati and co-authors Experiments . 22

4.2 Equinor Experiments . 23

vii

5 Methods 27

5.1 Python model . 27

5.2 Aspen Adsorption model . 31

6 Results and Discussion 33

6.1 Multicomponent Equilibrium of Volatile Organic Components on Activated

Carbon . 33

6.2 Comparison with Cavenati’s experiments 35

6.3 Modeling of vacuum pressure swing adsorption for volatile organic com-

ponents separation . 40

6.4 VOCs simulation comparison with experiments 52

6.5 Parametric analysis of VPSA configuration 54

7 Conclusions 63

8 Proposals of Future Work 64

Bibliography 65

Appendix 67

A Langmuir Isotherms of VOC . 67

B Equinor VOCs experiment results for case 1 68

C Equinor VOCs experiment results for case 2 69

D Equinor VOCs experiment results for case 3 70

E Main Code VOCs simulation . 71

viii

List of Figures

1 VOCs emissions per capita by country in 2019 [2] 1

2 Used PAC at Equinor VOCs experiments 8

3 The simplified process flow diagram of VOCs adsorption 9

4 Two bed adsorption scheme . 9

5 Cycle organization . 10

6 Particle structure of activated carbon . 13

7 Mass transfer zones . 14

8 Control volume . 15

9 Cavenati and co-authors experimental results for adsorption step 22

10 VPSA experiment . 23

11 Pump 1 MZ C characteristics curve . 24

13 Aspen Adsorption flowsheet . 31

14 Aspen Adsorption VPSA flowsheet . 32

15 Simplified Aspen Adsorption VPSA flowsheet 32

16 Linear form of the Langmuir isotherm for methane 33

17 Langmuir isotherm for methane on AC . 34

24 Python simulation VPSA results comparison with experiments from [5] for

46 cycles. Python model 3 (see Table 4) 40

25 Pressure at the bottom of the adsorber . 41

26 Pressure along the adsorber (Python model calculation) 42

27 Velocity along the adsorber during pressurization 42

29 The flow rate of components after 15 min of adsorption 44

31 Velocity profiles during desorption . 45

32 The flow rate of components during desorption and purge (purge starts

after 600 s) . 45

ix

33 Pressure profile for case 1 . 46

35 Capture efficiency case 1 . 48

36 Pressure profile case 2 . 49

38 Capture efficiency case 2 . 50

39 Pressure profile case 3 . 51

41 Capture efficiency case 3 . 52

42 Comparison with experiments case 1 . 53

43 Comparison with experiments case 2 . 53

44 Comparison with experiments case 3 . 54

45 Nitrogen purity and recovery dependence on adsorption pressure 56

46 Total accumulated VOCs efficiency dependence on pressure 56

47 VOCs recovery pressure dependence . 57

48 Nitrogen purity and recovery dependence on volumetric pump flow rate . . 57

49 Adsorbent weight increase dependence on volumetric pump flow rate . . . 58

50 Nitrogen purity and recovery dependence on gas inlet flow rate 58

51 VOCs purity dependence on gas inlet flow rate 59

52 Adsorbent weight increase dependence on gas inlet flow rate 59

53 Nitrogen purity and recovery dependence on purge flow rate 60

54 Adsorbent weight increase dependence on purge flow rate 60

55 Nitrogen purity and recovery dependence on adsorption time 60

56 Adsorbent weight increase dependence on adsorption cycle 61

57 Purity - recovery nitrogen dependence for case 2 62

x

List of Tables

1 Definition of voids and densities . 6

2 Pores categorization . 13

3 Boundary and initial conditions . 20

4 The developed models . 21

5 Bed parameters . 24

6 Cycle steps . 25

7 Parameters of the main three cases . 26

8 Possible modes of simulation [23] . 30

9 The main parameters of isotherms at temperature 303 K 34

xi

Nomenclature

Greek Letters

ϵ Total porosity

ϵext External porosity

ϵint Internal porosity

µ Dynamic coefficient of viscosity Pa/s

ρ Density kg/m3

Latin Letters

∆H Heat of adsorption J/kmol

A Adsorbent specific surface area 1/m

b Affinity coefficient 1/bar

b∞ Affinity constant 1/bar

C Molar concentration kmol/m3

cp Specific heat capacity J/kmolK

d Adsorbent diameter m

F Flow rate kmol/s

h Heat transfer coefficient W/m2K

hW Heat transfer coefficient through the wall W/m2K

IP Isotherm parameter W/m2K

J Adsorption source term kmol/m3s

k Mass transfer coefficient kmol/m3s

M Total molar mass in the control volume kmol/m3

MW Molecular weight g/mol

P Pressure bar

Q Isosteric heat of adsorption J/kmol

xii

qpump Pump volumetric flow rate m3/s

qpurge Purge volumetric flow rate m3/s

R Universal gas constant J/molK

r Radius m

r0 Pellet radius m

S Cross-sectional area of the adsorber m2

T Temperature K

u Velocity m/s

U0 Vector of conservative variables

V Volume m3

w Concentration in the solid phase kmol/kg

Subscripts

ads Adsorption

des Desorption

eq Equilibrium

i Particular component

j Particular component

max Maximum

PG Purge

press Pressurization

sup Superficial

xiii

Abbreviations

AC Activated Carbon

EL Extended Langmuir

GAC Granular Activated Carbon

CFD Computational Fluid Dynamics

D-R Dubinin-Radushkevich isotherm

HC Hydrocarbons

LDF Linear Driving Force

PSA Pressure Swing Adsorption

TSA Temperature Swing Adsorption

IAST Ideal Adsorption Solution Theory

VOC Volatile Organic Components

VPSA Vacuum Pressure Swing Adsorption

VRU Vapor Recovery Unit

xiv

1 Introduction

Volatile organic components (VOCs) are organic compounds with boiling points less than

or equal to 250 °C at standard pressure. VOCs contributes to air pollution, which may

cause severe risks to human health. VOCs are also considered ”global warming agents”

[1]. Figure 1 shows the top 7 countries with the highest VOCs emissions per capita.

Norway has significantly reduced VOCs emissions from above 70 kg/capita in 2005 to

28.5 kg/capita in 2019 and is now in 6th place.

Figure 1: VOCs emissions per capita by country in 2019 [2]

Some components evaporate from crude oil during storage, loading, and unloading opera-

tions, and these compounds contribute significantly to VOCs emissions. The composition

of crude oil varies, but the majority constitutes hydrocarbons (HC). The lightest compon-

ents tend to evaporate more (due to their high vapor pressures and low boiling points [1])

such as the first alkane group: methane, ethane, propane, and butane. These components

affect human health and air quality by producing photochemical ozone (O3) and other

harmful oxidants, which increase the atmospheric oxidizing. Today, surface O3 pollution

has become a problem in China. This country reported that the photochemical ozone

concentrations continuously increased in the last decade [3].

Therefore, the use of vapor recovery units (VRU) to purify vapor during oil operations

gained popularity in the 90s, with the principle of adsorption of VOCs on activated carbon

(AC) followed by regeneration under vacuum [4]. This technology must be designed and

used most efficiently to decrease VOCs emissions in the hydrocarbon industry.

1

Thus, the master thesis aims to develop a mathematical model in Python to predict the

competitive VPSA (Vacuum Pressure Swing Adsorption) of methane, ethane, propane,

butane, nitrogen, and carbon dioxide on an AC bed.

This will be achieved by introducing:

1. Literature review of the models for multicomponent adsorption on AC.

2. Theory of the process that includes basic definitions, process description, a mul-

ticomponent competitive adsorption isotherm model that can predict equilibrium

adsorption of n-component VOCs mixture using pure-component isotherm experi-

mental data, mass transfer model and governing transport phenomena with appro-

priate boundary and initial conditions.

3. The used methods including the numerical strategy of a model solution in Python

as well as the developed model in commercial software Aspen Adsorption.

4. Validation of the model with available experiments (Cavenati and co-authors ex-

periments [5] and Equinor VOCs experiments [6]) and commercial software (Aspen

Adsorption) results.

5. Parametric analysis of the developed Python model on various crucial parameters,

such as adsorption and desorption pressure, inlet and purge gas flow rates, adsorp-

tion step time.

6. Conclusion and proposals of future work.

2

2 Literature Review

Adsorption of VOCs on a fixed-bed AC is commonly used to reduce emissions [4, 7–9].

The use of VRU has gained popularity in the 1990s. Today 95 % of all new VRU are

based on AC adsorption followed by vacuum regeneration [4]. When VOCs are treated

using non - destructive methods, such as adsorption, absorption, and condensation, the

recycled VOCs can be reused [8]. During this project, the non-destructive method based

on AC VPSA will be modeled.

One of the main difficulties in mathematical adsorption modeling is the correct definition

of adsorption thermodynamics and mass transfer. The research on the VOCs adsorp-

tion equilibria and mass transfer in porous materials ensures accurate VOCs adsorption

modeling. Wang et al [9] discussed the adsorption performance of VOCs on AC. The fol-

lowing isotherms have been used for VOCs adsorption equilibrium prediction: Langmuir,

Freundlich, Dubinin-Radushevich, Temkin, Flory-Huggins, Hill. The Extended Langmuir

(EL) isotherm is widely used due to the model’s simplicity. However, the accuracy of

this isotherm type is questionable. Even though it has a theoretical basis behind it, the

assumptions place a significant restriction on the applicability of this isotherm. The EL

model is an explicit model that is preferred over its implicit counterparts, for example,

IAST (Ideal Adsorption Solution Theory) [10] , due to the computation complexity of

the last one. An essential shortcoming of the EL model is the neglect of the adsorbate

size effect [11]. However, the results of studies that use EL are usually coherent with

experimental data as in [7, 12, 13]. It should be mentioned that in this master thesis

more components will be considered, which may give a negative effect of using simple EL

model. The Freundlich isotherm, a well-known empirical model, can describe non-ideal

VOCs adsorption but it cannot predict the adsorption equilibrium well under low pres-

sure. Also, the D-R (Dubinin-Radushkevic) model is thermodynamically consistent at

medium and high relative pressures, except for low loadings [9].

The main components considered in this project are methane, ethane, propane, butane,

carbon dioxide, and nitrogen. The literature was studied to investigate the available

VOCs adsorption data. Experimental results for natural gas components equilibrium are

available in Esteves et al. work [14]. The adsorption experiments results are presented for

the pressure and temperature ranges of 0–9 MPa and 273–325 K. The AC which Esteves

et al. used is a coal-based, extruded carbon (2 mm diameter pellets).

The adsorption of VOCs is an exothermic process with high heat release that can be

estimated from the temperature dependence of the adsorption isotherm with the assump-

tion of constant heat release over a wide temperature range. Esteves et al. [14] also

showed the variation of the heat of adsorption with pressure for carbon dioxide, nitrogen,

3

and methane. The value of the isosteric heat of adsorption decreases with the loading

increase, which indicates that AC is energetically heterogeneous. For example, the heat

of carbon dioxide adsorption decreases from 23 kJ/mol in the low-pressure region until

leveling off at 20 kJ/mol.

Also, the mass transfer resistance between gas and solid phases plays a great role in

adsorption modeling. The adsorption mass transfer model defines the mass accumulation

in the solid phase. The typical models include three types: local equilibrium model, linear

driving force (LDF) model, and pore diffusion model [15]. The most common is to use the

LDF for estimating the mass transfer as in [7, 12, 13, 16]. Kim et al. [12] indicate that the

optimal parameters of mass transfer constants should be obtained from the comparison

of the numerical results with experimental data. These parameters should be assumed

such that the model solution is the closest to the whole range of available experimental

data. For example, Vilardi et al. [17] use the result of Cavenati’s experiments to get the

values of LDF coefficients for methane and carbon dioxide.

Quite a few papers have studied the PSA (Pressure Swing Adsorption) for different com-

ponents. From the technical point of view, these works are interesting because the mech-

anism of VOCs VPSA is in many ways similar. In particular, it is interesting to see

what has been achieved in optimizing the process and which are the main parameters

considered.

The PSA process exploits the change of the adsorption equilibrium with a change in system

pressure. The process efficiency depends on many factors such as the number, sequence,

and time of PSA steps, flow rate of the gas, gas composition, adsorption pressure, and

others. For example, Kim at al. [12] investigated biogas mixture adsorption on an AC

molecular sieve with a four-bed and seven-step PSA system. A significant improvement

to the PSA process was the implementation of the equalization step: reducing the energy

consumption in the pressurization step by means of the purified product from the second

adsorber. The experimental setup and numerical model showed that a cyclic steady-state

process was obtained after 13 cycles. Furthermore, Kim at al. [12] indicate that optimum

conditions for the separation highly depend on such parameters as the adsorption pressure,

desorption pressure, purge and feed rates (the ratio of the purge gas flow rate to the flow

rate of desirable component feed rate). Ahn et al. [18] also showed the importance of

purge to feed ratio, adsorption pressure, feed flow rate, step times, and carbon ratio for

layered two- and four-bed 6-step PSA processes forH2 recovery from coal gas. The layered

bed means that the bottom of the adsorber is filled with one adsorbent, which works as

the primary separator, while the top, which is filled with another adsorbent, purifies the

final stream. The result of the study is that higher purity of the product can be achieved

with layered beds; however, less recovery can also be observed. The study also showed

4

that product purity and adsorbent recovery changes were more significant by varying the

operating variables in the two-bed process than in the four-bed process.

In these studies, the bed geometrical characteristics are fixed, and their impact on adsorp-

tion efficiency is not properly investigated. Also, the effect of pressure drop and energy

balance on PSA efficiency are often considered negligible [19]. However, Vilardi et al.

[17] showed that exergy and energy analysis of the biogas upgrading in the PSA process

allows proper considerations of the system’s costs and environmental impact.

5

3 Background

3.1 Basic Definitions

The selective mass transfer of components to the bulk or surface of adsorbent is called

sorption. Absorption is the process when components are attached to the bulk of the solid.

Adsorption is the process when one or more components are attached to the surface of

the solid. Adsorption which is driven by interaction between solid and gas phases can

be used to remove undesirable components from the product stream. The solid material

that adsorbs components is called adsorbent, and solute is usually called adsorbate.

The affinity of molecules to a particular adsorbent depends on molecular characteristics

and thermodynamic conditions. The attachment to the solid surface is the result of van

der Waals forces, and hydrophobic interactions [20]. The reverse process of adsorption is

called desorption.

The first essential parameters that need to be considered in the adsorption process are

the types of porosity and density. There are two main types of void fractions: external

and internal. As names denote, external (interparticle) voids define the ratio of the space

not covered by particles to the total material volume, while internal voids (intraparticle

fraction) is the ratio of space in the particles to the total volume. The total void fraction

(total porosity) is the sum of interparticle and intraparticle fractions (provided that the

porosity is determined in relation to the total volume of the adsorber).

Density is defined as mass per reference volume. There are several meaningful ways to

calculate the densities which are summarized in Table 1 [21].

Table 1: Definition of voids and densities

Total system volume Defined as geometrical volume of bed.
External void volume Defined as total volume multiplied by external porosity.

The volume not covered by particles.
Internal void volume Defined as total volume multiplied by internal porosity.

The free volume inside the particles.
Bulk density Defined as material mass per total system volume.
Skeletal or solid density Density if there was a pure solid cube (without voids).
Envelope or particle density The density is found by drawing a hypothetical

envelope around particles and deviding the mass of
all particles by the volume of their envelopes.

There are two main parts in AC modeling:

1. Governing transport model that describes gas velocity, temperature, pressure and

6

other parameters in the adsorber.

2. Source term modeling which includes equilibrium model and mass transfer model.

Equilibrium model represent how much of the adsorbate can be adsorbed, and mass

transfer model shows how fast equilibrium can be reached.

The above-mentioned models are used in all the four steps of the VPSA system. The

main difference between PSA and VPSA is the desorption pressure. For VPSA desorption

pressure is less than 1 bara. However, they consist of the same steps:

1. Pressurization. This step is used to increase the adsorber pressure from some value

to the required one by pumping gas into the adsorber.

2. Adsorption step. The primary step in the cycle when the outlet product is achieved.

3. Desorption step. The inverse action to pressurization when the pressure in the

adsorber is reduced from some value to the required value. This step causes the

adsorbate to desorb.

4. Purge step. The purge gas is added to the system to decrease the partial pressure

of the adsorbates in the adsorbent and cause them to desorb.

5. Equalization step. This step was not considered in the master thesis but can be well

added to improve the adsorption efficiency. This step is used to reduce the energy

consumption of a compressor in the pressurization step by utilizing the purified

product from another bed.

All these steps can be done in the following ways:

1. Co-current. This means from the adsorber bottom (inlet) to the adsorber top (out-

let).

2. Counter-current. This means from the adsorber top (outlet) to the adsorber bottom

(inlet).

In the master thesis, co-current pressurization, adsorption, counter-current desorption,

and counter-current purge will be considered. However, the choice of either co-current or

counter-current ways will affect the adsorption performance and, thus, could be analyzed

in the optimization process.

7

3.2 Activated Carbon

The properties of the material used in a particular adsorption process is crucial. The

performance highly depends on how the solid performs in both adsorption equilibrium

and mass transfer. For example, an adsorbent with high equilibrium capacity but low

mass transfer will have low performance because the required time of adsorbate to reach

equilibrium is large. On the other hand, solid with high mass transfer but low adsorption

equilibrium will also have low performance because a large amount of adsorbent is needed.

Therefore, one should choose the adsorbent that provides a favorable combination of fast

mass transfer and high equilibrium capacity. This solid should have a large surface area

and a pore network for the transport of molecules.

Among the solids used in industries, AC is used to remove VOCs because of good adsorp-

tion equilibrium and mass transfer characteristics to these compounds. The raw material

has a certain degree of porosity, but the internal surface is significantly increased by ac-

tivation (high-temperature oxidation). The outer shape of the activated carbon is usually

in two main forms: granular (GAC) or extruded into pellets (PAC). The first form is

more economical, while the second form is more efficient (less tendency to form dust and

pressure drop is less) [4]. The experiments were performed at Equinor with PAC showed

in Figure 2 [6]. The pellets diameter is approximately 2-4 mm which is the same size as

the PAC used by Esteves et al. [14]. The data obtained in Esteves et al. [14] study is

used in the master thesis to describe the VOCs adsorption equilibrium model.

Figure 2: Used PAC at Equinor VOCs experiments

8

3.3 Process

The VPSA process can be done in different ways (with 2, or more adsorbers, with 3 or more

steps with co-current and counter-current ways). This section describes the process closest

to the Equinor VOCs experiments [6]. The flow diagram of VOCs adsorption is shown

in Figure 3. The process consists of two beds: one in adsorption mode and another in

regeneration mode. The adsorber outlet is a pure product during the adsorption process

and highly concentrated vapor during the regeneration process. This vapour is then

recycled in the absorption system [4].

Figure 3: The simplified process flow diagram of VOCs adsorption

The adsorption process with two beds is shown in more detail in Figure 4. The four main

steps in the process are pressurization, adsorption, desorption, and purge. The steps are

switched by employing valves.

Figure 4: Two bed adsorption scheme

9

According to the Equinor VOCs experiments [6], the following procedure is used. The top

of the adsorber is closed during pressurization and the system’s pressure increases (see

Figure 5). The pressure increase occurs from a specific low pressure after regeneration

to that required for adsorption. Next, the valve at the top of the adsorber opens, and

a product is achieved at the outlet. After a certain period, a breakthrough of specific

components occurs, and it is necessary to switch the adsorber to the regeneration mode.

There is no inflow at the bottom during regeneration. Also, the valve to the vacuum pump

opens, and the vacuum pump turns on. After a specific time, inert gas is supplied from

above while the pump operates. This step is called ”purge”. As a result, the adsorbates’

partial pressure decreases, which causes them to desorb better. After the purge, the

whole cycle repeats. A certain amount of non-desorbed gas remains in the adsorber,

which affects the following process and changes the result of the next cycle. However,

the system gradually converges with an increase in cycles to the so-called ”cyclic-steady-

state”.

Figure 5: Cycle organization

10

3.4 Governing transport phenomena

The complexity of the model can vary significantly. A model aims to capture the main

physics to reach a particular set of goals. In the optimization task, the model complexity

needs to be limited in some instances to reduce the computational time. However, the

correct sophistication level must be carefully examined. The primary strategy is to start

with a simple model, and complexity should be added if required.

3.4.1 Langmuir equilibrium theory

Many models (isotherms) have been proposed for presenting adsorption equilibria. The

EL isotherm is one of the simplest models, yet one that works surprisingly well for many

multicomponent systems [20]. Assumptions made by Langmuir of pure component ad-

sorption may also be used in describing multicomponent systems. These assumptions

are:

1. The adsorption process is localised, and each cite of adsorbent accumulates only one

molecule from the system.

2. No interaction between adsorbate molecules.

3. Surface is homogeneous and constant heat of adsorption over all cites is assumed.

4. No mobility (surface diffusion) on the surface.

The Langmuir equation for multicomponent adsorption [10]:

weq,i

wmax,i

=
biPi

1 + ΣN
j=1bjPj

(1)

here, weq,i is an equilibrium concentration of the solute in the solid phase [kmol/kg],

wmax,i is the maximum solute concentration in the solid phase [kmol/kg], bi is an affinity

coefficient of component i [1/bar], Pi is a partial pressure of component i [bar], N - number

of components, bj is an affinity coefficient of component j [1/bar], Pj is a partial pressure

of component j [bar].

Eq.(1) is known in the literature as an EL isotherm. Even though this equation has a

sound theoretical background, the assumptions used during the derivation of this equation

impose strong limitations on the theory’s applicability to practical problems. However,

11

this isotherm is widely used due to its simplicity. The results are usually coherent with ex-

perimental data [7, 12, 13]. Eq.(1) may be expressed in terms of four isotherm parameters:

IP1, IP2, IP3,IP4:

wi,eq =
(IP1i − IP2iT)IP3i exp (

IP4i
T

)Pi

1 + ΣN
j=1IP3j exp (

IP4j
T

)Pj

(2)

here, IP1 is an isotherm parameter 1 [kmol/kg], IP2 is an isotherm parameter 2 [1/K],

IP3 is an isotherm parameter 3 [1/bar], IP4 is an isotherm parameter 4 [K], i is a

particular component i, j is a particular component j.

Comparing Eq.(2) with Eq.(1) : wmax,i = (IP1i − IP2i · T) and bi = IP3i exp (
IP4i
T

).

Coefficient b is the parameter that shows the ratio between adsorption and desorption

rates. This parameter is called the affinity coefficient and may be expressed in terms of

adsorption heat, temperature, and affinity constant [10]:

bi(T) = b∞,i exp
Qi

RT
(3)

here, b∞,i is an affinity constant of a component i [1/bar], Qi is an isosteric heat of

adsorption of a component i[J/mol], R is a universal gas constant R = 8.314 [J/molK],

T is temperature [K].

The adsorption process is exothermic (Q < 0), and heat is released during the process.

From Eq.(3), one may see that the affinity coefficient decreases with an increase in temper-

ature. Thus, the heat of adsorption is an important parameter in the adsorption system

design that can be derived from the equilibrium isotherm model based on Eq.(3).

3.4.2 Mass transfer considerations

The components to be adsorbed need to find their way to the adsorbent particle by con-

vection through the channels, diffusion through the boundary layer around each particle,

diffusion transport inside the particle until they reach a vacant site. Finally, they ad-

sorb to the solid surface by van der Waals forces and hydrophobic interactions with heat

release. Micropore structure provides the adsorption capacity, while mesopores and mac-

ropores play a significant role in the gas passage (see Figure 6). The pores of the solid

can be categorized as shown in Table 2.

12

Table 2: Pores categorization

Micropores Smaller than 2 · 10−9 m
Mesopores 2 · 10−9 to 50 · 10−9 m
Macropores Larger than 50 · 10−9 m

Figure 6: Particle structure of activated carbon

Figure 7 represents the concentration profile of adsorbate along the bed with relatively

high mass transfer resistance. The mass transfer process starts immediately upon entering

the bed. When the bed reaches equilibrium, the mass transfer tends to zero, and the front

moves along the bed like a wave. The length where concentration is changing is called a

mass transfer zone. When the mass transfer zone reaches the bed outlet, the breakthrough

of effluent occurs. The length where the solute is not present is called unused (fresh bed).

The length of the adsorber, where the solid and gas phases are at equilibrium, is called the

equilibrium zone (saturated bed). A high mass transfer rate will make the mass transfer

zone shorter and the concentration profile along the bed would be steeper. Therefore,

higher mass transfer favors the adsorption process, and breakthrough occurs later with a

more saturated bed.

13

Figure 7: Mass transfer zones

Proper design of mass transfer equations is essential for numerical adsorption modeling.

The following mass transfer models are commonly used: local equilibrium, pore diffusion,

and LDF.

The local equilibrium model assumes no mass transfer resistance between gas and solid

phases. Therefore, the change in equilibrium immediately causes a change in the amount

of adsorbed phase:

wi = weq,i (4)

∂wi

∂t
=

∂weq,i

∂t
(5)

here, wi is a solid phase concentration of component i [kmol/kg], t is time [s].

The model has limited practical applications because it assumes no mass transfer resist-

ance. Only in the case of ideal adsorption the simulated results would predict well the

actual process [15]. At the same time, it is a good start to model with this assumption

and then proceed to more complex, for example, pore diffusion and LDF models.

The diffusion process of the adsorbed gas from the external surface to the interior of a

particle may be described by the pore diffusion model [15] (see Eq.(6)):

∂wi

∂t
=

Deff

r20

∂

∂r
r2
∂wi

∂r
(6)

here, Deff is an effective diffusivity of adsorbate within a particle [m2/s], r is a radius

[m], r0 is a particle radius [m].

14

Eq.(6) may be simplified to the following form [15]:

∂wi

∂t
= 6weq,iΣ

∞
n=1

Deff

r20
exp((−nπ)2

Deff

r20
). (7)

The pore diffusion model is also rarely used in numerical simulation because of complexity

[15].

The linear driving force is mainly used in practical adsorption simulations on AC [15].

The model determines mass transfer rate through a lumped mass transfer coefficient k:

Ji
ρbulk

=
∂wi

∂t
= ki · (weq,i − wi) (8)

here, Ji is an adsorption term [kmol/kg], ρbulk is a solid bulk density [kg/m3], ki is an

overall mass transfer coefficient of a component i [1/s].

3.4.3 Mass Balance Equations

The adsorbent bed is divided into small control volumes as shown in Figure 8.

Figure 8: Control volume

The mass balance derivation of a particular component is based on the fact that the molar

mass that enters the control volume must be equal to the molar mass that is accumulated

and exits the control volume. The used assumptions are:

1. Bed porosity is homogeneous and constant along the bed.

2. Plug flow. Gas flows only in axial direction and there are no derivatives in radial

direction.

3. Diffusion in axial direction is negligible.

15

4. LDF is used for describing solid mass balance.

5. Ideal gas law is used.

Thus, one can write the following equation for a particular component i:

− ϵu
∂Ci

∂x
δxδyδz − ϵCi

∂u

∂x
δxδyδz =

∂Mi

∂t
δxδyδz (9)

here ϵ is the total porosity, Ci is a concentration of component i, x is a spacial coordinate

in x direction [m], y is a spacial coordinate in y direction [m], z is a spacial coordinate in z

direction [m], M is the total molar mass in the control volume of component i [kmol/m3].

From the other hand, the term on the right hand side of the Eq.(9) can be expressed as

accumulation of molar mass in the control volume plus adsorption term:

∂Mi

∂t
= ϵ

∂Ci

∂t
+ Ji (10)

here, Ji is the source term representing adsorption.

Finally, one can get the following equation for a particular component:

ϵ
∂Ci

∂t
+ ϵu

∂Ci

∂x
+ ϵCi

∂u

∂x
+ Ji = 0. (11)

The superficial velocity is defined as the velocity of flow as if the flow of gas was in a

hollow pipe:

usup =
Q

S
= ϵu (12)

here, Q is a volumetric flow rate [m3/s], S is a cross sectional area [m2].

By substituting Eqs.(8) and (12) into Eq.(11), one can get the final equation for describing

the total mass balance of a particular component i.

ϵ
∂Ci

∂t
+ usup

∂Ci

∂x
+ Ci

∂usup

∂x
+ ρbulkki · (weq,i − wi) = 0 (13)

The same procedure is for deriving the total mass balance for the gas system.

ϵ
∂C

∂t
+ usup

∂C

∂x
+ C

∂usup

∂x
+ ρbulk

N∑
i=1

ki · (weq,i − wi) = 0 (14)

16

Since pressure is assumed to be constant through the bed in the adsorption step, one can

get the superficial velocity derivative from Eq.(14), based on the isothermal conditions.

The molar concentration according to the ideal gas law:

C =
P · 102

RT
(15)

here, C is a total concentration of gas [kmol/m3].

If pressure and temperature do not change, total concentration is not changed along the

bed according to the ideal gas law (see Eq.(15)). Hence, ∂C
∂t

= 0, and ∂C
∂x

= 0. Using

Eq.(14) one can get the following formula for velocity derivative:

∂usup

∂x
= − 1

C
ρbulk

N∑
i=1

ki · (weq,i − wi). (16)

In reality, pressure drop occurs in the adsorber, and to specify the boundary conditions

for every VPSA step, one should consider implementing the momentum equation. The

momentum equation includes pressure drop modeling. The most common models that

are used in practice are the Ergun equation (see Eq.(17)), Carman–Kozeny (see Eq.(18))

equation and Darcy law (see Eq.(19)). The simplest packed-bed pressure drop model

is the Carman–Kozeny equation. The main assumption in that equation is that pore

space behaves like small pipes governed by Poiseuille’s flow. Thus, the equation is only

valid for laminar flow. The Ergun equation has a squared velocity, making it possible to

use in both laminar and turbulent flows. By comparing Eqs. (17) and (18) it is clear

that Eq.(17) transforms to Eq.(18) in case of low velocity. The Darcy law also describes

laminar flow since pressure drop is linearly dependent on velocity. By comparing Eq.(18)

and Eq.(19) one may come to the value of coefficient B (permeability) for the packed bed

(see Eq.(20)).

∂P

∂x
= −(1.5 · 10−3µ(1− ϵext)

2

(2roϕ)2ϵ3ext
usup + 1.75 · 10−3P ·MW 2(1− ϵext)

RT (2roϕ)ϵ3ext
u2
sup) (17)

here, ϵext is an external porosity, µ is a gas dynamic viscosity [Pas], MW - gas molecular

weight [g/mol], ϕ adsorbent shape factor, T - temperature, [K].

∂P

∂x
= −1.5 · 10−3µ(1− ϵext)

2

(2roϕ)2ϵ3ext
usup (18)

Q

S
= usup = −B

µ

∂P

∂x
(19)

17

here, B is a velocity proportionality coefficient.

B =
105

150 (1−ϵext)2

(2roϕ)2ϵ3ext

(20)

Combining Eqs. (13, 15, 19) one can get the following form:

(
102ϵ

RT
)
∂(yiP)

∂t
− 102

RT

B

µ
(yiP

∂2P

∂x2
+yi(

∂P

∂x
)2+P (

∂P

∂x
)(
∂yi
∂x

))+ρbulkki · (weq,i−wi) = 0 (21)

here yi is a molar fraction of a component.

One more equation is needed in order to solve the above equations. The sum of the mole

fractions of the components must be equal to 1:

ΣN
i=1yi = 1 (22)

3.4.4 Energy Balance Equations

General assumptions that can be applied:

1. Adiabatic boundary conditions

2. Constant wall temperature

3. More complex boundary conditions

Constant wall temperature assumption will be considered in the master thesis.

Flow assumptions are more or less the same as in the mass balance chapter (constant and

homogeneous porosity, no radial flow, axial diffusion is negligible, the LDF is used for

solid mass balance, and ideal gas law is used).

Also, assumptions regarding the fluid and solid material properties: thermal conductivity

and heat capacity are assumed to be constant and independent of temperature, pressure,

and gas composition.

Heat transfer assumptions: the heat of adsorption is assumed to be constant, independent

of loading and temperature.

18

Other general assumptions are negligible thermal conductivity, no viscous dissipation, and

negligible influence of pressure work.

To simplify the model, one can assume negligible heat transfer resistance between the gas

and solid phases. Thus, one can treat solid and gas phases as a single phase.

The conservation equation in general form:

∂U0

∂t
+

∂f(U0)

∂x
= Source (23)

here, U0 are the conservative variables, f(U0) is the flux of conservative variables.

The conservative variables can be expressed as:

U0 = ϵcp,gCT + cp,sρbulkT (24)

here, cp,g [J/kmolK] and cp,s [J/kgK] are specific heat capacities of gas and solid phases

respectively, T is temperature [K].

The flux vector consists of convective and conductive terms. Assuming negligible conduc-

tion:

f(U0) = usupcp,gCT (25)

The source term:

Source =
hW

d
(Tamb− T) + ρbulk

N∑
i=1

ki · (weq,i − wi)∆Hi (26)

here, ∆Hi is an enthalpy change due to the heat of adsorption [J/kmol], hw is a heat

transfer coefficient between the adsorbent and environment [W/m2K], d is a diameter of

adsorber [m], Tamb is an ambient temperature (wall temperature) [K].

Thus, taking into account the ideal gas law (Eq.(15)), the following equation is obtained:

(cp,sρbulk + ϵcp,g
P · 102

RT
)
∂T

∂t
− cp,g

P · 102

RT

B

µ
(
∂P

∂x

∂T

∂x
) =

ΣN
i=1(ρbulk

N∑
i=1

ki · (weq,i − wi)∆Hi) +
hW

d
(Tamb− T)

(27)

19

3.4.5 Boundary and initial conditions

Table 3: Boundary and initial conditions

Pressurization Adsorption Desorption Purge
P (x, t = 0) = Pinitial P (x, t = 0) = Ppress P (x, t = 0) = Pads P (x, t = 0) = P des

P (x = 0, t) = P1(t) P (x = 0, t) = Pinlet P (x = 0, t) = P1(t) P (x = 0, t) = P1(t)

P (x = L, t) = P2(t)
∂2P
∂x2 (x = L, t) = 0 P (x = L, t) = P2(t) P (x = L, t) = P2(t)

yi(x = 0, t) = yi,feed yi(x = 0, t) = yi,feed
∂y
∂x
(x = L, t) = 0 yN2(x = L, t) = 1

T (x, t = 0) = Tinitial T (x, t = 0) = Tpress T (x, t = 0) = Tads T (x, t = 0) = Tdes

T (x = 0, t) = Tinlet T (x = 0, t) = Tinlet
∂T
∂x
(x = L, t) = 0 T (x = L, t) = Tinlet

here, P1(t) is pressure at the bottom (inlet) of the adsorber [bar], P2(t) is pressure at the

top (outlet) of the adsorber [bar], press, ads, des subscripts mean the results of parameter

from a particular step.

The pressures P1(t) and P2(t) are calculated based on the ideal gas law (see Eq.(15)) using

the following equations:

1. Pressurization
∂P1

∂t
=

P1

V1

((
FRT · 10−2

P1

)− uoutA) (28)

∂P2

∂t
=

P2

V2

(uinA) (29)

2. Desorption

∂P1

∂t
=

P1

V1

(−qpump + uinA) (30)

∂P2

∂t
=

P2

V2

(uoutA) (31)

3. Purge

∂P1

∂t
=

P1

V1

(−qpump + uinA) (32)

20

∂P2

∂t
=

P2

V2

(qpurge − uoutA) (33)

here, F is the flow rate coming into the adsorber [kmol/s], V1 is an inlet volume not

filled with adsorbent [m3], V2 is an outlet volume not filled with adsorbent [m3], uout is

a velocity of gas going to the adsorber [m/s], uin is a velocity of gas going out of the

adsorber [m/s], qpump is a volumetric flow rate to the vacuum pump [m3/s], qpurge is a

purge volumetruc flow rate of purge gas to the adsorber. It should be noted that velocity

has a negative sign during desorption and purge steps.

3.5 Developed models summary

Depending on the developed simplifications, models of varying complexity degrees can be

distinguished. However, the difference in the results of these models is not significant for

certain conditions. The models used in the work are summarized in the table below.

Table 4: The developed models

Model
Main equa-
tions used

Main assumptions Application

1 13, 16
No pressure drop
along the adsorber,
isothermal simulation.

Section 6.2: Adsorption step in
Cavenati and co-authors experiments,
comparison with model 2 and Aspen
Adsorption simulations.

2 21 Isothermal simulation.

Section 6.2: Comparison with VPSA
Cavenati and co-authors experiments,
comparison with model 1 and Aspen
Adsorption simulations. Sections 6.3,
6.4,6.5: VOCs simulation.

3 21, 27 -
Section 6.2: comparison with Cavenati
et al. [5] experiments

Models are solved with appropriate boundary and initial conditions (see Table 3). The

mass transfer coefficients and equilibrium parameters for Cavenati and co-authors exper-

iments in section 6.2 are considered from Vilardi et al. work [17]. The mass transfer

coefficients for VOCs simulation are assumed to be equal to 1 s−1. Such high mass trans-

fer coefficients correspond to the local equilibrium model (see Eq.(4)), making it easier at

the beginning of the simulation. Equilibrium data for VOCs equilibrium simulation are

assumed from [14].

21

4 Experiments

4.1 Cavenati and co-authors Experiments

The study of Cavenati et al. [5] focused on VPSA for the separation of methane (55

mol %) - carbon dioxide (45 mol %) mixture with a total flow between 1 and 1.5 SLPM

(Standard Liter per Minute). A four-step Skarstrom-type cycle was used consisting of co-

current pressurization, adsorption, counter-current blowdown, and counter-current purge.

The results for binary methane-carbon dioxide adsorption at a constant pressure of 320

kPa are presented. The authors did experiments on the column of 0.83 m in length and

0.021 m in diameter with a bulk density of 715 kg/m3. The ambient temperature during

the experiments was 303 K.

The linear driving force model was used for modeling the mass transfer, and the Langmuir

equation was used to describe the equilibrium model. Equilibrium and mass transfer

parameters for methane-carbon dioxide mixture adsorption on Carbon Molecular Sieve

3K can be found in Vilardi et al. work [17]. It should be noted that these equilbrium

parameters are different from those used in VOCs Equinor experiments simulation because

of different AC type.

The results of the binary breakthrough curve for the methane - carbon dioxide mixture

during the adsorption step are shown in Figure 9. In the figures, the solid line corresponds

to the mathematical model results of Cavenati et al. [5] while the points represent the

obtained experimental data.

(a) Molar flow rate of each gas exiting the
column

(b) Temperature profiles inside the column

Figure 9: Cavenati and co-authors experimental results for adsorption step

The VPSA process results after 46 cycles are presented in Figure 10. These results will

also be used in the master thesis to validate the model because it contains only two main

components: carbon dioxide and methane, making it easier to compare and check if the

22

model simulates correctly.

During the first 80 seconds, the pressure rises from 10 kPa to 320 kPa with the constant

flow rate of gas supplied. The outlet flow rate of methane and carbon dioxide is 0 during

this step because the top of the column is closed. During the next 100 seconds, the top

of the column is opened, and the adsorption step with constant pressure and gas inlet

flow rate begins. Only methane is obtained as the product at this step. From 180 to

300 seconds, the top of the column is closed, and counter-current blowdown occurs with

the vacuum pump. Cavenati and co-authors [5] did not describe in detail the operation

of the vacuum pump. The characteristic of the MZ 1C vacuum pump [22] was used in

the developed Python model. In the next 50 seconds, there is a counter-current purge to

lower the partial pressure of carbon dioxide.

Figure 10: VPSA experiment

4.2 Equinor Experiments

The central part of the master thesis deals with VOCs adsorption simulation. The ex-

periments were performed at Equinor to optimize the adsorption of VOCs on activated

carbon adsorption bed [6]. However, a mathematical model should be created to analyze

all the possibilities for optimization. The adsorption bed parameters are given in Table

5.

23

Table 5: Bed parameters

Adsorber height 1 m

Adsorber filled AC height 0.77 m

Adsorber diameter 0.032 m

Filled AC volume 650 ml

Clean adsorbent bulk density 430 kg/m3

The components used in the experiments are methane, ethane, propane, butane, carbon

dioxide and nitrogen. Also, experiments with C5+ components were performed. However,

in this study only VOCs up to C4 were considered. The feed gas components were properly

mixed and heated to 303 K so that no liquid was accumulated [6]. The temperature in

the center of the adsorber was measured by multi-thermocouples and the temperature

variations were not higher than 10 degrees for C1-C4 adsorption.

The vacuum pump used during the regeneration cycle was an oil-free membrane type

(VacuuBrand MZ1C) [22]. The pump characteristics are also available [22] and it was

able to operate as low as 11 mbar without flow through the system. The adsorber was

pre-treated for 1 week under vacuum before the experiments started. Thus, a vacuum

pump plays an essential part in modeling the desorption process.

As the inlet pressure decreases, the pump’s volume flow rate decreases. The volume flow

rate at low pressures can be less than indicated in the real pump curve since air leaks can

occur. The manufacturer has also included a dotted line that indicates the performance

of a different pump subtype that was not used in the experiments.

Figure 11: Pump 1 MZ C characteristics curve

24

The choice of pump characteristic greatly affects the desorption pressure. A simplified

pump model that considers the air leak into the system is determined by the formula:

qpump = 0.00019 · P 0.62 (34)

The experimental scheme consists of two beds that run continuously, with one bed in the

adsorption mode and one bed in the desorption mode (the principal scheme is shown in

Figure 4). Upstream the adsorbers, there was a tank of 1-liter volume where constant inlet

volumetric flow was supplied. This tank was connected to the adsorber via a 2 m tubing

with a diameter of 2 mm. The sequence of the steps is summarized in Table 6. When the

pressure reaches at least one bara in the adsorber, the outlet valve opens. Depending on

the feed flow rate, it took from 1.5 to 3.5 min to build up the pressure after vacuuming.

The pressure in the adsorption mode was between 1.05 and 1.10 bara, depending on the

feed rate and time in the cycle. The adsorption step for the considered cases lasts 15

min, after which the counter-current regeneration for 10 min is performed. During the

purge, argon was supplied from the top (outlet) of the adsorbers (either through the total

period (desorption and purge steps) or only towards the end of the period). In the master

thesis, nitrogen is used as a purge gas during 5 min., and this should not create a big

difference because nitrogen and argon barely adsorb. The pressure towards the end of the

vacuuming period was 60 ± 10 mbar. The flow rate of argon used was 25, 50, and 100

Nml/min, as seen in Table 7.

Table 6: Cycle steps

Step Time

Pressurization Until 1 bar is reached

Adsorption 15 min

Desorption 10 min

Purge 5 min

The experiment results for each case are shown in Figure 12. The results are also presented

in terms of tables in Appendixes B,C,D.

The main conclusion from these graphs is that adsorption happens differently for every

component, and almost 100% adsorption efficiency could be achieved for C4+ components.

The adsorption efficiency also highly depends on the inlet flow rate of heavy hydrocarbons.

It is important to note that the breakthrough curves are rather steep, which indicates high

mass transfer coefficients.

25

The following three cases used in the experiments were considered in the master thesis:

Table 7: Parameters of the main three cases

Case number Composition of feed gas Flow rate Purge

of feed gas flow rate

[mol/mol] [Nml/min] [Nml/min]

CH4 C2H6 C3H8 C4H10 CO2 N2

1 8.6 16.1 22.4 10 4.7 38.2 1248 50

2 8.3 16.6 20.8 9.6 4.0 40.7 851 100

3 11.7 8.7 15.1 5.8 8.7 50 440 25

(a) Cycle 1 (b) Case 2

(c) Case 3

Figure 12: Equinor experiments

26

5 Methods

5.1 Python model

The set of partial differential equations (PDE) and ordinary differential equations (ODE)

need to be solved with appropriate initial and boundary conditions. The resulting system

of PDE and ODE must be solved simultaneously since they are coupled. The spatial and

time derivative terms can be approximated. The variables are defined on the grid with

finite difference methods.

The common challenge is the propagation of fronts or shocks. The first-order spatial de-

rivative approximations may cause two unwanted problems: numerical diffusion (artificial

diffusion) and numerical oscillations. Numerical diffusion can be reduced by decreasing

the space step that will be shown in practice in the results of the master thesis.

The first-order upwind difference scheme may be beneficial in the case of sharp front

propagation, which is vital in the simulation beginning and in the systems where break-

through curves are steep. The first-order upwind method is also recommended because

of the fast simulation. The scheme is first-order accurate and may give a significant nu-

merical diffusion. However, the method does not produce oscillations (unconditionally

stable). The upwind difference scheme for the positive velocity is shown below:

∂f

∂x
=

fl − fl−1

∆x
(35)

here, f is a function, l is a spacing point, ∆x is a space step.

The upwind difference scheme for the negative velocity:

∂f

∂x
=

fl+1 − fl
∆x

(36)

Thus, the information comes from the direction of the flow.

The second order derivative approximation is shown below:

∂2f

∂x2
=

fl+1 − 2fl + fl−1

∆x2
(37)

The system of PDE and ODE will be solved in Python. Python combines both simplicity

and powerful tools. It can be used to create a prototype of almost any program. Python

also has extensive open libraries that can help solve the equations described earlier. For

27

example, GEKKO Python is an object-oriented Python library that is used in the master

thesis. It is free for academic and commercial use. It is designed for large-scale engineer-

ing optimization problems, including problems with non-linear algebraic and differential

equations.

Firstly, GEKKO model creation must be introduced. GEKKO can be easily installed,

and the GEKKO model can be created with the following command:

!pip install GEKKO

from gekko import GEKKO

m = GEKKO(remote = False) # create GEKKO model

The model formulation is essential for a reliable and fast simulation. First and foremost,

it is required to put the equations into the form for the most accurate solution. The model

formulation in this project includes the introduction of variables. They are temperature,

pressure, velocity, and others that are determined by the set of equations. The variables

are introduced in the following way:

P = [m.Var(pressure_init) for i in range(seg)] # Introduction of

#pressure variable. "seg" - number of grid points. "pressure_init"

#is set for every grid point as an initial condition.

P1 = m.Var(pressure_init) # Boundary left pressure

P2 = m.Var(pressure_init) # Boundary right pressure

y1 = [m.Var(0) for i in range(seg)] # Molar fraction of component 1

is 0 at every grid step.

y2 = [m.Var(0) for i in range(seg)] # Molar fraction of component 2

is 0 at every grid step.

There is always a trade-off between computation accuracy and time. A denser time grid

will enhance the accuracy of the simulation; however, the calculation will take longer.

Usually, a denser time grid is required in the regions of fast dynamics. The user sets the

time grid, and GEKKO solves the set of equations within the specified time grid. The

time discretization is defined in GEKKO as follows:

nt = int(final_time/time_step) + 1 # number of time grid points

m.time = np.linspace(0,tf,nt) # Crease a GEKKO time grid

28

The set of the equations is discretized to an algebraic form with a finite difference method

(see Eqs. (35), (36),(37)) such that the model consists of a system of ordinary differential

equations. Equations are expressed as equality constraints. For example, the mass balance

equation for component 1 during the pressurization step is described as follows:

Here, P - pressure [bar], P2 - boundary pressure at the top,

#P1 - boundary pressure at the bottom,y1 - molar fraction of component 1

#K - velocity proportionality , et - total porosity,

#y1_feed - molar feed of component 1 to the adsorber

L_seg - the length of one segment:

#L_seg = Length of adsorber / number of grid points

R - universal gas constant [J/molK], T - temperature [K],

#rho - density [kg/m3], q1 - adsorption term [kmol/kg].

First segments Pressure 1

m.Equation(P[0]*y1[0].dt()+y1[0]*P[0].dt() == (1/(K*et))*((y1[0]*P[0]*

(P[1]-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y1[0]-y1_feed)/

(L_seg))+ y1[0]*((P[0]-P1)/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[0].dt()))

Middle segments component 1.

m.Equations([P[i]*y1[i].dt()+y1[i]*P[i].dt() == \

(1/(K*et))*((y1[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y1[i]-y1[i-1])/(L_seg))

+ y1[i]*((P[i]-P[i-1])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[i].dt()) for i in range(1,seg-1)])

#Last segment component 1

m.Equation(P[seg-1]*y1[seg-1].dt()+y1[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y1[seg-1]*P[seg-1]*(P2-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))*((y1[seg-1]-y1[seg-2])/(L_seg))

+ y1[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[seg-1].dt()))

From the code above, one may see that it is convenient to set the equation into three

main parts: first segment, middle segments, and final segment to include the boundary

variables. The time derivative is expressed as follows: parameter.dt(). If one needs a

second-order time derivative, this can be done by introducing an extra variable equal to

29

the first-order time derivative.

Before the simulation starts, the user should specify the mode of simulation. They are

shown in Table 8.

Table 8: Possible modes of simulation [23]

Simulation Estimation Control
Non-Dynamic 1 Steady-State 2 Steady-State 3 Steady-State
Dynamic Simultaneous 4 Simultaneous 5 Simultaneous 6 Simultaneous
Dynamic Sequential 7 Sequential 8 Sequential 9 Sequential

The most interesting for the master thesis are the following modes of dynamic simulation:

4 Simultaneous (SIM) and 7 Sequential (SQS). Both produce the same solution but in a

different way. The sequential mode solves from one-time step to the next until it reaches

the solution, while the simultaneous method solves all time steps together. The example

of the code to start the solution procedure is shown below:

m.options.IMODE = 7

m.solve(disp = False) # disp = False means that the solution report

#will not be shown

The complete code for VOCs simulation is presented in Appendix E.

30

5.2 Aspen Adsorption model

Also, Aspen Adsorption will be used to compare the results. Aspen Adsorption is a

comprehensive flowsheet simulator for adsorption modeling. The simple flowsheet with

one adsorber for adsorption step is presented in Figure 13.

The user needs to make sure that the system is specified correctly. The feed stream needs

the following fixed parameters: flow rate, composition, temperature, and pressure. The

product pressure specification is free. Aspen will calculate this pressure by itself. The

bed parameters are general partial differential equation handling, material/momentum

balance, kinetic model, isotherm, energy balance, reaction, and procedures. Once defined,

the flowsheet is checked and initialized.

Figure 13: Aspen Adsorption flowsheet

The closest developed model to the conducted VOCs experiments in Aspen Adsorption is

shown in Figure 14. In contrast to the previous scheme, the product pressure specification

must be fixed. The flow rates of the streams are set with the valves in Aspen Adsorption

simulation, and the feed streams’ flow rates are calculated based on the valves specifica-

tions. The characteristics of the vacuum pump are set via a user-specified submodel.

The cycle organizer switches the valves according to the defined scheme. The cycle options

enable to specify the number of cycles, and cyclic-steady-state test, which is a convenient

tool in VPSA process. The results are presented in terms of graphs and result values.

31

Figure 14: Aspen Adsorption VPSA flowsheet

It is challenging to make the same scheme in Python, including a pipe with a diameter of

2 mm and a length of 2 m since the sonic flow will be obtained at the pipe outlet during

pressurization. Therefore, it is worth considering a simplified scheme shown in Figure 15

where a constant amount of gas is fed directly into the adsorber.

Figure 15: Simplified Aspen Adsorption VPSA flowsheet

32

6 Results and Discussion

6.1 Multicomponent Equilibrium of Volatile Organic Compon-

ents on Activated Carbon

In this subsection, the equilibrium model will be covered. Usually, the adsorption equilib-

rium data of the gas mixture is not available. Pure equilibrium data is the main ingredient

of understanding how much can be adsorbed in the process. The data for the prescribed

set of components is considered from [14].

The linear form of the Langmuir isotherm:

1

wi

=
1

wmax,i

+
1

bi

1

Pi

1

wmax,i

. (38)

Thus, one can plot the experimental data with 1
wi

on y axis and 1
Pi

on x axis (see Figure 16

for methane). The line in the form y = kx+ a can be constructed with certain accuracy.

One can notice that a in this case is equal to 1
wmax,i

and k is equal to 1
wmax,i

1
b
. From these

expressions wmax,i and b in Eq.(1) (Langmuir isotherm) can be estimated.

Figure 16: Linear form of the Langmuir isotherm for methane

The heat of adsorption may be derived based on the two lines from Figure 16. The

following formula, which is based on Eq.(3), may be used:

Qi =
R

1
T2

− 1
T1

ln(
b2,i
b1,i

). (39)

33

Finally, constant b∞,i can be found.

b∞,i =
bi

exp Qi

RT

(40)

The result of isotherm fitting for methane is shown in Figure 17.

Figure 17: Langmuir isotherm for methane on AC

The figures for isotherm fitting for ethane, propane, butane, nitrogen and carbon dioxide

are shown in Appendix A. The following isotherm parameters are obtained:

Table 9: The main parameters of isotherms at temperature 303 K

Methane Ethane

wmax 0.0016 kmol/kg wmax 0.0027 kmol/kg

b 0.65 bar−1 b 3.06 bar−1

Propane Butane

wmax 0.0062 kmol/kg wmax 0.0076 kmol/kg

b 3.8 bar−1 b 8 bar−1

Carbon Dioxide Nitrogen

wmax 0.0028 kmol/kg wmax 0.0075 kmol/kg

b 0.73 bar−1 b 0.02 bar−1

Measuring the mixture adsorption equilibria is a tedious process, and it is common prac-

tice to build the isotherm model from available pure component adsorption data. The

isotherm parameters from Table 9 can now be used in Extended Langmuir equation for

multicomponent equilibrium description (see Eq.(2)).

34

6.2 Comparison with Cavenati’s experiments

The studies involving (Computational Fluid Dynamics) CFD, in particular, need to be

proved that results can be trusted. First, one should check the numerical implementation:

how numerical aspects such as time step, grid generation, and others affect the accuracy

of the solution. The validation means that the results are coherent with the basic theory

understanding. One can compare the results with experiment cases received independ-

ently. Another option is to compare results obtained from another trustful commercial

software such as Aspen Adsorption, widely used in the literature [17, 24]. In the master

thesis, both methods are used.

The simulation becomes more complicated with an increase in the number of components.

Therefore, it is better first to compare the results with fewer components to prove that

simulation works correctly. For example, Cavenati and co-authors [5] investigated only

two components’ adsorption on activated carbon molecular sieve 3K: methane and carbon

dioxide.

Three models were built to simulate the Cavenati and co-authors experiments [5] described

earlier:

1. Aspen Adsorption model.

2. Python model without pressure drop calculation across the adsorber (model 1 in

Table 4).

3. Python model with pressure drop calculation across the adsorber (model 2 in Table

4).

Figure 18 compares the results of two developed Python models with the Aspen Adsorp-

tion (commercial program) results. The first Python model calculates the adsorber’s gas

flow rate based on the total mass balance assuming negligible pressure drop. The Python

model with pressure drop uses Carman-Kozeny equation (see Eqs. (18) and (20)) to cal-

culate velocity dependence on the pressure. It can be seen from Figure 18 that the two

developed models in Python give a similar result in comparison with Aspen Adsorption

model for the isothermal conditions. That is why it can be argued that the calculation is

carried out correctly with more confidence.

35

Figure 18: Comparison of Aspen Adsorption model and developed Python models 1 and
2 (see Table 4) for Cavenati and co-authors conditions [5]

The calculation time decreases significantly as the grid size decreases. However, this

dramatically affects accuracy and leads to so-called artificial diffusion in both Python

models, which can be seen in Figures 19 and 20. A much denser grid is needed for the

model with pressure drop calculation to reach the desired accuracy.

Figure 19: Comparison of results with different grid size for the Python model without
pressure drop (model 1 (see Table 4))

36

Figure 20: Comparison of results with different grid size for the Python model with
pressure drop (model 2 (see Table 4))

The accuracy of the pressure drop calculations can also be seen in Figure 21 which shows

the comparison of the adsorber top pressure results from the developed Python model

and Aspen Adsorption. The results are approximately the same (note the scale of y-axis

in Figure 21).

Figure 21: Comparison of results for adsorber bottom pressure (Python model 2 (see
Table 4))

An essential part of the simulation is energy balance. Carbon dioxide produces a signific-

ant amount of heat during adsorption. Cavenati et al. also reported a substantial amount

of heat loss to the environment that needs to be considered. Therefore, approximately

37

a wall heat transfer coefficient of 4E-5 MW/m2K was used as a fitting parameter, and

the result is shown in Figure 22. The experimental data reported by Cavenati et al. [5]

includes temperature profiles at three positions of the adsorption bed (0.17, 0.43 and 0.68

m). These temperature profiles were compared with simulated ones.

Figure 22: Comparison of temperature results with experiments (experiment results from
[5]). Python model 3 (see Table 4)

The results reflect the thermal wave well, but cooling occurs more slowly in experiments.

That may be due to the inaccuracy of the component properties (such as heat capacity

of gas and adsorbent). Also, neglecting thermal bed conductivity and inaccuracy in heat

transfer coefficient may affect.

Temperature variations presented in Figure 22 cannot be ignored and isothermal results

represented in Figure 18 would produce errors. Also, the velocity of thermal wave indicates

the velocity of carbon dioxide concentration wave.

Figure 23 shows the simulated breakthrough curves and experiment results for non-

isothermal conditions. The model describes well the trend of breakthrough for methane

and carbon dioxide.

38

Figure 23: Comparison of breakthrough results with experiments (experiment results from
[5]). Python model 3 (see Table 4)

Thus, the developed Python model shows a very good agreement with Cavenati and co-

authors [5] experiments on adsorption step. The results obtained from Aspen Adsorption

is also similar to the results of Python simulation and experiments.

Next, the simulation after 46 cycles is compared (see Figure 24). The flow rates of the

two components, methane, and carbon dioxide, match the experiments well. However,

there is a slight discrepancy in methane flow rates during the adsorber regeneration. The

final desorption pressure of 10 kPa also coincides with what the authors presented in the

article.

Therefore, the model well describes the VPSA Cavenati and co-authors experiments [5].

The geometrical characteristics of the adsorption column are similar to the column used in

VOCs Equinor experiments. However, the number of components is 6 instead of 2, com-

plicating the task. The results of experiment comparison with full range VOCs adsorption

are discussed below.

39

Figure 24: Python simulation VPSA results comparison with experiments from [5] for 46
cycles. Python model 3 (see Table 4)

6.3 Modeling of vacuum pressure swing adsorption for volatile

organic components separation

The simulation is carried out for three cases from the experiments summarized in Table

7. Firstly, the solution to case 1 is described. Since temperature variations do not exceed

10 degrees in the experiments, neglecting temperature calculations should not radically

change the solution. Thus, the isothermal results (Python model 2 (see Table 4)) are

presented below. The main parameters that are fitting to the model are the mass transfer

coefficients. Initially, high mass transfer coefficients are assumed (equal to 1 s−1), which

means that there is almost no mass transfer resistance. External porosity is assumed to be

equal to 0.4, while the total porosity is assumed to be equal to 0.7. The ”dead volumes”

at the top and at the bottom of the adsorber are assumed to be equal to 6e-5 m3.

First cycle pressurization (case 1)

Below the results for case 1 are presented (see Table 7). It is necessary to increase the

pressure in the adsorber from 0.06 bara to 1 bara after the adsorber regeneration. Gas is

supplied with a constant flow rate to the adsorber, while the Aspen Adsorption simulates

gas supply with a pipe of 2 m length (see Figure 14). However, from Figure 25, it can

be seen that the inclusion of a pipe and an adsorber upstream 1 liter vessel does not

40

significantly affect the simulation of pressure gain. Still, including this in the Python

calculation would greatly complicate the model. Instead, the Python model assumes that

constant flow rate directly comes to the adsorber according to the scheme shown in Figure

15.

The Python model shows build up time 133 s., while the Aspen Adsorption predicts

pressure buildup 150 s. The pressurization time is within the 1.5 - 3.5 minutes frame

indicated in the VOCs Equinor experiments. Still, considering that the flow rate of case

1 is relatively high, one would expect the model to produce a pressure increase in about

1.5 minutes, which may indicate that the model exaggerates the amount of adsorbed gas.

Figure 25: Pressure at the bottom of the adsorber

The pressure drop is minimal across the adsorber and is practically not noticeable in

Figure 26, which shows the pressure along the length of the adsorber.

Velocity profiles during pressurization are shown in Figure 27. A constant molar flow

rate is supplied to the adsorber, but the volumetric flow rate varies. The velocity of gas

shows the behavior of volumetric flow rate since the area in the adsorber is constant. The

volumetric flow rate is the largest when the pressure in the adsorber is the smallest (at

the beginning of pressurization), as seen from the velocity figure.

41

Figure 26: Pressure along the adsorber (Python model calculation)

In addition, the velocity rapidly decreases to a value close to zero along the adsorber.

There is a ”dead volume” behind the adsorber that is not filled with the adsorbent. So,

the velocity drops to a value close to zero but not precisely to zero even when the top of

the adsorber is closed.

Figure 27: Velocity along the adsorber during pressurization

42

Penetration profiles after the pressurization step are shown in Figure 28. One can see

the competitive behavior of the components. Methane with carbon dioxide advanced the

farthest, followed by heavier hydrocarbons in order of increasing molecular weight: ethane,

propane, and butane. At the same time, significant adsorption of heavier hydrocarbons

is observed at the bottom of the adsorber since they adsorb more and penetrate less.

Gas phase concentration profile along the ad-
sorber

Amount adsorbed

Figure 28: Gas penetration profiles after pressurization step

First cycle adsorption (case 1)

During the next step, the top of the adsorber is opened, and the pressure in the adsorber

remains constant. As a result, only methane and carbon dioxide are achieved at the

adsorber outlet after 15 min of adsorption, as shown in Figure 29. Furthermore, the

flow rate of methane (0.12 mmol/s) after 400 s. is higher than the inlet flow rate of

methane (0.075 mmol/s), which shows that some methane desorbs due to the competitive

adsorption with other components. Carbon dioxide breakthrough occurs at 400 s., while

other VOCs are fully adsorbed. As a result, carbon dioxide reaches the flow rate of almost

0.08 mmol/s, while the inlet flow rate of this component is 0.04 mmol/s. An increase in

flow rate also happens because some of the carbon dioxide captured in the beginning is

released afterward.

In addition, from the adsorption step results one may see that 100% purity of nitrogen in

the product cannot be achieved under the prescribed conditions.

43

Figure 29: The flow rate of components after 15 min of adsorption

First cycle desorption and purge (case 1)

The pressure in the adsorber is reduced by pumping gas with a vacuum pump. The

pressure decreases from 1 bara to 0.1 bara with a trend shown in Figure 30. In this case,

a significant pressure reduction to approximately 0.2 bara occurs in the first 200 s., and

then the pressure decrease slows down. After 600 s., there is a slight pressure surge as

the purge starts. Also, the pressure drop across the adsorber is almost negligible.

Desorption pressure at the top of the ad-
sorber

Desorption pressure along the adsorber

Figure 30: Pressure during desorption step

44

Velocity calculations are essential for correct boundary pressure determination. As seen

in Figure 31, the volumetric flow rate decreases during desorption. However, the top of

the adsorber opens when the purge starts at 600 s. After this time step, one can see that

velocity increases to match the inlet flow rate of purge gas.

Figure 31: Velocity profiles during desorption

As seen in Figure 32, propane, ethane, and butane are mostly desorbed. Thus, these

components form the main composition of the recycling stream. In the first seconds, a

relatively large flow of nitrogen is observed. Then it almost instantly drops to zero, which

is explained by the low adsorption of this component on activated carbon.

Figure 32: The flow rate of components during desorption and purge (purge starts after
600 s)

45

Cyclic steady state results case 1

Figure 33 shows the change in pressure during the first 8000 s. for case 1 (see Table 7).

The time for pressurization is about 130 s. for this case. When the pressure reaches just

above 1 bara, the adsorption process begins while the pressure remains constant. The

adsorption cycle lasts 15 minutes, after which the vacuum pump is turned on, and the

pressure drops rapidly to 0.1 bara during 300 s. of regeneration. Then pressure rises

slightly after desorption due to the desorption of heavy hydrocarbons with the purge.

The model developed in Aspen Adsorption shows approximately the same pressure result

as the model developed in Python.

Figure 33: Pressure profile for case 1

The four figures shown in Figure 34 represent the molar flow rate of each gas exiting the

adsorber. Cycle 1 means that all four stages were carried out only once: pressurization,

adsorption, desorption, and purge. Thus, the number of cycles means how many times

the whole process consisting of 4 stages was modeled. Initially, the adsorber is assumed to

be in equilibrium with nitrogen at 0.06 bara. However, some other adsorbed components

remain adsorbed after the first cycle, affecting the next cycles. One can see from the

figures below that almost all heavy hydrocarbons are adsorbed in the first cycle, and

only methane and carbon dioxide are achieved at the output. The release of ethane

and propane begins in the subsequent cycles, but butane in all processes is completely

absorbed.

46

The model developed in Aspen Adsorption shows approximately the same result as the

model developed in Python.

(a) Cycle 1 case 1 (b) Cycle 10 case 1

(c) Cycle 20 case 1 (d) Cycle 30 case 1

Figure 34: Molar flow rates exiting the column

Figure 35 shows the capture efficiency for the first case when the cyclic-steady-state is

reached (around 10 cycles). Capture efficiency of 100 % means no flow rate of a component

exiting the column. Capture efficiency of 0 % means that the outlet molar flow rate of

a component is equal to the inlet molar flow rate. The negative efficiency means that

the outlet flow rate is higher than the inlet. The total accumulated parameter shows

the integral of the graph for each component. In other words, the parameter shows how

many moles are accumulated relative to how many moles of a component were supplied

to the adsorber. As one can see from the model the capture of various VOCs happens

47

differently. The competitive behavior can be noticed. Once an equilibrium zone is formed

in AC, components with stronger affinity will push components with less affinity out of

the adsorbent. Consequently, the outlet flow of the ”weak” components will increase

above the inlet flow. It is seen from the figure that heavier components bind to the AC

stronger than lightweight components. The time of breakthrough is decreased in order:

N2, CH4, CO2, C2H6, C3H8, C4H10. According to the model results, highly pure nitrogen

is produced during the first 20 s. Overall the model shows positive capture efficiency of

ethane, propane, and butane adsorption. Total accumulated efficiency is also high for

these components.

Figure 35: Capture efficiency case 1

Cyclic steady state results case 2

Figure 36 shows the change in pressure during the first 8000 s. for case 2 (see Table

7). The pressurization time is increased compared to the first case because the inlet

flow rate is lower. It takes about 160 s. for the second case to pressurize the bed. As

well as in the first case, the adsorption process starts when the pressure reaches 1 bara.

Also, fewer hydrocarbons are adsorbed because of lower flow rate, and consequently,

fewer hydrocarbons desorb, slightly reducing desorption pressure in comparison with the

first case. The model developed in Aspen Adsorption (green line in Figure 36) shows

approximately the same pressure result as the model developed in Python.

Figure 37 represent the molar flow rate of each component exiting the adsorber during the

second case. The exiting gas consists of nitrogen, methane, and carbon dioxide. During

the first 100 s. only nitrogen is produced with 0.3 mmol/s. Methane breakthrough occurs

at around 100 s. reaching 0.07mmol/s at around 700 s., and carbon dioxide breakthrough

occurs at around 400 s. reaching 0.03 mmol/s at 900 s. Heavier hydrocarbons (ethane,

propane, and butane) are fully adsorbed.

48

Figure 36: Pressure profile case 2

Cycle 1 case 2 Cycle 10 case 2

Cycle 20 case 2 Cycle 30 case 2

Figure 37: Molar flow rates exiting the column for case 2

49

Figure 38 shows the capture efficiency for the second case when the cyclic-steady-state is

reached. As in the first case, one can see that heavier HC bind strongly to the adsorbent.

The accumulated efficiency is also significantly higher compared to the first case, reaching

almost 100 % for ethane, propane, and butane. That is because of a substantially lower

flow rate of the inlet gas.

Figure 38: Capture efficiency case 2

Cyclic steady state results case 3

Figure 39 shows the pressure development during the first 8000 s. for case 3 (see Table

7). The pressurization time is increased compared to the previous cases since the inlet

flow rate is lower. According to the model, it takes about 300 s. for the third case to

pressurize the bed. Also, pressure drop during the desorption step is more significant in

this case because fewer components adsorb and, hence, fewer components desorb, causing

the reduction in pressure to 0.05 bara. The difference in the results between the Aspen

Adsorption model and the developed Python model is more prominent in this case. Ac-

cording to the results from commercial software, it takes longer to pressurize the bed.

This error is superimposed on every next cycle, and one can see a more significant differ-

ence than in cases 1 and 2. This difference was also noticeable in Figure 25 during the

pressurization step of the first case, yet this difference becomes more significant with the

inlet flow rate decrease. A possible explanation for this could be that Aspen Adsorption

uses adiabatic conditions to describe pressure derivatives in the adsorbent bed dead space.

In contrast, the simulation in Python uses ideal gas law with the isothermal assumption

for this purpose (see Eqs. 28,29,30,31,32,33). Also, numerical errors can affect bound-

ary pressure. However, the difference between the developed Python model and Aspen

Adsorption in pressurization time should not affect the primary solution.

50

Figure 39: Pressure profile case 3

Cycle 1 case 3 Cycle 10 case 3

Cycle 20 case 3 Cycle 30 case 3

Figure 40: Molar flow rates exiting the column for case 3

51

The four figures shown in Figure 40 represent the molar flow rate of each component

exiting the adsorber during the third case. The results of this case show that methane is

the main product for the prescribed conditions, reaching almost 0.04 mmol/s at 900 s.

The Aspen Adsorption model shows approximately the same result.

Figure 41 shows the capture efficiency for the third case when the cyclic-steady-state is

reached. There is no negative capture efficiency, which means that the exiting flow rate is

less than the inlet flow rate for every component. Total accumulated efficiency is higher

than 75 % for every component.

Figure 41: Capture efficiency case 3

6.4 VOCs simulation comparison with experiments

The described model was used to simulate the three cases of experiments performed by

Equinor. Experimental data that will be compared is the outlet molar flow rates of the

components during the adsorption step.

As can be seen in Figure 42 (flow rate exiting the column for the first case), the model could

not well predict the behavior from the experiments for the first case. The model vividly

overestimates the adsorption capacity for the VOCs. The molar flow rate of nitrogen

is constant in the experiments, while in the model, it is affected by other components,

and, thus, the molar flow rate of nitrogen is higher during the cycle. It is also clear

from the experiments that methane comes through the adsorber, and the breakthrough

of this component happens immediately. The breakthrough of carbon dioxide occurs at

100 s., while the developed model shows the time of 300 s. for this component to start

exiting the column. At the end of the cycle, the model shows a higher molar flow rate

of methane exiting the column because of the delayed breakthrough. In the experiments,

ethane reaches almost 0.25 mmol/s at 700 s. before decreasing to 0.15 mmol/s due to

the breakthrough of propane and butane, which affects the adsorption capacity of ethane.

52

One should compare other cases to see the difference for analyzing the possible improve-

ments of the model for a better prediction of the experiment results.

Figure 42: Comparison with experiments case 1

As can be seen in comparison with the next case, the model prediction is better. However,

only three components can be compared. First, the nitrogen flow rate is higher than in the

experiments. Methane and carbon dioxide breakthroughs coincide; however, the shape of

the flow rate increase is different.

Figure 43: Comparison with experiments case 2

The same situation represents the third case. The nitrogen flow rate is higher than in the

experiments, and methane breakthrough happens simultaneously with a different shape.

53

Figure 44: Comparison with experiments case 3

Case 2 and 3 show better results, which could indicate that as AC becomes less saturated

with heavier HC, the model describes the system better. The possible explanation for

why the results do not coincide is the follows:

1. The model does not correctly predict the equilibrium amount of the gas adsorbed.

In other words, the Extended Langmuir equation based on the pure component

isotherms cannot reasonably predict the mixture behavior, and more complicated

types of isotherms should be checked.

2. The equilibrium data on the adsorbent are not well provided. The data was taken

from the available literature.

3. The linear driving force model for the presented case may not provide a proper

solution. For example, the quadratic and pore diffusion models can be used instead.

4. Some unclear conditions relevant to the experiments but not included in the simu-

lation can affect the results

6.5 Parametric analysis of VPSA configuration

This chapter aims to analyze the effect of adsorption pressure, vacuum pump character-

istics, gas flow rates , and purge flow rates and adsorption cycle time on the adsorption

purity and recovery of each component. This chapter also examines how the results cor-

respond to the expected ones and whether they represent the theoretical understanding.

For this purpose, the second case (see Table 7) is chosen because it is more similar to the

experiment results (see Figure 43).

54

The key indicators of the VPSA efficiency are the components total accumulated effi-

ciency, purity and recovery. The purity shows the relationship between the flow rate of

a component exiting the column to the product flow rate during the adsorption step. In

other words the integral of molar fraction of the component in the product stream during

adsorption step. Eq.(41) is used to calculate this parameter.

Purityi =

∫ tads
0

Fi,product dt∫ tads
0

Fproduct dt
· 100% (41)

here Purityi is the purity of component i [%], tads is the time when adsorption step ends

[s], Fi,product is a molar flow rate of component i in the product during adsorption step

[kmol/s], Fproduct is a total molar flow rate of the product during adsorption step [kmol/s].

The recovery parameter shows how much of the component is achieved in the product

and recycling streams in comparison to the inlet flow rate. The equations to calculate the

recovery of components are:

RecoveryN2 =

∫ tads
0

FN2,product dt−
∫ tPG

0
FN2,recycling dt∫ tPG

0
FN2,feed dt

· 100% (42)

Recoveryi =

∫ tads
0

Fi,recycling dt−
∫ tPG

0
Fi,product dt∫ tPG

0
Fi,feed dt

· 100% (43)

here Recoveryi is the recovery of component i [%], tPG is the time when purge step ends [s],

Fi,recycling is a molar flow rate of component i in the recycling stream during regeneration

and purge [kmol/s], Fi,feed is a feed molar flow rate of a component i in the cycle [kmol/s].

The primary purpose of VOCs separation is to obtain high purity nitrogen at the adsorber

outlet. As for environmental pollutants, it is beneficial to send them back for processing.

The nitrogen recovery parameter indicates what percentage of the incoming nitrogen

stream is recycled and what percentage is sent to the adsorber outlet as the product.

For example, -100 % recovery means that all nitrogen has gone to processing, and 100%

means that all feed nitrogen has gone to the product. Thus, 0% nitrogen recovery would

mean that the nitrogen feed stream is evenly distributed between products and recycled

streams. The other is true for methane, ethane, propane, butane, and carbon dioxide

since sending them for recycling is beneficial. Therefore, for example, 100% recovery for

methane would mean that the entire product was sent for recycling.

The effect of adsorption pressure on the purity and recovery of the components is analyzed

by varying the adsorption pressure from 1 to 4 bara. The cycle schedule is not changed,

except for the pressurization time because it increases with adsorption pressure. Also, the

55

pump characteristics only enable correct calculation of the volumetric flow rate through

the pump until 1 bara, which may give an unrealistic situation in the region above 1 bara.

Moreover, technical constraints due to high pressure should be considered. In addition,

compressor power consumption increases as the adsorption pressure rise. Figure 45 shows

the recovery and purity of nitrogen as pressure grows. As pressure rises, the purity of

nitrogen increases by 13 %, but recovery slightly decreases. Thus, it is favorable to get

higher adsorption pressure, but economic evaluation should be considered.

Figure 45: Nitrogen purity and recovery dependence on adsorption pressure

Figure 46 shows that total accumulated efficiency increases with increasing pressure, and

it tends to 100 % for every component when the nitrogen purity tends to 100% (see Figure

45) .

Figure 46: Total accumulated VOCs efficiency dependence on pressure

With the data of case 2, most of the methane entering the adsorption system goes to

the product during adsorption step. The pressure rise can improve this situation and

increase the methane recovery to 80 % at 3.5 bara. At the same time, the recovery of the

remaining components will be close to 100 % as seen in Figure 47.

56

Figure 47: VOCs recovery pressure dependence

The changes in purity and recovery of nitrogen according to the volumetric flow rate of

the vacuum pump are shown in Figure 48. As the volumetric flow rate decreases, the

final desorption pressure increases. Thus, more adsorbates are left in the adsorbent after

the cycle, which is proven by the weight increase of the adsorbent shown in Figure 49.

As the desorption pressure increases, the purity of nitrogen decreases, but the recovery

increases. Therefore, increasing volumetric flow rate of the pump would be favorable in

terms of AC degradation and product purity.

Figure 48: Nitrogen purity and recovery dependence on volumetric pump flow rate

57

Figure 49: Adsorbent weight increase dependence on volumetric pump flow rate

The effect of gas inlet flow rate on the purity and recovery of the components was analyzed

by varying the inlet gas flow rate from 212 Nml/min to 3212 Nml/min. The results

for nitrogen purity and recovery parameters are shown in Figure 50. As the flow rate

increases, the purity of nitrogen decreases, and recovery gains, meaning that relatively

less nitrogen comes to recycling. One can see that the effect of inlet gas flow rate is

quite strong on both purity and recovery; however, the recovery rate becomes less steep

after 1712 Nml/min. When more gas comes to the adsorber, heavier hydrocarbons tend

to breakthrough earlier, which can be seen by the increase in their purity in Figure 50

and that explains the rapid reduction in purity of nitrogen. Also, the adsorbent weight

increase decreases with inlet gas rate reduction, as shown in Figure 52. Thus, getting a

lower inlet flow rate to the adsorbent is favorable. However, this would require more beds

to treat the same amount of gas.

Figure 50: Nitrogen purity and recovery dependence on gas inlet flow rate

58

Figure 51: VOCs purity dependence on gas inlet flow rate

Figure 52: Adsorbent weight increase dependence on gas inlet flow rate

The effect of the purge flow rate on the purity and recovery of the components was

analyzed by varying the purge gas flow rate from 25 Nml/min to 175 Nml/min. The

purge gas is nitrogen in the model. As expected, nitrogen purity will increase with purge

gas flow rate because the adsorbent will be ”cleaner” after vacuuming. However, as seen

in Figure 53, the drop in nitrogen recovery will be significant because the used nitrogen

for purge will directly go to the recycling.

59

Figure 53: Nitrogen purity and recovery dependence on purge flow rate

The primary purpose of the purge gas is to lower the VOCs partial pressure in the adsorber

and cause their desorption. Thus, increasing the purge rate will cause an improvement

in the purity of the adsorbent, as shown in Figure 54. However, to get an almost ”clean”

adsorbent would require quite high purge flow rate.

Figure 54: Adsorbent weight increase dependence on purge flow rate

Finally, the effect of the adsorption cycle on the purity and recovery of the components

was analyzed by varying adsorption time from 200 s. to 1800 s. As the adsorption

time increases, the breakthrough of VOCs occurs, decreasing the nitrogen purity at the

adsorbent outlet. Recovery change, as seen in Figure 55, is also quite significant.

Figure 55: Nitrogen purity and recovery dependence on adsorption time

60

It is also evident that as the duration of the adsorption stage increases, more VOCs will

be adsorbed, which will cause more significant degradation of the adsorbent, as shown in

Figure 56.

Figure 56: Adsorbent weight increase dependence on adsorption cycle

Thus, recovery and purity are inversely proportional. The same inverse relationship can

be seen in other studies on VPSA adsorption [12, 18, 24]. However, it is challenging to find

works on multicomponent VOCs adsorption optimization. Figure 57 shows the nitrogen

purity dependence on the recovery under the studied parameters. It should be noted that

when changing the parameters of the pump or the amount of purge gas supplied, it is

impossible to achieve 100 % purity of the nitrogen output. Even with a pure adsorbent

under the given conditions of case 2, methane and carbon dioxide will be released, as

seen in Figure 43. Only by changing adsorption capacity of adsorbent or the amount

of gas to be adsorbed, one can get almost 100 % nitrogen purity. It can be seen from

Figure 57 that it is possible to achieve 100 % nitrogen at the outlet by changing the

described parameters only if the maximum nitrogen recovery is around 40 %. Therefore,

if a minimum required output purity is set, it is possible to find an optimal recovery

value and vice versa. However, more work needs to be done to match the experiments to

trust the results given in this chapter. Also, one should consider the economic evaluation

during a particular optimization process.

61

Figure 57: Purity - recovery nitrogen dependence for case 2

62

7 Conclusions

This project reports a model development of VPSA technology in Python applied to

VOCs adsorption. The main conclusions derived from this project are:

1. Literature review shows that some VOCs adsorption was highly investigated, such as

adsorption of methane and carbon dioxide. However, the full range of light alkanes

adsorption modeling needs to be considered more. Extended Langmuir isotherm

model and linear driving force for mass transfer are mostly used for the adsorption

modeling. The most popular software to simulate adsorption process was Aspen

Adsorption.

2. To simulate the adsorption equilibrium characteristics of methane, ethane, propane,

butane, carbon dioxide and nitrogen, an adsorption equilibrium data from Esteves

et al. work [14] was used, and the model parameters were determined using EL

isotherm model.

3. Two models are developed in the Python (with and without pressure drop cal-

culations) to simulate the adsorption step at a constant pressure. Compared to

simulations from the commercial software Aspen Adsorption and experimental res-

ults outlined in Cavenati et al. work [5], the developed Python models showed good

result. Finally, the Python model also described the trend of VPSA .

4. The VOCs adsorption process is modeled with 30 cycles for three different cases.

The cyclic-steady-state is reached at 10th cycle already. The VOCs are methane,

ethane, propane, butane, carbon dioxide, and nitrogen. However, the developed

mass transfer and equilibrium models could not accurately describe the experiments

performed by Equinor. Thus, future work is required for this particular set of

components.

5. Parametric analysis is conducted based on the five crucial variables: gas inlet flow

rate, purge flow rate, adsorption and desorption (vacuum pump characteristic) pres-

sures, and adsorption time. Almost 100 % nitrogen purity can be achieved, meaning

that no VOCs will be emitted. However, this would result in 40% nitrogen recov-

ery, meaning that a considerable amount of nitrogen will be recycled with other

VOCs. One should consider how the changed parameters affect the economy be-

fore performing an optimization analysis. Section 6.5 showed that the model is

consistent with the theoretical understanding. The trends in purity and recovery

coincide with those described earlier in the literature for other components. The

model allows calculations to optimize the process when the model matches with

experiments.

63

8 Proposals of Future Work

The developed Python model for VPSA simulation shows very good agreement with Aspen

Adsorption and Cavenati and co-authors experiments [5]. However, more work is required

to get a good prediction of VOCs VPSA adsorption on AC. Therefore, it is evident that the

parameters for describing these components’ equilibrium and mass transfer are not correct.

Case 2 and case 3 showed better results, which could indicate that as AC becomes less

saturated with heavier hydrocarbons, the model describes adsorption better. One option

to improve the model is to use a more complex scheme for describing multicomponent

equilibrium such as IAST (Ideal Adsorption Solution Theory) which requires the solution

of an implicit algebraic system of equations. Then, it is possible to find the mass transfer

coefficients to describe the experiments obtained with the correct equilibrium model.

Temperature changes were neglected in the modeling of VOCs adsorption. However, this

should not affect the overall result since the temperature variations are 10 degrees. In

case of a more accurate agreement with the experimental results, temperature calculation

should improve the simulation.

Moreover, the number of equations and parameters on which the result depends sig-

nificantly increases with the number of components. Therefore, it would be easier to

understand the discrepancy between the experiments and how one of the components

affects the other if experiments were conducted with fewer components.

Also, the model can be improved to describe the actual process, but at the same time,

complicated. If more accurate results are required, the following adjustments can be

made:

1. General possible improvements.

(a) A more realistic two-dimensional model can be developed.

(b) The model can be extended, and components C5+ may be included.

2. Mass balance possible improvements. Axial dispersion terms can be added.

3. Energy balance possible improvements. The heat of adsorption dependence on tem-

perature and loading may be introduced.

64

Bibliography

[1] Hamid Rajabi et al. ‘Emissions of volatile organic compounds from crude oil pro-

cessing – Global emission inventory and environmental release’. In: Science of the

Total Environment 727 (2020).

[2] OECD: Organisation for European Economic Co-operation. Air and GHG emis-

sions. url: https://data.oecd.org/air/air-and-ghg-emissions.htm.

[3] Wei Wei et al. ‘Characteristics of volatile organic compounds (VOCs) emitted from

a petroleum refinery in Beijing, China’. In: Atmospheric environment 89 (2014).

[4] Activated Carbon in Vapour Recovery Units. url: https://coolsorption.com/wp-

content/uploads/2017/05/TSM feb-mar-2017-Activated-Carbon.pdf.

[5] Simone Cavenati, Carlos A. Grande and Alirio E. Rodrigues. ‘Upgrade of methane

from Landfill gas by pressure swing adsorption’. In: Energy and Fuels 19 (2005),

pp. 5108–5117.

[6] P̊al Søraker. Equinor company report : test of C1-C10 adsorption and desorption on

activated carbon. 2021.

[7] Dereje Tamiru Tefera et al. ‘Modeling Competitive Adsorption of Mixtures of Volat-

ile Organic Compounds in a Fixed-Bed of Beaded Activated Carbon’. In: Environ-

mental Science and Technology 48 (2014), pp. 5108–5117.

[8] Show-Chu Huang, Tsair-Wang Chung and Hung-Ta Wu*. ‘Effects of Molecular

Properties on Adsorption of Six-Carbon VOCs by Activated Carbon in a Fixed

Adsorber’. In: ACS Omega 6 (2021), pp. 5825–5835.

[9] Shanshan Wang et al. ‘A mini-review on the modeling of volatile organic com-

pound adsorption in activated carbons: Equilibrium, dynamics, and heat effects’.

In: Chinese Journal of Chemical Engineering 31 (2021), pp. 153–163.

[10] Duong D. Do. Adsorption Analysis: Equilibria and Kinetics. Imperial College Press,

1998.

[11] Tom R. C. Van Assche, Gino V. Baron and Joeri F. M. Denayer. ‘An explicit

multicomponent adsorption isotherm model: accounting for the size-effect for com-

ponents with Langmuir adsorption behavior’. In: Adsorption 24 (2018).

[12] Young Jun Kim, Young Suk Nam and Yong Tae Kang. ‘Study on a numerical model

and PSA (pressure swing adsorption) process experiment for CH4/CO2 separation

from biogas’. In: Energy (2015), pp. 732–741.

[13] Jinsheng Xiao et al. ‘Thermal effects on breakthrough curves of pressure swing

adsorption for hydrogen purification’. In: International Journal of Hydrogen Energy

41 (2016), pp. 8236–8245.

65

https://data.oecd.org/air/air-and-ghg-emissions.htm
https://coolsorption.com/wp-content/uploads/2017/05/TSM_feb-mar-2017-Activated-Carbon.pdf
https://coolsorption.com/wp-content/uploads/2017/05/TSM_feb-mar-2017-Activated-Carbon.pdf

[14] Isabel A.A.C. Esteves et al. ‘Adsorption of natural gas and biogas components on

activated carbon’. In: Separation and Purification Technology 62 (2008), pp. 281–

296.

[15] Shuangjun Lia et al. ‘Mathematical modeling and numerical investigation of carbon

capture by adsorption: Literature review and case study’. In: Applied Energy 221

(2018), pp. 437–449.

[16] Yonghou Xiao et al. ‘Numerical simulation of low-concentration CO2 adsorption on

fixed bed using finite element analysis’. In: Chinese Journal of Chemical Engineering

(2020), pp. 1–10.

[17] Giorgio Vilardi et al. ‘Exergy and energy analysis of biogas upgrading by pres-

sure swing adsorption:Dynamic analysis of the process’. In: Energy Conversion and

Management 226 (2020).

[18] Sol Ahn et al. ‘Layered two- and four bed PSA processes for H2 recovery from coal

gas’. In: Chemical Engineering Science (2012), pp. 413–423.

[19] P.Cruz et al. ‘Cyclic adsorption separation processes: analysis strategy and optim-

ization procedure’. In: Chemical Engineering Science (2003), pp. 3143–3158.

[20] P.E. Alan Gabelman. ‘Adsorption Basics: Part 1’. In: American Institute of Chem-

ical Engineers (2017), pp. 48–53.

[21] Kevin R. Wood, Y. A. Liu and Yueying Yu. Design, Simulation, and Optimization of

Adsorptive and Chromatographic Separations: A Hands-On Approach. Wiley-VCH

Verlag GmbH and Co. KGaA, 2018.

[22] Vacuum pump VacuuBrand MZ1C. url: https://shop.vacuubrand.com/en/chemistry-

diaphragm-pump-mz-1c-20724100.html#description.

[23] GEKKO Optimization Suite documentation. url: https://gekko.readthedocs.io/en/

latest/.

[24] Ines Duran, Fernando Rubiera and Covadonga Pevida. ‘Modeling a biogas upgrading

PSA unit with a sustainable activated carbon derived from pine sawdust. Sensitivity

analysis on the adsorption of CO2 and CH4 mixtures’. In: Chemical Engineering

Journal 428 (2022).

66

https://shop.vacuubrand.com/en/chemistry-diaphragm-pump-mz-1c-20724100.html#description
https://shop.vacuubrand.com/en/chemistry-diaphragm-pump-mz-1c-20724100.html#description
https://gekko.readthedocs.io/en/latest/
https://gekko.readthedocs.io/en/latest/

Appendix

A Langmuir Isotherms of VOC

Methane Langmuir isotherm Ethane Langmuir isotherm

Propane Langmuir isotherm CH4 Butane Langmuir isotherm

Nitrogen Langmuir isotherm CO2 Langmuir isotherm

Figure 58: Langmuir isotherms of VOC

67

B
E
q
u
in
o
r
V
O
C
s
e
x
p
e
ri
m
e
n
t
re
su

lt
s
fo
r
ca

se
1

T
im

e,
s
N
it
ro
ge
n
,

m
m
ol
/s

M
et
h
an

e,
m
m
ol
/s

C
O
2

m
m
ol
/s

E
th
an

e,
m
m
ol
/s

P
ro
p
an

e,
m
m
ol
/s

B
u
ta
n
e,

m
m
ol
/s

3.
70

0.
36

0.
02

0.
00

0.
00

0.
00

0.
00

50
.7
0

0.
36

0.
05

0.
00

0.
00

0.
00

0.
00

99
.0
0

0.
36

0.
08

0.
01

0.
00

0.
00

0.
00

14
5.
60

0.
36

0.
09

0.
02

0.
00

0.
00

0.
00

19
6.
00

0.
36

0.
08

0.
05

0.
00

0.
00

0.
00

25
5.
90

0.
36

0.
08

0.
07

0.
00

0.
00

0.
00

29
3.
90

0.
36

0.
08

0.
07

0.
00

0.
00

0.
00

34
5.
50

0.
36

0.
08

0.
06

0.
05

0.
01

0.
00

39
9.
20

0.
37

0.
08

0.
05

0.
18

0.
02

0.
00

44
8.
50

0.
36

0.
08

0.
05

0.
20

0.
02

0.
00

50
4.
10

0.
36

0.
08

0.
05

0.
21

0.
02

0.
01

54
9.
70

0.
36

0.
07

0.
05

0.
22

0.
02

0.
01

58
8.
30

0.
36

0.
07

0.
05

0.
22

0.
03

0.
01

65
3.
70

0.
36

0.
07

0.
05

0.
23

0.
03

0.
01

69
3.
50

0.
36

0.
07

0.
05

0.
22

0.
03

0.
01

74
7.
00

0.
36

0.
08

0.
05

0.
22

0.
05

0.
01

79
8.
40

0.
36

0.
07

0.
05

0.
20

0.
09

0.
01

85
1.
60

0.
36

0.
07

0.
04

0.
17

0.
14

0.
02

89
1.
40

0.
36

0.
07

0.
04

0.
17

0.
15

0.
02

68

C
E
q
u
in
o
r
V
O
C
s
e
x
p
e
ri
m
e
n
t
re
su

lt
s
fo
r
ca

se
2

T
im

e,
s
N
it
ro
ge
n
,

m
m
ol
/s

M
et
h
an

e,
m
m
ol
/s

C
O
2

m
m
ol
/s

E
th
an

e,
m
m
ol
/s

P
ro
p
an

e,
m
m
ol
/s

B
u
ta
n
e,

m
m
ol
/s

0
0.
26
2

0.
05
4

0.
02
6

0.
15
8

0.
00
9

0.
00
1

15
1.
4

0.
25
6

0.
00
4

0.
00
0

0.
00
1

0.
00
0

0.
00
0

19
2.
5

0.
25
6

0.
00
7

0.
00
0

0.
00
1

0.
00
0

0.
00
0

29
9.
3

0.
25
6

0.
03
5

0.
00
0

0.
00
0

0.
00
0

0.
00
0

36
3.
8

0.
25
6

0.
05
4

0.
00
0

0.
00
0

0.
00
0

0.
00
0

40
3.
2

0.
25
6

0.
06
2

0.
00
1

0.
00
0

0.
00
0

0.
00
0

45
7.
3

0.
25
6

0.
06
5

0.
00
1

0.
00
0

0.
00
0

0.
00
0

50
0.
6

0.
26
1

0.
06
8

0.
00
2

0.
00
0

0.
00
0

0.
00
0

55
0.
8

0.
25
6

0.
06
6

0.
00
6

0.
00
1

0.
00
0

0.
00
0

60
4.
6

0.
25
6

0.
06
6

0.
01
4

0.
00
1

0.
00
0

0.
00
0

63
9.
5

0.
25
3

0.
06
3

0.
02
4

0.
00
1

0.
00
0

0.
00
0

74
2

0.
25
6

0.
06
1

0.
04
5

0.
00
2

0.
00
0

0.
00
0

82
7.
8

0.
25
6

0.
06
1

0.
04
9

0.
00
2

0.
00
0

0.
00
0

88
0.
7

0.
25
6

0.
06
0

0.
05
1

0.
00
3

0.
00
0

0.
00
0

69

D
E
q
u
in
o
r
V
O
C
s
e
x
p
e
ri
m
e
n
t
re
su

lt
s
fo
r
ca

se
3

T
im

e
N
it
ro
ge
n
,

m
m
ol
/s

M
et
h
an

e,
m
m
ol
/s

C
O
2

m
m
ol
/s

E
th
an

e,
m
m
ol
/s

P
ro
p
an

e,
m
m
ol
/s

B
u
ta
n
e,

m
m
ol
/s

0.
9

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

55
.1

0.
00

0.
00

0.
00

0.
00

0.
00

0.
00

10
3.
3

0.
15

0.
02

0.
03

0.
03

0.
05

0.
01

15
6.
6

0.
15

0.
01

0.
01

0.
00

0.
01

0.
00

21
6.
8

0.
15

0.
00

0.
00

0.
00

0.
00

0.
00

25
7.
4

0.
15

0.
00

0.
00

0.
00

0.
00

0.
00

35
1

0.
15

0.
00

0.
00

0.
00

0.
00

0.
00

41
4.
7

0.
15

0.
01

0.
00

0.
00

0.
00

0.
00

50
5.
1

0.
15

0.
02

0.
00

0.
00

0.
00

0.
00

56
5.
8

0.
15

0.
03

0.
00

0.
00

0.
00

0.
00

64
2.
5

0.
15

0.
03

0.
00

0.
00

0.
00

0.
00

69
1.
3

0.
15

0.
04

0.
00

0.
00

0.
00

0.
00

75
2.
9

0.
15

0.
04

0.
00

0.
00

0.
00

0.
00

80
0.
2

0.
15

0.
04

0.
00

0.
00

0.
00

0.
00

85
3.
1

0.
15

0.
04

0.
00

0.
00

0.
00

0.
00

89
6.
3

0.
15

0.
04

0.
00

0.
00

0.
00

0.
00

70

E Main Code VOCs simulation

import openpyxl

import numpy as np

from gekko import GEKKO

import matplotlib.pyplot as plt

Adsorber bed parameters

L = 0.77 #Length of the bed,m

D = 0.0328 #Diameter of the bed,m

ep = 0.4 #Internal porosity

ei = 0.45 #External porosity

et = ep+ei #Total porosity

V_tank = 6e-5 #"One side dead

rho = 430 #Apparent(bulk) density, kg/m3 #volume",m3

r0 = 2e-3 #Adsorbent pellet radius, m

shape_factor = 1

Process parameters

pressure = 1 #Adsorption step

#pressure, bar

pressure_init = 0.06 #Initial pressure,

#bar

T = 303 #Initial

#temperature, K

time_adsorption = 900 #sec

time_desorption = 600 #sec

time_purge = 300 #sec

Case parameters

#Test 1

Flow_rate = 9.28554E-07# Gas inlet flow rate, kmol/s

Flow_rate_purge = 3.72E-08 # kmol/s

y1_supply = 8.6/100 #CH4 feed

y2_supply = 16.1/100 #C2H6 feed

y3_supply = 22.4/100 #C3H8 feed

y4_supply = 10/100 #C4H10 feed

y5_supply = 4.7/100 #CO2 feed

71

y6_supply = 38.2/100 #N2 feed

#Test 2

Flow_rate = 6.33173E-07# Gas inlet flow rate, kmol/s

Flow_rate_purge = 7.44034E-08 # kmol/s

y1_supply = 8.3/100 #CH4 feed

y2_supply = 16.6/100 #C2H6 feed

y3_supply = 20.8/100 #C3H8 feed

y4_supply = 9.6/100 #C4H10 feed

y5_supply = 4.0/100 #CO2 feed

y6_supply = 40.7/100 #N2 feed

#Test 3

Flow_rate = 3.27375E-07# Gas inlet flow rate, kmol/s

Flow_rate_purge = 1.86008E-08 # kmol/s

y1_supply = 11.7/100 #CH4 feed

y2_supply = 8.7/100 #C2H6 feed

y3_supply = 15.1/100 #C3H8 feed

y4_supply = 5.8/100 #C4H10 feed

y5_supply = 8.7/100 #CO2 feed

y6_supply = 50/100 #N2 feed

Simulation parameters

seg = 100 #Number of space

#grid points

number_cycles = 10

Adsorption isotherm

IP1_CH4 = 0.0016 #kmol/kg

IP2_CH4 = 0 #1/bar

IP3_CH4 = 4.2E-05 #1/bar

IP4_CH4 = 2922.78 #K

IP1_C2H6 = 0.0027 #kmol/kg

IP2_C2H6 = 0.0 #1/bar

IP3_C2H6 = 2.66E-04 #1/bar

IP4_C2H6 = 2833.77 # K

IP1_C3H8 = 0.0062 #kmol/kg

IP2_C3H8 = 0.0 #1/bar

IP3_C3H8 = 3.75E-04 #1/bar

72

IP4_C3H8 = 2795.28 #K

IP1_C4H10 = 0.007 #kmol/kg

IP2_C4H10 = 0.0 #1/bar

IP3_C4H10 = 0.0015 #1/bar

IP4_C4H10 = 2600 #K

IP1_CO2 = 0.0028 #kmol/kg

IP2_CO2 = 0.0 #(kmol/kg)/bar

IP3_CO2 = 0.000748 #1/bar

IP4_CO2 = 2084.44 #K

IP1_N2 = 0.0075 #kmol/kg

IP2_N2 = 0.0 #(kmol/kg)/bar

IP3_N2 = 0.00099 #1/bar

IP4_N2 = 935.77 #K

Mass transfer

MTC = [1,1,1,1,1,1]

#MTC = [CH4,C2H6,C3H8,

#C4H10,CO2,N2] s^-1

#Constants

R = 8.314 #Universal gas constant, J/(mol K)

exp = 2.7182

Main simulation

#Permeability of the bed

B = 10**5*shape_factor**2*(2*r0)**2*ei**3/(150*(1-ei)**2)

K = 1/(B/(1e-5))

#Cross-sectional area of the adsorber

Area = np.pi * D**2/4

#Pressurization step, finding the time to pressurize the

#bed

for cycle_count in range(0,number_cycles):

guess_time = 340 #sec

73

pressure_final = 0

while pressure_final < 1:

m = GEKKO(remote = False) # Create GEKKO model

for adsorption step

print(f"--Cycle number {cycle_count+1}--")

y1_feed = y1_supply

y2_feed = y2_supply

y3_feed = y3_supply

y4_feed = y4_supply

y5_feed = y5_supply

y6_feed = y6_supply

Q1 = IP1_CH4 - IP2_CH4*T # Isotherm max capacity CH4

Q2 = IP1_C2H6 - IP2_C2H6*T # Isotherm max capacity C2H6

Q3 = IP1_C3H8 - IP2_C3H8*T # Isotherm max capacity C3H8

Q4 = IP1_C4H10 - IP2_C4H10*T # Isotherm max capacity C4H10

Q5 = IP1_CO2 - IP2_CO2*T # Isotherm max capacity CO2

Q6 = IP1_N2 - IP2_N2*T # Isotherm max capacity N2

b1 = IP3_CH4*exp**(IP4_CH4/T) # Isotherm affinity coeff. CH4

b2 = IP3_C2H6*exp**(IP4_C2H6/T) # Isotherm affinity coeff. C2H6

b3 = IP3_C3H8*exp**(IP4_C3H8/T) # Isotherm affinity coeff. C3H8

b4 = IP3_C4H10*exp**(IP4_C4H10/T) # Isotherm affinity coeff. C4H10

b5 = IP3_CO2*exp**(IP4_CO2/T) # Isotherm affinity coeff. CO2

b6 = IP3_N2*exp**(IP4_N2/T) # Isotherm affinity coeff. N2

L_seg = L/seg # Grid step size

if cycle_count == 0:

Introduction of pressure variable.

#"seg" - number of grid

points. "pressure_init"

#is set for every

#grid point as an initial condition.

P = [m.Var(pressure_init) for i in range(seg)]

Initial molar fraction

y1 = [m.Var(0) for i in range(seg)]

y2 = [m.Var(0) for i in range(seg)]

74

y3 = [m.Var(0) for i in range(seg)]

y4 = [m.Var(0) for i in range(seg)]

y5 = [m.Var(0) for i in range(seg)]

y6 = [m.Var(1) for i in range(seg)]

v = [m.Var(0) for i in range(seg)]

Initial adsorption capacity for components.

q1 = [m.Var(0) for i in range(seg)]

q2 = [m.Var(0) for i in range(seg)]

q3 = [m.Var(0) for i in range(seg)]

q4 = [m.Var(0) for i in range(seg)]

q5 = [m.Var(0) for i in range(seg)]

q6 = [m.Var((Q6*b6*y6[i].value*P[i].value)

/(1+b6*y6[i].value*P[i].value)) for i in range(seg)]

P1 = m.Var(pressure_init) # Boundary left pressure

P2 = m.Var(pressure_init) # Boundary right pressure

else:

#After purge step

P = [m.Var(pressure_after_purge[-1][-1]) for i in range(seg)]

y1 = [m.Var(methane_after_purge[-1][i]) for i in range(seg)]

y2 = [m.Var(ethane_after_purge[-1][i]) for i in range(seg)]

y3 = [m.Var(propane_after_purge[-1][i]) for i in range(seg)]

y4 = [m.Var(butane_after_purge[-1][i]) for i in range(seg)]

y5 = [m.Var(co2_after_purge[-1][i]) for i in range(seg)]

y6 = [m.Var(n2_after_purge[-1][i]) for i in range(seg)]

v = [m.Var(0) for i in range(seg)]

q1 = [m.Var(q1_after_purge[-1][i]) for i in range(seg)]

q2 = [m.Var(q2_after_purge[-1][i]) for i in range(seg)]

q3 = [m.Var(q3_after_purge[-1][i]) for i in range(seg)]

q4 = [m.Var(q4_after_purge[-1][i]) for i in range(seg)]

q5 = [m.Var(q5_after_purge[-1][i]) for i in range(seg)]

q6 = [m.Var(q6_after_purge[-1][i]) for i in range(seg)]

75

P1 = m.Var(pressure_after_purge[-1][-1])

P2 = m.Var(pressure_after_purge[-1][-1])

#Time discretization

tf = guess_time

nt = int(tf/1) + 1

m.time = np.linspace(0,tf,nt)

#Left boundary pressure

m.Equation(P1.dt() == (P[0]/(V_tank))*(Flow_rate*10**(-2)*R*T

/(P[0])-v[0]*Area))

#Right boundary pressure

m.Equation(P2.dt() == (P2/(V_tank))*(v[seg-1]*Area))

First segment component 1

m.Equation(P[0]*y1[0].dt()+y1[0]*P[0].dt() == (1/(K*et))*

((y1[0]*P[0]*(P[1]-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y1[0]-y1_feed)/(L_seg))

+ y1[0]*((P[0]-P1)/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[0].dt()))

#Middle segments component 1

m.Equations([P[i]*y1[i].dt()+y1[i]*P[i].dt() == \

(1/(K*et))*((y1[i]*P[i]*(P[i+1]

-2*P[i]+P[i-1])/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y1[i]-y1[i-1])/(L_seg))

+ y1[i]*((P[i]-P[i-1])/(L_seg))**2)

- ((1/(et*100))*

(R*T)*rho*q1[i].dt()) for i in range(1,seg-1)])

#Last segment component 1

m.Equation(P[seg-1]*y1[seg-1].dt()+y1[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y1[seg-1]*P[seg-1]*(P2

-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))*((y1[seg-1]

-y1[seg-2])/(L_seg))

+ y1[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[seg-1].dt()))

76

First segment component 2

m.Equation(P[0]*y2[0].dt()+y2[0]*P[0].dt() == (1/(K*et))

*((y2[0]*P[0]*(P[1]

-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y2[0]

-y2_feed)/(L_seg))

+ y2[0]*((P[0]-P1)/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q2[0].dt()))

Middle segments component 2

m.Equations([P[i]*y2[i].dt()+y2[i]*P[i].dt() == \

(1/(K*et))*((y2[i]*P[i]*(P[i+1]-2*P[i]

+P[i-1])/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y2[i]

-y2[i-1])/(L_seg))

+ y2[i]*((P[i]-P[i-1])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q2[i].dt())

for i in range(1,seg-1)])

Last segment component 2

m.Equation(P[seg-1]*y2[seg-1].dt()+y2[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y2[seg-1]*P[seg-1]*(P2-2*P[seg-1]

+P[seg-2])/(L_seg**2))

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))*((y2[seg-1]

-y2[seg-2])/(L_seg))

+ y2[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q2[seg-1].dt()))

First segment component 3

m.Equation(P[0]*y3[0].dt()+y3[0]*P[0].dt() == (1/(K*et))

*((y3[0]*P[0]*(P[1]

-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y3[0]-y3_feed)/(L_seg))

+ y3[0]*((P[0]-P1)/(L_seg))**2) - ((1/(et*100))*(R*T)

*rho*q3[0].dt()))

Middle segments component 3

m.Equations([P[i]*y3[i].dt()+y3[i]*P[i].dt() == \

(1/(K*et))*((y3[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])

77

/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y3[i]-y3[i-1])

/(L_seg))

+ y3[i]*((P[i]-P[i-1])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q3[i].dt())

for i in range(1,seg-1)])

Last segment component 3

m.Equation(P[seg-1]*y3[seg-1].dt()+y3[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y3[seg-1]*P[seg-1]*(P2

-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))*((y3[seg-1]

-y3[seg-2])/(L_seg))

+ y3[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q3[seg-1].dt()))

First segment component 4

m.Equation(P[0]*y4[0].dt()+y4[0]*P[0].dt() == (1/(K*et))*

((y4[0]*P[0]*(P[1]

-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y4[0]-y4_feed)/(L_seg))

+ y4[0]*((P[0]-P1)/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q4[0].dt()))

Middle segments component 4

m.Equations([P[i]*y4[i].dt()+y4[i]*P[i].dt() == \

(1/(K*et))*((y4[i]*P[i]*(P[i+1]

-2*P[i]+P[i-1])/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y4[i]

-y4[i-1])/(L_seg))

+ y4[i]*((P[i]-P[i-1])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q4[i].dt())

for i in range(1,seg-1)])

Last segment component 4

m.Equation(P[seg-1]*y4[seg-1].dt()+y4[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y4[seg-1]*P[seg-1]*(P2

-2*P[seg-1]+P[seg-2])/(L_seg**2))

78

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))

*((y4[seg-1]-y4[seg-2])/(L_seg))

+ y4[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q4[seg-1].dt()))

#First segment component 5

m.Equation(P[0]*y5[0].dt()+y5[0]*P[0].dt() ==

(1/(K*et))*((y5[0]*P[0]*(P[1]

-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y5[0]-y5_feed)/(L_seg))

+ y5[0]*((P[0]-P1)/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q5[0].dt()))

#Middle segments component 5

m.Equations([P[i]*y5[i].dt()+y5[i]*P[i].dt() == \

(1/(K*et))*((y5[i]*P[i]*(P[i+1]

-2*P[i]+P[i-1])/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y5[i]

-y5[i-1])/(L_seg)) + y5[i]*((P[i]

-P[i-1])/(L_seg))**2)

- ((1/(et*100))*

(R*T)*rho*q5[i].dt()) for i in range(1,seg-1)])

#Last segment component 5

m.Equation(P[seg-1]*y5[seg-1].dt()+y5[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y5[seg-1]*P[seg-1]*(P2-2*P[seg-1]

+P[seg-2])/(L_seg**2))

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))

*((y5[seg-1]-y5[seg-2])/(L_seg))

+ y5[seg-1]*((P[seg-1]

-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q5[seg-1].dt()))

First segment component 6

m.Equation(P[0]*y6[0].dt()+y6[0]*P[0].dt() ==

(1/(K*et))*((y6[0]*P[0]*(P[1]-2*P[0]+P1)/(L_seg**2))

+ P[0]*((P[0]-P1)/(L_seg))*((y6[0]-y6_feed)/(L_seg))

+ y6[0]*((P[0]-P1)/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q6[0].dt()))

79

Middle segments component 6

m.Equations([P[i]*y6[i].dt()+y6[i]*P[i].dt() == \

(1/(K*et))*((y6[i]*P[i]*(P[i+1]

-2*P[i]+P[i-1])/(L_seg**2))

+ P[i]*((P[i]-P[i-1])/(L_seg))*((y6[i]-y6[i-1])/(L_seg))

+ y6[i]*((P[i]-P[i-1])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q6[i].dt())

for i in range(1,seg-1)])

Last segment component 6

m.Equation(P[seg-1]*y6[seg-1].dt()+y6[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y6[seg-1]*P[seg-1]*(P2-2*P[seg-1]

+P[seg-2])/(L_seg**2))

+ P[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))*((y6[seg-1]

-y6[seg-2])/(L_seg))

+ y6[seg-1]*((P[seg-1]-P[seg-2])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q6[seg-1].dt()))

#Velocity calculation

m.Equation(v[0] == -(1/K)*(P[1]-P[0])/(L_seg))

m.Equation([v[i] == -(1/K)*(P[i+1]-P[i])/(L_seg)

for i in range(1,seg-1)])

m.Equation(v[seg-1] == -(1/K)*(P2-P[seg-1])/(L_seg))

Sum of all component molar fraction == 1

m.Equation([y1[i] + y2[i] + y3[i] + y4[i] + y5[i] + y6[i] == 1

for i in range(0,seg)])

#Solid mass balance

m.Equation([q1[i].dt() == - MTC[0]*(q1[i] -

(Q1*b1*y1[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]

+b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i])))

for i in range(0,seg)])

m.Equation([q2[i].dt() == - MTC[1]*(q2[i]

- (Q2*b2*y2[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]

+b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i])))

for i in range(0,seg)])

m.Equation([q3[i].dt() == - MTC[2]*(q3[i]

- (Q3*b3*y3[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]

+b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i])))

80

for i in range(0,seg)])

m.Equation([q4[i].dt() == - MTC[3]*(q4[i]

- (Q4*b4*y4[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]

+b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i])))

for i in range(0,seg)])

m.Equation([q5[i].dt() == - MTC[4]*(q5[i]

- (Q5*b5*y5[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]

+b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i])))

for i in range(0,seg)])

m.Equation([q6[i].dt() == - MTC[5]*(q6[i]

- (Q6*b6*y6[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]

+b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i])))

for i in range(0,seg)])

print("Start Pressurization")

m.options.IMODE = 7

m.solve(disp = False)

print("Finished pressurization")

pressure_final = P1[-1]

guess_time = guess_time + 10

For plotting

methane_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

methane_after_press[i] = np.array(y1[i].value)

methane_after_press= methane_after_press.T

ethane_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

ethane_after_press[i] = np.array(y2[i].value)

ethane_after_press= ethane_after_press.T

propane_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

propane_after_press[i] = np.array(y3[i].value)

propane_after_press= propane_after_press.T

butane_after_press = np.empty((seg,len(m.time)))

81

for i in range(seg):

butane_after_press[i] = np.array(y4[i].value)

butane_after_press= butane_after_press.T

co2_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

co2_after_press[i] = np.array(y5[i].value)

co2_after_press= co2_after_press.T

n2_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

n2_after_press[i] = np.array(y6[i].value)

n2_after_press= n2_after_press.T

q1_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

q1_after_press[i] = np.array(q1[i].value)

q1_after_press= q1_after_press.T

q2_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

q2_after_press[i] = np.array(q2[i].value)

q2_after_press= q2_after_press.T

q3_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

q3_after_press[i] = np.array(q3[i].value)

q3_after_press= q3_after_press.T

q4_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

q4_after_press[i] = np.array(q4[i].value)

q4_after_press= q4_after_press.T

q5_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

q5_after_press[i] = np.array(q5[i].value)

q5_after_press= q5_after_press.T

82

q6_after_press = np.empty((seg,len(m.time)))

for i in range(seg):

q6_after_press[i] = np.array(q6[i].value)

q6_after_press= q6_after_press.T

#Write the results to Excel file

if cycle_count == number_cycles - 1:

velocity_out = np.array(v[seg-2])

pressure_out = np.array(P[seg-2])

methane_out = np.array(y1[seg-2])

ethane_out = np.array(y2[seg-2])

propane_out = np.array(y3[seg-2])

butane_out = np.array(y4[seg-2])

co2_out = np.array(y5[seg-2])

n2_out = np.array(y6[seg-2])

flow_methane = [0,0]

flow_ethane = [0,0]

flow_propane = [0,0]

flow_butane = [0,0]

flow_co2 = [0,0]

flow_n2 = [0,0]

old_indices = np.arange(0,len(flow_methane))

new_length = 100

new_indices = np.linspace(0,len(flow_methane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_methane,k=1,s=0)

flow_methane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_ethane))

new_length = 100

new_indices = np.linspace(0,len(flow_ethane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_ethane,k=1,s=0)

flow_ethane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_propane))

new_length = 100

83

new_indices = np.linspace(0,len(flow_propane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_propane,k=1,s=0)

flow_propane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_butane))

new_length = 100

new_indices = np.linspace(0,len(flow_butane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_butane,k=1,s=0)

flow_butane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_co2))

new_length = 100

new_indices = np.linspace(0,len(flow_co2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_co2,k=1,s=0)

flow_co2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_n2))

new_length = 100

new_indices = np.linspace(0,len(flow_n2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_n2,k=1,s=0)

flow_n2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(pressure_out))

new_length = 100

new_indices = np.linspace(0,len(pressure_out)-1,new_length)

spl = UnivariateSpline(old_indices,pressure_out,k=1,s=0)

pressure_out = np.abs(spl(new_indices))

old_indices = np.arange(0,len(m.time))

new_length = 100

new_indices = np.linspace(0,len(m.time)-1,new_length)

spl = UnivariateSpline(old_indices,m.time,k=1,s=0)

time = np.abs(spl(new_indices))

np_array_rows = (time,pressure_out,flow_methane,flow_ethane,

flow_propane,flow_butane,flow_co2,flow_n2)

with open('results_test.csv','a') as csvfile:

np.savetxt(csvfile, np_array_rows , delimiter=',',

84

header='Press',fmt='%s', comments='')

#Adsorption step

print("Adsorption step started")

m = GEKKO(remote = False) # create GEKKO model for ads. step

#Time discretization for the model for adsorption step

tf = time_adsorption

nt = int(tf/10) + 1

m.time = np.linspace(0,tf,nt)

#Inlet molar fractions

y1_feed = y1_supply

y2_feed = y2_supply

y3_feed = y3_supply

y4_feed = y4_supply

y5_feed = y5_supply

y6_feed = y6_supply

The length of a segment

L_seg = L/seg

Variables formulation

P = [m.Var(pressure) for i in range(seg)]

y1 = [m.Var(methane_after_press[-1][i]) for i in range(seg)]

y2 = [m.Var(ethane_after_press[-1][i]) for i in range(seg)]

y3 = [m.Var(propane_after_press[-1][i]) for i in range(seg)]

y4 = [m.Var(butane_after_press[-1][i]) for i in range(seg)]

y5 = [m.Var(co2_after_press[-1][i]) for i in range(seg)]

y6 = [m.Var(n2_after_press[-1][i]) for i in range(seg)]

u_initial = Flow_rate*R*T/(Area*pressure*10**2)

v = [m.Var(0) for i in range(seg)]

q1 = [m.Var(q1_after_press[-1][i]) for i in range(seg)]

q2 = [m.Var(q2_after_press[-1][i]) for i in range(seg)]

q3 = [m.Var(q3_after_press[-1][i]) for i in range(seg)]

q4 = [m.Var(q4_after_press[-1][i]) for i in range(seg)]

q5 = [m.Var(q5_after_press[-1][i]) for i in range(seg)]

q6 = [m.Var(q6_after_press[-1][i]) for i in range(seg)]

First segment component 1

m.Equation(P[0]*y1[0].dt()+y1[0]*P[0].dt() ==

- (u_initial/(et))*(y1[0]*(P[0]-pressure)/(L_seg)

+P[0]*(y1[0]-y1_feed)/(L_seg))

85

- (P[0]*y1[0]/(et))*((v[0]-u_initial)/(L_seg))

- (rho/(10**2*et))*R*T*q1[0].dt())

#Middle segments component 1

m.Equation([P[i]*y1[i].dt()+y1[i]*P[i].dt() == -

(v[i]/(et))*(y1[i]*(P[i]-P[i-1])/(L_seg)

+P[i]*(y1[i]-y1[i-1])/(L_seg))

- (P[i]*y1[i]/(et))*((v[i]-v[i-1])/(L_seg))

- (rho/(10**2*et))*R*T*q1[i].dt()

for i in range(1,seg-1)])

Last segment component 1

m.Equation(P[seg-1]*y1[seg-1].dt()+y1[seg-1]*P[seg-1].dt() ==

- (v[seg-1]/(et))*(y1[seg-1]*(P[seg-1]-P[seg-2])/(L_seg)

+ P[seg-1]*(y1[seg-1]-y1[seg-2])/(L_seg))

- (P[seg-1]*y1[seg-1]/(et))*((v[seg-1]-v[seg-2])/(L_seg))

- (rho/(10**2*et))*R*T*q1[seg-1].dt())

#First segment component 2

m.Equation(P[0]*y2[0].dt()+y2[0]*P[0].dt() ==

- (u_initial/(et))*(y2[0]*(P[0]-pressure)/(L_seg)

+ P[0]*(y2[0]-y2_feed)/(L_seg))

- (P[0]*y2[0]/(et))*((v[0]-u_initial)/(L_seg))

- (rho/(10**2*et))*R*T*q2[0].dt())

#Middle segments component 2

m.Equation([P[i]*y2[i].dt()+y2[i]*P[i].dt() ==

- (v[i]/(et))*(y2[i]*(P[i]-P[i-1])/(L_seg)

+ P[i]*(y2[i]-y2[i-1])/(L_seg))

- (P[i]*y2[i]/(et))*((v[i]-v[i-1])/(L_seg))

- (rho/(10**2*et))*R*T*q2[i].dt() for i in range(1,seg-1)])

#Last segment component 2

m.Equation(P[seg-1]*y2[seg-1].dt()+y2[seg-1]*P[seg-1].dt() ==

- (v[seg-1]/(et))*(y2[seg-1]*(P[seg-1]-P[seg-2])/(L_seg)

+ P[seg-1]*(y2[seg-1]-y2[seg-2])/(L_seg))

- (P[seg-1]**y2[seg-1]/(et))*((v[seg-1]-v[seg-2])/(L_seg))

- (rho/(10**2*et))*R*T*q2[seg-1].dt())

86

#First segment component 3

m.Equation(P[0]*y3[0].dt()+y3[0]*P[0].dt() ==

- (u_initial/(et))*(y3[0]*(P[0]-pressure)/(L_seg)

+ P[0]*(y3[0]-y3_feed)/(L_seg))

- (P[0]*y3[0]/(et))*((v[0]-u_initial)/(L_seg))

- (rho/(10**2*et))*R*T*q3[0].dt())

#Middle segments component 3

m.Equation([P[i]*y3[i].dt()+y3[i]*P[i].dt() ==

- (v[i]/(et))*(y3[i]*(P[i]-P[i-1])/(L_seg)

+P[i]*(y3[i]-y3[i-1])/(L_seg))

- (P[i]*y3[i]/(et))*((v[i]-v[i-1])/(L_seg))

- (rho/(10**2*et))*R*T*q3[i].dt() for i in range(1,seg-1)])

#Last segment component 3

m.Equation(P[seg-1]*y3[seg-1].dt()+y3[seg-1]*P[seg-1].dt() ==

- (v[seg-1]/(et))*(y3[seg-1]*(P[seg-1]-P[seg-2])/(L_seg)

+ P[seg-1]*y3[seg-1]*(y3[seg-1]-y3[seg-2])/(L_seg))

- (P[seg-1]*y3[seg-1]/(et))*((v[seg-1]-v[seg-2])/(L_seg))

- (rho/(10**2*et))*R*T*q3[seg-1].dt())

#First segment component 4

m.Equation(P[0]*y4[0].dt()+y4[0]*P[0].dt() ==

- (u_initial/(et))*(y4[0]*(P[0]-pressure)/(L_seg)

+P[0]*(y4[0]-y4_feed)/(L_seg))

- (P[0]*y4[0]/(et))*((v[0]-u_initial)/(L_seg))

- (rho/(10**2*et))*R*T*q4[0].dt())

#Middle segments component 4

m.Equation([P[i]*y4[i].dt()+y4[i]*P[i].dt() ==

- (v[i]/(et))*(y4[i]*(P[i]-P[i-1])/(L_seg)

+P[i]*(y4[i]-y4[i-1])/(L_seg))

- (P[i]*y4[i]/(et))*((v[i]-v[i-1])/(L_seg))

- (rho/(10**2*et))*R*T*q4[i].dt()

for i in range(1,seg-1)])

#Last segment component 4

m.Equation(P[seg-1]*y4[seg-1].dt()+y4[seg-1]*P[seg-1].dt() ==

- (v[seg-1]/(et))*(y4[seg-1]*(P[seg-1]-P[seg-2])/(L_seg)

87

+P[seg-1]*y4[seg-1]*(y4[seg-1]-y4[seg-2])/(L_seg))

- (P[seg-1]*y4[seg-1]/(et))*((v[seg-1]-v[seg-2])/(L_seg))

- (rho/(10**2*et))*R*T*q4[seg-1].dt())

#First segment component 5

m.Equation(P[0]*y5[0].dt()+y5[0]*P[0].dt() ==

- (u_initial/(et))*(y5[0]*(P[0]-pressure)/(L_seg)

+P[0]*(y5[0]-y5_feed)/(L_seg))

- (P[0]*y5[0]/(et))*((v[0]-u_initial)/(L_seg))

- (rho/(10**2*et))*R*T*q5[0].dt())

#Middle segments component 5

m.Equation([P[i]*y5[i].dt()+y5[i]*P[i].dt() ==

- (v[i]/(et))*(y4[i]*(P[i]-P[i-1])/(L_seg)

+P[i]*(y5[i]-y5[i-1])/(L_seg))

- (P[i]*y5[i]/(et))*((v[i]-v[i-1])/(L_seg))

- (rho/(10**2*et))*R*T*q5[i].dt() for i in range(1,seg-1)])

#Last segment component 5

m.Equation(P[seg-1]*y5[seg-1].dt()+y5[seg-1]*P[seg-1].dt() ==

- (v[seg-1]/(et))*(y5[seg-1]*(P[seg-1]-P[seg-2])/(L_seg)

+ P[seg-1]*y5[seg-1]*(y5[seg-1]-y5[seg-2])/(L_seg))

- (P[seg-1]*y5[seg-1]/(et))*((v[seg-1]-v[seg-2])/(L_seg))

- (rho/(10**2*et))*R*T*q5[seg-1].dt())

#First segment component 6

m.Equation(P[0]*y6[0].dt()+y6[0]*P[0].dt() ==

- (u_initial/(et))*(y6[0]*(P[0]-pressure)/(L_seg)

+ P[0]*(y6[0]-y6_feed)/(L_seg))

- (P[0]*y6[0]/(et))*((v[0]-u_initial)/(L_seg))

- (rho/(10**2*et))*R*T*q6[0].dt())

#Middle segments component 6

m.Equation([P[i]*y6[i].dt()+y6[i]*P[i].dt() ==

- (v[i]/(et))*(y6[i]*(P[i]-P[i-1])/(L_seg)

+ P[i]*(y6[i]-y6[i-1])/(L_seg))

- (P[i]*y6[i]/(et))*((v[i]-v[i-1])/(L_seg))

- (rho/(10**2*et))*R*T*q6[i].dt() for i in range(1,seg-1)])

#Last segment component 6

m.Equation(P[seg-1]*y6[seg-1].dt()+y6[seg-1]*P[seg-1].dt() ==

- (v[seg-1]/(et))*(y6[seg-1]*(P[seg-1]-P[seg-2])/(L_seg)

+ P[seg-1]*y6[seg-1]*(y6[seg-1]-y6[seg-2])/(L_seg))

88

- (P[seg-1]*y6[seg-1]/(et))*((v[seg-1]-v[seg-2])/(L_seg))

- (rho/(10**2*et))*R*T*q6[seg-1].dt())

#Velocity calculation

m.Equation(v[0] == -(1/K)*(P[0]-pressure)/(L_seg))

m.Equation([v[i] == -(1/K)*(P[i]-P[i-1])/(L_seg)

for i in range(1,seg-1)])

m.Equation(v[seg-1] == -(1/K)*(P[seg-1]-P[seg-2])/(L_seg))

#Sum of molar fractions == 1

m.Equation([y1[i] + y2[i] + y3[i] + y4[i] + y5[i] + y6[i] == 1

for i in range(0,seg)])

#Solid mass balance

m.Equation([q1[i].dt() == -MTC[0]*(q1[i]

- (Q1*b1*y1[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q2[i].dt() == -MTC[1]*(q2[i]

- (Q2*b2*y2[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q3[i].dt() == -MTC[2]*(q3[i]

- (Q3*b3*y3[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q4[i].dt() == -MTC[3]*(q4[i]

- (Q4*b4*y4[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q5[i].dt() == -MTC[4]*(q5[i]

- (Q5*b5*y5[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q6[i].dt() == -MTC[5]*(q6[i]

- (Q6*b6*y6[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

Simulation

m.options.IMODE = 7

m.solve(disp = False)

print("Finished Adsorption Step")

89

Write the results

if cycle_count == number_cycles - 1:

velocity_out = np.array(v[seg-2])

pressure_out = np.array(P[seg-2])

methane_out = np.array(y1[seg-2])

ethane_out = np.array(y2[seg-2])

propane_out = np.array(y3[seg-2])

butane_out = np.array(y4[seg-2])

co2_out = np.array(y5[seg-2])

n2_out = np.array(y6[seg-2])

flow_methane = (velocity_out*Area*methane_out*

pressure_out*10**8/(R*T))

flow_ethane = (velocity_out*Area*ethane_out*

pressure_out*10**8/(R*T))

flow_propane = (velocity_out*Area*propane_out*

pressure_out*10**8/(R*T))

flow_butane = (velocity_out*Area*butane_out*

pressure_out*10**8/(R*T))

flow_co2 = (velocity_out*Area*co2_out*

pressure_out*10**8/(R*T))

flow_n2 = (velocity_out*Area*n2_out*

pressure_out*10**8/(R*T))

old_indices = np.arange(0,len(flow_methane))

new_length = 100

new_indices = np.linspace(0,len(flow_methane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_methane,k=1,s=0)

flow_methane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_ethane))

new_length = 100

new_indices = np.linspace(0,len(flow_ethane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_ethane,k=1,s=0)

flow_ethane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_propane))

90

new_length = 100

new_indices = np.linspace(0,len(flow_propane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_propane,k=1,s=0)

flow_propane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_butane))

new_length = 100

new_indices = np.linspace(0,len(flow_butane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_butane,k=1,s=0)

flow_butane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_co2))

new_length = 100

new_indices = np.linspace(0,len(flow_co2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_co2,k=1,s=0)

flow_co2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_n2))

new_length = 100

new_indices = np.linspace(0,len(flow_n2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_n2,k=1,s=0)

flow_n2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(pressure_out))

new_length = 100

new_indices = np.linspace(0,len(pressure_out)-1,new_length)

spl = UnivariateSpline(old_indices,pressure_out,k=1,s=0)

pressure_out = np.abs(spl(new_indices))

old_indices = np.arange(0,len(m.time))

new_length = 100

new_indices = np.linspace(0,len(m.time)-1,new_length)

spl = UnivariateSpline(old_indices,m.time,k=1,s=0)

time = np.abs(spl(new_indices))

np_array_rows = (time,pressure_out,flow_methane,flow_ethane,

flow_propane,flow_butane,flow_co2,flow_n2)

with open('results_test3.csv','a') as csvfile:

91

np.savetxt(csvfile, np_array_rows , delimiter=',',

header='ADS',fmt='%s', comments='')

#Values for the next step

y1_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y1_val[i] = np.array(y1[i].value)

y1_val[seg-1] = y1[seg-2]

y1_val = y1_val.T

methane_after_ads = y1_val

y2_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y2_val[i] = np.array(y2[i].value)

y2_val[seg-1] = y2[seg-2]

y2_val = y2_val.T

ethane_after_ads = y2_val

y3_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y3_val[i] = np.array(y3[i].value)

y3_val[seg-1] = y3[seg-2]

y3_val = y3_val.T

propane_after_ads = y3_val

y4_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y4_val[i] = np.array(y4[i].value)

y4_val[seg-1] = y4[seg-2]

y4_val = y4_val.T

butane_after_ads = y4_val

y5_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y5_val[i] = np.array(y5[i].value)

y5_val[seg-1] = y5[seg-2]

y5_val = y5_val.T

co2_after_ads = y5_val

y6_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y6_val[i] = np.array(y6[i].value)

92

y6_val[seg-1] = y6[seg-2]

y6_val = y6_val.T

n2_after_ads = y6_val

q1_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q1_val[i] = np.array(q1[i].value)

q1_val[seg-1] = q1[seg-2]

q1_val = q1_val.T

q1_after_ads = q1_val

q2_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q2_val[i] = np.array(q2[i].value)

q2_val[seg-1] = q2[seg-2]

q2_val = q2_val.T

q2_after_ads = q2_val

q3_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q3_val[i] = np.array(q3[i].value)

q3_val[seg-1] = q3[seg-2]

q3_val = q3_val.T

q3_after_ads = q3_val

q4_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q4_val[i] = np.array(q4[i].value)

q4_val[seg-1] = q4[seg-2]

q4_val = q4_val.T

q4_after_ads = q4_val

q5_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q5_val[i] = np.array(q5[i].value)

q5_val[seg-1] = q5[seg-2]

93

q5_val = q5_val.T

q5_after_ads = q5_val

q6_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q6_val[i] = np.array(q6[i].value)

q6_val[seg-1] = q6[seg-2]

q6_val = q6_val.T

q6_after_ads = q6_val

#Segment length

L_seg = 1/seg

m = GEKKO(remote = False) # create GEKKO model for des.step

#Time discretization

tf = time_desorption

nt = int(tf/10) + 1

m.time = np.linspace(0,tf,nt)

#Variables formulation

P = [m.Var(pressure) for i in range(seg)]

P1 = m.Var(pressure)

P2 = m.Var(pressure)

y1 = [m.Var(methane_after_ads[-1][i]) for i in range(seg)]

y2 = [m.Var(ethane_after_ads[-1][i]) for i in range(seg)]

y3 = [m.Var(propane_after_ads[-1][i]) for i in range(seg)]

y4 = [m.Var(butane_after_ads[-1][i]) for i in range(seg)]

y5 = [m.Var(co2_after_ads[-1][i]) for i in range(seg)]

y6 = [m.Var(n2_after_ads[-1][i]) for i in range(seg)]

v = [m.Var(0) for i in range(seg)]

q1 = [m.Var(q1_after_ads[-1][i]) for i in range(seg)]

q2 = [m.Var(q2_after_ads[-1][i]) for i in range(seg)]

q3 = [m.Var(q3_after_ads[-1][i]) for i in range(seg)]

q4 = [m.Var(q4_after_ads[-1][i]) for i in range(seg)]

q5 = [m.Var(q5_after_ads[-1][i]) for i in range(seg)]

q6 = [m.Var(q6_after_ads[-1][i]) for i in range(seg)]

Q_pump = m.Var(0.8 / 3600)

#Boundary pressures

94

m.Equation(P2.dt() == (P2/(V_tank))*(v[seg-1]*Area))

m.Equation(P1.dt() == (-((P[0])*Q_pump)/(V_tank)

- (P[0]*v[0]*Area)/(V_tank)))

#Pump volumetric flow rate

m.Equation(Q_pump == 0.0001974563*P[0]**(0.627027))

First segment component 1

m.Equation(P[0]*y1[0].dt()+y1[0]*P[0].dt() ==

(1/(K*et))*((y1[0]*P[0]*(P[1]

- 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y1[1]-y1[0])/(L_seg))

+ y1[1]*((P[1]-P[0])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[0].dt()))

Middle segments component 1

m.Equations([P[i]*y1[i].dt()+y1[i]*P[i].dt() == \

(1/(K*et))*((y1[i]*P[i]*(P[i+1]

-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y1[i+1]-y1[i])/(L_seg))

+ y1[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- (1/(et*100))*(R*T)*rho*q1[i].dt()

for i in range(1,seg-1)])

Last segment component 1

m.Equation(P[seg-1]*y1[seg-1].dt()+y1[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y1[seg-1]*P[seg-1]*(-P[seg-1]+P[seg-2])

/(L_seg**2)))

- ((1/(et*100))*(R*T)*rho*q1[seg-1].dt()))

First segment component 2

m.Equation(P[0]*y2[0].dt()+y2[0]*P[0].dt() == (1/(K*et))*((y2[0]*P[0]

*(P[1]- 2*P[0] + P1)/(L_seg**2)) + P[1]*((P[1]-P[0])

/(L_seg))*((y2[1]-y2[0])/(L_seg))

+ y2[1]*((P[1]-P[0])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q2[0].dt()))

Middle segments component 2

95

m.Equations([P[i]*y2[i].dt()+y2[i]*P[i].dt() == \

(1/(K*et))*((y2[i]*P[i]*(P[i+1]-2*P[i]

+P[i-1])/(L_seg**2)) + P[i+1]*((P[i+1]

-P[i])/(L_seg))*((y2[i+1]-y2[i])/(L_seg))

+ y2[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q2[i].dt()

for i in range(1,seg-1)])

Last segment component 2

m.Equation(P[seg-1]*y2[seg-1].dt()+y2[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y2[seg-1]*P[seg-1]*(-P[seg-1]

+P[seg-2])/(L_seg**2)))

- ((1/(et*100))*(R*T))*rho*q2[seg-1].dt())

First segment component 3

m.Equation(P[0]*y3[0].dt()+y3[0]*P[0].dt() ==

(1/(K*et))*((y3[0]*P[0]*(P[1] - 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y3[1]-y3[0])/(L_seg))

+ y3[1]*((P[1]-P[0])/(L_seg))**2) - ((1/(et*100))*(R*T)*rho*q3[0].dt()))

Middle segments component 3

m.Equations([P[i]*y3[i].dt()+y3[i]*P[i].dt() == \

(1/(K*et))*((y3[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y3[i+1]-y3[i])/(L_seg))

+ y3[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q3[i].dt()

for i in range(1,seg-1)])

Last segment component 3

m.Equation(P[seg-1]*y3[seg-1].dt()+y3[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y3[seg-1]*P[seg-1]*(-P[seg-1]+P[seg-2])

/(L_seg**2))) - ((1/(et*100))*(R*T))*rho*q3[seg-1].dt())

First segment component 4

m.Equation(P[0]*y4[0].dt()+y4[0]*P[0].dt() ==

(1/(K*et))*((y4[0]*P[0]*(P[1] - 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y4[1]-y4[0])/(L_seg))

96

+ y4[1]*((P[1]-P[0])/(L_seg))**2) - ((1/(et*100))*(R*T)*rho*q4[0].dt()))

Middle segments component 4

m.Equations([P[i]*y4[i].dt()+y4[i]*P[i].dt() == \

(1/(K*et))*((y4[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y4[i+1]-y4[i])/(L_seg))

+ y4[i+1]*((P[i+1]-P[i])/(L_seg))**2) \

- ((1/(et*100))*(R*T))*rho*q4[i].dt()

for i in range(1,seg-1)])

Last segment component 4

m.Equation(P[seg-1]*y4[seg-1].dt()+y4[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y4[seg-1]*P[seg-1]*(-P[seg-1]+P[seg-2])/(L_seg**2)))

- ((1/(et*100))*(R*T))*rho*q4[seg-1].dt())

First segment component 5

m.Equation(P[0]*y5[0].dt()+y5[0]*P[0].dt() == (1/(K*et))

*((y5[0]*P[0]*(P[1]

- 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y5[1]-y5[0])/(L_seg))

+ y5[1]*((P[1]-P[0])/(L_seg))**2) - ((1/(et*100))*(R*T)*rho*q5[0].dt()))

Middle segments component 5

m.Equations([P[i]*y5[i].dt()+y5[i]*P[i].dt() == \

(1/(K*et))*((y5[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y5[i+1]-y5[i])/(L_seg))

+ y5[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q5[i].dt()

for i in range(1,seg-1)])

Last segment component 5

m.Equation(P[seg-1]*y5[seg-1].dt()+y5[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y5[seg-1]*P[seg-1]*(-P[seg-1]+P[seg-2])/(L_seg**2)))

- ((1/(et*100))*(R*T))*rho*q5[seg-1].dt())

First segment component 6

m.Equation(P[0]*y6[0].dt()+y6[0]*P[0].dt() == (1/(K*et))*((y6[0]*P[0]*(P[1]

97

- 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y6[1]-y6[0])/(L_seg))

+ y6[1]*((P[1]-P[0])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q6[0].dt()))

Middle segments component 6

m.Equations([P[i]*y6[i].dt()+y6[i]*P[i].dt() == \

(1/(K*et))*((y6[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))

*((y6[i+1]-y6[i])/(L_seg))

+ y6[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q6[i].dt()

for i in range(1,seg-1)])

Last segment component 6

m.Equation(P[seg-1]*y6[seg-1].dt()+y6[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y6[seg-1]*P[seg-1]*(-P[seg-1]

+P[seg-2])/(L_seg**2)))

- ((1/(et*100))*(R*T))*rho*q6[seg-1].dt())

m.Equation([q1[i].dt() == -MTC[0]*(q1[i]

- (Q1*b1*y1[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q2[i].dt() == -MTC[1]*(q2[i]

- (Q2*b2*y2[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q3[i].dt() == -MTC[2]*(q3[i]

- (Q3*b3*y3[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q4[i].dt() == -MTC[3]*(q4[i]

- (Q4*b4*y4[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q5[i].dt() == -MTC[4]*(q5[i]

- (Q5*b5*y5[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q6[i].dt() == -MTC[5]*(q6[i]

- (Q6*b6*y6[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

98

Velocity calculation, m/s

m.Equation(v[0] == -(1/K)*(P[1]-P[0])/(L_seg))

m.Equation([v[i] == -(1/K)*(P[i+1]-P[i])/(L_seg)

for i in range(1,seg-1)])

m.Equation(v[seg-1] == -(1/K)*(P2 - P[seg-1])/(L_seg))

#Summ of molar fraction == 1

m.Equation([y1[i] + y2[i] + y3[i] + y4[i] + y5[i] + y6[i] == 1

for i in range(0,seg)])

print("Desorption step started")

simulation

m.options.IMODE = 7

m.solve(disp=False)

print("Desorption step finished")

#Write the results

if cycle_count == number_cycles - 1:

velocity_out = -1*np.array(v[0])

pressure_out = np.array(P[0])

methane_out = np.array(y1[0])

ethane_out = np.array(y2[0])

propane_out = np.array(y3[0])

butane_out = np.array(y4[0])

co2_out = np.array(y5[0])

n2_out = np.array(y6[0])

co2_out = np.array(y2[seg-1])

flow_methane = (velocity_out*Area*methane_out*

pressure_out*10**8/(R*T))

flow_ethane = (velocity_out*Area*ethane_out*

pressure_out*10**8/(R*T))

flow_propane = (velocity_out*Area*propane_out*

pressure_out*10**8/(R*T))

flow_butane = (velocity_out*Area*butane_out*

pressure_out*10**8/(R*T))

99

flow_co2 = (velocity_out*Area*co2_out*

pressure_out*10**8/(R*T))

flow_n2 = (velocity_out*Area*n2_out*

pressure_out*10**8/(R*T))

old_indices = np.arange(0,len(flow_methane))

new_length = 100

new_indices = np.linspace(0,len(flow_methane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_methane,k=1,s=0)

flow_methane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_ethane))

new_length = 100

new_indices = np.linspace(0,len(flow_ethane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_ethane,k=1,s=0)

flow_ethane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_propane))

new_length = 100

new_indices = np.linspace(0,len(flow_propane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_propane,k=1,s=0)

flow_propane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_butane))

new_length = 100

new_indices = np.linspace(0,len(flow_butane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_butane,k=1,s=0)

flow_butane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_co2))

new_length = 100

new_indices = np.linspace(0,len(flow_co2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_co2,k=1,s=0)

flow_co2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_n2))

new_length = 100

new_indices = np.linspace(0,len(flow_n2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_n2,k=1,s=0)

100

flow_n2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(pressure_out))

new_length = 100

new_indices = np.linspace(0,len(pressure_out)-1,new_length)

spl = UnivariateSpline(old_indices,pressure_out,k=1,s=0)

pressure_out = np.abs(spl(new_indices))

old_indices = np.arange(0,len(m.time))

new_length = 100

new_indices = np.linspace(0,len(m.time)-1,new_length)

spl = UnivariateSpline(old_indices,m.time,k=1,s=0)

time = np.abs(spl(new_indices))

np_array_rows = (time,pressure_out,flow_methane,

flow_ethane,flow_propane,flow_butane,flow_co2,flow_n2)

with open('results_test3.csv','a') as csvfile:

np.savetxt(csvfile, np_array_rows , delimiter=',',

header='DES',fmt='%s', comments='')

y1_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y1_val[i] = np.array(y1[i].value)

y1_val[seg-1] = y1[seg-2]

y1_val = y1_val.T

methane_after_des = y1_val

y2_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y2_val[i] = np.array(y2[i].value)

y2_val[seg-1] = y2[seg-2]

y2_val = y2_val.T

ethane_after_des = y2_val

y3_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y3_val[i] = np.array(y3[i].value)

y3_val[seg-1] = y3[seg-2]

y3_val = y3_val.T

propane_after_des = y3_val

101

y4_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y4_val[i] = np.array(y4[i].value)

y4_val[seg-1] = y4[seg-2]

y4_val = y4_val.T

butane_after_des = y4_val

y5_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y5_val[i] = np.array(y5[i].value)

y5_val[seg-1] = y5[seg-2]

y5_val = y5_val.T

co2_after_des = y5_val

y6_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y6_val[i] = np.array(y6[i].value)

y6_val[seg-1] = y6[seg-2]

y6_val = y6_val.T

n2_after_des = y6_val

q1_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q1_val[i] = np.array(q1[i].value)

q1_val[seg-1] = q1[seg-2]

q1_val = q1_val.T

q1_after_des = q1_val

q2_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q2_val[i] = np.array(q2[i].value)

q2_val[seg-1] = q2[seg-2]

q2_val = q2_val.T

q2_after_des = q2_val

q3_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q3_val[i] = np.array(q3[i].value)

q3_val[seg-1] = q3[seg-2]

102

q3_val = q3_val.T

q3_after_des = q3_val

q4_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q4_val[i] = np.array(q4[i].value)

q4_val[seg-1] = q4[seg-2]

q4_val = q4_val.T

q4_after_des = q4_val

q5_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q5_val[i] = np.array(q5[i].value)

q5_val[seg-1] = q5[seg-2]

q5_val = q5_val.T

q5_after_des = q5_val

q6_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q6_val[i] = np.array(q6[i].value)

q6_val[seg-1] = q6[seg-2]

q6_val = q6_val.T

q6_after_des = q6_val

vel_val = np.empty((seg,len(m.time)))

for i in range(seg):

vel_val[i] = np.array(v[i].value)

vel_val = vel_val.T

vel_after_des = vel_val

pressure_val = np.empty((seg,len(m.time)))

for i in range(seg):

pressure_val[i] = np.array(P[i].value)

pressure_val = pressure_val.T

pressure_after_des = pressure_val

print("Started purge step")

m = GEKKO(remote = False) # create GEKKO model

#Time discretization

103

tf = time_purge

nt = int(tf/5) + 1

m.time = np.linspace(0,tf,nt)

#Molar fraction inlet only nitrogen

y1_feed = 0

y2_feed = 0

y3_feed = 0

y4_feed = 0

y5_feed = 0

y6_feed = 1

#Segment length

L_seg = L/seg

#Variables formulation

P = [m.Var(pressure_after_des[-1][i]) for i in range(seg)]

y1 = [m.Var(methane_after_des[-1][i]) for i in range(seg)]

y2 = [m.Var(ethane_after_des[-1][i]) for i in range(seg)]

y3 = [m.Var(propane_after_des[-1][i]) for i in range(seg)]

y4 = [m.Var(butane_after_des[-1][i]) for i in range(seg)]

y5 = [m.Var(co2_after_des[-1][i]) for i in range(seg)]

y6 = [m.Var(n2_after_des[-1][i]) for i in range(seg)]

v = [m.Var(vel_after_des[-1][i]) for i in range(seg)]

q1 = [m.Var(q1_after_des[-1][i]) for i in range(seg)]

q2 = [m.Var(q2_after_des[-1][i]) for i in range(seg)]

q3 = [m.Var(q3_after_des[-1][i]) for i in range(seg)]

q4 = [m.Var(q4_after_des[-1][i]) for i in range(seg)]

q5 = [m.Var(q5_after_des[-1][i]) for i in range(seg)]

q6 = [m.Var(q6_after_des[-1][i]) for i in range(seg)]

P1 = m.Var(pressure_after_des[-1][0])

P2 = m.Var(pressure_after_des[-1][-1])

Q_pump = m.Var(0.6 / 3600)

m.Equation(Q_pump == 0.0001974563*P[0]**(0.627027))

104

#Boundary pressures

m.Equation(P1.dt() == (-((P[0])*Q_pump)/(V_tank) - (P[0]*v[0]*Area)/(V_tank)))

m.Equation(P2.dt() == (P[seg-1]/(V_tank))*(Flow_rate_purge*10**(-2)*R*T/(P[seg-1])+v[seg-1]*Area))

#First segment component 1

m.Equation(P[0]*y1[0].dt()+y1[0]*P[0].dt() == (1/(K*et))*((y1[0]*P[0]*(P[1]

- 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y1[1]-y1[0])/(L_seg))

+ y1[1]*((P[1]-P[0])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q1[0].dt()))

Middle segments component 1

m.Equations([P[i]*y1[i].dt()+y1[i]*P[i].dt() == \

(1/(K*et))*((y1[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y1[i+1]-y1[i])/(L_seg))

+ y1[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- (1/(et*100))*(R*T)*rho*q1[i].dt()

for i in range(1,seg-1)])

Last segments component 1

m.Equation(P[seg-1]*y1[seg-1].dt()+y1[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y1[seg-1]*P[seg-1]*(P2-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ (P2)*((P2-P[seg-1])/(L_seg))*((y1_feed-y1[seg-1])/(L_seg))

+ (y1_feed)*((P2-P[seg-1])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q1[seg-1].dt())

First segment component 2

m.Equation(P[0]*y2[0].dt()+y2[0]*P[0].dt() == (1/(K*et))*((y2[0]*P[0]*(P[1]

- 2*P[0] + P1)/(L_seg**2)) + P[1]*((P[1]-P[0])/(L_seg))*((y2[1]-y2[0])/(L_seg))

+ y2[1]*((P[1]-P[0])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q2[0].dt()))

Middle segments component 2

m.Equations([P[i]*y2[i].dt()+y2[i]*P[i].dt() == \

(1/(K*et))*((y2[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y2[i+1]-y2[i])/(L_seg))

105

+ y2[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q2[i].dt()

for i in range(1,seg-1)])

Last segments component 2

m.Equation(P[seg-1]*y2[seg-1].dt()+y2[seg-1]*P[seg-1].dt() == \

(1/(K*et))*((y2[seg-1]*P[seg-1]*(P2-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ (P2)*((P2-P[seg-1])/(L_seg))*((y2_feed-y2[seg-1])/(L_seg))

+ (y2_feed)*((P2-P[seg-1])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q2[seg-1].dt())

First segment component 3

m.Equation(P[0]*y3[0].dt()+y3[0]*P[0].dt() ==

(1/(K*et))*((y3[0]*P[0]*(P[1] - 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y3[1]-y3[0])/(L_seg))

+ y3[1]*((P[1]-P[0])/(L_seg))**2) - ((1/(et*100))*(R*T)*rho*q3[0].dt()))

Middle segments component 3

m.Equations([P[i]*y3[i].dt()+y3[i]*P[i].dt() == \

(1/(K*et))*((y3[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y3[i+1]-y3[i])/(L_seg))

+ y3[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q3[i].dt() for i in range(1,seg-1)])

Last segments component 3

m.Equation(P[seg-1]*y3[seg-1].dt()+y3[seg-1]*P[seg-1].dt() ==

(1/(K*et))*((y3[seg-1]*P[seg-1]*(P2-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ (P2)*((P2-P[seg-1])/(L_seg))*((y3_feed-y3[seg-1])/(L_seg))

+ (y3_feed)*((P2-P[seg-1])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q3[seg-1].dt())

First segment component 4

m.Equation(P[0]*y4[0].dt()+y4[0]*P[0].dt() ==

(1/(K*et))*((y4[0]*P[0]*(P[1] - 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y4[1]-y4[0])/(L_seg))

+ y4[1]*((P[1]-P[0])/(L_seg))**2) - ((1/(et*100))*(R*T)*rho*q4[0].dt()))

Middle segments component 4

106

m.Equations([P[i]*y4[i].dt()+y4[i]*P[i].dt() == \

(1/(K*et))*((y4[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y4[i+1]-y4[i])/(L_seg))

+ y4[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q4[i].dt() for i in range(1,seg-1)])

Last segments component 4

m.Equation(P[seg-1]*y4[seg-1].dt()+y4[seg-1]*P[seg-1].dt() ==

(1/(K*et))*((y4[seg-1]*P[seg-1]*(P2-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ (P2)*((P2-P[seg-1])/(L_seg))*((y4_feed-y4[seg-1])/(L_seg))

+ (y4_feed)*((P2-P[seg-1])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q4[seg-1].dt())

First segment component 5

m.Equation(P[0]*y5[0].dt()+y5[0]*P[0].dt() ==

(1/(K*et))*((y5[0]*P[0]*(P[1] - 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y5[1]-y5[0])/(L_seg))

+ y5[1]*((P[1]-P[0])/(L_seg))**2)

- ((1/(et*100))*(R*T)*rho*q5[0].dt()))

Middle segments component 5

m.Equations([P[i]*y5[i].dt()+y5[i]*P[i].dt() == \

(1/(K*et))*((y5[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y5[i+1]-y5[i])/(L_seg))

+ y5[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q5[i].dt()

for i in range(1,seg-1)])

Last segments component 5

m.Equation(P[seg-1]*y5[seg-1].dt()+y5[seg-1]*P[seg-1].dt() ==

(1/(K*et))*((y5[seg-1]*P[seg-1]*(P2-2*P[seg-1]

+P[seg-2])/(L_seg**2))

+ (P2)*((P2-P[seg-1])/(L_seg))*((y5_feed-y5[seg-1])/(L_seg))

+ (y5_feed)*((P2-P[seg-1])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q5[seg-1].dt())

First segment component 6

m.Equation(P[0]*y6[0].dt()+y6[0]*P[0].dt() == (1/(K*et))*((y6[0]*P[0]*(P[1]

107

- 2*P[0] + P1)/(L_seg**2))

+ P[1]*((P[1]-P[0])/(L_seg))*((y6[1]-y6[0])/(L_seg))

+ y6[1]*((P[1]-P[0])/(L_seg))**2) - ((1/(et*100))*(R*T)*rho*q6[0].dt()))

Middle segments component 6

m.Equations([P[i]*y6[i].dt()+y6[i]*P[i].dt() == \

(1/(K*et))*((y6[i]*P[i]*(P[i+1]-2*P[i]+P[i-1])/(L_seg**2))

+ P[i+1]*((P[i+1]-P[i])/(L_seg))*((y6[i+1]-y6[i])/(L_seg))

+ y6[i+1]*((P[i+1]-P[i])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q6[i].dt()

for i in range(1,seg-1)])

Last segments component 6

m.Equation(P[seg-1]*y6[seg-1].dt()+y6[seg-1]*P[seg-1].dt() ==

(1/(K*et))*((y6[seg-1]*P[seg-1]*(P2-2*P[seg-1]+P[seg-2])/(L_seg**2))

+ (P2)*((P2-P[seg-1])/(L_seg))*((y6_feed-y6[seg-1])/(L_seg))

+ (y6_feed)*((P2-P[seg-1])/(L_seg))**2)

- ((1/(et*100))*(R*T))*rho*q6[seg-1].dt())

#Velocity calculation

m.Equation(v[0] == -(1/K)*(P[1]-P[0])/(L_seg))

m.Equation([v[i] == -(1/K)*(P[i+1]-P[i])/(L_seg) for i in range(1,seg-1)])

m.Equation(v[seg-1] == -(1/K)*(P2 - P[seg-1])/(L_seg))

#Summ of molar fractions == 1

m.Equation([y1[i] + y2[i] + y3[i] + y4[i] + y5[i] + y6[i] == 1

for i in range(0,seg)])

#Solid loading

m.Equation([q1[i].dt() == -MTC[0]*(q1[i]

- (Q1*b1*y1[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q2[i].dt() == -MTC[1]*(q2[i]

- (Q2*b2*y2[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q3[i].dt() == -MTC[2]*(q3[i]

- (Q3*b3*y3[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q4[i].dt() == -MTC[3]*(q4[i]

108

- (Q4*b4*y4[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q5[i].dt() == -MTC[4]*(q5[i]

- (Q5*b5*y5[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

m.Equation([q6[i].dt() == -MTC[5]*(q6[i]

- (Q6*b6*y6[i]*P[i]/(1+b1*y1[i]*P[i]+b2*y2[i]*P[i]+b3*y3[i]*P[i]+

b4*y4[i]*P[i]+b5*y5[i]*P[i]+b6*y6[i]*P[i]))) for i in range(0,seg)])

simulation

m.options.IMODE = 7

m.solve(disp = False)

print("Finished purge step")

#Write the results to Excel file

if cycle_count == number_cycles - 1:

velocity_out = -1*np.array(v[0])

pressure_out = np.array(P[0])

methane_out = np.array(y1[0])

ethane_out = np.array(y2[0])

propane_out = np.array(y3[0])

butane_out = np.array(y4[0])

co2_out = np.array(y5[0])

n2_out = np.array(y6[0])

co2_out = np.array(y2[seg-1])

flow_methane = velocity_out*Area*methane_out*pressure_out*10**8/(R*T)

flow_ethane = velocity_out*Area*ethane_out*pressure_out*10**8/(R*T)

flow_propane = velocity_out*Area*propane_out*pressure_out*10**8/(R*T)

flow_butane = velocity_out*Area*butane_out*pressure_out*10**8/(R*T)

flow_co2 = velocity_out*Area*co2_out*pressure_out*10**8/(R*T)

flow_n2 = velocity_out*Area*n2_out*pressure_out*10**8/(R*T)

old_indices = np.arange(0,len(flow_methane))

109

new_length = 100

new_indices = np.linspace(0,len(flow_methane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_methane,k=1,s=0)

flow_methane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_ethane))

new_length = 100

new_indices = np.linspace(0,len(flow_ethane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_ethane,k=1,s=0)

flow_ethane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_propane))

new_length = 100

new_indices = np.linspace(0,len(flow_propane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_propane,k=1,s=0)

flow_propane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_butane))

new_length = 100

new_indices = np.linspace(0,len(flow_butane)-1,new_length)

spl = UnivariateSpline(old_indices,flow_butane,k=1,s=0)

flow_butane = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_co2))

new_length = 100

new_indices = np.linspace(0,len(flow_co2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_co2,k=1,s=0)

flow_co2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(flow_n2))

new_length = 100

new_indices = np.linspace(0,len(flow_n2)-1,new_length)

spl = UnivariateSpline(old_indices,flow_n2,k=1,s=0)

flow_n2 = np.abs(spl(new_indices))

old_indices = np.arange(0,len(pressure_out))

new_length = 100

new_indices = np.linspace(0,len(pressure_out)-1,new_length)

spl = UnivariateSpline(old_indices,pressure_out,k=1,s=0)

110

pressure_out = np.abs(spl(new_indices))

old_indices = np.arange(0,len(m.time))

new_length = 100

new_indices = np.linspace(0,len(m.time)-1,new_length)

spl = UnivariateSpline(old_indices,m.time,k=1,s=0)

time = np.abs(spl(new_indices))

np_array_rows = (time,pressure_out,flow_methane,flow_ethane,

flow_propane,flow_butane,flow_co2,flow_n2)

with open('results_test3.csv','a') as csvfile:

np.savetxt(csvfile, np_array_rows , delimiter=',',

header='PURGE',fmt='%s', comments='')

y1_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y1_val[i] = np.array(y1[i].value)

y1_val[seg-1] = y1[seg-2]

y1_val = y1_val.T

methane_after_purge = y1_val

y2_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y2_val[i] = np.array(y2[i].value)

y2_val[seg-1] = y2[seg-2]

y2_val = y2_val.T

ethane_after_purge = y2_val

y3_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y3_val[i] = np.array(y3[i].value)

y3_val[seg-1] = y3[seg-2]

y3_val = y3_val.T

propane_after_purge = y3_val

y4_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y4_val[i] = np.array(y4[i].value)

y4_val[seg-1] = y4[seg-2]

y4_val = y4_val.T

111

butane_after_purge = y4_val

y5_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y5_val[i] = np.array(y5[i].value)

y5_val[seg-1] = y5[seg-2]

y5_val = y5_val.T

co2_after_purge = y5_val

y6_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

y6_val[i] = np.array(y6[i].value)

y6_val[seg-1] = y6[seg-2]

y6_val = y6_val.T

n2_after_purge = y6_val

q1_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q1_val[i] = np.array(q1[i].value)

q1_val[seg-1] = q1[seg-2]

q1_val = q1_val.T

q1_after_purge = q1_val

q2_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q2_val[i] = np.array(q2[i].value)

q2_val[seg-1] = q2[seg-2]

q2_val = q2_val.T

q2_after_purge = q2_val

q3_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q3_val[i] = np.array(q3[i].value)

q3_val[seg-1] = q3[seg-2]

q3_val = q3_val.T

q3_after_purge = q3_val

112

q4_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q4_val[i] = np.array(q4[i].value)

q4_val[seg-1] = q4[seg-2]

q4_val = q4_val.T

q4_after_purge = q4_val

q5_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q5_val[i] = np.array(q5[i].value)

q5_val[seg-1] = q5[seg-2]

q5_val = q5_val.T

q5_after_purge = q5_val

q6_val = np.empty((seg,len(m.time)))

for i in range(seg-1):

q6_val[i] = np.array(q6[i].value)

q6_val[seg-1] = q6[seg-2]

q6_val = q6_val.T

q6_after_purge = q6_val

vel_val = np.empty((seg,len(m.time)))

for i in range(seg):

vel_val[i] = np.array(v[i].value)

vel_val = vel_val.T

vel_after_purge = vel_val

pressure_val = np.empty((seg,len(m.time)))

for i in range(seg):

pressure_val[i] = np.array(P[i].value)

pressure_val = pressure_val.T

pressure_after_purge = pressure_val

113

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f E

ne
rg

y
an

d
Pr

oc
es

s
En

gi
ne

er
in

g

Sviatoslav Eroshkin

Volatile Organic Components
Adsorption on Activated Carbon

Master’s thesis in Natural Gas Technology
Supervisor: Even Solbraa
Co-supervisor: Eivind Johannessen
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Summary
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Literature Review
	Background
	Basic Definitions
	Activated Carbon
	Process
	Governing transport phenomena
	Langmuir equilibrium theory
	Mass transfer considerations
	Mass Balance Equations
	Energy Balance Equations
	Boundary and initial conditions

	Developed models summary

	Experiments
	Cavenati and co-authors Experiments
	Equinor Experiments

	Methods
	Python model
	Aspen Adsorption model

	Results and Discussion
	Multicomponent Equilibrium of Volatile Organic Components on Activated Carbon
	Comparison with Cavenati's experiments
	Modeling of vacuum pressure swing adsorption for volatile organic components separation
	VOCs simulation comparison with experiments
	Parametric analysis of VPSA configuration

	Conclusions
	Proposals of Future Work
	Bibliography
	Appendix
	Langmuir Isotherms of VOC
	Equinor VOCs experiment results for case 1
	Equinor VOCs experiment results for case 2
	Equinor VOCs experiment results for case 3
	Main Code VOCs simulation

