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Abstract

This thesis studies how to design an optimal hydrogen supply chain for maritime

transportation in Norway. The transportation sector in Norway as a whole faces a

transition to low- and zero-emission fuels. The maritime passenger transportation

segment points out to be an important contributor to reducing emissions, having

high emissions per passenger-kilometre. To realise the pathway to zero-emission

maritime transportation, we need a comprehensive model for decision support. The

decision must support the design of a future hydrogen supply chain that handles the

uncertainty in customer demand.

We model the problem of solving a two-stage stochastic facility location problem

with capacity adjustments. The model minimises the overall expected cost for in-

vestment in hydrogen-producing facilities, capacity adjustments, production and

distribution for different production technologies over the planning horizon. We

examine an alternative approach to solve the model with the aim of reducing the

solution time, including developing an L-shaped algorithm and different additional

acceleration methods. By reducing the solution time, we can solve larger instances of

the problem, improving the capturing of the real world’s uncertainty and ultimately

providing better decision support.

The L-shaped decomposition technique always finds a feasible solution to our model

within the defined termination criteria, but gets outperformed by standard commer-

cial solvers for most of our problem instances. For the smallest instances, we are

able to find optimal solutions with the use of our L-shaped algorithm. In addition,

we manage to find better solutions for the largest instances with respect to objective

value than the commercial solver within the termination criteria.

Our model suggests building a decentralised supply chain consisting of many facilities

spread throughout Norway. Each facility is installed with electrolysis as production

technology to cover hydrogen demand towards 2035 for our case study.
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Sammendrag

Denne oppgaven har som mål å designe en optimal verdikjede for hydrogen til bruk

i norsk maritim transport. Transportsektoren i Norge gjennomg̊ar en overgang til

bruk av lav- og nullutslippdrivstoff. Den maritime passasjertransporten utpeker seg

som en viktig kandidat, da det er assosiert høye utslipp per passasjerkilometer i

dette segmentet. For å kunne realisere overgangen til en maritim transportsektor

med nullutslipp, er vi avhengig av et omfattende verktøy for beslutningsstøtte for

å kunne designe en fremtidig verdikjede som h̊andterer usikkerheten i hydrogenet-

terspørselen.

Vi har utviklet en modell for å løse et two-stage stochastic facility location prob-

lem with capacity adjustments (to-stegs lokaliseringsproblem med kapasitetsjus-

teringer). Modellen minimerer den samlede forventede kostnaden for investering i

hydrogenproduserende anlegg, kapasitetsjusteringer, produksjon og distribusjon for

ulike produksjonsteknologier i løpet av planleggingshorisonten. Videre undersøker

vi ulike tilnærminger for å redusere løsningstiden for modellen v̊ar, inkludert ut-

formingen av en L-shaped algoritme, sammen med ulike akselerasjonsteknikker. Ved

å redusere løsningstiden kan vi løse større forekomster av problemet, fange usikker-

heten knyttet til den virkelige verden i større grad, som til slutt resulterer i bedre

beslutningsstøtte.

Ved bruk av v̊are foresl̊atte dekomponeringsmetoder, er vi alltid i stand til å finne en

lovlig løsning til modellen v̊ar innenfor de definerte termineringskriteriene. Dekom-

poneringsteknikkene blir utkonkurrert av de vanlige kommersielle problemløserne for

de fleste av probleminstansene v̊are. For de minste tilfellene er vi i stand til å finne

optimale løsninger ved bruk av v̊ar dekomponeringsteknikk. I de største instansene

klarer dekomponeringsteknikken å finne fram til bedre løsninger enn standard kom-

mersielle løsere, m̊alt i målfunksjonsverdi.

Modellen v̊ar foresl̊ar å bygge en desentralisert verdikjede best̊aende av flere sm̊a

fabrikker spredt omkring i Norge. Alle fabrikkene beyntter seg av elektrolyse som

produksjonsteknologi for å kunne tilfredsstille hydrogenetterspørselen fram mot 2035

i v̊ar case study.
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Chapter 1

Introduction

Signing the Paris Agreement in 2015, 175 countries agreed to reduce greenhouse

gas emissions by 40% by 2030 compared to the level in 1990. As the first Western

country, Norway announced a more ambitious goal in 2020. Their goal from 2020

is to reduce emissions by 50 to 55%, an upgrade of 25 to 37.5% with the 2015 plan

(NDC-Registry 2020). In Norway, the transportation sector accounts for approxim-

ately one-third of the total emissions. To meet the ambitious national environmental

target set in 2020, the transportation sector must be a part of the process of redu-

cing emissions. Following the Norwegian climate action plan for 2021-2030, the goal

reported for the transportation sector is to cut emissions by 50% (Samferdselsde-

partementet 2021).

The Norwegian climate action plan also targets domestic shipping and commercial

fishing within the maritime transportation sector to halve emissions-to-air (Samferd-

selsdepartementet 2021). Based on annual fuel sales in Norway, SSB has estimated

that emissions-to-air from domestic shipping and commercial fishing was 2.95 mil-

lion tonnes CO2-equivalents in 2017 (SSB 2021b). In comparison, a 1.85 million

tonnes higher emissions to air estimation on 4.8 million tonnes CO2-equivalents in

2017 is calculated by DNV (Regjeringen 2019). DNV uses vessel databases and AIS-

data (Automatic Identification System) to create this emission estimate. Sales of

fuel done overseas make up for the variation in the forecast of CO2-emission. Both

vessels operating between Norway and one international harbour and between Nor-

wegian ports but not refuelling in Norway are included in ships bunkering overseas.

Utilising the vessel databases and AIS-data for estimates of CO2-emission is more ac-

curate because they consider the uncertainty in fuel sales made overseas (Regjeringen

2019). CO2-emissions from commercial fishing and domestic shipping are respons-

ible for 22-36% of the CO2-emissions from the transportation sector, independent of

1



the estimation method. Based on fuel sales, the development in emissions to air is

relatively stable, and the fleet maintains a regular size, as illustrated in Table 1.1.

Table 1.1: Emissions to air in [1000 tonnes CO2-equivalents] for commercial fishing
and domestic shipping (SSB 2021b), in addition to number of Norwegian registered
vessels in the years 2013-2019 (SSB 2021a).

Years 2013 2014 2015 2016 2017 2018 2019
Emissions to air 3 704 3 820 3 626 3 486 3 627 3 578 3 725
Vessels 7 361 7 329 7 280 7 326 7 361 7 302 7 090

The Norwegian government’s climate action plan presents some key instruments to

help the transportation sector reach its goal of halving emissions by 2030. Examples

of these instruments are subsidies for low- and zero-emission solutions making them

more attractive, and CO2-taxation where end-consumers of fossil fuel must pay tax

to the government for their emissions (Samferdselsdepartementet 2021). The gen-

eral idea for all the instruments is to encourage the development of alternatives to

fossil fuels. For the transportation sector, hydrogen, electric batteries and ammonia

are the most likely low- and zero CO2-emission fuel type alternatives (Samferdsels-

departementet 2021). In addition to the key instruments in the climate action plan,

the low- and zero-emission solutions are dependent on their technology to not have

extra capital expenditure compared to fossil fuels. A cost-effective supply chain must

be established to achieve this level of capital expenditure for low- and zero-emission

technology.

The status for zero-emission fuel supply chains is that they are under constant

development (Samferdselsdepartementet 2021). The message from the ”National

Transport Plan” is that the necessary infrastructure for these zero-emission fuels will

be established with the technological development in shipping. Here, hydrogen is

pointed out as one promising project (Samferdselsdepartementet 2021). There is no

well-established hydrogen fuel supply chain in Norway for maritime transportation

today (Mäkitie et al. 2021).

This thesis aims to provide decision support for designing a hydrogen supply chain,

ultimately accelerating the transition to low- and zero-emission fuels for the maritime

transportation sector in Norway. To provide such decision support, we develop a

stochastic optimisation model. The model addresses critical challenges like locating

hydrogen production facilities, production technology, distribution solutions and

uncertainty in customer demand to design the optimal supply chain to minimise

the overall expected costs. We perform a deep dive into alternative solution method

approaches to reduce the solution time of our complex model and apply the L-shaped

2



decomposition technique combined with different acceleration techniques to improve

solution time further. Evaluating the results provides managerial insight into the

hydrogen facility location problem for the maritime sector.

Our thesis is structured as follows: Chapter 2 covers technical insight into hydro-

gen production, costs and distribution. In addition, the chapter establishes relevant

political aspects to consider when identifying future hydrogen customers in Norway.

Chapter 3 reviews relevant literature on supply chain design under uncertainty.

Next, Chapter 4 follows with a complete description of the problem. Chapter 5

presents a mathematical model to solve the problem described in Chapter 4. In

Chapter 6, we discuss and implement a solution algorithm to decrease the solution

time of the original model presented earlier in Chapter 5. We present our case data

used for computational studies in Chapter 7, and Chapter 8 presents our compu-

tational results. Lastly, we present topics for future research and our concluding

remarks in Chapter 9 and Chapter 10 respectively.
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Chapter 2

Background

This chapter aims to present essential topics to the reader to understand the current

hydrogen market and production better. Section 2.1 presents an introduction to

hydrogen production in terms of costs and production method. Furthermore, the

distribution of produced hydrogen is discussed in Section 2.2. In Section 2.3, we

present hydrogen demand projections. Lastly, we discuss potential facility locations

for the design of the hydrogen supply chain along in Section 2.4.

2.1 Hydrogen production

As hydrogen only has water as an emission product when used as a fuel, it is a prom-

ising fuel type with low- or zero CO2-emission. On the other side, the environmental

footprint from hydrogen fuel may not be CO2-emission free. The variation in envir-

onmental footprint comes from differences in sources and processes when producing

the hydrogen fuel (IRENA 2020). Consequently, when considering CO2-emissions,

it is common to differentiate hydrogen by production processes by splitting it into

a colour shading like “green”, “blue”, and “grey”, as presented in Table 2.1 and the

following sections.
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Table 2.1: The colour shades of hydrogen production (Broadleaf 2021).

Characteristic Green Blue Grey

Energy Source Renewables
Hydrocarbon:
natural gas or
coal

Hydrocarbon:
natural gas or
coal

Feedstock Water

Hydrocarbon:
natural gas,
coal, oil,
biomass

Hydrocarbon:
natural gas

Technology Electrolysis
Gasification or
Steam Methane
Reforming

Gasification or
Steam Methane
Reforming

By-products Oxygen
CO2 (assumed
captured and
stored)

CO2

Notional
environmental
footprint

Minimal Low Medium or high

2.1.1 Green hydrogen production

As green hydrogen is defined with renewables as an energy source, it is the only

hydrogen type with no CO2-emissions related to production. The feedstock for the

production is water, and the only by-product is oxygen. For large scale production

of green hydrogen, it is common to use electrolysis technology (IRENA 2020).

Electrolysis technology uses electrical energy as input and converts it into chemical

energy. An electrolyser consists of two electrodes, which are named cathode and

anode. The electrodes are separated by an electrolyte that directs an electric current.

The electric current is then used to split water, which is used as feedstock, into

hydrogen and oxygen (Broadleaf 2021). The hydrogen production process with

electrolysis is illustrated in a simple flow chart in Figure 2.1. The electrolysis process

is green as long as the electrical energy source comes from renewable energy.
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Figure 2.1: Electrolysis flow chart (NCE 2020).

Electrolyser technologies will typically have a unique dynamic capacity range that

differs between 0% to 100% of production capacity. The technologies appropriate

for Norwegian hydrogen production have a lower bound of 15% (NEL 2019). This

bound implies that the lowest production quantity an electrolyser can run on is 15%

of its capacity.

Currently, Proton Exchange Membrane Electrolysis (PEM), Solid Oxide Electro-

lyser (SOE) and Alkaline Electrolysis (AEL) are the leading electrolysis technologies

(H2Bulletin 2021). The costs of using electrolysis as hydrogen production techno-

logy are greatly determined by the facility construction, the utilisation rate, and

the price of electricity (GlobalCCSInstitute 2020). Estimating hydrogen production

costs development between 2020 and 2030 is presented in Figure 2.2. Here, the pro-

portion of the costs between the production process and the electrical power used

is displayed. One remark is that the increase in the cost of electricity equalises the

decline in costs of electrolysis. For this reason, there is a relatively low change in

total expenditures between 2020 and 2030 for alkaline electrolysis (DNV 2019).

Figure 2.2: Estimated costs for hydrogen production with electrolysis in 2020 and
2030 (DNV 2019).
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2.1.2 Grey and blue hydrogen production

Gasification or Steam Methane Reforming (SMR) are the production technologies

utilised in producing grey hydrogen. Grey hydrogen is not suited as a zero-emission

fuel type contender as its notional environmental footprint is medium to high from

using natural gas or coal as feedstock. This production provides a high level of

CO2-emissions to air from by-products (IRENA 2020).

The environmental footprint for blue hydrogen is reported as low, making it suitable

as a common CO2-emission fuel type (Broadleaf 2021). Even though the production

process is almost the same as for grey hydrogen, it is still a candidate despite the

same energy source, feedstock, and production technology. The difference between

blue and grey hydrogen is the introduction of Carbon Capture and Storage (CCS) in

the production process resulting in Steam Methane Reforming with Carbon Capture

and Storage (SMR+). The idea is to capture the CO2 in production and store it,

possibly underground. A barrier for the blue hydrogen is that just 85-95% of the

CO2 created in production can be captured through CCS, and therefore it is not

emission-free. CCS can, in theory, capture up to 100% of the CO2 produced in the

process, but currently, the upper limit to the technical efficiency is approximately

95%. The barrier to reaching a 100% is that it requires a lot more funding for

the last percentages of CO2, as there is harder to capture the less concentrated

gas. For this reason, companies will need a powerful financial incentive to invest

in environmental friendly technology (Moseman 2021). Instead, blue hydrogen may

serve as a stepping stone towards the realisation of a large scale zero CO2-emission

hydrogen fuel type such as green hydrogen (IRENA 2020).

The SMR+ process starts with natural gas and water as input. First, the natural

gas is cleaned, leaving only pure methane gas, while the water is heated to steam.

Afterwards, with a catalyst’s assistance, the methane and steam are chemically

transformed into a mix of carbon monoxide and hydrogen, called syngas, in the

reformer. Furthermore, the syngas undergoes a water gas shift reaction to produce

more hydrogen, again assisted by a catalyst. Here, we end up with CO2 and hydrogen

as output, which is eventually separated to the hydrogen, and CO2 as a by-product

which is then taken care of by the CCS technology (Broadleaf 2021). A simple

illustration of the process is presented in Figure 2.3.
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Figure 2.3: SMR+ flowchart (Broadleaf 2021).

Breaking down the cost structure for SMR+ shows that capital expenditures (CAPEX)

contribute to a large share of the costs. High investment costs are associated with

establishing the H2 production plant and the CCS system, including a carbon cap-

ture facility and a transport and injection system. The cost of natural gas dominates

the operational expenditures (OPEX) with over 60% of the total OPEX (Jakobsen

& Åtland 2016). The CAPEX and OPEX cost structure breakdown is presented in

Figure 2.4. Note that CAPEX is in a million Euros and OPEX is in a million Euros

per year.

(a) CAPEX in million Euros. (b) OPEX in million Euros per year.

Figure 2.4: SMR+ cost distribution.

2.2 Distribution of hydrogen

For the distribution of hydrogen, there are both economic and technological chal-

lenges. As illustrated in Figure 2.5, we see that variations of hydrogen will have a

volumetric density ranging from about 0.8 to 2.1 kWh
L

. That is four to five times

lower volumetric density than for respective gasoline and diesel at best, illustrating

that it requires more hydrogen in volume to deliver the same amount of energy as
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traditional fuels such as gasoline and diesel. Hydrogen’s low volumetric density is

a challenge for distribution as, generally, the volumetric density is considered the

limiting factor when distributing by trucks (Aarskog & Danebergs 2020b). The volu-

metric density properties also show that hydrogen needs to be handled under high

pressure (compressed), in very low temperatures (liquid) or combined with other

chemical substances to achieve more energy per volume (U.S Department of Energy

2021).

Figure 2.5: Comparing volumetric density for different fuels based on lower heating
values (U.S Department of Energy 2021).

The preferred options for the distribution of hydrogen are in the forms of liquid,

compressed, ammonia or liquid hydrogen organic carriers (LHOCs). Our focus will

be on the distribution of liquid and compressed gaseous hydrogen, as the other two

options carry more uncertainty due to the early stages of development for hydrogen

distribution in Norway (SINTEF 2020). For liquid hydrogen, the hydrogen needs

to be cooled down to -253°C, while compressed gaseous hydrogen is made by com-

pressing the gas to 350 or 700 bars. Both processes must be done after the hydrogen

is produced, resulting in additional costs and an energy loss (SINTEF 2020). For

liquid and compressed gaseous trucks, there are special made cryogenic tanks and

high-pressure trucks for distribution that are well suited for distributing hydrogen

in Norway (SINTEF 2020). As Norway has strict regulations on resting time of 45

minutes after 4.5 hours of driving, limiting how far a driver can distribute hydro-

gen will be suitable. An alternative option would be to have two drivers, which

would then again create high additional costs as the wage level is high in Norway

(arbeidslivet.no 2019).

10



2.3 Future Demand

The current global hydrogen producers and their customers represent a highly closed

market. Only 4% of the global hydrogen production in 2017 was sold on the free

market, and hydrogen vehicles accounted for only 0.002% of the global hydrogen

consumption (DNV 2019). Most hydrogen consumption occurs in industrial facilities

close to the hydrogen’s production site and is integrated within their supply chain.

Hydrogen is a vital chemical input factor for ammonia, methanol and oil refineries.

Together, these industries consume the lion’s share of global hydrogen production.

A supply chain to support the utilisation of hydrogen in other sectors, e.g. hydrogen

vehicles, does not currently exist. In Norway, such a hydrogen supply chain must be

designed and built from scratch. In combination with stricter emission regulations

for CO2 and increasing global energy and fuel consumption, it is likely that the free

market and demand for hydrogen will have a much higher potential soon and in the

future years to come. One potential area containing answers to when low- and zero-

emission solutions such as hydrogen become economically viable is the current CO2-

taxation in European countries due to the current EU Emissions Trading System

(EU ETS).

2.3.1 CO2-tax

The taxation of CO2 is an active measure used in Norway and the EU to make it more

attractive to seek low- and zero-emission solutions. In the EU this system is formally

known as the EU Emissions Trading System (EU ETS). Norway has committed to

participating in the EU ETS through ”Klimakvoteloven” in 2005 (Oljedirektoratet

2022). Some of the prerequisites for creating demand for hydrogen through the

CO2-tax will be its pricing and which sectors it covers.

Figure 2.6 suggests a significant increase in the CO2-quota prices. The EU Emissions

Trading System entered phase 4 in 2021, restricting the total number of quotas and

creating market stability reserves to obtain a more stable quota price (European

Comission 2022). At the same time, we observe that reimbursement schemes that

formerly refunded expenses for CO2-emissions in some sectors are discontinued in

Norway (Det Kongelege Klima- og Miljødepartement 2020).
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Figure 2.6: Historic cost per CO2-quota in Euros (Øvrebø 2022).

Sectors will typically switch to low- and zero-emission solutions when the costs

resulting from the CO2-tax surpass the costs of operating the new zero- or low-

emission technology. The CO2-taxation can then act as a trigger for the switch

to zero- and low-emission technology and help push the cost down for zero- and

low-emission technology in the meantime.

2.3.2 Potential customers in the Norwegian Maritime Sec-

tor

The most relevant vessel segments for hydrogen consist of segments related to large

CO2-emissions. Technology matureness plays an essential role as well in which seg-

ments that are feasible to utilise hydrogen in the near future. At last, vessels spend-

ing most of their time in the Norwegian economic zone are more likely to benefit

from a hydrogen supply chain established on the Norwegian mainland, as they are

more likely to use bunker locations on the Norwegian mainland. From Figure 2.7, it

becomes apparent that different vessel segments vary in both fractions of domestic

emissions and the number of vessels. Cruise ship types such as Coastal Route,

International Ferries and Cruise, stand out as one of the most emission-intensive

ship types in terms of the total number of vessels. Using the Coastal Route as an

example, we see large emissions that are primarily domestic, spread over very few

vessels. These vessels have included time windows for 2-3 bunkering locations from

Bergen to Kirkenes in today’s schedules. With this in mind, the Coastal Route as a

future hydrogen customer may result in a few bunkering locations with great hydro-

gen demand spread along the coast. On the contrary, the fishing industry consists of

many vessels spread throughout the entire Norwegian coastline, with a more limited

12



range than the vessel types used on the Coastal Route. With such a large geograph-

ical spread of many smaller vessels and average emissions per vessel, this sector can

require small hydrogen demand spread throughout the coastline distributed on many

bunkering locations. Considering all these properties, designing a supply chain that

operates optimal under possible future demand realisation becomes more critical,

and handling the uncertainty in future demand more important.

Figure 2.7: Number of vessels and CO2-emissions in Norwegian Economic Zone
(DNV 2019).

2.3.2.1 Maritime Passenger Transportation Sector

For the maritime passenger transportation sector in Norway, public tenders play an

important role in setting the requirements for the operation of the different trans-

portation contracts. Specific requirements such as zero- and low-emission technology

can be set in these contracts. This is already the case for the ferry connection Bodø-

Moskenes-Værøy-Røst from year 2025, where hydrogen as fuel is required (Samferd-

selsdepartementet 2021). The use of public tenders in the maritime transportation

sector can result in large sudden increases in hydrogen demand. This type of de-

mand is usually foreseeable, as new public tenders often are announced years before

they take effect.

The maritime transportation sector in Norway also has a varied fleet-composition

mix, ranging from small passenger vessels, high-speed ferries, domestic car ferries

and cruise ships used in the Coastal route. Each segment has distinct characterist-

ics setting different requirements for a hydrogen supply chain. These requirements

can be related to different amount of energy demands, making some vessel segments

more suitable for hydrogen than others. One possible result of different requirements
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within vessel segments is that only a fraction of vessels used in the maritime pas-

senger transportation sector can convert to zero-emission technology or that some

vessel segments undertake the technology switch to zero-emission technology later

than others.

2.3.2.2 Offshore Fleet on the Norwegian Continental Shelf

Historically, Norwegian offshore shipping companies have had a proactive approach

to seeking and applying new technology in collaboration with oil companies. Their

incentive for implementing this new technology has been to produce more energy-

efficient solutions (Konkraft 2020).

The EU ETS has engaged in phase 4 in 2021, resulting in more considerable restric-

tions in the total number of trading quotas. This restriction will cause a tax increase

on CO2, and the government predicts this to get the total cost of emission as 2000
NOK

tonneCO2
measured in fixed 2020-prices towards 2030. In the government’s climate

action plan for 2021-2030, emphasis is placed on cooperation between the oil- and

gas industry and the government in the work of developing low- and zero-emission

solutions for the industry. As of now, there are competing low- and zero-emission

fuels for the offshore industry. Ammonia is heavily discussed as one of the candidate

zero-emission fuels, with supply ships already being converted to run on ammonia to

test the new technology (SINTEF 2021). Hydrogen, either solely or in combination

with batteries, is another competitor. Nevertheless, each technology can result in

hydrogen demand if the hydrogen is used to produce ammonia. Similarly to the

maritime passenger transportation sector, the offshore sector can experience that

only a fraction of vessels convert to low- or zero-emission technology and create

hydrogen demand or that different vessel segments switch to low- or zero-emission

technology at different times.

The low- and zero-emission technology for the oil- and gas industry is subject to

strict safety regulations as this industry is known to have value safety high. The

oil- and gas industry on the Norwegian Continental Shelf practices the NORSOK-

standard, which has a complete framework for safety regulations on all levels in

the industry ranging from drilling to operation (Standards Norway 2021). It is not

unlikely that the importance of safety in the sector leads to requirements of large

technology matureness relative to other sectors for the low- and zero-emission solu-

tions. These high safety standards for the industry could imply that if the offshore

sector utilises zero-emission technology, it will bring the technology matureness for

the zero-emission technology to a satisfactory level for every other sector identified
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in this section to start using it. The opposite outcome is that the hydrogen demand

in the offshore sector comes later relative to the other sectors.

2.3.2.3 Domestic Fishing

The domestic fishing sector shares a principal target with the domestic shipping

sector in Norway of halving emissions by 2030 compared to 2005 levels. Similar to

the offshore sector, domestic fishing will experience increases in CO2-taxes towards

2030 and will have to adapt to low- and zero-emission technology. Historically,

the domesitc fishing sector has not been affected by CO2-tax up until 2020 due

to complete refunds of the fishermen’s expenses regarding the CO2-tax. Towards

2025, a compensation scheme that slowly aims to degrade to zero is in practice

(Ocean Hyway Cluster 2021). This will in turn imply a much stronger incentive

for the domestic fishing sector to seek zero- or low-emission solutions in the near

future. Like the maritime transportation sector, the fishing sector has a mixed fleet

composition. It will most likely require different technological solutions across the

different vessel types, but not to the same degree as the vessel segments in the

maritime transportation sector identified earlier.

2.4 Supply chain design

In this section, we identify the problem type of supplying the Norwegian maritime

transportation sector with low- or zero-emission fuel, based on the inputs from the

discussion held in this chapter so far. Furthermore, we elaborate on the general cost

terms in production as these represent recurring elements when modelling problems

of the identified type.

2.4.1 Facility location

DNV discuss the possible designs of a hydrogen supply chain regarding the mari-

time transport sector in their report one ”Hydrogen Use and Production in Nor-

way” (DNV 2019). They acknowledge that an entirely new supply chain must be

designed to satisfy the requirements for hydrogen in the maritime transportation sec-

tor. When establishing a new supply chain, DNV highlight that it is often a question

of whether the production should be centralised at a few locations, granting cost

advantages from large-scale production in the form of lower production costs, or
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decentralised with a greater amount of smaller facilities granting the opposite cost

structure. Centralised or decentralised production is a typical trade-off found in

facility location problems or supply chain design. Either way of configuration, it is

not given that the supply chain will be operating as optimal, depending on what

possible future hydrogen scenarios are realised. Each scenario will have components

from different vessel segments with distinctive characteristics.

2.4.2 General cost terms in hydrogen production

There is a relatively high level of costs associated with establishing and starting

hydrogen production. We may split these costs into two groups: long-term and

short-term costs. The costs connected with decisions spanning over a relatively long

time horizon, possibly years, are the long-term costs. The long-term costs can be

considered a minimisation problem between production input factors, often capital

and labour. The sum of expenditures on capital and labour is minimised with

respect to capital and labour usage and subject to the production function equality.

The intersection between input factors isoquants and isocost curves, reveals the

expansion path for the long-term costs with each optimal combination of capital

and labour to produce its respective quantity in the long-term (Mathis & Koscianski

2002), as Figure 2.8 illustrates. Here, the optimal combination of capital, K1, and

labour, L1, for the initial quantity level, q1, is found as the intersection between

the isocost curve, the line spanning between input cost points A and B, and the

isoquant line for q1. Figure 2.8 also shows the inflexibility of short-run production.

Production costs cannot be minimised if the production quantities varies, due to the

capital input level being fixed. Moving along the short-term expansion path from

initial production quantity, q1, to an increased production quantity q2, the only

option is that labour increases from L1 to L3. However, in the long-run the same

quantity can be produced cheaper by increasing labour from L1 to L2 and capital

from K1 to K2.
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Figure 2.8: Long-term and short-term expansion paths (Pindyck & Rubinfeld 2018).

An investment in a production facility or adjusting the facility’s capacity will have a

long-term cost function associated with the decision. A short-term cost function will

be connected to the long-term cost function at that capacity point. The short-term

cost functions are tangent to the long-term cost function at a given facility capacity

with its respective production quantity. Here there is only one input factor, as cap-

ital (investment in facility capacity) is held constant. The short-term function will

then be convex on the assumption that the marginal return on the input factor is di-

minishing (Mathis & Koscianski 2002). This connection between the short-term cost

functions and long-term cost functions is presented in Figure 2.9. The recognisable

S-shape of the long-term cost function comes from the increasing and diminishing

marginal cost functions. The long-term cost function shows economies of scale in the

beginning with the average cost function decreasing. Later on, with sufficiently high

output levels, dis-economies of scale appears as marginal cost increases (Pindyck &

Rubinfeld 2018).
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Figure 2.9: Facilities long-term and short-term cost functions.

The long term decisions in hydrogen production will be the options to establish

facilities and later adjust their capacity. Decisions like production quantities and

distribution, which may change daily, are associated with short-term costs. For the

short term production process, there has to be at least one input factor that is

held constant (Ioan & Ioan 2014). Typically for a hydrogen production process, the

capital in factories is held constant, while labour is variable.

Corporations tend to exploit the phenomena of economies of scale to make improve-

ments in their expenditure pattern by streamlining their production. By distributing

costs over a more significant number of quantities when production increases and

costs are reduced, are the corporations able to achieve economies of scale (Pindyck

& Rubinfeld 2018). With lower marginal costs than average costs, simultaneously,

the corporation gets economies of scale as the average costs decrease. Combining

this with the fact that higher utilisation will have decreasing marginal costs, we get

that a small facility with a high utilisation will achieve economies of scale compared

to a large facility with low utilisation (Schütz 2009).
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Chapter 3

Literature Review

This chapter discusses the literature that studies problems relevant to supply chain

design. To begin with, we study a multi-period facility location problem and dis-

cuss some of its essential properties and limitations. Next, we extend the prob-

lem to involve capacity adjustments and study several models considering different

approaches to modelling these capacity adjustments. Section 3.3 discusses using

stochastic programming as a modelling framework in facility location and supply

chain design.

3.1 Multi-Period Facility Location Problem

A multi-period facility location problem (MFLP) involves a set of time periods, a

set of geographically spread customers and a set of facilities to satisfy customer

demand. The MFLP is relevant when designing a facility configuration which faces

changing costs over time or dynamic market conditions, such as varying customer

demand. The problem involves decisions on where, when and how many facilities to

open, along with the quantities to be distributed in each period to each customer.

These decisions are taken for a given planning horizon to minimise the costs of

locating facilities concerning expected changes in costs or market conditions over

the planning horizon.

Wesolowsky & Truscott (1975) is one of the first to review a multi-period model

for facility location to study the trade-offs between fixed distribution costs and ex-

penditures for relocation of facilities. The problem involves locating a predetermined

number of facilities at potential locations and allocating demand centres to these

facilities. In addition, a limited number of facility location changes are allowed
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each period as facilities can be opened and closed in each period. This problem is

also known as the discrete space location-allocation problem in the literature, where

Wesolowsky & Truscott (1975) is the first to deal with multi-period or dynamic as-

pects of the problem. Let Ajik denote the present value of the cost of assigning node

i to node j in period k. Moreover, let c
′

jk and c
′′

jk denote the present value of cost

of removing and establishing a facility at site j in period k respectively. Parameter

mk represents the maximum number of facility location changes allowed in period

K. Variables xjik denote if node i is assigned to node j in period k. Variables y
′

jk

and y
′′

jk indicate if facility is removed or established at site j in period k respectively.

The model is formulated as:

min z =
K∑
k=1

N∑
i=1

M∑
j=1

Ajikxjik +
K∑
k=2

M∑
j=1

(
c
′

jky
′

jk + c
′′

jky
′′

jk

)
(3.1)

subject to:

M∑
j=1

xjik = 1, i = 1, ..., N ; k = 1, ..., K (3.2)

N∑
j=1

xjik ≤ Nxjik, j = 1, ...,M ; k = 1, ..., K (3.3)

M∑
j

xjik = G, k = 1, ..., K (3.4)

M∑
j=1

y
′

jk ≤ mk, k = 2, ..., K (3.5)

xjjk − xjj,k−1 + y
′

jk − y
′′

jk = 0, j = 1, ...,M ; k = 2, ..., K; i ̸= j (3.6)

xjik ∈ {0, 1}, j = 1, ...,M ; i = 1, ..., N ; k = 1, ..., K

(3.7)

y
′

jk, y
′′

jk ∈ {0, 1}, j = 1, ...,M ; k = 1, ..., K (3.8)

The objective function (3.1) minimises the cost of assigning nodes, removing and

establishing facilities for the predetermined planning horizon. Constraint (3.2) en-

sures that each node i is assigned to exactly one node j in period k. Inequality

(3.3) ensures that node i can only be assigned to node j if node j is self-assigned.

Equation (3.4) makes sure that G self-assignments are made among the M nodes.

Constraint (3.5) restricts the number of sites discontinued in each period from period

2 and throughout K. Constraint (3.6) links the appropriate relocation cost with its
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respective decision variable. Lastly are the binary requirements for variables xjik,

y
′

jk and y
′′

jk in constraints (3.7) and (3.8) respectively.

This model shows how to handle shifts in e.g. demand or costs during a planning

horizon through multi-period analysis. Here, the options for adjustments during the

planning horizon are represented by removing or establishing a facility in a period,

limited by an upper bound of location changes which may reflect organisational

limitations. However, the decisions of removal or establishment are rather cost-

intensive and comprehensive, seen through the perspective of supply chain design.

3.2 Multi-Period Facility Location with Capacity

Adjustments

Multi-period facility location problems with capacity adjustments can be seen as ex-

tensions of the multi-period problem introduced earlier, where capacity adjustments

add further flexibility to the multi-period analysis. Capacity adjustments at facility

locations can involve both expansion and reduction, which overall allows the produc-

tion to respond to demand shifts throughout the planning horizon. These capacity

adjustments of a facility typically cost a lot less than the complete removal and es-

tablishment decisions discussed earlier. With the incorporation of these adjustments

comes multiple modelling choices.

One choice of modelling when incorporating capacity adjustments, is if the adjust-

ment is defined as a set of discrete points or as continuous space. The main emphasis

of literature will be on the former, and it is often identified as a modular capacitated

facility location problem as first presented by Shulman (1991), and later revised by

Lee (1991), Mazzola & Neebe (1999) and Correia & Captivo (2003). Arya et al.

(2004) demonstrates one of the simplest manners of discrete expansion in the k-

capacitated facility location problem. Here, k copies of an initial facility can be

added to an existing facility location, sharing the same cost and capacity. In this

problem, capacity is simply defined as the maximum number of customers a facility

can serve. Matos Dias et al. (2007), in similarity with Shulman (1991), Lee (1991),

Mazzola & Neebe (1999) and Correia & Captivo (2003), work with capacities repres-

ented by modular structures each with a size and installation cost. Here, the total

capacity at a facility is the sum of each module’s capacity at the given location.

Jena et al. (2015) and Silva et al. (2021) also work with modular capacities but

with a few more extensions to capacity adjustments. In addition to incorporate
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capacity adjustments, they model the adjustment decisions such that they allow for

adjustment during each time period in contrast to only once during the planning

horizon. They also extend the capacity adjustments decisions to involve the decisions

of full opening and closure of a facility, temporary closure or relocation of capacity

between facilities.

3.3 Stochastic Programming

The models considered so far in this chapter can be characterised as deterministic

models where the outcome is known for certain. In the study of large-scale optimisa-

tion problems which try to capture and represent the real world, most of them will

involve some sort of uncertainty. Stochastic programming is a modelling framework

that aims to capture this uncertainty, where some model parameters are random

variables with estimated or known distributions, and that are revealed after a few

or every decision has been made. Birge & Louveaux (2011) present some relevant

elements that can be subject to uncertainty in facility location problems. These ele-

ments are demand, production costs, distribution costs, prices charged to customers

and distribution patterns, and can exist both simultaneously or by themselves.

For stochastic programming, the two-stage structure is the simplest form. This

structure aims to make first-stage decisions that fit all possible realisations of the

random variables. The first-stage decisions are taken under uncertainty. After the

uncertainty is revealed, second-stage decisions can be taken as recourse decisions in

order to improve the objective of the problem after the realisation of the random

variables. Ravi & Sinha (2004) provide an example of a classical uncapacitated

facility location problem with a two-stage stochastic structure. The problem aims

to minimise the sum of variable costs and fixed setup costs by determining the

location of an unknown number of facilities to serve market demand. The problem

is formulated as:

min z =
∑
i∈F

fiy
0
i +

m∑
s=1

ps

(∑
i∈F

f s
i y

s
i +

∑
i∈F,j∈D

dsjcijx
s
ij

)
(3.9)
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subject to: ∑
i∈F

xs
ij ≥ dsj , j ∈ D, s ∈ S (3.10)

xs
ij ≤ y0i + ysi , i ∈ F, j ∈ D, s ∈ S (3.11)

xs
ij, y

s
i ∈ {0, 1}, i ∈ F, j ∈ D, s ∈ S (3.12)

The sets F , D and S denote the set of facilities, clients and scenarios, respectively.

Let cij correspond to the distance between a facility and a client. Furthermore,

let dsj denote the demand of each client, j, in a given scenario s. Facility opening

decisions consist of both first-stage and second-stage decisions with corresponding

costs of f 0
i and f s

i in scenario s. Let xs
ij be a binary variable which corresponds

to if client j is served by facility i in scenario s or not. If so, constraint (3.11)

ensures that facility i must be opened in the first stage, the second stage, or both.

The problem is single period with no specification of the second stage cost. When

discussing facility location problems, this cost can correspond to the building of

a new facility, expansion or the cost of unavailability of a facility in a scenario.

Most of the applications of stochastic programming for problems involving tactical

decisions use only continuous variables. In contrast, facility location or production

planning applications involving strategic decisions typically require additional binary

variables, making the problems much harder to solve.

3.3.1 Two-Stage Stochastic Multi-Period Facility Location

Problems with Capacity Adjustments

In multi-period facility location problems, several parameters can be subject to un-

certainty. The larger the time horizon for the problem is, the more difficult it will

be to find the optimal location and configuration of facilities to satisfy customer

requirements. The uncertain parameters in question can be costs related to invest-

ment, operation and distribution, or simply customer demand. Many studies use

two-stage stochastic models as an approach to handle the uncertainty. Two-stage

stochastic multi-period facility location problems with capacity expansions often

tackle uncertain customer demand, and the action of adjusting the total installed

capacity through capacity expansion or reduction at specific facilities (with/without

closing and/or reopening) copes with the varying demand. Incorporating uncer-

tainty in these types of problems often gives challenges such as large computational

requirements. For that reason, studying the solution algorithms designed to solve

each problem in this review is just as important as the mathematical formulation of
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them (Birge & Louveaux 2011).

Alonso-Ayuso et al. (2003) present a two-stage stochastic model for determining

facility sizing, production topology, product allocation and selection, and vendor

selection for raw materials under uncertainty. Here, facilities can have different ca-

pacities, allowing them to expand in defined time periods. The uncertainty in this

problem relates to product net price and demand, the raw material supply cost and

the production cost. The solution method applied to the problem is named the

Branch and Fix Coordination, and is proven to work well on large scale stochastic

mixed-integer problems. The technique takes advantage of scenario-wise decompos-

ition schemes, and Alonso-Ayuso et al. (2003) present a specialisation of the Branch

and Fix Coordination to be applied to a two-stage structure.

Correia & Melo (2021) introduce a two-stage stochastic multi-period facility loca-

tion problem under uncertain demand as a consequence of two different customer

segments each having distinct service requirements. To solve this problem, they

present two different models which differ in whether modular adjustment decisions

are treated as first-stage or second-stage decisions. In both models, initial facility

location and capacities are defined as first-stage decisions and the operational de-

cisions, such as distribution, are defined as second-stage decisions. Moreover, both

models allow capacity expansion and reduction, and these are the only corrective

actions for adjusting capacity as facilities must remain open throughout the plan-

ning horizon. The reason for this distinction is if the adjustment decisions are seen

as strategic or tactical decisions. In an effort to decrease model run time, they de-

velop sets of additional inequalities to improve the polyhedral description of the set

of feasible solutions for both models. Through the additional inequalities, they are

able to establish lower bounds for least total number of facilities open at a specific

design period and minimum quantity of demand satisfied in each period between two

design periods respectively. In addition, the Chvátval-Gomory rounding method is

applied in both cases.

Ahmed et al. (2003) show that the two-stage structure can be extended to multi-

stage structure for facility location problems. They extend the model by allowing

revised decision to the capacity in each time stage based upon the uncertainty real-

ised so far. However, our focus will remain on problems with two-stage stochastic

structure in the rest of this chapter.
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3.3.2 Supply chain design under uncertainty

Lucas et al. (2001) extend the stochastic multi-period facility location problem to in-

volve the design of an entire supply chain under uncertainty. Here, the supply chain

is defined by four major stages: production, packing at sites, transportation through

distribution centres and delivery to customer zones. For infrastructure investments

in distribution networks, the two-stage problem structure is shown to be a reas-

onable modelling approach due to an underlying temporal disconnection between

investment decisions and the operation of the supply chain (Shapiro & Philpott

2007). However, with the involvement of a complete supply chain rather than a set

of facilities, the problems tend to grow to large scale mixed integer-programming

problems (MILPs) which often are rather computational extensive. Lucas et al.

(2001) utilise Lagrangian relaxation in their study, and they show that it is an ef-

ficient solution algorithm in their case. Their problem is characterised by having

first-stage decisions related to the opening and closing of facilities and capacity, while

the second-stage decisions regard operational decisions, such as production quant-

ity, packaging quantity and transportation. Moreover, they incorporate a shortage

penalty for not meeting demand.

Santoso et al. (2005) showcases a different approach to solution algorithms for supply

chain network design under uncertainty. They investigate the use of an integrated

solution methodology consisting of the sample average approximation (SAA) scheme

combined with an accelerated Benders decomposition algorithm. The problem con-

sists of first-stage decisions related to configuration decisions of processing centres

to build and which processing and finishing machines to procure, while the second-

stage decisions relate to processing and transporting products from suppliers to

customers. The stochastic parameters which are revealed in the second-stage of the

problem are processing and/or transportation costs, supplies, demands and capa-

cities. The results show great improvement in solution time versus sample time for

the problem. For a real-world sized instance of the problem, the solution time went

from just under 80 000 seconds to approximately 10 000 seconds when comparing

the solution of a monolithic deterministic equivalent problem with the solution of

the stochastic problem with the accelerated decomposition technique.

Oliveira et al. (2014) look into optimisation under uncertainty of the petroleum

product supply chain. Their focus lies in solving their two-stage stochastic model

of the planning problem. For that reason, they study the use of the L-shaped

method (stochastic Benders decomposition) and the development of acceleration

techniques to reduce solution time further. The problem includes the consideration
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of an integrated distribution network design, facility location and discrete capacity

expansion under a multi-product and multi-period setting. The uncertainties are

related to the product demand levels. The objective is to minimise the investment

and logistics costs in order to meet demand at bases in the network. The first-stage

decisions consist of which investment decisions related to capacity expansion and

commodity arcs to implement and when, while the second-stage decisions regard

inventory levels, product flows, supply levels at sources and supply provided at

demand sites. The results show that the solution time decreases by 4.5 times for

a larger number of scenarios in a realistic petroleum supply chain instance when

comparing the accelerated algorithm with the full space equivalent deterministic

problem.

Nunes et al. (2015) study the design of a hydrogen supply chain under uncertainty.

In this problem, they use a two-stage stochastic structure. The objective is to

minimise the cost of production, storage and transportation while satisfying demand

at consumption points throughout the planning horizon. The hydrogen demand is

uncertain and treated as stochastic in each time period. Investments in plants and

warehouses are treated as first-stage variables, and the transportation and operation

of the supply chain are left as second-stage variables in the model. To correctly

represent the stochastic demand, large numbers of scenarios are generated. To

overcome the computational requirements these scenarios introduce, Nunes et al.

(2015) use the sample average approximation technique.

The field of supply chain design under uncertainty in operation research is too

extensive to be able to highlight all the relevant papers for our thesis. However, we

would like to draw attention to the review paper done by Govindan et al. (2017).

Govindan et al. (2017) identifies and structures the most relevant papers from the

last two decades regarding supply chain design problems under different types of

uncertainty.
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Chapter 4

Problem Description

The two-stage stochastic facility location problem with capacity adjustments studies

where to construct, expand, or reduce production facilities to satisfy customers’

uncertain demand. The objective is to establish the optimal schedule for where

and when to open hydrogen production facilities, which capacity and production

technology to install, adjust their capacity, and distribute the produced hydrogen.

We have a set of customers with uncertain hydrogen demand in our problem. A set of

different demand scenarios specifies the uncertain customer demand. For hydrogen

production, we are given a set of possible locations where production facilities may

open. Different production technologies give the choice of how hydrogen should be

produced at the production facilities. The production levels that can be installed

are given by a set of discrete capacities for production. The planning horizon is

specified by a set of time periods.

A two-stage structure characterises the problem. The first stage is associated with

deciding where to establish facilities and how their initial capacities and production

technology should be. These first-stage decisions are investment decisions and are

related to long-term costs. The long-term costs are given as S-shape functions.

The second stage includes deciding where and when to adjust capacity, how much

to produce, and how to distribute in response to realised demand level. Except for

capacity adjustments associated with long-term costs, the second stage decisions are

generally related to short-term costs. The costs from production and distribution

make up the short-term costs. The production costs follow piece-wise linear convex

functions, while distribution costs are linear.

Moreover, there may be one opened production facility at each possible location.

When determining to invest in a facility, two significant decisions must be made:
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which production technology and initial production capacity to install. It is not

allowed to switch production technology at an opened facility during the planning

horizon. Prior to an eventual capacity adjustment, the available production capacity

will be the upper limit for the facilities’ hydrogen production. These two decisions

are significant as they will be decided before realising the uncertain demand level.

Therefore, they will be equal for all possible demand levels and a basis for the

production level.

To respond to the realised customer demand level, adjusting the originally installed

capacity by either expansion or reduction is an option. The costs of capacity ad-

justments are more expensive in total than investing in that capacity initially. The

possibility of adjusting capacity can only be made after the facility is opened. The

decisions to either expand or reduce capacity will offer more flexibility for the pro-

duction to cope with the development in future hydrogen demand. The option to

reduce the capacity also implies that a facility can be shut down, but the re-opening

of a facility is not allowed.

Furthermore, production quantities are limited to each facility’s production capa-

cities and utilisation rates. The installed production capacity will serve as an upper

bound for production quantities at any time period of the planning horizon. In

contrast, the installed production technology’s required minimum utilisation rate

will be the lower bound for production quantities. Production that surpasses these

bounds must be penalised. Regardless of future developments in customer demand,

the customer demand must be either met or shortfall penalised.

Several production facilities can meet customers’ demands at any given time, which

suppliers who distribute to a customer can change between different time periods.

However, facilities cannot be distributed to customers that surpass a given maximum

travelling distance because of limitations in current distribution costs.

Our problem aims to minimise the expected discounted cost of the sum of invest-

ment, expansion, reduction, production, and distribution costs.
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Chapter 5

Mathematical Model

This chapter presents our mathematical model for the problem described earlier in

Chapter 4. Section 5.1 briefly explains the modelling approach. Then Section 5.2

introduces the general modelling assumptions. The chapter ends with the mathem-

atical formulation of the problem in Section 5.3.

5.1 Modelling Approach

Our modelling approach is a continuation of the work done in Aglen & Hofstad

(2021). We extend our model by including the possibilities of reducing produc-

tion capacity and closing down factories. The model can now be characterised as

a two-stage stochastic facility location with capacity adjustments with these new

extensions.

5.1.1 Decision variables

We model the investment and eventually capacity adjustment decisions as a selection

amongst available capacities from a discrete set. The capacity adjustments between

the available capacities of an established facility are pre-decided discrete jumps.

This approach is similar to in Aglen & Hofstad (2021). Like the modelling approach

by Correia & Melo (2019), our investment decisions are independent of the demand

scenarios, while the capacity adjustment decisions are dependent. We are modelling

the capacity adjustments as dependent is to better react to each individual scenario.

Additionally to the capacity adjustments to handle the uncertain demand, we have
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included penalties for demand shortfalls and overproduction. For the model, this

penalty for shortage in demand will allow for additional feasible solutions and add

more flexibility to the model. On the other side, since the option to not meet

the level of demand is not preferred, we model it as a relatively high cost. The

incorporation of penalty cost for demand shortfall is similar to the method used in

Lucas et al. (2001).

5.1.2 Modelling costs

Each given capacity has a short-term production cost function connected to it in

our model, and these short-term production costs are piece-wise linear convex func-

tions. Additionally, we model the costs such that lower utilisation of higher installed

capacity is less favourable than higher utilisation of smaller installed capacity. This

approach is similar to the one used in Aglen & Hofstad (2021). Figure 5.1a illustrates

the approach for modelling capacity adjustments of facilities in our model. Let Ck′p

be the investment costs for capacity point k′ and production technology p, and Qbk′p

the corresponding initial invested capacity at breakpoint b. The adjustment costs

Ek′k′′p are the costs for expanding to capacity Qbk′′p from capacity Qbk′p. Since, Ck′p

< Ck′′p + Ek′k′′p, investing in a more extensive facility right away is cheaper than

expanding from an investment in a smaller facility. The β illustrates this additional

cost in the figure. Similarly, Figure 5.1a illustrates the reduction from initial capa-

city Qbk′p to capacity Qbkp and shows that it is more favourable to invest in a smaller

capacity right away than to reduce down, avoiding the extra expenses represented

as α. Moreover, our model also allows to reduce a facility’s initial capacity, Qbk′p,

to zero - representing a facility shutdown with a corresponding cost.

We use separate variables connected with the investment and capacity adjustment

decisions, respectively, to model the switch from one short-term production cost

function to another after capacity adjustment. Figure 5.1b illustrates an example

of this modelling approach, where an initial capacity of Qbk′p, the production cost

function fbk′p(q) applies, while after reducing the facility to capacity Qbkp, the func-

tion fbkp(q) becomes active. The squared boxes of the functions are the capacities

at 100 % utilisation, while the circles are breakpoints b of lower utilisation.
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(a) Long-term costs. (b) Short-term costs.

Figure 5.1: Illustrations of how costs are modelled.

5.2 Assumptions

• The costs for investing and adjusting capacity are independent of

time and location in the model. The costs for opening or adjusting the

capacity of a facility are not dependent on which time period the investment

decision happens. In addition, the costs do not change with the selection of

the location for the facility, implying that every possible facility location is

equally valued.

• The distribution costs depend only on distance and amount. We

assume that the preferred distribution technology is already decided and that

the costs of the technology is a part of the cost function. Therefore, the

distribution costs in our model only depend on the amount transported and

the distance between the production facility and the customer.

5.3 Mathematical Formulation

First we present the notation we use in our model:

Sets

B - Set of breakpoints for the short-term cost function;

I - Set of facility locations;

J - Set of customer locations;
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K - Set of possible discrete capacities;

P - Set of production technologies;

S - Set of scenarios;

T - Set of time periods.

Subsets

Lk ⊆ K - Subset of discrete capacities not containing element k;

T ′ ⊆ T - Subset of time periods excluding the first time period.

Parameters

Clp - investment costs for point l of capacity function, and technology p,
l ∈ L0, p ∈ P ;

Ds
jt - demand at customer j in period t, in scenario s, j ∈ J , t ∈ T , s ∈ S;

Elkp - costs of capacity adjustment from point l to capacity in point k for
technology p, l ∈ L0, {k ∈ K|k ̸= l}, p ∈ P ;

Fbkp - costs at breakpoint b of the short-term cost function given for capacity
k and for technology p, b ∈ B, k ∈ K, p ∈ P ;

Lij - 1 if demand at customer location j can be served from facility i, 0
otherwise, i ∈ I, j ∈ J ;

M - penalty cost per unit hydrogen not supplied;
ps - probability of scenario s, s ∈ S;
Qbkp - production volume at breakpoint b of the short-term cost function,

for capacity point k and technology p, b ∈ B, k ∈ K, p ∈ P ;
Rt - discount rate in period t, t ∈ T ;
Tij - distribution costs from facility i to customer j, i ∈ I, j ∈ J .

Decision variables

esit - amount of overproduced hydrogen at facility i in period t in scenario
s, i ∈ I, t ∈ T , s ∈ S;

ws
it - amount of penalised hydrogen at facility i in period t in scenario s,

i ∈ I, t ∈ T , s ∈ S;
us
ijt - amount of customer demand at location j satisfied from facility i in

period t in scenario s, i ∈ I, j ∈ J , t ∈ T , s ∈ S;
xilpt - 1 if facility is open at location i in period t, with originally installed

capacity l, and technology p, 0 otherwise, i ∈ I, l ∈ L0, p ∈ P , t ∈ T ;
ysilkpt - 1 if facility has been adjusted at location i in period t, from original

capacity l, to capacity k, and technology p in scenario s, 0 otherwise,
i ∈ I, l ∈ L0, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, s ∈ S;

µs
ilbpt - weight of breakpoint b at location i for original capacity point l and

technology p in period t in scenario s, i ∈ I, l ∈ L0, b ∈ B, p ∈ P , t ∈
T , s ∈ S;

νs
ikbpt - weight of breakpoint b at location i for adjusted capacity point k and

technology p in period t in scenario s, i ∈ I, k ∈ K, b ∈ B, p ∈ P , t ∈
T ′, s ∈ S.
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We now present the mathematical model. First, we introduce the first-stage problem

with respective constraints. Next, we present the second-stage problem for a given

scenario s with associated restrictions.

First-stage problem:

min
∑
i∈I

∑
l∈L0

∑
p∈P

Clp(
∑
t∈T ′

Rt(xilpt − xilp(t−1)) +R1xilp1) +
∑
s∈S

psΨs(x) (5.1)

subject to: ∑
l∈L0

∑
p∈P

xilpt ≤ 1, i ∈ I, t ∈ T , (5.2)

xilpt ≥ xilp(t−1), i ∈ I, l ∈ L0, p ∈ P , t ∈ T ′, (5.3)

xilpt ∈ {0, 1}, i ∈ I, l ∈ L0, p ∈ P , t ∈ T . (5.4)

Equation (5.1) is the objective function, which aims to minimise the sum of the

total discounted first-stage investment costs and the expected second-stage costs.

Restrictions (5.2) ensure that only one facility can be opened at the given loca-

tion i. Constraints (5.3) in combination with restrictions (5.2) guarantee that a

facility cannot be re-opened if it has been closed. The first-stage variables binary

requirements are stated in restrictions (5.4).

The second-stage problem Ψs(x) for a given scenario s ∈ S is formulated as:

Ψs(x) = min
∑
i∈I

∑
k∈K

∑
b∈B

∑
p∈P

∑
t∈T

RtGbkp(µ
s
ikbpt + νs

ikbpt)

+
∑
i∈I

∑
l∈L0

∑
{k∈K|k ̸=l}

∑
p∈P

∑
t∈T ′

RtElkp(y
s
ilkpt − ysilkp(t−1)) (5.5)

+
∑
i∈I

∑
j∈J

∑
t∈T

RtTiju
s
ijt +

∑
i∈I

∑
t∈T

RtM(esit + ws
it)

subject to:

xilp(t−1) ≥
∑

{k∈K|k ̸=l}

ysilkpt, i ∈ I, l ∈ L0, p ∈ P , t ∈ T ′, (5.6)

ysilkpt ≥ ysilkp(t−1), i ∈ I, l ∈ L0, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, (5.7)∑
b∈B

µs
ilbpt +

∑
{k∈K|k ̸=l}

ysilkpt = xilpt, i ∈ I, l ∈ L0, p ∈ P , t ∈ T , (5.8)

∑
b∈B

νs
ikbpt =

∑
l∈L0

ysilkpt, i ∈ I, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, (5.9)
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∑
j∈J

us
ijt + esit − ws

it −
∑
k∈K

∑
b∈B

∑
p∈P

Qbkp(µ
s
ikbpt + νs

ikbpt) = 0, i ∈ I, t ∈ T , (5.10)

us
ijt ≤ LijD

s
jt, i ∈ I, j ∈ J , t ∈ T , (5.11)∑

i∈I

us
ijt = Ds

jt, j ∈ J , t ∈ T , (5.12)

esit ≥ 0, i ∈ I, t ∈ T , (5.13)

us
ijt ≥ 0, j ∈ I, j ∈ J , t ∈ T , (5.14)

ws
it ≥ 0, i ∈ I, t ∈ T , (5.15)

ysilkpt ∈ {0, 1}, i ∈ I, l ∈ L0, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, (5.16)

µs
ilbpt ≥ 0, i ∈ I, l ∈ L0, b ∈ B, p ∈ P , t ∈ T , (5.17)

νs
ikbpt ≥ 0, i ∈ I, k ∈ K, b ∈ B, p ∈ P , t ∈ T ′. (5.18)

Equations (5.5) represent the second-stage objective function, which consists of the

sum of discounted costs for production, capacity adjustment, distribution, and pen-

alties for shortfall in demand and overproduction. Restrictions (5.6) link variables

for investment and capacity adjustments, and guarantee that a facility can only

expand or reduce capacity after it has been opened. Constraints (5.7) ensure that

only one capacity adjustment can be made at an opened facility i. The combination

of equations (5.8) and (5.9), guarantee that production is only allocated to facilities

that have been opened, and link the installed capacity with its associated short-

term cost function. The short-term production cost functions depend either on the

original installed capacity l at facility i, or the capacity k after an adjustment of the

capacity has been made. Restrictions (5.10) guarantee that all quantities produced

are distributed to the customers to meet the demand level. Additionally it penalises

overproduction and shortfall of demand. Equations (5.11) restrict which facility i

can satisfy demand at customer j. Constraints (5.12) guarantee that demand will

be satisfied. Restrictions (5.13) to (5.18) are the second-stage variables binary and

non-negativity requirements.
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Chapter 6

Solution Method Approach

In this chapter, we introduce the solution method used to solve the mathematical

model presented in Chapter 5. First, Section 6.1 presents the relevant theory to

exploit the structure of our two-stage stochastic facility location problem with capa-

city adjustments. Next, Section 6.2 shows the Benders reformulation of the model

presented previously in Chapter 5. After that, Section 6.3 introduces our L-shaped

decomposition algorithm based on the Benders reformulation of our problem. Lastly,

in Section 6.4, we introduce some acceleration methods for our L-shaped decompos-

ition algorithm.

6.1 Two-stage Stochastic Programming

This section aims to provide the reader with two-stage stochastic programs’ theory

and basic properties. In particular, we study the characteristic structure of two-stage

stochastic programs and decomposition methods designed to exploit this structure.

6.1.1 Two-Stage Stochastic Linear Programs

Birge & Louveaux (2011) present the following formulation for a two-stage stochastic

linear program:

min z = cTx+ Eξ[min qTs ys] (6.1)
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subject to:

Ax = b, (6.2)

Tsx+Wys = hs, (6.3)

x ≥ 0, ys ≥ 0, (6.4)

Considering the formulation (6.1)-(6.4), we observe that this stochastic linear pro-

gram consists of two stages. The division into two stages originates from the in-

formation available. We assume that there is a finite set of possible scenarios, S,
that may occur. Several decisions have to be taken before uncertainty is revealed.

These decisions are named first-stage decisions, and the period for which these de-

cisions are made is called the first stage. We denote the first-stage variables as

x. These decisions are found in the first term in the objective function, (6.1), and

the constraints, (6.2), which constitute the deterministic terms in the problem for-

mulation. Additionally, we observe x in equations (6.3), where it is connected to

decisions in the other stage. These decisions are named second-stage decisions, and

the period for these decisions is called the second stage. Here, there are decisions to

be made after the uncertainty is revealed. Furthermore, we notice that some of the

parameters and variables have dependencies on a scenario, s. The x decisions are

independent of s and are equal for all realisations of s. However, the dependency of

y on s, which we call the second-stage variables, makes the problem more complex

as the second-stage decisions are not necessarily the same under each scenario.

In some cases, the objective values and feasible regions have special properties useful

for computation. One of these properties is if the problem has relatively complete

recourse. In this case, every first-stage solution x, satisfying Ax = b, is also feasible

in the second stage. Complete recourse is a special type of relatively complete

recourse. This is the case when there exists y ≥ 0 such that Wy = t for all t ∈ R.

This means there is always a recourse action no matter what first-stage solution x

or the realisation of scenario s occurs.

6.1.2 L-shaped Method

Van Slyke & Wets (1969) were the first to present the L-shaped algorithm. They

present the algorithm as a tool to solve stochastic programs. The basic principle of

the L-shaped method, as presented by Birge & Louveaux (2011), is to approximate

the recourse function in the objective function of problems with a structure to the

formulation given by equations (6.1) - (6.4). The fundamental idea is to avoid several
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function evaluations for the recourse function, as the recourse function involves

solving all second-stage recourse linear programs. Therefore, the recourse function

is used to establish a master problem in x, where the recourse function is only

evaluated exactly as a sub-problem. This is achieved by assuming finite support

for the random vector ξ. Let s = 1, ..., S index the possible realisations and ps

its respective probability, which is illustrated in equation (6.5) . We are now able

to rewrite the problem (6.1) - (6.4) into a deterministic equivalent problem in the

extensive form (EF), under the assumption that one set of second-stage decisions,

ys, is associated to each realisation of ξ, i.e. qs, hs and Ts. The extensive form (EF)

is given below:

min z = cTx+
S∑

s=1

psq
T
s ys (6.5)

subject to: (6.2) - (6.4)

The characteristic block-diagonal structure for two-stage problems is evident in the

extensive form, as illustrated in Figure 6.1. The block-diagonal matrix grows very

large, even for a moderate number of scenarios. Algorithms such as Benders decom-

position or the L-shaped method exploit this block structure. Benders decompos-

ition is a reformulation and decomposition method to solve large linear programs.

The L-shaped method is Benders decomposition applied to stochastic programs

(Louveaux & Birge 2009).

Figure 6.1: Block structure of the EF (Birge & Louveaux 2011).

Before applying the L-shaped algorithm to the EF problem with objective function

(6.5) and the assumption of relatively complete recourse, it is common to reformu-

late it through the use of Benders reformulation. Benders reformulation splits the
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original problem formulation into two separate problems called the master problem

and sub-problem, respectively.

min c⊤x+ θ (6.6)

s.t. Ax ≥ b, (6.7)

θ ≥
S∑

s=1

psq
T
s ys, (6.8)

x ∈ R (6.9)

ys ∈ R (6.10)

Benders reformulation applied to the problem formulation given by equations (6.2)-

(6.5) results in a master problem in the form given by equations (6.6)-(6.10). Here,

we find the deterministic term again in the objective function along with restriction

(6.7). Constraints (6.8) represent cuts, later referred to as optimality cuts, which

initially are an empty set and get generated iteratively when moving between the

master and sub-problem. The last term in the objective function estimates the

second-stage costs. Due to the assumption of relatively complete recourse, optimal-

ity cuts are the only cuts we are adding to our master problem. This reformulation

represents an approach called the single-cut technique. The name single-cut comes

from that contribution from all scenarios are summed in one cut as we see in con-

straints (6.8).

The sub-problem is given by (6.11)-(6.13):

min q⊤s y (6.11)

s.t. Wy = hs − Tsx (6.12)

y ∈ R (6.13)

In the sub-problems, the optimality cuts can be generated by solving the (6.11)-

(6.13) problem. If we exploit the fact that y ∈ R and assume boundedness for our

sub-problem, we can formulate the dual problem of the sub-problem with π denoting

the dual variables. The dual feasible space does not depend on the y-variables. If

the dual feasible space is non-empty, the primal problem is bounded and non-empty,

meaning that the original problem is feasible, which is always the case with relatively

complete recourse. This will, in turn, result that the recourse function is computable
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from solving the sub-problem formulated as (Luedtke 2016):

Assuming Πs :=
{
π : π⊤W ≤ qs

}
̸= ∅ :

Qs(x) = min
y

{
q⊤s y : Wy = hs − Tsx, y ∈ R+

}
= max

π

{
π⊤ (hs − Tsx) : π

⊤W ≤ qs
}

= max
{
(πs)⊤ (hs − Tsx) : π

s ∈ XP (Πs)
}

where XP (Πs) is the finite set of extreme points of Πs.

We observe that we can formulate optimality cuts from the optimal dual solution

(π̂s) to the sub-problem on the form:

θ ≥
S∑

s=1

ps (π̂
s)⊤ (hs − Tsx) (6.14)

The L-shaped algorithm iteratively moves between the master and sub-problem

discussed above, starting with a relaxed master problem initially containing no cuts.

The algorithm generates cuts of two types for a general problem, and optimality cuts

are added by solving the sub-problems discussed above. In addition, feasibility cuts

may be added if the problem does not have relatively complete recourse. Below is

the outline for the L-shaped algorithm for a general two-stage problem.

L-Shaped Algorithm

Step 0. Set r = i = v = 0 ( v is the iteration counter, while r and i are vectors

containing the feasibility and optimality cuts).

Step 1. Set v = v + 1. Solve the linear program given by Equation 6.15 to

Equation 6.19.

min z = cTx+ θ (6.15)

subject to:

Ax = b, (6.16)

Dℓx ≥ dℓ, ℓ = 1, . . . , r, (6.17)

Eℓx+ θ ≥ eℓ, ℓ = 1, . . . , i, (6.18)

x ≥ 0, θ ∈ R. (6.19)
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Let (xv, θv) be an optimal solution to problem (6.15)-(6.19). If no (6.18) is present

(optimality cut), θv is set equal to −∞ and is not considered in the computation of

xv.

Step 2. Check if xv is feasible in the second-stage. If not generate feasibility cut

by solving the linear program for s = 1, . . . , S

minw′ = eTv+ + eTv− (6.20)

subject to:

Wy + Iv+ − Iv− = hs − Tsx
v (6.21)

y ≥ 0, v+ ≥ 0, v− ≥ 0 (6.22)

where eT = (1, . . . , 1), until, for some s, the optimal value w′ > 0. In this case, let

σv be the associated dual multipliers and define

Dr+1 = (σv)T Ts (6.23)

and

dr+1 = (σv)T hs (6.24)

to generate a constraint (called a feasibility cut) of type (6.17). Set r = r + 1, add

to the constraint set (6.17), and return to Step 1. Otherwise, go to Step 3.

Step 3. Generates optimality cuts for feasible xv.

For s = 1, . . . , S solve the linear program:

minw = qTs y (6.25)

subject to:

Wy = hs − Tsx
v, (6.26)

y ≥ 0. (6.27)

Let πV
s be the dual multipliers associated with the optimal solution of Problem s of
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type as (6.26). Define

Ei+1 =
S∑

s=1

ps ·
(
πV
s

)T
Ts (6.28)

and

ei+1 =
S∑

s=1

ps ·
(
πV
s

)T
hs. (6.29)

Let wv = ei+1 − Ei+1x
v. If θv ≥ wv, stop; xv is an optimal solution. Otherwise, set

i = i+ 1, add to (6.18) (optimality cut), and return to Step 1.

6.1.3 Continuous L-shaped cuts vs. Integer L-shaped cuts

Laporte & Louveaux (1993) discuss the implications of applying the L-shaped method

to problems with first stage binary decision variables and integer second stage vari-

ables. For a two-stage stochastic program where the second stage variables are

relaxed to continuous, they present the following proposition:

Proposition 1. Any continuous L-shaped optimality cut is a lower bound on the

recourse function.

Proposition 1 implies that if the vector containing the second stage variables is

relaxed to be continuous, an optimality cut generated from solving the belonging

sub-problem, will serve as an lower bound for the cut.

In recent times, more effort has been put into improving the lower bound of continu-

ous L-shaped cuts identified by Laporte & Louveaux (1993) when the problem in-

volves two-stage stochastic mixed-integer programs (SMIPs) in which mixed-integer

decisions appear in both stages. Qi & Sen (2016) design time-staged decomposition

algorithms for solving SMIPs, and present different algorithms inspired by earlier

work from Chen et al. (2012). Both papers share the idea of a hierarchy of multi-

term disjunctions to convexify a feasible set of a mixed-integer linear program. The

approach is different from relying on dual information and continuous relaxation

for the approximation of the second stage value function. Chen et al. (2012) use a

convexification scheme for the second stage based on the cutting plane tree method.

Qi & Sen (2016) display two closely related convexification schemes, one based on

Branch and Bound convexification method, and the other on the cutting plane tree

method. Angulo et al. (2016) present and combine two different strategies to improve
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the performance of the L-shaped algorithm for integer problems. The first method

alternates between linear and mixed-integer sub-problems to avert time-consuming

exact evaluations of the recourse function. In the second method, optimality cuts

are generated from a linear program that considers information from all solutions

found up to a certain stage of the program to improve the approximation of the re-

course function’s shape. We will not look into any of these techniques in this thesis,

but present it as a suggestion for future research.

6.2 Benders Reformulation of the Mathematical

Model

The Benders decomposition splits the complex problem, formulated in Chapter 5,

into two more easily solvable problems, here represented by the master and sub-

problem. The aim of this section is to present a formulation that is able to solve

faster for large problem instances.

This section describes the Benders reformulation of our mathematical model. Almost

all indices, sets, parameters and decision variables are equal, as in Chapter 5. Only

new notation will be further explained.

6.2.1 New Notation for the Benders Reformulation

Parameters

x̂ilpt - First stage investment decisions from solved master problem in cur-
rent L-shaped iteration, i ∈ I, l ∈ L0, p ∈ P , t ∈ T ;

αs
ilpt - Dual value of constraint (5.6) in current L-shaped iteration, i ∈ I, l ∈

L0, p ∈ P , t ∈ T , s ∈ S;
βs
ilpt - Dual value of constraint (5.8) in current L-shaped iteration, i ∈ I, l ∈

L0, p ∈ P , t ∈ T , s ∈ S;
γs
ijt - Dual value of constraint (5.11) in current L-shaped iteration, i ∈

I, j ∈ J , t ∈ T , s ∈ S;
τ sjt - Dual value of constraint (5.12) in current L-shaped iteration, j ∈

J , t ∈ T , s ∈ S.

Decision Variables
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θ - Estimator of total second-stage costs given single-cut algorithm in
current iteration,

θs - Estimator of total second-stage costs in scenario s given multi-cut
algorithm in current iteration, s ∈ S.

6.2.2 Sub-problem

The sub-problem is given by objective function (6.30) and constraints (6.31) - (6.43).

The sub-problem corresponds to the LP-relaxation of the second-stage problem,

Ψs(x), defined by equations (5.5)-(5.18). Solution x̂ from the master problem is

the optimal investment decision in the current iteration, and used as input in the

sub-problem to generate the right-hand sides of constraints of (6.31) and (6.33).

Ψs(x̂) = min
∑
i∈I

∑
k∈K

∑
b∈B

∑
p∈P

∑
t∈T

RtGbkp(µ
s
ikbpt + νs

ikbpt)

+
∑
i∈I

∑
l∈L0

∑
{k∈K|k ̸=l}

∑
p∈P

∑
t∈T ′

RtElkp(y
s
ilkpt − ysilkp(t−1)) (6.30)

+
∑
i∈I

∑
j∈J

∑
t∈T

RtTiju
s
ijt +

∑
i∈I

∑
t∈T

RtM(esit + ws
it)

subject to:∑
{k∈K|k ̸=l}

ysilkpt ≤ x̂ilp(t−1), i ∈ I, l ∈ L0, p ∈ P , t ∈ T ′(αs
ilpt), (6.31)

ysilkp(t−1) − ysilkpt ≤ 0, i ∈ I, l ∈ L0, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, (6.32)∑
b∈B

µs
ilbpt +

∑
{k∈K|k ̸=l}

ysilkpt = x̂ilpt, i ∈ I, l ∈ L0, p ∈ P , t ∈ T (βs
ilpt), (6.33)

∑
b∈B

νs
ikbpt −

∑
l∈L0

ysilkpt = 0, i ∈ I, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, (6.34)∑
j∈J

us
ijt + esit − ws

it −
∑
k∈K

∑
b∈B

∑
p∈P

Qbkp(µ
s
ikbpt + νs

ikbpt) = 0, i ∈ I, t ∈ T , (6.35)

us
ijt ≤ LijD

s
jt, i ∈ I, j ∈ J , t ∈ T (γs

ijt), (6.36)∑
i∈I

us
ijt = Ds

jt, j ∈ J , t ∈ T (τ sjt), (6.37)

esit ≥ 0, i ∈ I, t ∈ T , (6.38)

us
ijt ≥ 0, j ∈ I, j ∈ J , t ∈ T , (6.39)

ws
it ≥ 0, i ∈ I, t ∈ T , (6.40)

ysilkpt ≥ 0, i ∈ I, l ∈ L0, {k ∈ K|k ̸= l}, p ∈ P , t ∈ T ′, (6.41)
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µs
ilbpt ≥ 0, i ∈ I, l ∈ L0, b ∈ B, p ∈ P , t ∈ T , (6.42)

νs
ikbpt ≥ 0, i ∈ I, k ∈ K, b ∈ B, p ∈ P , t ∈ T ′. (6.43)

In this problem, the variable ysilkpt is relaxed and defined as continuous, shown in

Equation (6.41). This relaxation is done in order to use the dual information from

the solution of the sub-problem to generate the optimality cuts on the form given

by equation (6.14).

6.2.3 Master Problem

The master problem consists of the objective function and constraints that cor-

responds to the first-stage problem of our mathematical model, where equations

(5.1)-(5.4) correspond to equations (6.44)-(6.46) + (6.48). Additionally, the master

problem contains the optimality cuts and the second stage cost estimator θ. Here,

the master problem defines as a single-cut algorithm, as θ is an estimator for the

sum of all the scenarios. Given the integration of penalty costs in the sub-problem

equations (6.30) and (6.35), our model has relatively complete recourse, meaning

that for all feasible solutions to the master problem, there is at least one feasible

solution of the sub-problem. Under this condition, our master problem does not

have a need for feasibility cuts and can be written as:

minZMP =
∑
i∈I

∑
l∈L0

∑
p∈P

Clp(
∑
t∈T ′

Rt(xilpt − xilp(t−1)) +R1xilp1) + θ, (6.44)

subject to:∑
l∈L0

∑
p∈P

xilpt ≤ 1, i ∈ I, t ∈ T , (6.45)

xilpt ≥ xilp(t−1), i ∈ I, l ∈ L0, p ∈ P , t ∈ T ′, (6.46)

θ ≥
∑
s∈S

ps(
∑
i∈I

∑
l∈L0

∑
p∈P

∑
t∈T ′

αs
ilptxilp(t−1) +

∑
i∈I

∑
l∈L0

∑
p∈P

∑
t∈T

βs
ilptxilpt (6.47)

+
∑
i∈I

∑
j∈J

∑
t∈T

γs
ijtLijD

s
jt +

∑
j∈J

∑
t∈T

τ sjtD
s
jt)

xilpt ∈ {0, 1}, i ∈ I, l ∈ L0, p ∈ P , t ∈ T , (6.48)

θ ≥ 0. (6.49)

Our master problem is given by objective function (6.44) and constraints (6.45) -
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(6.49), where inequality (6.47) represents the optimality cuts iteratively generated

by solving the sub-problem in order to approximate the lower bound θ, for the

second-stage expected value function. The solution of the master problem grants

an investment solution, x̂, which in turn is input for the sub-problem. Solving the

sub-problem to optimality gives dual values in constraints (6.31), (6.33), (6.36) and

(6.37), that in turn are the dual values utilised in restriction (6.47). As the rest of

the sub-problem constraints only contain second-stage variables, they do not affect

the optimality cut as the sum of their dual variables and parameters are equal to

zero.

6.3 L-shaped Implementation

In a finite number of iterations of the L-shaped, the established optimality cuts

ensure convergence (Van Slyke & Wets 1969). Equations (6.50) and (6.51) present

calculations for lower and upper bound, respectively. The lower bound is the current

best master problem objective value. The upper bound comes from replacing the

estimator for total second-stage costs (θ) with the actual total second-stage costs

from the sub-problems (Ψs(x̂)) given the fixed first stage investment decisions (x̂)

and binary adjustment variables (ysilkpt). If the latest iteration’s current upper or

lower bound is respectively lower and higher than before, the bounds update. The

algorithm terminates either when reaching maximum iterations or time or when the

gap between the upper bound or θ has reached a predetermined value. The latter

implies that the estimation of the second-stage costs is close to or equal to the actual

costs, giving a feasible solution where no improvements are possible. Consequently,

the algorithm reaches the global optimum.

LB = ZMP (6.50)

UB = ZMP − θ +
∑
s∈S

psΨs(x̂) (6.51)

The L-shaped algorithmic implementation of our reformulated problem in Sec-

tion 6.2 is presented in Algorithm 1. Firstly, we build master and sub-problems

and initialise bounds. Next, in every iteration, the master problem is solved before

the sub-problem with fixed investment variables. After solving the sub-problem, we

add optimality cuts and then update bounds. Since for every feasible master prob-

lem solution, there exists at least one feasible sub-problem solution in our Benders
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reformulation, we have relatively complete recourse and can then ignore feasibility

cuts. Reaching a predetermined gap between θ and the sub-problems objective value

terminates the algorithm. After reaching this gap, we solve the problem again with

binary adjustment variables (ysilkpt) using fixed investment variables from the last

solved master problem.

Algorithm 1 Proposed algorithm

1: procedure L-shaped method for our problem
2: Build master problem
3: Build S sub-problems
4: UB ←∞, LB ← −∞, Continue← True
5: while Continue do
6: Solve master problem to optimality
7: for all s ∈ S do
8: Fix investment variables in sub-problem s

to solution from master problem
9: Solve sub-problem s

10: Update UB and LB
11: if Termination criteria met then
12: Continue← False
13: else
14: Add optimality cut
15: end if
16: end for
17: end while
18: return Solved master problem
19: Solve problem with binary adjustment variables, using fixed investment

variables from the solved master problem
20: end procedure

6.4 Acceleration Methods

This section presents and explains the theory behind some well-known acceleration

methods for the L-shaped method. First, in Section 6.4.1, we introduce ways to

add more cuts in each iteration of the Benders Decomposition. After that, in Sec-

tion 6.4.2, we present alternative strategies for solving the master problem. In Sec-

tion 6.4.3 we introduce approaches that combine some of the well-known methods.

Lastly, in Section 6.4.4, we discuss an alternative by warm-starting the algorithm.
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6.4.1 Adding multiple cuts

The generalised Benders optimality cut for our mathematical model (Section 6.2)

derived in constraint (6.47) is in a single-cut form. There is one cut covering all

sub-problems per iteration. A single-cut implementation extension is augmenting

contributions from every sub-problem, with a probability of an optimality cut for

each sub-problem. This extension implies that separating information from each

sub-problem can give more than one optimality cut in each iteration. A multi-

cut extension of the Benders optimality cuts was introduced by Birge & Louveaux

(1988), where they separate into one sub-problem per scenario and add a cut per

sub-problem in every iteration instead of one aggregated in the single-cut imple-

mentation. Their key point is that the multi-cut provides more information with

outer approximations from all the sub-problems and converges in fewer iterations.

Nevertheless, neither the single- or multi-cut method is unconditionally better than

the other, as the convergence rate is dependent on problem characteristics. On the

other side, a general rule is that the multi-cut is better than the single-cut if the

dimension space of the master problem variables is just smaller than the number of

sub-problems (Birge & Louveaux 1988). The corresponding multi-cut for our math-

ematical model is presented in restrictions (6.52). Note that the θs-variables now

are estimators for the second-stage costs in a single scenario s. Consequently, the

master problems objective function has to accumulate θs, for all scenarios S. The

L-shaped for our mathematical model with a multi-cut implementation is similar to

Algorithm 1. We only replace the optimality cut (6.47) with constraints (6.52), and

replace θ with
∑

s∈S p
sθs in the objective function (6.44).

θs ≥
∑
i∈I

∑
l∈L0

∑
p∈P

∑
t∈T ′

αs
ilptxilp(t−1) +

∑
i∈I

∑
l∈L0

∑
p∈P

∑
t∈T

βs
ilptxilpt (6.52)

+
∑
i∈I

∑
j∈J

∑
t∈T

γs
ijtLijD

s
jt +

∑
j∈J

∑
t∈T

τ sjtD
s
jt, s ∈ S

An alternative to the multi-cut technique for adding several cuts in every iteration

is to utilise incumbent solutions to the master problem. For example, storing the

five best solutions found in the master problem, including the optimal one, solving

the sub-problem and adding single-cuts for each solution. We call this technique for

the several cut approach. With this technique, we have an opportunity to cut away

more sub-optimal solutions in every iteration. Our sub-problem is fast to solve, so

this will not effectively affect our total computational time. On the other hand, our

47



master problem increases in size at a speedier rate and possibly is harder to solve.

This technique adds a line between lines (6) and (7) in Algorithm 1. Saying that

for all investments solution from the master problem, do line (7) to line (16). The

technique results in more sub-problems calculations and adds more optimality cuts

in every iteration.

6.4.2 Alternative Master Problem solution strategy

When having an integer first stage, it is common to solve the master problem in the

standard L-shaped algorithm to optimality through branch-and-bound (BB) in each

iteration. Solving the master problem to optimality could be a very time-consuming

process because of the problem’s integer nature. Magnanti & Wong (1981) and

Zarandi (2010) state that the master problem represents over 90 % of the total

computational time. Therefore, we can create adjustments to the general L-shaped

algorithm by ending the master problem execution before it reaches optimality. After

that, the algorithm sends the investment decisions earlier to the sub-problems to

create optimality cuts. One alternative to reduce time spent on the master problem

is to terminate the master problem and move to the sub-problem as the solver finds

the first integer solution of the BB-tree, indifferent to optimality. This method is

frequently mentioned as Branch-and-Benders-cut (B&BC) (Rahmaniani et al. 2013).

B&BC is very applicable early in the computational process since significant changes

in the solution from the Bender decomposition algorithm are happening here.

Another strategy for the master problem is an approach, first introduced by Geof-

frion & Graves (1974), referred to as the ϵ-approach. In this approach, the execution

of the master problem terminates as the optimality gap achieves a value less or equal

to a preset limit, ϵ. As the computational process continues, the value of ϵ is com-

monly reduced or completely removed. This reduction gives better master problem

solutions like the ϵ-process approaches optimality.

Changing line (6) of Algorithm 1 is the only change to utilise either B&BC or the

ϵ-approach for the master problem. The B&BC approach jumps to the sub-problem

when it finds the first integer solution to the master problem. The ϵ-approach

moves to the sub-problem when it finds an integer solution to the master problem

that reaches a gap less or equal to ϵ. Note that the techniques above utilise the

single-cut approach if the use of multi-cut is not explicitly stated.
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6.4.3 Combinations of methods

As some of the acceleration techniques discussed above focus on different areas

to improve solution time, we want to improve solution time by adding additional

steps simultaneously. Combining techniques may lead to an even more significant

effect on solution time than implementing them separately. We combine the multi-

cut approach with the two alternative strategies for solving the master problem

resulting in two new approaches. We assume that exploiting the ability to solve

the master problem faster, from the B&BC or the ϵ-approach, in combination with

the additional cuts added in multi-cut, can faster find a better lower bound. This

assumption is based on problems where the master problem takes significantly longer

to solve than the sub-problems. Therefore, the additional time used for solving more

sub-problems might be neglected due to the positive effect of new optimality cuts

removing wrong solutions.

Lastly, we combine the ϵ-approach with the several cuts approach. The advantage

of connecting the latter with the ϵ-approach is to spare time from solving the master

problem to optimality. A downside of this combination is the extra time used to

solve additional sub-problems, but it might be neglected under the assumption of

fast solving sub-problems.

6.4.4 Warm-start

Rubiales et al. (2013) point out that an issue with the original L-shaped method

is that it requires many iterations to converge, both at the beginning and when

getting close to the optimal solution. A well-known possibility to avoid this issue

is an algorithmic extension called warm-start. Here, we start with a reasonable

solution acquired from a simplified variety of the problem. For our problem, this

could save time from the L-shaped algorithm working around the 0-solution area,

i.e., zero investments in facilities, which are bad solutions with a lot of penalty costs

for not satisfying demand. Standard simplified versions of warm-start for stochastic

problems commonly use the solutions from the deterministic expected value problem

(Geoffrion & Graves 1974). A general assumption is that the gain from an initial

solution is greater than the computational costs of solving the deterministic problem

since the stochastic model is more complex than the deterministic one. Algorithm 2

presents the algorithmic alternative using warm-start. The main change is the swap

in the initial iteration with the solution from solving the deterministic problem with

the expected demand scenario.
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Algorithm 2 warm-start

1: procedure L-shaped method combined with warm-start
2: Lines (2)-(4) of Algorithm 1
3: Solve expected value problem
4: for all s ∈ S do
5: Fix investment variables in sub-problem s to solution from

deterministic problem
6: Solve sub-problems s
7: Add optimality cut
8: end for
9: Lines (5)-(19) of Algorithm 1

10: end procedure
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Chapter 7

Case Study

To be able to test and analyse our proposed algorithm, we solve a case study for

possible future hydrogen demand levels. First, we present the input data for sets

and cost parameters in Section 7.1. Next, in Section 7.2 we identify and discuss

potential maritime industry segments for hydrogen fuel and future demand scenarios.

Lastly, we present how we construct the hydrogen scenarios combining the different

maritime industry segments in Section 7.3.

7.1 Infrastructure and Cost Data

This section presents data for customer and facility location candidates, investment,

production and adjustment costs, and distribution costs. Overall, the data are based

on calculations done in Aglen & Hofstad (2021).

7.1.1 Customer Locations

Our set of identified customer locations, which are the ones we will use in this,

consists of 50 unique demand locations ranging from Hammerfest in the North to

Stavanger in the south. These locations are presented in work by (Ocean Hyway

Cluster 2020a) and (Aarskog & Danebergs 2020a), which both present projections

for hydrogen demand towards 2030 for the Norwegian domestic maritime transport-

ation and high-speed ferry sector, respectively. These customer locations are bunk-

ering locations that are relevant for bunkering hydrogen based on current bunkering

locations used by the Kystruten (Bergen-Kirkenes), high-speed passenger ferries and

car ferries today. The projections assume that in future public transportation ser-
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vice contract negotiations, the contracts require zero-emission technology. Routes

with less than 20,000 L/year of diesel are neglected, corresponding to 10 out of 95

high-speed ferry routes. Furthermore, the end stops are emphasised as bunkering

locations to avoid additional travelling time due to bunkering time at intermediate

stops. Lastly, ferries that run on electric batteries do not contribute to demand.

The customer locations are displayed in Figure 7.1 below.

Figure 7.1: Customer Locations for hydrogen in Norway.

7.1.2 Facility location candidates

Figure 7.2 displays the set of candidates for facility locations of large-scale hydrogen

production in Norway. The figure includes 16 out of 17 possible locations presented

by Ocean Hyway Cluster in their interactive map (Ocean Hyway Cluster 2020c). The

map was later extended to include additional locations and revised to assign each

facility location with specific production technology. In this case study, we disregard

the newest changes for electrolysis. The established locations we consider essential

are evaluated as natural points for the distribution of hydrogen in terms of distance

to the customers identified above. In addition, the facility locations are justified

through ongoing or future publicly-known projects for producing hydrogen-based

fuels. We use all 16 locations for electrolysis to define the set of potential facility

locations. For SMR+, we restrict the set of locations to just 4 out of the 16. These

four locations have some connection to the delivery or processing of natural gas in
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common, making them feasible for producing blue hydrogen through SMR+ (Ocean

Hyway Cluster 2020c).

Figure 7.2: Facility Location candidates in Norway.

7.1.3 Investment Costs

We study the investment costs for feasible hydrogen production technologies, which

in this case study correspond to electrolysis (EL) and steam methane reforming

with carbon capture and storage (SMR+). We base our calculations on the model

presented by Jakobsen & Åtland (2016) to estimate the investment costs. A fa-

cility can invest in different capacities, and the investment costs are represented

by eight discrete capacity points for electrolysis and seven points for SMR+. We

neglect investment in the smallest capacity for steam methane reforming, as it fa-

vours large-scale production and therefore lacks data for small-scale investment in

this technology. Table 7.1 summarises the costs for the different capacities given in

million Euros.

53



Table 7.1: Investment costs for electrolysis and SMR+ at the set of discrete capacity
points (Aglen & Hofstad 2021).

Discrete
Capacities

1 2 3 4 5 6 7 8

Capacity
[tonnes/day]

0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Investment
EL [mill. AC]

1.4 6.0 11.2 20.5 46.5 87.2 197.7 371.5

Investment
SMR+
[mill. AC]

- 23.9 39.9 65.2 127.7 204.3 402.1 709.2

7.1.4 Adjustment Costs

In addition to the initial investment in capacity at a facility, these decisions can be

revised through capacity adjustments later. The adjustments are made as a change

between its invested capacity point and a new different capacity point, with the

option to adjust to zero capacity (facility shutdown). With every decision of capacity

adjustment, we assign an adjustment cost. The adjustment cost for adjusting a

facility from capacity point k to l is related to the difference in investment costs

of opening a facility with initial capacity k and a facility with initial capacity l,

where k ̸= l, in addition to a mark-up, α, which we assign to 10% in this case study.

Equation 7.1 expresses the relation:

Eklp = |Clp − Ckp| ∗ (100 + α)% (7.1)

7.1.5 Production Costs

We assign a piece-wise linear convex short-term production function to each discrete

capacity point. We approximate the short-term production costs at specific break-

points, 15%, 30%, 50%, 80%, and 100% of installed production capacity. Electrolyser

units feasible for hydrogen production in Norway have a characteristic dynamic range

varying between 15% to 100% capacity. For simplicity, we apply the same dynamic

capacity range for SMR+ production, explaining the chosen short-term production

cost breakpoints.

Table 7.2 summarises the production costs for both production technologies for the

set of discrete capacities identified above. We base our data for production costs
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in euros per kilogram upon Aglen & Hofstad (2021). The table reflects properties

such as large-scale production advantages for SMR+ compared to electrolysis, as

production costs are significantly lower for SMR+ beyond discrete capacity point 3.

Table 7.2: Production costs for electrolysis and SMR+ at the discrete capacity
points at maximum utilisation (Aglen & Hofstad 2021).

Discrete
Capacities

1 2 3 4 5 6 7 8

Capacity
[tonnes/day]

0.6 3.1 6.2 12.2 30.3 61.0 151.5 304.9

Production
Costs EL
[AC/kg]

1.95 1.61 1.53 1.45 1.43 1.42 1.40 1.38

Production
Costs
SMR+
[AC/kg]

- 1.91 1.61 1.42 1.28 1.18 1.04 1.00

7.1.6 Distribution Costs

In order to estimate the distribution costs between the identified feasible facility

locations and customers, we establish a general distribution cost function with dis-

tance as the single variable. Aarskog & Danebergs (2020b) identifies a cost function

based on the estimated levelised cost of hydrogen (LCOH) for a 2030-case where 1

tonne of hydrogen is transported in a 40-foot container at 300 bar, which Stadlerova

& Schütz (2021) further extend to 1000 km by extrapolation. As a result, we have

established a general cost function for the distribution of hydrogen at 300 bar, which

in practice reflects the distribution costs of compressed hydrogen. The general cost

function for distribution is shown in Table 7.3 for a set of distance intervals.

Table 7.3: Hydrogen distribution costs in [AC/km/kgH2] (Aglen & Hofstad 2021).

Distance
(km)

1-50 51-100 101-200 201-400 401-800 801-1000

LCOH
(AC/km/kgH2)

0.00498 0.00426 0.00390 0.00372 0.00363 0.00360

As identified in Section 2.2, compressed gaseous and liquid hydrogen are the two

main technologically - and economically - viable options and our main focus for the

distribution of hydrogen. Therefore, our distribution cost function should ideally

reflect both distribution technologies. Our cost function could, for example, handle

55



this by using distribution technology as an extra input variable or using different

weights for each technologies’ distribution costs within different distance intervals.

However, we decided to base our hydrogen distribution cost function independent of

distribution technology, where compressed hydrogen constitutes the basis for estim-

ation. This decision is due to uncertainties in distribution costs for large-scale liquid

hydrogen in Norway as well as liquefaction cost and a liquid hydrogen distribution

cost estimate that does not capture economies of scale,

7.2 Demand

This section presents demand scenarios for different sectors relevant to future hy-

drogen consumption. In Section 7.2.1, we investigate the maritime passenger trans-

portation sector, consisting of domestic car ferries, high-speed passenger ferries and

the coastal route. Next, we look further into the domestic fishing sector in Sec-

tion 7.2.2. Lastly, we investigate the Norwegian offshore fleet concerning activities

on the Norwegian Continental Shelf in Section 7.2.3.

7.2.1 Maritime Passenger Transportation Sector

We define the maritime passenger transportation sector as domestic car ferries, high-

speed passenger ferries and the coastal route. Furthermore, we present the expected

hydrogen demand for each customer segment throughout the following subsection.

The data and information presented are mainly based on different work packages

from Ocean HyWay Cluster (Ocean Hyway Cluster 2020a).

In these work packages, the following assumptions hold:

• Efficiencies are based on 2020 engine and fuel-cell technology for calculations.

• Hydrogen is developed and mature by 2030 when considering on board storage,

bunkering, conversion, integration and regulations.

• Future hull performance and energy consumption of different vessels are as-

sumed to be the equivalent level to modern 2020 vessels.

• The same existing timetables and vessel capacities will apply for new contracts

for known routes and contracts.

• All future public tenders for high-speed passenger ferries, domestic car ferries

and the coastal route operation requires zero emissions, if technically feasible.
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• Liquid hydrogen is only relevant for vessels with hydrogen consumption greater

than 1000kg between bunkering. Compressed hydrogen is considered for con-

sumption less than 1000kg.

7.2.1.1 Domestic Car Ferries

Domestic car ferries are one of the identified segments in the transportation sector

to serve as a future hydrogen customer in Norway. This sector includes over 130

ferry connections consisting of the operation of over 250 vessels along the entire

coast of Norway. The data used in this case study is not publicly available but is a

part of extensive and ongoing work from the Ocean Hyway Cluster. The confidential

report C.2 rev.01 ”Mapping of 2030 hydrogen demand in the Norwegian domestic car

ferry sector” as part of the HyInfra project work package C (Ocean Hyway Cluster

2020d), constitutes the basis for establishing the future hydrogen demand along with

the publicly available report from Ocean Hyway Cluster (2020a). However, some

shared assumptions exist in both reports:

• Competing technology: Plug-in-battery ferries are already operating in

Norway, which is considered a viable solution for some cases of short fjord

crossings. The future energy mix is most likely to be diverse.

• Compressed H2 vs. Liquid H2: Liquid hydrogen is the only viable option

for routes that require more than 1000kg of hydrogen per day.

7.2.1.2 High-speed Passenger Ferries

The high-speed passenger ferry segment consists of approximately 100 operating

routes throughout the coastline of Norway. It has a yearly diesel consumption of 56

million litres, equivalent to 0.7% of all petroleum products sold in Norway. Aarskog

& Danebergs (2020a) look into how this diesel demand can be translated to hydrogen

fuel demand in terms of quantity, routes and time of demand. The study evaluates

both fuel cells powered by green hydrogen and batteries with fast charging from

the grid, and these are competing for alternatives as a zero-emission solution. The

results show that 51 routes are suitable for hydrogen operation and 30 for electric

batteries out of 96 evaluated routes.

The methodology consists of fuel conversion rates and estimating diesel consumption

for the routes using a conservative but realistic approach. Only routes with a diesel

consumption greater than 20,000 L/year are evaluated. For the timing of demand,

57



they use information from public tenders and contract periods and the assumption

that each route will change to zero-emission solutions at the end of its current

contract period. Figure 7.3 displays the demand scenario for hydrogen in Norway’s

high-speed passenger ferry sector.

Figure 7.3: Hydrogen demand scenario for high-speed passenger ferries in Norway
(Aarskog & Danebergs 2020a).

Overall the sector can potentially contribute to a stable hydrogen demand as the

ferries return to the same ports daily along with high fuel consumption.

7.2.1.3 Coastal Route

The Norwegian coastal route sails from Bergen to Kirkenes and vice-versa. Ocean

HyWay Cluster has launched its report C.3 rev. 01 ”2030 hydrogen demand for

the Coastal route Bergen-Kirkenes” as part of the HyInfra project work package

C (Ocean Hyway Cluster 2020a). This study presents several scenarios for the ex-

pected hydrogen demand from 2032. Each realisation and its respective demand

varies based on the number of vessels that run on hydrogen and the corresponding

ports for bunkering. Demand timing is again based on public tenders and contract

periods. The coastal route has already experienced many restrictions regarding

CO2-emissions in the current contract spanning from 2021 to 2031 and will experi-

ence additional restrictions in the contract that starts in 2032. The results are not

publicly available to display in this report.
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7.2.2 Domestic Fishing

7.2.2.1 Estimation of hydrogen fuel demand

To estimate the hydrogen demand of the Norwegian fishing vessels, we first establish

an overall fuel consumption for the fishing sector based on the report from Ocean

Hyway Cluster (2021). Here, we extract the quantity of Marine Diesel Oil (MDO)

consumed by the fishing sector in Norway today. By utilising the fuel conversion

factors for MDO presented in Table 7.4, we can estimate an upper limit for future

hydrogen demand for a fishing fleet of today’s scale, technological standard and

operational level.

Table 7.4: Fuel conversion factors for MDO and H2 (DNV 2015).

Calorific values
[MJ/kg]

Fuel conversion factor
[-]

Marine Diesel Oil (MDO) 44 143/44
Hydrogen 143 44/143

7.2.2.2 Timing of transition to hydrogen fuel

The fishing sector has not been affected by CO2-tax until 2020 due to complete re-

funds of the fishers’ expenses regarding the CO2-tax. Since 2020 the government has

practised a compensation scheme that aims to slowly degrade to zero compensation

by 2025 (Ocean Hyway Cluster 2021). Afterwards, the fishing sector will experi-

ence an increase in emission taxes like other industries that already are subject to

emission taxes. By 2030, the CO2-tax is to increase to 2000 NOK/kg according

to Norway’s ”Klimaplan 2021-2030” (Det Kongelege Klima- og Miljødepartement

2020). In the same report, we find projections for the future emission taxes, which

will constitute the basis for our stepwise increase in hydrogen demand towards 2030.

Note that this development assumes that it is technologically feasible for all fishing

vessels to utilise hydrogen by 2030, assuming the exact energy requirements and ef-

ficiencies today. Table 7.5 displays the projected tax price for CO2-emissions based

on the projection given in (Det Kongelege Klima- og Miljødepartement 2020), along

with the change between years and the cumulative change.
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Table 7.5: Conversion rate of diesel to fuel demand based on the relative change
in projected CO2-tax for 2021-2030 (Det Kongelege Klima- og Miljødepartement
2020).

Year 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
Projected
tax price
(Euros/tonnes CO2)

28 30 32 33 37 41 51 63 77 97

%change - 3.39% 3.39% 1.69% 6.78% 6.78% 16.95% 20.34% 23.73% 16.95%
Cum.%change - 3.39% 6.78% 8.47% 15.25% 22.03% 38.98% 59.32% 83.05% 100%

Based on the assumption that the increase in the projected CO2-tax will result in

a similar increase in hydrogen demand, the cumulative change in the CO2-tax can

be assumed to correspond to a certain amount of turnover from fossil fuel to zero-

emission fuels like hydrogen. The cumulative change represents the highest scenario,

as Table 7.5 displays. From this assumption, we derive the following scenarios using

50%, 70% and 100% as turnover, which results in a low, medium and high demand

scenario. The resulting hydrogen demand for the different scenarios is showcased in

Figure 7.4.

Figure 7.4: Estimated hydrogen demand for the Norwegian fishing sector 2022-2030.
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7.2.2.3 Allocation of demand

To allocate demand to different regions throughout Norway, we turn to ”Fiskeri-

direktoratet”, responsible for keeping statistics for the Norwegian fishing fleet. The

standard procedure for a fishing vessel is to travel to a fishing site and return to a

fish reception to discharge. The most relevant data containing regional info which

fits the description of standard use of fishing vessels are catch and fishing vessel data,

precisely round weight in tonnes by vessel county and registered vessels by length

and county (Fiskeridirektoratet 2022b, 2021). Round weight is the weight of the fish

on catch, where no processing of the fish has found place. Using the regions where

the fishing vessels are registered, we get input on where the fishing vessels typically

operate. Combining this with regional catch data, we can also allocate demand to

regions experiencing seasonal fishing or having large fishing vessels consuming more

fuel. Furthermore, we use catch and vessel data from 2017, which has more extensive

detail on the geography of the data since this was the last year before the start of

the regional reform. Table 7.6 displays the choice of regions from the data. Catch

quantities have been checked against the last catch and vessel data to validate the

split in terms of a year.

The overall fuel demand will be distributed based on a weighted sum of regional

catch and vessel data. Initially, we assume the weights used in the calculation to be

equal, but numbers from various reports suggest that some registered vessels do not

participate in fishing during a year. Therefore, we estimate the fraction of active

vessels based on historic numbers from DNV and Fiskeridirektoratet. DNV estimate

and utilise in their 2013-calculations that of 6128 registered vessels, 5169 of them

are active in fishing (delivered fish the last year), resulting in just below 85% share

of active vessels (DNV 2014). Today there are 5633 registered vessels with a steady

trend of slight decrease (Fiskeridirektoratet 2022a). We assume the fraction from

the 2013-calculations to be still valid for later registered vessel data and will serve

as our measure for the share of active vessels.

In the catch data, some volumes are unspecified and not assigned to the county

it has been caught in. Since emissions are associated with this volume, we evenly

distribute this across all counties. The fraction of demand based on a total will then

follow the proposed equation below:

xcounty = 0.5 · αV · Vcounty + 0.5 · (1− αV ) · (Ccounty +
Cunspecified

no.ofcounties
) (7.2)

Equation 7.2 shows calculation of hydrogen demand by county where xcounty denotes
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hydrogen demand per county, αV fraction of active vessels, Vcounty fraction of vessels

by county, Ccounty fraction of catch per county and Cunspecified number of unspecified

catch.

Table 7.6: Registered vessels and delivered round weight per region for 2017 (Fiskeri-
direktoratet 2021, 2022b).

Year 2017
Registered vessels

[%]

Delivered round
weight
[%]

Demand
share
[%]

Finnmark 16.66 % 6.59 % 11.21 %
Troms 13.11 % 6.94 % 9.92 %
Nordland 24.55 % 23.41 % 24.27 %
Nord-Trøndelag 2.49 % 1.30 % 2.18 %
Sør-Trøndelag 4.47 % 1.70 % 3.24 %
Møre og Romsdal 10.58 % 21.83 % 17.46 %
Sogn og Fjordane 4.19 % 4.42 % 4.70 %
Hordaland 8.98 % 22.23 % 17.02 %
Rogaland/Vest-/
Øst-Agder

11.35 % 4.90 % 7.99 %

Oslo/Buskerud/
Akershus/
Vestfold/Telemark

3.62 % 0.19 % 2.09 %

Unspecified - 6.47 % -

In order to assign the hydrogen demand identified in each region to specific cus-

tomers, we look further into governmental fishing ports in each region. Each gov-

ernmental fishing port could represent a potential customer with a respective fuel

demand, as the ports often have infrastructure such as bunkering facilities. However,

due to a large number of governmental fishing ports (close to 500 in 2020 (Avisa

Nordlys 2020)), we choose to define hydrogen customers within domestic fishing as

the already identified customer locations in the maritime transportation sector with

an additional requirement of a nearby governmental fishing port (<10 km). This

definition also recognises 36 out of the 50 customers in the maritime transportation

sector as hydrogen customers in the domestic fishing sector. These 36 customers

will cover all demand from fisheries. For Nord-Trøndelag and Sør-Trøndelag, we

make an exception from the requirement as we only have one customer location in

each region, Namsos and Trondheim, and neither of them satisfies the requirement.

These two locations will then be assigned hydrogen demand according to catch and

vessel data for Nord- and Sør-Trøndelag. Due to uncertainty of how the quantities

of round weight and number of vessels distribute across each identified customer

within each county, we will distribute the demand uniformly across the hydrogen

customers in the fishing sector.
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7.2.3 Offshore Fleet on the Norwegian Continental Shelf

From the report Ocean Hyway Cluster (2020a) we extract numbers for the CO2-

reduction potential for high-speed crafts, car ferries, coastal route and the offshore

sector. Combining this with the projections for the fishing sector established in this

case study, Figure 7.5 clearly shows that the Norwegian offshore fleet on the Norwe-

gian Continental Shelf (NCS) is the most significant contributor to CO2-reduction

potential. The fleet consists of a large number of vessels working on a regular basis,

which results in significant CO2-emissions during normal activity levels on the NCS.

Figure 7.5: CO2 Reduction Potential [ tonnes
year

].

7.2.3.1 Ammonia demand projection for the NCS

From the report Ocean Hyway Cluster (2020b), we gather information about es-

timates for the future yearly ammonia demand of the Norwegian Offshore Fleet

operating on the NCS towards 2030. Figure 7.6 shows this estimated development

in ammonia demand towards 2030 with the lowest and highest scenario, which is

based upon a market penetration rate for ammonia technology.
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Figure 7.6: Estimated development in ammonia demand towards 2030 (Ocean Hy-
way Cluster 2020a).

7.2.3.2 Estimating the hydrogen demand through fuel conversion

To estimate the offshore demand for hydrogen, we will use fuel conversion factors for

the estimated quantities of ammonia. Table 7.7 shows the fuel conversion factors we

will use to forecast the hydrogen demand quantities. These fuel conversion factors

will be used on diesel-equivalent fuel consumption which the report Ocean Hyway

Cluster (2020b) establishes for the most relevant vessel segments in the offshore

sector. The market penetration rate for hydrogen as zero-emission technology for

the offshore sector will follow the same fractions throughout the low-, medium- and

high-scenario as for the ammonia used in Ocean Hyway Cluster (2020b).

Table 7.7: Fuel conversion factors for ammonia and hydrogen.

Calorific values
[MJ/kg]

Fuel conversion factor
[-]

Ammonia 18.9 (143/18.9)
Hydrogen 143 (18.9/143)

7.2.3.3 Timing of hydrogen demand

The fuel conversion factors allow us to convert any of the ammonia demand to

hydrogen demand. However, there are a handful of assumptions that have to be

addressed in order to time the demand. Ocean Hyway Cluster (2020b) look into

the age distribution of the four different vessel segments to identify conversion and

replacement candidates among the vessels. They present three different scenarios

low-, medium- and high-scenario. In each scenario, a certain fraction of new build-

ings and upgrade candidates converted to run on ammonia is set, and these two

shares are varied simultaneously to create each scenario. For simplicity, our predic-
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tion of hydrogen scenarios will follow the same distribution of new buildings and

conversion of upgrade candidates as in Ocean Hyway Cluster (2020b). This results

in a similar timing of hydrogen demand as the different ammonia scenarios. We fur-

ther extend the forecast of fuel demand from Ocean Hyway Cluster (2020b) to 2035

by assuming that every new-built vessel from 2030 will have zero-emission solutions

in the form of hydrogen and that the fleet size will be held constant throughout

the years 2030-2035. Since the report from Ocean Hyway Cluster (2020b) map the

age distribution for the vessel segments they consider most relevant for the offshore

sector, we choose to rely on these numbers rather than the procedure done for the

fishing sector as (Ocean Hyway Cluster 2020b) provide another level of detail for

the offshore sector.

Figure 7.7: Hydrogen Demand Forecast for the Offshore sector 2022-2035.

With the timing of hydrogen demand and quantities, we are able to present our

hydrogen demand estimation for the offshore sector. Figure 7.7 presents the set of

scenarios we have established for hydrogen demand using the fuel conversion factors.

7.2.3.4 Allocation of hydrogen demand

Figure 7.8 shows the distributed ammonia demand for different 2030-scenarios clustered

on different operational areas along the Norwegian coast.
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Figure 7.8: Estimated ammonia demand in different operational areas along the
Norwegian coast in different 2030-scenarios (Ocean Hyway Cluster 2020a).

Ocean Hyway Cluster (2020b) already use appropriate operational areas along the

Norwegian coast to allocate demand in their 2030-scenario, as shown earlier in Fig-

ure 7.8. These operational areas consist of South-West, North-West, Mid and North.

We find a small set of offshore harbours in each region to allocate the regional de-

mands to specific customer locations. Here, we assume a share for each port based

on harbour size. In the North region, we locate Hammerfest as the only offshore

harbour. In the Mid region, we find Sandnessjøen. In the North-West region, we

find Kristiansund and Florø, and we define the South-West region to consist of Ber-

gen and Stavanger. For Kristiansund and Florø, we define the demand to follow

an 80%-20% relationship for each harbour. For Bergen and Stavanger, the regional

demand relationship is 35%-65%.

To allocate shares of the estimated hydrogen demand each year to each region, we

will look into the historical and expected overall activity level on the NCS and the

remaining reserves.

Figure 7.9: Historical and expected petroleum production 1970-2025 (NorskPetro-
leum 2021).
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As Figure 7.9 illustrates, a stable production is expected towards 2025 with a more

even ratio of oil and gas than historically. The size and number of discoveries will

be of the most significant importance for the total production level in the long term.

However, due to the technological development within tiebacks (connection between

a new oil and gas discovery and an existing production facility (Wikipedia 2021)),

it is more attractive to use already existing and producing fields for the production

in both discoveries and the large remaining reserves. Tiebacks utilise the already

existing infrastructure resulting in lower costs and an extended and more stable

production for today’s producing fields. Figure 7.10 displays that already existing

fields constitute the bulk of production in the years to come.

Figure 7.10: Historical petroleum production and forecast 2015-2030 (NorskPetro-
leum 2021).

Table 7.8: Remaining reserves at producing fields on the NCS (NorskPetroleum
2021).

Barents Sea Norwegian Sea North Sea
Remaining Reserves
at producing fields [mill. Sm3]

187.49 400.36 1976.76

[% of total] 7 16 77

Now that we have established that currently producing fields will contribute to

most of the future activity, we look into the remaining reserves at these fields on

the NCS. We divide it into the regions Barents Sea, Norwegian Sea and the North

Sea. Here, the Barents sea represents the North region, and the Norwegian Sea

represents the Mid region and a split share of the North-West region. The North

Sea corresponds to the South-West region with the remaining split share from the

North-West region. Table 7.8 shows the distribution both in standard cubic meters

and as fraction of total. The regional fuel demand from Figure 7.8 corresponds

to 48%, 35%, 10% and 7% for the different regions. Based on the assumption
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that offshore activities related to remaining reserves and regional hydrogen demand

follow a proportional relationship with a constant of approximately one, the regional

demand is approximately equal at the beginning of the time horizon as in 2030.

Overall, we are able to split the overall demand into the regional demands showcased

in Figure 7.11 for the low scenario.

Figure 7.11: Regional hydrogen demand 2023-2035 low-scenario

7.3 Generation of hydrogen demand scenarios

Figure 7.12 presents the minimum and maximum scenario constructed from the

earlier hydrogen demand identified in each sector. Here, the minimum scenario

consists of the hydrogen demand from the maritime passenger transportation sector.

The maximum scenario consists of the demand established in the minimum scenario

in addition to the medium scenario from the fishing sector and the medium scenario

from the offshore sector.

We use the medium scenarios from both the fishing and offshore sectors as we judge

this as the most likely scenario based on our discussion throughout this chapter.

From the scenarios illustrated in Figure 7.12, we generate a predetermined number

of scenarios for our computational studies to be used in problem instances. These

scenarios are equally likely to happen, randomly generated between the minimum

and maximum scenario, and follow a uniform distribution. Random scenarios 1 and

2 in Figure 7.12 illustrates an example of how two randomly generated scenarios

look.
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Figure 7.12: Aggregated Hydrogen Demand Forecast 2022-2035.

7.4 Problem instances

We solve our model for different numbers of possible facility locations, customers,

time periods, technology, demand scenarios, and decomposition technique. Possible

facility locations are either a subset of 7 located south of Trondheim or all 16 for

electrolysis. For SMR+, we always use all 4 facility locations. The number of

customers consists of a subset of 20 customers located south of Namsos, or the

50 total customers. The number of time periods we use is the full 14 or the last

10. The demand scenarios correspond to 2, 5, 10, 25 and 50 scenarios. We apply

the proposed implementations presented in Chapter 6 to the problem instances

for electrolysis and the standard non-decomposed Gurobi Solver. For the SMR+

instance, we use the standard non-decomposed Gurobi Solver and the single-cut

algorithm. We use notation to differentiate the instances further. For example, an

instance with 16 possible facility locations (F), 50 customers (C), 14 time periods

(T) and 2 scenarios (S) is F16C50T14S2. Note that an instance with F4CxTxSx

illustrates that SMR+ is the chosen production technology.

To make investing earlier in hydrogen production facilities more attractive to reach

the CO2-emission targets faster, we use a discount factor equal to one for each period

in each problem instance. The penalty costs are set to a value equal to 110% of the

highest production price.
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Chapter 8

Computational Results

This chapter presents computational results for the two-stage stochastic facility loc-

ation model with capacity adjustments. Section 8.1 studies the performance beha-

viour of different decomposition techniques and compares them with the standard

Gurobi solver. The aim of Section 8.1 is to establish how well each decomposition

technique works and the reason behind this distinct behaviour. In Section 8.2, we

provide decision support and economic analysis for the optimal solutions obtained

from solving our model for SMR+ and electrolysis. The aim is to provide managerial

insight into different supply chain configurations.

8.1 Model performance analysis

This section presents and discusses performance results for the instances presen-

ted in Section 7.4. We focus on how the optimality gap and bounds evolve over

time and iteration for different modelling techniques. All instances are run with

172 800 seconds, a maximum number of iterations of 6 000, and a 0.1% optimal-

ity gap as termination criteria. The master problem is run to optimality for all

L-shaped implementations, except for acceleration techniques where the opposite is

stated. Section 8.1.1 compares results between running instances on our single-cut

L-shaped algorithm and the commercial solver Gurobi. Afterwards, the comparison

of our single-cut L-shaped algorithm, and the acceleration techniques mentioned in

Section 6.4, follows in Section 8.1.2.

We have used PyCharm as the integrated development environment (IDE) combined

with Gurobi Python Interface to implement the model. All problem instances are

run on a computational cluster provided by the Department of Industrial Economics
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and Technology Management at NTNU. We have utilised the same computational

node for each run with the specifications displayed in Table 8.1.

Table 8.1: Hardware description.

Computer HP bl685c G7
Processor 4 x 2.2GHz AMD Opteron 6274 – 16 core
RAM 128Gb
Python Version 3.9.6
Gurobi Version 9.5

8.1.1 Single-cut vs commercial solver

This subsection compares our L-shaped single-cut implementation and the commer-

cial solver, Gurobi. In Section 8.1.1.1, the results are from runs on our smallest

instance, F4C20T10Sx. The aim is to establish how the L-shaped works compared

to the commercial solver on a small case. After that, we scale up to instances

F7C20T10Sx to illustrate the behaviour of the single-cut implementation when in-

creasing problem size in Section 8.1.1.2. Further on, in Section 8.1.1.3, we present

results from instances F16C50T14Sx, which is our entire case from Chapter 7, to

compare performances on a full-scale case. Lastly, in Section 8.1.1.4, we present

some alternative approaches to our single-cut implementation.

8.1.1.1 Results from instances F4C20T10Sx

Figure 8.1 displays the upper and lower bound development for the single-cut al-

gorithm and Gurobi on the instances F4C20T10Sx. We observe that both Gurobi

and the single-cut find their optimal solution long before the time limit of 172 800.

In both instances, Gurobi outperforms the single-cut implementation by finding the

optimal value the fastest. As F4C20T10S2 and F4C20T10S5 are relatively small

instances, the built-in functions in the commercial solver have an advantage over

the L-shaped algorithm. The advantages of L-shaped relaxation by solving easier

problems early and gradually adding cuts are outperformed on these small problems,

where Gurobi is good enough to handle the problem size.

Figure 8.1 illustrates the fact that there is a gap between the upper and lower bound

for single-cut. This gap comes from the lower bound originating from the relaxed

problem. The upper bound is the objective value after the reinstatement of the

binary requirements on the second-stage adjustment variables. Therefore, the lower

bound for the single-cut is often lower as it illustrates the gap between the relaxed
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and original problem, but the lower one is always valid as Laporte & Louveaux

(1993) states. However, even though there is a gap, the results in Figure 8.1 show

that there are small differences in the upper bounds, which are the objective value

of the original problem and are feasible solutions. Therefore, it illustrates that our

single-cut algorithm is an appropriate technique for finding a good solution.

(a) F4C20T10S2. (b) F4C20T10S5.

Figure 8.1: Upper and lower bound development for the single-cut
algorithm and Gurobi on the instances F4C20T10Sx.

8.1.1.2 Results from instances F7C20T10Sx

To further compare the performance of our single-cut implementation with Gurobi,

we scale up problem size to instances F7C20T10Sx. Figure 8.2 compares upper and

lower bound development for the single-cut algorithm and Gurobi on the instances

F7C20T10Sx. Note that the y-axis scales differently to show the difference between

the single-cut and Gurobi on each instance. Additionally, remark that F7C20T10S50

does not solve to optimality within the time limit.

We observe in the Figure 8.2 that Gurobi finds the optimal solution faster than

L-shaped in four instances. In the last one (F7C20T10S50), the L-shaped achieves

almost a nine times better objective value than Gurobi, which is a positive result

for the L-shaped implementation. In the instances F7C20T10S5, F7C20T10S10 and

F7C20T10S25, single-cut finds better solutions than Gurobi early in the process but

uses a long time to iterate towards the optimal solution as Gurobi then surpasses

single-cut. As the single-cut is decomposed into two smaller problems, it is easier

to solve than Gurobi early on, where there are not added many cuts. Further in the

process, the strength of the cuts affects how good or fast the L-shaped implantation

approaches optimality.

The results in Figure 8.2 illustrate that, when scaling up the problem size, the

single-cut has the advantage from the decomposition early on, but as the cuts are
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not sufficiently strong enough, it uses a long time to reach optimality. Additionally,

the results in Figure 8.2e illustrate that the early advantage becomes more vital for

larger instances where Gurobi is far off the objective value from single-cut within

the time limit. This result indicates a potential for using L-shaped when problem

size increases.

(a) F7C20T10S2. (b) F7C20T10S5.

(c) F7C20T10S10. (d) F7C20T10S25.

(e) F7C20T10S50.

Figure 8.2: Upper and lower bound development for the single-cut
algorithm and Gurobi on the instances F7C20T10Sx.

8.1.1.3 Results from instances F16C50T14Sx

To analyse the full extent of the performances of our implementations, we scale

the problem size even further. Figure 8.3 illustrates a comparison of performance

results using the single-cut L-shaped algorithm and the commercial solver on the
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F16C50T14Sx instances with 2, 5, 10, 25 and 50 scenarios. These are our largest

instances and represent the entire case from Chapter 7. The blue line represents

the single-cut, while the yellow indicates the Gurobi results. On the x-axis, we have

the solution time in seconds, and the y-axis represents upper and lower values in

millions of euros. Note that the y-axis scales differently to compare results between

the single-cut algorithm and Gurobi in each instance.

In Figure 8.3, we notice that the single-cut implementation finds better upper bounds

than Gurobi in both instances F16C50T14S25 and F16C50T14S50. Additionally, in

the remaining three instances, we see that the single-cut finds a better solution early

in the computational process than Gurobi, until Gurobi eventually outperforms the

single-cut. These results correspond well with the results for the F7C20T10Sx, where

single-cut uses much time to iterate towards the optimal solution. A general trend

is that the solution quality from Gurobi gets worse when increasing the number of

scenarios, i.e. increasing problem size, which Aglen & Hofstad (2021) also observed.

The fact that the L-shaped implementation outperforms Gurobi for the two largest

instances is promising results.
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(a) F16C50T14S2. (b) F16C50T14S5.

(c) F16C50T14S10. (d) F16C50T14S25.

(e) F16C50T14S50.

Figure 8.3: Upper and lower bound development for the single-cut
algorithm and Gurobi on the instances F16C50T14Sx.

Table 8.2 presents additional results from single-cut and Gurobi for the F16C50T14Sx

instances. Here, we notice that for the F16C50T14S25 instance, the single-cut al-

gorithm finds a solution with a 68% lower objective value than Gurobi. The results

for F16C50T14S50 illustrate the same trend, as the single-cut obtains an object-

ive value of 23 235 million Euros, while Gurobi is reaching a value of 159 889 mil-

lion Euros. In addition, the single-cut finds the F16C50T14S25 solution in only

10 327 seconds compared to 172 800 seconds when Gurobi finds its best solution.

For F16C50T14S50, the single-cut also finds a lower objective value than Gurobi,

in which the single-cut uses 29 724 seconds compared to Gurobis 172 800 seconds.

These results illustrate that our L-shaped implementation finds feasible solutions
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for all instances. On top of that, the L-shaped illustrates a potential to outperform

Gurobi for large instances.

On the other side, we notice a higher gap for the single-cut (99.9%) than for Gurobi

(97.2%) for F16C50T14S25. However, Table 8.2 illustrates that the reason behind

this is that the lower bound for single-cut is very low. The definition of optimality

gap in our results is (UB−LB)/UB∗100%. Therefore, the optimality gap is smaller

for Gurobi, even though the objective value is, in fact, worse. A low value on the

lower bound for the L-shaped indicates that the cuts generated are not exceptionally

strong. Strong optimality cuts will limit the master problem solution space and thus

push the objective value (lower bound) closer to the optimal solution.

From Table 8.2 we see that the highest number of iterations in the F16C50T14Sx

instances are 1 734. Correspondingly, the lower bound for the F7C20T10Sx instances

increased in value at iterations greater than 2 449. These results illustrate that the

larger instances do not iterate enough to create cuts that increase the lower bound to

approach the optimal solution. Correspondingly, it does not find reasonable upper

bounds within the time limit. The increasing problem size makes the problem harder

to solve, and each iteration will need more computational time as we see a decreasing

number of iterations when increasing scenarios. Overall, these results illustrate that

L-shaped has a more significant potential for solving large problems than Gurobi.

Stronger cuts will reduce the number of iterations needed as the solution space in

the master problem gets smaller. Accordingly, a reduced solution space will create

an easier master problem to solve. Therefore, further research into applications of

cut strengthening reduces the computational time to achieve better solution values

in a reasonable time.

Table 8.2: The results from L-shaped and Gurobi for the
F16C50T14Sx instances.

Iter. Time LB Obj. Val. Gap
Single-cut F16C50T14S2 1 734 172 800 4.26 10 480 99.9
Gurobi F16C50T14S2 - 172 800 1 261 1312 3.8
Single-cut F16C50T14S5 1 583 172 800 4.26 8 182 99.9
Gurobi F16C50T14S5 - 172 800 1 610 1 834 12.2
Single-cut F16C50T14S10 1 338 172 800 4.26 14 802 99.9
Gurobi F16C50T14S10 - 172 800 1 550 8 335 81.4
Single-cut F16C50T14S25 862 172 800 4.26 18 827 99.9
Gurobi F16C50T14S25 - 172 800 1 651 59 213 97.2
Single-cut F16C50T14S50 496 172 800 2.83 23 235 99.9
Gurobi F16C50T14S50 - 172 800 1 821 159 889 98.9
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8.1.1.4 Alternative approaches

In the results (Figure 8.3), we observe that the solution with the best objective

value is found long before reaching the single-cut termination criteria. As we state

in Section 6.3, our L-shaped single-cut algorithm calculates the objective value (up-

per bound) with binary second-stage variables first after reaching the termination

criteria to save computational time during iterations. Therefore, we see that there is

a possibility that a good solution may be found earlier in the computational process.

An alternative approach is calculating the objective value with binary second-stage

variables when a better lower bound is found in the master problem. The downside

is the extra computational time needed when using binary second-stage variables,

which may be justified by finding reasonable solutions earlier and terminating the

process.

It is an alternative approach for strengthening cuts to use integer cuts similar to

Chen et al. (2012), Qi & Sen (2016) and Angulo et al. (2016). This approach is more

complicated and extensive to implement but has an advantage in stronger cuts that

avoid the options for continuous solutions. In that case, the cuts are more binding

in earlier iterations, and the possible extra computational time in the mixed integer

sub-problems is neglectable.

Another way to avoid variable relaxations is to include the investment and adjust-

ment variables in the master problem as binary variables. This approach implies

that the original second-stage adjustment variables must be put in the first stage

and made independent of scenarios. The change affects both problem and model

and makes the model less flexible. The upside is that this approach will get a tighter

lower bound for the recourse function. We will not have to deal with extra compu-

tation to obtain a final feasible solution where the adjusted variables are binary.

8.1.2 Acceleration technique results

This subsection compares the single-cut algorithm results with the accelerating tech-

niques described in Section 6.4. We run all implementations with accelerating tech-

niques on F4C20T10Sx instances for 2, 5, 10, 25 and 50 scenarios. We use these

instances as single-cut manages to solve them within the time limit of 172 800. The

comparison focus is when the technique’s upper bound approaches the optimal solu-

tion. This selection of comparison is chosen because the objective value is the critical

value in decision support. Note that techniques that do not explicitly state that their

using multi-cuts use the single-cut approach. In Section 8.1.2.1, we present a com-
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parison between the single-cut and acceleration techniques. The goal is to identify if

some techniques are better than single-cut and an object for further research. After

that, we present and discuss results from instances with or without using warm-start

in Section 8.1.2.2.

8.1.2.1 Comparing single-cut with acceleration techniques

Figure 8.4 presents the objective value results over time for single-cut and accelera-

tion techniques for instances F4C20T10Sx. Note that the y-axis scale is different to

better compare methods with different problem sizes. Additionally, some techniques

approach optimality at an almost similar time and close to each other. Figure 8.4a

shows this with single-cut, epsilon and M&B&BC reaching optimality in approxim-

ately 1 000 seconds.

First, the results show that multi-cut (M) outperforms single-cut in all five instances.

Birge & Louveaux (1988) states that a rule of thumb is that single-cut is better than

multi-cut if there are more sub-problems than master problem variables. In the

instances run, there are fewer sub-problems, explaining why the multi-cut technique

performs better than single-cut. These results correspond well with the theory as

long as the number of sub-problems is low. Therefore, we can say that it is preferred

that the multi-cut approach is utilised over single-cut for these problem sizes.

Further on, we observe the results for the acceleration techniques using alternative

master problem strategies, Benders Branch & Cut (B&BC) and the epsilon approach

(ϵ-approach). We initially set ϵ(the optimality gap termination criteria of the mas-

ter problem) to 30% after some quick investigation on early iterations for different

ϵ values. The value decreases by 1% for every hundred iterations. The results show

that B&BC only outperforms single-cut in the largest instance, F4C20T10S50, while

the ϵ-approach only outperforms single-cut in the F4C20T10S25. Comparing B&BC

with the ϵ-approach results in the ϵ-approach performing better in all instances ex-

cept F4C20T10S50. There is no clear indication from these results that none of these

approaches is preferred over single-cut. However, as the ϵ-approach is dependent on

choosing an appropriate initial ϵ and decreasing rate, there may be more potential

in tuning this parameter to our problem.

In Figure 8.4 we observe that combining B&BC and the ϵ-approach with multi-cut

produces the best results. The combination of multi-cut and ϵ-approach give the

best result in the three instances F4C20T10S2, F4C20T10S5 and F4C20T10S10,

and only beaten by the combination of multi-cut and B&BC in the two last in-

stances. Improved results for the acceleration techniques using alternative master
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problem strategies when using multi-cut instead of single-cut corresponds well with

our results comparing multi-cut with single-cut. That these combinations perform

best is a result of the fact that the master problem solves faster with B&BC and the

ϵ-approach. At the same time, the fast solving LP sub-problems do not negatively

affect solving them separately with multi-cut. Therefore, are these combination

objects for future research on our L-shaped implementation.

(a) F4C20T10S2. (b) F4C20T10S5.

(c) F4C20T10S10. (d) F4C20T10S25.

(e) F4C20T10S50.

Figure 8.4: Development in objective value for single-cut vs. accel-
eration techniques for instances F4C20T10Sx.

Lastly, we observe that the implementations using several-cuts (SSC and SSC&B&BC)

perform worst in all instances. SSC uses the five best solutions from the master

problem to produce optimality cuts with a single-cut approach in every iteration.

In Figure 8.4e we see that these two implementations do not reach optimality within
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25 000 seconds, as the other techniques do. We can then say that using incumbent

solutions to create cuts when the master problem solves to optimality harms the

total solution time, as these extra cuts do not give any advantage.

8.1.2.2 Comparing results with or without warm-start

Figure 8.5 reports the results from running single-cut with and without the warm-

start technique. The goal is to see if there is a gain in warm-starting our algorithms.

The warm-start begins by solving the expected demand scenario problem and creat-

ing a cut using this solution before continuing with a single-cut algorithm. We ob-

serve that in all instances except F4C20T10S50 (Figure 8.5e), the single-cut without

the warm-start outperforms the other with warm-start in the matter of reaching its

final objective value. Another thing we see is that single-cut without warm-start

are always faster in finding a better solution in the early iterations. However, for

the F4C20T10S50 instance, the implementation with warm-start surpasses the one

without and finds the optimal solution first. Using warm-start is slower early be-

cause it uses the additional time to calculate the expected demand scenario.

The gain from solving the expected demand scenario should result in a better result

in the long run (Geoffrion & Graves 1974). As the F4C20T10Sx instances are

relatively small, the additional gain from the first cut with warm-start does not

overweight the extra computational time it needs. The scale up to F4C20T10S50

illustrates that the effect is favourable when using a warm-start increase the problem

size. This scale-up shows potential for using a warm-start when the problem reaches

a certain level. This potential may apply in combination with other techniques and

is an object for further research.
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(a) F4C20T10S2. (b) F4C20T10S5.

(c) F4C20T10S10. (d) F4C20T10S25.

(e) F4C20T10S50.

Figure 8.5: Comparing single-cut with or without using warm-start
for instances F4C20T10Sx.
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8.2 Economic analysis and decision support

This section presents and discusses the value of stochastic programming and the res-

ults for solving the model for electrolysis and SMR+. We discuss the optimal supply

chain configuration for the set of different technologies using the 5-scenario prob-

lem instance. We use the standard Gurobi solver, as our decomposition techniques

have proven unsatisfactory enough on our F16C50T14S5 and F4C50T14S5 instances

compared to Gurobi. Furthermore, we evaluate the value of the stochastic solution

for electrolysis for 2-, 5-, and 10-scenarios. Our goal is to provide managerial insight

into creating the most cost-efficient supply chain for covering the future uncertain

hydrogen demand solved with five scenarios for the two production technologies.

8.2.1 Value of stochastic programming

In this subsection, we evaluate the performance of our two-stage stochastic facility

location problem with capacity adjustments compared to a simpler deterministic

model, the expected value problem (EV ), in terms of capturing the uncertainty in

future hydrogen demand. We use the Value of Stochastic Solution (V SS) to evaluate

the performance. V SS measures the value of knowing and utilising the probability

distributions for future outcomes. The equation for calculating the V SS is stated

below for a minimisation problem (Birge & Louveaux 2011).

V SS = EEV −RP (8.1)

EEV is the expected result by using expected value solutions. RP represents the

value of the solution to the stochastic program (the recourse problem).

To obtain the results by using expected value solutions, EEV , we first solve our

model with a singular expected demand scenario, providing an expected value solu-

tion, EV . Afterwards, we solve our model for the same set of scenarios as for the

RP . However, we use the fixed first stage solutions from the EV , resulting in the

EEV . Since our model uses scenarios from a discrete uniform distribution, the

average demand is equal to the expected demand scenario.

Table 8.3 shows the V SS for the 2-, 5- and 10-scenario problem instances. We

observe that the problem instance with 2 scenarios has a positive V SS of 13 mil-

lion Euros, while the 5- and 10-scenario instances show negative and decreasing

V SS. The magnitude of the V SS for the 5- and 10-scenario instance is heavily
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affected by the fact that these solutions have a 12.2% and 81.4% optimality gap,

respectively. Even if there is a value in using stochastic programming, there is a

significant difference in solution time to obtain solutions for the RP and EEV with

the same optimality gap using Gurobi to solve the stochastic program. Solving the

EV and EEV requires less time to obtain solutions of a similar optimality gap as

the RP . For problem instances containing 5 or more scenarios, EV provides better

first-stage decisions in less time than Gurobi, which in turn solves faster than any

of the implemented solution methods. In other words, EV and EEV can provide a

better stochastic solution for managerial insight for the problem sizes we study in

this section.

The V SS of 13 million Euros for two scenarios constitutes less than 1% of the

stochastic solution. Even though the V SS has the potential to grow larger by

decreasing the gap, the V SS will be marginal compared to the solution value of the

RP and EEV problem. This marginal fraction may suggest that our second stage

variables grant considerable flexibility to our model, allowing it to respond well to

the realisation of different demand scenarios even with fixed first-stage variables.

Our model’s uncertainty is represented through the number of scenarios and the

difference in demand within the scenarios. Hence, when we include only two scen-

arios, the uncertainty is limited relative to five and ten scenarios. In other words,

we expect the V SS to increase for the five and ten scenario instances compared to

two scenarios with a similar optimality gap.

Table 8.3: Value of stochastic programming for 2-, 5- and 10-scenario instances.

Number of
scenarios

VSS
[mil. Euros]

RP
[mil. Euros]

EEV
[mil. Euros]

Gap RP
[%]

Gap
EEV
[%]

2 13 1 312 1 325 3.8 0
5 - 29 1 834 1 805 12.2 0
10 - 6585 8 335 1 750 81.4 0

Figure 8.6a and Figure 8.6b display the first stage decisions for the stochastic and

expected value problem solution for the 5-scenario instance, respectively. Further-

more, Table 8.4 shows the initial investment in capacity and time of investment for

the 5-scenario RP and EV .

Figure 8.6 and Table 8.4 show some general properties that are valid for the 2-,

5- and 10-scenario problem instances. One property is the EV having larger first

stage investments, and these investments are more spread throughout the entire

planning horizon. These decisions result from the EV being a deterministic problem
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in combination with the nature of our problem, which is to build facilities to minimise

the expected costs for a set of scenarios. When the problem knows the future for

certain through a single expected scenario, it makes more aggressive first stage

decisions compared to the stochastic model that does not know what scenario will

be realised. The aggression is best illustrated through Figure 8.7, which shows that

the EV has a higher maximum installed capacity throughout the planning horizon

except for time period 2.

Another implication of the EV being deterministic is that the optimality gap for

the stochastic program solution is always more significant than the EEV for our

problem instances when applying our solution methods. Neither Gurobi nor our

proposed solution methods can obtain a solution with a lower optimality gap than

3.8, 12.2 and 81.4% within 48-hours solution time for the 2-, 5- and 10-scenario

problem instances. The optimality gap affects the magnitude of the V SS, as larger

gaps for the RP result in poorer objective values.

(a) First stage decisions RP . (b) First stage decisions EV .

Figure 8.6: First stage decisions 5-scenarios.
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Figure 8.7: Max. installed initial capacity for RP and EV .

Table 8.4: Initial capacity and time of investment for the RP and EV.

RP EV
Location Capacity Time Period Capacity Time Period
Andenes 4 9 3 7
Berlev̊ag 4 11 4 11
Finnsnes 1 1 2 1
Fisk̊a 3 4 3 3
Florø 2 1 3 3
Glomfjord 1 1 3 3
Hammerfest 1 4 4 7
Hellesylt 1 1 5 6
Kollsnes 1 1 5 9
Mo I Rana 5 2 4 1
Mongstad 5 7 3 1
Slemmestad 1 1 2 3
Stavanger 1 1 5 7
Storekorsnes 2 1 3 4
Svolvær 1 1 2 3
Trondheim 5 6 3 2

8.2.2 Electrolysis vs. SMR+

As discussed earlier in Section 7.1.2, the set of facility location candidates for SMR+

restricts to four locations. These locations are: Hammerfest, Trondheim, Mongstad

and Kollsnes, as seen in Figure 8.8b. All 16 candidate locations are used for electro-

lysis, and the first-stage decisions can be seen in Figure 8.8a. The results presented

in this subsection are all solutions to the problem instance containing 5 scenarios,

meaning that we study the F16C50T14S5 and F4C50T14S5 for the electrolysis

and SMR+ instance, respectively. This subsection aims to provide decision support
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for configuring a hydrogen supply chain for electrolysis and SMR+. In addition, we

will discuss the economic effects of each supply chain configuration.

8.2.2.1 Supply chain configuration - EL & SMR+

The best solution for electrolysis corresponds to an objective value of 1 834 million

Euros at a 12.2% optimality gap. The first-stage decisions of this solution are shown

in Figure 8.8a. For SMR+, the optimal solution corresponds to an objective value

of 2 624 million Euros and with the supply chain configuration shown in Figure 8.8b

and Table 8.5.

(a) Electrolysis - F16C50T14S5. (b) SMR+ - F4C50T14S5.

Figure 8.8: First stage decisions 5-scenarios.
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Table 8.5: First stage decisions for EL & SMR+.

EL SMR+

Location Capacity
Time
Period

Capacity
Time
Period

Andenes 4 9 - -
Berlev̊ag 4 11 - -
Finnsnes 1 1 - -
Fisk̊a 3 4 - -
Florø 2 1 - -
Glomfjord 1 1 - -
Hammerfest 1 4 3 1
Hellesylt 1 1 - -
Kollsnes 1 1 2 1
Mo i Rana 5 2 - -
Mongstad 5 7 5 3
Slemmestad 1 1 - -
Stavanger 1 1 - -
Storekorsnes 2 1 - -
Svolvær 1 1 - -
Trondheim 5 6 4 1

Figure 8.8a and Table 8.5 show that facilities are built in all 16 locations for electro-

lysis. Nine locations are opened straight away in time period 1, and 7 out of these 9

are opened with initial capacity 1. The facilities built in the first period handled the

low but spread hydrogen demand. Each facility built in later time periods invests

in a much larger capacity once the demand increases, as shown in Table 8.5.

Figure 8.8b and Table 8.5 show that facilities are built in all 4 locations for SMR+.

Investments are made for three out of the four locations in time period 1. Each

location opening in time period 1 is geographically spread throughout Norway, as

these will serve the spread initial hydrogen demand while satisfying the maximum

distribution limit. The latest investment in facility location is made in time period

3, with an initial capacity of 5, which is larger than any other facility at the time.

It invests in a larger initial capacity as demand is strictly increasing. Investing in

initial capacity is always cheaper than investing and then adjusting capacity with

the relation between investment, adjustment and production costs for SMR+.

SMR+ has to initially open three facilities in each region to satisfy the initial spread

customer demand. When demand picks up, it chooses to open the last facility

with the highest initial capacity in the South-west region with the most demand

to minimise distribution costs. The investment decisions contain more significant

investments in capacity on average for SMR+, as SMR+ only has four potential

facility locations. On the other hand, electrolysis has more potential facility locations

88



to choose from. The model can decide whether to invest at a new location or

adjust capacity at an existing facility to minimise the combined costs of distribution,

production, and investment/adjustment to handle the increased customer demand.

In other words, electrolysis can consider the trade-off between investing or adjusting

capacity, while SMR+ has to adjust as each facility location has already been built.

We notice this flexibility for electrolysis in the adjustment decisions, as some facilities

increase capacities before every facility is built. In contrast, the facilities in the

solution for SMR+ adjust capacities after every facility is built.

8.2.2.2 Economic analysis

Overall, the supply chain configuration with electrolysis appears to be the cheaper

configuration with a total cost including investment, adjustment, production and

distribution of 1 834 million Euros compared to 2 624 million Euros for SMR+. The

solution for electrolysis and SMR+ present two different supply chain structures.

Electrolysis has the opportunity to invest in a much larger set of facility locations

and chooses to do so, creating a decentralised supply chain. On the other hand, the

solution for SMR+ only has a set of facility locations of four, resulting in a much

more centralised hydrogen production. For each supply chain configuration, we

examine its cost distribution. Table 8.6 shows the cost contribution for investment,

adjustment, production and distribution of the solution for SMR+ and electrolysis,

respectively.

Table 8.6: SMR+ compared to 5-scenario solution with EL at 12.2% gap.

Cost contribution
[mill. Euro]

SMR+
[0% Gap]

Share
Electrolysis
[12.2% Gap]

Share

Investment 257 9.8 % 215 11.7 %
Adjustment 698 26.6 % 252 13.7 %
Production 877 33.4 % 1038 56.6 %
Distribution 792 30.2 % 329 18.0%
Total 2 624 1 834

8.2.2.2.1 Investment Costs

The investment costs are slightly higher for SMR+ with 257 compared to 215 mil-

lion Euros for electrolysis, where SMR+ establishes a few extensive facilities while

electrolysis invests in many smaller facilities. Figure 8.9 shows that with the cur-

rent investment decisions, electrolysis can establish twice as much initial capacity

as SMR+ for the exact cost. The costs for electrolysis are distributed over sixteen
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different locations, each with capacities ranging from capacity point 1-5 and time

period 1-11, allowing electrolysis to follow the expected demand level closely through

investment decisions. Investments cap out in time period 3 for SMR+, which is also

the time period where over half of the capacity is installed. SMR+ ability to respond

to additional hydrogen demand relies on the adjustment decisions.

Figure 8.9: Initial facility capacity vs. expected demand.

8.2.2.2.2 Adjustment Costs

The adjustment costs are also greater for SMR+ than for electrolysis. Table 8.6

shows that SMR+ has adjustment costs corresponding to 698 million Euros, com-

pared to electrolysis, which has adjustment costs corresponding to 252 million Euros.

First of all, the investment costs and thereby adjustments costs for SMR+ relative

to electrolysis are more expensive on a general level. Furthermore, SMR+ has to

use adjustment decisions to satisfy the pick up in hydrogen demand, implying high

adjustment costs as each facility location has already been built early in the time

horizon. Electrolysis has a choice to avoid these higher adjustment costs by invest-

ing in capacity by building facilities in new locations later on in the time horizon.

This choice does not mean that electrolysis does not engage in adjustment decisions

but only does so when the trade-off between adjusting, producing and distributing

from an existing facility is sufficiently large compared to investing, producing and

distributing from a facility at a new location.

8.2.2.2.3 Production Costs

In order to justify the high additional adjustment costs for SMR+, the costs have

to be offset by production savings. From Table 8.6, we observe that SMR+ has
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lower production costs than electrolysis with 877 million Euros compared to 1 038

million Euros. Having larger facilities makes it easier to realise economies of scale

in production.

Figure 8.10 shows the average unit production costs per kg of hydrogen produced

with each production technology throughout the time horizon. We observe that

SMR+ becomes strictly cheaper halfway through the time horizon, starting in time

period 7. SMR+ shows early potential to produce cheaper hydrogen on average

but experiences several spikes in production cost early on. These cost jumps can

directly relate to investment and ”the average” adjustment decisions for SMR+. As

pointed out earlier, the investment and adjustment decisions for SMR+ are pretty

vast. They may result in facilities running on lower utilisation grades shortly after

the decisions until the demand increases.

Figure 8.10: Average production cost per kg H2 based on expected demand.

As we reach maximum demand, SMR+ produces hydrogen at the cost of 1,06 Euro
kg

compared to 1,37 Euro
kg

, representing a 0,31 cost save per kg. This production cost

margin may cover the additional investment and adjustment costs in the long term

for SMR+. Still, as we now turn to distribution costs, we can observe that the

centralised production has consequences for distributional costs.

8.2.2.2.4 Distribution Costs

The number of facilities in each solution affects the distribution costs, given the

widespread customer demand. Studying Table 8.6, we see that SMR+ has over

twice the distribution costs compared to electrolysis in total costs, 792 million Euros

compared to 329 million Euros. The facilities built for SMR+ have to cover great
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distances to its customers and larger quantities per facility than electrolysis. Recall

that the distribution costs solely depend on distance and amount, resulting in this

significant difference in distribution cost. The large centralised facilities offer savings

of 161 million Euros in production costs through economies of scale compared to

electrolysis. The savings in production is easily offset by increased distribution cost

due to the diseconomy of demand density.

8.2.2.3 Decision support

In many ways, electrolysis seems to be the optimal choice when designing a hydrogen

supply chain for maritime transportation in Norway. We can identify some proper-

ties of technology for electrolysis. One of these properties is the smaller investment

costs relative to SMR+ and a more extensive set of potential facility locations, mak-

ing it possible for electrolysis to establish a decentralised supply chain, which in turn

implies cost savings for distribution through shorter distribution distances. Electro-

lysis has more options to respond to changes in customer demand, given the many

more potential facility locations. More facilities to spread the production over also

make it more likely to have a higher average utilisation rate per produced hydro-

gen than SMR+. The increased costs of investment and adjustments do not have

time to be counterbalanced by the savings in large-scale production during the time

horizon. In our case study, the current demand density, combined with the limited

facility locations for SMR+, introduces an element of diseconomy for distribution.

Finally, we observe that the solutions presented in Table 8.6 have an optimality gap

of 0% and 12.2% for SMR+ and electrolysis, respectively. This gap would imply

that there possibly exists further cost savings for the electrolysis instance if they can

solve the computational requirements. In contrast, the SMR+ problem instance has

already been solved to optimality.
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Chapter 9

Future Research

From the computational study, we notice that even though our decomposition tech-

nique finds feasible solutions in every problem instance, it struggles to iterate toward

optimality within our defined termination criteria for instances other than those re-

duced to a limited number of customers and scenarios. As our solution’s quality in

capturing the real world can be directly linked to the number of scenarios we can

solve, it becomes apparent that our decomposition technique needs further work to

solve the problem faster.

As stated in Chapter 8, the generated cuts through our decomposition technique

are weak and generally not binding for many scenarios. Hence it would be beneficial

to look further into strengthening these cuts. One suggestion is to follow up on the

discussion of integer L-shaped cuts in Section 6.1.3, as the generated cuts are based

on linear relaxed sub-problems and therefore serve as a lower bound approximation

for the recourse function.
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Chapter 10

Concluding Remarks

In this thesis, we formulate a two-stage stochastic facility location problem with

capacity adjustments and an L-shaped solution method for designing the hydrogen

supply chain for maritime transportation in Norway. Solving the model provides

decision support for the problem of deciding when and where to invest in production

facilities, capacity adjustments, production technology and the distribution pattern

for hydrogen, given uncertain future demand while minimising the overall expected

cost. The solution methods are based on applying an L-shaped algorithm with

different acceleration techniques on a Benders reformulated version of our model.

We construct large instances of our problem containing up to 16 facility locations,

50 customers, 50 demand scenarios and a time horizon over 14 years from our case

study. The different problem instances were constructed by extracting data from

Ocean Hyway Cluster and SSB and are used to establish demand projections for the

maritime passenger transportation sector, offshore sector and the domestic fishing

industry.

The results show that the decomposition technique can always find feasible solutions

within our termination criteria and optimal solutions for the smallest instances. Ad-

ditionally, the technique accomplishes better objective values than Gurobi for large

instances. However, we see that the problem is hard to solve for the largest instances

with our decomposition technique. The results show that the technique needs many

iterations before approaching optimality, resulting in slow convergence, poor lower

bounds, and a high gap. Spending more time studying generating strengthened

cuts may realise the potential we have established for our proposed decomposition

technique and acceleration methods. The most promising acceleration techniques

were the combinations of the multi-cut approach, the B&BC-technique, the multi-

cut approach, and the ϵ-approach. Additionally, the results show potential for using
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warm-start for large instances.

For our 5-scenario instance with 16 facility locations and 50 customers, we have

established that electrolysis will constitute the production technology for the future

hydrogen supply chain. With significant savings in investment, adjustment and

distribution costs compared to SMR+, electrolysis chooses to build facilities in every

location. The solution has the potential for further cost savings in the overall supply

chain configuration as the current optimality gap for the solution corresponds to

12.2%.
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