
M
athias N

etland Solheim

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Mathias Netland Solheim

Integration between lidar- and
camera-based situational awareness
and control barrier functions for an
autonomous surface vessel

Master’s thesis in Marine Technology
Supervisor: Roger Skjetne
Co-supervisor: Mathias Marley
July 2022

M
as

te
r’s

 th
es

is

Mathias Netland Solheim

Integration between lidar- and
camera-based situational awareness
and control barrier functions for an
autonomous surface vessel

Master’s thesis in Marine Technology
Supervisor: Roger Skjetne
Co-supervisor: Mathias Marley
July 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Marine Technology

Preface

This thesis marks the conclusion of my master’s degree in marine technology at the Nor-
wegian University of Science and Technology (NTNU). It is the results of a five-year-long
study that provided me with a significant amount of knowledge about marine technol-
ogy and especially marine cybernetics. The subject of study is integrating situational
awareness in autonomous surface vessels to guarantee safe automatic control.

The thesis work was conducted over the spring semester of 2022. First, the necessary
knowledge information was attained. This had been largely done as part of the project
thesis [Solheim, 2021], but the decision to incorporate CBFs into the thesis required
more studies. Resources for this were provided by my supervisor, Roger Skjetne, and
co-supervisor, Mathias Marley, in the form of technical notes and relevant published lit-
erature. Next, the focus was on developing the appropriate control system modules for
the CS Saucer using Python and ROS. The implementations of the guidance module and
backstepping controllers specifically were based on the technical notes of my supervisors as
well as the Matlab implementations of previous master students Moen, 2021 and Åsheim,
2021. Finally, I started work on the SA system parallel to implementing the control sys-
tem. Most sensor drivers and calibration software, along with the implementations of
CNN utilized in this thesis, are open-source ROS packages freely available online and are
not the author’s own work. However, some modification of the CNN, fusion method and
calibration code has been a necessity.

Senior Engineer Torgeir Wahl procured the relevant hardware. Senior Engineer Robert
Opland installed the Qualisys tracking markers onto the top module. Both Torgeir and
Robert were also helpful in replacing wiring and circuitry onboard the vessel. I installed
the remaining hardware myself.

Mathias Netland Solheim
July 2022, Trondheim

Abstract

The development of fully autonomous surface vessels (ASVs) has seen significant progress
in recent years and is at the cusp of becoming an actuality. One of the most critical aspects
in making ASVs a success is safety assurance. In order to operate safely, the vessel must
be able to perceive, understand and adapt to the environment around it. This is known
as situational awareness (SA). Typically, SA is achieved by combining the measurements
from several sensors. For an ASV, electro-optical sensors such as camera and lidar are
good candidates to enable environmental perception.

This thesis considers the implementation, and subsequent integration, of a lidar- and
camera-based SA-system with control barrier functions (CBF) for safe motion control,
using the CS Saucer (CSS) as the experimental platform. The CSS is a model-scale
vessel operating in the marine cybernetics laboratory at the NTNU. It was chosen for
the project due to its modularity in payload configurations, making sensor integration
easy. Additionally, the vessel required a control system upgrade. This included replacing
hardware and implementing a new control software architecture based on Python and
ROS.

The SA system incorporates the convolutional neural network(CNN) SSDMobilescan to
achieve visual detections of ships around the vessel. Then a projection model for the cam-
era and lidar was derived, and the sensors were geometrically calibrated to obtain a rigid
body transformation between the coordinate frames. Lidar points are projected onto any
visual detections and added to a list of valid points if located within the detected bounding
box. This list is then parsed to the clustering algorithm k-means, which computes a center
point for each cluster present. This center point corresponds to the obstacle position and
is converted to the NED-frame using the derived rigid body transformations.

Secondly, a maneuvering control system was integrated with the SA system. The system
employs CBFs in the guidance layer to ensure collision-free path following. The controller
utilized followed a cascade backstepping design that decoupled heading control from posi-
tional control. If the SA system detects any environmental obstacle, the guidance module
will generate safe reference values if the current path is deemed unsafe.

All methods were tested through simulations and physical experiments in the MC lab. The
SA system proved effective, detecting and accurately estimating the position of obstacles
within a certain margin of error. It was, however, sensitive to false point projections due
to subpar calibrations. The CNN was also found to have a limited detection range of 3m
due to environment and model training. The motion control system as a whole performed
satisfactorily, generating safe path signals in the presence of up to two obstacles and
following the path to an acceptable degree.

Sammendrag

Utviklingen av autonome overlatefarkoster har de siste årene sett betydelig fremgang, og
ideen om et hel-autonomt skip er i ferd med å bli en virkelighet. En av de mest kritiske
aspektene for å gjøre autonome skip suksessfulle, ligger i evnen til å forsikre sikkerhet.
For å trygt kunne operere, m̊a et autonomt skip kunne oppfatte, tolke og tilpasset seg
omgivelsene sine til en hver tid. Dette defineres som et fartøys situasjonsforst̊aelse (SF).
SF i fremkomstmidler oppn̊as hovedsakelig gjennom kombinasjonen av forskjellige sensorer.
For autonome skip, vil elektro-optiske sensorer som kamera og lidar være gode kandidater.

Denne avhandlingen tar for seg implementasjonen, og, i ettertid, integrasjonen av et lidar-
og kamera-basert SF system sammen med kontroll barriere funksjoner (CBFer) for å oppn̊a
trygg bevegelseskontroll av det autonome fartøyet CS Saucer (CSS). CSS er et modellskala
overflate fartøy som operer i Marine Kybernetikk laboratoriet (MC lab) ved NTNU. Den
ble valgt som eksperimentell platform grunnet fartøyet modularitet i nyttelast, som gjør
integrasjon av nye sensorer enkelt. CSS hadde ogs̊a behov for en oppgradering av kon-
trollsystemet sitt. Dette omfattet erstatting av gammel maskinvare og implementasjon av
en programvare arkitektur basert p̊a Python of Robot Operating System.

SF systemet inkorporerer det konvolusjonelt nevrale nettverket SSDMobilscan for å vi-
suelt gjenkjenne skip i fartøyets nærhet. En projeksjonsmodell for lidaren og kameraet er
s̊a blitt avledet, og sensorene geometrisk kalibrert for å oppn̊a en transformasjon mellom
koordinat-systemene. Punktene fra lidaren blir s̊a projektert over p̊a det visuelle gjenkjen-
ningen, og lagt til i en liste med gyldige punkter dersom de er innenfor gjenkjenningens
avgrensningsboks. Denne listen er s̊a sent videre til grupperings algoritmen k-means som
identifiserer et midtpunkt for hver gruppe i listen. Dette midtpunktet tilsvarer posisjonen
til hindringen, og er transformert til NED-rammen.

Dette systemet er s̊a integrert med et manøvrerings kontrollsystem. Systemet tar i bruk
CBFer i veilednings modulen for å garantere kollisjonsfrie baner for skipet. Kontrolleren
følger et cascade-backstepping design, og frakobler posisjons-kontroll fra gir kontroll. Der-
som SF-systemt gjenkjenner hindringer i omgivelsene, vil veiledningsmodulen generere nye
trygge baner om CBFene fastsl̊ar at den n̊aværende banen er utrygg.

Alle metoder har blitt tested gjennom simulasjoner og fysiske eksperimenter i MC labben.
SF systemet virket til å være effektivt og klarte å gjenkjenne hindringer i omgivelsene, samt
nøyaktig gjengi posisjonen deres, innenfor en feilmargin. Systemet var dessverre sensitivt
ovenfor feilprojeksjoner som et resultat av d̊arlig kalibrering. Gjennkjenningsavstanden
til Mobilescan var ogs̊a begrenset til 3 meter, grunnet lav oppløsning i bilder og trening
av nettverket. Manøvreringssystemet som en helhet derimot, fungerte tilfredstillende og
genererte trygge baner for skipet med opp til to hindringer tilstede. Fartøyet klarte ogs̊a
å følge banene til en akseptabel grad.

Acknowledgements

First, I would like to thank my supervisor, Roger Skjetne, for the good guidance and
suggestions when I expressed a wish to incorporate computer vision in my thesis. He
has given me much trust and independence in pursuing my own interests, while always
providing help when needed. The same goes for my co-supervisor, Mathias Marley.

I would also like to thank Senior Engineers at IMT, Torgeir Wahl and Robert Opland for
providing excellent support in procuring the necessary hardware, installing and replacing
electronics and understanding the Qualisys track system in the MC Lab. Without their
help, I would never have gotten the vessel moving.

Most of the work on this thesis has been performed in office C1.058 at MTS, where I have
shared the space with 5 other people. Therefore, I would like extend a thank you to my
office colleagues for all the fruitful discussions, daily trivia quizzes, trips to Valentinlyst
and countless matches of billiards. They made writing this thesis a lot more enjoyable.

ii

Contents

Contents ii

List of Figures ix

List of Tables xi

Nomenclature xiii

List of Abbreviations . xiii

List of Symbols . xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives and Scope of Work . 2

1.3 Contributions . 3

1.4 Outline . 3

2 Background and literature review 5

2.1 Situational Awareness in autonomous surface vessels 5

2.2 LiDAR . 6

2.3 Camera . 7

2.3.1 Deriving the Pinhole model . 7

2.3.2 Distortion . 9

2.3.3 The complete camera model . 11

2.4 Supervised Learning for Machine Vision . 11

2.4.1 Convolutional Neural Network . 11

iii

CONTENTS

2.4.2 Single stage detectors vs. Dual Stage Detectors 13

2.5 Path generation for maneuvering . 13

2.5.1 One-variable path parametrization 14

2.5.2 Two-variable path parametrization 14

2.6 Control Barrier Functions . 15

3 Experimental Platform: CS Saucer 17

3.1 Background and motivation . 17

3.2 Technical specification . 18

3.3 Software . 20

3.3.1 Robot Operating System . 20

3.3.2 ROS architecture . 21

3.4 The Marine Cybernetics Laboratory . 22

3.5 Vessel model . 23

3.5.1 Reference frames . 23

3.5.2 Model . 24

4 Problem formulation 27

4.1 Sensors . 27

4.2 Situational awareness . 27

4.3 Guidance problem . 28

4.4 Control problem . 28

4.4.1 The maneuvering problem . 28

4.4.2 Stabilizing heading . 29

4.5 Limitations and assumptions . 29

5 Situational awareness 31

5.1 Sensor integration . 31

5.2 Calibration . 32

5.2.1 Camera calibration . 32

5.2.2 Lidar-Camera Calibration . 33

5.3 Transformation to NED-frame . 35

5.4 Visual detection . 36

iv

CONTENTS

5.4.1 Implementation and training . 37

5.5 Lidar segmentation . 37

5.5.1 K-Means . 38

5.6 Sensor fusion . 39

6 State estimation 43

6.1 Observer design . 43

7 Guidance system 45

7.1 Path paramtrization . 45

7.2 Speed assignment . 46

7.3 Control Barrier Function . 46

7.4 Heading reference . 48

7.5 Mission management . 48

8 Control System 49

8.1 Cascade backstepping . 49

8.1.1 Step 2: Kinetic design . 49

8.1.2 Step 1: Kinematic design . 50

8.2 Force limitations . 52

8.3 Thrust allocation . 53

8.3.1 Fixed thruster allocation . 54

8.3.2 Thruster configurations . 54

9 Results and Discussion 57

9.1 Testing scenarios . 57

9.1.1 Situational Awareness . 57

9.1.2 Collision avoidance . 57

9.2 Situational awareness . 58

9.2.1 Display and performance . 58

9.2.2 Range test . 59

9.2.3 Basin test . 61

9.3 Complete system tests . 63

v

CONTENTS

9.3.1 Scenario 1: Single stationary obstacle 63

9.3.2 Scenario 2: Multiple stationary obstacles 65

9.4 Final discussion . 68

10 Conclusion 71

10.1 Further work . 72

References 75

A Getting started with ROS I

A.1 Raspberry Pi Image . I

A.2 Communicating with the Raspberry Pi . II

A.3 How to ROS: A step by step guide . II

A.3.1 Sourcing ROS . II

A.3.2 Creating a workspace . II

A.3.3 The src-directory . III

A.3.4 Running ROS nodes . III

A.3.5 Launch files . IV

A.3.6 Topics . V

A.3.7 Storing data . V

A.3.8 Other usefull ROS-commands . V

B Control system manual VII

B.1 System requirements . VII

B.2 Running the control system nodes . VIII

B.2.1 Dualshock 4 driver . VIII

B.2.2 Camera . VIII

B.2.3 Lidar . VIII

B.2.4 Arduino . VIII

B.2.5 Motion Control System . IX

B.2.6 Object detection . IX

B.3 Dynamic Reconfigure . IX

C Calibration Procedures XI

vi

CONTENTS

C.1 Camera calibration . XI

C.2 Camera-Lidar calibration . XII

D Heading priority allocation XV

E DS4 Controller Mapping XVII

vii

CONTENTS

viii

List of Figures

2.1 Architecture of an ASV [Smogeli, 2021] . 6

2.2 Lidar coordinate system . 7

2.3 Pinhole model geometry and mapping, courtesy of HediVision [2021] 8

2.4 Camera distortions . 10

2.5 Different activation functions, courtesy of Hamdan [2018] 12

2.6 Max pooling illustration, by of Podareanu et al. [2019] 12

2.7 Example of CNN architecture; courtesy of Ferguson et al. [2017] 13

2.8 Construction of the desired position based on two path parameters, adapted
from Moen [2021] . 14

3.1 The CS Saucer with the latest module installed 18

3.2 Signal and power flow between system components. 20

3.3 Basic ROS concept . 21

3.4 ROS-architecture of the CS Saucer. 22

3.5 The CSS, CSE1 and CSAD deployed in the MC lab basin 23

3.6 Body-fixed coordinate frame . 24

4.1 Block diagram of feedback control system 28

5.1 Block diagram of SA system . 31

5.2 Sensor integration for the CS Saucer . 32

5.3 Camera calibration process . 33

5.4 Camera view along with 2D point cloud from lidar, displayed in RViz . . . 34

5.5 Picking laser coordinate in image pixels . 35

ix

LIST OF FIGURES

5.6 Visual detection of the CS Enterprise in the MC Lab 37

5.7 Laser scan sample of the MC lab basin . 38

5.8 K-means principle . 39

5.9 Situational awareness framework . 40

5.10 Object detection after fusing image and lidar measurements, using Cyber-
ship II as the target. 41

8.1 Fixed thruster configuration on the CS Saucer. 54

9.1 Detection of the Cybership II . 58

9.2 Initial range test . 59

9.3 Range measurements after calibration . 60

9.4 Influence of wall points on centroid placement 61

9.5 Estimated obstacle postions from object detection 62

9.6 Centroid computations compared to qualisys measurements 62

9.7 North-East plot for Scenario 1 . 64

9.8 Position and velocity estimates for Scenario 1 64

9.9 Force commands for Scenario 1 . 65

9.10 Actuator commands for Scenario 1 . 65

9.11 North-East plot for Scenario 2 . 66

9.12 Position and velocity estimates for Scenario 2 67

9.13 Force commands for Scenario 2 . 67

9.14 Actuator commands for Scenario 2 . 68

9.15 Failure in evasive maneuver due to overlapping obstacle regions 69

B.1 Tuning GUI . X

C.1 Calibration window . XII

C.2 RViz window for calibration . XIII

C.3 Choosing corresponding pixel value . XIII

E.1 Mapping of DS4 controller for manual and atomatic control XVII

x

List of Tables

3.1 Technical specification for the CSS . 19

3.2 Basin dimensions . 22

8.1 Thruster configuration . 55

B.1 Required software . VII

xi

LIST OF TABLES

xii

Nomenclature

List of Abbreviations

2D − Two dimensional
3D − Three dimensional
AIS − Automatic identification system
ASV − Autonomous surface vessel
CBF − Control Barrier Function
CCD − Charged-Coupled Devices
CLF − Control Lyapunov Function
CNN − Convolutional Neural Network
CO − Coordinate Origin
COLAV − Collision Avoidance
CSAD − Cybership Arctic Drillship
CSE1 − Cybership Enterprise I
CSS − Cybership Saucer
DOF − Degree(s) of freedom
DP − Dynamic Positioning
fps − Frames-per-second
GNC − Guidance, Navigation & Control
GNSS − Global navigation satellite system
GPU − Graphical Processing Unit
IMU − Inertial Measurement Unit
LiDAR − Light Detection and Ranging
MC-Lab − Marine Cybernetics Laboratory
NED − North-East-Down
NN − Neural Network
OS − Own Ship
QP − Quadratic Programming
RADAR − Radio Detection and Ranging
ROS − Robot Operating System
SA − Situational Awareness

xiii

List of Symbols

Perception nomenclature

C = Camera coordinate frame
L = Lidar coordinate frame
K = Camera calibration matrix
H = Camera projection matrix

Control nomenclature

η = Generalized position vector
η̂ = Estimated position vector from observer
ηd = Reference position vector
p = Position vector in NE-frame
ν = Generalized velocity vector
ν̂ = Estimated velocity vector from observer
νd = Reference velocity vector
b = System bias vector
b̂ = Estimated bias vector from observer
τ = Generalized force vector
X = Force acting in surge
Y = Force acting in sway
N = Moment acting in yaw
MRB = Rigid Body Mass/Inertia matrix
MA = Added mass matrix
C = Hydrodynamic restoring force matrix
D = General hydrodynamic damping matrix
Dν = Nonlinear hydrodynamic damping matrix
R = Rotation matrix
ψ = Vessel heading
s = Path parameter
α = Azimuth angle
B(α) = Thruster configuration matrix
Bext = Extended thruster configuration matrix
B(s) = Control Barrier Function

xiv

Chapter 1
Introduction

1.1 Motivation

In recent years the field of autonomy has seen significant progress. Great advances in
sophisticated perception systems and sensors combined with computational power sky-
rocketing over the last decade enable the concept of fully autonomous vehicle control to
become a reality. The automotive industry is perhaps the sector that is furthest along in
autonomous control, with companies like Google developing and performing tests of self-
driving cars. However, autonomy is also a highly relevant subject in the marine sector.
At the time of writing, research has progressed to the point of autonomous commercial
projects being launched. The most famous example of this is likely the Yara Birkeland.
The Birkeland is intended to function as a fully autonomous container vessel traveling
between port of Porsgrunn and Breivik in eastern Norway.

Smaller surface vessels operating at a lesser scale, over shorter distances, and with specific
objectives is another focus area where autonomy has high potential. The Autoferry project
at the Norwegian University of Science and Technology (NTNU) is a cross-disciplinary
research project that investigates new concepts and methods to enable the development of
autonomous passenger ferries for the transport of people in urban water channels [NTNU,
2021]. The project utilizes the milliAmpere, a small-scale pilot ferry, as an experimental
platform. At the time of writing, a 3-hour, fully autonomous operation has been conducted
with this vessel to great success [Zeabus, 2021].

Although significant progress has been made, the path to full autonomy is still long, and
much research and development are still required. One of the most significant challenges
for autonomy lies in safety assurance. If ASVs are to achieve commercial success, technical
and perceived safety must be ensured. Technical safety is guaranteed in the design of the
vessel control system. This requires the design of embedded safety functions in all control
layers. Such functions include guidance with nominal obstacle/collision avoidance, online
risk assessment, risk-based control mitigation, and minimum risk conditions (MRC). Com-
monly, such methods require a coherent image of the environment the vessel is operating
in, or situational awareness (SA).

Situational awareness is achieved by interpreting data from sensors. The number and
complexity of these may vary depending on the operation’s needs. For example, a smaller
ASV operating in urban environments may benefit from a LiDAR and optical sensors such

1

CHAPTER 1. INTRODUCTION

as cameras. On the other hand, a conventional ship on open sea would prefer a radar with
a more extensive range. The necessary hardware to achieve situational awareness exists
today; the challenge lies in combining the data into something meaningful. Each sensor
comes with its own frame of reference that must be related to a common world frame
through the process known as sensor fusion.

1.2 Objectives and Scope of Work

This thesis aims to develop a situational awareness system for the experimental vessel CS
Saucer, based on a monocular camera and a 2D lidar scanner. This system should be able
to detect obstacles during maneuvering operations. When an obstacle is detected, control
barrier functions are employed to ensure that the maneuvering trajectories are safe and
collision is avoided.

A secondary objective of this thesis is to upgrade the CS Saucer. This means upgrading the
vessel’s hardware and harmonizing the control system with the remaining vessels available
in the MC Lab. To achieve this, the following scope of work is defined:

1. Perform a background and literature review to provide information and relevant
references on:

• Autonomous surface vessel and situation awareness functions.
• Sensor fundamentals and modeling of camera and lidar.
• Machine vision fundamentals, particularly camera- and lidar-based sensor fu-

sion, target tracking algorithms, etc.
• Object detection and classification based on neural network methods such as

CNN.
• Relevant theory concerning CBFs for collision avoidance.

Write a list with abbreviations and definitions of terms and symbols relevant to the
literature study and project report.

2. Develop RP4 and ROS-based vessel maneuvering control system for CSS, using the
same platform as for CSE1 and CSAD:

• The vessel should have modules implemented in ROS for Mission Manager,
Situation Awareness, Guidance, Observer, Controller, and Thrust Allocation

• Since CSS is omnidirectional with almost negligible resistance in yaw, one
should consider heading control and position control individually by decoupling
yaw control from surge-sway control. This needs particular focus on how to do
the thruster configuration and thrust allocation in order to tightly stabilize the
heading. Develop an optimal thrust allocation algorithm correspondingly for
the CSS. Test several thrust configurations and discuss the results.

• Perform testing in MC-Lab to tune the observer, guidance, and controller mod-
ules in order to get the maneuvering-based control system to perform well.

3. Develop a SA system based on camera and lidar for the CSS. This includes sensor
fusion and object detection. A CNN should be considered for detecting and classi-
fying relevant objects in MC-lab. Test the system and discuss the module’s ability
to detect and track targets.

2

CHAPTER 1. INTRODUCTION

4. Let detected objects classified as relevant targets be associated with a Control Bar-
rier Function (CBF), that is, each target quantifies a new CBF when detected, where
the CBF enters the control loop for collision avoidance. Develop new CBF-based
maneuvering control modules that ensure safe maneuvering with anti-collision. Con-
sider the logic for how a CBF emerges and later vanishes. Present and discuss how
the CBF-based SA, Guidance, and Controller modules interact to ensure safe ma-
neuvering; that is, present this by a detailed flowchart, timing diagram, logics, etc.

5. Test the overall system in MC-Lab for a set of specified test scenarios. Present and
discuss/critique the overall functionality and resulting performance.

1.3 Contributions

The first contribution of this thesis is the development of a complete autonomous con-
trol system for the experimental platform CS Saucer, which aims at safe maneuvers and
obstacle avoidance. This includes a situational awareness module, observer, guidance sys-
tem, control system with thrust allocation, and drivers for the hardware components.
The situational awareness system is centered around two sensors; a monocular camera
and a 2D LiDAR. The sensors are mounted on a new top plate for the vessel, and meth-
ods for detecting environmental obstacles and fusing the measurements are presented and
implemented. The guidance functionality generates safe maneuvering references by incor-
porating a control barrier function. The control system utilizes a cascade backstepping
control Lyapunov design that decouples the heading control from the positional control.
Fixed and varying thrust allocation modules are also provided, one of which introduces a
heading priority scheme. The control system is developed predominately in Python, using
the Robot Operating System as its framework. The entire system consists of some 3000
lines of code, all made available for future use in the MC Lab. This thesis also contributes
tools, documentation, and procedures for the system.

Physical experiments are performed as part of this thesis. As such, the thesis contributes
a study on the practical feasibility of a CBF-based control architecture for ASVs.

1.4 Outline

The report is structured as follows. Chapter 2 gives the theoretical background for the pre-
sented work along with a literature review of existing studies relevant to the thesis. Chap-
ter 3 gives background information and a description of the experimental platform, includ-
ing specifications of critical hardware and software. Following the background, Chapter 4
formulates this thesis’s control problem this thesis aims to solve. Then, chapters 5, 6,
7 and 8 detail the proposed implementation of each module in the autonomous control
system. These are the situational awareness-, observer-, guidance- and control module, re-
spectively. Together, these modules should solve the stated problem. Chapter 9 presents
the different scenarios the system was tested under and the corresponding results with
discussion. Finally, 10 concludes the thesis and its problem statement. Further work is
also presented here.

3

CHAPTER 1. INTRODUCTION

4

Chapter 2
Background and literature review

This chapter provides relevant references and background information on subjects essen-
tial to the control of an autonomous surface vessel. It includes situational awareness,
sensor fundamentals, computer vision fundamentals, relevant reference frames, guidance
and control functions for autonomous ships, and collision avoidance.

Relevant parts of this literature review were done in the pre-project study in [Solheim,
2021] and are reproduced for this thesis.

2.1 Situational Awareness in autonomous surface vessels

Formally, situation awareness (SA) is defined as a person’s ”perception of the elements in
the environment within a volume of time and space, the comprehension of their meaning,
and the projection of their status in the near future” [Endsley, 1988]. This definition
presents three levels to SA [Ottesen, 2014], which we can relate to an autonomous surface
vessel (ASV):

1. Perceiving the environment around the vessel

2. Comprehending the current situation around the vessel

3. Projecting the future states around the vessel

In general, situation awareness for autonomous vessels is achieved through sensor mea-
surements and subsequent processing of the provided data. Figure 2.1 provides a typical
control architecture for an autonomous system. The starting module of this is the SA-
block. Here measurements from different sensors are gathered, processed (Perceiving),
and fused to achieve a coherent view of the environment (Comprehending). Then this is
used in either supervisory control or motion planning for the given vessel (Projecting).

ASVs utilize many sensor configurations, depending on the operational goal, vessel spec-
ifications, limitations, and the operation environment. For example, a conventional ship
typically achieves SA employing RADAR, automatic identification system (AIS) messages,
and GNSS [Schöller et al., 2020]. ASVs, on the other hand, generally incorporate electro-
optical sensors to compensate for the lack of human operators. These include infrared-

5

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.1: Architecture of an ASV [Smogeli, 2021]

(IR) and RGB cameras or lidar that work with traditional sensors and data sources such
as inertial measurement units (IMU), GPS, or radar. An example is the autonomous ferry
Milliampere 2, which is equipped with a sensor array consisting of GNSS, Lidar, Radar,
cameras, IMU, and ultrasonic distance sensors. [Moen, 2021]. The electro-optical sensors
are processed separately and used for detection before they are fused with measurements
from the traditional sensors.

2.2 LiDAR

Light Detection and Ranging, or LiDAR for short, is an electro-optical sensor that mea-
sures distances to an object. This is achieved by sending out a laser pulse and measuring
the elapsed time until the signal is bounced back to the receiver. The range is then

r = c

2(trx − ttx) (2.1)

where c is the speed of light, trx is the reception time and ttx is the transmission time.

Lidars can take many forms, but in autonomous marine operations, a 360◦ 3D lidar is
generally preferred. This type of lidar utilizes a rotating detector array, which measures
the azimuth angle, elevation angle, and range. It uses this information to produce a point
cloud that can be utilized for mapping the environment or estimating the position of
moving objects [Debeunne et al., 2020].

The lidar produces measurement signals in the polar coordinate frame, which can easily
be converted to the Cartesian coordinate frame through basic trigonometry:

x = r cosω sinα (2.2)
y = r cosω cosα (2.3)
z = r sin β (2.4)

Here α denotes the rotation around the z-axis of the lidar, ω is the rotation around the
x-axis, and β is the rotation around the y-axis.

6

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.2: Lidar coordinate system

This thesis utilizes a 2D laser scanner, meaning it only provides measurements in the
horizontal xy-plane. Thus, the z-axis and angle ω can be ignored. A given point measured
by the 2D scanner is then

P lj =
[
rj sinαj
rj cosαj

]
(2.5)

in Cartesian coordinates. Here αj is the azimuth angle and rj the range of the jth scan.
The subscript l denotes the point in a Cartesian frame centered in the lidar.

2.3 Camera

A camera is also an electro-optical instrument that projects the 3D environment in its
field of view into a 2D image. Mathematically, it can be modeled according to the pinhole
camera model presented by Hartley et al. [2015].

2.3.1 Deriving the Pinhole model

We let the center of the projection be the origin of a Euclidean coordinate system, and
define the image plane z = f ∈ R2. Our model will then map a point

[
x y z

]T
to the

image plane
[
fx
z

fy
z f

]T
using similar triangles, as illustrated in Figure 2.3. We ignore

the last point, giving us the central projection mapping from R3 world space to R2 image
coordinates:

[
x y z

]T
→

[
fx
z

fy
z

]T
(2.6)

Assuming homogeneous coordinates for both image and real world, one could then in
theory express the central projection as a linear mapping between coordinates by matrix
multiplication:

xc = Ax (2.7)

7

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

where

• x is the real world point given by homogeneous coordinates

x =
[
x y z 1

]T
(2.8)

• A is the homogeneous camera projection matrix

A =

f 0 0 0
0 f 0 0
0 0 1 0

 (2.9)

• xc is the corresponding point in image plane

xc =
[
fx fy z

]T
(2.10)

Figure 2.3: Pinhole model geometry and mapping, courtesy of HediVision [2021]

In practice we can not assume homogeneous coordinates since the image origin is typically
not aligned with the principal point. Thus, we must augment our transformation to
compensate for this:

[
x y z

]T
→

[
fx
z + px

fy
z + py

]T
. (2.11)

Here [px, py] are the coordinates of the principal point. Accordingly, we must expand our
mapping in (2.7) to:

fxfy
z

 =

f 0 px 0
0 f py 0
0 0 1 0

x
y
z
1

 = K
[
I3×3 01×3

]
x
y
z
1

 , (2.12)

where

K =

f 0 px
0 f py
0 0 1

 (2.13)

8

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

is the camera calibration matrix. This calibration matrix assumes that all pixels are
square. For digital cameras that utilize charge-coupled device (CCD) sensors, this may
not be the case [Hartley et al., 2015]. Therefore, the calibration matrix for the camera
must be further generalized. Defining the number of pixels per unit distance in image
coordinates as mx and my we multiply (2.13) with the factor matrix diag(mx,my, 0).
This gives us the new generalized camera calibration matrix:

K =

αx 0 x0
0 αy y0
0 0 1

 (2.14)

where αi = fmi represents the cameras focal length in pixel units in x-y-coordinates and
x0 = mxpx, y0 = mypy represent the coordinates of the principal point in terms of pixel
dimensions. These parameters are known as the intrinsic camera parameters and are
unique for each model. Numerous methods to determine these values have been proposed,
and typically revolve around calibration using a checker-board as detailed in Zhang [2000]
and Debeunne et al. [2020].

So far all coordinates are assumed to be of the camera coordinate frame, but for the intents
and purposes of this project, points should be expressed in terms of a common euclidean
coordinate frame. Consequently, the camera frame should be transformed to the world
coordinate frame (WCF). Any geometric relation between two Euclidean coordinate frames
can be expressed with a rotation and a translation. For the camera frame and WCF, this
is:

xc = Rxwcf + t (2.15)

Combining (2.12) with (2.15) we get the camera-matrix for relating a point represented
in world coordinates with its pixel coordinates, that is,

Mc = K
[
R t

]
, (2.16)

here R and t are a rotation-matrix and a translation vector relating the camera orientation
to the world coordinate frame, respectively. These are referred to as the cameras extrinsic
parameters and are subject to change. In total the camera matrix Mc has 10 degrees of
freedom; 4 for K, 3 for R and 3 for t.

2.3.2 Distortion

So far, the assumption is that linear models are sufficient to model a camera’s image process
accurately. Unfortunately, this assumption does not hold for most real-world lenses as they
are subject to different nonlinear disturbances. One of the significant contributors here is
radial distortion. This is prevalent in lenses with a wide field of view-angle and small focal
length; attributes typical for lenses used in machine vision applications [Hartley et al.,
2015].

Radial distortion is caused by light rays bending more around the lens edges than at the
optical center, as visualized in Figure 2.4.

9

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Figure 2.4: Camera distortions

This can, however, be compensated for by applying a correction to the image as a pre-
processing step, effectively making the model linear again. Let the image plane coordinates
for a given point in the camera frame be denoted by

[
x̃ ỹ

]T
. From (2.6) we get that for the

ideal, non-distorted pinhole camera, a world point is projected in the camera coordinate
system to the image plane in normalized coordinates as

[
x̃ ỹ 1

]T
= 1
z

[
x y z

]
(2.17)

The actual coordinates of the image are then related to the ideal point by a radial dis-
placement, which is modeled as the polynomial [Hartley et al., 2015][

xd
yd

]
=

[
x̃(1 + k1r

2 + k2r
4 + . . .)

ỹ(1 + k1r
2 + k2r

4 + . . .)

]
(2.18)

where
[
xd yd

]T
is the distorted image coordinate and (1+k1r

2+k2r
4+. . .) is a distortion

factor. This factor is a function of the radius r =
√
x̃2 + ỹ2. ki, i ∈ {1, 2, . . . } are the radial

distortion parameters, which are typically determined in a camera calibration process. For
most lenses, two parameters are sufficient to correct the radial distortion [Heikkila et al.,
1997].

The second type of distortion that can occur in a camera lens is tangential distortion. This
is typically caused by the lens and sensor not sitting parallel to each other, causing the
image to become skewed.

We can compensate for the tangential distortion in pre-processing, similar to radial dis-
tortion. Heikkila et al. [1997] present a method of modeling the distortion as

[
xd
yd

]
=

[
x̃+ 2p1x̃ỹ + p2(r2 + 2x̃2)
ỹ + p2(r2 + 2x̃2) + 2p1x̃ỹ

]
(2.19)

where p1 and p2 are the tangential distortion parameters, also determined in the calibration
process. Combining (2.18) with (2.19) the full distortion model is given by

[
xd
yd

]
=

[
x̃+ x̃(1 + k1r

2 + k2r
4 + . . .) + 2p1x̃ỹ + p2(r2 + 2x̃2)

ỹ + ỹ(1 + k1r
2 + k2r

4 + . . .) + p2(r2 + 2x̃2) + 2p1x̃ỹ

]
(2.20)

The distorted pixel coordinates are then related to the normalized distorted coordinate by
way of the camera matrix K, that is,

10

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

udvd
1

 = K

xdyd
1

 . (2.21)

2.3.3 The complete camera model

If given measurements from a camera in 2D coordinates and pixel values, while assuming
the distortion as described in Section 2.3.2 has been corrected, the complete camera model
can be expressed as:

[
u
v

]
= HK

[
R t

] 1
zw

xwyw
zw

 (2.22)

where
[
u v

]T
are the pixel coordinates and

H =
[
1 0 0
0 1 0

]
(2.23)

is a projection matrix that removes the bottom row from the homogeneous representation.
The factor 1

zw
scales the point x to normalized image coordinates. As with any projection

from R3 to R2, there will be some loss of information when using a single camera. However,
under the stated assumptions of corrected distortions this mapping can be inverted to give
the normalized image plane projection of the image coordinates.

2.4 Supervised Learning for Machine Vision

Supervised learning is a subcategory of Machine Learning (ML) concerned with making
predictions on unknown data based on experiences from known data. A framework car-
rying out this task is denoted a ”Machine Learning model” or simply ”Model”. Most
commonly, the model performance is quantified with a loss function, which turns the de-
velopment of the model into an optimization problem, where the discrepancies between
model behavior and desired behavior are minimized [S.-C. Wang, 2003].

A common approach for carrying out supervised learning in various applications is the
emerging developments in neural networks, which emulate the connections between neu-
rons in a biological brain. Especially in the field of visual classification and motion-
tracking, the use of deep neural networks has recently gained substantial traction as a
viable solution to problems such as classification and tracking.

2.4.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a subclass of Neural Networks utilized for de-
tecting and classifying objects in images [Bishop, 2007]. The use of CNNs was popularized
after Krizhevsky et al. [2012] saw great success with their method for reliably classifying
images using deep neural networks. A CNN uses a cascade of convolutional neuron layers

11

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

in decreasing size, with the task of extracting features from an image into simpler parts
such that a subsequent regular NN structure can more easily classify based on the features
extracted from the preceding layers. CNN’s are therefore often divided into two parts, the
Feature Extractor and the Classifier.

Feature extraction

The feature extractor in a CNN consists of three separate layers: Convolution, Activation
and Pooling [Gu et al., 2018]. Convolution is a mathematical operation relating two
functions. This is mathematically expressed in (2.24), where the input xlij is a portion of
points in the input (for instance, an array encoding pixel values in a small region of an
image) whose position is indexed by i, j. The output is a feature map zlijk. Several feature
maps are often made in parallel, in which case they are numbered by the index k, yielding

zlijk = (wl
k)⊤xlij + blk. (2.24)

The vector (wl
k)⊤ is a collection of weights describing the convolution filter, commonly

called the kernel, for layer l. Each convolution operation also contains a bias parameter
blk. The purpose of the kernel is to isolate and highlight features in different parts of the
input data.

Following the convolution operation, the data is forwarded through an activation function,
which aims to introduce nonlinearity to the network, thus allowing the network to model
nonlinear features [Gu et al., 2018]. Commonly used activation functions are sigmoid,
tanh, and Rectified Linear Unit (ReLU) [LeCun et al., 2012], shown in Figure 2.5

Figure 2.5: Different activation functions, courtesy of Hamdan [2018]

The pooling operation compounds and quantifies patterns in the input data, reducing the
image size to produce a data structure containing the necessary features for classification.
Typically, Max Pooling is used, extracting the highest value in a subset of the input grid,
although other methods such as Average and Min Pooling are also used [Gu et al., 2018].
An illustratory example of Max Pooling is shown in Figure 2.6.

Figure 2.6: Max pooling illustration, by of Podareanu et al. [2019]

Note that this three-part architecture is often repeated several times, each repetition
gradually reducing the size and complexity of the data.

12

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

Classifier

The classifier receives the extracted features from the feature extractor. Then, it produces
an output with information on the captured image, in most cases classifying detected
objects as a specific type of object and the location of detected objects in the form of a
bounding box. The classifier usually consists of dense layers where the neurons in each
layer are fully connected to the neurons in the layers directly preceding and following them
[Gu et al., 2018].

The overall architecture of the network usually consists of several convolutional layers in
a cascade, each followed by pooling layers, before a final classifier model with dense layers
at the end. An example of this structure is shown in Figure 2.7 using VGG16, a model
developed by the Visual Graphics Group at the University of Oxford [Simonyan et al.,
2014], as an example. VGG16 is one of the most established CNNs in classification and
motion-tracking systems, being utilized in several popular ML models.

Figure 2.7: Example of CNN architecture; courtesy of Ferguson et al. [2017]

2.4.2 Single stage detectors vs. Dual Stage Detectors

Typically, object detection models are categorized into two major architectural types:
single-stage detectors (SSD) and dual-stage detectors (DSD). The significant difference
between the two is that the region of interest is first determined in the image in the two-
stage object detection models. The detection is then performed only in the determined
region of interest. The implication is that the extra stage in the DSD generally provides
better accuracy at the cost of more computational power and time. Examples of widely
used SSDs are ”Mobilescan v2” and the ’You Only Look Once (YOLO)”-detectors, while
”Regional Convolutional Neural Network (R-CNN)” and its newer iteration ”Faster R-
CNN” are famous examples of DSDs.

2.5 Path generation for maneuvering

This section presents the relevant theory for guidance when maneuvering an autonomous
vessel. It assumes that the mission is to create a path between two or more waypoints
(WP) p1,p2, . . . ,pn.

13

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.5.1 One-variable path parametrization

A typical way to generate a path is to continuously parameterize around a scalar path
variable s1, which indicates how far along the desired position is. To this end, we define
the desired position and its three derivatives.

pd(s1) :=
[
xd(s1)
yd(s1)

]
, psd(s1) :=

[
xsd(s1)
ysd(s1)

]
, ps

2
1
d (s1) :=

xs2
1
d (s1)
y
s2

1
d (s1)

 , ps
3
1
d (s1) :=

xs3
1
d (s1)
y
s3

1
d (s1)

(2.25)

For a simple straight line between points, the desired position and its derivatives become

pd(s1) = (1 − s1)p1 + s1p2 (2.26)
ps1
d (s1) = p2 − p1 (2.27)

2.5.2 Two-variable path parametrization

In cases where it is desirable to leave a straight line between the path, for example when
encountering an obstacle, a second path parameter s2 ∈ R can be introduced. This gives
a path parameter vector s =

[
s1 s2

]T
. Marley [2021] proposes a two parameter desired

path by using the tangent vector T between waypoints and the normal vector N

pd(s) := p0 + L(s1T + s2N) (2.28)

where L := |p1 − p0|. As long as s2 = 0, this path will correspond too the scalar value
straight line path from Section 2.5.1. In instances were s2 ̸= 0, the variable corresponds
to the desired paths deviation from the nominal straight line path. An illustration of the
parametrization can be found in Figure 2.8. In path following it is also common to set
a speed assignment s = vs which the determines the speed at which a vessel follows the
given path.

p0

p1

pd

LT s1

LNs2

Y

X

Figure 2.8: Construction of the desired position based on two path parameters, adapted
from Moen [2021]

14

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

2.6 Control Barrier Functions

This section will briefly introduce control barrier functions (CBF), a promising new tool
for examining the safety of a control system as outlined by Ames et al. [2019]. The
development of CBFs is motivated by the significant focus placed on safety in modern
control systems. Simply put, they play a similar role to a Lyapunov function, guaranteeing
the safety of a control system where the Lyapunov function guarantees stability [Ames et
al., 2019]. For this, we consider a generic nonlinear control affine system on the form

ẋ = f(x) + g(x)u, x(0) = 0 (2.29)

Here f : Rn → Rn and g : Rm → Rm are locally Lipschitz. x ∈ Rn is the state vector, and
u ∈ Rm is the input vector. Next, we assume that a set C exists that can be considered safe.
The safety can then be guaranteed by restricting our system to the given set C, ensuring
that it never leaves. Accordingly, a barrier function should be defined as a continuously
differentiable function h : Rn → R such that:

C = {x ∈ Rn : h(x) ≥ 0} (2.30)
∂C = {x ∈ Rn : h(x) = 0} (2.31)

Int(C) = {x ∈ Rn : h(x) > 0} (2.32)

where Int(C) is the interior of the set C. The barrier function is kept positive in the
interior of the safe set and thus guaranteeing safety. An example of a CBF application is
Marley, Skjetne, Breivik, et al. [2020], where a CBF is combined with a hybrid feedback
controller for heading control for obstacle avoidance. Later Marley, Skjetne, and Teel
[2021] presented a way of incorporating a CBF into the guidance function of a vessel
motion control system to plan a collision-free path.

15

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW

16

Chapter 3
Experimental Platform: CS Saucer

This chapter will provide a background on the chosen experimental surface vessel, CS
Saucer (CSS), and its operational environment, the Marine Cybernetics lab (MC-lab).
Significant effort has been put into upgrading the hardware and software of CSS as part
of the pre-project [Solheim, 2021] and this thesis. Thus, a section is dedicated to outlining
the upgrades and reasoning for the decisions made in the process.

3.1 Background and motivation

Initially designed by Idland [2015], in collaboration with Ph.D. candidate Andreas Reason
Dahl, the CSS is a highly maneuverable drone with a symmetric, circular hull. It was
designed this way so behavior would be similar in surge and sway, thus yielding quicker
response and maneuverability than a conventional ship model. Modularity was also an
essential consideration in the design process, so the vessel uses interchangeable top modules
that allow for various payload configurations. Sharoni [2016], for example, installed an
inverted pendulum, while Ueland [2016] installed a LiDAR-scanner on a separate cover.
This modularity was the main draw of the Saucer, as it would make integrating a camera
with the already existing lidar relatively easy.

Recently, the other ships of the cyber fleet, namely the CS Enterprise 1 (CSE1) and the
CS Arctic Drillship (CSAD), had their National Instruments (NI) compactRIO embedded
computers wholly replaced. The new state-of-the-art system uses a Raspberry Pi (RPi)
running a Python and Robot Operating System (ROS) based control system. Idland
[2015] initially implemented the control system of the CSS on a NI LabVIEW platform as
well, where the embedded hardware device NI myRIO functioned as the central processing
unit. Ueland [2016] and Sharoni [2016] later replaced this system with a Robot Operat-
ing Software (ROS) based solution, running on an RPi 2 as the embedded computer in
conjunction with an Arduino as part of their master theses. This provided even more
flexibility in development due to the accessibility of ROS-compatible hardware and soft-
ware. Unfortunately, the hardware and software Ueland [2016] developed is now primarily
deprecated, so a second motivation for picking the CSS as the experimental platform was
to upgrade the control system to state-of-the-art.

17

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

Figure 3.1: The CS Saucer with the latest module installed

3.2 Technical specification

As part of the control system upgrade performed in this thesis, several new components
were installed on the vessel. Table 3.1 provides a technical specification of the current
state-of-the-art hardware utilized on the vessel. It also includes software utilized during
operations. Figure 3.2 illustrates the signal and power flow between each hardware com-
ponent. For a more detailed review of the components, the reader is referred to either
Solheim [2021] or Ueland [2016]. Components and software added as part of the control
system upgrade are marked with a star (⋆).

18

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

Technical Specification
Software
Operating System Ubuntu 20.04 LTS (Server version)⋆
ROS distrubution Noetic⋆

Hardware
Component Description
Raspberry Pi 4b⋆ Embedded computer for the vessel. Handles running

ROS-nodes and communication between components
in the system.
Processor: Quad-core Cortex-A72 @ 1.5 GHz.
RAM: 8 GB LPDDR4-3200 SDRAM
Power: 5V via USB-C

Arduino Mega Embedded circuit board responsible for transmitting
appropriate PWM signals to each component.
Communicates with the RPi 4b via USB.
Duty cycle between 4.3 and 9.4 %.

Raspberry Pi HQ camera⋆ Camera module
Resolution: 4056x3040 (12.3 Megapixels)
Framerate: 30 fps (at highest resolution)
Sensor: SONY IMX477
Lens: 6mm wide angle

RPLidar A1 Low cost 360◦ 2D laser scanner with adjustable
rotation speed.
Effective range: 12 m
Sampling rate: 2000 Hz
Angular resolution: 1 deg
Range accuracy: 1% < 3 m, 2% ∈ [3, 5] m, 2.5% > 5 m

Torpedo 800 Motor drive for the three azimuth thrusters. Can spin
the propellers clockwise or counterclockwise.

Graupner Schuttel drive unit II Servo driver to set azimuth angle. Can rotate on the
interval [−114◦, 114◦].

Traxxas LiPo Three cell, 11.1 V lithium polymer battery. Powers
all devices on the vessel. At full charge, either 640 mAh
or 500 mAh, depending on the battery used, it can
power the system for several hours.

Table 3.1: Technical specification for the CSS

A second computer, referred to as the operator computer, is used together with the em-
bedded computer on the CSS. The primary purpose of the computers is to run the compu-
tationally expensive visual detection and fusion nodes. Ideally, the computer should have
a GPU to power the CNN, but since the system is designed with low computational avail-
ability in mind, a powerful CPU suffices. Therefore, for most of this thesis, a Dell laptop
equipped with an 8-core Intel i5 vPro processor was utilized. Like RPi, the computer ran
Ubuntu 20.04 LTS and ROS Noetic.

19

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

Motor and
Servo 1

Motor and
Servo 3

Motor and
Servo 2

Raspberry
Pi 4b

Arduino

11.1V LiPo
Battery

Lidar

HQ Camera

Remote
Computer

Qualisys Motion
Capture

Wi-Fi

Digital

Power

USB

PWM

Figure 3.2: Signal and power flow between system components.

3.3 Software

3.3.1 Robot Operating System

The framework of the vessel’s new control system is entirely based on the Robot Operating
System (ROS). This section will, therefore, provide a brief introduction to ROS and its
basic concepts.

Introduced in 2007, ROS is an open-source project that provides tools, libraries, and
conventions for robot applications. It functions as a meta-operating system (OS) handling
services you would expect from a conventional OS. These include hardware abstraction,
message-passing between processes, and package management.

A ROS process is represented as a node in a graph architecture. Nodes are connected to
edges known as topics, through which they can pass messages to one another. They can
also provide and make service calls to each other and send or retrieve data from a common
parameter server known as the ROS-master. The ROS-master registers all active nodes
to itself and establishes the peer-to-peer communication network of the nodes. Figure 3.3
illustrates the basic communication of a ROS-system.

20

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

Node Node

ROS-master

Topic

Service invocation

Publishing Subscribing

Figure 3.3: Basic ROS concept

This decentralized architecture is the main strength of ROS, as it allows nodes to be
run on separate, networked hardware. As each node process is isolated and messages
passed between standardized, the implementation language of the node is also irrelevant.
Effectively this means that one can run one or more nodes written in C++ in conjunction
with nodes written in, for example, Python. This ties in with the last strength, the
ROS ecosystem. ROS offers many easy and accessible software for robots as an open-
source project, making integrating sensors a simple task. Most hardware comes with ROS
support from the manufacturer or a third-party individual. As mentioned before, the
software language is irrelevant, so one can easily download a C++ ROS driver and run it
with a primarily Python-based system.

3.3.2 ROS architecture

Figure 3.4 illustrates the different node processes and message flow in the proposed ROS
vessel control system. Nodes are depicted as circles, with orange and red being sensor-
related, blue being control system modules, and blue-grey being hardware nodes. Topics
are rectangles connected to nodes. If an arrow points from a node to the topic, the node
is publishing to the relevant topic. Accordingly, arrows pointing to nodes from topics
mean that the node subscribes to the given topic. The gain server is a parameter-server
that receives control- and observer gains from the operator, allowing the user to tune the
system during operation.

21

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

Figure 3.4: ROS-architecture of the CS Saucer.

3.4 The Marine Cybernetics Laboratory

The CSS will be operated inside the Marine Cybernetics Laboratory (MC-Lab), a small
wave basin suitable for testing model scale vessels. The basin has a wave generator and an
advanced instrumentation package, including a Qualisys Motion Capture system. This,
along with relatively small dimensions

Length Width Depth
40 m 6.45 m 1.5 m

Table 3.2: Basin dimensions

make it a particularly suitable environment to test motion control systems for marine
vessels. It is, however, important to note that the entire 40 meters can not be used for
operations. The control system relies on the feedback from Qualisys, meaning it can
only operate when in the range of the cameras. Thus, the actual operation environment
constitutes an area of about 8 × 6 meters in the middle of the basin.

The MC lab is also the home of the ’Cyberfleet,’ a collection of model scale vessels specif-
ically utilized to test control systems. To test the collision avoidance capabilities of the
CSS, these vessels will act as obstacles in the basin during operations. They can either
be maneuvered manually using a joystick controller or fixed in place on the surface using
weights as illustrated in Figure 3.5. For more detailed information about the MC Lab and
its instrumentation, the reader is referred to the laboratories’ home page [NTNU, 2022].

22

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

Figure 3.5: The CSS, CSE1 and CSAD deployed in the MC lab basin

3.5 Vessel model

A mathematical model describing vessel dynamics is desirable in designing a control system
and performing simulations. To this end, we first need to establish some notation and
frames of reference.

3.5.1 Reference frames

This thesis uses two frames of reference when describing the position and orientation of
the CS Saucer. These are the North-East-Down (NED) frame and the BODY frame.

Six distinct degrees of freedom are generally required to describe a floating vessel. These
are usually defined in generalized coordinates

η :=
[
x y z φ θ ψ

]⊤
, (3.1)

where x, y, z (surge, sway, heave) define position, and φ, θ, ψ (roll, pitch, yaw) are
the Euler angles, describing orientation [Fossen, 2021]. However, as most surface vessels
are considered metacentrically stable, the restoring forces in heave, roll, and pitch will
counteract any inclinations away from equilibrium points [Fossen, 2021]. This essentially
means that only the DOFs surge, sway and yaw are required to describe a surface fairing
marine craft. This reduces the position vector to

η =
[
x y ψ

]⊤ (3.2)

The NED-frame is used for the absolute position of the vessel. A GPS, for example,
provides a description of the vessel’s position along the cardinal directions for guidance

23

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

and navigation purposes [Fossen, 2021]. However, the CSS is not equipped with a GPS
but receives absolute positions from the Qualisys Track Management system. Thus, the
reference frame utilized by Qualisys will be referred to as NED for the purposes of this
thesis.

The BODY frame is an inertial reference frame fixed to the rigid body in question, with
axes defined from a Coordinate Origin (CO) of the body, aligning with the principal axes
of motion, as seen in Figure 3.6.

Figure 3.6: Body-fixed coordinate frame; from Fossen [2021]

The BODY-frame is helpful for control as its axis aligns with the principal axis of motion.
This simplifies expressing velocities, accelerations, and forces acting on a vessel. The
6-DOF velocity vector ν, in generalized coordinates are given in the body-frame as

ν :=
[
u v w p q r

]⊤
, (3.3)

where the components describe linear and angular body-frame velocity in the 6 DOFs
[Fossen, 2021]. For a surface vessel, (3.3) can be reduced to

ν =
[
u v r

]⊤
, (3.4)

3.5.2 Model

Starting from the equation of motion for a vessel at sea [Fossen, 2021], one can derive the
necessary equations for the control model

MRBν̇ + CRBν + MAν̇r + CA(νr)νr + D(νr)νr + Dνr + g(η) = τext, (3.5)

where:

• ν =
[
u v r

]⊤ is the body-fixed velocities in surge, sway and yaw.

• νr is the body-fixed velocities relative to local current in surge, sway and yaw

• MRB and MA is the vessel inertia matrix for mass and added mass

24

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

• CRB and CA(νr) is the vessel Coriolis matrix for rigid body and added mass respec-
tively.

• D(νr) is the nonlinear damping matrix

• D is the linear damping matrix

• g(η) is the hydro-static restoring matrix

• τ ext =
[
X Y N

]⊤ is the external forces acting in surge, sway and yaw

A model derivation was conducted by Ueland [2016] for his master thesis, which will be
reused in this project. The following assumptions were made for the model:

1. Zero current in the MC-lab, νr = ν.

2. The CSS is self-stabilizing by hydrostatic forces in heave, roll, and pitch. The rota-
tions are considered small, so movements in surge, sway, and yaw are not affected
by the configuration in pitch and roll.

3. No hydrostatic restoring forces in surge, sway and yaw, g(η) = 0.

4. Constant frequencies, meaning that damping and added mass are also considered
constant.

5. The hull of the CSS is assumed to be completely symmetric.

The resulting control design model is equivalent to the simplified model presented by
Fossen [2021], which is a good representation of a 3DOF marine craft not affected by
environmental forces, that is,

η̇ = R(ψ)ν
Mν̇ + (C + D + D(ν))ν = τ,

where:

• The inertia matrix M

M =

9.51 0 0
0 9.51 0
0 0 0.116

 (3.6)

• The Coriolis matrix C

C =

 0 −9.51r 0
9.51r 0 0

0 0 0

 (3.7)

• The linear damping matrix D

D =

1.96 0 0
0 1.96 0
0 0 0.168

 (3.8)

25

CHAPTER 3. EXPERIMENTAL PLATFORM: CS SAUCER

• The non-linear damping matrix D(ν)

D(ν) =

7.095|u| 0 0
0 7.095|v| 0
0 0 7.095|r|

 (3.9)

• The rotation matrix R(ψ)

R(ψ) =

cos(ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 (3.10)

26

Chapter 4
Problem formulation

The overall goal of this thesis is to develop a complete control system for the CSS. The
system is to integrate a camera and lidar-based situational awareness system with control
barrier functions so that the vessel can perform maneuvering operations with collision
avoidance. The problem can be broken down into several sub-problems that need to be
solved, tested separately, and subsequently integrated. This includes the following sub-
systems; perception-sensors, situational awareness functions, and a motion control system
consisting of a guidance module, state estimator, control system, and thrust allocation.

4.1 Sensors

To enable perception of the vessel’s environment, a suite of sensors must be integrated into
the CSS. This includes a monocular camera, a 2D lidar scanner, and baubles to enable
positional tracking by the Qualisys motion capture system provided in the MC lab. A large
portion of this work was done in the specialization project for this thesis, but as discussed
in Solheim [2021], a more robust mounting of sensors is required for better precision. The
sensor module should provide a steady stream of information through images, point cloud
data, and positional coordinates to the situational awareness module.

4.2 Situational awareness

The situational awareness module takes the input from the vessel’s sensor array, processes
the signals, and creates a representation of the surrounding environment. In this thesis, we
wish to detect and map obstacles in the vicinity of the vessel. To this end, computer vision
methods must be applied. First, an object detector based on a CNN must be incorporated.
This will provide a visual classification of the obstacles in the form of bounding boxes.
Next, the point cloud and range data from the lidar must also be related to the detected
obstacles. This is achieved through a clustering algorithm, which relates points into a
cluster corresponding to the obstacle.

The next step is fusing the measurements from the detector and lidar-clustering algorithms
into a common frame, relating each data to the correct obstacle. The result from the sensor
fusion module will be an obstacle position and the range from the vessel to the obstacle.

27

CHAPTER 4. PROBLEM FORMULATION

4.3 Guidance problem

The guidance system generates the desired path of the vessel and continuously provides the
feedback controller with a reference signal. This signal corresponds to the desired position
and orientation of the vessel and can be expressed ηd = [xd, yd, ψd]⊤. The ultimate goal
of the guidance system is to generate a safe and feasible path for the vessel. This means
it must ensure that the path is collision-free with regard to static and dynamic obstacles.

Collision avoidance is incorporated into the system through the use of CBFs. A CBF
should be formulated so the vessel can maintain a safe distance from any identified obsta-
cles. If the CBF deems the current vessel path unsafe, a collision-avoidance functionality
will step in, generating new safe references.

4.4 Control problem

4.4.1 The maneuvering problem

The control system computes the generalized forces τ d that satisfy the vessel following the
desired path. This type of control problem is generally called a ”Maneuvering Problem”
and was originally formulated by Skjetne [2005].

For a system output η ∈ Rm, the desired path is all points represented by the set

P := {η ∈ Rm : ∃θ ∈ R s.t. η = ηd(s)} (4.1)

where ηd is continuously parameterized by s. Given the desired path (4.1) and a dynamic
assignment, the maneuvering problem can be broken down into two tasks:

1. Geometric Task: For any continous function s(t), force the output η to converge
to the desired path ηd,

lim
t→∞

|η − ηd(s(t))| = 0 (4.2)

2. Dynamic Task, Speed Assignment: Force the path speed ṡ to converge to a
desired speed vs(s, t),

lim
t→∞

|ṡ(t) − vs(s(t), t)| = 0 (4.3)

Here the speed assignment is only one of several viable, dynamic tasks. It is, however, the
most fitting for the operations performed in this thesis.

Guidance
system

Control
law

Thrust
allocation CSS

ηd,νd τd u,α η,ν

Figure 4.1: Block diagram of feedback control system

Figure 4.1 illustrates the intended control-module. Here the desired positions and velocities
ηd,νd are fed from the guidance system to control law. The control law then computes the
desired forces and moments τd, distributed to the vessel actuators via the thrust allocation
module. For nominal control, a cascade backstepping controller shall be utilized.

28

CHAPTER 4. PROBLEM FORMULATION

4.4.2 Stabilizing heading

As the system will rely on a single monocular camera, a stable heading will be critical
for maneuvering operations. Inconveniently, the hull of the CSS is circular, rendering
the damping in yaw close to negligible. Physically, this means that the vessel tends
to oscillate around the desired reference heading. Given that the heading is so critical,
measures to counteract this must be implemented. The maneuvering control system must
consider positional and heading control separately by decoupling yaw control from surge-
sway control. Additional focus will also be placed on the thrust allocation to stabilize the
heading. Here a strict allocation algorithm that prioritizes heading is required.

4.5 Limitations and assumptions

The scope of this thesis is quite large, so to make sure enough time is available to provide
an adequate solution to the problem, some assumptions are made:

• Obstacles are assumed somewhat stationary. This means that when an obstacle is
detected, it is reasonable to assume that it will stay in that position for the entire
operation, with some drift.

• Obstacles will be limited to the class of ’boat,’ i.e., the different cyber ship vessels
available in the MC-lab.

• Operations will be performed in a calm sea state, i.e., one can safely assume no
environmental forces such as current, waves, or wind.

29

CHAPTER 4. PROBLEM FORMULATION

30

Chapter 5
Situational awareness

This chapter presents the procedures of the Situational Awareness (SA) system imple-
mented for the CSS. The groundwork for deriving transformations and calibration proce-
dures was done as part of the pre-project study and is repurposed for this thesis. Addi-
tionally, the chapter presents the implementation of a CNN, clustering algorithms, and
sensor-fusion processes for the system. Figure 5.1 presents an initial block-diagram for the
proposed SA-system.

Camera

Lidar

Perception sensors

CNN
(MobilenetSSD)

Clustering
(DBSCAN)

Object Detection

Sensor Fusion
& Tracking

Guidance
system

Image stream

Point cloud

Bounding box

Ranges

pO

Figure 5.1: Block diagram of SA system

5.1 Sensor integration

A new top module was issued for the CSS as part of this thesis. On top of it, the
two sensors were integrated along with tracking markers for the Qualisys motion capture
system present in the MC-lab. The Qualisys system will act as a GPS for the vessel,
providing the control system with measurements of the vessel’s position and orientation.
The markers are mounted on slender rods of varying heights along the circumference of the
module. Then, the lidar is mounted in the center, directly above the CO of the CSS. The
sensor is oriented so the xl and yl axis of the lidar align with the surge and sway directions,
respectively. While the lidar provides a 360-degree scan, the interval of [−90◦, 90◦] is most
interesting. Thus markers are mounted to cause as little interference as possible and still
provide an accurate estimation of the vessel states. The same constraints apply to the
placement of the camera. It requires an unobstructed view but can not interfere with the
lidar in the critical area. Therefore it is mounted on a slender rod right behind the lidar
with enough clearance to the lidar that it sees the environment clearly. The camera is
tightly connected to the vessel heading, always pointing in the direction that is considered

31

CHAPTER 5. SITUATIONAL AWARENESS

forward. Accordingly, it is mounted so that the zc- and xc-axis align with the surge and
sway directions of the CSS.

Y

X

Qualisys

yl

xl

cLiDAR

xc

zc

Cam
X

Z

xl

zc

yc

Figure 5.2: Sensor integration for the CS Saucer

The open-source computer vision library OpenCV is utilized to establish an image stream
between the camera and the object detection module. It provides a generic ROS camera
driver that can be utilized with all Video4Linux (V4L2) compatible cameras and publishes
the image stream to the ROS-topic /cv camera/image raw. In addition, Slamtec, the
manufacturer of the RPLidar, provides a ROS driver for their hardware. The driver
publishes the measured ranges to the topic /scan.

5.2 Calibration

The first step in fusing measurements from the perception sensors is obtaining precise
knowledge of the relative pose between each sensor. This is an extrinsic calibration problem
with the goal of achieving a relative transformation between two coordinate frames C and
L. Then, when a common frame of reference is achieved, one can associate the data from
each sensor for whatever application one wishes.

5.2.1 Camera calibration

For the camera to associate real-world points with pixel values in an image, we must
establish the intrinsic calibration and distortion parameters outlined in Section 2.3. Zhang
[2000] proposes a method for intrinsic camera calibration by using a checkerboard pattern.
In short, the method requires the camera to observe a checkerboard pattern shown at
several different orientations. The camera or the pattern can be freely moved, and the
motion need not be known. Then the intrinsic camera parameters and radial lens distortion
are modeled using a procedure consisting of a closed-form solution, followed by a nonlinear
refinement based on the maximum likelihood criterion.

OpenCV provides a ROS-compatible implementation of the procedure utilized in this
thesis. Executing the calibration is straightforward. The calibration node subscribes to
the ROS topic /cv camera/image raw and needs to be provided with some information
regarding the checkerboard. The required input includes the number of inner corners in
the pattern and the length of each square in millimeters. The board used in this thesis

32

CHAPTER 5. SITUATIONAL AWARENESS

was 9x7 squares, meaning 8x6 inner corners, each with a length of 40 mm. After the
node launches, the checkerboard is moved around in the camera frame until the program
is provided with enough samples. Then the calibration routine is run by pressing the
calibrate button. This yielded the following intrinsic parameters for the camera:

K =

αx 0 x0
0 αy y0
0 0 1

 =

580.01081311 0.00000000 285.24692299
0.00000000 578.3171528 230.85573207
0.00000000 0.00000000 1.00000000

 (5.1)

and the distortion parameters:

[
k1 k2 p1 p2

]
=

[
−0.46695407 0.18277399 −0.00357946 0.01039586

]
(5.2)

Figure 5.3: Camera calibration process

These parameters are saved to the workspace and reused every time the camera driver is
launched. If changes are made to the resolution, focus, or camera calibration, it is good
practice to re-calibrate the camera.

5.2.2 Lidar-Camera Calibration

The next step is to determine the relative pose between the camera and the lidar. In
essence, this means associating the pixels in an image with laser points in the plane.
Thus we must determine a transformation from the lidar coordinate system to the camera
coordinate system. Figure 5.2 displays the configuration of the sensors and their respective
coordinate systems. Any transformation between two euclidean coordinate frames can
be expressed via a rotation and a translation. Thus, six extrinsic parameters must be
established as part of the camera-lidar calibration.

33

CHAPTER 5. SITUATIONAL AWARENESS

Software for calibrating the camera and lidar is available on Github[ehong-tl, 2019]. Some
updates were made to it, as parts of the code were deprecated and incompatible with
the Noetic distribution of ROS. The main portion of the code and the methods utilized
for calibrating is, however, the same. The software solves a Perspective-n-Point (PnP)
problem [Gao et al., 2003]. The rigid body transformation is computed by a set of object
points, along with their corresponding projection in an image and the camera’s intrinsic
parameters and distortion coefficient. For this case, the object points will be the 2D lidar
scan. In essence, the full camera model (2.22) is utilized to estimate the transformation.
However, we substitute for lidar points instead of real-world coordinates.

The challenge with this method is knowing exactly where each point in the lidar scan lies
in the image and real world. Especially when the scan is only 2D, spatial height is hard
to determine. A solution is to use easily identifiable objects in the environment to make
the task easier. One such example is a corner. Their geometry is easily distinguishable
in an image and a laser point cloud. Figure 5.4 illustrates a part of the MC-lab used for
calibration. It had three corners that could easily be related to the image, scan, and real
world. To determine where lidar points were located along the z-axis, the height from the
floor up to the lidar was measured. This method is, of course, not perfect, as the lidar will
not necessarily be ideally oriented. Nevertheless, the procedure provided a satisfactory
result when given enough data.

Figure 5.4: Camera view along with 2D point cloud from lidar, displayed in RViz

After the height was measured, the location of the scan was marked with tape in each
corner, and then data was collected using the 2D Nav goal tool on a laser point in RViz.
This prompts a new window to appear with the undistorted image from the camera.
The user can then place the laser point in the image as illustrated in Figure 5.5. This
would relate to the tape in the image. In total, this should be repeated until the result is
satisfactory. The software provides a method for projecting the scan points onto the video
stream in real-time, which can be used immediately to check the calibration. The method
must be provided with a minimum of 4 data points to function.

The resulting rotation and translation between the camera and lidar were found to be.

34

CHAPTER 5. SITUATIONAL AWARENESS

Figure 5.5: Picking laser coordinate in image pixels

Rc
l =

 0.01926926 −0.99888518 0.04309405
0.05734153 0.04413521 0.99737858

−0.99816865 −0.01674766 0.05812806

 (5.3)

tcl =
[
0.019954 0.035992 0.053483

]⊤
(5.4)

To verify the calibration, the placement of the lidar and camera was measured by hand.
The difference in calibration and hand measurements was then found to be less than a
centimeter in each translation. Of course, the hand measurements can not be considered
ground truth but are a good indicator that the calibration is within reason.

5.3 Transformation to NED-frame

With a relative transformation between the camera and lidar established, the next step
is to establish a transformation to the coordinate frame of the MC-Lab. This reference
frame will be referred to as the basin frame. To achieve this, we must first transform the
measurements into the vessel’s local frame of reference, BODY. To simplify this transfor-
mation, the camera was mounted so that certain axes aligned with the body frame’s axes.
This would be zc and xb, xc and yb, and finally yc and zb, as illustrated in Figure 5.2. The
rotation mapping between camera and BODY is then

Rb
c =

0 0 1
1 0 0
0 1 0

 . (5.5)

The translation can be measured by hand and expressed as the distance from the vessel
CO to the sensor. In the last calibration performed this was:

tbc =
[
tx ty tz

]⊤
=

[
0.06 0.005 −0.075

]
(5.6)

35

CHAPTER 5. SITUATIONAL AWARENESS

The corresponding transformation matrix becomes:

Tc
b =

[
Rc
b tcb

01×3 1

]
. (5.7)

The final step is the transformation from BODY to NED. There are no external forces
in the operating environment of the MC-lab, so we can safely assume that rotations are
considered small for the Saucer, such that movements in surge, sway, and yaw are not
affected by the configuration in pitch and roll. Then the rotation between NED and body
becomes

Rn
b (ψ) =

cos(ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 , (5.8)

where ψ is vessel heading. The qualisys system is calibrated so that the measurement
corresponds to the vessel CO. This means we can say that the translation from BODY to
NED is tnb = [x̂, ŷ, 0]⊤, where x̂ and ŷ are the estimated positions of the vessel in North
and East. During testing, the z-plane in the qualisys system was defined above the water
plane. Technically, setting the translation in z to 0 is wrong, but considering only the
xy plane is of interest, it has no consequence on the result and can be safely disregarded.
Thus the transformation becomes:

Tn
b =

[
Rn
b tnb

01×3 1

]
. (5.9)

Finally, we can compound the transformation matrices derived for the transformations
from lidar to NED-frame and camera to NED frame, respectively

Tn
l = Tb

nTc
bTl

c, (5.10)

Tn
b = Tb

nTc
b. (5.11)

5.4 Visual detection

The framework for detecting obstacles in images utilized in this thesis is based on the
SSD Mobilescan V2 CNN. The decision to use a single shot detector was made due to the
limitations on computational power. While the RPi 4b contains a decently powerful CPU
for its size, it would not be able to handle real-time object detection at sufficient frames
per second while simultaneously running the remaining nodes of the maneuvering control
system. Additionally, none of the available remote operator computers had access to GPU
computation and relied solely on the power of CPUs. Choosing a more computationally
expensive network was therefore not an option. On the other hand, SSD Mobilescan V2 is
known for its lean network and novel depthwise separable convolutions, making it a suitable
network to deploy on low-competition devices such as an RPi, or a CPU-reliant laptop.
Another reason for picking the Mobilescan is the availability of pre-trained networks and
ready ROS-compatible implementations using Python or C++.

36

CHAPTER 5. SITUATIONAL AWARENESS

5.4.1 Implementation and training

The model used in this thesis is an open-source implementation available on Github [Zitze-
witz, 2018] and is trained on the Common Objects in Context (COCO) dataset. This is
large-scale object detection, segmentation, and captioning dataset widely used for training
CNNs. It contains over 90 different classes, including marine objects such as boats. As
mentioned, the COCO dataset contains 90 different classes, some of which will be irrel-
evant to marine operations. Ideally, such classes should be removed from the model to
avoid false detections, but that would require training a model entirely from scratch. This
was not a priority, as it would be too time-consuming and outside the scope of this thesis.
Access to GPU computation was also limited, and one could filter out all detections of
unwanted classes in the sensor fusion module.

Figure 5.6: Visual detection of the CS Enterprise in the MC Lab

For this thesis, the camera recorded image at a resolution of 640 × 480 pixels at a frame
rate of 30 frames-per-second (fps).

5.5 Lidar segmentation

The lidar used in this thesis can generate a point cloud with hundreds of points per scan.
In this cloud, an obstacle can be the source of multiple points, as illustrated by Figure 5.7.
This shows a laser scan of the MC Lab basin from the lidar reference frame. Three
prominent clusters are visible, the walls of the basin on the sides and one in the middle
corresponding to the CS Enterprise 1. As we wish to track only one measurement per
obstacle, clustering techniques are performed on the point cloud data. This provides the
SA-system with at most one range measurement per detected object.

37

CHAPTER 5. SITUATIONAL AWARENESS

−4 −2 0 2 4
−6

−4

−2

0

2

4

6

Figure 5.7: Laser scan sample of the MC lab basin

5.5.1 K-Means

To identify clusters, the K-Means algorithm will be utilized. K-Means is one of the most
renowned clustering algorithms. Its simple and efficient nature makes it easy to adapt for
different purposes. Originally, the principle was published by Steinhaus et al. [1956], but
refined into an algorithm by Forgy [1965] and Lloyd [1982] independently of each other.
Thus, it is also known under the moniker of ’Lloyd-Fordy Algorithm.’

The algorithm is considered a partitional clustering algorithm because it uses a predefined
number of clusters to either maximize or minimize a predefined numerical criterion [Everitt
et al., 2011]. The algorithm outputs a centroid for each cluster, which corresponds to the
arithmetic mean point of a cluster. This is what gives the means part of the algorithm
name. The k part of the name refers to the predefined number of clusters given to the
algorithm. The algorithm steps are described below.

Algorithm 1 K-Means clustering algorithm, adapted from Singh et al. [2013]
1: Assign number of clusters k. In this thesis, this is determined by the number of

detections in the camera field of view.
2: Choose intial centroids vk. Either assigned randomly, given as an input or assigned

by some other means.
3: Compute the distance between each data point and cluster centers using the Euclidean

distance metric as follows

dk =

√√√√ m∑
K=1

(xk + yk)2 (5.12)

4: Assign data point to cluster center according with the minimum distance to point
5: Compute new cluster centroids by using the arithmic mean

vi = (1
Ci

)
Cl∑
1
xi (5.13)

where Ci denotes the the number of data point in each cluster.
6: Recompute the distance between each data point and cluster centroid
7: If no new data point is assigned to a cluster then stop, else repeat steps 4 to 6.

38

CHAPTER 5. SITUATIONAL AWARENESS

K-Means

Figure 5.8: K-means principle

5.6 Sensor fusion

The approach to sensor fusion is adapted from Kim [2018], whom provides an open source
solution to real-time human detection using a monocular camera and a 2D lidar. The code
provided by Kim [2018] serves as the base for the fusion module, but is adapted to the
needs of this thesis. The core approach remains much the same, but the code has been
significantly updated to suit the needs of this thesis. A flowchart over the sensor fusion
approach is presented in Figure 5.9

39

CHAPTER 5. SITUATIONAL AWARENESS

Camera Lidar

Preprocessing

Rectification

SSD Mobilescan

Convert to C

Project points

Associate points

K-MEANS

Compute
obstacle pose

State
Estimator

Transformation
to NED frame

Guidance
system

Image Raw 2D point cloud

Rectified image

Detections

Lidar points in
pixel coordinates

Valid points

lc,i, θc,i, xc,i, yc,i

pO ∈ C
ψ

pO ∈ NE

Figure 5.9: Situational awareness framework

The fusion module starts with a processing pipeline for each sensor. The image is first
processed and rectified to remove distortions from the camera lens before the image is
passed through the object classifier. Here all object detections are sorted and discarded
if not labeled with the class ’boat.’ Then, the bounding box coordinates of the detected
obstacles are passed to merge with the lidar measurements.

Meanwhile, the lidar’s processing pipeline converts the range scans to point-cloud coor-
dinates. Then, the point cloud is converted to the camera frame of reference using the
transformations derived in Section 5.2.2. The points within the camera’s field of view are
identified and projected onto the rectified image by solving the same PnP problem as in
the calibration for the lidar points. The pixel coordinates of the lidar measurements are
then associated with any object detection. If the pixel coordinate lies within the area
surrounded by a bounding box, the corresponding real-world point cloud measurement in
L is added to a list of valid points. This list is then passed on to the K-means algorithm.

The K-means clustering algorithm sorts the valid points into clusters and identifies the
centroid of each cluster. The number of clusters will correspond to the number of detections
in each frame. Next, the distance to the centroid is computed along with the relative angle
between the vessel and the obstacle. Remembering that the distance and angle are still

40

CHAPTER 5. SITUATIONAL AWARENESS

in the lidar frame of reference, one can use (2.5) to find the obstacle pose. This is then
transformed to the NED-frame via the transformations derived in 5.3. Finally, the obstacle
poses are fed to the guidance module. Figure 5.10 displays what a successful detection
looks like after fusing measurements.

Figure 5.10: Object detection after fusing image and lidar measurements, using Cybership
II as the target.

41

CHAPTER 5. SITUATIONAL AWARENESS

42

Chapter 6
State estimation

This chapter presents the vessel state estimator, or observer, implemented for the CSS. The
observer’s primary function is to reconstruct the vessel states from partial measurements.
In this thesis, only positional measurements η are available from the MC-lab Qualisys
Motion Capture system. However, the controller used in this thesis requires the vessel’s
velocity states and an unknown bias term to compensate for the unmodeled dynamics
present in the system. A second function of the observer is also to filter out any noise in
the measurements. To this end, a simple ’DP observer’ is implemented.

6.1 Observer design

The observer is a version of the nonlinear passive observer proposed by Fossen [2021]. In
addition, Værnø et al. [2017] outlines the design and proof for a variant that relies solely
on positional measurements.

First, model the low-speed dynamics of the CS Saucer:

η̇ = R(ψ)ν (6.1a)
Mν̇ = −Dν + R(ψ)⊤b + τ (6.1b)

ḃ = 0 (6.1c)
y = η̇ (6.1d)

Here, η and ν are generalized vectors for position and velocity used to describe the vessel’s
motion in three degrees of freedom. τ represents the generalized forces and moments
generated by the actuators, and the bias b accounts for immeasurable dynamics and
uncertainties. η and b are given in the NED reference frame, while ν and τ are given in
the localized body frame.

Next, the estimation errors are defined as η̄ := η− η̂, ν̄ := ν − ν̂ and b̄ := b− b̂. These are
inserted these (6.1a) together with the injection gains Li, i ∈ {1, 2, 3}. This gives dynamics
for the observer algorithm

43

CHAPTER 6. STATE ESTIMATION

˙̂η = R(ψ)ν̂ + L1η̄ (6.2)
M ˙̂ν = −Dν̂ + R(ψ)⊤b̂ + R(ψ)⊤L2η̄ + τ (6.3)

˙̂b = L3η̄ (6.4)

Here the injection gains L1, L2, and L3 are diagonal positive definite matrices. The gains
were tuned using a simulator, and later in physical experiments in the MC-lab. Through
this process, the following observer gains are determined:

L1 =

10 0 0
0 10 0
0 0 1

 L2 =

6 0 0
0 6 0
0 0 0.5

 L3 =

0.2 0 0
0 0.2 0
0 0 0.15

 (6.5)

44

Chapter 7
Guidance system

This chapter presents the proposed guidance system that aims to solve guidance problem
from Section 4.3.

7.1 Path paramtrization

This thesis implements a guidance system based on a parametrization using two path
parameters. It follows the design of Marley [2021] and Skjetne [2021] as well as the
implementations of Åsheim [2021] and Moen [2021]. As a baseline, the function is provided
two waypoints, an initial point p0 and a terminal point p1, by a supervisory module.
Next the two path parameters s1 ∈ [0, 1] and s2 are used to continuously parameterize the
desired path

pd(s) := p0 + L (s1T + s2N) , (7.1)

where L = |p1 − p0| is the distance between the waypoints, T is the unit tangent vector
along a straight line between the points and N is the normal unit vector defined as

T := p1 − p0
|p1 − p0|

, N :=
[
0 −1
1 0

]
p1 − p0
|p1 − p0|

, (7.2)

respectively. In this parametrization, s1 determines the position along a straight-line path,
while s2 determines the deviation from the nominal path in the normal direction of the
straight line.

The control law used in this thesis requires the derivatives of the path as well, so we
differentiate (7.1) with respect to s, giving

ps
d = L

[
T N

]
. (7.3)

The second derivative is simply ps2
d = 02x2

45

CHAPTER 7. GUIDANCE SYSTEM

7.2 Speed assignment

To solve the dynamic task of the maneuvering problem, we define the speed assignments
for each of our path variables. For the nominal straight-line path, s1, we let the desired
speed along the path ud : R≥ × R → R be given as an input from the operator. Then the
speed assignment is given by

vs(t, s1, s2) = ud(t)
|ps1
d (s1)| (7.4)

We also define a unit-tangent gradient update law for the path speed, only acting in
positional space. We choose:

w = − µ

|ps1
d (s1)| + ϵ

ρ1(p, s1) (7.5)

where ρ1(p, s1) = −ps1
d

⊤(p− pd), ϵ is a small number to avoid division by zero and µ is a
gain set by the operator. This gives the path speed of

ṡ1 = ud(t)
|ps1
d (s1)| − µ

|ps1
d (s1)| + ϵ

ρ1(p, s1) (7.6)

.

For the second path variable, we choose

ṡ2 = k tanh s2
λṡ2

(7.7)

This ensures that ṡ2 = 0 when s2 = 0, and that the path speed converges on zero again
after collision avoidance. k and λṡ2 are gains that determine the rate at which ṡ decreases
and the slope of s2, respectfully.

7.3 Control Barrier Function

A CBF is implemented to check if the assigned path derivatives ṡ are safe. If the function
determines that the path is not safe, ṡ is updated, so safety is achieved. Let the CBF be
defined as

B(s) := |pd(s) − po| − ro, (7.8)

with the derivative

Ḃ(s) = (pd(s) − po)⊤

|pd(s) − po|
psd(s)ṡ. (7.9)

Here po is the position of the obstacle in NED, and ro the radius of an obstacle region
that encapsulates the unsafe domain. When the vessel is outside of the obstacle region,

46

CHAPTER 7. GUIDANCE SYSTEM

B is positive. If the vessel enters the region, B will become negative. To guarantee safe
parameters,

Ḃ(s) ≥ −α(B(s)) (7.10)

must be ensured. Here, α is an extended class-κ function chosen to be the same as in
Marley [2021]

α(B(s)) = 1
Tb
B(s), (7.11)

with Tb > 0 being a time constant unique to the vessel properties. The constraint decreases
B when the vessel is far away from an obstacle region while forcing the derivative Ḃ(s) to
be non-negative when the vessel is close to the obstacle region.

If the CBF deems the current ṡ unsafe, a new pair of derivatives is found by minimizing
the deviation from the desired safe path derivatives. This is an optimization problem and
can be expressed as a quadratic programming (QP) problem. To this end, the objective
vector x := ṡs − ṡd is defined as the deviation between safe and desired path derivatives.
This gives the QP problem

min
x

1
2x⊤Qx (7.12)

s.t Ax ≤ b. (7.13)

The constraint for the QP was previously expressed in (7.10). A and b are found by
substituting (7.9) and (7.11) into (7.10).

−(pd(s) − po)⊤

|pd(s) − po|
psd(s)ṡ ≤ 1

Tb
B(s) (7.14)

−(pd(s) − po)⊤

|pd(s) − po|
psd(s) (ṡs − ṡd) ≤ 1

Tb
B(s) + (pd(s) − po)⊤

|pd(s) − po|
psd(s)ṡd (7.15)

, (7.16)

gives,

A = −(pd(s) − po)⊤

|pd(s) − po|
psd(s), b = 1

Tb
B(s) + (pd(s) − po)⊤

|pd(s) − po|
psd(s)ṡd. (7.17)

The safe path can then be computed as

ṡs = x + ṡd. (7.18)

This guarantees that s2 is activated when collision avoidance with obstacles is necessary.

47

CHAPTER 7. GUIDANCE SYSTEM

7.4 Heading reference

As the desired heading is decoupled from positional guidance in this system, the references
can be assigned arbitrarily according to operational needs. In this thesis, it is set to be
tangential to the path and can be expressed as the sum of two terms

ψd = ψT + σψψN (7.19)

where ψT is the heading tangential to the straight-line path, ψN is a heading correction
corresponding to the change of heading due to deviation from the straight line, and σψ :
R≥0 → {0, 1} is an activation function. σψ is active until the vessel gets close to the
terminal waypoint p2, where it is deactivated, causing the heading to only be tangential
to the straight line. The threshold is set according to

σψ =
{

1, if s1 ≤ 0.95
0, if s1 > 0.95

(7.20)

The heading terms are computed as:

ψT = atan2
(
ys1
d , x

s1
d

)
, (7.21)

ψN = atan2
(
ṡ2
T , ṡ1

)
. (7.22)

7.5 Mission management

Due to the size of the operational space in the MC Lab, this thesis will predominately
operate with two waypoints. The initial waypoint will be considered as the vessel’s position
when the guidance module is activated. The decide the terminal waypoint, the operator
specifies the desired length of the straight-line path. The mission management function
in the guidance module then proceeds to compute the terminal waypoint’s location based
on the given length and the vessel’s current heading. The final waypoint position can
therefore be expressed

p1 =
[
lp cos(ψ) lp sinψ + p0

]⊤
(7.23)

where lp is the given path length, p0 is the initial waypoint, and the ψ is the vessel heading
at the activation time.

48

Chapter 8
Control System

This chapter outlines the proposed control design for solving the maneuvering control
problem presented

in Section 4.4. In the pre-project [Solheim, 2021] for this thesis, a nominal control design
was implemented using cascade backstepping and a one-dimensional path variable. For this
thesis the backstepping controller has been expanded to incorporate the two dimensional
path variable s = [s1, s2]⊤ presented in Chapter 7. A strict thrust allocation scheme is
also presented as a solution to the instability in heading.

8.1 Cascade backstepping

As described, the nominal control mode is handled using a cascade backstepping design.
This controller takes the state estimations η̂, ν̂ and b̂ provided by the observer, along with
the a desired reference signals ηd and its relevant derivatives. The design follows that of
Skjetne [2021] and the implementations of Moen [2021] and Åsheim [2021]. It divides the
design into two subsystems: η → ηd and ν → α. This corresponds to two design steps:
a kinematic step and a kinetic. In this case, it is most convenient to complete the second
step first [Skjetne, 2021].

8.1.1 Step 2: Kinetic design

Suppose α ∈ R3 is a virtual control for the kinematic states, where α̇ is an available signal.
We define the error state

z2 = ν − α. (8.1)

The objective is then to control (8.1) exponentially to zero. We differentiate (8.1) and
substitute the low-speed vessel model of the vessel presented in Section 3.5. This yields

49

CHAPTER 8. CONTROL SYSTEM

Mż2 = Mż2 − Mα̇ (8.2)
= −Dν + τ + R(ψ)⊤ − Mα̇. (8.3)

Let the CLF candidate be:

V2 = 1
2z⊤

2 Mz2, (8.4)

with the derivative

V̇2 = 1
2z⊤

2 Mż2 (8.5)

= 1
2z⊤

2 (−Dν + τ + R(ψ)⊤ − Mα̇). (8.6)

Choosing the control law

τ = −K2z2 + Dν + R(ψ)⊤b̂ + Mα̇, K2 = K⊤
2 > 0 (8.7)

yields

V̇2 = 1
2z⊤

2 (D + K2)ż2 ≤ 0 (8.8)

and

Mż2 = −Dz2 − K2z2. (8.9)

Here, K2 ∈ R3 is the control gain. This renders the equilibrium z2 = 0 for the subsystem
ż2 uniformly globally exponentially stable (UGES).

8.1.2 Step 1: Kinematic design

The task is now to design the virtual control α such that the maneuvering objective is
solved for the kinematic subsystem. To this end, we decouple surge-sway from yaw, letting

ν =
[
v
r

]
∈ R2 × R, α =

[
αv
αr

]
∈ R2 × R, z2 =

[
z2,v
z2,r

]
=

[
v − αv
r − αr

]
∈ R2 × R (8.10)

be the velocity, virtual control law and error state of the kinetic subsystem, respectively.
For the kinematic step, we solve the position subsystem as maneuvering problem and the
heading as a tracking problem. We define the error states for position and heading:

50

CHAPTER 8. CONTROL SYSTEM

z1,p := R2(ψ)⊤[p − pd] (8.11)
z1,ψ := [ψ − ψd] (8.12)

Starting with the position system, the error state is differentiated:

ż1,p = Ṙ2(ψ)⊤[p − pd] + R2(ψ)⊤[R2(ψ)v − ps1
d ṡ1 − ps2

d ṡ2] (8.13)
= −rS2z1,p + z2,v + αp − R2(ψ)⊤ps1

d (w1 + vs1) − R2(ψ)⊤ps2
d (w2 + vs2), (8.14)

where

S2 =
[
0 −1
1 0

]
. (8.15)

The CLF candidate for position is defined as

V1,p := 1
2z⊤

1,pz1,p (8.16)

with the derivative

V̇1,p = 1
2z⊤

1,pż1,p (8.17)

= z⊤
1,p

[
−rS2z1,p + z2,p + αv − R2(ψ)⊤ (

ps1
d (w1 + vs1) + ps2

d (w2 + vs2)
)]

(8.18)

Choosing the virtual control

αv = −K1,pz1,p + R2(ψ)⊤ps1
d (w1 + vs1) − R2(ψ)⊤ps2

d (w2 + vs2), (8.19)

yields

V̇1,p = −z⊤
1,pK1,pz1,p + z⊤

1,pz2,p (8.20)

where K1,p ∈ R2 is the control gain for position, and is chosen such that K1,p = K⊤
1,p > 0.

Next, we consider the heading control. By assuming that derivative of the desired heading

ψ̇d is a continuously available signal; the control problem is solved with a tracking design.
First, the heading error state is differentiated, giving

ż1,ψ = ψ̇ − ψ̇d (8.21)
= z2,ψ + αψ − ψ̇d. (8.22)

51

CHAPTER 8. CONTROL SYSTEM

Let the CLF candidate be

V1,ψ = 1
2z

2
1,ψ, (8.23)

with the derivative
V̇1,ψ = z1,ψ

[
z2,ψ + αψ − ψ̇d

]
. (8.24)

Then, the virtual control

αψ = −k1,ψz
2
1,ψ − ψ̇d (8.25)

renders

V̇1,ψ = −k1,ψz
2
1,ψ + z1,ψz2,ψ. (8.26)

Here k1,ψ > 0 is the heading gain. This parameter is tuned along with the K1,p and K2
such that the system behavior performs adequately. The ultimate control gains for the
tuned system are as follows:

k1,ψ = 10, K1,p =
[
0.1 0
0 0.1

]
K2 =

0.12 0 0
0 0.12 0
0 0 0.33

 (8.27)

These were determined by tuning the system in simulations and later in the MC Lab.

8.2 Force limitations

As stability is such an important factor, a safety measure is implemented as a force satu-
ration to avoid violent control inputs. Ueland [2016] proposed the following logic to ensure
that the forces acting on the vessel are evenly saturated, and the saturation does not alter
the orientation of the applied force vector:

Fmax = 1 N, Tmax = 0.3 Nm, ck = Fmax√
X2 + Y 2

(8.28)

Xsat =
{
ckX, if ck < 1
X, if ck ≥ 1

, Ysat =
{
ckY, if ck < 1
Y, if ck ≥ 1

, (8.29)

Nmax =
{

sign(N)Tmax, if |N | ≥ Tmax

N, if |N | < Tmax
(8.30)

where X,Y,N are the forces and moment in surge, sway, and yaw, respectively.

52

CHAPTER 8. CONTROL SYSTEM

8.3 Thrust allocation

The CSS is equipped with three azimuth thrusters, distributed symmetrically in a circle
with 120◦ spacing and a radius of r = 0.138 m to the vessel CO. The freely rotating
azimuth thrusters can produce forces in any direction, making the vessel over-actuated.
In previous experimental setups, the CSS has been utilized in a fixed thruster configuration
Ueland [2016]. This thesis implements two allocation schemes, one fixed angle setup and
another heading priority allocation scheme to combat the instability in heading.

A thrust allocation problem can be solved by examining the relationship between the
generalized forces in BODY-frame an the actuator inputs, that is,

τ = B(α)u, (8.31)

where τ is the thrust load vector, u ∈ R3 is the control input, α ∈ R3 is the azimuth
angle and B(α) is the thruster configuration matrix describing the layout of the actuators.
Each thruster’s location can be expressed through a lever arm li, a vector describing the
thruster’s position relative to the ship’s CO in polar coordinates. For the CSS, the lever
arms are

li =
[
li,x
li,y

]
=

[
r cosβi
r sin βi

]
, i = 1, 2, 3 (8.32)

were β = [0, 2π
3 ,

4π
3]⊤ corresponds to the angular reference points of the given thrusters.

The force produced by each thruster, ui, can similarly be decomposed into x and y direc-
tions and expressed by

ui =
[
ui,x
ui,y

]
=

[
ui cosαi
ui sinαi.

]
(8.33)

Then, knowing that the corresponding thrust load for each thruster is expressed by Fossen,
2021

τi =
[

ui
li × ui

]
=

 ui,x
ui,y

li,xui,y − li,yui,x

 , (8.34)

and using the trigonometric relation of:

sin (α+ β) = sinα cosβ + cosα sin β (8.35)

the generalized thruster configuration matrix for the CSS becomes

B(α) =

 cosα1 cosα2 cosα3
sinα1 sinα2 sinα3

r sinα1 r sin
(
α2 + 2π

3

)
r sin

(
α3 + 4π

3

)
 (8.36)

53

CHAPTER 8. CONTROL SYSTEM

Y

X

r

u1

u2 u3

Figure 8.1: Fixed thruster configuration on the CS Saucer.

8.3.1 Fixed thruster allocation

Multiple fixed thruster configurations were tested as part of this thesis to find a configura-
tion that provided a good force distribution while keeping the heading of the vessel stable.
In the pre-project [Solheim, 2021], the same layout proposed by Ueland [2016] was utilized
with the azimuth angles αfix = [90◦,−30◦, 150◦]⊤. For this thesis, the third thruster was
rotated 180 degrees such that the azimuth angles become αfix = [90◦,−30◦, 30◦]⊤. This
orientation makes the ’forward’ direction more defined, which is important for the maneu-
vering objectives of this thesis. The configuration is illustrated in Section 8.3. Accordingly,
the thruster configuration matrix is simplified to

B(αfix) =

0
√

3
2

√
3

2
1 −1

2
1
2

r r −r

 (8.37)

The desired forces on each thruster can now be determined by solving (8.31) with respect
u, yielding

u = B†(αfix)τ (8.38)

where B†(αfix) is the Moore-Penrose psuedoinverse of the thruster configuration matrix.

8.3.2 Thruster configurations

Throughout this thesis, several thruster configuration setups were utilized. These are
outlined in Table 8.1 and can be viable for different operations. The main objective
was to find a configuration that yielded a stable heading, so when tuning the controller
and testing the configurations, the vessel was made to maneuver in an ellipsoid path.
This type of path generation was developed as part of the pre-project Solheim, 2021 and
chosen as a suitable test due to the way the heading is assigned. Similar to the straight-

54

CHAPTER 8. CONTROL SYSTEM

line maneuvering developed for this thesis, the desired heading is set to be tangent to the
path. The reference value is constantly changing for a circular path, making it an ideal
challenge for the control system.

Thruster configurations
α1 [deg] α2 [deg] α3[deg]

Configuration 1 90 -30 30
Configuration 2 90 -30 -150
Configuration 90 0 0

Table 8.1: Thruster configuration

55

CHAPTER 8. CONTROL SYSTEM

56

Chapter 9
Results and Discussion

9.1 Testing scenarios

The physical experiments of this thesis were split into two portions. The first consisted of
testing only the SA system to determine its accuracy and robustness. Then, after the SA
system was validated, the complete control system was tested in several collision avoidance
scenarios in the basin. This section will describe the details of each experiment.

9.1.1 Situational Awareness

The accuracy of the SA system was tested in two stages. The initial stage was done on land
and consisted of placing the CS Saucer and Cyber ship II in the middle of the operator
room of the lab. The goal was to determine any bugs and test the system’s stability
while stationary. The test compared the hand-measured distance between the two vessels
with the estimated distance from the SA system. The measured distance between the two
vessels was 2.17 m.

The second set of tests took place in the basin. The CSS was placed in the middle,
facing the right wall when observing from the operator room. Then the CSE1 was placed
approximately 1 m from the wall, with its bow facing the qualisys cameras. Cords with
weights at the end were connected to the vessels to keep them from drifting substantially.
Unlike the land test, the exact positional measurements of both vessels were accessible
from Qualisys, so the accuracy of the reference transformation was also tested for this
test. When the vessels were in position, the SA system on the CSS was activated, and a
time series of detections were collected together with Qualisys measurements.

9.1.2 Collision avoidance

Finally, complete system tests were conducted when the controller was tuned and the SA
system calibrated. These consisted of two different scenarios, both involving stationary
obstacles. During all operations, obstacles were weighted down to avoid drift.

57

CHAPTER 9. RESULTS AND DISCUSSION

Scenario 1: Single stationary obstacle

For the first scenario, the CSS was manually maneuvered to the edge of Qualisys’ range.
Then the CSE1 was placed into the basin to interfere with the CSS’s path. The length of
the path was set to lp = 5 m and the reference speed to uref = 0.1 m/s.

The CSE1 is about 1 m in length and 30 cm in width. To ensure that maneuvers were
kept safe, the obstacle region was given a radius of ro = 1 m.

Scenario 2: Multiple stationary obstacles

For the second scenario, a second stationary obstacle was introduced into the basin. The
second obstacle took the form of Cyber ship II, which is depicted in Figure 9.1. Cyber
ship II was placed further down in the basin and more to the right. For this test, the CSS
was given a slightly longer path length of lp = 5.5 m and the same reference speed as in
Section 9.3.1.

Cyber ship II has similar dimensions to the CSE1, so the obstacle region was kept to the
same radius.

9.2 Situational awareness

9.2.1 Display and performance

The final graphical interface of the sensor fusion module is displayed in Figure 9.1.

Figure 9.1: Detection of the Cybership II

58

CHAPTER 9. RESULTS AND DISCUSSION

It displays the detection box, the prediction score, the range to the computed cluster
center, and the relative angle between the lidar and the centroid. In terms of performance,
the average frame rate was 27.3 fps, which is more than enough for real-time purposes.
However, there seems to be a slight delay in the image stream coming out of the detection
module, which can affect operations. Regardless, considering all communications are done
over the local wi-fi in the MC lab, a slight delay in streaming is expected. It is also not too
detrimental to this thesis, given the limitations put on obstacles. Since all obstacles are
assumed stationary, the position should be the same in every frame. All measurements in
the SA module are also time-synchronized using the message filters provided by ROS. This
matches the measurements if they have the same time-stamp. However, the delay would
have had more significant consequences in a scenario with dynamic obstacles, especially on
a small scale of the MC lab, where distances are covered in short periods. On a full-scale
vessel, one could expect all computations to be done on the same onboard computer, so
the delay caused by wi-fi would not be present.

9.2.2 Range test

Figure 9.2 displays the initial range test results. An average error of half a meter is
immediately observable, meaning that the computed cluster centroid must be located
behind the vessel.

0 5 10 15 20 25 30
Time [sec]

2.2

2.3

2.4

2.5

2.6

2.7

Ra
ng

e
[m

]

Range measurements

Expected range
Measured range

0 5 10 15 20 25 30
Time [sec]

0.44

0.46

0.48

0.50

0.52

0.54

Er
ro
r [
m
]

Error in measurements

Figure 9.2: Initial range test

The cause of this can lies in the camera and lidar calibration and the way measurements
are fused. First, an insufficient calibration means laser points are projected incorrectly
onto the image. This results in points corresponding to the wall behind the vessel being
projected onto the body. Consequently, the point would be falsely added to the list of
valid laser points sent to the k-means algorithm. Since the k-means expects the number of
clusters to be equal to the number of detections, all the points in the list will be considered
part of a single cluster. Accordingly, the outlier points will influence the centroid placement
to be further behind. This is clearly illustrated in Figure 9.4.

Another factor that could cause the same effect is the nature of bounding boxes. The

59

CHAPTER 9. RESULTS AND DISCUSSION

bounding boxes are constantly shifting their dimensions around the detected object. Nat-
urally, due to the geometry of a traditional ship, some ’empty space’ will be found inside
the bounding box. Figure 9.1 illustrates this problem, as one can observe significant space
between the edges of the box and the vessel’s bow and stern. The validity of points is
determined by whether their projection lies within the edges of the bounding box. Thus,
it is likely that one or more points corresponding to the wall behind are associated with
the detection. In the same manner, as a point being projected wrongly, this will cause the
centroid to land behind the actual obstacle. In the first case, a poor calibration coupled
with the blank space in the bounding box meant several points corresponding to the wall
were considered valid. These incorrect projections caused the centroid placement to be
almost half a meter beyond the expected point. The distance between the wall and the
CSS was also above six meters, which is a large gap. A re-calibration of the camera and
lidar was performed to better the performance. For the second test, the range between
the two vessels was measured to 2.21 m.

0 5 10 15 20 25 30
Time [sec]

2.200

2.225

2.250

2.275

2.300

2.325

2.350

2.375

2.400

Ra
ng

e
[m

]

Range measurements
Expected range
Measured range

0 5 10 15 20 25 30
Time [sec]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Er
ro
r [
m
]

Error in measurements

Figure 9.3: Range measurements after calibration

Figure 9.3 displays the range computation for the centroid after the second calibration.
A significant improvement in accuracy can be observed, with the error in measurement
being close to zero for several samples. The centroid is, however, still being pulled back-
ward, which indicates that outlier points are influencing the measurements, albeit at a
significantly lower rate compared to the previous results. In Figure 9.1, several wall points
were constantly considered as part of the cluster, while for the second point, this happens
occasionally. The centroid only being placed 18 cm behind indicates that fewer false points
are projected. This result was deemed satisfactory, as available time in the MC lab was
limited, and the accuracy was well within the margin of error. A point to note is that in a
perfect measurement, all the lidar points are located along the vessel’s hull. Accordingly,
the centroid will most likely be located along the hull. The Cyber ship II and CSE1 have
a width of about 25 cm, meaning that if the centroid position is 18 cm behind the vessel’s
outer hull, it will technically still be located on the vessel. Thus, the current calibration
was deemed satisfactory for this thesis’s purposes. For later operations, the sampling rate
of lidar measurements was also reduced not to produce as noisy a measurement as in the
land test.

60

CHAPTER 9. RESULTS AND DISCUSSION

−3 −2 −1 0 1 2 3
E [m]

0

1

2

3

4

5

6

N
[m

]
NE of lidar point clo d with detected obstacle

Point clo d
Valid points
Centroid

(a) Correct projection of wall points

−3 −2 −1 0 1 2 3
E [m]

0

1

2

3

4

5

6

N
[m

]

NE of lidar point clo d with detected obstacle
Point clo d
Valid points
Centroid

(b) False projection of wall points

Figure 9.4: Influence of wall points on centroid placement

9.2.3 Basin test

Figure 9.5 displays a sample series of cluster centroids computed during the basin test.
The black and red dashed squares are meant to illustrate the initial and terminal positions
of the CSE1, measured by Qualisys. This illustrates the vessel drift, which constitutes a
couple of centimeters in each direction. The same is done for the CSS, as illustrated by
the gray and black circles. The orientation of the vessel and lidar is also illustrated by the
arrows pointing from the vessel CO. Figure 9.6 illustrated the North and East position,
along with the relative error in each direction.

As can be observed from both Figure 9.5 and Figure 9.6 estimation, the centroids are
stilling pulled back towards the wall in most cases, indicating that outlier points are being
projected onto the detection. However, the distance to the wall is much smaller than in
the previous experiment, causing the outlier point to interfere less. Furthermore, most
centroids are located inside the area encompassed by the CSE1, meaning that the results
are more than sufficient, despite the influence of the wall points.

61

CHAPTER 9. RESULTS AND DISCUSSION

−3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
E [m]

0.0

0.5

1.0

1.5

2.0

2.5

3.0
N
[m

]

Centroid Placement
Centroid
η0,CSS
ηt,CSS
η0,CSE1
ηt,CSE1

Figure 9.5: Estimated obstacle postions from object detection

0 5 10 15 20 25 30

2.275

2.300

2.325

2.350

2.375

2.400

2.425

N
[m

]

Centroid
CSE1

0 5 10 15 20 25 30
−0.125

−0.100

−0.075

−0.050

−0.025

0.000

0.025

0.050

Er
ro
r i
n
N
[m

]

Error

0 5 10 15 20 25 30
Time [sec]

−2.25

−2.20

−2.15

−2.10

−2.05

E
[m

]

Centroid
CSE1

0 5 10 15 20 25 30
Time [sec]

−0.12

−0.10

−0.08

−0.06

−0.04

−0.02

0.00

0.02

Er
ro
r i
n
E
[m

]

Error

Figure 9.6: Centroid computations compared to qualisys measurements

The error in each direction is relatively small, but it is important to note that, ideally, the
centroid should lie somewhere in the center of the hull. An example of this is illustrated

62

CHAPTER 9. RESULTS AND DISCUSSION

in Figure 9.4. The ’error’ should have an absolute value of about 12 cm if you consider
the target vessel’s width.

9.3 Complete system tests

9.3.1 Scenario 1: Single stationary obstacle

The results for scenario 1 are shown in Figure 9.7, Figure 9.8, Figure 9.9 and Figure 9.10.
First and foremost, one can observe from Figure 9.7 that the CSS successfully detects the
obstacle and manages to maneuver from the initial point to the endpoint while avoiding a
collision. The position of the detected obstacle was found to be po =

[
0.51 − 0.40 big]⊤,

and was successfully detected immediately after the guidance module was initiated.

The vessel can follow the desired path to a certain degree but overshoots in both sway
and heading when the evasive maneuver is performed. A delay can also be observed if
one looks at Figure 9.8. The cause of this is how the guidance and control systems are
activated. The Saucer is maneuvered into its start position using manual joystick control,
with the guidance only being activated after the vessel is in position. The switch from
manual to automatic control takes a little bit, causing the reference position to get a
jump-start on the control system. It is possible that allowing the reference to large of
a head-start on the controller can cause it to overshoot somewhat. A slight overshoot
in heading is somewhat expected due to the geometry of the CSS. It is, however, much
less than expected, meaning that the measures taken to stabilize the heading of the CS
Saucer seem to be performing well. Figure 9.10 shows that the system largely relies on
the two rear thrusters when maneuvering and only allocates forces to the front thruster
when sharper turns are required. Considering the system is mainly moving forward, this
seems reasonable.

The overshoot in sway is much more severe, as the vessel initially drifts in the wrong direc-
tion while turning, which causes the system to overcompensate and overshoot. However,
the control system can correct itself after the evasive maneuver ends and reach the end
position. Another factor that can contribute to the overshoot may also be the tuning of
the controller. Given more time in the laboratory to run experiments, better tuning could
likely be achieved. Unfortunately, time was limited, so the focus was put on performing
the experiments rather than turning further. The system also overshoots the final way-
point by some margin and cannot correct itself as the vessel drifts outside the range of the
Qualisys system. Thus the time series is cut off when the vessel passes the endpoint.

The whole maneuver takes slightly around 75 seconds. The given reference speed was
0.1 m/S, so this seems reasonable if one takes the extra distance the evasive maneuver
requires. As can be observed from Figure 9.8, the velocity in surge quickly accelerates
towards the reference speed before the evasive maneuver is initiated. After the maneuver
is executed, the speed converges on the reference again. The low reference speed also
questions whether the saturation in force was necessary. As shown in Figure 9.9, the
commanded forces are nowhere near the saturation point.

63

CHAPTER 9. RESULTS AND DISCUSSION

−3 −2 −1 0 1 2 3
E [m]

−3

−2

−1

0

1

2

3

4

N
[m

]

Basin position
Obstacle region
Basin wall
Obstacle detection
Desired position
Vessel position

Figure 9.7: North-East plot for Scenario 1

0 10 20 30 40 50 60 70 80
−2

−1

0

1

2

3

No
rth
 [
]

Positional esti ates
̂x

xd
Obstacle detection

0 10 20 30 40 50 60 70 80

0.025

0.050

0.075

0.100

0.125

0.150

0.175

̂ u
[
/s
]

Velocity esti ates

0 10 20 30 40 50 60 70 80

−1.5

−1.0

−0.5

0.0

Ea
st
 [
]

̂y
yd
Obstacle detection

0 10 20 30 40 50 60 70 80

−0.02

0.00

0.02

0.04

0.06

̂ v
[
/s
]

0 10 20 30 40 50 60 70 80
Ti e [sec]

−20

0

20

40

He
ad
in
g
or
ie
nt
at
io
n
[d
eg
] ̂ψ

Obstacle detection
ψd

0 10 20 30 40 50 60 70 80
Ti e [sec]

−0.002

0.000

0.002

0.004

̂ r [
de
g/
s]

Figure 9.8: Position and velocity estimates for Scenario 1

64

CHAPTER 9. RESULTS AND DISCUSSION

0 10 20 30 40 50 60 70 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

X
[N
]

Surge

0 10 20 30 40 50 60 70 80
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Y
[N
]

Sway

0 10 20 30 40 50 60 70 80
t [sec]

−0.1

0.0

0.1

0.2

0.3

N
 [N

m
]

Yaw

Force commands

Figure 9.9: Force commands for Scenario 1

0 10 20 30 40 50 60 70 80
−0.2

0.0

0.2

0.4

0.6

0.8

u 1
 [N

]

Actuat r c mmands
Fr nt thruster

0 10 20 30 40 50 60 70 80

0.0

0.2

0.4

0.6

0.8

u 2
 [N

]

Left-back thruster

0 10 20 30 40 50 60 70 80
t [sec]

−0.4

−0.2

0.0

0.2

0.4

u 3
 [N

]

Right-back thruster

Figure 9.10: Actuator commands for Scenario 1

9.3.2 Scenario 2: Multiple stationary obstacles

The results for scenario 1 are shown in Figure 9.11, Figure 9.12, Figure 9.13 and Fig-
ure 9.14. They tend to follow many of the same patterns observed in Section 9.3.1. As
is clear in Figure 9.11, the system can perform collision avoidance with two obstacles.
The first obstacle is detected almost instantly, causing its associated barrier function to
mark the path as unsafe early in the voyage. While the system performs the evasive ma-
neuver for the first obstacle, the second ship is detected at t = 24 seconds. Fortunately,
the second obstacle does not seem to interfere too much with the generated path, and
the vessel can maneuver safely between the obstacles. The detection coordinates where

65

CHAPTER 9. RESULTS AND DISCUSSION

po,1 =
[

− 0.53 0.13
]⊤ and po,1 =

[
− 1.53 1.54

]⊤ for the first and second obstacle,
respectively.

Similar to the first scenario, the vessel can follow the path to a certain degree, still over-
shooting in sway direction when performing the evasive maneuver. There is also an imme-
diate sideslip when the controller initiates, caused by the vessel drifting in yaw between
the activation of the guidance module and the controller module. The causes discussed
in Section 9.3.1 likely apply in this scenario as well, as little to no tuning was performed
between the scenario.

Another thing to note is that the vessel completes this maneuver quicker than the previous
one, despite the length of the specified path being slightly longer. The reason for this is
likely the initial conditions of the vessel and the evasive maneuver being longer for the
first scenario.

−3 −2 −1 0 1 2 3
E [m]

−3

−2

−1

0

1

2

3

4

N
[m
]

Basin position
Obstacle region
Basin all
First detection
Second detection
Desired position
Vessel position

Figure 9.11: North-East plot for Scenario 2

66

CHAPTER 9. RESULTS AND DISCUSSION

0 10 20 30 40 50 60 70

−2

−1

0

1

2

3

No
rth
 [
]

Positional esti ates
̂x

xd
First detection
Second detection

0 10 20 30 40 50 60 70

0.025

0.050

0.075

0.100

0.125

0.150

̂ u
[
/s
]

Velocity esti ates

0 10 20 30 40 50 60 70
−0.2

0.0

0.2

0.4

0.6

0.8

Ea
st
 [
]

̂y
yd
First detection
Second detection

0 10 20 30 40 50 60 70

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

̂ v
[
/s
]

0 10 20 30 40 50 60 70
Ti e [sec]

−30

−20

−10

0

10

20

He
ad
in
g
or
ie
nt
at
io
n
[d
eg
] ̂ψ

First detection
Second detection
ψd

0 10 20 30 40 50 60 70
Ti e [sec]

−0.010

−0.005

0.000

0.005

̂ r [
de
g/
s]

Figure 9.12: Position and velocity estimates for Scenario 2

0 10 20 30 40 50 60 70
0.0

0.1

0.2

0.3

0.4

0.5

X
[N
]

Surge

0 10 20 30 40 50 60 70

−0.50

−0.25

0.00

0.25

0.50

0.75

Y
[N
]

Sway

0 10 20 30 40 50 60 70
t [sec]

−0.3

−0.2

−0.1

0.0

0.1

0.2

N
 [N

m
]

Yaw

Force commands

Figure 9.13: Force commands for Scenario 2

67

CHAPTER 9. RESULTS AND DISCUSSION

0 10 20 30 40 50 60 70

−0.75

−0.50

−0.25

0.00

0.25

0.50

u 1
 [N

]

Actuato commands
F ont th uste

0 10 20 30 40 50 60 70

−0.50

−0.25

0.00

0.25

0.50

0.75

u 2
 [N

]

Left-back thruster

0 10 20 30 40 50 60 70
t [sec]

0.0

0.5

1.0

u 3
 [N

]

Right-back thruster

Figure 9.14: Actuator commands for Scenario 2

9.4 Final discussion

While the results presented so far show that the system is capable of object detection and
subsequent evasive maneuvers, these are a sample of the best-performing experiments.
At the end of experiments, the system failed one out of every three tries. Generally, the
failures were caused by the object detection not consistently identifying the CSE1 and
Cyber ship II as ships, meaning that they were not classified as obstacles. Typically,
the detection failed when the vessels had a particular orientation. Examples are the bow
or stern facing directly towards the camera, making the ship’s sides harder to see. The
detection would generally fail when the obstacles were oriented in such a way. Contrary,
when the vessel was viewed from the side, the detection would usually succeed, albeit the
certainty threshold for detections had to be lowered by 10% in the detection model to
better the rate. If the SA system failed to detect the obstacles, the vessel would perform
nominal straight-line maneuvering and enter the obstacle regions, resulting in collisions.
Sometimes it would detect the first obstacle but not the second causing the same result.
The visual detection range was also somewhat limited, with it rarely detecting anything
more than 3 meters ahead. Factors in this are likely the low resolution the camera was
recording and the lens utilized. As a performance of 30 fps is more than enough, more
consideration should likely have been put into increasing the resolution to achieve better
detections.

A second factor is likely that the CNN is not trained sufficiently to recognize the vessels
in the MC Lab. As mentioned in Section 5.4, the model was primarily trained on generic
data of full-scale ships operating at sea. While the training data from COCO is of high
quality, it only presents vessels in an outside context. The MC-lab basin is an indoor pool
surrounded by concrete walls and artificial lighting. Cyber ship II and CSE1 may also be
more challenging to detect than conventional ships due to their smaller size and a greater
number of modifications, i.e., Qualisys markers. Ideally, an additional custom dataset
of the cyber fleet in the MC-lab should have been generated to provide better detection
accuracy. This was outside the scope of this thesis, however.

68

CHAPTER 9. RESULTS AND DISCUSSION

The space between the two obstacle regions is also relatively tight. If the CSS’s hull radius
of 274 cm is taken into account, the vessel passes inside the obstacle region of the CSE1
in Figure 9.11. However, no crash was observed, as the radius for the obstacle region
was large enough to provide enough buffer. This also brings into question the shape of
the obstacle region. Ships tend to have an oblong geometry, causing the obstacle region
to have much space next to the vessel’s sides, while the distance from the stern or bow
to the boundary is much smaller. Since detection points typically correspond to a point
along the hull, the obstacle region may not encompass the entire obstacle. This means
the radius for the obstacles had to be increased to ensure that the region encompassed the
entire obstacle. A radius of one meter meant that for two obstacles, almost four meters of
width would be invalid space. Considering the functional space in the tank was no more
than 6 meters in width, the maximum number of obstacles one could use without causing
problems was two. Anything more would typically cause overlapping in the regions or too
small margins to pass through. An example is illustrated in Figure 9.15, where the vessel
detected both obstacles failed the maneuver partly due to the overlapping regions.

−3 −2 −1 0 1 2 3
E [m]

−3

−2

−1

0

1

2

3

4

N
[m
]

Basin position
Obstacle region
Basin all
First detection
Second detection
Desired position
Vessel position

Figure 9.15: Failure in evasive maneuver due to overlapping obstacle regions

69

CHAPTER 9. RESULTS AND DISCUSSION

70

Chapter 10
Conclusion

This thesis presents the implementation and integration of a Situational Awareness system
with control barrier functions for the autonomous surface vessel CS Saucer. To this end,
the vessel was first extensively upgraded with a new embedded computer in the form of
a Raspberry Pi 4b, qualisys markers, and a digital camera for computer vision purposes.
The software architecture was also completely revamped, using ROS and Python as the
framework for all hardware and control system drivers. The new vessel control system
standardizes the cyber ship model in the MC-lab, providing more flexibility and continuity
for students. This will likely be an academic advantage for future projects on the CSS.

The SA system is based on a 2D lidar scanner and a monocular camera. Methods for
data reception and calibration of each sensor to give an accurate transformation between
each coordinate system and the NED-frame have been presented and implemented. Ad-
ditionally, a CNN for detecting ships was implemented along with the k-means clustering
algorithm. Then a method for fusing the measurements was implemented by projecting
lidar points onto the detection from the CNN. Valid points were sent to the clustering
technique, which identified the cluster’s center and the obstacle. A series of tests were
planned, organized, and executed to test the SA system’s robustness on land and in the
MC-lab basin. The experimental results show that the SA system functions adequately
and correctly estimate the detected vessels’ position within a margin of error. The system
does have some weaknesses, mainly its unreliable calibration method for the extrinsic pa-
rameters of the lidar and camera, which can cause significant inaccuracies due to incorrect
point projections. The range of the detections is also quite limited, and the CNN fails to
detect the obstacle ships in specific orientations. It was, however, sufficient for the scope
of this thesis.

A complete maneuvering control system was also presented and implemented for the CSS.
In addition to the situational awareness system, it consists of a guidance module, an
observer, a controller module, and a thrust allocation module. The guidance module
utilizes a two-parameter path parameterization that incorporates the use of a CBF to
avoid detected obstacles detected by the SA system. The controller used in this thesis is a
cascade backstepping controller that considers heading and positional control separately
to stabilize the CSS heading. For this purpose, a fixed thruster allocation scheme was
also implemented. The controller was first tested in a simulated environment and later in
physical experiments. The experiments proved that the CBF architecture of the guidance
module enabled the vessel to successfully generate safe paths around the obstacles that

71

CHAPTER 10. CONCLUSION

the SA system detected and quantified.

Furthermore, the controller and thrust allocation can also be considered a success, as
the vessel is capable of following the desired paths to a satisfying degree. Especially the
heading is stable when following the reference values generated by the guidance module.
However, it overshoots the desired positions, necessitating more system tuning.

10.1 Further work

Designing a complete control system for an ASV, including working situational aware-
ness and maneuvering control, is no small feat. Throughout this thesis, several ideas
for improvements or more sophisticated solutions were considered but not necessarily im-
plemented due to time constraints. This section is meant to shed light on areas where
improvements should be made if continued research is conducted using the CSS and its
new control system.

First, the author believes that the current 2D lidar should be replaced with a more sophisti-
cated 3D laser scanner. While working in a 2D plane initially seemed more straightforward
and less complex, this thesis discovered that an extra dimension provides a more robust
and accurate depiction of the environment in terms of computer vision and situational
awareness. Furthermore, 3D lidars are considered state-of-the-art and are widely used in
scientific research and industry projects. Thus ready, open-source software will be more
available for 3D scanners. Additionally, extrinsic calibration between a 3D lidar and a
monocular camera is more straightforward and robust, as the lidar point cloud can show
spatial features in more detail, making it easier to relate pixel coordinates to laser points.
Better feature extraction yields more accurate and robust calibrations. All of this will
cascade into an overall more robust SA system.

To further improve the performance of the SA system, one could upgrade the operator
computer to utilize GPU computation. For the current system, a modern state-of-the-art
GPU will likely yield a frame rate in the hundreds. More computational power gives the
user the room to increase the resolution of the captured images. In addition, it allows
for more robust detection at further distances. SSD Mobilenet is also a relatively ’simple’
CNN, and more computational power means it can be substituted for a more complex
network such as Faster R-CNN to achieve better detections.

Another part of this thesis that can be improved upon is obstacles. The obstacles used in
experiments have been restricted to stationary boats with a set size of the obstacle region.
In a real-world scenario, it is reasonable to assume that some obstacles will be moving
and more diverse than just a ’boat.’ Therefore, for a system ready for real life, obstacles
that move must be taken into account. The CNN should also consider more obstacles
than just ships. Other relevant marine objects such as people, debris, rocks, or ice are
examples of relevant classes for the model. This ties in with the previous points, as more
computational power and better sensor readings, will allow for more complex tracking
algorithms to be implemented. Ideally, a unique model should be trained from the ground
up to work in the MC lab with custom labels and classes. The model should be trained
on data accumulated inside the MC lab and generically available data like COCO.

If more dynamic obstacles were to be introduced, tracking procedures should also accom-
pany them. Typically such tracking is done using Probability Density Association (PDA)
filters or its derivatives integrated PDA (IPDA) and joint IPDA (JIPDA).

72

CHAPTER 10. CONCLUSION

Finally, the system should be tuned to a more significant degree to counteract the dis-
placement between the desired and actual positions in sway.

73

CHAPTER 10. CONCLUSION

74

References

Ames, Aaron D. et al. (2019). “Control Barrier Functions: Theory and Applications.” In:
2019 18th European Control Conference (ECC), pp. 3420–3431. doi: 10.23919/ECC.
2019.8796030.

Åsheim, Nora (2021). “Autonomous ship maneuvering with guaranteed safety.” MA thesis.
NTNU.

Bishop, Christopher M. (2007). Pattern Recognition and Machine Learning (Information
Science and Statistics). 1st ed. Springer. isbn: 0387310738.

Debeunne, César and Damien Vivet (2020). “A Review of Visual-LiDAR Fusion based
Simultaneous Localization and Mapping.” In: Sensors 20.7. issn: 1424-8220. doi: 10.
3390/s20072068. url: https://www.mdpi.com/1424-8220/20/7/2068.

ehong-tl (2019). url: https://github.com/ehong-tl/camera 2d lidar calibration.
Endsley, Mica R. (1988). “Design and Evaluation for Situation Awareness Enhancement.”

In: Proceedings of the Human Factors Society Annual Meeting 32.2, pp. 97–101. doi:
10.1177/154193128803200221. url: https://doi.org/10.1177/154193128803200221.

Everitt, Brian S et al. (2011). Cluster Analysis, 5th Edition. John Wiley and Sons Ltd.
Ferguson, Max et al. (2017). “Automatic localization of casting defects with convolutional

neural networks.” In: 2017 IEEE international conference on big data (big data). IEEE,
pp. 1726–1735.

Forgy, Edward W (1965). “Cluster analysis of multivariate data: efficiency versus inter-
pretability of classifications.” In: biometrics 21, pp. 768–769.

Fossen, Thor I. (2021). Handbook of Marine Craft Hydrodynamics and Motion Control.
John Wiley and Sons Ltd.

Gao, Xiao-Shan et al. (2003). “Complete solution classification for the perspective-three-
point problem.” In: IEEE transactions on pattern analysis and machine intelligence 25.8,
pp. 930–943.

Gu, Jiuxiang et al. (2018). “Recent advances in convolutional neural networks.” In: Pattern
Recognition 77, pp. 354–377.

Hamdan, Muhammad KA (2018). “VHDL auto-generation tool for optimized hardware
acceleration of convolutional neural networks on FPGA (VGT).” PhD thesis. Iowa State
University.

Hartley, Richard and Andrew Zisserman (2015). Multiple View Geometry in Computer
Vision. 2nd ed. Cambridge University Press.

HediVision (2021). Pinhole Camera Model. url: https://hedivision.github.io/Pinhole.html
(visited on Dec. 15, 2021).

Heikkila, Janne and Olli Silvén (1997). “A four-step camera calibration procedure with
implicit image correction.” In: Proceedings of IEEE computer society conference on com-
puter vision and pattern recognition. IEEE, pp. 1106–1112.

75

https://doi.org/10.23919/ECC.2019.8796030
https://doi.org/10.23919/ECC.2019.8796030
https://doi.org/10.3390/s20072068
https://doi.org/10.3390/s20072068
https://www.mdpi.com/1424-8220/20/7/2068
https://github.com/ehong-tl/camera_2d_lidar_calibration
https://doi.org/10.1177/154193128803200221
https://doi.org/10.1177/154193128803200221
https://hedivision.github.io/Pinhole.html

REFERENCES

Idland, Tor Kvestad (2015). “Marine cybernetics vessel cs saucer:-design, construction and
control.” MA thesis. NTNU.

Kim, Dongnam (2018). Human detection ros node using 2d-lidar and tx2 onboard camera
fusion. url: https://github.com/4artit/human detection ros node using 2d- lidar TX2-
onboard-cam fusion.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks.” In: Advances in neural information processing
systems 25, pp. 1097–1105.

LeCun, Yann A et al. (2012). “Efficient backprop.” In: Neural networks: Tricks of the trade.
Springer, pp. 9–48.

Lloyd, Stuart (1982). “Least squares quantization in PCM.” In: IEEE transactions on
information theory 28.2, pp. 129–137.

Marley, Mathias (2021). Technical Note: Maneuvering control design using two path vari-
able, Rev B. Tech. rep. NTNU.

Marley, Mathias, Roger Skjetne, Morten Breivik, et al. (2020). “A hybrid kinematic con-
troller for resilient obstacle avoidance of autonomous ships.” In: IOP Conference Series:
Materials Science and Engineering. Vol. 929. 1. IOP Publishing, p. 012022. doi: 10.
1088/1757-899x/929/1/012022. url: https://doi.org/10.1088/1757-899x/929/1/012022.

Marley, Mathias, Roger Skjetne, and Andrew R. Teel (2021). “Synergistic control barrier
functions with application to obstacle avoidance for nonholonomic vehicles.” In: 2021
American Control Conference (ACC), pp. 243–249. doi: 10 . 23919/ACC50511 . 2021 .
9482979.

Millan, James (2008). “Thrust allocation techniques for dynamically positioned vessels.”
In: Laboratory Memorandum LM-2008-04, National Research Council, St. John’s, New-
foundland, Canada.

Moen, Jon Magnus (2021). “Automatic control with risk contingencies for autonomous
passenger ferry.” MA thesis. NTNU.

NTNU (2022). Marine cybernetics laboratory. url: https : / / www . ntnu . edu / imt / lab /
cybernetics.

– (2021). Autonomous all-electric passenger ferries for ruban water transport (Autoferry).
url: https://www.ntnu.edu/autoferry (visited on Dec. 14, 2021).

Ottesen, Are E (2014). “Situation Awareness in Remote Operation of Autonomous Ships.”
In: Shore Control Center Guidelines Norway.

Podareanu, Damian et al. (2019). Best Practice Guide-Deep Learning.
Schöller, Frederik Emil Thorsson et al. (2020). “Vision-based object tracking in marine

environments using features from neural network detections.” In: IFAC-PapersOnLine
53.2, pp. 14517–14523.

Sharoni, Rotem (2016). “Marine Inverted Pendulum.” MA thesis. NTNU.
Simonyan, Karen and Andrew Zisserman (2014). “Very deep convolutional networks for

large-scale image recognition.” In: arXiv preprint arXiv:1409.1556.
Singh, Archana, Avantika Yadav, and Ajay Rana (2013). “K-means with Three different

Distance Metrics.” In: International Journal of Computer Applications 67.10.
Skjetne, Roger (2005). “The maneuvering problem.” In: NTNU, PhD-thesis 1, pp. 95–98.
– (2021). Cascade backstepping-based maneuvering control design for a low-speed fully-

actuated ship. Tech. rep. NTNU.
Smogeli, Øyvind (2021). ’Module 1: Introduction to autonomy in marine applications’,

Lecture Notes, TMR06 - Autonomous Marine Systems.
Solheim, Mathias (2021). “Sensor Fusion between camera and lidar for C/S Saucer, Spe-

cialization project.” MA thesis. NTNU.
Steinhaus, Hugo et al. (1956). “Sur la division des corps matériels en parties.” In: Bull.

Acad. Polon. Sci 1.804, p. 801.

76

https://github.com/4artit/human_detection_ros_node_using_2d-lidar_TX2-onboard-cam_fusion
https://github.com/4artit/human_detection_ros_node_using_2d-lidar_TX2-onboard-cam_fusion
https://doi.org/10.1088/1757-899x/929/1/012022
https://doi.org/10.1088/1757-899x/929/1/012022
https://doi.org/10.1088/1757-899x/929/1/012022
https://doi.org/10.23919/ACC50511.2021.9482979
https://doi.org/10.23919/ACC50511.2021.9482979
https://www.ntnu.edu/imt/lab/cybernetics
https://www.ntnu.edu/imt/lab/cybernetics
https://www.ntnu.edu/autoferry

REFERENCES

Ueland, Einar Skiftestad (2016). “Marine autonomous exploration using a lidar.” MA
thesis. NTNU.

Værnø, Svenn Arne and Roger Skjetne (2017). Observer for simplified DP model: Design
and proof.

Wang, Sun-Chong (2003). “Artificial neural network.” In: Interdisciplinary computing in
java programming. Springer, pp. 81–100.

Zeabus (2021). NTNU and the ’milliampere ferries. url: https://zeabuz.com/miliampere/
(visited on Dec. 14, 2021).

Zhang, Zhengyou (Dec. 2000). “A Flexible New Technique for Camera Calibration.” In:
Pattern Analysis and Machine Intelligence, IEEE Transactions on 22, pp. 1330–1334.
doi: 10.1109/34.888718.

Zitzewitz, Gustav von (2018). Realtime Object Detection. url: https : / / github . com /
gustavz/realtime object detection.

77

https://zeabuz.com/miliampere/
https://doi.org/10.1109/34.888718
https://github.com/gustavz/realtime_object_detection
https://github.com/gustavz/realtime_object_detection

REFERENCES

78

Appendix A
Getting started with ROS

This manual is intended to provide an introduction to the basic ROS procedures necessary
to operate the CS Saucer in the Marine Cybernetics Library. It is intended for the use
of future students at NTNU, whom to utilize the vessel for projects. The procedures
presented in this manual are also generic enough that they apply to the other vessels of
the cybership fleet.

The author of this manual has spent countless hours troubleshooting software, and setting
up an environment suitable for operation on the Raspberry Pi. The hope is that the
provided procedures will shorten the time future students will have to use by providing
better documentation.

A.1 Raspberry Pi Image

Currently, all the vessels in the MC Lab run a Raspberry Pi 4B as their embedded com-
puter. The CSE1 and CSE1 run the same raspberry pi image with Raspbian Buster as
the OS and Melodic as their ROS-distribution.

For this thesis, the Raspbian Buster installation was insufficient, so a new image was
created for this thesis. The main problem was that Raspbian Buster contained a fatal bug
that prevents it from connecting to enterprise networks such as eduroam. Considering
that much of the work is done on campus ground, and the Saucer required downloading
a lot of software, a new operating system was installed for the Saucer. At the time of
writing it runs Ubuntu 20.04 LTS Server edition, and ROS Noetic. Everything needed to
run basic ros is installed, along with the computer vision library Open CV, Tensorflow
and scipy as well.

The student can choose which OS suits their needs and make an image of the memory
card on either the CS Saucer or CS Enterprise for their own use. More information about
this can be found here. It is recommended to copy one of the memory cards rather than
attempting a install from scratch.

I

https://www.raspberrypi.com/software/

APPENDIX A. GETTING STARTED WITH ROS

A.2 Communicating with the Raspberry Pi

To communicate with the Raspberry Pi on the vessel, one needs to be connected to the
’MC lab’ local network. After connecting to the network, open up a terminal and see if
the vessel is also connected by running the command:

1 $ ping 192.168.0.108

Here the number-sequence is the IP of the Saucer. If the RPi responds you can SSH onto
it and run files via the terminal. Simply run the command

1 $ ssh ubuntu@192 .168.0.108

Most likely you will then be prompted for a password. All the RPi’s have marin33 as the
designated password. You are now ready to run commands on the raspberry pi remotely.

A.3 How to ROS: A step by step guide

This section covers the basic ROS-commands you need to properly run scripts on either
the RPi or your Ubuntu PC.

A.3.1 Sourcing ROS

ROS-programs are generally run using command-line tools. Thus, we have to source our
installation when we open a terminal. To source the installation run the command

1 $ source /opt/ros/ $ROS_DISTRIBUTION$ /setup.bash

The ROS-distribution will either be called melodic or noetic, depending on which vessel
you use. On the provided hardware ROS is sourced automatically via a bash-script every
time you open the terminal, but if you are using your own computer you will have to do
this for ROS commands to function.

A.3.2 Creating a workspace

Next, we need to create a designated workspace for our project. Navigate to the desired
location on your computer (/documents, for example) and create a new folder for your
project by running the following command

1 $ mkdir -p my_folder /src

This creates a folder with a sub-directory called src. You can replace my folder with any
name you want, but src must be kept the same. Standard ROS-convention is prefixing
your workspace folder with ws, e.g ws dplab.

Next, navigate to the workspace folder, and run the command

1 $ catkin_make

II

APPENDIX A. GETTING STARTED WITH ROS

This will build your workspace environment with the proper ROS dependencies. After
running this command, you should be left with a directory structure that looks like this:

my folder
build
devel
src

You are now ready to run ROS-files. As you add more packages to your project, it is good
to rebuild your project. This is done by running the catkin make again.

A.3.3 The src-directory

This is the folder you will be working the most in, and were you will be putting all your
ROS-packages. Each of these packages contain its own src-directory where the scripts you
will be using are located. A typical project folder can look something like this:

my folder
build
devel
src

simulator
launch
src

CSS.py
feedback controller

launch
src

ctrl joy.py

A.3.4 Running ROS nodes

After your code is written it is time two activate your ROS-nodes.

A.3.4.1 The ROS-master

First we need to make sure the ROS-master is running. On the raspberry-pi, this should
be activated automatically. If you are running on the Ubuntu-computer you will have to
enable it manually. Open a new command-line window and run the command:

1 $ roscore

Now the ROS-master is running, and you can start activating nodes.

If you are running nodes on separate computers, you need to make sure the computer not
running the master knows were to find it. This is done by exporting the url for the ROS
master. Before running any nodes, use the following command:

1 $ export ROS_MASTER_URI =http ://192.168.0.108:11311

It is also smart to export the ROS IP. This tells the master were the signals are coming
from. You can determine your IP by running the command ifconfig and then

III

APPENDIX A. GETTING STARTED WITH ROS

1 $ export ROS_IP =YOUR IP

A.3.4.2 Activating nodes

In a separate command-line window, navigate to your project folder. Then source the
setup.bash file in devel.

1 $ source devel/setup.bash

To activate a node, we first need to make sure that the script is executable. To make a
file executable, navigate to the relevant directory and run the following command:

1 $ chmod +x <node -script >.py

If the script has become executable, the file-name should be green the next time you run
ls inside the directory. Then, to activate a node run navigate to the base directory of your
workspace and run

1 $ rosrun <package -name > <node -script >.py

where <package-name> is the name of the package you want to run, e.g ”controller”, and
the <node-script>.py is the python script that initializes the rosnode, e.g ”ctrl joy.py”.

A.3.5 Launch files

As a project progresses, more and more nodes are typically added. The process of acti-
vating nodes can therefore become more tedious as the complexity increases. To avoid
having to open new command-line windows for every node, we can instead use launch-files
to activate multiple nodes simultaneously. A launch file is easy to create, and is placed in
the launch directory of a package, as illustrated in the directory-tree in section A.3.3.

Listing 1 Example of a launch-file
<launch>

<node name="simulator" pkg = "simulator" type="CSS.py" />
<node name="observer" pkg = "observer" type="observer.py" />
<node name="guidance" pkg = "guidance" type="guidance_CBF.py" />
<node name="controller" pkg="feedback_controller" type="cascade_backstepping.py" />

</launch>

Listing 1 shows the basic setup of a launch file. This example launches four separate
nodes, the simulator, an observer, the guidance module and the controller module.

To run a launch file we use the following command:

1 $ roslaunch <package_name > my_launchfile . launch

Replace package name with the name of the package you placed your launch file in. All
launch files have the .launch ending (e.g DP-system.launch) .

IV

APPENDIX A. GETTING STARTED WITH ROS

A.3.6 Topics

When nodes are activated, they will start to either publish or subscribe to topics. Topics
are named buses over which nodes exchange messages. We can any topics that are being
published/subscribed to in a ROS-system by using the command:

1 $ rostopic list

This will display all the active topics in a list in your terminal. In a DP-system we might,
for example, have a thrust allocation algorithm that publishes actuator commands u to
a topic that a the driver of the thrusters subscribes too. This topic is called something
like CSS/u. If we wish to display the signals from this topic in real time we can run the
command

1 $ rostopic echo CSEI/u

This will print every message that is sent to the given topic, and can be a useful tool when
debugging.

A.3.7 Storing data

It is desirable to store the message-signals in the system in some format so that we can
later analyze and plot the data. ROS provides its own tools and file-format for this, called
a bag file. After we have launched some nodes we run the command

1 $ rosbag record <topic >

<Topic> is replaced with the names of the topics we wish to save. Multiple topics can be
recorded at the same time, in the same bag file. You just have to list the topic names with
a space. If i for example wanted to record the commanded force signal from our control
law and the resulting actuator commands form the thrust allication i would use

1 $ rosbag record CSS/u CSS/tau

When you have collected sufficient data, simply use CTRL+C to abort the operation. The
data will be saved in a bag-file in your workspace.

A.3.8 Other usefull ROS-commands

1 $ rosnode list

Shows a list of all active ROS-nodes

V

APPENDIX A. GETTING STARTED WITH ROS

VI

Appendix B
Control system manual

B.1 System requirements

The following is a list of all software required to run the control system implemented in this
thesis. The are split into to parts, general software, python libraries and ROS-packages.

Requirements
General
Operating System Ubuntu 20.04 LTS (Server version)
ROS distrubution Noetic
Python 3.8+
GCC 8+
OpenCV
Python libraries
Numpy 1.19.5+
tensorflow
openCV
scipy
qp solvers
cvxopt
ds4drv
Ros packages
CV-camera
CV-bridge
rplidar
rosserial
ds4 drivers
dynamic reconfigure

Table B.1: Required software

VII

APPENDIX B. CONTROL SYSTEM MANUAL

B.2 Running the control system nodes

This section will describe the procedure for running the available control system. First,
one must SSH onto the raspberry pi as described in Appendix A.2. Den navigate to the
workspace. It should be called ws saucer. Source the setup.bash file, and we are ready
to start.

B.2.1 Dualshock 4 driver

The system relies on the playstation ds4-driver, so we start by launching this node. Its
package should be in the directory. To activate the driver, run the command

1 $ roslaunch ds4_driver ds4_driver . launch
use_standard_messages := True

Running a roslaunch command will automatically start the ROS-master if you do not have
one running. To connect the bluetooth controller, simply press the button on the middle.
The controller should light blue when connected and an ouput should be printed in the
terminal window. If the controller is not paired, you can follow this tutorial.

B.2.2 Camera

Next up is the camera node. Open a new terminal. For this driver you do not have to be
in the workspace.

1 $ rosrun cv_camera cv_camera_node

You should see an ouput that the calibration file was loaded if successfully activated.

B.2.3 Lidar

To activate the lidar, open a new terminal and navigate to the workspace folder again.
Then run the command

1 $ roslaunch rplidar rplidar . launch

Again, if successful you should see an output in the terminal. If it tells you the firmware
is deprecated, just ignore the warning.

B.2.4 Arduino

Finally, before we activate the motion control system we must enable one final node. This
is the node on the Arduino that subscribes to the pwm signals. To enable it, run

1 $ rosrun rosserial_python serial_node .py _port =: dev/ ttyACM0

Here the final argument specifies which usb port the arduino is connected to on the rasp-
berry pi. It may vary, so to check run

1 $ ls /dev

VIII

https://ubuntu.com/core/docs/bluez/reference/pairing/outbound-pairing

APPENDIX B. CONTROL SYSTEM MANUAL

to see which devices are connected.

B.2.5 Motion Control System

Finally, we can activate the motion control system. In the workspace folder run

1 $ roslaunch feedback_controller collision_avoidance . launch

This should activate necessary nodes. The system defaults to manual control with the
joystick controller, but can switch to automatic by pressing the triangle button on the ds4
controller. The guidance is activated by pressing square. Note that this should not be
done unless the vessel is in the basin, and the object detection node is active.

If one wishes to for example test one node, each package can be launched individually
using the guidelines from Appendix A.3.4.

B.2.6 Object detection

On your operator computer, navigate to the workspace folder of your choice. Remember
to export the ROS master url to establish communication between the nodes. To run the
SA system use the following command

1 $ rosrun objdetection detection_node

This will open a window with video-feed from the saucer on your operator computer.

B.3 Dynamic Reconfigure

To make tuning your controller and observer more effective, tools for dynamic tuning are
provided in the form of the ROS-package gain server. This allows you to change the gains
in real time, rather than having to hard-code the gains and then stopping and starting
your system every time you want to change them. To activate the node, and GUI use the
following steps

Run the node use the command:

1 $ rosrun gain_server server .py

NOTE! If you use the dynamic tuning, you should always activate this node first or
you may experience errors. This is because the subscriberss in guidance, observer and
controller nodes will expect values to be there when they are not. When the node is
activated, the initial gains should be printed to your terminal. If you use the colli-
sion avoidance.launch file the gain server node will be started as part of this, and you
can disregard the first step.

In another terminal, activate the GUI:

1 $ rosrun rqt_gui rqt_gui -s reconfigure

This should open a program that looks like this:

IX

APPENDIX B. CONTROL SYSTEM MANUAL

Figure B.1: Tuning GUI

Each field or slider here corresponds to a gain in either the observer or controller. Not all
the variables are relevant either. The last to are single float values, while the first six are
meant to represent the elements on the diagonal of a 3 × 3-matrix. Change these to tune
you controller.

X

Appendix C
Calibration Procedures

This manual is meant to walk the user through calibrating the situational awareness system
of the CS Saucer. It encompasses the camera calibration and then the lidar and camera
calibration procedures.

C.1 Camera calibration

First, make sure that the camera is correctly mounted, and that the ribbon cable is con-
nected to the Raspberry Pi. For this calibration, you will need a checkerboard pattern.
You can find some in the MC Lab, or print out your own on an A3 paper. It is recom-
mended that you laminate the checkerboard so you can use it multiple times. The pattern
used in this thesis was 9x7 squares with the length of 40 mm. The exact number and size
is arbitrary as long as it is specified to the software. Place the Saucer somewhere high
enough that you can move quite freely in the camera frame.

SSH on to the Raspberry pi via your operator computer, and run the camera driver as
outlined in Appendix B.2.2. Then in a separate terminal window on the operator computer
(not the RPi!) run the following comand:

1 $ rosrun camera_calibration cameracalibrator .py --size 8x6 --
square 0.40 image :=/ cv_camera / raw_image camera :=/ cv_camera

Here –size is the argument for number of inner corners in the pattern and –square the
length of the sides. If the node is successfully activated, you will be met with the following
window:

XI

APPENDIX C. CALIBRATION PROCEDURES

Figure C.1: Calibration window

Move the checkerboard around in different orientations, at different distances in the camera
frame. The program will grab data-samples as you go. When the bars on the right of
Figure C.1 are full enough, the calibrate button will turn a darker shade of grey. This
means that enough data has been collected to produce a calibration. You can keep going
to produce a more accurate calibration. When you are finished, simply press the cailbrate
button and the procedure will start. After it is over, the intrinsic parameters will be
printed to the terminal window. To save these, press commit. This will make sure that
the camera driver on the raspberry pi, always launches with these intrinsic parameters.
You can also save the parameters to a file using the ’Save’ button. Now you can exit the
window.

C.2 Camera-Lidar calibration

The software for the lidar-camera calibration is based on ehong-tl, 2019. However, some
changes have been made, so it is recommended that you use the files provided electronically
with the thesis. Copy the calibration workspace over to your operator computer, and build
it. Make sure you clean the files in the directory data. In the directory calle config, edit the
config.yaml file to contain the intrinsic camera parameters you obtained from the camera
calibration.

Next you should identify the geometry you wish to use as your anchor points, and measure
the height up to the lidar from the floor. Then, mark that height with tape on the corners
inside the cameras point of view.

Then you can SSH onto the RPi and start the lidar and camera according to Appendix B.2.3
and Appendix B.2.2. On the operator computer, in the calibration workspace, run the
command

1 $ roslaunch camera_2d_lidar_calibration
collect_camera_calibration_data . launch

XII

APPENDIX C. CALIBRATION PROCEDURES

This will print you camera parameters in the terminal and activate the program RViz, as
seen in Figure C.2

Figure C.2: RViz window for calibration

Then using the 2D Nav Goal tool from the top bar, pick a point from the laser point
cloud that corresponds to a corner. This will prompt the following window in Figure C.3

Figure C.3: Choosing corresponding pixel value

Mark the area in the image that corresponds to the lidar point you chose. This is not
an exact science, but try to be as accurate as you can. When satisfied with the point
placement, press space and the window will close and the point be saved. Repeat the

XIII

APPENDIX C. CALIBRATION PROCEDURES

process several times for all the corners until you get enough data points. 10-20 should
suffice, try to reduce the RMSE as much as possible. After you have enough data, close
RViz and in the terminal run the second command

1 $ roslaunch camera_2d_lidar_calibration calibration . launch

This will run the camera and lidar calibration procedure and spit out the rigid body
transformation along with the root mean square error. You can check the translation with
hand-measurements, if they are in the same ballpark the calibration is ok. You can now
try to reproject the laser point onto the live image. This is done by running

1 $ roslaunch camera_2d_lidar_calibration reprojection . launch

Here you can see how the lidar points line up with the tape.

XIV

Appendix D
Heading priority allocation

As part of this thesis, a second thrust allocation method was developed in an effort to
stabilize the heading measurements. The method is proposed by Millan, 2008 and consists
of a priority system for allocation, where heading is considered the most critical mode of
control.. This method requires that the vessel’s azimuth angles vary, so the thruster
configuration matrix must be augmented so angles can be determined from the allocated
forces rather than manually set. To this end, each thruster is decomposed into Cartesian
coordinates:

ui,x =
[
1 0 l1,y

]T
and ui,y =

[
0 1 l1,x

]T
. (D.1)

This means the control input vector is extended to uext ∈ R6

uext =
[
u1,x u1,y u2,x u2,y u3,x u3,y

]T
. (D.2)

Accordingly the extended thruster configuration matrix then becomes:

Bext =

1 0 1 0 1 0
0 1 0 1 0 1
0 r r sin −2π

3 −r cos −2π
3 r sin 2π

3 −r cos 2π
3

 . (D.3)

After solving (8.38), but substituting for Bext and uext, the azimuth angle and thruster
force of each respective actuator can be computed by simple trigonometry:

ui =
√
u2
i,x + u2

i,y (D.4a)

αi = atan2 ui,y
ui,x

. (D.4b)

For the heading priority scheme, (8.38) is solved with respect to only the yaw moment,
i.e,

τ =
[
0 0 N

]T
. (D.5)

XV

APPENDIX D. HEADING PRIORITY ALLOCATION

In this way, an unconstrained optimization problem is solved to satisfy yaw demand. The
resulting force vector and azimuth angles are computed using (D.4a) and then locked.
The actuators are then checked for saturation. If none of the thrusters are saturated,
the reserve thrust capacity can be used to satisfy the demand in surge and sway. A new
configuration matrix must be defined for this purpose, using the optimal azimuth angles
computed for heading.

Let

BXY (α) =
[
cosα1 cosα2 cosα3
sinα1 sinα2 sinα3

]
(D.6)

be the thruster configuration matrix for allocating forces in surge and sway. To allocate, a
median search approach is utilized. This basic procedure will attempt to distribute some
percentage of the demand in surge and sway given by

τXY pss = BXY (α)û, (D.7)

where û is the component of thrust for each thruster that will satisfy the remaining
surge-sway demand, given the existing azimuth angles for heading priority. The variable
0 ≤ pss ≤ 1 is the percentage of surge-sway demand to be allocated. The computed thrust
components for sda are then summed with the ones for satisfying yaw, and thrusters are
again checked for saturation. If one of the thrusters is saturated, the thrust components
for surge-sway are rejected, and pss is decreased by 50%. Then the thrust components
for satisfying surge-sway are recomputed with the new pss. This process is repeated until
none of the thrusters are saturated.

XVI

Appendix E
DS4 Controller Mapping

Figure E.1 shows the current mapping of buttons and joysticks utilized in this thesis. As
can be seen, there are plenty of free buttons that can be utilized for other functionality in
future projects.

Figure E.1: Mapping of DS4 controller for manual and atomatic control

XVII

M
athias N

etland Solheim

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f M

ar
in

e
Te

ch
no

lo
gy

Mathias Netland Solheim

Integration between lidar- and
camera-based situational awareness
and control barrier functions for an
autonomous surface vessel

Master’s thesis in Marine Technology
Supervisor: Roger Skjetne
Co-supervisor: Mathias Marley
July 2022

M
as

te
r’s

 th
es

is

	Contents
	List of Figures
	List of Tables
	Nomenclature
	List of Abbreviations
	List of Symbols

	Introduction
	Motivation
	Objectives and Scope of Work
	Contributions
	Outline

	Background and literature review
	Situational Awareness in autonomous surface vessels
	LiDAR
	Camera
	Deriving the Pinhole model
	Distortion
	The complete camera model

	Supervised Learning for Machine Vision
	Convolutional Neural Network
	Single stage detectors vs. Dual Stage Detectors

	Path generation for maneuvering
	One-variable path parametrization
	Two-variable path parametrization

	Control Barrier Functions

	Experimental Platform: CS Saucer
	Background and motivation
	Technical specification
	Software
	Robot Operating System
	ROS architecture

	The Marine Cybernetics Laboratory
	Vessel model
	Reference frames
	Model

	Problem formulation
	Sensors
	Situational awareness
	Guidance problem
	Control problem
	The maneuvering problem
	Stabilizing heading

	Limitations and assumptions

	Situational awareness
	Sensor integration
	Calibration
	Camera calibration
	Lidar-Camera Calibration

	Transformation to NED-frame
	Visual detection
	Implementation and training

	Lidar segmentation
	K-Means

	Sensor fusion

	State estimation
	Observer design

	Guidance system
	Path paramtrization
	Speed assignment
	Control Barrier Function
	Heading reference
	Mission management

	Control System
	Cascade backstepping
	Step 2: Kinetic design
	Step 1: Kinematic design

	Force limitations
	Thrust allocation
	Fixed thruster allocation
	Thruster configurations

	Results and Discussion
	Testing scenarios
	Situational Awareness
	Collision avoidance

	Situational awareness
	Display and performance
	Range test
	Basin test

	Complete system tests
	Scenario 1: Single stationary obstacle
	Scenario 2: Multiple stationary obstacles

	Final discussion

	Conclusion
	Further work

	References
	Getting started with ROS
	Raspberry Pi Image
	Communicating with the Raspberry Pi
	How to ROS: A step by step guide
	Sourcing ROS
	Creating a workspace
	The src-directory
	Running ROS nodes
	Launch files
	Topics
	Storing data
	Other usefull ROS-commands

	Control system manual
	System requirements
	Running the control system nodes
	Dualshock 4 driver
	Camera
	Lidar
	Arduino
	Motion Control System
	Object detection

	Dynamic Reconfigure

	Calibration Procedures
	Camera calibration
	Camera-Lidar calibration

	Heading priority allocation
	DS4 Controller Mapping

