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Abstract— Sensor technologies empower Industry 4.0 by enabling
integration of in-field and real-time raw data into digital twins.
However, sensors might be unreliable due to inherent issues and/or
environmental conditions. This paper aims at detecting anomalies
in measurements from sensors, identifying the faulty ones and
accommodating them with appropriate estimated data, thus paving
the way to reliable digital twins. More specifically, we propose a
general machine-learning-based architecture for sensor validation
built upon a series of neural-network estimators and a classifier. Es-
timators correspond to virtual sensors of all unreliable sensors (to
reconstruct normal behaviour and replace the isolated faulty sensor
within the system), whereas the classifier is used for detection
and isolation tasks. A comprehensive statistical analysis on three
different real-world data-sets is conducted and the performance of
the proposed architecture validated under hard and soft synthetically-generated faults.

Index Terms— Digital Twin, Fault Tolerance, Industry 4.0, Internet of Things, Machine Learning, Sensor Validation.

I. INTRODUCTION

INDUSTRY 4.0 identifies the current fourth industrial rev-
olution, whose aim is an increased level of automation

through the effective combination of the Internet of Things
(IoT), cyber-physical systems and cloud computing technolo-
gies [2]. Within this concept, sensors play a crucial role by
measuring different physical parameters, thus enabling moni-
toring, controlling and decision-support capabilities [3]. While
systems are highly dependent on data collected by sensors,
the latter are unfortunately prone to errors. These errors can
occur because of several reasons such as a harsh working
environment, low battery level, limited life span (aging),
improper calibration and hardware failures [4]. Corrupted data
from sensors with failures may negatively affect both simple
and more advanced functionalities of the system and result
in overall system performance degradation and increased risk
level. This would lead to consequences ranging from financial
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losses to serious safety issues (including life losses).

Reliable sensor measurements are vital for effective control
and action-taking chain, and early reaction to faulty scenarios
plays a critical role in risk management strategies while
increasing safety and reliability. More specifically, a properly-
working system should be able to perform: (i) detection
(promptly detecting a fault condition within the system); (ii)
isolation (identifying the faulty sensor) and (iii) accommoda-
tion (replacing the faulty data with some other trusted data).
Accordingly, in this paper we propose a machine-learning-
based framework for sensor validation. This framework al-
lows developing a general sensor-fault detection, isolation,
and accommodation (SFDIA) scheme to be easily adapted
to different application domains, e.g. renewables in maritime
scenarios [5]. In detail, the contributions of this paper are:

1) A novel machine-learning-based architecture for SFDIA
is proposed. The proposed architecture jointly takes ad-
vantage of the temporal correlation of the measurements
and of both reliable and unreliable sensors within the
system to achieve a higher sensor validation perfor-
mance.

2) The focus of generated faults is on weak faults, which
are very hard to detect and usually ignored in the
literature [6]–[10].

3) The performance of the proposed approach (in terms
of probabilities of detection, false alarm, correct
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classification, misclassification, etc.) is evaluated on
three different real-world data-sets [11]–[13] corrupted
with synthetically-generated sensor faults (bias and
drifts) and compared with two state-of-the-art tech-
niques [14], [15]. The data-sets considered are publicly-
available: this fosters reproducibility and further ad-
vances on the topic. Synthetically-generated sensor
faults have been considered to perform a systematic
performance assessment of the proposed architecture.

4) The impact of different hyperparameters, such as the
number of layers and the number of nodes per layer, is
assessed for the considered scenarios.

The rest of this paper is organized as follows. Sec. II
provides a literature review regarding the related work. In
Sec. III we introduce the proposed general SFDIA architecture
and describe the different blocks for fault detection, isolation
and accommodation. Then, in Sec. IV, we present the data
description, contamination and pre-processing related to three
independent data-sets with different applications. Accordingly,
Sec. V highlights and compares the numerical performance for
all the data-sets with different setups.

Finally, in Sec. VI we provide some concluding remarks
and highlight future directions of research.

Notation - Lower-case bold letters denote vectors, (·)T is the
transpose operator, and O(·) indicates the Landau notation.

II. RELATED WORKS

First practices for sensor validation were based on hardware
redundancy [16]. These approaches used multiple sensors to
measure the same parameter at the same point as well as
a voting scheme to compensate sensors faults [16], [17].
However, hardware redundancy is unable to handle system
noise and has some other serious drawbacks in terms of cost,
weight, power consumption and size. Even more importantly,
it is sensitive to simultaneous failure of all redundant sensors
subject to the same harsh environmental conditions. Due to
these reasons, alternative approaches based on analytical re-
dundancy have gained more attention. Analytical-redundancy
approaches attempt to develop reliable virtual sensors based
on system model(s). More specifically, measurements collected
by real sensors are compared with the values from the virtual
ones to detect presence of faults and provide reliable measure-
ments for replacement [9], [15], [18]. Various model-based
and model-free (viz. data-driven) algorithms such as Kalman
filter (KF) [19], [20], hidden Markov model [21], artificial
neural networks (NN) [7], [22], and support vector machine
(SVM) [14] have focused on detection and isolation tasks
with application on aircraft sensor technologies, cyber-physical
systems and wireless sensor networks (WSNs).

Early KF-based algorithms for detection and isolation were
developed with an inherited drawback of being unable to deal
with non-linearities [19]. Extended KF and multiple hybrid
KFs were shown to overcome this issue through linearization
around the state estimate and piece-wise linear models, re-
spectively [20], [23]. Nevertheless, such solutions were heavily
dependent on domain knowledge about the system which is
not necessarily available.

As for data-driven approaches, multi-layer perceptron
(MLP) architectures were considered for reducing probabil-
ities of false alarm and miss detection through time-variant
thresholds-based tests [22]. A method based on the SVM
classifier was also proposed to detect faults through abnormal
behaviors in the last three data measurements [14]. However,
this method makes decision using redirected data to the server
which results in delayed fault detection. Since the SVM
classifier was only able to classify the faulty data, a deep belief
network [7] coupled with a maximum squared error method
for fault detection and isolation purposes was investigated. To
address large data requirement of data-driven approaches, fault
detection and isolation filters were derived in the state-space
representation form by estimating system impulse response
coefficients in the frequency domain via fast Fourier transform
of input/output signals [24].

In the context of industrial WSNs, a threshold-free error
detection (TED) method was developed [25]. TED relies on
both temporal and spatial correlation between sensor readings.
Recently, a method named TPE-FTED [10] based on an
adjustable step window was proposed for online learning the
changes of sensor readings in a dynamic environment. TPE-
FTED deals with fault detection and isolation problem as a
trajectory pattern extraction problem extracted from different
sensing states. Then, TPE-FTED starts pattern matching as
well as spatial-temporal constraint violation checking to detect
the faulty sensor.

In summary, model-based algorithms require good knowl-
edge of system model/ parameters and are difficult to imple-
ment in presence of nonlinearities. Conversely, data-driven al-
gorithms may represent a valid alternative to analytical model-
based algorithms: ease of implementation and capabilities to
capture non-linear behavior by learning from historical data
have increased attention toward data-driven algorithms for
SFDIA schemes [8], [9], [15], [26]–[28].

An SFDIA scheme based on MLPs by consociating one
main NN and a set of decentralized NNs has been proposed
to create a system for detecting failures of gyro sensors
of an aircraft [26]. Previous-time measurements of sensors
under estimation were also used as the input of MLP NNs.
A minimal radial basis function (MRAN) NN presented in
[27] was able to reduce NN complexity by ignoring hidden
neurons with less effect on the NN output. This algorithm was
relatively slow in detecting faults after the occurrence of the
faults. The performance of MLP and Extended MRAN NNs
on sensor failure accommodation scheme were evaluated and
compared through a study for failure on air data system [28].
This study showed similar performance of both NNs as online
estimators, with slightly better performance of MLP NN in the
training phase. SFDIA scheme presented in [15] employed
a fully connected cascade (FCC) NN with only one neuron
per layer connected to all previous layers. The proposed FCC
NN was able to perform efficiently with a limited number of
neurons and reduced computational complexity in comparison
to MLP NN.

A NN-based sensor validation scheme for heavy-duty diesel
engines was proposed using two banks of NN approximators
to generate a residual signal for isolating faults and to produce
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an approximation of faulty sensor measurements [9]. A hybrid
structure constructed of adaptive linear (ADALINE) NN for
linear dominant operating conditions as well as MRAN NN
for non-linear dominant operating conditions were considered
to decrease complexity and computational load. However, the
proposed scheme is still slow in detecting faults and requires a
high number of neurons to approximate sensor output. In [8],
the SFDIA approach based on artificial hydrocarbon networks
(AHN) over WSN was presented. AHN is exploited to predict
the temperature and detect the faulty sensor using in-field
sensors and comparing it with information from a web service.

A distributed spike fault detection method was presented
for linear time-invariant systems based on online learned pair-
wise relationships of sensors using auto-regressive with exoge-
nous input time-series model [29]. Another method utilized
a seasonal auto-regressive integrated moving average models
for forecasting surface temperature variation of concrete sewer
pipes [6]. Predicted values were used as a reference measure
for fault detection and replacement for faulty data. However,
the presence of faults and anomalies reduces the forecasting
performance of this method as it relies on previous measure-
ments of the faulty sensor.

III. SYSTEM ARCHITECTURE FOR SFDIA SCHEME

In the proposed SFDIA scheme, sensors are split into
two groups: the unreliable set SU with NU sensors that are
prone to failures, and the reliable set SR with NR reliable
sensors. Indeed, in some applications some sensors could be
more reliable because of sensor quality, hardware redundancy,
proper design and working environment, being at middle of
life time [30], or some other forms of protection in higher
architectural layers. The proposed SFDIA algorithm can also
handle the case of SR being the empty set (NR = 0). The
objective is to detect, identify and accommodate failure of
faulty sensors among the unreliable set whenever they happen.
In the following, xs[n] denotes the measurement from the
generic sth sensor at time instant n. Without loss of generality,
we number sensors 1 to NU those belonging to the unreliable
set, and NU + 1 to NU +NR those belonging to the reliable
set, then we denote xU,s[n] and xR[n] the vectors collecting
the measurements from the unreliable sensors with sth sensor
excluded and from the reliable sensors, respectively, at time
instant n.

The block diagram of the proposed SFDIA scheme is
shown in Fig. 1, where similar blocks and similar data are
reported in the same color. The input to the system is the set
of measurements from all sensors. The system is based on
three stages: (i) the first stage is made of NU virtual sensors
(representing estimation of unreliable sensors); (ii) the second
stage is made of NU analogous residual-computation units;
and (iii) the third stage is made of a (multi-task) classifier.
The classifier at the third stage is performing detection and
isolation, while accommodation is done by exploiting the
estimators’ output.

More specifically, at the first stage, the virtual sensor s ∈ SU
receives as input the measurements from all sensors excluding
sensor s (i.e. (SU ∪ SR − {s}) for time instant n and Lv

previous time instants (i.e. a sliding window), and produces
as output an estimate of the measurement of sensor s ∈ SU,
whose nth sample is denoted ys[n].

Then, at the second stage, the residual-computation unit
s ∈ SU receives as input the measurement xs[n] of sensor
s ∈ SU and the corresponding estimate ys[n] from the
virtual sensor s ∈ SU and produces as output a measure of
dissimilarity of the pair, whose nth sample is denoted es[n].
Residual measurements are reflecting inconsistencies between
the normal and faulty sensor operating status of unreliable
sensors.

At the third stage, the classifier receives as input the dis-
similarity measures from all the sensor pairs in the unreliable
set SU for time instant n and Lc previous time instants, and
produces as output a decision vector about if and which sensor
has undergone a failure. According to Fig. 1, the nth (soft-)
decision vector is denoted d[n] = (d1[n], d2[n], . . . , dNU

[n])T

where di[n] ∈ [0, 1], i = 1, . . . , NU denotes the probability
of the ith sensor (corresponds to a specified unreliable sensor)
being faulty. Ideally, a vector d[n] with all elements set to 0
denotes the event that no sensor has been declared in failure,
while the set of unreliable sensors SU is mapped bijectively
into the first NU positive integers with an arbitrary labeling
function. The final decision is made based on whether the
maximum element of vector d[n] exceeds a given threshold
γ. Nonetheless, the proposed SFDIA architecture (cf. Fig. 1),
can detect, isolate and accommodate more than one sensor
simultaneously. In this case, SFDIA scheme would present
better performance for large scale systems. However this issue
falls beyond the scope of this paper and will be explored in
future works.

It is implicitly assumed that in the case that sensor s ∈ SU
is declared in failure, its measurement xs[n] is replaced with
the estimate ys[n] from the corresponding virtual sensor. It is
apparent how the considered architecture implements all the
tasks of a SFDIA system: i.e. decision vector d[n] with an
over threshold element represents the detection task; after a
fault is detected, the specific sensor index i corresponding to
the maximum element di[n] of the decision vector performs
the isolation task and replacing xs[n] with ys[n] employs the
accommodation task, with the sensor s identified through the
inverse labeling function. In what follows, we detail each of
three aforementioned stages.

1) Virtual Sensor: An MLP NN, with (Lv+1)(NU+NR−1)
inputs, 1 output, and Hv hidden layers, each with Nv hidden
nodes, has been considered for the implementation of the
generic virtual sensor, i.e.

ys[n] = f (Hv,Nv)
s (xU,s[n], . . . ,xU,s[n− Lv]

,xR[n], . . . ,xR[n− Lv]) , (1)

where fs represents the MLP-based function model of the
sth sensor. Each MLP has been trained using the Nesterov-
accelerated adaptive moment estimation (Nadam) optimization
algorithm using real-world data-sets [31], [32]. The Nadam
algorithm takes advantage of properties of adaptive moment
estimation (Adam) algorithm and incorporates Nesterov Ac-
celerated Gradients to Adam. Hyperbolic tangent (tanh) and
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Fig. 1: Block diagram of the SFDIA system.

identity activation functions are employed in hidden layers and
the output layer, respectively. Mean square error (MSE) loss
function is used for loss calculation in training phase.

The MLP is a simple architecture with proved performance
of estimating nonlinear behavior [26], [28]. Numerical re-
sults show the excellent performance of MLP architecture.
However, in the case of further requirement of extrapolating
long-term impact of the temporal dimension for time series
data-sets, more complicated architectures (e.g. convolutional
neural networks, recurrent neural networks (RNNs) and long
short term memory networks (LSTMs) [33], [34]) are expected
to present more appropriate results for the implementation
of each virtual sensor. Data description, data pre-processing
(in order to make it suitable for model training) and data
contamination procedure (via synthetically-generated faults)
are described in the next section.

2) Residual Computation: For dissimilarity measure, we
simply considered the error between the estimated value and
the actual value, i.e.

es[n] = ys[n]− xs[n]. (2)

In fault-free condition, it is expected that the residual mea-
surements es[n] be equal to zero, but in practice, it always
contains non-zero value due to noise and imperfect estimation
of sensor output. Hence, the classifier is introduced to discrim-
inate faulty measurements from non-faulty measurements via

pattern analysis of residual signals.
3) Classifier: An MLP NN, with NU inputs, NU discrete

output, and Hc hidden layer with Nc hidden nodes, has been
considered for the implementation of the classifier, i.e.

d[n] = g(Hc,Nc)(eU[n], . . . , eU[n− Lc]). (3)

where eU[n] is a vector of the dissimilarity measurements of
the unreliable set at time instant n. Since there is a certain level
of correlation between temporal samples of residual signals,
Lc previous time instants are also fed to the classifier to exploit
the temporal correlation among measurements.

The binary cross-entropy loss function along with the same
optimization algorithm (Nadam) and activation function (tanh)
for hidden layers as in the virtual sensors are employed in the
classifier. Moreover, NU sigmoid activation function is used
at the output layer of the classifier. The fault-signal generation
is described in the next section.

Computational Complexity: The computational complexity
of the proposed SFDIA structure is calculated hereunder
in terms of the big-O notation for one input sample. The
computational complexity for each layer of the virtual sensor
and classifier is specified in Tab. I.

It is worth noticing that in Tab. I, the impact of tanh and
sigmoid operations for virtual sensors and the classifier has
been neglected. Finally, with respect to the computational
complexity of both MLPs and assuming equal number of
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TABLE I: Computational complexity of the MLPs constituting
the proposed SFDIA architecture.

Layers MLP Complexity

first hidden
layer

virtual sensor O(LvNUNv + LvNRNv)

classifier O(LcNUNc)

other hidden
layers

virtual sensor O(N2
v )

classifier O(N2
c )

output layer
virtual sensor O(Nv)

classifier O(NUNc)

in total
virtual sensor O(LvNUNv + LvNRNv +HvN2

v )

classifier O(LcNUNc +HcN2
c )

hidden layers (Hv = Hc = H), nodes per hidden layer
(Nv = Nc = N ) and time delays (Lv = Lc = L), the com-
putational complexity involved with the proposed architecture
is approximately O(LN2

UN + LNRNUN +HNUN
2). Thus,

the proposed architecture has polynomial complexity, and the
complexity grows quadratically as a function of the number of
nodes per layer (N ) and number of unreliable sensors (NU).

IV. DATA DESCRIPTION, PRE-PROCESSING, AND
CONTAMINATION

A. Data Description
Three real-world data-sets are applied to the proposed

SFDIA system to evaluate the qualification of the system in
different scenarios.

1) Air Quality (AQ) Data-Set: The first data-set contains
hourly-averaged measurements of an array of 5 metal oxide
chemical sensors embedded in a gas multi-sensor device
deployed on the field in an Italian city along with gas concen-
trations references from a certified analyzer [11]. The device
was located in a polluted area, at road level of the city. AQ
data-set was recorded during Mar. 2004-Feb. 2005.

Measurements contain carbon monoxide (CO), non-metanic
hydrocarbons (NMH), nitrogen oxides (NOx), nitrogen diox-
ide (NO2) and ozone (O3) gas concentrations, as well as
measurements of temperature and humidity. For our analysis,
the ground truth hourly-averaged concentrations provided by
a co-located reference certified analyzer along with absolute
humidity are ignored. Accordingly, in our numerical analysis,
the five gas sensors are considered as the unreliable set (NU =
5), whereas temperature and relative humidity are considered
as the reliable set (NR = 2).

2) Wireless Sensor Network (WSN) Data-Set: The second
data-set used in our evaluation has been collected at the
University of North Carolina at Greensboro [12]. A labeled
data-set collected from a single-hop and a multi-hop WSN
using TelosB motes. The data-set consists of 4 sensors located
indoor and outdoor measuring humidity and temperature.
Measurements were collected during 6 hours at 5 seconds
interval. Anomalies indicated with label ”1” in the original
data-set were introduced to two sensors by using a water kettle
which increased the temperature and humidity.

In what follows, only the multi-hop data-set with 4 tem-
perature (T1 to T4) measurements is used as unreliable set

(NU = 4), and data with the indicated label ”1” were ignored
from this data-set. No reliable set is considered for this data-set
(NR = 0).

3) Permanent Magnet Synchronous Motor (PMSM) Data-
Set: The third data-set comprises several sensor data measure-
ments from a permanent magnet synchronous motor collected
by the LEA department at Paderborn University [13], [35].
Data-set measurements include ambient temperature, coolant
temperature (CT), voltage q and d components, current q and
d components, motor speed (MS), torque (TRQ), rotor tem-
perature, stator yoke temperature, stator tooth temperature, and
stator winding temperature. Original measurements contain 52
sessions, with each session being 1 ∼ 6h long and sampled at
intervals of 0.5 seconds.

We have considered a sample interval of 15 seconds (by
down-sampling) and ignored the ambient and rotor measure-
ments. Summation of q and d components of voltage and
current are treated as final voltage (V) and current (C) mea-
surements. The reliable set consists of 3 stator temperatures
(NR = 3), and other remaining measurements form the
unreliable set (NU = 5).

B. Pre-processing

As commonly done in machine-learning applications, in
order to avoid polarization in the training due to different
ranges of different variables, measurements of each sensor
have been normalized such to span the range [0, 1] via min-
max scaling

x′s[n] =
xs[n]− xmin

xmax − xmin
, (4)

where x′s[n] represents the normalized measurements of the
sth sensor, whereas xmax and xmin are the minimum and
maximum of the training set for given sensor measurements.
It is worth mentioning, in the normalization process, xmax and
xmin are derived based on the training set of each data-set to
present the real-world condition. Besides normalization, entire
rows with missed data in data-sets are omitted. No other pre-
processing has been considered, such as feature extraction, to
help the learning procedure of the virtual sensors. Although,
for noisy data-sets, smoothing techniques (e.g. moving aver-
age, Savitzky-Golay filter or quadratic regression) or low-pass
filtering can be performed allowing the important patterns of
data to stand out.

In proposed architecture, instead of using all sensor except
the one under estimation as input of each virtual sensor, only
the most correlated sensors could be considered as input. This
would help containing complexity, specially for large-scale
systems, while ensuring acceptable performance. Correlation
matrix of all sensors could be obtained from the training set.
However, this issue is beyond the scope of this paper and will
not be here investigated. Architectures with different number
of hidden layers has been compared in order to verify if a deep
architecture can overcome the need for feature extraction for
the specific problem.
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C. Data Contamination

In order to build data-sets including sensor failures for
training the SFDIA classifier and testing its performance,
synthetic fault signals have been generated and injected to all
three data-sets. Failure of a sensor could manifest in several
ways [36]–[38]. The most common fault models are bias,
drift, freezing and random fault. In this paper, without loss
of generality, we considered bias and drift faults to represent
hard and soft failures, respectively. The mathematical model
for each of them is described in what follows.

1) Bias fault: In this type of failure (also known as step
fault), a constant bias b for M consecutive samples was added
to the sensor measurements, namely

xs[n] =

{
as[n] + νs[n] + b , 0 ≤ n−m < M

as[n] + νs[n] , else
(5)

where as[n] is the ideal (without fault) measurement of the sth
sensor and m is the starting time instant of the fault, while
νs[n] denotes the measurement noise. Sensor measurements in
all three data-sets are (naturally) including measurement noise
(i.e. they provide as[n] + νs[n]).

2) Drift fault: This additive fault happens in M +N consec-
utive samples when sensor output drifts up to the bias level b
with M time instants

xs[n] =


as[n] + νs[n] +

b(n−m+1)
M , 0 ≤ n−m < M

as[n] + νs[n] + b, M ≤ n−m < M +N

as[n] + νs[n], else

(6)

where N is the number of consecutive samples that the drift
fault remains at the saturated bias level b. Also, we considered
M > N to stress the effect of the drift.

V. NUMERICAL RESULTS

In this section, performance of the proposed SFDIA archi-
tecture is examined and compared with recent research works
by using the aforementioned real-world data-sets. Each data-
set is divided into three parts. On each data-set, we used 70%
of data for training MLPs (training set), 15% for validating
(validation set) and last 15% block of data for testing purposes
(test set). Early stopping method is used to avoid over-fitting
during the training phase [39]. In this method, error on the
validation set is monitored and if after 20 consecutive epochs
validation set error did not improve, the training process is
stopped.

We denote variation domain the size of the range spanned
by a sensor with reference to the training set. Maximum
level b of generated faults is assumed uniformly distributed
between 0.2 and 0.4 (i.e. accounting for 20 to 40 percent of
the corresponding variation domain) to represent weak fault
signals. Positive and negative faults are generated randomly.
Uniform distribution of maximum level b assures that the
classifier will not learn on a specific level. Table II reports
the variation domain for each sensor. The variation domain,
which is always less or equal to the true range of each sensor
(e.g. on WSN data-set in Tab. II, maximum variation domain

TABLE II: Variation domain for each sensor.

Data-set Sensors Variation Domain

AQ CO NMH NOx NO2 O3

1392 1830 2360 2118 2270

WSN T1 (°C) T2 (°C) T3 (°C) T4 (°C) -

3.57 3.72 2.23 1.99 -

PMSM CT V C MS TRQ

3.50 6.00 7.24 3.25 6.33
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(a) Training set (b) Test set

Fig. 2: Averaged performance of the virtual sensors for
different number of nodes Nv in terms of PDF of the error
signals on each data-set. Different configurations are denoted
with Hv ×Nv.

is 3.72°C while usually temperature sensors range are around
150°C or even higher), is used as criterion since the true ranges
were unknown. In addition, to better understand the effect of
fault strength on detection accuracy, strong fault signals with
maximum level b uniformly distributed between 0.6 and 0.9
are considered for comparison with weak fault signals.

A. Virtual Sensors Performance

Virtual sensors with Nv ∈ {5, 10, 15} nodes per hidden
layer and Hv ∈ {1, 2, 3} hidden layers have been trained and
compared. In detail, virtual sensors’ overall performance on
both training and test sets are shown in Figs. 2 and 3 in terms
of PDF of all sensors error signals (eU[n]) in each data-set.

The improvement of the performance with increasing the
number of nodes (Nv) and hidden layers (Hv) is apparent,
but variable for different data-sets. Fig. 2 seems to suggest
the improvements with respect to the number of nodes per
layer saturate approximately with Nv, while, as it can be seen
in Fig. 3, adding more layers has only a relevant effect on
the largest data-set (PMSM data-set). It must be said that
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Fig. 3: Averaged performance of the virtual sensors for
different number of hidden layers Hv in terms of PDF of
the error signals on each data-set. Different configurations are
denoted with Hv ×Nv.
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Fig. 4: Averaged performance of the virtual sensors in config-
uration 1× 10 for different number of previous time instants
Lv in terms of PDF of the error signals on each data-set.

deeper network structures require larger data-sets to update
their weights and biases, thus the saturation effect might be
due to the limited amount of available data. Fig. 4 illustrates
the impact of input window size Lv on the virtual sensors per-
formance. By employing delayed samples, the virtual sensors
can exploit the temporal correlation between data samples to
enhance estimation performance. However, the PMSM data-

(a) Training set (b) Test set

Fig. 5: Averaged performance of the virtual sensors in con-
figuration 1 × 10 and Lv = 10 in terms of 2D PDFs of the
estimated and actual values.

set has a very limited temporal correlation.
Performance of the configuration with Hv = 1 hidden

layer, Nv = 10 nodes per hidden layer and Lv = 10 is
considered acceptable, thus in the following, we will refer to
this specific configuration. The 2D-PDF plots of the estimated
and actual values for virtual sensors in configuration 1 × 10
are shown in Fig. 5, both for the training and the test sets. It
is worth noticing that the test set of the WSN data-set exceeds
the defined normalization lower-bound which is the result of
normalization on the training set.

B. Classifier Fault Detection and Classification
Performance

Synthetically-generated faults have been added to unreliable
set of sensors to emulate faulty sensors. Different configura-
tions for the classifier are compared in the following. Table III
lists the number of parameters (weights and biases) to be
trained during training phase in the classifier and each virtual
sensor for different configurations.

A classifier with Hc = 2 hidden layers, Nc = 15 nodes per
hidden layer and a memory of Lc = 10 has been trained. In
this configuration, according to Tab. III, a total number of 725
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Fig. 6: ROC curves of proposed SFDIA structure for all data-
sets under bias and drift faults.
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Fig. 7: Detection performance of the classifier for different
number of nodes per hidden layer Nc in terms of ROC on
each data-set.

trainable parameters of the classifier are required to be updated
through training phase over AQ and PMSM data-set1.

The probabilities of detection and false-alarm are two
important metrics for evaluating the performance of a de-
tector. Accordingly, in Fig. 6, fault detection performance

1The number of trainable parameters of the classifier is different for WSN
data-set due to different Number of unreliable sensors (NU = 4).
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Fig. 8: Detection performance of the classifier in configuration
2 × 15 for different number of previous time instants Lc in
terms of ROC on each data-set.
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Fig. 9: Averaged classification (isolation) performance of the
classifier in configuration 2 × 15 for different number of
previous time instants Lc in terms of ROC on each data-set.

is investigated in terms of both metrics by using the well-
known receiver operating characteristic (ROC) curves (i.e. by
varying the threshold γ). Results highlight that, although the
classifier is facing weak fault signals, it is still capable to detect
them with a very high probability for negligible false-alarm
probability. Detection probability of bias faults is noticeably
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TABLE III: number of trainable parameters (weights and
biases).

Virtual Sensora Classifiera

Nc, Hc, Lv Lc

Nv Hv 0 5 10 15 0 5 10 15

5 1 31 131 231 331 60 185 310 435
2 61 161 261 361 90 215 340 465

10 1 61 261 461 661 115 365 615 865
2 171 371 571 771 225 475 725 975

15 1 91 391 691 991 170 545 920 1295
2 331 631 931 1231 410 785 1160 1535

a No reliable sensor (NR = 0) and NU = 5 unreliable sensors considered
for calculations.

higher than drift faults over different false alarm rates. This is
originally due to the ramp up phase of drift faults which takes
classifier more samples to detect faults. As illustrated in Fig. 6,
WSN data-set has somewhat lower performance in comparison
with the other two data-sets (in case of drift faults). It is mainly
because of very weak fault levels on this data-set according
to its sensors’ variation domains (see Tab. II). Conversely,
detection performance of proposed architecture under strong
faults are significantly higher than the detection performance
under weak faults as shown in Fig. 6, which highlights the
importance of detection and isolation of weak faults.

The detection rate of the classifier with 5 and 15 nodes per
hidden layer is assessed in Fig. 7 in case of drift faults. It is
apparent from both train and test sets that 5 nodes per hidden
layer are not enough for distilling relevant features from the
data sequences. In general, the accuracy on test set is lower
than the accuracy on train set since the classifier is optimized
for the latter. Figs. 8 and 9 demonstrate the effect of using
time-delayed samples on the classifier in the case of drift fault.
There are certain improvements in detection performance and
averaged classification (isolation) performance2 when tempo-
ral correlation exists in sensor measurements. However, as it
can be seen on both Fig. 8.(b) and 9.(b), the performance
slightly reduces with increasing number of time delays (Lc =
15) due to the negligible temporal correlation between older
samples and current sample in the measurements. Besides, in
this scenario, increasing the window size should potentially
lead to a performance improvement, however a larger number
of nodes in the hidden layers might be required to handle
properly the increased number of input nodes. Differently, with
a fixed network structure, increasing the window size might
in practice saturate the learning capability.

Figure 10 shows the performance in terms of “multi-class
ROC” for each detected class for AQ data-set under drift
faults, i.e. no failure and sensor-1 to sensor-5 failures. More
specifically, each subfigure refers to a specific true sensor fault
and reports the curves of the probability of classification for
each possible fault (including the no-fault scenario represented
with a dashed line) obtained through varying the selected

2Averaged classification performance is the average of correct classification
probability on all sensors in data-set. Non-fault occurrence is considered as a
separate class.
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Fig. 10: Classification ROC curves for AQ data-sets under
drift faults.

TABLE IV: Detection and classification accuracy based on
Youden’s index.

Data-set Fault
Type γ

Pd

(%)
Pf

(%)
Pdi

a

(%)
Sensors Classification

Performance (%)

AQ

CO NMH NOx NO2 O3

Bias 0.109 95.2 1.1 91.3 94.8 99.8 93.0 68.5 99.9

Drift 0.1345 93.1 7.0 90.6 95.3 96.0 89.1 86.5 86.2

WSN

T1 T2 T3 T4 -

Bias 0.151 97.3 0.2 89.8 94.1 99.9 94.7 70.1 -

Drift 0.213 95.0 2.1 86.0 92.7 95.4 83.7 72.4 -

PMSM

CT V C MS TRQ

Bias 0.001 99.9 7.4 89.0 99.0 94.6 91.7 68.1 91.4

Drift 0.107 97.0 2.0 81.1 90.2 76.4 83.3 65.7 90.0
a Pdi = Averaged probability of correct classification on all sensors.

threshold3. The probability of correct classification for all
5 sensors reaches ≈ 95%. Also, it is apparent how good
detection and identification results are obtained at the expenses
of reduced misclassification rates. Apart from misclassification
with the none case, the case with NO2 sensor failure being
misclassified as a NMH sensor failure is the most difficult
misclassification case to avoid in AQ data-set. In all data-sets,
the results with bias faults are notably improved in comparison
to those with drift fault4.

There exists several criteria for setting the optimal threshold

3Plots are not depicted with respect to the selected threshold, but with
respect to the corresponding probability of false alarm. It is worth noticing
that well-known confusion matrices may be obtained from these plots by
selecting a desired point of operation (corresponding to a specific value of
the numerical threshold γ providing the classifier output).

4Classification performance on different sensors of other two data-sets as
well as bias faults are not shown for brevity.
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TABLE V: Detection accuracy of the proposed architecture
compared to the SVM classifier and the FCC technique on
the test set.

Data-set Architecture Metrics
Bias (%)

Weak Strong

Drift (%)

Weak Strong

AQ

Pf 2.82 0.01 2.32 0.17

SVM Pd 79.2 98.0 70.4 88.8
FCC Pd 98.5 - 85.2 87.9

Proposed Pd 97.5 98.9 84.1 95.9

WSN

Pf 22.7 0.15 21.7 1.0

SVM Pd 95.9 98.5 88.2 90.3
FCC Pd 100 - 94.4 96.3

Proposed Pd 100 98.9 98.2 94.2

PMSM

Pf 0.05 0.06 0.11 0.15

SVM Pd 34.9 92.3 31.8 77.7
FCC Pd 15.9 99.7 25.0 50.8

Proposed Pd 58.1 99.8 56.0 96.2

value to maximize the probability of detection. In this study
we selected Youden index J , i.e. maximization the vertical
distance between the 45-degree line (equality line) and the
point on the ROC curve [40]

J = max
γ

(Pd − Pf). (7)

where Pd is the probability of detection and Pf is the proba-
bility of false alarm.

Sensors classification performance on test sets of all data-
sets with Youden index criteria are summarized in Tab. IV.
Thresholds in Tab. IV are set by applying Youden index
criteria to ROC curves from training sets. Next, all recorded
probabilities are derived from test sets for obtained thresholds.
On the whole, the achieved accuracy with bias faults is com-
paratively higher than drift faults. The best detection accuracy
of 99.9% as well as very good detection accuracy of 97.3%
with the lowest false alarm rate of 0.2% respectively obtained
on PMSM and WSN data-sets under bias fault condition which
shows excellent detection performance of the proposed SFDIA
scheme. Moreover, good classification performance on most
sensors is evident with highest average correct classification
of 91.3%, with MS sensor on PMSM data-set as the hardest
classification case.

C. Performance Comparison
Table V compares the proposed architecture with two state-

of-the-art techniques previously outlined in Sec. II: (i) the
SVM classifier [14] and (ii) the FCC NN [15] with 6 nodes.
The SVM classifier has no control over the probability of
false alarm since it does not have any threshold mechanism.
Hence, to provide a fair comparison, we tuned the threshold
on the proposed architecture and on the FCC technique to
achieve the same probability of false alarm as the SVM
classifier, and compared the probability of detection for all
techniques in Tab. V. Apparently, the detection performance
of the proposed architecture outperforms the SVM technique
for all fault types. The performance gap between these two
techniques in terms of detection accuracy becomes more
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Fig. 11: Averaged classification (isolation) performance com-
parison in terms of ROC for the test set on each data-set.

evident under weak faults. More specifically, under weak drift
fault for the PMSM data-set, the performance improvement
in fault detection of the proposed architecture over the SVM
technique is approximately 24.2%. The main reason lies in
the fact that the SVM classifier takes raw-sensor data as input
while the proposed architecture exploits the estimations of
each sensor and feeds the residual data as input to the classifier
which contains easy-to-interpret information about faults. The
FCC technique exhibits similar detection performance as the
proposed architecture over AQ and WSN data-sets, while on
the PMSM data-set the proposed architecture turns to be better
performing. In Tab. V, the detection accuracy of the FCC
technique with respect to the corresponding probability of false
alarm was not available for the WSN and AQ data-sets under
strong bias faults (as can be seen also in Fig. 11(a)). It is worth
mentioning that the detection performance on the training set
resembles those shown for the test set in Tab. V.

As for the isolation task, the proposed architecture achieves
significant gains over the FCC technique as observed in
terms of classification performance shown in Fig. 11. More
specifically, the proposed architecture takes advantage of MLP
classifier while the FCC technique merely uses a sliding win-
dow mechanism. The relevance of the proposed architecture
as an effective SFDIA scheme is apparent.

Finally, as for the accommodation task, Fig. 12 compares the
accuracy of the virtual sensors which reveals better estimation
capability of the MLPs from the proposed architecture against
the FCC NNs. The improvement is mainly due to the capability
of the proposed technique to exploit temporal correlation.
Finally, it is worth noticing that isolation and accommodation
performances of the SVM technique cannot be compared due
to its incapability to classify and estimate faulty sensors.
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Fig. 12: Accommodation performance comparison in terms of
PDF of the error signals on each data-set.

VI. CONCLUSION

In this paper, we presented a three-stage SFDIA architecture
with capability to adapt with different applications. The clas-
sifier at the third stage detects and isolates the faulty sensor
from patterns within the input residual signals. The bank of
estimators at the first stage allows to accommodate unreliable
sensors by replacing the measurements from the identified
faulty sensors. Estimators are also used at the second stage
to derive the residual signals for the classifier. An extensive
evaluation on three real-world data-sets from different appli-
cations indicated that the proposed SFDIA architecture attains
high probability of detection and correct classification with
low probability of false alarm in presence of weak bias and
drift faults.

The same architecture allows large flexibility with the com-
ponents in each layer (e.g. replacing the considered MLPs with
RNNs), thus might achieve further performance improvements
under specific circumstances. In addition, although not inves-
tigated in this work, the proposed architecture is potentially
capable of handling multiple simultaneous faults, a feature to
be considered in future works.
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of exponentially weighted moving averages for simple linear thermal
modeling of permanent magnet synchronous machines,” in IEEE 28th
International Symposium on Industrial Electronics (ISIE), 2019, pp.
318–323.

[14] S. Zidi, T. Moulahi, and B. Alaya, “Fault detection in wireless sensor
networks through svm classifier,” IEEE Sensors Journal, vol. 18, no. 1,
pp. 340–347, 2018.

[15] S. Hussain, M. Mokhtar, and J. M. Howe, “Sensor failure detection,
identification, and accommodation using fully connected cascade neural
network,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3,
pp. 1683–1692, 2015.

[16] P. Goupil, “Airbus state of the art and practices on FDI and FTC in
flight control system,” Elsevier Control Engineering Practice, vol. 19,
no. 6, pp. 524–539, 2011.

[17] S. Yin, B. Xiao, S. X. Ding, and D. Zhou, “A review on recent
development of spacecraft attitude fault tolerant control system,” IEEE
Transactions on Industrial Electronics, vol. 63, no. 5, pp. 3311–3320,
2016.

[18] S. Gururajan, M. L. Fravolini, M. Rhudy, A. Moschitta, and M. Napoli-
tano, “Evaluation of sensor failure detection, identification and accom-
modation (SFDIA) performance following common-mode failures of
Pitot tubes,” SAE Technical Paper, Tech. Rep., 09 2014.

[19] G. Heredia and A. Ollero, “Detection of sensor faults in small helicopter
uavs using observer/Kalman filter identification,” Hindawi Mathematical
Problems in Engineering, 2011.

[20] B. Pourbabaee, N. Meskin, and K. Khorasani, “Sensor fault detection,
isolation, and identification using multiple-model-based hybrid Kalman
filter for gas turbine engines,” IEEE Transactions on Control Systems
Technology, vol. 24, no. 4, pp. 1184–1200, 2015.

[21] C. Alippi, S. Ntalampiras, and M. Roveri, “Model-free fault detection
and isolation in large-scale cyber-physical systems,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 1, no. 1, pp.
61–71, 2017.

[22] F. Balzano, M. L. Fravolini, M. R. Napolitano, S. d’Urso, M. Crispoltoni,
and G. del Core, “Air data sensor fault detection with an augmented
floating limiter,” Hindawi International Journal of Aerospace Engineer-
ing, 2018.

[23] M. Carminati, G. Ferrari, R. Grassetti, and M. Sampietro, “Real-time
data fusion and MEMS sensors fault detection in an aircraft emergency
attitude unit based on Kalman filtering,” IEEE Sensors Journal, vol. 12,
no. 10, pp. 2984–2992, 2012.

[24] E. Naderi and K. Khorasani, “Data-driven fault detection, isolation
and estimation of aircraft gas turbine engine actuator and sensors,”



12 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020

Mechanical Systems and Signal Processing, vol. 100, pp. 415 – 438,
2018.

[25] J. Gao, J. Wang, P. Zhong, and H. Wang, “On threshold-free error
detection for industrial wireless sensor networks,” IEEE Transactions
on Industrial Informatics, vol. 14, no. 5, pp. 2199–2209, 2017.

[26] M. R. Napolitano, Y. An, and B. A. Seanor, “A fault tolerant flight
control system for sensor and actuator failures using neural networks,”
Elsevier Aircraft Design, vol. 3, no. 2, pp. 103–128, 2000.

[27] M. L. Fravolini, G. Campa, M. Napolitano, and Yongkyu Song, “Min-
imal resource allocating networks for aircraft SFDIA,” in IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM),
vol. 2, 2001, pp. 1251–1256 vol.2.

[28] S. Gururajan, M. L. Fravolini, H. Chao, M. Rhudy, and M. R. Napoli-
tano, “Performance evaluation of neural network based approaches for
airspeed sensor failure accommodation on a small UAV,” in 21st IEEE
Mediterranean Conference on Control and Automation (MED), 2013,
pp. 603–608.

[29] C. Lo, J. P. Lynch, and M. Liu, “Distributed reference-free fault detec-
tion method for autonomous wireless sensor networks,” IEEE Sensors
Journal, vol. 13, no. 5, pp. 2009–2019, 2013.

[30] P. Tchakoua, R. Wamkeue, M. Ouhrouche, F. Slaoui-Hasnaoui, T. A.
Tameghe, and G. Ekemb, “Wind Turbine Condition Monitoring: State-
of-the-Art Review, New Trends, and Future Challenges,” Energies,
vol. 7, no. 4, pp. 1–36, April 2014.

[31] T. Dozat, “Incorporating Nesterov momentum into Adam,” in Interna-
tional Conference on Learning Representations (ICLR), 2016.

[32] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
International Conference on Learning Representations, 12 2014.

[33] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal of Systems Engineering
and Electronics, vol. 28, no. 1, pp. 162–169, 2017.

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.
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