
Art Production w
ith Program

m
ing and Trigonom

etry
Anne M

. V. Bosch

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Anne Margrethe Vestgøte Bosch

Art Production with Programming
and Trigonometry

An Experiment in Mathematics 1T According to
the Principles of Didactical Engineering

Master’s thesis in Natural Science with Teacher Education
Supervisor: Majid Rouhani
June 2022

M
as

te
r’s

 th
es

is

Anne Margrethe Vestgøte Bosch

Art Production with Programming and
Trigonometry

An Experiment in Mathematics 1T According to the
Principles of Didactical Engineering

Master’s thesis in Natural Science with Teacher Education
Supervisor: Majid Rouhani
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

Computing has in recent years been included in compulsory education in several European countries
to equip students with the necessary skills for the 21st-century. In Norway, programming and
computational thinking were included in primary and secondary education and training in the
renewed National Curriculum in 2020. The approach chosen in Norway is to include programming
and computational thinking in mathematics and other existing school subjects. Programming is
a powerful medium for expression that has the potential to open up new possibilities particular
to the mathematics subject. For example, programming can lead to engagement and a deeper
understanding of the mathematical content. However, there are also several challenges associated
with the inclusion of programming into existing mathematics subjects, such as the threat of content
overload. There is sparse research documenting the effects of different approaches to including
programming in existing mathematics subjects. Therefore more research is needed to support the
teachers in operationalizing the curriculum.

This study aims to gain insight into and provide knowledge about how a sequence of teaching
situations in the subject Mathematics 1T on the upper secondary level in Norway can be designed
with the intent to enable knowledge development in both programming and trigonometry. The tar-
get knowledge in trigonometry intended was for the students to evaluate and apply trigonometric
theorems in problem-solving with programming. The target knowledge intended in programming
was for the students to plan and implement subroutines in problem-solving with programming.
Through realizing a self-designed sequence of lectures with two Mathematics 1T classes, this study
has investigated the contributing and constraining factors for the students’ possibilities for obtain-
ing the target knowledge.

The French didactics tradition has inspired the approach to address the research questions in this
study. A flexible and qualitative methodology inspired by Didactical Engineering (DE) was applied
with the conceptual framework provided by the Theory of Didactical Situations in Mathematics
(TDS). First, preliminary analyses of the programming and trigonometry components of the target
knowledge were conducted. Then, a sequence of lectures was designed. In line with TDS, the lecture
sequence was a didactical situation aimed at teaching the target knowledge, and the design was
founded on the preliminary analyses. The didactical situation was piloted and then realized twice
with Mathematics 1T classes. The data collected was the Python programs created by the students
in the didactical situation, observational data from the realizations, and student interviews.

The results from analyzing the data material indicate that the didactical situation has the potential
for students to attain the target knowledge. Factors in the didactical situation contributing toward
that end were the PRIMM structure of the assignments, the visual feedback enabled by the Python
turtle library, and the pair programming collaboration method. The results also indicate that
several factors in the didactical situation constrained the students’ progression towards the target
knowledge. Among the identified constraining factors were students’ unsystematic debugging of
errors in their programs and misconceptions about for-loops and the local scope of parameters in
subroutines.

This study provides insight into the inclusion of programming in the subject Mathematics 1T. This
study has identified contributing and constraining factors for the students’ possibilities for obtaining
the target knowledge in the designed didactical situation. The insights can be applied to further
develop and improve the didactical situation prior to new classroom realizations. Furthermore,
this study has shown that the DE research methodology combined with TDS can provide valuable
insight into the field intersecting programming and mathematics education. Consequently, the
approach taken in this study may inspire future research projects in the field.

i

Sammendrag

Algoritmisk tenkning og programmering har de siste årene blitt innlemmet i den obligatoriske
skolegangen i flere europeiske land for å utruste elevene med den nødvendige kompetansen og
ferdighetene som kreves i det 21. århundre. I Norge ble programmering og algoritmisk ten-
kning inkludert i grunnopplæringen gjennom det nye læreplanverket som kom i 2020, ogs̊a kalt
Fagfornyelsen. Tilnærmingen som ble valgt i Norge var å inkludere programmering og algoritmisk
tenkning i matematikk og andre eksisterende skolefag. Programmering er et kraftfullt medium som
har potensiale til å skape nye muligheter i matematikkfaget. For eksempel kan programmering føre
til engasjement og en dypere forst̊aelse av det matematiske innholdet. Det følger imidlertid ogs̊a
med utfordringer n̊ar programmering inkluderes i eksisterende matematikkfag, slik som stofftreng-
sel. Det finnes lite forskning p̊a effekten av ulike tilnærminger til å inkludere programmering i
eksisterende matematikkfag. Mer forskning p̊a dette feltet er derfor nødvendig for å støtte lærerne
som operasjonaliserer læreplanene i klasserommene.

Målet med denne studien var å gi innsikt i og kunnskap om hvordan en sekvens av under-
visningsopplegg i faget Matematikk 1T p̊a videreg̊aende skole i Norge kan utformes med den
hensikt å muliggjøre kunnskapsutvikling innen b̊ade programmering og trigonometri. Den tilsiktede
m̊alkunnskapen innenfor trigonometri var at elevene skulle evaluere og anvende trigonometriske
setninger i problemløsning med programmering. Den tilsiktede m̊alkunnskapen innenfor program-
mering var at elevene skulle planlegge og implementere subrutiner i problemløsning med pro-
grammering. Gjennom realisering av undervisningssekvensen i klasserommet med to Matematikk
1T-klasser har denne studien undersøkt de muliggjørende og forhindrende faktorene for elevenes
muligheter til å tilegne seg m̊alkunnskapen.

Tilnærmingen til å besvare forskningsspørsm̊alene i denne studien er inspirert av den franske didak-
tikktradisjonen. En fleksibel og kvalitativ metode inspirert av didaktisk ingeniørvitenskap (DE) ble
brukt sammen med teorien for didaktiske situasjoner i matematikk (TDS) som konseptuelt ram-
meverk. Den første fasen av studien var forberedende analyser av programmeringskomponenten
og trigonometrikomponenten av m̊alkunnskapen. Deretter ble sekvensen av undervisningsopplegg
utviklet. I tr̊ad med TDS var sekvensen av undervisningsopplegg en didaktisk situasjon med
hensikt å undervise i m̊alkunnskapen, og designet var fundert i de forberedende analysene. Den
didaktiske situasjonen ble pilotert og deretter realisert i to matematikk 1T-klasser. Datamaterialet
som ble samlet inn bestod av elevenes Python-programmer som ble laget i løpet av den didaktiske
situasjonen, observasjonsdata fra realiseringene og elevintervjuer.

Resultatene fra analyse av datamaterialet tyder p̊a at den didaktiske situasjonen har potensial
for at elevene kan oppn̊a m̊alkunnskapen. Faktorer i den didaktiske situasjonen som bidro til
dette var PRIMM-strukturen i oppgavene, den visuelle tilbakemeldingen muliggjort av turtle-
biblioteket i Python, og samarbeidsmetoden parprogrammering. Resultatene tyder ogs̊a p̊a at flere
faktorer i den didaktiske situasjonen var forhindrende for elevenes progresjon mot m̊alkunnskapen.
Blant de forhindrende faktorene var usystematisk feilsøking av egne programmer blant elevene og
misoppfatninger om for-løkker og lokale definisjonsomr̊adet av parametere i subrutiner.

Denne studien bidrar til innsikt i innføringen av programmering i faget Matematikk 1T. Denne
studien har identifisert muliggjørende og forhindrende faktorer i den didaktiske situasjonen for
elevenes muligheter til å tilegne seg m̊alkunnskapen. Resultatene kan brukes til å videreutvikle og
forbedre den didaktiske situasjonen ytterligere før den realiseres i nye klasserom. Videre har denne
studien vist at et forskningsdesign inspirert av DE kombinert med TDS kan gi verdifull innsikt i
feltet som undersøker krysningen av programmerings- og matematikkundervisning. Følgelig kan
tilnærmingen i denne studien inspirere fremtidige forskningsprosjekter innenfor dette feltet.

ii

Preface

This master’s thesis marks five years of studies in Natural Science with Teacher Education at
NTNU. Programming in the mathematics subject has been an academic passion for me ever since
the first long practical training period in the fifth semester. I appreciate the opportunity that I
have gotten to spend an entire semester immersing myself in this topic. On that occasion, I want
to thank those who have contributed to this report seeing the light of day.

I want to extend a thank you to my supervisor Majid Rouhani for the interesting conversations
and discussions about computing education, helpful guidance, and motivational meetings. I want
to express my gratitude to the teachers and students who participated in this project.

It has been an inspiring and educational semester. I am proud of what I have accomplished, and
I hope this report will be of some use to mathematics teachers. At times it has also been more
challenging than I could have imagined. I want to thank my family, partner, and good friends for
the unconditional support you give me.

Last but not least, a special thanks to you, Viggo. For all the breakfasts and long days together
in our reading room. For the crisis aversion conversations and for sharing the eureka moments
together.

Trondheim, June 2022
Anne Margrethe Vestgøte Bosch

iii

Table of Contents

Abstract i

Sammendrag ii

Preface iii

Table of Contents viii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement and Research Questions . 2

1.3 Methodology . 2

1.4 Structure of the Report . 3

2 The Theory of Didactical Situations in Mathematics 4

2.1 Origins . 4

2.2 Choice of Framework . 4

2.3 Concepts . 4

2.3.1 Fundamental Situation . 4

2.3.2 Didactical Situation . 5

2.3.3 Milieu . 5

2.3.4 Didactical Variables . 6

2.4 TDS in this Study . 6

3 Methodology 7

3.1 Research Design - Didactical Engineering . 7

3.1.1 Preliminary Analysis . 7

3.1.2 Design and a priori Analysis . 8

3.1.3 Realization and Data Collection . 8

3.1.4 A posteriori Analysis and Validation . 8

3.2 Pilot Realization . 9

3.3 Participants . 9

3.4 Data Collection . 9

3.4.1 Student Programs . 10

3.4.2 Observation . 10

3.4.3 Semi-Structured Interviews . 10

iv

3.5 Data Analysis . 11

3.6 Validity and Reliability . 11

3.7 Ethical Considerations . 12

3.7.1 Privacy . 12

3.7.2 Consent to Participate . 13

3.7.3 The Dual Researcher-Teacher Role . 13

4 Preliminary Analysis of Trigonometry 14

4.1 Two Conflicting Definitions . 14

4.2 Units for Angle Measurement . 16

4.3 Implications . 17

4.3.1 The SAS Theorem . 17

4.3.2 The Law of Sines . 17

4.3.3 The Law of Cosines . 18

5 Preliminary Analysis of Programming 19

5.1 Definitions . 19

5.1.1 Programming . 19

5.1.2 Subroutine . 19

5.2 Epistemological Analysis . 19

5.2.1 Origins of Subroutines . 19

5.2.2 Implementation of Subroutines . 20

5.3 Didactical Analysis . 20

5.3.1 PRIMM . 20

5.3.2 Pair Programming . 21

5.3.3 Debugging . 22

5.4 Institutional Analysis . 24

5.4.1 Results from the Pilot Project . 24

5.4.2 Results from the Specialization Project . 25

5.4.3 Information about the Investigated Classes 26

6 Result of Design Development 27

6.1 Duration . 27

6.2 Connection to the Curriculum . 27

6.3 Target Knowledge . 27

6.3.1 Programming Component of the Target Knowledge 28

v

6.3.2 Mathematical Component of the Target Knowledge 28

6.4 Main Problem and Solution Proposal . 28

6.4.1 Main Problem . 28

6.4.2 Art Program Solution Proposal . 28

6.5 Milieu . 32

6.5.1 Debugging Poster . 33

6.5.2 Pair Programming . 33

6.5.3 Assignments . 34

6.5.4 Python Cheat Sheet . 34

6.5.5 Paper and Pencil . 34

6.5.6 Driver PC . 34

6.5.7 Navigator Resources . 35

6.5.8 Intellectual Milieu . 35

6.6 Session 1 . 35

6.6.1 Devolution . 36

6.6.2 Adidactical Work Phase . 36

6.6.3 Institutionalization . 37

6.7 Session 2 . 37

6.7.1 Devolution . 37

6.7.2 Adidactical Work Phase . 38

6.7.3 Institutionalization . 39

6.8 Session 3 . 39

6.8.1 Devolution . 40

6.8.2 Adidactical Work Phase . 40

6.8.3 Institutionalization . 41

7 Results from the Classroom Realizations 42

7.1 Session 2 . 42

7.1.1 Hard-Coding Triangles . 42

7.1.2 Special Cases of Triangles . 42

7.1.3 Redundant For-Loops . 43

7.2 Session 3 . 44

7.2.1 Repeated Function Calls . 44

7.2.2 Calculation of Area . 46

7.2.3 Variable and Parameter Scope . 47

vi

7.3 Perceptions of Motivational Factors . 48

7.4 Ambivalence to Pair Programming . 48

7.5 Debugging Perceptions . 48

7.6 Debugging Observations . 49

7.7 Evaluation of Target Knowledge Attainment . 50

8 Discussion 51

8.1 Students’ Progression in the Assignments . 51

8.2 Engagement . 51

8.3 Focus on Visual Results over Process . 51

8.4 Technical Overhead . 52

8.5 Misconceptions of Loops . 53

8.6 Imprecise Wording in the Assignments . 53

8.7 Local Scope in Subroutines . 53

8.8 Unsystematic Debugging . 53

8.9 Duration . 54

9 Conclusion 55

9.1 Answering the Research Questions . 55

9.2 Implications . 56

9.3 Limitations . 57

9.4 Further Research . 57

9.4.1 Computational Thinking . 57

9.4.2 Digital Art Production in the Mathematics Subject 58

9.4.3 Didactical Engineering . 58

9.5 Professional Relevance . 58

Bibliography 59

Appendices 63

A NSD Approval 63

B Interview Guide in Norwegian 66

C Form of Consent 67

D Form of Consent (Pilot) 70

vii

E Area Formula Derived from The SAS Theorem 73

F Proof of The Law of Sines 74

G Proof of The Law of Cosines 76

H Debugging Poster in Norwegian 78

I Python Cheat Sheet in Norwegian 79

J Assignments in Norwegian 81

K Live Coding in Session 2 85

L Transcription Codes 86

M Specialization Project Report 87

N Pilot Project Report 126

viii

1 Introduction

1.1 Motivation

In recent years, computing has been included in compulsory education in several European coun-
tries such as Norway, Sweden, Finland, Estonia, and England (Sanne et al., 2016; Sevik, 2016). A
common rationale behind including computing in schools is to equip students with the skills and
knowledge needed in the 21st century. Skills such as creativity, communication, and technology
production with programming are crucial to the future workforce (Sanne et al., 2016; Sevik, 2016).
Computing in compulsory education reaches everyone, including the students that will not work
with producing digital technology in the future. Computing for everyone has the potential to
strengthen computational literacy in the population. Providing access to operate a computation-
ally powerful medium opens up unprecedented possibilities for expression in all fields of society in
the future (Guzdial, 2015).

In Norway, computing has been included in primary and secondary education and training as
part of the national curriculum renewal in 2020. The approach chosen in Norway has been to
incorporate computational thinking and programming in mathematics and other existing school
subjects (Bocconi et al., 2018; Ministry of Education and Research, 2017). In addition to the overall
goals of introducing computing in compulsory education, it is argued that programming opens
up new possibilities particular to the mathematics subject. Programming is a computationally
powerful medium for expression that can provide new representations, transforming the students’
understanding of the mathematical content (Guzdial, 2015). Other expected benefits are increased
motivation, persistence, and performance in mathematics (Forsström & Kaufmann, 2018).

There is, however, limited research documenting the effects (Forsström & Kaufmann, 2018). There
are also challenges related to including programming in existing mathematics subjects. The addi-
tion of programming can result in content overload. There is also a need for continuing education in
programming to support the mathematics teachers operationalizing the inclusion. These challenges
can potentially counter the desired benefits (Sanne et al., 2016).

Exploiting synergies between the content in mathematics and programming is a possible approach
to counter the challenge of content overload (Guzdial, 2015). However, there is also limited research
investigating the effects of cross-curricular approaches where learning objectives in computing and
another subject, like mathematics, are both in focus (Waite, 2017).

In summary, new possibilities and challenges follow the inclusion of programming in existing math-
ematics subjects in Norway. There is a lack of documentation of the effects both internationally
and nationally, calling for more research. This study will contribute to the field by addressing the
identified gap in the research.

1

1.2 Problem Statement and Research Questions

This study aims to gain insight into and provide knowledge about how a sequence of teaching
situations can be designed with the intent to enable knowledge development in both mathematics
and programming. The study is limited to the subject Mathematics 1T (Norwegian Directorate for
Education and Training, 2020b) on the upper secondary level in Norway. The specialization pro-
ject leading up to this master’s thesis identified trigonometry as the most pertinent mathematical
content knowledge in dual mathematics and programming lessons created by 26 in-service Math-
ematics 1T teachers enrolled in continuing education (Bosch, 2021a). Therefore, trigonometry was
deemed an appropriate branch of mathematics to combine with programming in this study.

The problem statement and research questions addressed in this study are consequently:

How can a designed didactical situation1 in Mathematics 1T affect students’ opportun-
ities for obtaining the target knowledge in programming and trigonometry?

RQ1: Which factors in the didactical situation contribute toward students’ possibilit-
ies for obtaining the target knowledge in trigonometry?
RQ2: Which factors in the didactical situation contribute toward students’ possibilit-
ies for obtaining the target knowledge in programming?
RQ3: Which factors in the didactical situation hinder the students’ possibilities for
obtaining the target knowledge in trigonometry?
RQ4: Which factors in the didactical situation hinder the students’ possibilities for
obtaining the target knowledge in programming?

Where the specific target knowledge in programming and trigonometry intended in this study are,
respectively:

The students should be able to plan and implement subroutines in problem-solving
with programming.

The students should be able to evaluate which trigonometric theorems are appropri-
ate in problems centered around solving triangles and apply the theorems to solve the
problems with programming.

1.3 Methodology

The study takes an approach close to classroom practice drawing from the French didactics tradition
(Barquero & Bosch, 2015) to answer the research questions. The research methodology applied
in the project was inspired by Didactical Engineering (Artigue, 2015), structured in four phases:
1) preliminary analysis, 2) design and a priori analysis, 3) realization and data collection, 4) and
a posteriori analysis and validation of the design. The Theory of Didactical Situations (TDS)
(Brousseau, 2002) provided a well-researched framework of concepts for lecture structure and
analysis, with the target knowledge at the center.

Accordingly, this research project included conducting preliminary analyses of the target knowledge
at stake, designing a sequence of lectures, piloting and realizing the designed sequence of lectures,
and evaluating factors in the design contributing to or constraining the students’ opportunities for
obtaining the target knowledge intended in the design.

1The concept didactical situation is described in Chapter 2

2

1.4 Structure of the Report

The structure of this report is highly influenced by the four phases in DE conducted in this
project. The following paragraph describes the report’s structure and highlights the connection to
the phases in DE.

The conceptual framework in this study is the Theory of Didactical Situations in Mathematics
(TDS). Relevant terms from TDS are presented in Chapter 2. The design research methodology
inspired by Didactical Engineering is described in Chapter 3, and the four related phases are
described in detail. Methods for data collection and analysis, the pilot intervention, ethical con-
siderations, and discussion of the study’s validity are also described in Chapter 3. The preliminary
analysis of the content knowledge in trigonometry is presented in Chapter 4. Subsequently, the
preliminary analysis of programming subroutines is included in Chapter 5. These two preliminary
analyses address the inherent challenges within the target knowledge, educational research related
to teaching the target knowledge, and school practices and decisions affecting the teaching of the
target knowledge. The preliminary analyses constitute the foundations for the choices made in
the lecture design and the associated a priori analysis presented in Chapter 6. The results from
realizing the lecture design, called the a posteriori analysis, are presented in Chapter 7. Similarities
and differences between the a priori and a posteriori analyses are discussed in Chapter 8. Lastly,
the conclusion answers the research questions in Chapter 9.

3

2 The Theory of Didactical Situations in Mathematics

This chapter presents the conceptual framework used in this study, the Theory of Didactical
Situations in Mathematics (Brousseau, 2002), referred to hereafter as TDS. First, the origins and
development of the framework are briefly described in Chapter 2.1. Then, a justification of the
choice of framework is presented in Chapter 2.2. Lastly, terms and concepts from the framework
used in this report are explained in Chapter 2.3.

This chapter aims to give the reader the necessary understanding of terms and concepts from TDS.
However, it is worth emphasizing that this conceptual framework is exceptionally complex, and
essential ideas such as didactical phenomena are left out as they are not discussed in this study. A
translated version of the original presentation of the theory by Brousseau (2002) is recommended
for further reading for the curious reader.

2.1 Origins

TDS was founded by the French mathematics education researcher Guy Brousseau. TDS has
been developed in the French community of mathematics education since the 1970s (Brousseau,
2002). Brousseau led the TDS research group, and many researchers contributed from 1972 to
1999, including Marie-Jeanne Perrin-Glorian and Claire Margolinas. During this period, COREM -
Center for Observation and Research in Mathematics Education was significant in the development
of the theory (Brousseau, 2002; Strømskag, 2020). The researchers conducted experiments on
teachers and students in a natural classroom setting, founding TDS in practice (Strømskag, 2020).

Bridging teaching in practice and rigorous research on teaching was a motivation behind TDS,
and it is one of the strengths it holds (Barquero & Bosch, 2015). Since the beginning, TDS
has evolved intertwined with the DE research methodology (Barquero & Bosch, 2015). The rich
conceptual framework provided by TDS and the research methodology provided by DE combines
into a holistic theory and research methodology centered around the target knowledge (Barquero
& Bosch, 2015). True to TDS, the research methodology in this study was inspired by DE and is
presented in Chapter 3.1.

2.2 Choice of Framework

TDS has been applied in research on all levels of mathematics education from kindergarten through-
out university (Barquero & Bosch, 2015), including research on Norwegian mathematics education
(Strømskag, 2020, p. 26). Although TDS was initially created for traditional mathematics educa-
tion, the framework has in recent years been applied in research projects intersecting mathematics
teaching and computing (Abdüsselam et al., 2022; Daher et al., 2022; Durand-Guerrier et al., 2019;
Gueudet et al., 2014). The rich set of concepts and vocabulary in TDS provides a valuable toolkit
for analyzing and discussing factors in the design and realization of the teaching situation (Bar-
quero & Bosch, 2015). Consequently, TDS makes a good foundation for answering the research
questions concerned with the factors in the designed teaching situation.

2.3 Concepts

2.3.1 Fundamental Situation

The concept of a fundamental situation is connected to the concept of an adidactical situation. In
the context of a school lesson, an adidactical situation is a situation where a group of students in a
class solves a problem using only the feedback provided by the milieu they interact with. Central
to an adidactical situation is that the teacher stays in the background and does not actively teach.
The student groups work independently with the problem-solving.

4

An adidactical situation can be fundamental situation situation for a specific target knowledge (in
mathematics), meaning that applying the target knowledge at stake is strictly required to solve the
given problem. Designing a fundamental situation for the target knowledge at stake is at the core
of TDS and DE. The underlying idea behind fundamental situations is for students to experience
the usefulness of the target knowledge in an authentic situation. The belief in TDS is that by
independently being able to apply the target knowledge, the students have obtained the target
knowledge. Furthermore, by experiencing the usefulness of the target knowledge in an authentic
situation without instruction to do so from a teacher, the students can apply the target knowledge
in other situations in the future outside of a school setting (Brousseau, 2002; Strømskag, 2020).

2.3.2 Didactical Situation

TDS provides a structure for the teaching situation that is in line with the idea of designing a fun-
damental situation. The structure involves didactical phases where the teacher actively teaches the
students and adidactical phases where students groups work independently on solving a problem.

The proposed structure, the milieu, the participants, and the target knowledge make up a didactical
situation for the target knowledge. A didactical situation is commonly referred to as a system
(Strømskag, 2020). The system view of a didactical situation highlights that all the components
of a didactical situation interact with each other. The following three paragraphs describe the
structure of a didactical situation and the interactions between the components.

Devolution is a didactical phase and is the start of the didactical situation. The purpose of
devolution is to enable the students to work self-reliant on the problem in the following adidactical
phase (Brousseau, 2002). The teacher explains the assignment, criteria for success, contents of
the material milieu, and rules for the interaction. The students’ related questions are answered.
Practicalities are handled, such as organizing the class in pairs and handing out material. Central to
the devolution is inspiring the students. The students ideally desire to embark on problem-solving
as the devolution is over and the adidactical work phase begins (Strømskag, 2020).

Traditionally, the adidactical work phase is divided into three phases: action, formulation, and
validation, classifying the mathematical rigor of the students’ actions (Brousseau, 2002). These
phases are not described here as this study has only incorporated the overall idea and structure
of an adidactical work phase. In the adidactical work phase, the students work independently on
the problem at hand. They interact with the provided material milieu and their intellectual milieu
to solve the problem. As described previously, the adidactical situation is ideally a fundamental
situation for the target knowledge. In practice, the students never perfectly follow the intended
progression in the adidactical work phase. Therefore, adaptions and improvisation become neces-
sary, and the teacher has to intervene in the students’ work. This additional didactical phase is
called regulation (Strømskag, 2020).

The didactical situation ends with a didactical phase called institutionalization. In this phase,
the teacher decontextualizes the target knowledge from the adidactical situation where it emerged
previously (Brousseau, 2002). In this phase, the teacher describes for the first time in the didactical
situation what the intention behind the lecture has been. The teacher describes to the students
how the target knowledge is helpful in the future. The aim of the institutionalization phase is for
students to understand the possible applications and conventional notation and language connected
to the target knowledge (Strømskag, 2020).

2.3.3 Milieu

The students interact with the milieu in the adidactical phases of the didactical situation. The
milieu consists of both a material and an intellectual part. What is considered part of the milieu
is limited to the classroom elements relevant for interaction with the target knowledge. The
students physically interact with the material milieu (Strømskag, 2020). The material milieu
in this study includes their pair programming partner, a computer with internet access and a
programming environment, notes left on the whiteboard, and several printed materials handed out

5

to the students. The intellectual part of the milieu includes prerequisites held by the students and
rules for the problem to be solved. The students must interact with their existing knowledge to
mobilize it in the adidactical situation (Strømskag, 2020).

The milieu acts as an opponent for the students in the adidactical phase. A well-designed milieu
gives objective feedback whenever the students perform an action. Hence, a functioning milieu helps
students evaluate their problem-solving without asking the teacher. Specifically, the feedback from
the milieu is central to the fundamental situation. Applying the target knowledge is the optimal
solution for the problem in the fundamental situation. The milieu’s purpose is to ensure that
correct actions give positive feedback, and incorrect actions offer feedback on how to improve the
solution (Strømskag, 2020).

2.3.4 Didactical Variables

The designer of a didactical situation has to make design choices. The didactical variables are the
design choices the designer is in control of in the didactical situation (Artigue, 2015). There is a
range of didactical variables on micro-, meso-and macro levels in a didactical situation. Common
for the variables is that the designer is aware of them and makes decisions about every one of them.
Using TDS with DE, the preliminary analysis is a basis for the choices.

A didactical variable on the macro level in this study is related to the structure of the teaching
sequence. The number of minutes allocated for preparatory work versus the time allocated for
the didactical situation is an active choice. A meso-level didactical variable is the choice of the
programming environment. Micro-level didactical variables are the choice of student pairings
within the class and numbers used in worked examples. Some didactical variables are considered
to influence the didactical situation more than others.

2.4 TDS in this Study

It has been an intention in this study to design the lecture sequence to be a fundamental situation
for the target knowledge at stake. Consequently, the lectures have been structured in line with
the three phases of devolution, adidactical work phases, and institutionalization. The references
in this report to the didactical situation refer to the sequence of lectures as a whole because the
lessons together are part of the system created with the purpose of students obtaining the target
knowledge.

The design and a priori analysis in Chapter 6 describes the pertinent didactical variables in this
study. The didactical variables are the design choices. The contents of the milieu are didactical
variables described. The teacher’s actions and intentions for each devolution and institutional-
ization are described. The planned progression in the adidactical work phases is also described.
The didactical variables are subject to discussion in the a posteriori analysis and validation of the
study. See Chapters 7 and 8.

6

3 Methodology

3.1 Research Design - Didactical Engineering

The research design in this study is flexible, qualitative, and inspired by DE. DE is a design
research methodological approach originating in mathematics education research in France in the
1980s. It was developed alongside TDS. The methodology emerged due to researchers’ growing
demand for treating mathematics education as a unique field of research with its characteristic
practices separate from pure mathematics and psychology. DE has since spread out from its origin
in mathematics education and has been applied in teaching other disciplines, such as physics and
sports (Artigue, 2015).

The center of attention in DE is the selected target knowledge, and the design is built around
providing optimal situations for students to learn the target knowledge. DE is structured in several
phases. First, the researcher carries out preliminary analyses of the target knowledge. The analyses
inform the design of a teaching situation. Specifically, the desired outcomes of future realizations
of the design are articulated in hypotheses in an a priori analysis. Then the situation is tested
in a classroom setting, and data is collected. Lastly, an a posteriori analysis and validation are
conducted based on the data collected where the researcher investigates what happened in contrast
to the a priori analysis (Artigue, 2015). Didactic engineering was deemed an appropriate choice in
this study due to the focus on the target knowledge and the closeness to the field of practice. The
implementation of the phases will be described in detail in the following paragraphs.

3.1.1 Preliminary Analysis

The preliminary analyses consist of an epistemological analysis, a didactical analysis, and an insti-
tutional analysis. Different aspects of the target knowledge at stake were analyzed in each of the
three.

In the preliminary analysis phase, three different dimensions of the target knowledge are under
investigation. As the name suggests, aspects regarding the origins of the target knowledge are
highlighted in the epistemological analysis. The researcher takes a step back from the problems
articulated by the teachers in schools. Concerning this study, a teacher problem can be: ”How
can programming best be taught in my mathematics classroom?” In the epistemological analysis,
the researcher explores the teachers’ problems by questioning the history and development of the
target knowledge. The researcher looks for inherent obstacles such as conflicting ideas, as the
conflicting ideas need to be carefully dealt with in the lecture design. Furthermore, the researcher
looks for fundamental situations where the target knowledge was initially developed to solve a real
problem. Historical fundamental situations for the target knowledge are crucial in informing the
design, as the designed teaching situation should preserve the need to apply the target knowledge
(Artigue, 2015; Barquero & Bosch, 2015).

Another dimension of the preliminary analysis is the didactical analysis. The didactical analysis
aims to study research about teaching the target knowledge (Artigue, 2015). This analysis is
analogous to state-of-the-art knowledge and related work about teaching practices for the target
knowledge.

The third dimension in the preliminary analysis is the institutional analysis, where the context
for teaching the target knowledge is the subject of the investigations. The institutional analysis
examines the teaching context in different layers. The classroom, the school, and the educational
system are all relevant to analyze as they affect the scope of possibilities and construct norms for
teaching the target knowledge. Becoming aware of norms and established practices leaves room
for questioning them and looking for more suitable approaches. Also, the institutional analysis
highlights provisions inherent in the institutions that cannot be changed, such as the organization
of exams. The results from the pilot and specialization projects preceding this master’s thesis
informed the institutional analysis.

In this study, the intended target knowledge is dual between programming and trigonometry.

7

Consequently, two separate preliminary analyses are appropriate. Concerning trigonometry, I have
chosen to primarily lean on the preliminary analysis conducted by Stadsvoll (2020) in his mathem-
atics education master’s thesis. His analyses were evaluated representative, as they were carried
out to design a teaching situation in trigonometry in Mathematics 1T. Chapter 4 summarizes and
extends the preliminary analysis of trigonometry conducted by Stadsvoll (2020). Chapter 5 reports
on the preliminary analysis of programming conducted in this study.

It is important to note that the preliminary analyses develop and deepen the researcher’s un-
derstanding of the target knowledge at stake (Artigue, 2015). Hence, the target knowledge and
research questions develop accordingly and are subject to change during this phase. In this study,
a significant shift along the way was changing the wording used to describe the target knowledge
from ”[. . .] use functions [. . .]” to ”[. . .] apply subroutines [. . .]”. The research design is flexible
enough to accommodate the changes, but the changes imply a need for refining and partly redo-
ing the preliminary analyses. This research project had a time constraint of one semester, which
limited the opportunity to conduct a complete reiteration of the preliminary analysis.

3.1.2 Design and a priori Analysis

Designing a sequence of lectures was the next phase in the project. The majority of the design
choices were based on the preliminary analyses. In the associated a priori analysis, the researcher
explicitly articulates the hypotheses baked into the design and grounds the choices made. The
design and a priori phase determine how to operationalize the findings from the preliminary ana-
lyses by creating the design. Important to note is that the generic and epistemic student is at the
center of the design. Every individual student has a set of unique prerequisites and experiences in
their lives that can not be considered in the design. The design is created with the hypothetical
student in mind, considering only the mathematics and programming-related prerequisites. The
design phase is at the heart of didactical engineering. The designed teaching situation is the ar-
tifact to be realized and validated later by comparing a priori and a posteriori analyses (Artigue,
2015; Barquero & Bosch, 2015). Chapter 6 reports on the design and a priori analysis phase.

3.1.3 Realization and Data Collection

The teaching situation comes to life in implementing the design in the classroom with students.
First, the teacher hands over the problem to the students through the devolution phase. Then, it
is the adidactical work phase. After the adidactical phase, the teacher institutionalizes the session
to decontextualize the target knowledge from the situation.

TDS has an additional regulation phase to handle deviations from the plan in the adidactical
phases. The teacher has to act if the students ask for help, get stuck, or deviate significantly
from the intended course of action during the adidactical phases. These teacher interventions are
called regulations. The teacher can repeat the rules and the permitted aids in the situation. For
example, she can remind the students that Google is a permitted aid. If a reference to the rules
for interaction is not suitable to help the students back into the self-reliant problem solving, she
can give them additional information. For example, an additional condition can be added to the
assignment steering their focus back to the target knowledge (Strømskag, 2020).

The realization phase includes collecting data to be analyzed in the a posteriori analysis. The data
is the basis for the researcher’s understanding of students’ interaction with the milieu, both the
physical and the intellectual. Hence, collecting appropriate data is crucial. Chapter 3.4 describes
the data collected during the realization.

3.1.4 A posteriori Analysis and Validation

The a posteriori analysis and validation phase evaluates the results from the realization phase
against the hypotheses formulated a priori. The intention is to identify divergence and convergence.
The results from the a posteriori analysis are included in Chapter 7. Furthermore, this phase aims

8

to identify and understand the underlying reasons behind the divergence and convergence. Chapter
8 includes a discussion of interpretations of the results. The a priori analysis is concerned with
generic and epistemic students, whereas the a posteriori analysis and validation are concerned
with the data material generated through realization with real students. Therefore, it is never a
complete overlap between the a priori and a posteriori analyses.

3.2 Pilot Realization

The didactical situation was piloted prior to the classroom realizations. The twelve pre-service
mathematics teachers who participated in the pilot studied Natural Science with Teacher Education
and were recruited through my professional network. There were several intentions behind the pilot
realization. The main objective was to test the feasibility of the planned data collection equipment.
The positioning of the equipment, such as the camera, is crucial to make the data collection less
disruptive and still successfully collect the necessary data (Robson & McCartan, 2016). The pilot
realization gave valuable insight into practical problems such as noise recorded from other groups
than the one recorded, the time required to rig the equipment up and down, and the time and
support required for the participants to submit their programs.

A parallel intention was to test the assignments given to the students and evaluate whether the time
frame and material provided were suitable. The pilot participants currently studied university-level
mathematics and had one semester of experience in programming from the university. Due to the
difference in mathematical and programming prerequisites, it was expected that the level obtained
by the pre-service teachers would exceed what could be expected in the actual realizations. The
pilot was shortened from 5 · 45 minutes to 3 · 45 minutes minutes to accommodate the higher
competence level partially. The results and the feedback from the pilot gave valuable insight that
led to a downward adjustment of the expectations in the design and a revision of the debugging
poster.

3.3 Participants

The classroom realizations were carried out with two regular Mathematics 1T classes in the same
upper secondary school. The school is located in a medium-sized city in Norway. The students in
the classes were 16 and 17 years old at the time of the realizations. The classes were not selected
based on particular characteristics. The teachers responsible for the classes were recruited through
my professional network. In class 1, 20 of the 25 students participated in the research project.
Three girls and 17 boys participated in class 1. In class 2, all of the 21 students in the class
participated in the research project. In class 2, there were eight girls and 13 boys.

3.4 Data Collection

Three methods of data collection were applied in this project. The primary source of data collected
was the student programs submitted at the end of sessions 2 and 3 in the classroom realizations.
During the adidactical work phases in sessions 2 and 3, one student pair was observed in each of
the two classes. Data was not collected during session 1 in each of the classroom realizations as the
students had not yet decided on participating in the research or signed the form of consent. Student
interviews were conducted after completion of each of the two classroom realizations. Two students
from each of the two classes participated in the interviews, respectively. The student programs
were collected to gain insight into the products produced by the students. The observation was
carried out to gain insight into the work processes involved in producing the programs. The student
interviews were conducted to gain insight into the students’ opinions about and perceptions of the
lecture sequence.

9

3.4.1 Student Programs

At the end of sessions 2 and 3 in the classroom realizations, the students submitted the pro-
grams they had produced during the adidactical work phase in the respective sessions. Class 1
normally used the Microsoft Teams platform, and their team was administered by their teacher.
Consequently, Microsoft Teams was used for submissions in class 1. Memory sticks were normally
used for submitting work in Class 2, and consequently, memory sticks owned by the school were
used for submissions of programs in class 2.

3.4.2 Observation

One working pair of students were observed continuously during the adidactical work phases of
the lectures using audio recording, video recording, and screen recording. Data was not collected
during the devolution phases, the institutionalization phases, or breaks. The students who were
recorded volunteered. The audio recordings were the primary source of observation data resulting
in transcriptions. The video and screen recordings were supportive means of observational data
collected to provide the necessary context for the recorded dialogue and enrich the transcriptions.
The audio was recorded using a smartphone placed on the desk in front of the students for optimal
audio quality. The app used to record the audio was Nettskjema-diktafon (University of Oslo, 2021).
The camera was located behind and above the students. The camera recorded which activities the
students were engaged in, such as the division of roles, hand gestures, drawing, programming, silent
working periods, and dialogue. The positioning out of sight was chosen to make the students less
self-aware during the data collection. The camera used was owned by NTNU. The screen recordings
were carried out using the browser version of Panopto2 on a laptop owned by NTNU. NTNU has
agreements with the third-party data collection and temporary storage services Nettskjema and
Panopto used in the data collection. The use of these services was approved in advance by the
Norwegian Centre for Research Data (NSD). See Appendix A.

The observation was carried out in both classroom realizations. In class 1, only the camera was
used to record audio and video, as the camera audio had been sufficient in the pilot realization.
However, due to severe noise pollution from other groups, the audio recorded by the camera was
too poor to be used for transcriptions. The smartphone audio recording was introduced in the
realizations with class 2 to produce usable audio quality. Relatedly, all the screen recordings failed
in the observation of class 1 for various reasons, such as closing the laptop or plugging in the
charger. The same mistakes were not repeated in class 2. Due to the incomplete audio and screen
recordings from class 1, only observational data from class 2 were transcribed and analyzed in this
study.

3.4.3 Semi-Structured Interviews

Student interviews were conducted after the classroom realizations to provide deeper insight into
the participant perspective of the lecture. The purpose of triangulating the student programs and
observations with interviews was to give the students the opportunity to share their opinions, feel-
ings, and perceptions about the lecture sequence and gain insight into the students’ understanding
of the programs they had written. An interview guide was prepared in advance and is included
in Appendix B. The interviews were semi-structured, meaning that questions asked varied slightly
from the interview guide (Robson & McCartan, 2016). The order of the questions asked was ad-
apted to fit the flow of the conversation, some questions were omitted if they appeared redundant,
and follow-up questions were added to elaborate on answers. The programs written by the students
interviewed were available as supporting material to recall their work in each session.

Two interviews were conducted with students from class 1 and one with students from class 2. The
first interview was conducted later on the same day as the last session with class 1. As only one
of the students showed up, this interview was cut short and discarded because the conversation
did not flow as naturally without the other student. Therefore, a second interview with another

2https://www.panopto.com/

10

pair of students from class 1 was arranged one week later. The third interview was conducted with
two students from different pairs in class 2. The duration of both interviews was approximately
25 minutes.

Several measures were made to accommodate student welfare in the interviews. Firstly, the stu-
dents volunteered to participate. Secondly, the interviews were carried out in pairs to provide the
students with more time to think and for the students to have a supportive partner. The subject
for investigation in the interviews was not the students but the design of the lecture sequence. The
focus on improving the design was emphasized at the beginning of the interviews to ensure that
the students knew they were not being evaluated. The students were encouraged to share their
honest opinions, both positive and negative.

3.5 Data Analysis

The data analysis conducted in this study can be divided into four phases, adapted from the
constant comparative method (CCM) (Robson & McCartan, 2016). CCM was chosen because it is
a structured process for analyzing data inductively. The first phase happened already in the field
during and between classroom realizations and interviews. A notebook was used to record interim
analyses and initial interpretations. After both classroom realizations were carried out, the second
phase was data processing. The interviews and recordings from the classroom observations were
transcribed. The total length of all transcriptions was 49 A4 pages. The screen and video recordings
were synced, and actions recorded on the screen were included to enrich the transcriptions. The
data processing further contributed to the interim analysis, as notes about interesting situations
and statements were recorded in the research notebook. Open coding of the student programs and
the transcribed observations and interviews was the third phase. In open coding, the researcher
reads through the data material, looking for meaning in each segment, inductively giving code
names to the segments that represent their meaning (Postholm & Jacobsen, 2020). This process
was carried out supported by the NVivo software, identifying 113 codes. The fourth phase was
axial coding, where the codes identified through the open coding were linked together in categories
related to the research questions. All of the initial codes were not included in the categories, as
some of the codes were not relevant to the categories. The results from the data analysis are
presented in Chapter 7.

3.6 Validity and Reliability

There are several aspects of the methodology in this study worth discussing in regard to validity
and reliability. The terms validity and reliability have been criticized and attempted to be replaced
in qualitative research due to their strong connection to quantitative research (Postholm & Jacob-
sen, 2020; Robson & McCartan, 2016). However, these terms are commonly used and provide a
discourse to discuss and assess the quality of research (Postholm & Jacobsen, 2020; Tjora, 2021).
Therefore, these terms will be defined and used in this discussion. Reliability can in qualitative
research be defined as the researcher’s ability to reflect on their own influence on the study and
their ability to make the influence transparent to the reader in the report of the study (Postholm
& Jacobsen, 2020). The validity of qualitative research is related to whether the results from the
research actually answer the questions asked (Tjora, 2021).

The quality of flexible and qualitative research depends to a great extent on the quality of the
researcher. Experience with qualitative research and the methodology is required to become a good
researcher (Robson & McCartan, 2016). This study is the first time I have done research inspired
by the DE methodology. It was planned that a co-supervisor familiar with the DE methodology
would take part in the project. Unfortunately, she has to withdraw from the project. Consequently,
this project has demanded a great deal of independence of me in decision-making related to the
methodology and while carrying out the project. The lack of prior experience and methodological
supervision can have affected the quality of decisions and execution of this study.

The dual researcher-teacher role can be considered both a strength and a weakness of this study. I

11

have participated in all phases of the research, including teaching in the classroom realizations. The
dual researcher-teacher role was a strength to the realization because I was fully informed about
the preliminary analyses and the related design choices. This enabled classroom realizations close
to the plan, and therefore it was deemed the better choice. On the contrary, I was a new person
introduced to the students. Introducing a new person to a situation affects the situation being
observed, posing a threat to the validity of the results (Robson & McCartan, 2016). Habitation
is a method used to minimize the effect of introducing a new person to the situation where the
research subjects become used to the presence of the observer (Robson & McCartan, 2016). In
this study, I attended one double lesson the week before taking over class 2. I introduced myself
and the research project, conversed with several students, and acted as an assistant teacher during
the lesson. The same habitation process was not feasible with class 1.

As described above in Chapter 3.4, the observational data from class 1 was so incomplete that
it was not transcribed or analyzed in this study. Consequently, the data material reporting on
observations is sparse. Only observations of one student pair from class 2 have been analyzed.
The sparse data material on observations is a threat to the validity of the results, as the results
may not be representative for the other student pairs than the pair observed. Observational data
from more than one pair, or another pair, could have given other results than those presented in
this study. However, the automatic recording of audio, video, and the screen has increased the
completeness and quality of the data reporting on the one student pair observed.

3.7 Ethical Considerations

In all research, the researcher needs to consider their ethical responsibility for the participants
first, then the investigation, and lastly also themselves as researchers. The order of responsibilities
becomes especially relevant when the researcher encounters dilemmas (Postholm & Jacobsen, 2020).
The ethical considerations need to be evaluated throughout the study (Robson & McCartan, 2016).
The guidelines of NESH, Guidelines for Research Ethics in the Social Sciences, Humanities, Law
and Theology (NESH, 2019) have been followed in this study to ensure that the research has been
carried out in line with the expected ethical standards. This study has included young persons as
participants. It has been crucial ensuring that their dignity, integrity, safety, and well-being have
been respected throughout the research (NESH, 2019).

3.7.1 Privacy

Protecting the participants’ privacy has been a pertinent ethical consideration in this study. Stu-
dents in the age range 16 to 17 years old participated in this research project. Consequently,
the project was subject to notification to the Norwegian Centre for Research Data (NSD). The
application was approved with project number 826023. The approval from NSD is included in Ap-
pendix A. Several precautions have been taken to ensure the privacy of participants during data
collection, data processing, data storage, and in the report. The data collection gear was borrowed
from NTNU and has been stored in a location with restricted access. The third-party software
used for data collection and temporary storage has data management agreements with NTNU, as
described in Chapter 3.4. The only person that has seen and listened to the original recordings is
me. The raw data and transcriptions have been stored separately on appropriate online disks for
confidential data approved by NTNU. All participant names have been replaced with pseudonyms
that are used in transcriptions and throughout the paper. The list linking pseudonyms and real
names only existed on paper and has been stored in a location with restricted access. With these
precautions, the privacy of the participants should be ensured in the project. Regarding the pilot
realization with adult pre-service teachers, the same measures have been taken to ensure their
privacy.

12

3.7.2 Consent to Participate

The students were informed verbally in advance with an associated Q&A session about the research
project and data collection. The lecture being subject to investigation, not the students, was
emphasized when informing the students. Accordingly, the students were explicitly informed that
they would not be graded during the week of the research project. In addition to the verbal
information, the students were given the same information in a printed form of consent. The
form of consent is included in Appendix C. They were given time to read through the form at
home. The language in the form of consent was adapted to fit the age group. The information
provided to the students about the aims of the research project and the data collection strived to
provide them with transparent and understandable information, in line with the NESH guidelines
(NESH, 2019). This was to ensure the students had adequate knowledge to make an informed
decision about participation. Twenty students from class 1 and all 21 students in the class gave
their consent to participate in the study. The participants in class 1 that did not consent were
not in the classroom during the data collection and got alternative lessons from their teacher. An
alternative was provided to ensure the students had a choice not to participate. The students that
were recorded during the data collection and the students interviewed volunteered. These measures
were made to ensure that all participation in the project was voluntary, in line with NESH (2019).

Regarding the pilot realizations, the same measures were made to ensure informed consent. The
prior information about the project was provided through Facebook and forms of consent. The
pilot form of consent is included in Appendix D.

3.7.3 The Dual Researcher-Teacher Role

There are several ethical aspects related to the dual Researcher-Teacher role. As a teacher, I was
exposed to personal information about the students during the class realizations. For instance, some
students shared their interests with me during and between lessons. Relatedly, I was informed in
advance about special needs in the class. I have a duty of confidentiality regarding this information,
and it has been treated accordingly.

The welfare of the students was also my responsibility while teaching. The ethical principle of
valuing student welfare over the production of results for the research has been followed. For
instance, this principle became relevant in an interview when one of two students did not show
up. The interview was cut short to ensure the welfare of the student missing their partner in the
interview.

13

4 Preliminary Analysis of Trigonometry

This chapter is mainly based on the results of Vebjørn Stadsvoll’s (2020) master’s thesis. He
designed a set of teaching situations to introduce trigonometry in Mathematics 1T. TDS and a
methodology close to DE were used in the design, and consequently, a preliminary analysis was
produced. This chapter summarizes the relevant findings from the preliminary analysis conducted
by Stadsvoll and further extends his preliminary analysis. First, Stadsvoll’s findings concerning
the trigonometric functions sin(x) and cos(x) are presented in Chapter 4.1. Then, in Chapter 4.2,
attention is drawn to Stadsvoll’s findings concerning degrees and radians, two angle measuring
units. In Chapter 4.3, the findings from Stadsvoll’s preliminary analysis are applied in three
trigonometric theorems to highlight the implications for the didactical situation in this study. The
three theorems are the SAS Theorem, The Law of Cosines, and The Law of Sines. In the teaching
designed teaching situation, the three theorems are applied by the students.

4.1 Two Conflicting Definitions

Trigonometry studies angles and ratios in 2- and 3- dimensional figures. There are six trigonometric
functions; cosecant, cosine, cotangent, secant, sine, and tangent. Two of these are relevant in this
study, namely sine and cosine. In mathematical notation, sin(x) and cos(x), where x is an angle
measured in degrees or radians (Stadsvoll, 2020).

The trigonometric functions are defined in two ways. The first set of definitions is based on
rations between sides in a right triangle, further referred to as the triangle definition. Let θ be
one of the angles in the triangle. The sides in the right triangle are named opposite, adjacent,
and hypotenuse based on their relative position to θ (Stadsvoll, 2020). Figure 1 illustrates a right
triangle with reference angle θ and naming conventions for sides. The trigonometric functions are
defined accordingly:

sin(θ) =
opposite

hypotenuse

cos(θ) =
adjacent

hypotenuse

where θ ∈ ⟨0◦, 90◦⟩

Figure 1: Illustration of a right triangle with reference angle θ and naming conventions for the sides.
Adapted from ”Et design av en didaktisk situasjon for introduksjonen av trigonometri etter prinsippene i
didaktisk ingeniørvirksomhet,” by V. Stadsvoll, 2020, p. 13 (https://hdl.handle.net/11250/2778352). CC
BY 4.0.

14

https://hdl.handle.net/11250/2778352

The second set of definitions is based on the unit circle, further referred to as the unit circle
definition. In the cartesian coordinate system, the unit circle has its center in the origin point
O = (0, 0). The radius of the unit circle is 1. The sine and cosine are given by the coordinates
of a point on the perimeter of the unit circle. Let angle θ span counter-clockwise from the origin,
and let the x-axis be the right leg of θ. Extend the line along the left leg of θ so that the line
intersects the unit circle. The intersection is called point P . Then, cos(x) is the x-coordinate of P ,
and sin(x) is the y-coordinate of P . The domain of θ is not restricted in the unit circle definition,
unlike the domain in the triangle definition (Stadsvoll, 2020). Figure 2 illustrates the unit circle
definition of the trigonometric functions.

Elaborating on the unit circle definition provided by Stadsvoll (2020), the sign of sin(x) and cos(x)
varies in the four quadrants of the cartesian coordinate system. Focusing on the domain of angles in
a triangle, the first and second quadrant is of interest. Here, sin(θ) ∈ ⟨0, 1⟩, ∀θ ∈ ⟨0◦, 180◦⟩. More
importantly, sin(x) is positive for all angles in triangles. In contrast, cos(θ) ∈ [0, 1⟩, ∀θ ∈ ⟨0◦, 90◦]
and cos(θ) ∈ ⟨−1, 0⟩, ∀θ ∈ ⟨90◦, 180◦⟩. In other words, cos(x) is positive for acute angles, 0 for
right angles, and negative for obtuse angles. cos(x) is an injective function on the domain of angles
in a triangle, and sin(x) is not (Weisstein, n.d.-c). It can be illustrated through implication:

∀θ, α ∈ D, cos(θ) = cos(α) =⇒ θ = α

∀θ, α ∈ D, sin(θ) = sin(α) ≠⇒ θ = α,

where D = ⟨0◦, 180◦⟩

Figure 2: Illustration of the unit circle definition of sin(x) and cos(x). Note The shaded area marks the
domain of angle theta that lies outside the domain of angles in triangles. Adapted from ”Et design av en
didaktisk situasjon for introduksjonen av trigonometri etter prinsippene i didaktisk ingeniørvirksomhet,”
by V. Stadsvoll, 2020, p. 15 (https://hdl.handle.net/11250/2778352). CC BY 4.0.

As Stadsvoll (2020) points out, both definitions of the trigonometric functions have appropriate
applications. The triangle definition is suitable when working with right triangles or decomposing

15

https://hdl.handle.net/11250/2778352

shapes into right triangles, as the associated calculations are easy to perform. The unit circle
definition is more general than the triangle definition and can be applied to problems with all
possible triangles, not restricted to right triangles.

The two definitions present conflicting ideas, which lays the foundation for an epistemological
obstacle regarding the domain of angle θ. Stadsvoll (2020) also emphasizes the choice of definition
as a recurring issue in research concerning the introduction of trigonometry. The conflicting defini-
tions of the trigonometric functions sin(x) and cos(x) is a challenge that influences the application
of The SAS Theorem Area Formula, The Law of Sines, and The Law Of Cosines. Consequently,
the challenge needs to be taken into consideration in this study. The impact of the conflict on the
didactical situation in this study will be further discussed in chapter 4.3.

4.2 Units for Angle Measurement

An angle can be measured in different units, among them degrees and radians.

The unit of degrees probably comes from the Babylonians. They used it to measure arc lengths, and
consequently, the numeral value of a degree depends on the circle radius. The Babylonians used the
sexagesimal number system using base 60. Therefore, the Babylonians often gave a circle radius
R = 60 in trigonometric problems, making the measure of degrees comparable. By approximating
π to 3, the circumference of a circle is naturally divided into 360 parts, called degrees (Stadsvoll,
2020). See the equation below:

O = 2πR ≈ 6R = 6 · 60 = 360

Radians is a measuring unit that encapsulates the relationship between radius and arc length in a
circle. One radian is defined as an arc with the length of one circle radius. 2π radians corresponds
to an arc the size of a full circle. This relationship is independent of the value of the radius
(Stadsvoll, 2020). Figure 3 illustrates the radian angle measure.

Figure 3: The radian angle measure illustrated in a unit circle. From ”Et design av en didaktisk situasjon
for introduksjonen av trigonometri etter prinsippene i didaktisk ingeniørvirksomhet,” by V. Stadsvoll, 2020,
p. 22 (https://hdl.handle.net/11250/2778352). CC BY 4.0.

It is common to use the degree as a measuring unit for angles in teaching trigonometry. The concept
of radians is difficult for students accustomed to degrees. Especially, interpreting radians as degrees
is a common mistake. For example, the students interpret sin(30) as sin(30◦). The convention in

16

https://hdl.handle.net/11250/2778352

Norwegian mathematics education is to measure angles in degrees through Mathematics 1T and
introduce radians in subsequent mathematics courses (Stadsvoll, 2020). The use of two different
units for measuring angles sets the stage for an epistemological obstacle that needs to be handled
in the teaching situation in this study.

4.3 Implications

In this chapter, the epistemological challenge addressed in Chapter 4.1 is applied to The SAS
Theorem, The Law of Cosines, and The Law of Sines. The three theorems build on the definitions of
either sin(x) or cos(x). As a consequence, the inherent challenges of sin(x) and cos(x) are continued
in the theorems. This chapter highlights how the inherent challenges affect the application of
the theorems. The content in this chapter reports on the result of my own work extending the
preliminary analysis of trigonometry.

4.3.1 The SAS Theorem

Multiple combinations of known side lengths (S) and angle sizes (A) uniquely determine a triangle
(Weisstein, n.d.-g). The Side-Angle-Side Triangle Congruence Condition, further referred to as the
SAS Theorem, is one of them. The SAS Theorem states that a triangle is uniquely determined by
specifying two sides and the angle between them (Venema, 2012; Weisstein, n.d.-f).

As the SAS Theorem uniquely determines a triangle, the area of said triangle is also uniquely
determined. The formula for calculating the area using SAS is derived from the triangle definition
of sin(x) and the standard formula for the area. The formula is further referred to as the SAS
Theorem Area Formula. A derivation of the SAS Theorem Area Formula inspired from Venema
(2012) is included in full in Appendix E. The end product of deriving the SAS Theorem Area
Forumula is presented here. The sides c and a, and angle B are known in triangle △ABC. Let c
be the baseline of △ABC and let h be the height. The area T is given by the following formula:

T =
1

2
· c · a · sinB

The SAS Theorem is valid for all possible triangles in the Euclidian geometry (Venema, 2012).
The triangle angle sum of 180◦ restricts the known angle B domain to be B ∈ ⟨0◦, 180◦⟩. The SAS
Theorem Area Formula has the same domain of angle B. The conflict between the two definitions
of sin(x) is baked into calculating the area with the formula. The triangle definition is used to
derive the formula, but the domain of the angle B is not restricted to B ∈ ⟨0◦, 90◦⟩, in line with
the unit circle definition. The integrated mix of definitions impacts the didactical situation in this
study. The SAS Theorem Area Formula is incorporated into the curriculum of Mathematics 1T
(Norwegian Directorate for Education and Training, 2020b). It is central to the area calculations
implemented in session 3 in the didactical situation, as described in Chapter 6.

4.3.2 The Law of Sines

The Law of Sines is an equivalence of ratios in a triangle. Let a, b, and c be the sides in a triangle.
Let the angles opposite be respectively A, B, and C. The Law of Sines then gives the equivalence

a

sinA
=

b

sinB
=

c

sinC

(Weisstein, n.d.-e)

Like the SAS Theorem Area Formula, the Law of Sines is valid for angles θ ∈ ⟨0◦, 180◦⟩. The Law
of Sines can be directly derived from the triangle and unit circle definitions of sin(x). The proof
has two parts. The first part is centered around heights in an acute triangle, and the second is
centered around heights in an obtuse triangle. The height in an obtuse triangle lies outside the

17

triangle, so the complementary angle is used to prove the theorem. Hence, the unit circle definition
of sin(x) is needed. An acute and an obtuse triangle is provided in Figure 4 for illustration. An
associated proof adapted from Venema (2012) is included in full in Appendix F.

Figure 4: Illustration of an acute triangle △ABC and an obtuse triangle △DEF .

4.3.3 The Law of Cosines

The Law of Cosines is also referred to as the general Pythagorean theorem, as it can be applied in
triangles that are not right (Venema, 2012). Let △ABC be any triangle. Two sides a and b and
the angle C between them are given. Then the square of the last side c is,

c2 = a2 + b2 − 2ab · cosC

(Weisstein, n.d.-d)

The Law of Cosines can be proved using the Pythagorean Theorem together with the triangle
definition of cos(x) for acute triangles and the unit circle definition of cos(x) for obtuse triangles.
A proof adapted from Venema (2012) is included in Appendix G.

The Law Of Cosine’s independence from sin(x) has a significant impact on solving triangles when
applying the results from Stadsvoll (2020). The Law of Cosines can be rewritten to find an angle
θ when three sides are given. Angle θ is uniquely determined for all angles possible in triangles,
that is, θ ∈ ⟨0◦, 180◦⟩ due to the unit circle definition. For instance, the sides a, b and c are given
in triangle △ABC. Below, the Law of Cosines is rewritten to determine angle C

cosC =
c2 − b2 − a2

−2ab

Similarly, angles A and B can be determined using the Law of Cosines.

18

5 Preliminary Analysis of Programming

This chapter reports on the preliminary analysis conducted in this project of the target knowledge
related to programming. The preliminary analysis is the first phase in the DE research methodology
and provides the foundation for choices made in the design of the didactical situation. First,
the terms programming and subroutines are defined in Chapter 5.1. Then, the results from the
epistemological analysis of subroutines are presented in Chapter 5.2 aiming to identify inherent
obstacles. The results from the didactical analysis of programming are presented in Chapter 5.3,
analogous to the state-of-the-art of didactical research on teaching programming in K-12 education.
Lastly, the results from the institutional analysis are provided in Chapter 5.4, aiming to give insight
into the institutional practices influencing the teaching of the programming component of the target
knowledge. Programming was the scope of the didactical and institutional analyses rather than
just subroutines, as the scope of subroutines was deemed too narrow.

5.1 Definitions

This study is concerned with target knowledge in programming. Consequently, it is appropriate
to include the definition of programming in this study. Due to the context of the study, the defin-
ition chosen is inspired by the government documents regarding programming in the Norwegian
curriculum.

The target knowledge in this study is particularly concerned with the application and implement-
ation of subroutines in programming. As this preliminary analysis has provided insight into the
origins of subroutines, it was deemed appropriate to include a definition close to the origins.

5.1.1 Programming

Programming is the process of developing a computer program that determines how a computer
or other electronic devices should function while the program is active or running (Rossen, 2019).
Programming goes beyond implementing the program in a language that a machine can interpret.
The whole process, from identifying and understanding the problem at hand, planning the exe-
cution, implementing the program, troubleshooting, and continuously improving the program, is
included in the process (Sevik, 2016).

5.1.2 Subroutine

A subroutine is both a conceptual idea and an implemented sequence of instructions. A subroutine
is a self-contained part of a computer program. The subroutine is made up of a sequence of
instructions and aims to solve a sub-problem of one or more computer programs (Dasgupta, 2014).

5.2 Epistemological Analysis

5.2.1 Origins of Subroutines

The origins of subroutines date back to the 1940s, related to the construction of computers. A
central contributor to the invention of subroutines is John Mauchly. The need for subroutines
emerged from computer programmers performing a specific set of instructions frequently, but not
frequently enough to build the instruction set into the computer. Mauchly suggested the notion
of subroutines as small programs stored outside the main program. A specific subroutine could be
called from the main program whenever needed. Hence, the subroutine would reduce the need for
rewriting the same code lines often (Dasgupta, 2014, p. 141).

Bringing to life the subroutine ideas of Mauchly was David Wheeler. He was one of the first con-
structors of subroutines for the ESDAC machine. He recognized how programming problems were

19

similar but not identical (Dasgupta, 2014, p. 142). Wheeler formulated problems and solutions
related to the implementation of subroutines. To accommodate solving similar problems, he argued
that a subroutine needed to be ”[...] sufficiently general by using parameters that could be set to
specific values for each instance of the subroutines’ use [...]” (Dasgupta, 2014, p. 143).

Connected to the generalizability of subroutines, the subroutines needed to be callable from differ-
ent main programs stored in different locations. Wheeler managed to construct closed subroutines
and the related Wheeler jump. The Wheeler jump describes how the closed subroutine can be
called from any location n in the main program during execution. Then, the closed subroutine is
executed in sequence. Afterward, the execution jumps back to location n+1 in the main program
(Dasgupta, 2014, p. 143).

Wheeler furthermore implemented the closed subroutines through a subroutine library for the ED-
SAC machine. In the implementation, he accommodated the subroutine generalization principle.
Arguments could be passed to the subroutines, allowing the subroutines to solve different prob-
lem instances. Hence, he is recognized as the first programmer to construct a set of subroutines
that were application-independent building blocks ready to use by other computer programmers
(Dasgupta, 2014, p. 145).

Summary
The term subroutine describes both a conceptual artifact and the associated implementation of an
instruction set carrying out a specific action. A subroutine can be called within the execution of
another program, and after the subroutine is carried out, the main program execution continues in
the right place. Inherent from the origins of subroutines is the ability to solve a family of related
problems. The subroutine was meant to be called with different parameter values to solve slightly
different problem instances.

5.2.2 Implementation of Subroutines

There are several types of subroutines. They can be distinguished by their number of parameters
and return values. A function is a subroutine that returns one or more values, whereas a proced-
ure does not return any value. Some programming languages distinguish between functions and
procedures, whereas other languages do not (Mitchell, 2003, p. 170).

All subroutines are technically implemented as functions in Python. The return value is None unless
it is overridden (Pilgrim, 2009, p. 3). A function is declared through a dedicated programming
construct and the reserved def keyword. The return keyword is reserved in Python for overriding
the default return value. When a function has been declared, it can be called by referencing the
function name (Pilgrim, 2009). Python subroutines that do not override the default value will be
further referred to as procedures for simplicity due to the difference in behavior from functions
with an overriding return value.

5.3 Didactical Analysis

5.3.1 PRIMM

PRIMM is a method for teaching programming to students on the K-12 level (Sentance & Waite,
2017). It is challenging for students to write computer programs before they can read and under-
stand (trace) programs written by themselves and others. The challenge can become visible in the
classroom when students stare at a blank screen, not knowing where to start. PRIMM addresses
the challenge by offering an approach where students progress in five steps, from tracing programs
to writing their own programs. The five steps are Predict-Run-Investigate-Modify-Make, and the
name PRIMM is an acronym for the steps (Sentance & Waite, 2017; Sentance et al., 2019a).

In the predict stage, the teacher provides students with a program. The students work collabor-
atively to predict the output of running the program and write down a hypothesis (Sentance et al.,
2019b).

20

The run stage follows the predict stage. The students download the program to their own com-
puters and run the program to test their hypothesis. If there is a discrepancy between the expected
result and the actual result, it is a symptom that students do not understand the program (Sentance
et al., 2019b).

The investigate stage, code comprehension is in focus. The students investigate the functioning
of a program. The students answer questions about program constructs on different abstraction
levels. For example, the teacher can ask about the functioning of a single line or the overall
goal of the whole program. Students usually work collaboratively in this stage to develop their
programming vocabulary (Sentance et al., 2019b).

In the modify stage, students extend or change the functionality of a program. The changes can
start small and progress to more fundamental changes, providing opportunities for differentiation
within the class. At this stage, the students start developing ownership of the program(Sentance
et al., 2019b).

The make stage is where students create new programs. Here, the students can be met with a
blank canvas and a problem description. In this stage, they build on their existing programming
knowledge and borrow snippets from other programs to apply in a new setting.(Sentance et al.,
2019b).

PRIMM is a flexible method where teachers can apply the stages they deem necessary in a lesson.
The progression through the stages can be implemented through several lessons. The stages can
be repeated in iteration, and the sequence of stages can be modified. Implementation is flexible to
the class in question and the content being taught. Crucial to PRIMM are the core principles of
scaffolding program comprehension before writing programs, gradually enabling students to apply
their programming knowledge in their own programs, building up ownership progressively, and
working collaboratively (Sentance & Waite, 2017; Sentance et al., 2019a).

5.3.2 Pair Programming

Pair programming is a collaborative programming practice where two programmers work together
on one computer. There are two different roles involved in pair programming. The ’driver’ writes
the program and is in control of the mouse and keyboard on the computer. The ’navigator’ is also
an active member of the pair by supporting the driver. The navigator’s responsibilities include
catching bugs in the program, keeping track of the overall plan for the programming session, and
retrieving information such as looking up documentation. The navigator can have access to an
additional computer for information retrieval, but it should not be used for programming. In pair
programming, the driver’s computer screen displaying the program is visible to both participants.
It is common for the roles to switch between partners within a session and for pairs to switch
regularly within a team (Beck & Andres, 2004).

Pair programming originated as one of the core practices of Extreme programming (XP). XP is a
framework for professional software development in teams (Beck & Andres, 2004). The founder of
XP, Kent Beck, describes his vision of XP:

XP is my attempt to reconcile humanity and productivity in my own practice of software
development and to share that reconciliation. (Beck & Andres, 2004, p. 3)

From its origins in the software development industry, pair programming has been researched in
educational settings on the university level (Luxton-Reilly et al., 2018), and recently also in K-12
programming education (Denner et al., 2014). Pair programming is an educational approach to
teaching programming that is proven through research to be more effective than solo programming
(Luxton-Reilly et al., 2018, p. 70). The aim is to achieve benefits connected to productivity and
participant welfare, as described by Beck and Andres (2004).

Focusing the attention on pair programming at the K-12 level, Campe, Green, and Denner have
published a Pair programming toolkit for K-12 computing education based on research (Campe
et al., 2019). They describe the documented benefits of pair programming on the K-12 level

21

of education and have created guidelines for implementing pair programming in classrooms. The
toolkit also provides classroom materials. Pair programming being effective means that it increases
the quality of the work (Beck & Andres, 2004). In the K-12 context, increased quality of the
work means that the student programs have fewer bugs, the students have a greater increase in
programming knowledge, and the persistence is better in problem-solving (Campe et al., 2019).
Regarding the welfare aspect, a beneficial effect of pair programming is that students enjoy it
(Campe et al., 2019).

The purpose of the toolkit is to support teachers so that the implementation of pair programming
in the classroom actually results in the desired benefits. Through the toolkit, it is emphasized
that student pairings need to be paid attention to. To support the building of programming
skills, pairing students with friends is a good strategy. It is more important than having similar
programming knowledge (Campe et al., 2019, p. 9).

The toolkit also provides guidelines for teaching pair programming to the students. The teacher
needs to make sure the students understand the roles involved and their common and respective
responsibilities. It is beneficial to highlight to the students why pair programming is valuable for
them in a language they understand. Examples of value for students are that help is available
instantly, they write programs with fewer mistakes, and they practice collaboration skills useful in
other school subjects and future work (Campe et al., 2019).

It is not sufficient to teach the methodology once and leave the students to work self-reliantly.
The toolkit emphasizes how scaffolding the students in their work is essential for a successful
implementation of pair programming in the K-12 classroom. If the student pairs deviate from the
principles of pair programming, the teacher should guide the students back to the methodology.
Positive feedback on successful pair programming is even more important (Campe et al., 2019).

5.3.3 Debugging

Dealing with errors and troubleshooting is a substantial component of the programming process for
all programmers, both novices and experienced software developers (Michaeli & Romeike, 2019a).
Debugging is a term used for describing the process of finding and fixing errors in computer pro-
grams (Michaeli & Romeike, 2019b). Dealing with errors is particularly hard for novices, and
it is a source of frustration and helplessness. Students getting ’stuck’ in unstructured trial and
error attempts to fix errors in their programs is a problem. K-12 teachers report running around
from student to student to help the students get unstuck. Therefore, increasing the students’
self-reliance in debugging is a productive strategy in teaching programming (Michaeli & Romeike,
2019b).

To support students to become more self-reliant in their debugging, Michaeli and Romeike (2019b)
found that teaching a systematic debugging process increased the students’ debugging performance.
The systematic method for teaching debugging to students is similar to the scientific method.
Hypotheses are formulated and tested, leading to new and refined hypotheses being tested (Michaeli
& Romeike, 2019b).

The instructor can provide students on the K-12 level with a poster to support their progression in
systematic debugging as they work on debugging assignments (Michaeli & Romeike, 2019b). The
poster is structured around four cycles of step-wise hypothesis formulation and testing for locating,
determining, and fixing the error. See Figure 5. The first cycle includes procedures for handling
compile-time errors. The second cycle includes procedures for handling runtime errors. The last
cycle includes procedures for handling logical errors. As introducing new bugs is common when
novices debug, reverting unsuccessful changes is an emphasized step in each of the cycles. It is
debated whether handling compile-time errors can be regarded as debugging or not. Compile-time
errors are consciously included in the systematic debugging process described on the poster as they
are a significant cause of hurdles in the K-12 context Michaeli and Romeike (2019a).

22

Figure 5: Poster conveying a systematic debugging process. From ”Improving Debugging Skills in the
Classroom: The Effects of Teaching a Systematic Debugging Process,” by T. Michaeli and R. Romeike,
2019, Proceedings of the 14th Workshop in Primary and Secondary Computing Education, 2019, Article
15 (https://doi.org/10.1145/3361721.3361724). Copyright 2019 by Tilman Michaeli and Ralf Romeike.
Reprinted with permission.

A design proposal for future development of the debugging poster is to include concrete debugging
strategies for supporting the teaching of self-reliant debugging skills further (Michaeli & Romeike,
2019b). One example of a concrete debugging strategy for locating an error is code tracing, where
every program line is read. Code tracing can be done top to bottom or in the sequence of lines

23

https://doi.org/10.1145/3361721.3361724

executed in the program (Li et al., 2019). Another concrete debugging strategy for locating the
error is program chunking, where the program is divided into smaller parts to isolate the error.
Program chunking can be done by commenting out code ’chunks,’ isolating a functionality in a
subroutine, or other methods (Li et al., 2019).

Another means to support students’ self-reliance in debugging is demanding autonomy from stu-
dents. A literature review on debugging in K-12 classrooms found that teachers who expect self-
reliance from their students in error handling reported fewer error-handling problems, especially
regarding compile-time errors (Michaeli & Romeike, 2019a). In other words, the teacher’s response
to students who struggle with debugging can influence the students’ debugging performance.

5.4 Institutional Analysis

I have conducted two research projects leading up to this master’s thesis. The first research project
and the associated report were part of the course Research Methods in Mathematics and Science
Education weighted 7.5 ECTS (NTNU, n.d.-a). The project is further referred to as the pilot
project. The second research project and the associated report were the contents of the course
Computer Science Specialization Project weighted 15 ECTS (NTNU, n.d.-b). The project is further
referred to as the specialization project.

Both projects concerned the same phenomenon investigated in this thesis, namely the implement-
ation of programming in the subject Mathematics 1T. Both projects investigated the phenomenon
from teachers’ perspectives. The findings from the two previous research projects inform the
institutional context in which the target knowledge in this study is taught. Student prerequis-
ites expected by teachers and established practices regarding tools, languages, and environments
(TLEs) were extracted from the projects and applied in this study. Chapter 5.4.1 summarizes the
findings from the pilot project. Chapter 5.4.2 describes pertinent findings from the specialization
project.

The last part of the institutional analysis was to collect relevant information about the classes
involved in this study. Chapter 5.4.3 provides an overview of the programming-related student
prerequisites and TLEs used in the specific classes investigated in this study.

5.4.1 Results from the Pilot Project

The pilot project was a qualitative research project conducted in 2020. The project investigated
the research question: ”What resources do three mathematics teachers require to support their
work with the implementation of programming in the subject Mathematics 1T in connection with
the Subject Renewal?”. Three Mathematics 1T teachers were interviewed. The Subject Renewal
was operationalized in the fall semester of 2020. Hence, the interviews were conducted during the
first year programming was included in Mathematics 1T (Bosch, 2021b). The results from the
project were three types of resources requested by the teachers for supporting the implementation
of programming into Mathematics 1T.

The first resource was continuing education in programming for teachers. The desired contents of
the continuing education varied based on the teaching experience and prior programming experi-
ence among teachers (Bosch, 2021b).

The second resource was national guidelines for programming in Mathematics 1T. The national-
level expectations for students’ programming proficiency are perceived as unclear. The teachers
want guidance on the ambitions they should have for their students regarding programming in the
specific subject of Mathematics 1T. They especially want such guidelines at the beginning of the
introduction, as they have little or no experience even with programming. Clearer expectations of
acquired programming skills are necessary for teachers to be able to construct learning objectives
and plan lessons (Bosch, 2021b).

The third supporting resource requested is tightly connected to the need for national guidelines. In
the Mathematics 1T subject curriculum, students are expected to apply programming as a tool in

24

problem-solving. Teachers experience not having enough time to teach students to apply program-
ming in Mathematics 1T for mathematical problems. Instead, the time is spent on introductory
programming as most students have no programming prerequisites. Consequently, the Mathemat-
ics 1T teachers require that their students obtain introductory programming skills in primary and
lower-secondary education. If that goal is achieved, they will be able to spend the time applying
programming (Bosch, 2021b).

5.4.2 Results from the Specialization Project

The specialization project was carried out during the fall of 2021. This qualitative research project
investigated the problem statement: ”How do in-service teachers enrolled in programming training
envision integrating programming into Mathematics 1T?”. Twenty-one lecture plans incorporat-
ing programming into Mathematics 1T were analyzed. Twenty-six in-service teachers enrolled in
learning programming through continuing education designed the plans (Bosch, 2021a).

One of the main findings from the projects was a connection between expected programming-
related student prerequisites and the learning objectives in the lecture plans. Three approaches
were identified. The student programming prerequisites varied among the identified approaches.
The first approach was based on no prior programming experience among the students, and the
learning objectives concerned programming. Lecture plans within the second approach assumed
existing programming prerequisites among the students, and the learning objectives were focused
on mathematics. The third approach was the most common in the data material, identified in
13 of the 21 lecture plans. Lecture plans in this category combined programming-related and
mathematics-related learning objectives (Bosch, 2021a).

Investigations of the lecture plans’ programming-related student prerequisites and learning object-
ives gave insight into the students’ programming concepts and skills expected to be obtained by
the end of the subject Mathematics 1T. The list abstracted in the specialization project from the
lecture plans is presented below.

• Definite loops

• Indefinite loops

• Conditionals

• Variables

• Defining and calling functions

• Textual output (print)

• Primitive data types

• Arithmetic operators

• Import and use of third party libraries

• Recursion

• What is an algorithm

• Debugging

• Composite data types such as lists

• User interaction (input function)

• Visual output (graph plotting).

25

(Bosch, 2021a, p. 20)

Another result of the project was an overview of the TLEs used in the lecture plans. All lecture
plans use text-based programming in Python on personal computers, one computer per student.
The teachers had chosen different programming environments, including Anaconda Spyder, Jupy-
ter Notebook, PyCharm, Google Colab, and Trinket. In addition to programming, several teachers
emphasized using non-digital tools in the lessons. A majority of the lecture plans included hand-
writing to support the student’s programming process. A subset of the lecture plans also included
printed materials such as mathematics textbooks, assignments, and worksheets (Bosch, 2021a).

5.4.3 Information about the Investigated Classes

The information included here was provided prior to the classroom realizations by the teachers
responsible for the classes investigated in this study. As the teachers responsible for the two classes
collaborated in planning their lessons, the following information is common for the two classes.

TLEs
The teachers had chosen to use text-based programming in Python using the Anaconda Spyder
programming environment in previous programming exercises with the class.

Prerequisites
Most of the students had no prior programming experience at the beginning of the fall semester
of the subject Mathematics 1T. This study was conducted in the spring semester. The preceding
fall, the classes had focused on introductory programming for a few lessons. The students had
worked on and handed in an assignment where they implemented solving quadratic equations with
programming. In the programs, the students applied the concepts of variables, user input, output,
and conditionals. They worked with the Python data types string, float, and integer. Some of the
students also parsed from the string data type to integers.

Two weeks prior to the realization in the classroom, the classes focused on programming for
one more session with a duration of 2 · 45 minutes. An online programming resource to support
Mathematics 1T provided by the Aschehoug publishing house was used in this preparatory session
(Aschehoug, n.d.). The students worked independently with a selection of the modules provided
in the online resource. The relevant modules concerned repetition of arithmetic operations in
Python, user input, program output, variables, and conditionals. New material in the relevant
modules included the concepts of definite and indefinite loops. The last module introduced the
Python turtle library. Finishing the modules were given as homework for the students.

26

6 Result of Design Development

In this chapter, the self-designed sequence of lectures is presented. The sequence of lectures is
designed to be a didactical situation for the intended target knowledge. Each teaching session con-
tains a devolution phase, an adidactical work phase, and an institutionalization phase, in line with
TDS. The design choices, the didactical variables, are mainly founded on the preliminary analyses
in Chapter 4 and Chapter 5, and their rationales will be demonstrated throughout this chapter.
Relating to DE, this chapter reports on the a priori analysis phase, including the hypotheses
created about generic and epistemic students’ progression toward the target knowledge.

First, the duration of each session in the didactical situation is presented in Chapter 6.1. A detailed
description of the intended target knowledge in both programming and trigonometry is provided in
Chapter 6.3. Then the main problem for the teaching sequence and an associated solution proposal
will be presented in Chapter 6.4. The material milieu is common for all three teaching sessions and
is presented in Chapter 6.5. The main problem is divided so that the students progress towards
the target knowledge through the three sessions. An a priori analysis of the realization of each of
the sessions is presented in Chapter 6.6, Chapter 6.7 and Chapter 6.8, respectively.

6.1 Duration

The lecture design includes three teaching sessions, adding up to 5 · 45 minutes. All sessions are
intended to be carried out in sequence and completed within one week of classes in the subject
Mathematics 1T. Table 1 displays the distribution of minutes in each session. The total duration
and division of sessions were customized to fit the class in which the lectures were realized.

Teaching session Duration (min)
1 1 · 45
2 2 · 45
3 2 · 45

Sum 5 · 45

Table 1: Duration of the teaching sessions in the didactical situation.

6.2 Connection to the Curriculum

The didactical situation addresses two competence aims from the Mathematics 1T subject cur-
riculum:

• The student is expected to formulate and solve problems through the use of algorithmic
thinking, different problem-solving strategies, digital tools, and programming

• The student is expected to explain the definitions of sine, cosine, and tangent and use trigo-
nometry to calculate the length, angles, and area of random triangles

(Norwegian Directorate for Education and Training, 2020b, p. 5)

6.3 Target Knowledge

The intended target knowledge k for the sequence of didactical situations designed is dual between
programming k1 and mathematics k2.

27

6.3.1 Programming Component of the Target Knowledge

Regarding programming, the target knowledge k1 is for students to apply subroutines in problem-
solving with programming. The aim is for students to implement subroutines in Python appropri-
ately to solve different instances of a family of related problems. Implementing both functions and
procedures is included in the target knowledge.

6.3.2 Mathematical Component of the Target Knowledge

In mathematics, the target knowledge k2 is for students to apply trigonometry to formulate and
solve problems in a new situation. The students should understand which of the mathematical
sentences in S are applicable for solving the triangles included in a problem, where S consists of
The Law of Sines, The Law of Cosines, and The SAS Theorem Area Formula. Furthermore, the
students should evaluate which of the sentences in S are most appropriate to use in the problem.
Lastly, the students should carry out the application of selected sentences in S to solve the problem.

6.4 Main Problem and Solution Proposal

In line with TDS, the didactical situation was centered around a main problem to be solved by
the students. The didactical situation was designed to be a fundamental situation for the target
knowledge, meaning that the target knowledge needs to be applied for the students to solve the
problem optimally.

6.4.1 Main Problem

The main problem in this didactical situation was for students to create an art program that drew
triangles. The graphics should be created using the Python turtle library. The triangles should be
non-congruent and drawn based on various combinations of SAS information. The triangles should
be drawn at various locations on the turtle canvas until the total area of the triangles exceeded
the maximum area decided by a user.

6.4.2 Art Program Solution Proposal

The artifact embodying the solution to the problem was a runnable Python program that produced
an artwork. The program should fulfill requirements connected to the target knowledge to be
an optimal solution. A solution proposal was created to envision the endpoint of the students’
progression in the problem-solving process. This solution proposal will further be referenced as
the Art Program Solution Proposal, the APSP.

A flowchart representation of the APSP is included in figure 6. The flowchart representation is
independent of the programming language implementation. The purpose of the flowchart repres-
entation is to highlight the main components of the APSP and the dependencies between them.

One pattern to be recognized in the APSP is the need to repeatedly evaluate the accumulated
total area of triangles. The evaluation of the total area is connected to a sequence of steps to
be executed if the evaluation stop criterium is not reached. An appropriate decomposition of
the evaluation cycle is also visualized through the flowchart representation. Self-contained sub-
problems are delegated to their respective subroutines or one-line instructions. The order in which
the subproblems are solved is of importance. On the flowchart representation level, the identified
sub-problems in the evaluation cycle are:

1. Moving the turtle to a new position

2. Drawing a triangle based on SAS

28

(a) Calculating the third side length

(b) Calculating the second angle

3. Calculating the area of the associated triangle

4. Updating the total area of triangles

Figure 6: A flowchart representation of the Art Program Solution Proposal (APSP). Note. The ellipses
symbolize the start and endpoints of the program. The parallelogram symbolizes input to the program.
The rectangles symbolize subroutines and one-line instructions solving sub-problems in the program. The
rhombus symbolizes a control flow decision based on a variable state evaluation.

The APSP contains an indefinite loop control structure for total area evaluation and execution
of the associated subroutines. The rationale behind the indefinite loop control structure is to
evoke the need for target knowledge in trigonometry and programming. The intent was that the
problem and the APSP that the students work towards have synergy between the mathematical
and programming aspects, enabling the didactical situation to be a fundamental situation for the
target knowledge.

As specified in the main problem, the subroutine drawing a triangle takes in side-angle-side (SAS)
as arguments. Drawing non-right triangles was planned to lead students to use one or more of
The SAS Theorem Area Formula, The Law of Sines, and The Law of Cosines to solve the triangle
rather than the Pythagorean theorem. Furthermore, it was planned that generalizing the program
to draw different triangles in every loop iteration would make the students need to evaluate all
possible combinations of triangles. In other words, the target knowledge within trigonometry and
the preliminary analysis of trigonometry were part of the rationale behind choosing an indefinite
loop as part of the APSP. An indefinite loop was planned to facilitate drawing different triangles
in each iteration.

Drawing different triangles in each indefinite loop iteration was also related to the target knowledge
in programming and the preliminary analysis of programming. The origins of subroutines set the
stage for creating a fundamental situation where implementing subroutines in student programs
is the optimal solution. Firstly, the APSP was designed to contain repetition through drawing
multiple triangles. The frequent need for an instruction sequence was one of the original motivations
for the concept of subroutines (Dasgupta, 2014), as described in Chapter 5.2.1. Consequently, the
design choice of including repetition in the problem given to the students was to evoke the need to
delegate triangle drawing to a subroutine.

29

Furthermore, a design choice in the problem given to the student was drawing a set of multiple
triangles that were non-congruent. As described in Chapter 5.2.1, it is inherent in the definition of
subroutines that they are general enough to solve a family of related problem instances (Dasgupta,
2014). A set of non-congruent triangles implies that all three angles and side lengths are not the
same in all triangles (Weisstein, n.d.-b). Therefore, drawing the set of non-congruent triangles
constitutes a family of related problems where angle sizes and side lengths vary. Hence, drawing
non-congruent triangles was a design choice made to evoke the need for including one or more
parameters in the triangle drawing subroutine.

Alternative Repetion Constructs
It is worth discussing the alternatives to including the indefinite loop evaluation cycle. A definite
loop could be applied to repeat the execution of a set of subroutines. The number of loop iterations
in a definite loop is predefined, in contrast to the indefinite loop. Given that the students would
be unfamiliar with recursion, the most likely alternative to using an indefinite loop would be a
definite loop. When using a definite loop, the number of iterations, and thus the number of drawn
triangles, must be specified in advance. Consequently, the area of each triangle must be calculated
in advance. The combination of the information SAS must thus be predefined for each triangle,
stored temporarily, and then sent into the definite loop so that the predefined triangles can be
drawn. It is possible to implement, but temporary storage requires a data type storing the set
of information SAS for each triangle and storing the set of all triangles. The students would not
be familiar with composite data types at this point. Therefore, it is reasonable to assume that a
definite loop implementation by a student would imply drawing the same triangle repeatedly rather
than different triangles. Consequently, it was planned to guide the students toward implementing
an indefinite loop.

Python Implementation
As the students would write their programs in Python, a Python implementation of the APSP
was created. See Figure 7. The subproblems in the APSP can be identified in the Python imple-
mentation. The repeated total area evaluation is implemented in lines 54 through 64. Lines 56,
57, and 58 instantiate variables holding the SAS information for a triangle. Five subroutines were
implemented. They solve the subproblems of 1) calculating the third side length in a triangle based
on SAS, 2) calculating the second angle in a triangle based on SSS, 3) drawing a triangle based on
SAS, 4) calculating the area of a triangle using the SAS Theorem Area Formula, and 5) Moving
the turtle to a random position on the canvas. The subroutines were included in the program prior
to their calls, in line with Python. Running the Python implementation of the APSP produces
an artwork in turtle graphics. Figure 8 illustrates two possible artworks created from running the
Python implementation of the APSP.

30

1 import turtle

2 import math

3 import random

4

5

6 def law_of_cosines_side(leg1 , angle , leg2):

7 angle_rad = math.radians(angle)

8 cos_v = math.cos(angle_rad)

9 squared_opposite = leg1 ** 2 + leg2 ** 2 - 2 * leg1 * leg2 * cos_v

10 opposite = math.sqrt(squared_opposite)

11 return opposite

12

13

14 def law_of_cosines_angle(opposite , leg1 , leg2):

15 cos_v = (opposite **2 - leg1 **2 - leg2 **2) /(-2* leg1*leg2)

16 angle_rad = math.acos(cos_v)

17 angle = math.degrees(angle_rad)

18 return angle

19

20

21 def draw_triangle(AB, A, AC):

22 # Calculates angle C and side BC using the law of cosines

23 BC = law_of_cosines_side(AB , A, AC)

24 C = law_of_cosines_angle(AB, AC , BC)

25

26 # Drawing the triangle , starting in point B

27 turtle.pendown ()

28 turtle.forward(AB)

29 turtle.left (180 - A)

30 turtle.forward(AC)

31 turtle.left (180 - C)

32 turtle.forward(BC)

33

34

35 def triangle_area(side1 , angle , side2):

36 # Converts the angle from degrees to radians

37 angle_rad = math.radians(angle)

38 sin_angle = math.sin(angle_rad)

39 area = 0.5 * side1 * side2 * sin_angle

40 return area

41

42

43 def goto_random_position ():

44 # Generates random x and y coordinates within the canvas

45 x = random.randint (-400, 400)

46 y = random.randint (-400, 400)

47

48 turtle.penup()

49 turtle.goto(x, y)

50

51

52 max_area = int(input("Input the maximum area: "))

53

54 total_area = 0

55 while total_area < max_area:

56 side_length1 = random.randint (10, 40)

57 side_length2 = random.randint (10, 40)

58 angle = random.randint(1, 179)

59

60 goto_random_position ()

61 draw_triangle(side_length1 , angle , side_length2)

62 one_triangle_area = triangle_area(side_length1 , angle , side_length2)

63

64 total_area += one_triangle_area

Figure 7: Python implementation of the Art Program Solution Proposal (APSP).

31

(a) Artwork 1. Note. Triangle side lengths set
to between 10px and 40px.

(b) Artwork 2. Note. Colors added using sub-
routines from the Python turtle library. Tri-
angle side lengths set to between 10px and
100px.

Figure 8: Two artworks produced from running the Python implementation of the Art Program Solution
Proposal (APSP).

6.5 Milieu

The students interacted with the milieu components in the adidactical working periods. The milieu
consisted of two pair programming partners, a debugging poster, an assignment sheet, a Python
cheat sheet, paper and pencil, and one computer per student for each pair of students working
together. A model of the milieu is included in Figure 9.

Figure 9: Model of the milieu in the didactical situation.

32

6.5.1 Debugging Poster

Debugging posters were part of the material milieu. Each student pair were provided with a
poster on their desk. The poster displays a step-wise process for systematic debugging and aims to
support the students in their self-reliant debugging. The choice of including a poster was founded
on the results from Michaeli and Romeike (2019b), as described in Chapter 5.3.3. The poster was
translated from English to Norwegian and adapted from three cycles to two cycles for simplicity.
Specifically, the cycles for compile-time errors and runtime errors were combined into one cycle.
The poster was extended to include concrete debugging strategies, as suggested by Michaeli and
Romeike (2019b). The concrete debugging strategies included are listed below and were inspired
from Li et al. (2019) and Rother (2017).

• Read the line included in the error message and the line above. Look for typos.

• Copy and paste the error message in Google and search. Stackoverflow often provides good
answers.

• Read the documentation for Python of the library you are using. How does the built-in
function work?

• Test the behavior of parts of the code in a separate file little by little. Work systematically.

• Comment on parts of the code and run the rest of the code. Work systematically.

• Use print() to print out the state of variables as the program executes.

• Trace the relevant code lines carefully in the order they execute. Explain out loud to your
partner what happens in each line.

• Send in input where you know the expected output. What is the error now? Do this test
repeatedly with different inputs and look for patterns in the errors.

Each unique step in the cycle was given a symbol next to the textual description. The symbols
aimed to link the concrete debugging strategies to specific steps in the systematic debugging
process. The list of concrete debugging strategies was grouped by cycle steps, and the symbol
was repeated next to each group. Some strategies were listed repeatedly, as they were considered
relevant for several cycle steps. For example, printing variable state in the program was listed
as a strategy for locating the error and determining the error. The introduction of symbols to
connect concrete debugging strategies to their appropriate cycle step resulted from the first pilot
realization. The pilot participants expressed that the poster did not provide proper guidance on
suitable concrete debugging strategies for specific cycle steps. Symbols were a design revision to
provide the requested guidance. The revised poster, including symbols, was used in the second
pilot and the classroom realization and is provided in Appendix H.

6.5.2 Pair Programming

Pair programming was included in the milieu as it has several relevant benefits for the programming
component of the target knowledge in this study. As described in Chapter 5.3.2, pair programming
can increase the students’ persistence in problem-solving and be beneficial for their engagement.
Pair programming can also increase the programming knowledge obtained during a teaching session
compared to solo programming. To obtain the desired benefits, the students were paired with
friends, in line with the recommendations in Campe et al. (2019). The pairing of students was
done in advance by the responsible mathematics teachers who know the students. The criteria
given to the teachers for pairings was that students have worked well together before and enjoy
working together.

33

6.5.3 Assignments

The main problem was broken down into three teaching sessions with associated assignments
progressing towards the APSP. A printed assignment sheet was provided to each of the student
pairs in the adidactical working phases of the three sessions. The assignments given in each session
are described in detail in the respective session descriptions.

The progression in the designed assignments was influenced by the PRIMM method, described
in Chapter 5.3.1. The assignments progress through the three sessions, from program tracing to
making their own art programs. The predict, run, and modify stages were included in the first
session. In the second session, the modify, investigate and make stages were included. In the third
session, the modify and make stages were included. The PRIMM structure was a design choice
made to help students gradually build up the required understanding of syntax and programming
structures to create complex art programs like the APSP described in Chapter 6.4.2.

6.5.4 Python Cheat Sheet

A Python cheat sheet was designed as a part of the milieu. Each student pair were provided
with a sheet during the working periods. The Python cheat sheet contained a selection of relev-
ant functions for the student programs and associated function documentation. There were four
sections on the sheet. The first section included built-in functions in Python, such as round()
and int(). The three following sections included functions from the turtle, math, and random
libraries, respectively. Examples of library functions included were turtle.speed(), math.sqrt() and
random.randrange(). The Python Cheat Sheet is included in full in Appendix I.

The design choice of providing a Python Cheat Sheet was related to the PRIMM method for
structuring assignments, as elaborated in Chapter 5.3.1. In the investigation stage, the students
work on their program comprehension. The Python Cheat Sheet was a resource to support the
students’ understanding of their own programs and examples. The Python Cheat Sheet was also a
resource to support the modification and make stages by reminding the students of known functions
and displaying new possibilities.

In the math library section of the cheat sheet, a conversion from degrees to radians was included to
scaffold the students. This design choice was founded on the preliminary analysis of trigonometry.

6.5.5 Paper and Pencil

The students were used to solving triangles by hand calculations carried out on paper. The student
with the navigator role in the pair had access to paper and a pencil for performing hand calculations
and drawing in the adidactical working phase.

6.5.6 Driver PC

The student with the driver role in the pair had access to a computer during the entire adidactical
working phase. Anaconda Spyder was the Python programming environment used by the driver
to write code. The Anaconda Spyder programming environment was chosen because the students
had used it before and were familiar with it.

The Python math library (Python Software Foundation [PSF], n.d.-a) was included to enable stu-
dents to use mathematical functions such as square root, sine, cosine, inverse sine, and inverse
cosine in their programs. Square roots are needed in the Pythagorean theorem, and the trigono-
metric functions with their inverses are relevant in the process of solving triangles, as described in
Chapter 4.

The Python turtle graphics library (PSF, n.d.-c) was included as part of the milieu available on the
driver’s computer. The turtle library was included for bridging programming and trigonometry by

34

visualizing the solving of triangles through drawing them.

The Python random library (PSF, n.d.-b) was included to enable students to draw non-congruent
triangles. Side lengths and angles can be generated randomly with functions such as randrange()
from the random library.

6.5.7 Navigator Resources

The student with the navigator role in the pair had access to the Internet for looking up relevant
resources and documentation in the adidactical working phase. For example, the navigator could
use the computer to search Google or the Stack Overflow forum3 for help.

6.5.8 Intellectual Milieu

The intellectual milieu is the set of the student prerequisites mobilized in the adidactical work
phases of the didactical situation. The expectations are built on the preliminary analyses of
trigonometry and programming, and especially the institutional analyses.

Regarding trigonometry, the students are expected to know and previously have applied The Law
of Cosines, The Law of Sines, and The SAS Theorem Area Formula in traditional mathematics
assignments such as solving triangles. The students are expected to know and have applied the
triangle and unit circle definitions of sin(x) and cos(x) in hand calculations. The students are
expected to be familiar with drawing figures to aid calculations in trigonometry. The students are
expected to use degrees as the angle measuring unit in calculations with angles. They are expected
not to be familiar with radians.

Regarding programming, the students are expected to know and previously have applied the pro-
gramming concepts of variables, conditionals, definite loops, and indefinite loops. The students
are expected to have implemented these programming constructs in Python and consequently be
familiar with the syntax. The students are expected to be familiar with primitive data types such
as strings and integers. The students are expected to be familiar with common Python built-in
functions such as int(), print(), input(), and round(). The students are expected never to have
encountered subroutines in programming. The students are expected never to have heard of sys-
tematic debugging or pair programming.

6.6 Session 1

The first session’s purpose would be to set the stage for the following sessions by equipping the
students with the necessary prerequisites. In line with TDS, the students would need to get
familiar with the milieu before working self-reliantly on a problem. Getting familiar with the
milieu includes knowledge of the resources available for interaction and the associated rules for
interaction (Brousseau, 2002). This is part of the devolution phase in the didactical situation
where a problem is handed over to the students (Brousseau, 2002, p. 230). The pair programming
collaboration and the debugging poster would be new for the students, which meant the possible
actions and the rules would not be self-explanatory. Therefore, the first session would be devoted
to building up the student prerequisites for the two following sessions.

I planned the following learning outcomes from the first session:

• The students should know what pair programming is. They should understand the respons-
ibilities involved in the driver and navigator roles and have tested both roles.

• The students should know what debugging is. They should know that the poster is an
available resource to support their debugging, and they should have tested the steps on the
poster while programming in this session.

3https://stackoverflow.com/

35

https://stackoverflow.com/

• The students should know what the Python turtle library is. They should be familiar with
central functions in the turtle library and have tested importing the library and used several
functions for drawing geometric shapes on the canvas. The students should know that the
Python Cheat Sheet is a resource handed out to support the use of the turtle library.

• The students should know the necessary boilerplate functions turtle.done() and turtle.bye()
to use the turtle library with the Spyder programming environment. The students should
have implemented the boilerplate code in their own programs.

• The students should know that programming is a process that includes understanding the
problem, devising a plan, implementing the plan, debugging the program, and evaluating the
result. The students should have gone through all the steps in the programming process.

6.6.1 Devolution

Both the overall problem for the week and the session assignment would be handed over to the
students in the first session. I planned to explain that the students would create art with pro-
gramming and trigonometry throughout the week. An example artwork by Johnson (n.d.) would
accompany the introduction to illustrate the professional use of programming and trigonometry.

I would explain to the students that programming is a process that consists of planning, imple-
menting, testing, and debugging. I planned to emphasize how frustration and errors are natural
parts of the programming process and that the students should expect to meet some difficulties.
I would introduce the debugging poster as an aid to help the students in their error handling. I
would show the debugging poster and explain that debugging is fixing errors in the code. I planned
to explain the different types of errors and relate the two cycles on the poster to the error types.
I would encourage students to test out the cycles if they got stuck during the session.

Then, I would organize the class into the planned pairs and introduce the pair programming
methodology, including the driver and navigator roles. I would emphasize that both partners are
equally in charge of and responsible for the program being developed. Two rules for interaction
in the pair would be presented to the students. Firstly, the navigator is not allowed to grab the
driver’s computer keyboard or mouse. Instead, the navigator has to explain their ideas in words to
the driver. Secondly, the driver is expected to think aloud and explain to the navigator what they
are doing. In the case of an odd number of students, I would divide three students into a triplet
with one driver and two navigators.

Following the introduction of the milieu, the devolution would transition into the adidactical work
phase. I would display a Python program using turtle functions to the students. See Figure 10a.
I would ask the students to predict the output of the program together with their partners before
proceeding to the following assignments. I would hand out the printed materials. Now the problem
would be handed over to the students.

6.6.2 Adidactical Work Phase

The program was designed to encourage the students to understand and modify it. I planned for
the students to believe that the program created an equilateral triangle due to the 60◦ angle in line
5. As can be seen from Figure 10b, the program output is not an equilateral triangle. The following
assignment for the students would be to modify the program to fit their original hypothesis. If
their hypothesis was right in the first place, they would jump straight to the next assignment.

36

1 import turtle

2

3 for n in range (3):

4 turtle.forward (100)

5 turtle.left (60)

6

7

8 turtle.done()

9 turtle.bye()

10

(a) Program. (b) Output.

Figure 10: The Python program displayed to the students in the devolution phase in session 1 and the
resulting output in the turtle graphics window.

The following assignment would include further modification of the program. The assignment
would ask the students to plan, implement and test their modifications. An example idea of
creating a program that draws 100 blue octagons would be included to spark the students’ ideas.
The included example’s purpose was to encourage the implementation of colors from the turtle
library and loops in the student programs. Appendix J includes the assignments given to the
students in Norwegian for all three sessions.

Teacher Regulation
During the adidactical work phase, I would expect the students to encounter errors and ask me for
help. I planned to acknowledge their frustration and listen to their questions but not give them
the answers. I planned to demand autonomy from the students to foster self-reliant debugging,
in line with the findings from (Michaeli & Romeike, 2019a). I would refer to the navigator’s
responsibility for helping the driver. I would also remind the students of the aids permitted, such
as the debugging poster and the Python Cheat Sheet.

6.6.3 Institutionalization

I would end the first session by decontextualizing the programming process from the situation.
I would emphasize how the students would benefit from planning their programs prior to imple-
mentation in the following session. I would also emphasize how the students would benefit from
using the debugging poster and the systematic debugging process for handling errors throughout
the week. I would highlight honorable student actions such as drawing on paper for support or
creating a plan prior to implementation.

6.7 Session 2

The second session would have a dual purpose between programming and trigonometry. One aim
would be for the students to know how to declare subroutines with and without parameters in
Python and call the subroutines within their programs. Regarding trigonometry, the aim would
be for students to solve triangles based on SAS information. By combining the two, the main
objective of this session would be for the students to produce a program that draws a triangle
using a self-made subroutine with parameters for the information provided in SAS.

6.7.1 Devolution

I would build from the students’ existing knowledge about mathematical functions to introduce
subroutines. I would write an example of a mathematical function, f(x) = x2 = y, on the
whiteboard. I would draw an abstraction of the function, highlighting the function name f , the
parameter value x, and the return value y. See figure 11a. I would explain that the function f

37

can be implemented with programming. I would further explain that functions in programming is
a wider term than mathematical functions and provide examples in the same abstraction form. I
would draw an abstraction of the mathematical area formula as a function with two parameters,
baseline b and height h, and the return value area. See Figure 11b. The third abstraction I would
draw is a procedure for drawing a triangle with no parameter values in Figure 11c. The last
abstraction I would draw would be a procedure for drawing a triangle taking the parameter value.
See figure 11d.

(a) Function for calculating the value of f(x). Note.
The function takes one parameter, x, and returns
one value, y.

(b) Function calculating the area of a triangle.
Note. The function takes two parameters, b and
h, and returns one value, area.

(c) Procedure for drawing a triangle. Note. The
procedure takes no parameters.

(d) Procedure for drawing a triangle. Note. The
procedure takes one parameter, side length.

Figure 11: Illustration of the four subroutine abstractions intended drawn to students in the devolution
phase in session 2.

I would follow up the abstractions on the whiteboard with a live coding session where I would im-
plement the abstractions in Python. The demonstration would include how to declare subroutines.
I would demonstrate how to include parameter values and how to include a return value. I would
show how to call subroutines. The end product of the live coding session is included in Appendix
K.

I would end the live coding session with a transition to the adidactical work phase. I would explain
that the students were going to implement subroutines that drew triangles, focusing on subroutines
without a return value.

6.7.2 Adidactical Work Phase

The first assignment would build on the programs written in session 1. The students would be
provided with a program that draws an equilateral triangle. See Figure 12. The first assignment
would be to wrap the program in a function. In the following assignment, the students would
create a new function that draws a different triangle than an equilateral. The choice of a triangle
would be up to the students. By asking the students to draw a different triangle, the aim would be
to evoke the need to apply their mathematical knowledge about triangles and apply their newly
acquired knowledge about how to implement subroutines in Python. The choice of a triangle would
be left to the students to accommodate differentiation.

38

1 import turtle

2

3 for n in range (3):

4 turtle.forward (100)

5 turtle.left (180 - 60)

6

7

8 turtle.done()

9 turtle.bye()

10

(a) Program. (b) Output.

Figure 12: The Python program provided to the students in the first assignment in the adidactical work
phase in session 2 and the resulting output in the turtle graphics window.

The students’ subroutine for drawing a triangle would be modified to include at least one parameter.
I planned the inclusion of parameters to evoke a need for solving a more general problem, namely
drawing similar triangles that are non-congruent.

The last assignment would be to let two sides and the angle in between them (SAS) be the
parameters. This assignment aimed for students to apply the law of cosines to solve the triangle.

Swapping programs
The student groups would swap programs with another group during the adidactical work phase.
The intention was to increase the focus on code comprehension, in line with the interpretation
stage in PRIMM (Sentance et al., 2019a). The questions given to the students would include
comprehension of different abstraction levels of the peer group’s program. One question would
be to formulate the differences between their own program and the peer group’s program. The
questions are included with the assignments in Appendix J.

Teacher Regulation
I would demand self-reliance in debugging in this adidactical work phase, just like in the first
session. Due to the mathematical focus of the assignments, I would guide the students to sketch
and perform hand calculations on paper. For students struggling with implementing a function to
draw a different triangle, I would advise them to start with a right triangle, as the students would
be familiar with solving triangles with the Pythagorean theorem.

6.7.3 Institutionalization

I would end the adidactical working phase by institutionalizing the use of subroutines. I would
emphasize that functions are programming constructs used to store a sequence of instructions
for reuse. Furthermore, I would highlight how subroutines taking one parameter provide the
opportunity for drawing similar triangles. I would demonstrate drawing similar triangles with a
live coding example. I would implement a Python function drawing right triangles taking one side
length as a parameter. I would include the inverse sine function from the math library for solving
the triangle. The end product of the live coding session is included in Appendix K.

6.8 Session 3

The aim of the third session would be for the students to end up with programs similar to the
APSP Python implementation. By progressing through the assignments culminating in creating
a program similar to the APSP, the aim would be for the students to have obtained the target
knowledge in trigonometry and programming.

39

6.8.1 Devolution

The devolution of the third session would be rather short to provide the students with enough
time in the adidactical work phase. I would tell the students that in this last session, everything
they have done in the two previous sessions will become useful. I would tell them that today
they will create artworks using the subroutines they created in session 2 that draws triangles. I
would tell them that if their delivery from session 2 did not work, an alternative subroutine would
be provided on the assignment sheet for them to use. I would remind the students of the pair
programming methodology and organize the class in their pairs. I would remind and advise the
students to plan their programs in advance and that programming is a process that consists of
planning, implementing, testing, and debugging. I would remind the students of all the materials
available in the milieu. Lastly, I would hand out the assignments, the debugging poster, and the
Python Cheat Sheet to the students.

6.8.2 Adidactical Work Phase

The students would start out with their subroutines for drawing one triangle. Figure 13 displays
the code provided to the students on the assignment sheet and the output of the code. The code
was provided to enable all student pairs with the same starting point in session 3, also the students
that did not produce a properly functioning subroutine for drawing a triangle in session 2.

1 import turtle

2

3 def likesidet_trekant(sidelengde):

4 for n in range (3):

5 turtle.forward(sidelengde)

6 turtle.right (180 - 60)

7

8

9 likesidet_trekant (150)

10

11 turtle.done()

12 turtle.bye()

13

(a) Program. (b) Output.

Figure 13: The Python program provided to the students in the first assignment in the adidactical work
phase in session 3 and the resulting output in the turtle graphics window.

The student pairs would modify their programs to draw several triangles at different locations
on the canvas. Then, they would modify their programs to draw exactly 10 triangles at different
locations on the canvas. These assignments were designed to evoke the need to simplify repeated
function calls with a loop. The students would further modify the program to draw triangles until
the total area of triangles exceeds 10 000 square pixels. The formulation of this assignment had a
dual purpose. The first purpose was to evoke the need to calculate the area of the drawn triangles.
The intention would be for the students to figure out that determining and drawing their triangle
and calculating the area of said triangle would be easiest to connect by using SAS. Secondly, the
word ”until” was included to evoke the implementation of repeated evaluation of the total area
with a while-loop. The following assignment would be to modify the program so that the user
could decide the maximum total area of the triangles. This assignment was planned to eradicate
all attempts to implement the assignments with a pre-determined number of triangles, and evoke
the need for a while-loop. Then, the students would bring the work of art to life with colors.
The last assignment would be to substitute the subroutine drawing one triangle. This assignment
was planned to ensure the decomposition of area calculation and drawing triangles in separate
subroutines, and to evoke the need to calculate the area based on the SAS Theorem Area Formula.

Teacher Regulation
I would expect the student to encounter numerous errors in this session, as several programming

40

constructs such as subroutines and loops would be implemented. I would demand self-reliance in
debugging, as in sessions 1 and 2. To help the students stuck on errors, I would advise them to
use the systematic debugging process and the related strategies provided on the debugging poster.
I would help the students to identify which cycle and step in the cycle they are stuck on, and
suggest an appropriate strategy to test. I would also remind the students to devise a plan, to draw
sketches, and to apply the trigonometric theorems they are familiar with if they would express not
knowing how to start.

I would expect the students to evaluate all three trigonometric theorems available in their imple-
mentations of a new subroutine for drawing a triangle. As described in the preliminary analysis of
trigonometry, The Law of Cosines can be applied and reformulated to uniquely determine an angle
rather than a side in a triangle, as the cos(x) function is injective on the domain of angles for a
triangle. Due to the sin(x) function not being injective on the domain of angles in triangles, The
Law of Sines can not be applied to uniquely determine an angle. Consequently, I would regulate
the students if they would attempt to use The Law of Sines to calculate angles in the triangle to
be drawn. I would help the students realize that The Law of Cosines is more appropriate in the
situation. I would do so by asking the students to draw an obtuse triangle with their program. As
the math library implementation of the asin(x) function only outputs acute angles, their program
would not draw a triangle.

6.8.3 Institutionalization

I would institutionalize the whole didactical situation by summarizing what we have done during
the three sessions. I would explain how pair programming and debugging are methodologies
applicable in all programming settings.

I would display the interactive artwork by Johnson (n.d.) again. The purpose of displaying the
professional artwork again would be to help the students decontextualize the use of subroutines
and trigonometric theorems from the didactical situation, and see the value outside of drawing
triangles. I would emphasize how the professional artwork applies trigonometry to create circular
motion rather than triangles. I would close the tab with the professional artwork to create further
distance from art production. Then, I would emphasize how the application of subroutines is
useful when programming in contexts other than art production. I would do so by drawing the
same abstractions of subroutines as in session 2 on the whiteboard. I would describe applications
of the different types of subroutines outside of the art production domain.

41

7 Results from the Classroom Realizations

The results from the classroom realization are presented in this chapter with supporting excerpts
from the data material. The data analyzed was observational data from one classroom, student
programs from sessions 2 and 3, the in-vivo analysis between sessions, and the post-realization
student interviews.

7.1 Session 2

The majority of student groups chose to create programs that drew a right triangle in session
2. The right triangle programs typically included an application of the Pythagorean theorem for
calculating the hypotenuse or one of the catheti. None of the right triangle student programs
included the definition of sin or cos for solving the triangle.

7.1.1 Hard-Coding Triangles

One implementation variation was drawing a right triangle using a function taking one side length
as a parameter. However, the remaining two side lengths were hard-coded into the function.
Consequently, a triangle would only be drawn for one specific parameter value. An example from
student pair 2 in class 1 is included in Figure 14, in which case the program draws a triangle only
when the value 100 is passed as an argument.

1 import turtle

2

3 def trekant(sidelengde):

4 turtle.left (90)

5 turtle.forward(sidelengde)

6 turtle.left (-120)

7 turtle.forward (200)

8 turtle.right (150)

9 turtle.forward (175)

10

11 trekant (100)

12

13 turtle.done()

14 turtle.bye()

15

Figure 14: Hard-coding triangles. Note. The program draws a triangle only when the value 100 is passed
as an argument to the subroutine ”trekant” (triangle). Delivered after session 2 by student pair 2 in class
1.

7.1.2 Special Cases of Triangles

Other variations implemented drawing special cases of right triangles, such as a 30-60-90 triangle.
Unique to 30-60-90 triangles is the ratio between the shortest cathetus c and the hypotenuse. The
hypotenuse length is 2 · c (Weisstein, n.d.-a). The shortest cathetus was passed as a parameter to
the function. Another special case triangle in the student programs was drawing an isosceles right
triangle, where both catheti have the same side length. The side length was passed as an argument
in a function. Examples from student pair 7 in class 2 and student pair 8 in class 1 are included in
Figure 15. Worth emphasizing about these programs is that they correctly drew similar triangles,
opposed to the program in Figure 14. The functions created by the students displayed in Figure
15 took one side length as parameter and based calculations for the remaining side lengths on the
parameter.

42

7.1.3 Redundant For-Loops

Figure 15 also illustrates another strong tendency in the student programs. A majority of student
programs included redundant for-loops for completing one iteration of an instruction sequence.

1 import turtle

2 import math

3 turtle.speed (0)

4

5 def rettvinklettrekant(sidelengde):

6 turtle.forward(sidelengde)

7 turtle.left (120)

8 H=2* sidelengde

9 turtle.forward(H)

10 turtle.left (150)

11 a=H**2- sidelengde **2

12 K=math.sqrt(a)

13 turtle.forward(K)

14

15 rettvinklettrekant (50)

16

17

18 turtle.done()

19 turtle.bye()

20

(a) Student program drawing a 30-60-90 triangle.
Note. Delivered after session 2 by student pair 7 in
class 2.

1 import turtle

2

3 def rettvinklet(sidelengde):

4 for n in range (1):

5 turtle.forward(sidelengde)

6 turtle.left (90)

7 turtle.forward(sidelengde)

8 turtle.left (180 -45)

9 import math

10 a=sidelengde **2+ sidelengde **2

11 turtle.forward(math.sqrt(a))

12 rettvinklet (150)

13

14 turtle.done()

15 turtle.bye()

16

(b) Student program drawing an isosceles right triangle.
Note. The program also includes a redundant for-loop.
Delivered after session 2 by student pair 8 in class 1.

Figure 15: Student programs drawing special cases of triangles.

A handful of student pairs started the final assignment in session 2. The last assignment was solving
and drawing a triangle using the information side-angle-side (SAS). One of the pairs applied The
Law of Cosines for calculating the opposite side of the known angle, as can be seen in line 22 in
Figure 16a. An observation about this program was that it included a logical error. In line 22,
the value for an angle in variable theta was calculated using the built-in functions sin() and asin()
from the math library. The angle v was passed as an argument. The trigonometric functions in
the math library take the angle parameter in radians (Python Software Foundation [PSF] ,n.d.-a),
whereas v was passed in degrees. Consequently, the wrong angle was rotated in line 23, and a
triangle was not drawn.

Another pair attempted to implement the last assignment using the SAS Theorem Area formula.
The program is included in Figure 16b. As shown in lines 7 and 8, the students converted the
parameter angle A from degrees to radians before calculating the value sin A with the math library.

43

1 #Importerer turtle og math bibliotekene

2 import turtle

3 import math

4

5 turtle.speed (1)

6 turtle.hideturtle ()

7

8 #Sidelengder

9 side1 = int(input("Sidelengde 1: "))

10 side2 = int(input("Sidelengde 2: "))

11 hypotenus = math.sqrt(side1 **2+ side2 **2)

12 vinkel = int(input("Skriv inn en vinkel: "))

13

14 #Tegner en rettvinklet trekant

15 def Trekant(s1 , s2 , v):

16 turtle.forward(s1)

17 turtle.left(v)

18 turtle.forward(s2)

19

20 h = math.sqrt(s1**2+s2**2 -2*s1*s2*math.cos(v))

21

22 theta = math.asin(s1*(math.sin(v)/h))

23 turtle.left (180 - theta)

24

25 turtle.forward(h)

26

27 Trekant(side1 , side2 , vinkel)

28

29 turtle.done()

30 turtle.bye()

31

(a) Student program applying The Law of Cosines. Note. Delivered
after session 2 by student pair 5 in class 1.

1 import turtle

2 import math

3

4 turtle.clear()

5

6 def trekant(A, b, c):

7 vr=math.radians(A)

8 sin_A=math.sin(vr)

9 def areal():

10 (1/2)*b*c*sin_A

11

12

13 turtle.penup()

14 turtle.goto (100, 100)

15

16

17 turtle.done()

18 turtle.bye()

19

(b) Student program applying the SAS
Theorem Area Formula. Note. De-
livered after session 2 by student pair 1
in class 2.

Figure 16: Student programs drawing triangles bases on SAS.

7.2 Session 3

7.2.1 Repeated Function Calls

In session 3, the majority of student programs delivered had completed or attempted assignment 4.
In this assignment, the students created programs that drew triangles until the total area exceeded
10 000 square pixels. An observation about these programs was the diversity in implementing
the repeated drawing of triangles. In one variant, the programs included a function for drawing
multiple triangles. A for-loop was included within the function definition, and the function was
called once in the program. A second variant wrapped a for-loop around the function declaration
and a call to the function. A third variant isolated the drawing of one triangle to a function and
called the function repeatedly with a for-loop. A fourth variant omitted a loop and repeatedly
called the function with the same arguments. The four variants are included in figure 17.

44

1 import turtle

2 import math

3

4 turtle.speed (100)

5

6 def likesidet_trekant(sidelengde):

7 for n in range (360):

8 turtle.forward(sidelengde)

9 turtle.left (180 - 60)

10 turtle.forward(sidelengde)

11 turtle.left (180 -60)

12 turtle.forward(sidelengde)

13 turtle.left (180 -60+1)

14

15 likesidet_trekant (180)

16

17 turtle.done()

18 turtle.bye()

19

(a) Student program with for-loop included in the
function definition. Note. Delivered after session 3
by student pair 3 in class 2.

1 import turtle

2

3 turtle.speed (10)

4

5 for n in range (3):

6 def likesidet_trekant(sidelengde):

7 for n in range (3):

8 turtle.forward(sidelengde)

9 turtle.left (180 - 60)

10

11 likesidet_trekant (100)

12

13 turtle.penup()

14 turtle.forward (105)

15 turtle.pendown ()

16

17

18 turtle.done()

19 turtle.bye()

20

(b) Student program wrapping the function declaration
and call in a for-loop. Note. Delivered after session 3 by
student pair 8 in class 2.

1 import turtle

2

3

4 def likesidet_trekant(sidelengde):

5 for n in range (3):

6 turtle.forward(sidelengde)

7 turtle.right (180 - 60)

8

9

10

11 for n in range (1 ,50):

12

13 likesidet_trekant (1*70)

14 turtle.forward (90)

15 turtle.right (100)

16 turtle.speed (1000)

17 turtle.left (100)

18 likesidet_trekant (1*70)

19 turtle.right (100)

20

21

22

23 turtle.done()

24 turtle.bye()

25

(c) Student program isolating the declaration of the
function drawing one triangle from the for-loop with
repeated function calls. Note. Delivered after ses-
sion 3 by student pair 9 in class 1.

1 import turtle

2

3 def likesidet_trekant(sidelengde):

4 for n in range (3):

5 turtle.forward(sidelengde)

6 turtle.right (180 - 60)

7

8 turtle.speed (0)

9 turtle.shape("turtle")

10 turtle.color("magenta")

11 turtle.bgcolor("blue")

12

13 likesidet_trekant (150)

14 likesidet_trekant (300)

15 likesidet_trekant (170)

16

17 turtle.left (300)

18

19 ...

20

21 likesidet_trekant (150)

22 likesidet_trekant (300)

23 likesidet_trekant (170)

24 turtle.left (300)

25

26 likesidet_trekant (150)

27 likesidet_trekant (300)

28 likesidet_trekant (170)

29

30 turtle.penup()

31 turtle.goto (50 ,50)

32

33

34 turtle.done()

35 turtle.bye()

36

(d) Student program omitting a loop. Note. Delivered
after session 3 by student pair 6 in class 2. The program
has been shortened.

Figure 17: Four variants of student implementations of repeated function calls.

45

7.2.2 Calculation of Area

Another observation was that only the few student programs exceeding assignment 4 attempted
to calculate the area of a single triangle. Assignment 5 was to let a user of the program decide the
maximum area. Furthermore, only one of those programs applied the SAS Theorem Area Formula
to calculate a single triangle’s area.

Related to the calculation of area, two of the student programs stood out by attempting to keep
track of the total area of all drawn triangles. The first program applied a for-loop and drew similar
right triangles taking a randomly generated integer as an argument for one side length. The total
area was printed at the end of the program. The program draws 15 similar triangles, and the total
area varies due to the randomization of side length. The program is included in Figure 18.

1 import turtle

2 import math

3 import random

4 turtle.speed (0)

5

6 def rettvinklet_trekant(sidelengde):

7 turtle.forward(sidelengde)

8 turtle.left (120)

9 H=2* sidelengde

10 turtle.forward(H)

11 turtle.left (150)

12 a=H**2- sidelengde **2

13 K=math.sqrt(a)

14 turtle.forward(K)

15

16 samla_areal =0

17

18 for i in range (15):

19 turtle.pendown ()

20 b=random.randrange (1 ,200)

21 rettvinklet_trekant(b)

22 k=math.sqrt ((2*b)**2-b**2)

23 areal=k*b*1/2

24 samla_areal=samla_areal+areal

25

26

27 turtle.penup()

28 turtle.goto(random.randrange (-200 ,200),random.randrange (-200 ,200))

29

30 print(samla_areal)

31

32 turtle.done()

33 turtle.bye()

34

Figure 18: The first student program keeping track of the total area of triangles. Note. Delivered after
session 3 by student pair 7 in class 2.

The second program that kept track of the total area applied a while-loop. The program is included
in Figure 19. A variable named totalareal (total area) was instantiated with the value 0 in line 15.
In line 16, a variable named maks (max) was declared. The max variable stored an input value
from the user. A while-loop was then executed if the value of the total area was less than the value
of max. The while-loop called the function to draw a triangle with the same argument, attempting
to draw congruent triangles. The program only attempted to draw triangles due to a runtime error.
The calculation of the area in line 26 relied on a variable called sidelengde (side length) that was
undefined.

46

1 import turtle

2 from random import randint

3 import math

4 turtle.speed (10)

5 def likesidet_trekant(sidelengde):

6 turtle.forward(sidelengde)

7 turtle.left (180 - 90)

8 turtle.forward(sidelengde *0.6)

9 h=math.sqrt(sidelengde **2) +((0.6* sidelengde)**2)

10 alpha=math.asin(sidelengde/h)

11 turtle.left(alpha)

12 turtle.forward(h)

13 vinkelr=math.radians (90)

14 sin_90=math.sin(vinkelr)

15 totareal =0

16 maks=int(input("skriv inn maksareal"))

17 while totareal < maks:

18 turtle.color("magenta")

19 turtle.fillcolor("blue")

20 turtle.begin_fill ()

21 turtle.pendown ()

22 likesidet_trekant (10)

23 turtle.penup()

24 turtle.goto(randint (-300 ,300),randint (-300 ,300))

25 turtle.end_fill ()

26 areal = (1/2)*sidelengde *(sidelengde *0.6)*sin_90

27 totareal +=areal

28 turtle.done()

29 turtle.bye()

30

Figure 19: The second student program attempting to keep track of the total area of triangles. Note.
Delivered by student pair 1 in class 2.

7.2.3 Variable and Parameter Scope

The program containing a while-loop in Figure 19 was created by Dina and Vegard, the pair
observed in class 2. Their rationale behind the undefined variable side length was accessible from
their work dialogue and the associated screen recording. Transcription codes are included in
Appendix L.

Timestamp 28:22
V: side length is not defined yet. But I don’t think it is a problem.
D: Did we not define it here? (Dina highlights line 5 in the program.)
V: I don’t know why it-
D: side length. Have I typed it correctly? Yes.
V: I don’t think it is a problem yet.
[. . .]
Timestamp 36:32
V: It is an error message saying undefined side length.
D: That side length is not defined?
V: Is it not?
D: I thought we defined it here.
V: Because in the equilateral triangle- down here [the function] says what side length
should be. Is that wrong?
D: And it is weird that [the error message] comes here, and not in any of the other
places side length is used. Did we type it wrong anywhere?

From the dialogue, it seemed like Dina and Vegard believed that the side length variable was given
a value in line 5 or line 22. Line 5 was the first line of the equilateral triangle function declaration,
including a parameter called side length. Line 22 was a call to the equilateral triangle function,
passing the number 10 as an argument.

47

7.3 Perceptions of Motivational Factors

The student interviews were opened with questions about the students’ overall opinion of the
lessons. Without exception, all four students’ immediate answers were positive. The students ex-
pressed that the lessons had been fun and contributed to their programming learning. Martin from
class 2 also emphasized that he expected to make use of the newly acquired skills and knowledge
in the future:

I thought it was very fun, and I learned a lot. It makes me want to learn more. And I
know that programming is a good skill to have, at least how the world is becoming in
the future. So it’s fun that it’s being more integrated in school. (Martin, class 2)

When asked to elaborate on what made the lessons fun, the students highlighted the build-up
of assignments from examples to exploration with their own programs. Vegard appreciated the
increasing complexity:

[I liked to] make the program more and more complex. When you keep going further
and further. You can use things you have created earlier and improve the program.
(Vegard, class 2)

Furthermore, getting visual feedback as their product developed throughout the week was motiv-
ating:

You got such a sense of mastery when you managed to get a product that was cool to
look at. Like, see what you could do with the different codes. At first, I thought it was
a little confusing. [...] but I got a pretty cool result. (Viktor, class 1)

7.4 Ambivalence to Pair Programming

The students were ambivalent about whether or not they perceived pair programming was helpful
in the programming process. Vegard reflected on the potential for receiving feedback, but he felt
that working alone would enable him to produce a more advanced result:

I think the concept [of pair programming] might be more effective. That you get,
for instance, constructive feedback on your code from another person. Instead of just
seeing it through your own eyes. I understand that switching between the driver and
navigator roles is for both to be able to program, but it may be a little less effective as
well. [...] I think I could have gotten further with the program if I had worked alone
because I type faster. [...] But I still think it was pretty fun to [program] in pairs. I just
want to do it better. I want to improve my code as much as possible. Working in pairs
and having to give instructions to someone else can slow that down a bit. (Vegard,
class 2)

Martin perceived the navigator role differently than Vegard. He elaborated on his own learning
process from instructing the driver:

If you have to explain what you understand to someone else, you get pushed to break
it down and simplify it. By explaining it in simpler words, you understand it better
yourself. (Martin, class 2)

7.5 Debugging Perceptions

The students were asked in the interviews about what they experienced as difficult in the sessions.
All the students responded that error handling was frustrating, highlighting different logical errors
as particularly frustrating. Vegard shared how he felt stuck when they encountered a logical error:

48

The code did not execute the way it was supposed to. It did not run, and we did not
get an error message. Everything fell apart because we got no error messages. How are
you supposed to improve it? Or fix it. (Vegard, class 2)

Robin had a similar experience:

First, we almost made a star. It started here, and then it went out like that, and then
it went straight in. And then it went straight out. And then again several times. [...].
I do not quite remember what we had written. But that was not what we wanted,
because we wanted triangles. We just had to try and fail a few times. (Robin, class 1)

A follow-up question asked the students about whether or not they had used the debugging poster
when encountering logical errors. Viktor and Robin replied that they raised their hands instead
of using the poster. Martin and his partner had tried to use it once, but they did not manage to
implement a fix by using the debugging poster:

We tried to go through the poster several times to get to the result we wanted, but we
had no clue about which new lines to put into the program.

The students were further asked to describe which methods they applied instead of the debug-
ging poster when they encountered errors. Vegard explained how he mostly drew from his prior
programming experience:

I look through [the program] over and over again to find out what is wrong. You know,
if you write enough, if you code enough, you get used to recognizing what looks right.
Maybe. It gets easier to find the error. And, of course, I read the error messages. You
have to be able to interpret them. Often they give you an answer to what is wrong.
Also, there is a lot of trial and error. To try something and see if it works or not.
(Vegard, class 2)

7.6 Debugging Observations

The students encountered logical errors while programming. The recordings of Dina and Vegard
from the adidactical work phases show that they do not employ a systematic debugging process.
They rely on error messages and trace the program looking for causes of the error. They also try
to apply the debugging poster but quickly discard it. The students attempt these strategies for a
short amount of time before asking the teacher for help. The following observation from session
3 documents their actions when encountering a logical error. Transcription codes are included
in Appendix L. As seen from the transcript, Vegard introduces a logical error in the while-loop,
confusing the symbols > and <. The students identify the error by running the program. The
students try to debug the program for 40 seconds before raising a hand to ask for help.

Timestamp 18:07
V: A while-loop just does something until a condition is met. So while total area is less
than 10 000... (Vegard types while total area > 10 000).
[...]
Timestamp 19:21
(Vegard runs the program.)
V: Okay? It did not run. And we’re not getting an error message either.
D: We can look at this then. (Dina laughs and picks up the debugging poster.)
Timestamp 19:30
V: Okay. Does the program run without any error messages? Yes.
Read and understand the error message. It is not-
D: Isn’t it rather: Does the program run without any error messages?

49

Revert the changes you made in the code.
V: I don’t bother to do that.
D: No.
(Dina and Vegard mumble. Vegard traces the program on the screen and mentions the
word ”radians”. Dina reads on the poster. Both students trace the code.)
Timestamp 20:00
(Dina raises her hand, and the instructor comes over.)

7.7 Evaluation of Target Knowledge Attainment

From the results presented about the students’ delivered programs, it can be proposed that the
designed didactical situation has the potential for students to attain the target knowledge in
trigonometry, but that most students did not. In session 2, one of the pairs implemented The Law
of Cosines to solve and draw a triangle based on the information SAS. In session 3, one student pair
implemented the SAS Theorem Area Formula to calculate the area of each triangle drawn. These
deliveries indicate that the students understood the trigonometric component of the assignments
and managed to apply their existing knowledge about these trigonometric theorems in the situation.
On the other hand, the results also demonstrate how most student pairs’ trigonometry applications
were on a lower than the intended target knowledge. For instance, the Pythagorean theorem.

There is a similar tendency regarding the target knowledge in programming. Most student pairs
managed to declare functions, including parameters, in their programs. Repeated function calls
were also implemented in most student programs delivered in session 3. However, their application
of subroutines did not reflect the property of solving a family of related problems. Calling a func-
tion with different parameter values was only implemented in a handful of the student programs.
The students also emphasized functions as valuable for repeating a sequence of instructions in their
reflections regarding functions in the interviews, without mentioning solving a generalized prob-
lem. These findings indicate potential in the didactical situation for students to obtain the target
knowledge in programming. However, the process toward the target knowledge seems restrained
for most students.

50

8 Discussion

This chapter provides a discussion of the results presented in Chapter 7. The discussion is centered
around the results’ indications of contributing and constraining factors for obtaining the target
knowledge, and consequently, not all results are discussed. This chapter reports on the a posteriori
analysis and validation of the didactical situation, the fourth phase of DE.

8.1 Students’ Progression in the Assignments

Noteworthy about the attainment of the target knowledge in trigonometry and programming is
the seeming interdependence between attainment and the progression in the assignments. The as-
signments were designed to unite solving non-congruent triangles based on SAS with appropriately
implementing a generalized solution to the said problem using subroutines. The most advanced
student programs include the elements reflecting obtaining the target knowledge in both trigo-
nometry and programming. Interestingly, the inverse also seems to be the case. The majority
of students’ programs include lower-level trigonometry and lack the generalization characteristic
in their subroutines. From these results, it can be argued that the planned progression in the
assignments was both a constraining and a contributing factor to the attainment of the target
knowledge in both programming and trigonometry. In other words, it seems like only the students
who managed to progress to the last assignments benefited from the planned synergy evoking
generalization of subroutines and SAS determined triangles. The students whose progression was
terminated earlier seem not to have benefited from the synergy. Consequently, the students’ pos-
sibilities for obtaining the target knowledge in this didactical situation were conditioned by their
progression in the assignments. The subsequent discussion of contributing and constraining factors
in this chapter is connected to the assignment progression, as it seems like a decisive factor for the
students’ possibilities for obtaining both target knowledge.

8.2 Engagement

In the interviews, the students shared that they were motivated by seeing their artworks evolve
throughout the week. Instant visual feedback on the students’ work was enabled with the Python
turtle library. The assignments built on the PRIMM structure also enabled the students to get
visually pleasing results quickly, which they could gradually develop further through the modify
and make stages. The students referred to the produced artworks as their own in the interviews,
which also indicates a high level of ownership of the products. From these results, it can be
argued that the design choices of including the turtle library in the milieu and structuring the
assignments in line with PRIMM were contributing factors in the didactical situation toward the
target knowledge in programming and trigonometry. The students were having fun, they were
motivated, and had a feeling of ownership of the artworks, which again contributed to the high
level of engagement and persistence among the students.

Visual feedback from graphics promoting motivation and persistence is in line with the results
from Kaufmann and Stenseth (2021), who conducted an experiment with programming in math-
ematics on the lower secondary level in Norway. The modify stage in PRIMM as an engaging
factor is reported by British programming teachers on the lower secondary level. The compliance
with literature for the engaging and motivating effects of visual feedback and PRIMM structured
assignments support the suggestion to continue these design choices. However, the component of
including art production with programming in mathematics is a novel approach in this project
that seems promising but requires further research.

8.3 Focus on Visual Results over Process

On the other hand, the same result-focused student statements can also indicate that the students
valued working towards visually pleasing results so high that they focused less on the processes

51

involved in programming that, in the short term, do not contribute directly toward visual results.
In the interviews, one of the students expressed that working in pairs slowed him down and that
he would have produced a more advanced result alone. Similarly, errors were a cause of frustration
for the students. Instead of applying a systematic debugging process using the poster, the students
would quickly raise their hands to ask the teacher for help. These results can suggest that students
did not consider the processes of pair programming and debugging as valuable towards their goal
of an advanced result.

Paradoxically, one of the reasons pair programming was included in the design is that research
suggests pair programming makes K-12 students write programs with fewer bugs (Campe et al.,
2019). Similarly, the poster providing a process for systematic debugging was included in the design
because research suggests systematic debugging increases the students’ self-reliance in debugging
(Michaeli & Romeike, 2019b). In other words, increased progression in the assignments was an
expected outcome of including the two strategies. The students’ focus on obtaining visually pleasing
results rather than the programming process may have constrained their possibilities for obtaining
the target knowledge in programming and trigonometry.

The discrepancy between the students’ focus on the visual results and the designed intention to
focus more on the process can indicate that the benefits of pair programming and systematic
debugging were not communicated clearly enough to the students throughout the three sessions.
Campe et al. (2019) emphasized in their pair programming toolkit that the teacher needs to scaffold
the pair programming process by reminding the students about the value of pair programming,
among others. Another possible explanation for the discrepancy is that the students did not learn
the methods of pair programming and debugging sufficiently. Research on debugging education
emphasizes how debugging is a complex skill (Li et al., 2019) that requires specific teaching lessons
(Michaeli & Romeike, 2019a). Therefore, an increased emphasis on the benefits of pair program-
ming and debugging prior to and throughout the lessons is a suggestion to improve the design.
Furthermore, training the students in applying the techniques as prerequisites could be appropriate.

However, the student interviews show that the students’ perceptions of pair programming were not
solely dismissive. The students reflected on the advantages of pair programming in the interviews.
One student highlighted the possibility of constructive feedback from their partner. Another
student also felt that he understood programming better from having to explain his thoughts
in simple words as a navigator. These reflections are in line with the benefits identified in research
on pair programming Campe et al. (2019). These statements reinforce the suggestion to improve
the training and scaffolding of pair programming in the didactical situation due to the potential
for beneficial effects for obtaining the target knowledge.

8.4 Technical Overhead

In session 2, one of the student pairs produced a program with a logical error related to com-
bining the Python libraries math and turtle in their program. The libraries respectively take in
arguments with radians and degrees as angle measures, requiring conversions between the meas-
ures in the program. The issue was foresighted through the preliminary mathematical analysis
as described in Chapter 4.1, and an attempt to counter the problem was made in the design.
The Python Cheat Sheet provided the students with conversion examples between degrees and
radians using the math library. However, another student pair carried out the conversion from
degrees to radians correctly in session 2. These results indicate that combining the two Python
libraries led to technical overhead for the students, but the hurdle is possible to overcome with
provided examples. Regardless of the possibility of overcoming the hurdle, it was a constraining
factor for the progression in the assignments, thus constraining the possibilities for obtaining the
target knowledge in both programming and trigonometry. This result opens up to question the
main rationale for teaching programming in this context. Is it for students to apply programming
in solving mathematical problems, or is learning a widespread programming language like Python
also important? According to Guzdial (2015), if the main rationale is to apply programming to
mathematical problems, it is worth considering using special-purpose educational programming
languages to limit the technical overhead. Consequently, the choice of TLEs in the didactical
situation is worth considering, given that there is a possibility for autonomously selecting TLEs.

52

8.5 Misconceptions of Loops

One of the results from session 3 was that the student programs that did not reach the final
assignment had various implementations of repeated function calls. This result can be seen in
conjunction with two other results. Firstly, one result from session 2 was that several student pro-
grams included redundant for-loops performing one iteration of an instruction sequence. Secondly,
only one of the programs delivered in session 3 included a while-loop. A proximate interpretation
of these results is that the students did not have the expected understanding of repetition and
the associated Python programming constructs of for-loops and while-loops. If the students had
misconceptions about loops and repetition, they brought the misconceptions along when imple-
menting repeated function calls. Therefore, an improvement of the didactical situation is to ensure
that the students have a solid understanding of loops as a prerequisite.

8.6 Imprecise Wording in the Assignments

A different interpretation of the various implementations of repeated function calls is connected
to the design of the assignments given to the students. As described in the preliminary analysis
of subroutines, subroutines were invented to solve repeated calls to an instruction sequence with
different arguments passed to solve a family of related problems. The assignments given to the stu-
dents in session 3 never specified that the triangles drawn should be non-congruent. Consequently,
the students did not have to isolate the functionality for drawing one triangle from the repetition to
complete the assignment. This can be exemplified through one variation of repeated function calls,
where repetition was included in the function definition, and the function was only called once in
the program. Reformulating the wording in the assignments to include the requirement of drawing
non-congruent triangles could facilitate the implementation of more generalized subroutines and
isolate the function from repeated function calls.

8.7 Local Scope in Subroutines

One of the results from session 3 was that one of the student pairs working on the last assignment
confused a global variable with a function parameter having the same name side length. The
students believed that the global variable was instantiated during the function declaration or
the function call. This result is in line with the findings from Kallia and Sentance (2017), where
parameter passing and variable scope are identified as two of 11 concepts that pose extra difficulties
to secondary school students learning computer programming. The confusion among the students
points back to a weakness in the epistemological analysis of subroutines, where the concept of
local scope as an inherent characteristic of subroutines was not discovered. The weakness in the
epistemological analysis was continued in the design, where the local scope was not explicitly
addressed during the devolution phases in sessions 2 and 3. A subsequent suggestion to improve
the design is to emphasize local scope in the didactical situation.

8.8 Unsystematic Debugging

The challenge of handling errors for programming novices is known in the research on computing
education on the K-12 level (Li et al., 2019; Michaeli & Romeike, 2019b). A systematic debugging
process embodied through a poster in the milieu was one of the measures in the design for aiding
students’ debugging process. However, the results indicate that the students chose not to use the
debugging poster and that error handling was challenging for the students.

The students highlighted that handling logical errors were particularly difficult to resolve, leading
to frustration and being stuck. Their strategies to handle errors were unsystematically tracing
their program, drawing from previous programming experience, or asking the teacher for help.
The observations of Dina and Vegard encountering a logical error in session 3 were in accordance
with the students’ perceptions of their strategies for handling errors. The students traced their

53

program, looking for syntax errors before asking the teacher for help.

From these results, it can be argued that the lack of systematic debugging among the students
constrained their possibilities for obtaining the target knowledge both in mathematics and program-
ming. Consequently, incorporating the teaching of a systematic debugging process is a potential
improvement in the designed didactical situation. A concrete suggestion is to ensure systematic
debugging as a student prerequisite. Aiding students in debugging logical errors is an impactful
didactical variable when teaching programming with mathematics. The design choices did not
sufficiently support the students debugging process. Consequently, the students did not follow the
progression in the assignments.

8.9 Duration

The lectures had a total duration of 5 · 45 minutes. The time frame available was fixed by the
teachers whose classes were visited in this study. However, the set of target knowledge for the
lecture sequence was defined in this study and is open for discussion. The students’ programs
indicate that most student pairs did not obtain the target knowledge. It is pertinent to address
whether the students were given adequate time to work on the assignments. According to Professor
of Electrical Engineering and Computer Science Mark Guzdial, when combining the teaching of
programming with another subject, the students require more time than when teaching just one
subject separately (Guzdial, 2015). The time frame may have been a constraining factor for the
target knowledge. It is relevant to either reduce the expectations or extend the time frame in future
realizations of this lecture sequence. Especially providing more time for the adidactical work phase
in session 3 could be relevant, as the last assignments seem to evoke the application of the target
knowledge.

54

9 Conclusion

9.1 Answering the Research Questions

The new National Curriculum enrolled in 2020 in Norway led to the inclusion of programming in the
existing mathematics subjects, among themMathematics 1T (Norwegian Directorate for Education
and Training, 2020b). Programming contained in the mathematics subject is a sparsely researched
context for both mathematics and programming education (Forsström & Kaufmann, 2018; Waite,
2017). The new situation requires research to gain insight into the associated challenges and
benefits. This study has addressed the problem by investigating the main research question:

How can a designed didactical situation in Mathematics 1T affect students’ opportun-
ities for obtaining the target knowledge in programming and trigonometry?

The main research question was explored through four more specific research questions. The
research questions are answered two and two together, as the results from this study have shown an
entanglement between the contributing factors for obtaining the target knowledge in trigonometry
and programming.

RQ1: Which factors in the didactical situation contribute toward students’ possibilities
for obtaining the target knowledge in trigonometry?
RQ2: Which factors in the didactical situation contribute toward students’ possibilities
for obtaining the target knowledge in programming?

The student programs show that a few of the student pairs applied The Law of Cosines and The
SAS Theorem Area Formula, and they also applied their associated subroutine appropriately for
repeatedly drawing non-congruent triangles. The result points to a fruitful synergy between the
application of trigonometry and programming in the main problem given to the students. The
synergy created was evoked in the last assignments given to the students, making the progression
in the assignments a conditioning factor for their possibilities for obtaining both target knowledge.

Visual feedback and visually pleasing results contributed to student engagement and persistence.
The visual feedback was enabled by including the Python turtle library in the milieu. The PRIMM
structure of the assignments positively influenced engagement and persistence by providing visually
pleasing results quickly. Furthermore, the PRIMM structure contributed to students’ ownership
of their products by gradually increasing the modification of the provided programs. The high
level of engagement and persistence is likely to have aided the students’ progression while working
with the assignments and consequently contributed to their possibilities for obtaining the target
knowledge.

Pair programming provided the students with easy access to help and constructive feedback from
their partners. The navigator role also appears to have strengthened the students’ understanding
of the programming aspect of the content at hand. The results indicate that the benefits of pair
programming did not fully come through to the students, calling for better implementation and
scaffolding of the pair programming methodology to increase positive outcomes. Nevertheless, the
pair programming methodology seems to have positively influenced the students’ understanding
of their programs and access to help and feedback. Thus, pair programming has to some extent,
contributed to the students’ possibilities for obtaining the target knowledge.

RQ3: Which factors in the didactical situation hinder the students’ possibilities for
obtaining the target knowledge in trigonometry?
RQ4: Which factors in the didactical situation hinder the students’ possibilities for
obtaining the target knowledge in programming?

A majority of the students delivered programs applying lower-level trigonometry than intended,
such as the Pythagorean Theorem. Furthermore, their implementations of subroutines did not

55

reflect the intended characteristic of solving a family of related problems, as they drew congruent
triangles. These findings reflect that the students were partially constrained from progressing
to the last assignments and thus also constrained in their process towards obtaining the target
knowledge.

One of the identified constraining factors was the students’ focus on producing visually pleasing
results rather than focusing on the process of getting there. The students relied on unsystematic
debugging strategies and asked the teacher for help when encountering errors, leading to frustration
and being stuck. They did not use the debugging poster provided to aid them in applying a system-
atic debugging process. The unsystematic debugging process hindered the students’ progression
in the assignments and their possibilities for obtaining the target knowledge.

Furthermore, the duration of the didactical situation constrained the students’ progression. The
total duration of all sessions was 5 · 45 minutes. The lack of time to progress further in the
assignments, especially in session 3, constrained the students’ possibilities for obtaining the target
knowledge.

Relatedly, technical overhead was posed on the students due to conversion between degrees and
radians, two angle measurement units. Including both the turtle and math libraries in the milieu
imposed the conversions, as the libraries require arguments measured in degrees and radians,
respectively. The conversions were technical overhead as they were required to implement but did
not add value in regards to the target knowledge.

The results indicate two misconceptions about programming constructs constraining the students’
possibilities for obtaining the target knowledge. Firstly, the students seemed not to have the
expected prerequisites concerning loops. The misconception influenced the students’ repeated
function calls, resulting in more or less convenient implementations. The second misconception
was related to the local scope for parameters in subroutines perceived as global by the students.
The local scope characteristic was not addressed to the students, as it was not identified as an
inherent difficulty of subroutines in the epistemological analysis. Consequently, a student pair
encountered an error related to parameter scope they could not resolve.

Imprecise wording in the assignments also constrained the students’ possibilities for obtaining the
target knowledge. The assignments never specified that the students should draw non-congruent
triangles. The imprecise wording likely influenced most student pairs to implement subroutines
that did not solve a family of related problems but rather drew congruent triangles.

9.2 Implications

This study shows how a didactical situation can be designed to combine progression towards tar-
get knowledge in programming and trigonometry in the Mathematics 1T subject. The analysis of
the classroom realizations has provided insight into contributing and constraining factors in the
didactical situation that can be used to improve the design before future classroom realizations.
Trigonometry and programming are also included in a subsequent mathematics subject, Mathemat-
ics R2, on the upper secondary level in Norway(Norwegian Directorate for Education and Training,
2021). The insights into constraining and contributing factors identified in this didactical situation
could be used to inform the teaching of trigonometry and programming in Mathematics R2.

Inherent in the Didactical Engineering research methodology is the highly contextualized nature
of the findings (Artigue, 2015). This study is situated in an early phase of the inclusion of pro-
gramming into mathematics subjects in Norway, which affects the students’ prerequisites. Several
findings from this study addressed the students’ lack of prerequisites regarding loops, pair program-
ming, and debugging. The lack of prerequisites might not be problematic a few years from now, as
programming has been included in primary and lower secondary mathematics subjects (Norwegian
Directorate for Education and Training, 2020a). However, the identification of said prerequisites
can be useful in deciding the order of concepts to teach students. In particular, teaching loops prior
to subroutines seems appropriate by the results of this study. Furthermore, from the results, it
can be suggested to focus early on processes such as pair programming and systematic debugging.

56

The preliminary analyses are not as contextualized as the results from the classroom realizations.
The epistemological and didactical analyses can be developed further and applied in new research
projects and contexts (Artigue, 2015). The local scope misconception tracing back to the weakness
of the epistemological analysis is a finding from this study that is applicable in other settings where
the application of subroutines is the intended target knowledge.

Lastly, this study has shown that the DE research methodology combined with the concepts
provided by TDS can produce valuable insight close to the field of practice into teaching target
knowledge in programming and trigonometry. The methodology and conceptual framework in this
study can inspire future research projects combining intended target knowledge in programming
and mathematics in Norway.

9.3 Limitations

There are several limitations to this research project worth addressing. This project was carried
out over the course of one semester. Consequently, the time devoted to carrying out the prelim-
inary analyses of the target knowledge was limited. As proven by the identified weakness in the
epistemological analysis described earlier, the lack of time reduced the depth of the preliminary
analyses. The study also has an interdisciplinary scope. The increased breadth of the study further
limited the depth of the preliminary analyses.

Another limitation is related to the internal generalizability of the results from observations. One
pair from each of the two classes were recorded in the adidactical work phases. As the quality of the
audio recorded during the realizations in the first class was too poor, only the observational data
from the second class could be transcribed and analyzed. Consequently, the observations of work
processes rely on only one student pair working together. The sparse observational data material
is a threat to the internal generalizability of the results, meaning that the results presented are
not necessarily valid for the rest of the student pairs than the pair observed (Robson & McCartan,
2016).

It is also worth discussing the validity of the results from this study. The study conducted was
associated with my master’s thesis, meaning that I am the only researcher who transcribed and
analyzed the data material. Similarly, the data collected was in Norwegian, whereas this thesis is
written in English. I translated the excerpts from the data material included in this report. These
processes are subject to interpretation (Robson & McCartan, 2016). Having another researcher
analyze and translate parts of the data material and then evaluate the compliance with my analysis
would have strengthened the validity of the results.

9.4 Further Research

This study has aimed to answer four research questions. Along the process, countless new questions
have emerged. Three relevant directions of future research are addressed below.

9.4.1 Computational Thinking

This study has been concerned with the inclusion of programming in the Mathematics 1T sub-
ject. Problem-solving with computational thinking has also been included in the Mathematics 1T
curriculum alongside programming (Norwegian Directorate for Education and Training, 2020b).
Programming and computational thinking are tightly connected (Wing, 2006). Consequently,
the processes in computational thinking such as decomposition, abstraction, and pattern recogni-
tion (Dong et al., 2019) were themes that repeatedly appeared at different points of this study.
Computational thinking has not been analyzed or addressed in this report to reduce the scope.
Consequently, a direction for future research is investigating the potential for obtaining target
knowledge within computational thinking with this designed didactical situation.

57

9.4.2 Digital Art Production in the Mathematics Subject

One of the experimental design choices in this study is the art production aspect of the problems
given to the students. Working towards visually pleasing results was a contributing factor to the
students’ engagement. However, a thorough investigation into the students’ perceptions of art
production was not conducted. To my knowledge, digital art production in mathematics subjects
on the K-12 level in Norway has not been widely researched. Consequently, the effect of introducing
digital art production in Mathematics 1T, and other mathematics subjects, is relevant to investigate
explicitly.

9.4.3 Didactical Engineering

DE inspired the research methodology in this study. DE was and still is, developed as part of the
French didactics tradition for research on traditional mathematics education (Barquero & Bosch,
2015). This study has provided valuable insight into the factors contributing to and constraining
the students’ possibilities for obtaining target knowledge, both in trigonometry and programming.
It is pertinent to address the potential for applying DE in further research to investigate dual
focus on target knowledge in programming and other topics in mathematics than trigonometry,
both in Mathematics 1T and other subjects in the primary and secondary education and training
in Norway.

9.5 Professional Relevance

This master’s thesis marks five years of studies in Natural Science with Teacher Education. Teach-
ing mathematics and computing in Norwegian lower and upper secondary schools is my future
everyday life as a professional teacher. I am looking forward to further developing and testing the
sequence of lectures researched in this study. The DE design methodology that I have learned and
adapted through this study is even more impactful. The methodology is applicable for evidence-
based design and testing of my teaching practice in the future. The rigorousness and thoroughness
of this study can not be accomplished in hectic day-to-day. However, a simplified version of DE
and a scientific attitude towards my teaching practice should be achievable in collaboration with
teacher colleagues every year to continue my professional development.

This study has also contributed to my understanding of how real-world qualitative research is
conducted in an educational setting. I have obtained an inside perspective. In particular, I
have gained insight into quality characteristics, such as taking ethical considerations seriously
throughout the project. Consequently, conducting this project has given me a better starting
point for critically evaluating research in education. Evaluating research is significant when I
update myself in the field, which is part of my future professional work.

58

Bibliography

Abdüsselam, M. S., Turan-Güntepe, E. & Durukan, Ü. G. (2022). Programming education in
the frameworks of reverse engineering and theory of didactical situations. Education and
Information Technologies, 2022. https://doi.org/10.1007/s10639-021-10883-8

Artigue, M. (2015). Perspectives on design research: The case of didactical engineering. In A.
Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in
mathematics education: Examples of methodology and methods (pp. 467–496). Springer.
https://doi.org/10.1007/978-94-017-9181-6 17

Aschehoug. (n.d.). Grunnkurs i programmering med Python. Retrieved 6th June 2022, from https:
/ / aunivers . lokus . no / fagpakker / realfag / programmering / python / ressurser / grunnkurs - i -
programmering-med-python

Barquero, B. & Bosch, M. (2015). Didactic engineering as a research methodology: From funda-
mental situations to study and research paths. In A. Watson & M. Ohtani (Eds.), Task
design in mathematics education (pp. 249–272). Springer. https://doi.org/10.1007/978-3-
319-09629-2 8

Beck, K. & Andres, C. (2004). Extreme programming explained : Embrace change (2nd ed.).
Addison-Wesley.

Bocconi, S., Chioccariello, A. & Earp, J. (2018). The Nordic approach to introducing computa-
tional thinking and programming in compulsory education. Report prepared for the Nor-
dic@BETT2018 Steering Group. https://doi.org/10.17471/54007

Bosch, A. M. V. (2021a). Integrating programming into Matematikk 1T. [Unpublished student
research report]. Department of Computer Science, Norwegian University of Science and
Technology. Included in Appendix M.

Bosch, A. M. V. (2021b). Programmering i matematikk 1T: Hvordan kan vi støtte matematikklærerne?
[Programming in mathematics 1T: How can we support the mathematics teachers?]. [Un-
published student research report]. Department of Mathematical Sciences, Norwegian Uni-
versity of Science and Technology. Included in Appendix N.

Brousseau, G. (2002). Theory of didactical situations in mathematics: Didactique des mathématiques,
1970–1990 (N. Balacheff, M. Cooper, R. Sutherland & V. Warfield, Eds. & Trans.). Kluwer.
https://doi.org/10.1007/0-306-47211-2

Campe, S., Green, E. & Denner, J. (2019). K-12 pair programming toolkit. ETR. https://www.etr.
org/default/assets/File/projects/Pair%20Programming%20Toolkit FINAL%207 30 19.pdf

Daher, W., Baya’a, N. & Jaber, O. (2022). Understanding prospective teachers’ task design con-
siderations through the lens of the theory of didactical situations. Mathematics, 10 (3),
Article 417. https://doi.org/10.3390/math10030417

Dasgupta, S. (2014). It began with Babbage : The genesis of computer science. Oxford University
Press.

Denner, J., Werner, L., Campe, S. & Ortiz, E. (2014). Pair programming: Under what condi-
tions is it advantageous for middle school students? Journal of Research on Technology in
Education, 46 (3), 277–296. https://doi.org/10.1080/15391523.2014.888272

Dong, Y., Catete, V., Jocius, R., Lytle, N., Barnes, T., Albert, J., Joshi, D., Robinson, R. &
Andrews, A. (2019). PRADA: A practical model for integrating computational thinking in
K-12 education. Proceedings of the 50th ACM Technical Symposium on Computer Science
Education, 2019, 906–912. https://doi.org/10.1145/3287324.3287431

Durand-Guerrier, V., Meyer, A. & Modeste, S. (2019). Didactical issues at the interface of math-
ematics and computer science. In G. Hanna, D. A. Reid & M. de Villiers (Eds.), Proof
technology in mathematics research and teaching (pp. 115–138). Springer. https://doi.org/
10.1007/978-3-030-28483-1 6

Forsström, S. E. & Kaufmann, O. T. (2018). A literature review exploring the use of programming
in mathematics education. International Journal of Learning, Teaching and Educational
Research, 17 (12), 18–32. https://doi.org/10.26803/ijlter.17.12.2

Gueudet, G., Buteau, C., Mesa, V. & Misfeldt, M. (2014). Instrumental and documentational
approaches: From technology use to documentation systems in university mathematics
education. Research in Mathematics Education, 16 (2), 139–155. https://doi.org/10.1080/
14794802.2014.918349

59

https://doi.org/10.1007/s10639-021-10883-8
https://doi.org/10.1007/978-94-017-9181-6_17
https://aunivers.lokus.no/fagpakker/realfag/programmering/python/ressurser/grunnkurs-i-programmering-med-python
https://aunivers.lokus.no/fagpakker/realfag/programmering/python/ressurser/grunnkurs-i-programmering-med-python
https://aunivers.lokus.no/fagpakker/realfag/programmering/python/ressurser/grunnkurs-i-programmering-med-python
https://doi.org/10.1007/978-3-319-09629-2_8
https://doi.org/10.1007/978-3-319-09629-2_8
https://doi.org/10.17471/54007
https://doi.org/10.1007/0-306-47211-2
https://www.etr.org/default/assets/File/projects/Pair%20Programming%20Toolkit_FINAL%207_30_19.pdf
https://www.etr.org/default/assets/File/projects/Pair%20Programming%20Toolkit_FINAL%207_30_19.pdf
https://doi.org/10.3390/math10030417
https://doi.org/10.1080/15391523.2014.888272
https://doi.org/10.1145/3287324.3287431
https://doi.org/10.1007/978-3-030-28483-1_6
https://doi.org/10.1007/978-3-030-28483-1_6
https://doi.org/10.26803/ijlter.17.12.2
https://doi.org/10.1080/14794802.2014.918349
https://doi.org/10.1080/14794802.2014.918349

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for
everyone. Morgan & Claypool.

Johnson, M. (n.d.). SinSystem2. Retrieved 30th March 2022, from https://openprocessing.org/
sketch/1358647

Kallia, M. & Sentance, S. (2017). Computing teachers’ perspectives on threshold concepts: Func-
tions and procedural abstraction. Proceedings of the 12th Workshop on Primary and Sec-
ondary Computing Education, 2017, 15–24. https://doi.org/10.1145/3137065.3137085

Kaufmann, O. T. & Stenseth, B. (2021). Programming in mathematics education. International
Journal of Mathematical Education in Science and Technology, 52 (7), 1029–1048. https:
//doi.org/10.1080/0020739X.2020.1736349

Li, C., Chan, E., Denny, P., Luxton-Reilly, A. & Tempero, E. (2019). Towards a framework for
teaching debugging. Proceedings of the Twenty-First Australasian Computing Education
Conference, 2019, 79–86. https://doi.org/10.1145/3286960.3286970

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Pa-
terson, J., Scott, M. J., Sheard, J. & Szabo, C. (2018). Introductory programming: A
systematic literature review. Proceedings Companion of the 23rd Annual ACM Confer-
ence on Innovation and Technology in Computer Science Education, 2018, 55–106. https:
//doi.org/10.1145/3293881.3295779

Michaeli, T. & Romeike, R. (2019a). Current status and perspectives of debugging in the K12
classroom: A qualitative study. 2019 IEEE Global Engineering Education Conference,
2019, 1030–1038. https://doi.org/10.1109/EDUCON.2019.8725282

Michaeli, T. & Romeike, R. (2019b). Improving debugging skills in the classroom: The effects of
teaching a systematic debugging process. Proceedings of the 14th Workshop in Primary
and Secondary Computing Education, 2019, Article 15. https://doi.org/10.1145/3361721.
3361724

Ministry of Education and Research. (2017). Framtid, fornyelse og digitalisering: Digitaliseringsstrategi
for grunnopplæringen 2017–2021 [Future, renewal, and digitalization: Digitalization strategy
for the primary and secondary education and training 2017–2021]. https://www.regjeringen.
no / contentassets / dc02a65c18a7464db394766247e5f5fc / kd framtid fornyelse digitalisering
nett.pdf

Mitchell, J. C. (2003). Concepts in programming languages. Cambridge University Press.
Norwegian Directorate for Education and Training. (2020a). Curriculum for mathematics year

1–10 (MAT01-05). Established as regulations. The National curriculum for the Knowledge
Promotion 2020. https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT01-05.pdf?lang=
eng

Norwegian Directorate for Education and Training. (2020b). Læreplan i matematikk fellesfag vg1
teoretisk (matematikk T)(MAT09-01) [Mathematics subject curriculum for vg1 theoretical
(mathematics T)]. Established as regulations. The National curriculum for the Knowledge
Promotion 2020. https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT09-01.pdf?lang=
nob

Norwegian Directorate for Education and Training. (2021). Læreplan i matematikk for realfag
(matematikk R)(MAT03-02) [Mathematics subject curriculum for natural science (math-
ematics R)]. Established as regulations. The National curriculum for the Knowledge Pro-
motion 2020. https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT03-02.pdf?lang=nob

NTNU. (n.d.-a). RFEL3100 - Research Methods in Mathematics and Science Education. Retrieved
6th June 2022, from https://www.ntnu.edu/studies/courses/RFEL3100#tab=omEmnet

NTNU. (n.d.-b). TDT4501 - Computer Science, Specialization Project. Retrieved 6th June 2022,
from https://www.ntnu.edu/studies/courses/TDT4501#tab=omEmnet

Pilgrim, M. (2009). Dive into python 3. Apress. https://doi.org/10.1007/978-1-4302-2416-7
Postholm, M. B. & Jacobsen, D. I. (2020). Forskningsmetode for masterstudenter i lærerutdannin-

gen [Research methods for master’s students in teacher education]. Cappelen Damm.
Python Software Foundation. (n.d.-a). math — Mathematical functions. In The Python Standard

Library. Retrieved May 27th, 2022, from https://docs.python.org/3/library/math.html.
Python Software Foundation. (n.d.-b). random — Generate pseudo-random numbers. In The Py-

thon Standard Library. Retrieved May 27th, 2022, from https://docs.python.org/3/library/
random.html.

Python Software Foundation. (n.d.-c). turtle — Turtle graphics. In The Python Standard Library.
Retrieved May 27th, 2022, from. https://docs.python.org/3/library/turtle.html

60

https://openprocessing.org/sketch/1358647
https://openprocessing.org/sketch/1358647
https://doi.org/10.1145/3137065.3137085
https://doi.org/10.1080/0020739X.2020.1736349
https://doi.org/10.1080/0020739X.2020.1736349
https://doi.org/10.1145/3286960.3286970
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1145/3293881.3295779
https://doi.org/10.1109/EDUCON.2019.8725282
https://doi.org/10.1145/3361721.3361724
https://doi.org/10.1145/3361721.3361724
https://www.regjeringen.no/contentassets/dc02a65c18a7464db394766247e5f5fc/kd_framtid_fornyelse_digitalisering_nett.pdf
https://www.regjeringen.no/contentassets/dc02a65c18a7464db394766247e5f5fc/kd_framtid_fornyelse_digitalisering_nett.pdf
https://www.regjeringen.no/contentassets/dc02a65c18a7464db394766247e5f5fc/kd_framtid_fornyelse_digitalisering_nett.pdf
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT01-05.pdf?lang=eng
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT01-05.pdf?lang=eng
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT09-01.pdf?lang=nob
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT09-01.pdf?lang=nob
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT03-02.pdf?lang=nob
https://www.ntnu.edu/studies/courses/RFEL3100#tab=omEmnet
https://www.ntnu.edu/studies/courses/TDT4501#tab=omEmnet
https://doi.org/10.1007/978-1-4302-2416-7
https://docs.python.org/3/library/math.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/turtle.html

Robson, C. & McCartan, K. (2016). Real world research : A resource for users of social research
methods in applied settings (4th ed.). Wiley.

Rossen, E. (2019, December 5). programmering - IT [programming - IT]. In Store norske leksikon.
https://snl.no/programmering - IT

Rother, K. (2017). Pro python best practices: Debugging, testing and maintenance. Apress. https:
//doi.org/10.1007/978-1-4842-2241-6

Sanne, A., Berge, O., Bungum, B., Jørgensen, E. C., Kluge, A., Kristensen, T. E., Mørken, K. M.,
Svorkmo, A.-G. & Voll, L. O. (2016). Teknologi og programmering for alle - En faggjen-
nomgang med forslag til endringer i grunnopplæringen - august 2016 [Technology and
programming for all - A subject review with proposals for changes in compulsory educa-
tion - August 2016]. Norwegian Directorate for Education and Training. https://www.udir.
no/globalassets/filer/tall-og-forskning/forskningsrapporter/teknologi-og-programmering-for-
alle.pdf

Sentance, S. & Waite, J. (2017). PRIMM: Exploring pedagogical approaches for teaching text-
based programming in school. Proceedings of the 12th Workshop on Primary and Secondary
Computing Education, 2017, 113–114. https://doi.org/10.1145/3137065.3137084

Sentance, S., Waite, J. & Kallia, M. (2019a). Teachers’ experiences of using PRIMM to teach
programming in school. Proceedings of the 50th ACM Technical Symposium on Computer
Science Education, 2019, 476–482. https://doi.org/10.1145/3287324.3287477

Sentance, S., Waite, J. & Kallia, M. (2019b). Teaching computer programming with PRIMM: A
sociocultural perspective. Computer Science Education, 29 (2-3), 136–176. https://doi.org/
10.1080/08993408.2019.1608781

Sevik, K. (2016). Programmering i skolen [Programming in school]. Senter for IKT i utdanningen.
https://www.udir.no/globalassets/filer/programmering i skolen.pdf

Stadsvoll, V. (2020). Et design av en didaktisk situasjon for introduksjonen av trigonometri etter
prinsippene i didaktisk ingeniørvirksomhet [A design of a didactical situation for the in-
troduction of trigonometry after the principles in Didactic Engineering] [Master’s thesis,
Norwegian University of Science and Technology]. NTNU Open. https://hdl.handle.net/
11250/2778352

Strømskag, H. (2020). Teorien for didaktiske situasjoner i matematikk [The theory of didactical
situations in mathematics]. In V. Nilssen & S.-M. Høynes (Eds.), Samtaleorientert matem-
atikk (pp. 23–80). Fagbokforlaget.

The National Committee for Research Ethics in the Social Sciences and the Humanities. (2019).
Guidelines for research ethics in the social sciences, humanities, law and theology. https:
//www. forskningsetikk .no/en/guidelines/social - sciences - humanities - law- and- theology/
guidelines-for-research-ethics-in-the-social-sciences-humanities-law-and-theology/

Tjora, A. H. (2021). Kvalitative forskningsmetoder i praksis [Qualitative research methods in prac-
tice] (4th ed.). Gyldendal.

University of Oslo. (2021, May 18). Nettskjema-dictaphone. https://www.uio.no/english/services/
it/adm-services/nettskjema/help/nettskjema-dictaphone.html

Venema, G. A. (2012). Foundations of geometry (2nd ed.). Pearson.
Waite, J. (2017). Pedagogy in teaching computer science in schools: A literature review. Retrieved

March 30th, 2022, from https://royalsociety.org/computing-education.
Weisstein, E. (n.d.-a). 30-60-90 Triangle. In MathWorld – A Wolfram Web Resource. Retrieved

May 28th, 2022, from https://mathworld.wolfram.com/30-60-90Triangle.html.
Weisstein, E. (n.d.-b). Geometric Congruence. In MathWorld – A Wolfram Web Resource. Re-

trieved May 13th, 2022, from https://mathworld.wolfram.com/GeometricCongruence.html.
Weisstein, E. (n.d.-c). Injection. In MathWorld – A Wolfram Web Resource. Retrieved May 13th,

2022, from https://mathworld.wolfram.com/Injection.html.
Weisstein, E. (n.d.-d). Law of Cosines. In MathWorld – A Wolfram Web Resource. Retrieved May

10th, 2022, from https://mathworld.wolfram.com/LawofCosines.html.
Weisstein, E. (n.d.-e). Law of Sines. In MathWorld – A Wolfram Web Resource. Retrieved May

10th, 2022, from https://mathworld.wolfram.com/LawofSines.html.
Weisstein, E. (n.d.-f). SAS Theorem. In MathWorld – A Wolfram Web Resource. Retrieved May

10th, 2022, from https://mathworld.wolfram.com/SASTheorem.html.
Weisstein, E. (n.d.-g). Triangle. In MathWorld – A Wolfram Web Resource. Retrieved May 10th,

2022, from https://mathworld.wolfram.com/Triangle.html.

61

https://snl.no/programmering_-_IT
https://doi.org/10.1007/978-1-4842-2241-6
https://doi.org/10.1007/978-1-4842-2241-6
https://www.udir.no/globalassets/filer/tall-og-forskning/forskningsrapporter/teknologi-og-programmering-for-alle.pdf
https://www.udir.no/globalassets/filer/tall-og-forskning/forskningsrapporter/teknologi-og-programmering-for-alle.pdf
https://www.udir.no/globalassets/filer/tall-og-forskning/forskningsrapporter/teknologi-og-programmering-for-alle.pdf
https://doi.org/10.1145/3137065.3137084
https://doi.org/10.1145/3287324.3287477
https://doi.org/10.1080/08993408.2019.1608781
https://doi.org/10.1080/08993408.2019.1608781
https://www.udir.no/globalassets/filer/programmering_i_skolen.pdf
https://hdl.handle.net/11250/2778352
https://hdl.handle.net/11250/2778352
https://www.forskningsetikk.no/en/guidelines/social-sciences-humanities-law-and-theology/guidelines-for-research-ethics-in-the-social-sciences-humanities-law-and-theology/
https://www.forskningsetikk.no/en/guidelines/social-sciences-humanities-law-and-theology/guidelines-for-research-ethics-in-the-social-sciences-humanities-law-and-theology/
https://www.forskningsetikk.no/en/guidelines/social-sciences-humanities-law-and-theology/guidelines-for-research-ethics-in-the-social-sciences-humanities-law-and-theology/
https://www.uio.no/english/services/it/adm-services/nettskjema/help/nettskjema-dictaphone.html
https://www.uio.no/english/services/it/adm-services/nettskjema/help/nettskjema-dictaphone.html
https://royalsociety.org/computing-education
https://mathworld.wolfram.com/30-60-90Triangle.html
https://mathworld.wolfram.com/GeometricCongruence.html
https://mathworld.wolfram.com/Injection.html
https://mathworld.wolfram.com/LawofCosines.html
https://mathworld.wolfram.com/LawofSines.html
https://mathworld.wolfram.com/SASTheorem.html
https://mathworld.wolfram.com/Triangle.html

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49 (3), 33–35. https:
//doi.org/10.1145/1118178.1118215

62

https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215

Notification form / Programmering i matematikk 1T / Assessment

Assessment
Reference number
826023

Project title
Programmering i matematikk 1T

Data controller (institution responsible for the project)
Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE) / Institutt for datateknologi og
informatikk

Project leader
Majid Rouhani

Student
Anne Margrethe Vestgøte Bosch

Project period
10.01.2022
-
01.10.2022

Notification Form

Comment
Det er vår vurdering at behandlingen av personopplysninger i prosjektet vil være i samsvar med personvernlovgivningen så fremt den
gjennomføres i tråd med det som er dokumentert i meldeskjemaet med vedlegg, og eventuelt i meldingsdialogen mellom innmelder og
Personverntjenester. Behandlingen kan starte.

TYPE OPPLYSNINGER OG VARIGHET

Prosjektet vil behandle alminnelige kategorier av personopplysninger frem til den datoen som er oppgitt i meldeskjemaet.

LOVLIG GRUNNLAG

Prosjektet vil innhente samtykke fra de registrerte til behandlingen av personopplysninger. Vår vurdering er at prosjektet legger opp til
et samtykke i samsvar med kravene i art. 4 og 7, ved at det er en frivillig, spesifikk, informert og utvetydig bekreftelse som kan
dokumenteres, og som den registrerte kan trekke tilbake.

Lovlig grunnlag for behandlingen vil dermed være den registrertes samtykke, jf. personvernforordningen art. 6 nr. 1 bokstav a.

PERSONVERNPRINSIPPER

Personverntjenester vurderer at den planlagte behandlingen av personopplysninger vil følge prinsippene i personvernforordningen om:

·	lovlighet, rettferdighet og åpenhet (art. 5.1 a), ved at de registrerte får tilfredsstillende informasjon om og samtykker til behandlingen

·	formålsbegrensning (art. 5.1 b), ved at personopplysninger samles inn for spesifikke, uttrykkelig angitte og berettigede formål, og ikke
behandles til nye, uforenlige formål

·	dataminimering (art. 5.1 c), ved at det kun behandles opplysninger som er adekvate, relevante og nødvendige for formålet med
prosjektet

·	lagringsbegrensning (art. 5.1 e), ved at personopplysningene ikke lagres lengre enn nødvendig for å oppfylle formålet

DE REGISTRERTES RETTIGHETER

Så lenge de registrerte kan identifiseres i datamaterialet vil de ha følgende rettigheter: innsyn (art. 15), retting (art. 16), sletting (art. 17),
begrensning (art. 18), og dataportabilitet (art. 20).

Personverntjenester vurderer at informasjonen om behandlingen som de registrerte vil motta oppfyller lovens krav til form og innhold,
jf. art. 12.1 og art. 13.

Vi minner om at hvis en registrert tar kontakt om sine rettigheter, har behandlingsansvarlig institusjon plikt til å svare innen en måned.

FØLG DIN INSTITUSJONS RETNINGSLINJER

Personverntjenester legger til grunn at behandlingen oppfyller kravene i personvernforordningen om riktighet (art. 5.1 d), integritet og
konfidensialitet (art. 5.1. f) og sikkerhet (art. 32).

Date
24.02.2022

Type
Standard

A NSD Approval

63

Panopto er databehandler i prosjektet. Personverntjenester legger til grunn at behandlingen oppfyller kravene til bruk av databehandler,
jf. art 28 og 29.

For å forsikre dere om at kravene oppfylles, må dere følge interne retningslinjer og/eller rådføre dere med behandlingsansvarlig
institusjon.

MELD VESENTLIGE ENDRINGER

Dersom det skjer vesentlige endringer i behandlingen av personopplysninger, kan det være nødvendig å melde dette til oss ved å
oppdatere meldeskjemaet. Før du melder inn en endring, oppfordrer vi deg til å lese om hvilke type endringer det er nødvendig å
melde: https://www.nsd.no/personverntjenester/fylle-ut-meldeskjema-for-personopplysninger/melde-endringer-i-meldeskjema

Du må vente på svar fra oss før endringen gjennomføres.

OPPFØLGING AV PROSJEKTET

Personverntjenester vil følge opp ved planlagt avslutning for å avklare om behandlingen av personopplysningene er avsluttet.

Lykke til med prosjektet!

Notification form / Programmering i matematikk 1T / Assessment

Assessment
Reference number
826023

Project title
Programmering i matematikk 1T

Data controller (institution responsible for the project)
Norges teknisk-naturvitenskapelige universitet / Fakultet for informasjonsteknologi og elektroteknikk (IE) / Institutt for datateknologi og
informatikk

Project leader
Majid Rouhani

Student
Anne Margrethe Vestgøte Bosch

Project period
10.01.2022
-
01.10.2022

Notification Form

Comment
Personverntjenester har vurdert endringen registrert i meldeskjemaet.

Det er vår vurdering at behandlingen av personopplysninger i prosjektet vil være i samsvar med personvernlovgivningen så fremt den
gjennomføres i tråd med det som er dokumentert i meldeskjemaet med vedlegg. Behandlingen kan fortsette.

Endringen består av at Nettskjema er lagt til som databehandler i prosjektet. Vi legger til grunn at behandlingen oppfyller kravene til
bruk av databehandler, jf. art 28 og 29.

OPPFØLGING AV PROSJEKTET

Vi vil følge opp underveis ved planlagt avslutning for å avklare om behandlingen av personopplysningene er avsluttet.

Kontaktperson: Henning Levold

Lykke til videre med prosjektet!

Date
04.03.2022

Type
Standard

Intervjuguide
Spørsmålene i dette intervjuet vil kun være av didaktisk natur, og vil kun gå på
observasjoner/bemerkninger/forståelse/oppklaringer rundt intervjuobjektenes tidligere skriftlige og
praktiske besvarelser. Ingen personlige opplysninger vil bli nevnt overhodet. Jeg vil komme til å stille
spørsmål til intervjuobjektene knyttet til skriftlig og/eller praktisk besvarelse, og de svarer på
spørsmålene etter beste evne. Jeg vil også stille spørsmål for å få en dypere forståelse av
intervjuobjektenes motivasjon i faget. Samtalen vil vare omtrent 30 minutter, og vil finne sted for å få
en dypere forståelse av hvorfor intervjuobjektene har svart og gjort det de har gjort. Da intervjuet er
semistrukturert vil det kunne ta ulike retninger baser på hva som dukker opp underveis.

Eksempler på spørsmål vil være:

Hvorfor har du/dere valgt å bruke en <funksjon, while-løkke…> her?

Hvorfor har du/dere kalt denne variabelen for <...>?

Hva synes du/dere om å jobbe med programmering i matematikk, kontra «vanlig» undervisning?

Hva synes du/dere var vanskelig med oppgavene? Hvorfor?

Hva likte eller mislikte du/dere med oppgavene? Hvorfor?

Hva har du lært ved å bruke programmering i Trigonometri?

B Interview Guide in Norwegian

66

Anne Margrethe Vestgøte Bosch
<adresse>
<tlf.>
<epost>

<Sted>, 7. februar 2022

Til elever i Matematikk 1T ved videregående skole

Anmodning om tillatelse til innsamling av elevbesvarelser og lydopptak av
intervju, samt videoopptak og skjermopptak.

Mitt navn er Anne, og jeg er student på 5. året ved lektorprogrammet i realfag på NTNU. Nå i
vår skal jeg skrive min masteroppgave om programmering i matematikk, og jeg ønsker derfor
å besøke klassen deres for å samle inn forskningsdata til prosjektet. Prosjektet går ut på å finne
ut hvordan man kan bruke programmering i trigonometri på en motiverende måte, og hvilke
virkninger det kan ha for læringen i faget Matematikk 1T. Klassen skal jobbe i grupper med
programmeringsoppgaver knyttet til trigonometri i matematikktimene en uke. Jeg vil samle inn
programmene som elevene lager, og i tillegg ta videoopptak av en (frivillig) gruppe, for å
analysere hvordan de har arbeidet med oppgavene. Selv om bare en av gruppene filmes, vil lyd
fra andre grupper i klasserommet kunne bli fanget opp. Jeg vil også ta opptak av PC-skjermen
til gruppa mens de arbeider for å se utviklingen av programmet underveis.

Jeg vil i etterkant ta kontakt med 1-3 av elevgruppene for et lite intervju på ca. 30 minutter,
med lydopptak. Under samtalen kommer vi til å diskutere hva elevene har gjort, og hvordan de
har tenkt for å komme frem til svarene sine. Samtalen kommer derfor kun til å komme inn på
generelle spørsmål knyttet til elevenes besvarelser, og forståelse rundt oppgavene som har blitt
besvart. Ingen personlige opplysninger vil komme til å bli nevnt under intervjuet. Det eneste
jeg trenger av personlige opplysninger fra elevene, er navn på programmene de har laget, slik
at jeg kan finne dem igjen til et eventuelt intervju. Navnene vil selvfølgelig bli anonymisert når
masteroppgaven min skal skrives. Alle andre personopplysninger vil også bli fullstendig
anonymisert etter innsamlingen av videomaterialet.

Jeg trenger navn på elevene for å samtykke til innsamling av data, derunder et eventuelt intervju
med lydopptak og/eller videoopptak av arbeidet. Jeg trenger også navn på programmene for å
finne igjen de elevene jeg ønsker å snakke med etter den skriftlige datainnsamlingen. Under
intervjuet har jeg behov for lydopptak for å få så godt dokumenterte data som mulig. Med en
mest mulig nøyaktig gjengivelse av det som blir sagt, kan jeg igjen danne et bedre bilde av
elevenes faglige utbytte. Siden jeg jobber alene, er det derfor mest hensiktsmessig å kunne høre
besvarelsene i sin helhet i etterkant. Det samme gjelder også videoopptakene og
skjermopptakene.

Jeg ber derfor om tillatelse til å samle inn materiale produsert av elevene, samt til å kunne ta
videoopptak/skjermopptak av arbeidet, og lydopptak av samtalene i etterkant. Forutsetningen
for tillatelsen er at alt innsamlet materiale blir behandlet med respekt og blir fullstendig

C Form of Consent

67

anonymisert, og at prosjektet ellers følger gjeldende retningslinjer for etikk og personvern. Det
er selvfølgelig HELT frivillig å delta, og man kan til enhver tid trekke seg fra deltakelse
UTEN å måtte oppgi noen grunn til det. De som ikke ønsker å delta i prosjektet vil
gjennomføre den samme undervisningen, men data vil ikke samles inn om dem. Hvis du ikke
vil delta, trenger du heller ikke å levere inn svarslippen på neste side.

Materialet som blir samlet inn vil kun bli sett og hørt av meg, og eventuelt av min
masterveileder ved NTNU. Når prosjektet presenteres vil involverte personer bli anonymisert.
Lyd- og videoopptakene vil bli tatt opp med opptakere fra NTNUs eiendom, og vil bli lagret på
NTNU sin lagringstjeneste «Hjemmeområdet». Skjermopptakene vil bli lagret gjennom
programvaren Panopto. Alle innsamlede data vil bli slettet etter at prosjektet er avsluttet, og
senest 1.oktober 2022.

Så lenge du kan identifiseres i datamaterialet, har du rett til:

 innsyn i hvilke opplysninger vi behandler om deg, og å få utlevert en kopi av
opplysningene

 å få rettet opplysninger om deg som er feil eller misvisende
 å få slettet personopplysninger om deg
 å sende klage til Datatilsynet om behandlingen av dine personopplysninger

Hvis du/dere vil vite mer om dette, eller hva det innsamlede materialet skal brukes til, så er det
bare å ta kontakt med meg når som helst på telefon eller epost (se øverst i dokumentet for
detaljer).

Faglig ansvarlig ved NTNU er Majid Rouhani: tlf.: 735 59 355; epost:
majid.rouhani@ntnu.no

NTNUs personvernombud er Thomas Helgesen: tlf. +47 930 79 038; epost
thomas.helgesen@ntnu.no.

Hvis du/dere har spørsmål knyttet til NSD sin vurdering av prosjektet, ta kontakt med:

 NSD – Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no)
eller på telefon: 55 58 21 17.

Jeg håper du synes forskningen min er av verdi, og at du er villig til å være med på den. Jeg
ber om at svarslippen på neste side fylles hvis du gir tillatelse til deltakelse i prosjektet.

På forhånd takk!

Vennlig hilsen
Anne M. V. Bosch

Tillatelse

Som del av mitt masterprosjekt ved lektorutdanningen i realfag ved NTNU ber jeg om din
tillatelse til innsamling av digital besvarelse av programmeringsoppgaver og videoopptak i
klasserommet, samt en eventuell samtale med lydopptaker, og et eventuelt skjermopptak av PC.
Jeg ber også om tillatelse til å kopiere/bruke besvarelsen(e) som du har produsert til å skrive en
fagartikkel rundt elevers forståelse av trigonometri.

Forutsetningen for tillatelsen er at besvarelser og annet innsamlet materiale blir fullstendig
anonymisert og behandlet med respekt, og at prosjektet følger gjeldende retningslinjer for
etikk og personvern. Samtykke kan trekkes tilbake når som helst, og uten begrunnelse.

Jeg (eleven) gir tillatelse

Dato: ………………………

Elevens fornavn og etternavn: .……………….…………………….…………………...............

Underskrift av eleven:

………………………………………………………...

Vennligst returner svarslippen til læreren din så snart som mulig.

Anne Margrethe Vestgøte Bosch
<Adresse>
<tlf.>
<epost>

 <Sted>, 7. februar 2022

Vil du delta i en pilotstudie for forskningsprosjektet «Programmering i
matematikk 1T»?

Anmodning om tillatelse til innsamling av studentprogrammer og lydopptak av
intervju, samt videoopptak og skjermopptak.

Mitt navn er Anne, og jeg er student på 5. året ved lektorprogrammet i realfag på NTNU. Nå i
vår skal jeg skrive min masteroppgave om programmering i matematikk, og jeg ønsker derfor
å gjennomføre en workshop for lektorstudenter som en pilot før gjennomføring av utprøving i
klasserommet. Prosjektet går ut på å finne ut hvordan man kan bruke programmering i
trigonometri på en motiverende måte, og hvilke virkninger det kan ha for læringen i faget
Matematikk 1T. Deltakerne skal jobbe i grupper med programmeringsoppgaver knyttet til
trigonometri i én til to økter. Jeg vil samle inn programmene som studentene lager, og i tillegg
ta videoopptak av en til to (frivillige) grupper, for å analysere hvordan de har arbeidet med
oppgavene. Selv om bare to av gruppene filmes, vil lyd fra andre grupper i rommet kunne bli
fanget opp. Jeg vil også ta opptak av PC-skjermene til de to gruppene mens de arbeider for å se
utviklingen av programmet underveis.

Jeg vil i etterkant ta kontakt med 1-3 av gruppene for et lite intervju på ca. 30 minutter, med
lydopptak. Under samtalen kommer vi til å diskutere hva studentene har gjort, og hvordan de
har tenkt for å komme frem til svarene sine. Samtalen kommer derfor kun til å komme inn på
generelle spørsmål knyttet til studentenes besvarelser, og forståelse rundt oppgavene som har
blitt besvart. Ingen personlige opplysninger vil komme til å bli nevnt under intervjuet. Det
eneste jeg trenger av personlige opplysninger er navn på programmene som er laget, slik at jeg
kan finne dem igjen til et eventuelt intervju. Navnene vil selvfølgelig bli anonymisert når
masteroppgaven min skal skrives. Alle andre personopplysninger vil også bli fullstendig
anonymisert etter innsamlingen av videomaterialet.

Jeg trenger navn på studentene for å samtykke til innsamling av data, derunder et eventuelt
intervju med lydopptak og/eller videoopptak av arbeidet. Jeg trenger også navn på
programmene for å finne igjen de studentene jeg ønsker å snakke med etter den skriftlige
datainnsamlingen. Under intervjuet har jeg behov for lydopptak for å få så godt dokumenterte
data som mulig. Med en mest mulig nøyaktig gjengivelse av det som blir sagt, kan jeg igjen
danne et bedre bilde av det faglige utbyttet. Siden jeg jobber alene, er det derfor mest
hensiktsmessig å kunne høre besvarelsene i sin helhet i etterkant. Det samme gjelder også de to
videoopptakene og skjermopptakene.

D Form of Consent (Pilot)

70

Jeg ber derfor om tillatelse til å samle inn skriftlig materiale produsert av studentene, samt til å
kunne ta videoopptak/skjermopptak av arbeidet, og lydopptak av samtalene i etterkant. Det er
da snakk om oppgavene som studentene har besvart først knyttet til programmering i
matematikk, i tillegg til lydopptak av 1-3 intervjuer og to videoer av arbeid. Forutsetningen for
tillatelsen er at alt innsamlet materiale blir behandlet med respekt og blir fullstendig
anonymisert, og at prosjektet ellers følger gjeldende retningslinjer for etikk og personvern. Det
er selvfølgelig HELT frivillig å delta, og man kan til enhver tid trekke seg fra deltakelse
UTEN å måtte oppgi noen grunn til det. Hvis du ikke vil delta, trenger du heller ikke å levere
inn svarslippen på neste side.

Materialet som blir samlet inn vil kun bli sett og hørt av meg, og eventuelt av min
masterveileder ved NTNU. Når prosjektet presenteres vil involverte personer bli anonymisert.
Lyd- og videoopptakene vil bli tatt opp med opptakere fra NTNUs eiendom, og vil bli lagret på
NTNU sin lagringstjeneste «Hjemmeområdet». Skjermopptakene vil bli lagret gjennom
programvaren Panopto. Alle innsamlede data vil bli slettet etter at prosjektet er avsluttet, og
senest 1.oktober 2022.

Så lenge du kan identifiseres i datamaterialet, har du rett til:

 innsyn i hvilke opplysninger vi behandler om deg, og å få utlevert en kopi av
opplysningene

 å få rettet opplysninger om deg som er feil eller misvisende
 å få slettet personopplysninger om deg
 å sende klage til Datatilsynet om behandlingen av dine personopplysninger

Hvis du/dere vil vite mer om dette, eller hva det innsamlede materialet skal brukes til, så er det
bare å ta kontakt med meg når som helst på telefon eller epost (se øverst i dokumentet for
detaljer).

Faglig ansvarlig ved NTNU er Majid Rouhani: tlf.: 735 59 355; epost:
majid.rouhani@ntnu.no

NTNUs personvernombud er Thomas Helgesen: tlf. +47 930 79 038; epost
thomas.helgesen@ntnu.no.

Hvis du/dere har spørsmål knyttet til NSD sin vurdering av prosjektet, ta kontakt med:

 NSD – Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no)
eller på telefon: 55 58 21 17.

Jeg håper du synes forskningen min er av verdi, og at du er villig til å være med på den. Jeg
ber om at svarslippen på neste side fylles hvis du gir tillatelse til deltakelse i prosjektet.

På forhånd takk!

Vennlig hilsen
Anne M. V. Bosch

Tillatelse

Som del av mitt masterprosjekt ved lektorutdanningen i realfag ved NTNU ber jeg om din
tillatelse til innsamling av digital besvarelse av programmeringsoppgaver og videoopptak i
klasserommet, samt en eventuell samtale med lydopptaker, og et eventuelt skjermopptak av PC.
Jeg ber også om tillatelse til å kopiere/bruke besvarelsen(e) som du har produsert til å skrive en
fagartikkel rundt elevers forståelse av trigonometri.

Forutsetningen for tillatelsen er at besvarelser og annet innsamlet materiale blir fullstendig
anonymisert og behandlet med respekt, og at prosjektet følger gjeldende retningslinjer for
etikk og personvern. Samtykke kan trekkes tilbake når som helst, og uten begrunnelse.

Jeg (studenten) gir tillatelse

Dato: ………………………

Fornavn og etternavn: .……………….…………………….…………………...............

Underskrift:

………………………………………………………...

E Area Formula Derived from The SAS Theorem

73

F Proof of The Law of Sines

74

G Proof of The Law of Cosines

76

Les og forstå
feilm

eldinga

O
ppfører program

m
et seg som

 forventet?

Juster program
m

et
for å fikse feilen

D
ebugging

"H
va går galt?"

Lag en hypotese, eller endre
på hypotesen du allerede har

"H
va går galt?"

Lag en hypotese, eller endre
på hypotesen du allerede har

"I hvilke kodelinjer er feilen?"
Lag en hypotese, eller endre
på hypotesen du allerede
har

Juster program
m

et
for å fikse feilen

Kjører program
m

et uten feilm
eldinger?

Kjør

Sjekk

Ferdig!

"I hvilke kodelinjer er feilen?"
Lag en hypotese, eller endre
på hypotesen du allerede
har

Tilbakestill endringene du
gjorde i koden hvis de ikke
fikset problem

et

Tilbakestill endringene du
gjorde i koden hvis de ikke
fikset problem

et

H
vordan kan jeg finne og fikse feil i koden m

in?

"I hvilke kodelinjer er feilen?"
Lag en hypotese, eller endre på

hypotesen du allerede har

Les og forstå feilm
eldinga

"H
va går galt?"

Lag en hypotese, eller endre på
hypotesen du allerede har

N
år du står

fast her
Så kan du
prøve dette

Lim
 inn feilm

eldingsteksten i G
oogle og

søk. Tips: Stackoverflow
 har ofte gode svar.

Les i dokum
entasjonen til Python eller

biblioteket du bruker. H
vordan fungerer

den innebygde funksjonen?

Sjekk linja som
 nevnes i feilm

eldinga og
linja over Ser du noen skrivefeil?

Test virkem
åten til litt og litt av koden i en egen

fil. Jobb system
atisk.

Kom
m

enter ut deler av koden, og kjør resten av
koden. Jobb system

atisk.

Bruk print() til å skrive ut tilstanden til variabler i
program

m
et underveis.

Les de relevante kodelinjene nøye i den
rekkefølgen de kjøres. Forklar til den ved siden
av deg hva som

 skjer i hver linje.

Send inn input hvor du vet hva output skal
væ

re. H
vordan ser feilen ut da? G

jør dette flere
ganger m

ed ulik input og se etter m
ønster i

feilene.

Bruk print() til å skrive ut tilstanden til variabler i
program

m
et underveis.

Les i dokum
entasjonen til Python eller

biblioteket du bruker.

H Debugging Poster in Norwegian

78

Innebygde funksjoner i Python

Instruksjon Beskrivelse
round(tall)
round(tall, ndesimaler)

Runder av verdien til tall.
round(10.555)  11
round(10.555,2)  10.56

int() Gjør om en tekststreng (eller et desimaltall) til et heltall.
Fjerner bare desimalene i desimaltall.

float(“3.14”) Gjør om en tekststreng (eller et heltall) til et desimaltall.
input(“Skriv inn et tall: ”) Skriver ut en tekst til brukeren og venter på svar. Svaret

er alltid en tekststreng.
range(a,b)
range(b)

Alle heltall fra og med a til b (men b er ikke med).
range(1,10)  1 til 9
range(5)  0 til 4

print(a) Skriver ut verdien til a

turtle-biblioteket

Flere instruksjoner finner du i dokumentasjonen. Du finner dokumentasjonen ved å søke i Google
etter: python turtle documentation.

Instruksjon Beskrivelse
import turtle Importerer turtle-biblioteket til fila.
turtle.done()
turtle.bye()

Begge linjene må legges inn nederst i fila for å hindre
turtle-vinduet fra å krasje når programmet er ferdig og
stoppe kjøringen av programmet når vi lukker turtle-
vinduet.

turtle.shape(“turtle”) Gjør om figuren som tegner til en skilpadde.
Alternativer er "arrow", "turtle", "circle", "square",
"triangle" og "classic".

turtle.pensize(2) Angir strekens tykkelse. Standardverdien er 1.
turtle.color(“magenta”) Angir strekens farge. Søk etter CSS colors på Google for

å finne de mulige fargenavnene.
turtle.bgcolor(“aliceblue”) Angir bakgrunnsfargen til tegnevinduet. Bruker de

samme fargenavnene som i color().
turtle.fillcolor(“cyan”) Angir fyllfarge. Bruker de samme fargenavnene som i

color().
begin_fill() og
end_fill()

Brukes før og etter en form tegnes for å fylle den med
fargen som er angitt i fillcolor().

turtle.penup() og
turtle.pendown()

Lar oss flytte figuren uten å tegne en strek. Bruk
penup() for å slutte å tegne og pendown() for å
begynne å tegne.

turtle.goto(x,y) Skilpadden går til koordinatet (x , y). Origo er i midten
av tegneområdet.

turtle.speed(1) Angir tegnehastighet. Verdier fra 0 til og med 10 kan
brukes. Økende verdi gir økende hastighet, med unntak
av at 0 gir aller høyest hastighet.

turtle.clear() Visker ut alt som er tegnet.

I Python Cheat Sheet in Norwegian

79

math-biblioteket

Instruksjon Beskrivelse
import math Importerer math-biblioteket til fila.
math.sqrt(a) Finner kvadratroten av a.
vinkel_i_radianer = math.radians(v)
sin_v = math.sin(vinkel_i_radianer)

math-biblioteket bruker ikke vinkelmål oppgitt i
grader, men radianer. Vi gjør først om vinkelen v
fra grader til radianer. Deretter finner vi verdien til
sinus av vinkel v, og lagrer i variabelen sin_v.

vinkel_i_radianer = math.radians(v)
cos_v = math.sin(vinkel_i_radianer)

Lagrer verdien til cosinus av vinkel v i variabelen
cos_v.

sin_theta = a/c
theta = math.degrees(math.asin(sin_theta))

Finner størrelsen til vinkelen theta når vi kjenner
sinus til vinkelen. Vi må gjøre om fra radianer til
grader.

cos_theta = b/c
theta = math.degrees(math.acos(sin_theta))

Finner størrelsen til vinkelen theta når vi kjenner
cosinus til vinkelen.

random-biblioteket

Instruksjon Beskrivelse
import random Importerer random-biblioteket til fila.
random.randrange(a,b) Returnerer et tilfeldig heltall fra og med a, til b

og med b-1.
random.uniform(a,b) Returnerer et tilfeldig desimaltall fra og med a

til og med b.

Økt 1

1. Les programmet på skjermen. Hva tror dere skjer når vi kjører programmet? Diskuter
i parene og skriv ned en hypotese i skriveboka.

2. Bli enige om hvem som starter som sjåfør og kartleser. Sjåføren åpner Spyder på sin
egen PC. Lag en ny fil som heter mystisk1.py og lagre den på skrivebordet. Skriv av
programmet på skjermen. Kjør programmet.

3. Hva skjedde når dere kjørte koden? Hadde dere riktig i hypotesen deres?
Hvis ikke, gjør om programmet slik at det gjør det som dere trodde. Skriv en
kommentar i koden hvilken endring dere måtte gjøre.

4. Dere skal nå endre på programmet. Lag et nytt mål for hva programmet skal gjøre.
Her er det lov å være kreativ! For eksempel: Programmet skal tegne 100 blå
åttekanter.

a. Skriv ned en plan steg for steg hva programmet skal gjøre for å nå målet.
Kommentarer i koden kan brukes for å skrive planer.

b. Endre på koden slik at den utfører planen dere lagde.
c. Test om programmet virker slik som dere hadde tenkt.

Innsending:

a. Legg inn en kommentar med navnene deres i programmet og lagre.
b. Gi et nytt navn til fila slik at navnet passer til det som programmet gjør. For

eksempel: blaa_aattekanter.py
c. Sjåføren leverer inn programmet på minnepenn.
d. Kartleseren leverer inn arkene på kateteret.

J Assignments in Norwegian

81

Økt 2:

Del 1:

1. Lag en ny fil som heter funksjoner.py og lagre den på skrivebordet. Kopier og lim inn
programmet som tegner en likesidet trekant. Det finner dere her:
https://tinyurl.com/trekant1

2. Endre på programmet slik at det benytter en funksjon for å tegne den likesidede
trekanten.

3. Nå skal dere lage en ny funksjon i den samme fila. Denne skal tegne en annen type
trekant enn likesidet. Dere bestemmer selv hvordan den skal være. Lag en plan før
dere går i gang med kodingen.
Her kan dere se ulike måter å skrive funksjoner på: https://tinyurl.com/funksjoner1

4. Endre på funksjonen slik at vi kan sende inn sidelengden til minst en av sidene eller
vinklene i trekanten.

5. Utfordring: Vi kjenner to sider og vinkelen mellom sidene i en trekant. Trekanten er
ikke rettvinklet. Lag en ny funksjon som tegner denne trekanten. Hint: Bruk
trigonometri.

Innsending:

1. Legg inn en kommentar med navnene deres i programmet.
2. Sjåføren leverer inn programmet på teams.
3. Kartleseren leverer inn arkene.

Del 2:

1. Bytt program med en annen gruppe (send til hverandre på Teams).
2. Les programmet til den andre gruppa. Hva tror dere skjer når programmet kjøres?

Diskuter i paret og skriv ned en hypotese i en kommentar i koden.
3. Kjør programmet.
4. Hva skjedde når dere kjørte koden? Hadde dere riktig i hypotesen deres?
5. Hvis det er noe dere ikke forstår i programmet, jobb for å forstå programmet med

debuggingteknikkene på plakaten.
6. Har gruppa gjort noe annerledes enn dere? Fungerer programmene akkurat likt?

Diskuter i paret.
7. Prøv å sende inn input som krasjer programmet til den andre gruppa. Hvorfor gir

inputen feilmeldinger?
8. Prøv å sende inn input som ikke krasjer programmet, men som ikke tegner er trekant.

Hvorfor blir det feil?

Økt 3:

1. Lag en ny fil som heter kunst.py og lagre den på skrivebordet. Kopier og lim inn
funksjonen dere lagde som tegner en trekant. Fungerte ikke programmet deres helt,
kopierer dere heller programmet som ligger ute på https://tinyurl.com/trekant2 .

2. Endre på programmet slik at det tegner trekanter forskjellige steder i tegneområdet.
Lag en plan før dere går i gang med kodingen.

3. Endre på programmet slik at det tegner 10 trekanter forskjellige steder i
tegneområdet.

4. Endre på programmet slik at det tegner trekanter helt til det samlede arealet av
trekantene overstiger 10 000 kvadratpiksler.

5. La brukeren bestemme maksarealet.
6. Bruk farger for å gi litt liv til kunstverket!
7. Utfordring: Gå tilbake til funksjonen som tegner trekanter. Finnes det en annen måte

å tegne trekanter på? Lag en ny trekant-funksjon og bruk den i kunstprogrammet.

Innsending:

1. Gi et nytt navn til fila slik at navnet passer til det som programmet gjør.
2. Legg inn en kommentar med navnene deres i programmet.
3. Sjåføren leverer inn programmet på teams.

K Live Coding in Session 2

1 import turtle

2

3 def areal(hoyde , bredde):

4 areal = 0.5* bredde*hoyde

5 return areal

6

7 def trekant(sidelengde):

8 for i in range (3):

9 turtle.forward(sidelengde)

10 turtle.left (180 - 60)

11 trekant (200)

12 trekant (100)

13 A = areal (100 ,100)

14 print(A)

15 # Hindrer koden fra aa krasje

16 turtle.done()

17 turtle.bye()

18

Figure K.1: Devolution. Note. Result from the live coding session in the devolution phase in session 2.
The program illustrates the implementation of subroutines with and without a return value in Python.

1 import turtle

2 import math

3

4 def rettvinklet_trekant(sidelengde):

5 turtle.forward(sidelengde)

6 turtle.left (90)

7 turtle.forward (0.8* sidelengde)

8

9 hyp = math.sqrt(sidelengde **2 + (0.8* sidelengde)**2)

10

11 sin_alpha = sidelengde/hyp

12

13 alpha = math.degrees(math.asin(sin_alpha))

14

15 turtle.left (180 - alpha)

16 turtle.forward(hyp)

17

18 rettvinklet_trekant (200)

19 rettvinklet_trekant (20)

20 turtle.done()

21 turtle.bye()

22

Figure K.2: Institutionalization. Note. Result from the live coding session in the institutionalization
phase in session 2. The program illustrates the implementation of a subroutine drawing a triangle. The
program also illustrates calls to the subroutine with different arguments.

85

Underlined text Text recited from the assignment the students are
working on.

…

Break with a duration of maximum 3 seconds.

[…]

Skipping parts of the transcription.

- (hyphen)

Interruption.

(Text in round brackets)

Explanation of non-verbal action from the video or screen
recording.

[Text in square brackets]

My own replacement of context dependent words such as
“it” and “that”.

L Transcription Codes

86

Department of Computer Science

TDT4501 - Computer Science, Specialization Project

Integrating programming into
Matematikk 1T

Candidate:
Anne Margrethe Vestgøte Bosch

Supervisor:
Majid Rouhani

December, 2021

M Specialization Project Report

87

Table of Contents

1 Introduction 1

1.1 Relevance . 1

1.2 Problem statement and research questions . 1

1.3 Structure . 2

2 Theory 3

2.1 Three interrelated concepts: Programming, coding, and computational thinking . . 3

3 Methodology 4

3.1 Research design . 4

3.2 Data material . 4

3.2.1 Population . 4

3.3 Data organization and initial filtering . 5

3.4 Analysis . 6

3.4.1 Descriptive statistics . 6

3.4.2 Constant comparative method . 7

3.5 Ethical considerations . 8

4 Results 9

4.1 Findings from descriptive statistics . 9

4.1.1 Duration . 9

4.1.2 Competence aims . 10

4.1.3 Mathematical topics . 12

4.1.4 Tools, languages and environments . 13

4.2 Three identified approaches . 13

4.2.1 Components of an approach . 14

4.2.2 Approach 1 – Learning (introductory) programming 14

4.2.3 Approach 2 – Apply programming to learn mathematics 15

4.2.4 Approach 3 – Dual focus on learning programming and mathematics 16

4.2.5 How the three approaches are related . 17

5 Discussion 19

5.1 RQ4 – Learning activites classified through three approaches 19

5.2 RQ1 – Mathematics-related learning objectives . 19

5.3 RQ3 – Programming-related student prerequisites 19

i

5.4 RQ2 – Programming-related learning objectives . 20

5.5 Limitations . 21

5.6 Further research . 22

6 Conclusion 22

Bibliography 24

Appendices 25

A Preliminary project template 25

B Coding scheme hierarchy 32

ii

1 Introduction

1.1 Relevance

This study takes place within the context of the subject renewal in Norway, further referred to
as LK20. LK20 is an update of the Norwegian National curriculum and changes the content of
the subjects in schools (Meld. St. 28 (2015–2016)). In the autumn of 2020, the first changes
were applied for the common core subjects in upper secondary school. The change relevant to this
study is that programming has become part of the mathematics subject, including Matematikk
1T (Utdanningsdirektoratet [Udir], 2020). New competence aims are in place, but how the imple-
mentation will play out can first be seen through the operationalization of the curriculum in the
classroom.

The introduction of programming in compulsory education is happening all over Europe. Program-
ming is either integrated into existing school subjects, as a component in dedicated ICT subjects,
or as one of several technologies implemented in all school subjects (Sevik, 2016). Programming
is seen as an essential means to reach a larger goal - namely, to equip pupils with skills and com-
petencies needed in the 21st century. There are different definitions of these competencies and
skills (Sevik, 2016). The report The School of the Future (NOU 2015:8) is one of the catalysts
for the subject renewal in Norway (Meld. St. 28 (2015–2016)). In the report, competencies for
the 21st century are divided into four areas: competence in learning, competence in exploring and
creating, competence in communicating, interacting and participating, and subject-specific com-
petence (NOU 2015:8). The four competence areas equip students for the challenges of tomorrow’s
society and a labor market rapidly changing (NOU 2015:8). Programming has the potential for
strengthening all four competence areas (Sevik, 2016). In particular, the potential for deeper un-
derstanding has been highlighted as a basis for including programming in the mathematics subject
(Norstein & Haara, 2018). On the other hand, it has been argued that programming will amplify
the problem of time pressure in mathematics courses and thus prevent in-depth learning (Sanne
et al., 2016).

As the implementation is currently happening, there is insufficient research on the intersection
between mathematics and programming in compulsory education on the upper secondary level. It
has been hard to find related research in conjunction with this study. literature review on the use
of programming in mathematics education from 2018 states that:

As this literature review showed, sparse research exists on the educational potential of
programming in mathematics education. [...] [W]e call for more research and research-
based arguments in the policy for including programming in a mathematics education.
(Forsström & Kaufmann, 2018, p. 28)

As clearly stated from the literature review, more research is needed in the field. This exploratory
study aims to map out how in-service teachers currently in programming training are integrating
programming into their instruction in Matematikk 1T in conjunction with the renewal of the
curriculum.

The study contributes to the body of knowledge on approaches to implementation that are realistic
and close to practice. This specialization project will provide a better understanding of how
in-service teachers envision programming in their own mathematics classrooms. The analyses
contribute to my subsequent master thesis, where I will create a lecture series design, test it in a
classroom setting, and report on the results.

1.2 Problem statement and research questions

How do in-service teachers enrolled in programming training envisioning integrating programming
into Matematikk 1T?

• RQ1: Which mathematics-related learning objectives do the teachers address?

1

• RQ 2: Which programming-related learning objectives do the teachers address?

• RQ3: Which programming-related student prerequisites are the lecture designs based on?

• RQ4: Which learning activities have teachers scheduled to obtain the learning objectives?

1.3 Structure

In chapter 2, the term programming will be defined and elaborated on, as it is a key concept in
this study. The study combines a Constant Comparative Method for analysis (CCM) with a quasi-
statistical approach. In chapter 3, the data material and methods for analysis applied in this study
will be described in detail. Chapter 4, report on the findings from the analyses. The key finding is a
model of three different approaches for implementing programming into Matematikk 1T. Chapter
5 revisits the research questions and discuss the findings. The following question is addressed
through the discussion: Are the programming-related learning objectives realistic? Lastly, this
paper suggests further research in the field intersecting mathematics and programming, and sets
the stage for my master thesis.

2

2 Theory

As described in the introduction, this study is exploratory and does not build on a conceptual
framework. Therefore, this section will reference literature to give definitions for the key concept
used in this study: programming.

2.1 Three interrelated concepts: Programming, coding, and computa-
tional thinking

Programming is a critical concept in this study. What is programming? What is the difference
between coding and programming? How does computational thinking relate to programming?
There are numerous definitions of programming in the literature, and they vary in how broadly
they define the term (Norstein & Haara, 2018). Through this study, it has also become evident
that a proportionate amount of research does not explicitly define their notion of programming
but rather lean on the tacit understanding of the reader, for instance, in a recent literature review
regarding introductory programming (Luxton-Reilly et al., 2018).

This study will use a definition of programming close to the definition from a note created by the
Norwegian Center for ICT in education (Sevik, 2016). Programming is a problem-solving process
that results in computer programs written in a language (syntax) that can be understood computer.
Part of the process is to understand and formulate the problem in a manner suitable to the context.
The process also includes troubleshooting and iterative improvement of a program and evaluating
solutions (Sevik, 2016, p. 9). A definition from a Norwegian organization is considered suitable as
the study is situated in a Norwegian context.

A distinction between programming and coding is worth noting, as the terms coding and program-
ming are frequently used interchangeably in the Norwegian discourse (Sevik, 2016). Coding can
be understood as writing program code understandable to a computer. When the term is used
in a Norwegian school context, coding has connotations of being less complex than programming
and is limited to writing less advanced computer programs. Coding is an activity in the subset of
programming, whereas programming also involves the problem-solving process of computational
thinking (Norstein & Haara, 2018).

Programming and computational thinking are often discussed in conjunction with each other.
One relevant example is the curriculum for Matematikk 1T (Utdanningsdirektoratet, 2020, p. 5).
Computational thinking is creative and systematic problem-solving. It originates from Jeannette
Wing. She defines computational thinking in a way that is close to this study’s definition of
programming:

Computational thinking is the thought processes involved in formulating problems
and their solutions so that the solutions are represented in a form that can be effectively
carried out by an information-processing agent. (Wing, 2010, p. 1)

Computational thinking is understood in the renewed national curriculum (LK20) as a set of
activities and key concepts in problem-solving. Programming is not mentioned in Udir’s term
elaboration, so computational thinking does not require writing program code (Utdanningsdirekt-
oratet, 2019). Nevertheless, it is worth emphasizing that programming is often highlighted as an
activity that fosters computational thinking (Norstein & Haara, 2018; Sevik, 2016).

As this elaboration conveys, the terms programming, coding, and computational thinking are
complex, entangled, and used interchangeably in the Norwegian context. Further in this paper,
I will consistently refer to the term programming and imply the whole process from problem
identification to evaluation of solutions as described earlier. Nevertheless, the complexity is relevant
to keep in mind as it complicates the scope and foundation of this study.

3

3 Methodology

3.1 Research design

The study I have conducted belongs to the qualitative research paradigm due to the research pur-
poses and methods. The study does not intend to quantify general tendencies but instead tries
to understand a contextualized situation through a small set of lecture designs. Equally import-
ant, the design is flexible and thus has evolved throughout the semester (Robson & McCartan,
2016). Fundamental to the study context, programming is in the process of implementation in the
Norwegian national curriculum, as described in the introduction. Programming was introduced in
Matematikk in 2020, and the lecture designs analyzed were created during the spring of 2021. Thus,
the study is small-scale with case study traits (Robson & McCartan, 2016). The phenomenon to
be researched in this case study is ”implementation of programming in mathematics 1T”.

The research design is influenced by the fact that this study is a preliminary project for my
master’s thesis. In my master thesis, I will investigate the same phenomenon further by designing
and implementing a lecture series. The findings in this preliminary study will inform the future
lecture series design.

3.2 Data material

The data is from a database of submitted assignments from in-service teachers currently in pro-
gramming training. Further information about the population is described in section 3.2.1. The
database contained 196 submissions from a programming course. Every submission contained a
preliminary project, a lecture plan, a reflection note about the theme ”programming for all,” and
a project report containing descriptions of the creating process and hours spent on the assignment.
A majority of submissions included additional attachments such as code snippets. All data was
anonymized when it was accessed in August 2021.

In this study, only the preliminary projects (PPs) are analyzed due to the scope of this study. The
PPs are planning documents outlining lecture designs without including every detail. The PPs
are written documents based on a template. The template contains the sections: The main topic
of the lecture, target subject(s), competence aims, learning objectives, prerequisites, short overall
project description, lecture activities, lecture implementation plan, time frame, and a list of tools.
The template is included in Appendix A.

21 PPs for lecture designs created were analyzed. 16 of the 21 projects were submitted individually,
and five were submitted by two teachers collaborating. Hence, 26 teachers contributed in total.
Section 3.3 describes the filtering process of the data material from 196 to 21 PPs.

3.2.1 Population

The PPs analyzed are created by in-service teachers enrolled in the teacher training course IT6204
- Applied Programming for Teachers. The course is web-based and provided at the Centre for
Continuing Education and Professional Development in the Norwegian University of Science and
Technology (NTNU) in Trondheim (NTNU, n.d.). The teachers have already completed the course
IT6203 - Introductory Programming for Teachers, giving them 15ECTS of programming training
from the two courses. As the course is web-based, participants can be located in all parts of Norway.
Teachers teaching all school subjects spanning primary through upper secondary level partake in
the course (Rouhani et al., 2021; Rouhani et al., 2019). However, only mathematics teachers
teaching the specific subject Matematikk 1T are investigated in this study. As programming is
a new addition to the standard curriculum for mathematics, teacher training is needed to equip
teachers with the necessary knowledge and skills (Sanne et al., 2016, p. 77). Consequently, the
population of this study is likely more proficient in programming and programming didactics
than the average mathematics teacher in Norway. Hence, the population could be regarded as a
limitation, as addressed in section 5.5.

4

3.3 Data organization and initial filtering

The first step of analyzing qualitative data is organizing the data material to keep it manageable.
Organizing is part of the analysis, as choices on how to structure the data is also a process that
shapes the end product (Robson & McCartan, 2016, p. 466). When I was granted access to the
data through my supervisor’s database, the entries were sorted in folders by candidate numbers.
During the first scan of the data material, the 196 database entries were systematically visited
based on ascending candidate numbers. The preliminary projects were read through, and relevant
data about each preliminary project were manually extracted to a spreadsheet. The columns of
the spreadsheet are displayed in Table 1.

Before and during this scan, inclusion and exclusion criteria were developed to reduce the amount
of data. The final inclusion and exclusion criteria from the first scan of the data material are listed
below.

Inclusion criteria

• Mathematics included as a subject in the PP

• Lower secondary or upper secondary school level

Exclusion criteria

• Duplicate projects due to teacher collaboration

• Alternative curriculum

• Not concerning mathematics subject(s)

• Preliminary project missing from database entry

• Primary school level

After the initial filtering, the number of PPs was reduced from 196 to 72. In accordance with
the inclusion and exclusion criteria, the 72 PPs addressed all mathematics school subjects on the
lower and upper secondary levels. The amount of data was still too considerable for the scope of
this specialization project. Therefore, the scope got reduced further to one mathematics subject
for further investigations, namely Matematikk 1T. This subject is theoretical mathematics for the
first year of upper secondary school. The subject is available to pupils who intend to proceed to
higher education and is an alternative to practical mathematics, Matmatikk 1P. The selected data
material for further analysis was now 24 PPs regarding Matematikk 1T.

The choice of mathematics subject to proceed with was grounded in personal experience. I have
previously researched the implementation of Matematikk 1T before from a teacher perspective in
a pilot project. Lower secondary mathematics could also have been selected, as there were 28
entries in the database on that level. Other mathematics subjects on the upper secondary level
were sparsely represented in the database.

5

Spreadsheet column Explanation
Candidate number Candidate number on the database
Collaborators Candidate number(s) of collaborators, if any
Subject Main subject from the Norwegian school system

pertinent
Subject code Main subject code. Retrieved from UDIR’s web-

site.
Additional subject(s) Additional subjects pertinent, if any. Cross-

curricular teaching.
Additional subject code(s) Retrieved from UDIR’s website
Grade level Either primary, 8-10, vg1, vg2, vg3, or a combin-

ation of these.
Technology Specific technologies pertinent, if any. For ex-

ample Micro:bit or Python
Approach Programming approach, either block based, text

based, or a combination of the two
Formal deficiencies Excluding factors such as author name (non-

anonymized), preliminary project missing in the
delivery, wrong candidate number, empty deliv-
ery etc.

Relevant in round 1? Column with only yes or no as possible answers
based on inclusion and exclusion criteria

Table 1: Spreadsheet columns used in the data filtering process. The right column of the table
gives a brief explanation for each of the spreadsheet columns’ contents.

3.4 Analysis

After the initial data selection, the data has been approached for analysis in two different ways.
The primary method for data analysis is the method of constant comparison (CCM) inspired from
grounded theory. Through this approach, themes are identified in the data material inductively
(Robson & McCartan, 2016, pp. 481-484). The method of constant comparison will be further
described in section 3.4.2. An additional analysis was conducted to support the CCM analysis. This
additional approach is quasi-statistical, where aspects of the qualitative data have been quantified
through descriptive statistics (Robson & McCartan, 2016, p. 461). This analysis will be further
described in section 3.4.1.

3.4.1 Descriptive statistics

Different frequencies have been recorded regarding duration, competence aims, tools, languages,
and environments (TLEs), mathematical topics, and collaboration from the data material. The
purpose of the quantification and graphical presentation of aspects of the data is to understand
similarities and differences within the entire data set.

Both measures of central tendencies and measures of variability are used to analyze the data. Mean,
median and mode are the most common to measure central tendencies (Robson & McCartan, 2016,
p. 419) and have been used to explore lecture duration. The results are described in section 4.1.1.
Suitable diagrams and tables are included to display central tendencies and variance within the
data, such as occurrence of competence aims.

As the data set is relatively small, I have manually plotted the pertinent data to an Excel spread-
sheet instead of applying more sophisticated software. Built-in Excel formulas were used to calcu-
late the measures of central tendencies and generate diagrams.

6

3.4.2 Constant comparative method

The constant comparative method of analyses (CCM) is applied in this study. CCM has its
origins in grounded theory, a rigorous methodological approach for data-driven inductive qualitative
research, but CCM is also suitable for other flexible research designs such as case studies (Postholm,
2005, p. 87). In CCM, the analysis process is divided into three phases: open coding, axial coding,
and selective coding. The goals are respectively for the three phases to label similar meaningful data
segments with codes, group the codes into categories, and abstract the categories into one or more
core categories that encapsulate the essence of the findings from the data material (Postholm, 2005,
pp. 87-91; Robson and McCartan, 2016, pp. 481-484). The starting point of CCM is open coding,
but the process of coding, category identification and core-category identification is not linear.
The process is a constant comparison between data segments, where new codes and categories can
emerge, merge and be restructured throughout the whole analysis process (Robson & McCartan,
2016, pp. 481-483).

CCM was chosen due to the study’s exploratory nature, where a suitable theoretical framework
for analysis would not be appropriate to define in advance. A data-driven approach through CCM
was considered more appropriate.

Open coding

This was the first step of the CCM data analysis. Data was divided into discrete segments called
codes. The researcher decide the coding unit size (Robson & McCartan, 2016, p. 481). In
this study, the code unit size varies from single words to paragraphs depending on the type of
meaning carried in the segment. For example, the segment contianing the name ”Micro:bit” is
coded to ”Sensor to register data”, whereas a whole paragraph describing students’ programming
prerequisites is coded to ”Builds on basic programming skills”. Data segments can be coded into
several codes (Robson & McCartan, 2016, p. 481), which is done in this this study.

The 24 PPs selected for analysis were added to an NVivo project and coding was carried out
through NVivo’s coding functionality. The PPs were sequentially coded based on candidate num-
ber. During this process, another three PPs were excluded from the data material. Two were
excluded because they were cross-curricular and mainly concerned with natural science, whereas
mathematical learning objectives were stated in the PPs as a positive side-effect. The third PP
was excluded because it addressed competence aims from the outdated national curriculum. After
the initial round of open coding, the 21 remaining PPs were revisited for another round of coding.
The second round of coding was carried out because new codes were identified late in the coding
process, and had to be taken into consideration for all PPs.

146 codes were identified through the open coding process. Table 2 displays some of the most
frequently occurring codes, and examples of associated data segments. Not every identified code
is relevant to the findings discussed in this specialization project, which is in line with the CCM
process (Robson & McCartan, 2016, pp. 481-483). For transparency, the whole coding scheme
hierarchy created in NVivo is displayed in Appendix B.

As described in Robson and McCartan (2016), when several researchers are coding the same data
material and compare coding, it reduces subjectivity and bias. In this project, the coding is
carried out by only one researcher, which leads to a potential bias. A means taken to create more
transparency in the process was a meeting to discuss the coding with a supervisor after the initial
code set was created. Codes and data segments associated with the codes were discussed during
the meeting. I address this limitation in section 5.5.

7

Code name Representative data segment
Duration Session 1 (90 minutes): Pythagoras and basic pro-

gramming. Session 2 (90 minutes): Basic trigono-
metry, i.e. relationship between sides and angles.
Find [sides and angles].

Programming to enhance
mathematics learning

Pupils are to be able to use numerical methods for
investigation of the relationship between average
growth rate and instantaneous growth rate.

Builds on basic programming They should also have worked with some pro-
gramming before, as the program in its full form
is a relatively large and complex program.

Competence aim 1 [F]ormulate and solve problems through the use
of algorithmic thinking, different problem solving
strategies, digital tools and programming

Loops [. . .]to create while- or for-loops that prevent the
program from just going in circles [. . .]

Table 2: The table gives examples of codes frequently occuring in the data material and associated
representative segments. The data excepts are translated from Norwegian to English.

Axial coding

In the axial coding process, codes were organized into categories and subcategories. This was done
in NVivo, restructuring the set of codes into parent and child codes. Because of limitations in the
NVivo tool, codes could only be categorized into one category. Axial coding was primarily done
after the open coding, but the common themes such as the different approaches were emerging
already during the initial coding. The categories identified are displayed in Table 3 together with
associated subcategories and codes.

Selective coding

The last part of the CCM analysis process was selective coding, where a core category is identified
from the most pertinent theme spanning the categories. The core category is an umbrella term
to conceptualize the overall picture painted from the findings in the data material (Robson &
McCartan, 2016, p. 483). From this study, the core category identified is ”Approaches to imple-
menting programming into Matematikk 1T”. The core category will be thoroughly explained in
section 4 as it is the main finding of this study. The process of identifying the core category was the
most time consuming part of the CCM analysis. It was conducted through constant comparison
between codes and categories in NVivo, in parallel with drawing models on paper.

3.5 Ethical considerations

The study, as other document analysis studies, is unobtrusive research (Robson & McCartan, 2016,
pp. 346-348). Due to the unobtrusive nature of this study, the researcher has not affected the
population studies. Another ethical aspect to highlight is that the participants are not identifiable
from the report, as the analyzed data was fully anonymized before access was granted. Furthermore,
the nature of the findings in the study is not harmful to anyone. Thus, the study is in line with the
Guidelines for Research Ethics in the Social Sciences, Humanities, Law and Theology provided by
The National Committee for Research Ethics in the Social Sciences and the Humanities (NESH)
(2019).

8

Category name Examples of associated (subcategories)
and codes

Approach Programming to enhance mathematics learning
Builds on basic programming skills
Learn basic programming
Builds on unspecified programming skills
Exams
Builds on little or no programming skills
. . .

Learning objectives Content knowledge
Mathematical topics

Trigonometry
. . .

Programming topics
Loops
Conditionals
Output or print
. . .

Regulations from the national curriculum Competence aims 1T
Aim 1
. . .
Aim 14

Tools Personal computer
Hand writing
GeoGebra
Theory Book
Google Colab
Spyder
YouTube
. . .

Table 3: Categories identified in the data material through the axial coding process. The right
column in the table provides examples of associated subcategories and codes for each of the cat-
egories.

4 Results

Through the data analysis, I have compared content from the whole data set. These findings de-
scribe duration of the lectures, pertinent competence aims, and tools, languages and environments
(TLEs).

I addition to these descriptive analyses on the whole data set, I have developed several models
describing the different approaches to teaching programming identified in the data material. The
first model describes the contents of an approach, that is the actual lecture (series) design, and
factors that seems to be influencing the choice of approach. Only factors available or partially
available from the data set are included. See 4.

The second model describes the three approaches identified, and how they seem to relate to each
other. See 7.

4.1 Findings from descriptive statistics

4.1.1 Duration

Of the 21 PPs, 18 specify the number of hours intended to spend on programming in Matematikk
1T. Mode and median were both 6h, mean was 6, 97h ≈ 7h. The maximum value was 12, 75h and

9

the minimum was 3h, which gives a range of 9, 75h. Figure 1 shows a histogram of the frequency
within the 18 PPs that reported intended hours. The three PPs that did not specify the number
of hours described duration of three periods, three lectures and five lectures respectively, where
the duration of a period or lecture is undefined.

The total number of allocated hours within a school year in Matematikk 1T is 140h (Utdannings-
direktoratet, 2020). Comparing the mean duration of 7h in the data material to the total number
of hours, the mean duration of programming in Matematikk 1T is 5 % of the total number of hours
in the subject.

Figure 1: Histogram showing the number of hours intended for programming in the preliminary
projects (PPs). Bin size = 5 hours. The assumption is made that no lectures can have a duration
less than 1 hour.

4.1.2 Competence aims

All of the preliminary projects describe which competence aims from LK20 the teacher(s) consider
relevant for their lectures. I have enumerated the competence aims according to the order they
are listed in the Matematikk 1T curriculum (Utdanningsdirektoratet, 2020). In total there are 14
competence aims. The enumerated list is displayed here:

The pupil is expected to be able to

1. formulate and solve problems through the use of algorithmic thinking, different problem
solving strategies, digital tools and programming

2. read and understand mathematical proofs and explore and develop proofs in relevant math-
ematical topics

3. identify variable amounts or magnitudes in different situations, create formulas and explore
these using digital tools

4. explore strategies for solving equations, systems of equations and inequalities, and argue for
one’s thought processes

5. explain the difference between an identity, an equation, an algebraic expression and a function

6. explore connections between quadratic equations, quadratic inequalities, quadratic functions
and quadratic formulas, and use these connections in problem solving

10

7. model situations in relation to different topics, discuss, present and explain the results and
then argue the validity of the models

8. read, extract and assess mathematics in relevant texts on various topics and then present
relevant calculations and analyses of the results

9. explore and describe the properties of polynomial functions, rational functions, exponential
functions and power functions

10. use average and instantaneous growth rates in concrete examples and then account for the
derivative

11. explain polynomial division and use it to rewrite algebraic expressions (factoring), discuss
functions and solve equations and inequalities

12. explain the definitions of sine, cosine and tangent and use trigonometry to calculate the
length, angles and area of random triangles

13. explain the area, sine and cosine rules

14. use trigonometry to analyse and solve complex theoretical and practical problems through
length, angles and area

(UDIR, 2020, p. 5)

Some competence aims occur more frequently in the data material than others. As can be seen in
Figure 2, competence aim 1 is included in all of the preliminary projects analyzed. This competence
aim is the only one of the 14 to explicitly include the term ”programming”. Competence aim 3
is the second most pertinent, and occurs in 13 of the preliminary projects. Aim 1 and 3 are the
only two competence aims of the 14 to include the term ”digital tools”. Both aim 7 and 14 are
referenced in 9 preliminary projects, and are the third most pertinent competence aims in the data
set.

From Figure 2, it is also apparent that most of the competence aims from the Matematikk 1T are
referenced at least once within the data set. From the 21 lecture plans, only aim 5 and 11 are
not referenced at all. This finding implies that most of the curriculum in Matematikk 1T can be
connected to programming lectures.

Figure 2: Bar chart showing the occurrence of competence aims from the curriculum in the pre-
liminary projects (PPs). Competence aims are enumerated as described above.

11

Another finding is regarding the number of competence aims referenced in each preliminary project
in the data set. Figure 3, the most frequent number of referenced competence aims are four. No less
than two, and no more than seven competence aim s are included as relevant in a single preliminary
project. This finding also supports the statement that teachers span a variety of topics within their
planned lectures.

Figure 3: Bar chart showing the number of competence aims included in each of the preliminary
projects (PPs). The assumption is made that lectures can not reference 0 competence aims.

4.1.3 Mathematical topics

The PPs are for lectures in a mathematics course. Hence, the learning of mathematics is in focus
for most of the PPs. Some of the projects focus more on learning introductory programming than
mathematics. I will elaborate on this in section 4.2.1.

Table 4 displays what the main mathematical topics in each of the 21 lecture plans are. Introduct-
ory programming is included, due to the fact that programming is mentioned explicitly in one of
the competence aims (Utdanningsdirektoratet, 2020). As can be seen from table 4, trigonometry
is the most frequent main mathematical topic from the data set with eight PPs.

Not every PP addresses only one mathematical topic. As shown in table 5, the sum of mathematical
topics in focus exceed 21. The most frequent addressed mathematical topic is trigonometry, with
nine PPs.

Number of PPs Main mathematical topic
8 Trigonometry
6 Problem solving and introductory programming
5 Differentiation
1 Number theory
1 Analysis

Sum: 21

Table 4: Table showing the main mathematical topic addressed in each of the preliminary projects
(PPs).

12

Number of PPs Mathematical topics
9 Trigonometry
7 Introductory programming and problem solving
6 Differentiation
3 Figurate numbers
2 Analysis
1 Number theory

Sum: 28

Table 5: Table showing the number of preliminary projects (PPs) that address different mathem-
atical topics. One PP can address several mathematical topics, hence the sum exceeds 21 PPs.

4.1.4 Tools, languages and environments

All of the preliminary projects make use of programming on personal computers, one computer
per student. In this section I will describe the tools, languages and environments (TLEs) present
in the preliminary projects, both digital and non-digital. The findings from this section will not
be discussed in section 5, but will inform the design decisions in my subsequent master thesis.

Python programming

Text based programming in Python is included in all preliminary projects. Python is accompanied
by integrated development environments such as Anaconda Spyder, Jupyter Notebook, PyCharm,
Google Colab or Trinket. The selected programming environment for Python programming is not
described at all in eight of the PPs. Only one PP describes the use of several different environments
for Python programming, that is both Anaconda Spyder and Jupyter Notebook.

Supplementing programming TLEs

Other TLEs than Python are supplementing the use of Python. Three PPs describe logging data
with sensors, where one of them explicitly states the use of BBC Micro:bit to this end, another
make use of Pasco Smart Cart, and the third does not specify the selected tool(s). Two PPs are
concerned with block based robot programming. One of them make use of Fable robots, the other
Sphero RVR robots.

Non-programming digital tools

In addition to different programming modalities, several of the PPs make use of other digital
tools for supporting the learning activities. GeoGebra computer algebra system (CAS) is used in
two PPs. GeoGebra Graphing Calculator is used in six PPs. Microsoft Excel is used in one PP,
YouTube videos are used in one PP, and traditional calculators are used in one PP.

Non-digital tools

Not only digital tools are used in the PPs. Handwriting is made use of in 13 PPs. The theory
book is references as a tool in three PPs, and other forms of written material such as worksheets
are to be handed out to students in three PPs. Counting chips and measuring tape are made use
of in one PP each.

4.2 Three identified approaches

Through the constant comparative analysis of the data material, I have developed a model of
different approaches to integrating programming in mathematics 1T. Hence, the core category
identified through the data material is ”Approaches to integrating programming into Matematikk
1T”. The name of the core category refers to the overall approach the teachers apply for their
lectures. First, I will describe what are the components of an approach in general. Afterwards, I
will describe the characteristics of the three specific approaches identified and how they relate to
each other.

13

4.2.1 Components of an approach

As displayed through the model, the lecture design in the center of the model consists of subcat-
egories that constituents the lecture design. Several contextual factors are influencing the lecture
design. In the model, these are described in the bubbles surrounding the lecture design category.
The model is not complete. Not all influencing factors are included. Only those who are identifiable
(solid border) or partly identifiable (dotted border) through the data material are included.

I will describe findings from the data material regarding lecture design components, and relate the
findings to the different approaches identified in the next section, 4.2.

Figure 4: Model showing the components of an approach to integrating programming into Matem-
atikk 1T. The lecture (sequence) design and its components is the area in the middle of the model.
Influencing factors for the design are surrounding the lecture (sequence) design area. Dotted lines
denotes influencing factors only partially identifiable through the data material in this study.

4.2.2 Approach 1 – Learning (introductory) programming

One approach is to teach the first steps of introductory programming through mathematical topics.
Two of the preliminary projects from the data material take this approach. They build the lecture
on the assumption that their students have no or very little prior experience with programming.
One teacher elaborates on the selected approach in their preliminary project description:

We expect that the class starting in the autumn of 2021 also will have little knowledge in
programming, as they haven’t followed the new curriculum. We also assume that it will
take several years before the students who come to upper secondary school have good
enough knowledge in programming so that we can directly make use of it for learning
mathematics. There will probably be large variations in the type of programming they
have experience with from lower secondary school. (Quote from Preliminary project
number 10100)

The other 19 preliminary projects build on the assumption that students have some experience

14

with programming, hence they build on approach 1 either from previous lectures in the same school
year, or from lower secondary school.

Learning objectives within this approach I have conducted two queries in NVivo to answer
this question. First, I ran a matrix query between the code “Builds on little or no programming
skills” and all codes within the category “Learning objectives/Context knowledge/Programming
topics” with a NEAR criteria on the common file leven. The second query was “Builds on basic
programming skills” AND “Learning objectives/Context knowledge/Programming topics”, where
the results contained only overlaps. Through the queries I wanted to identify the most frequent
learning topics to be learned through approach 1. What I can tell from the data material is limited.
Of the 19 preliminary projects that build on approach 1, only 10 specify the concepts they expect
their students to be familiar with. Furthermore, the two preliminary projects taking approach 1
gave more thorough descriptions of the expected learning outcomes than the 10 that only builds
on the approach.

The programming concepts that are expected for students to learn through approach 1 identified
through the queries are described here. The most frequent occurring topics were definite and
indefinite loops, conditionals and variables. The topics occurred in respectively nine, nine and seven
of the 12 preliminary projects queried. Other topics that quite frequently occurred were defining
and calling functions, textual output through print, primitive data types, arithmetic operators, and
import and use of third party libraries. Topics that were mentioned in only one or two preliminary
projects were recursion, what is an algorithm, debugging, composite data types such as lists, user
interaction through the input function, and visual output through graphs.

Codes from the set of programming topics codes that did not appear in the queries were flowcharts,
iterative improvement of code, pseudo code, reuse of code, robot programming, testing, and write
understandable code.

Duration One of the lecture sequences described had a duration of 12 hours planned. The other
one does not specify the number of hours, but is integrated into the lectures throughout one
semester.

4.2.3 Approach 2 – Apply programming to learn mathematics

Six of the preliminary projects (PPs) from the data material had an approach where they applied
programming in the context of mathematics. The identifier for these projects was the lack of the
code “Learn basic programming”’. In these projects, there is no or very little emphasis on learning
new programming concepts or syntax during the lectures. Applying existing programming know-
ledge to enhance mathematics is the explicit main objective. The two examples below illustrate
the focus on mathematical learning objectives through the programming medium:

Differentiation: The main goal of the lecture series is to work with average and instant-
aneous growth rates and transfer [the knowledge] to numerical differentiation. In the
code part of the lectures, we work mainly with numerical differentiation, preceding this
we will work with understanding average and instantaneous rate of change in more tra-
ditional forms with paper and pencil and by illustrating and talking about connections
in GeoGebra. (Emphasis added. From PP 10115)

Trigonometry: The students will program a “triangle solver” in Python. Through
the work, they will have to apply knowledge in trigonometry from Mathematics 1T
to solve the problem. The aim is to gain a thorough understanding of concepts from
trigonometry and to be able to apply trigonometric formulas. (Emphasis added. From
PP 10040)

Mathematical topics All of the 6 PPs addressed only one mathematical topic each. Three of
the preliminary projects were concerned with trigonometry, two with differentiation, and one with
number theory.

15

Builds on basic programming Of the 6 lecture plans, only two of them identified exactly what
programming prerequisites they expected from their students. Both these were concerned with
trigonometry. The programming concepts they expected their students to know were

1. Conditionals, definite and indefinite loops and textual output through print

2. Conditionals, definite and indefinite loops, variables, and defining and calling functions

4.2.4 Approach 3 – Dual focus on learning programming and mathematics

The most common approach identified through the data analysis was a dual focus on learning new
programming concepts, as well as applying previous and new programming concepts in the learning
of new mathematics. In other words, the third approach is uniting the two previous approaches.
From the data material, the teachers either alternated between the approaches, or merged them
into a single teaching unit. I have therefore divided approach 3 into two variants.

Alternating variant The first variant is alternating between activities focusing on introduct-
ory programming and activities focusing on applications of programming into mathematics. The
following quote exemplifies the alternating variant:

First, the pupils repeat the most necessary programming concepts, before using them to
create programs they can use to draw function graphs, find average and instantaneous
growth rates, and draw the graph of the function’s derivative. The pupils will also create
programs that can be used to solve equations. (Colors added. Red for introductory
programming focus. Blue for application focus. From PP 10016)

Figure 5: Model illustrating the alternating variant of the dual focus approach. Activities alternate
between targeting on learning objectives focusing on learning basic programming and applying
programming to learn mathematics.

Integrated variant The other variant is integrating both new programming concepts and ap-
plications of the programming concepts into the same activity. The following quote from the data
material exemplifies the variant:

What is new for the pupils in this lecture is to define and plot graphs and to use the
programming in connection with growth rate and differentiation. [. . .] The pupils

16

create a program that draws function graphs in Python. Furthermore, the program
should be extended to analyzing the function by finding the average growth rate in an
interval, the derivative of the function by numerical derivation, and the expression for
the tangent line to the function for a given x-value. The graph of the derivative must
also be plotted so that the students can see connections between the two graphs. [. . .]
(Colours added. Red for introductory programming focus. Blue for application focus.
Purple for the activities that integrate both rationales. From PP 10034)

In this preliminary project, the teachers also elaborate on their rationale for choosing the approach:

We think it is important that there is not too much new introduced to the pupils at
once, especially when they only have short experience with programming. (From PP
10034)

Figure 6: Model illustrating the integrated variant of the dual focus approach. Activities target
learning objectives focusing on both learning basic programming and applying programming to
learn mathematics.

4.2.5 How the three approaches are related

Figure 7 gives an illustration of how the three identified approaches are related in regards to
learning objectives within programming and mathematics.

17

Figure 7: Model illustrating how the three approaches to integrating programming intoMatematikk
1T are related. Learning objectives based on programming and learning objectives based on
mathematics are the basis for comparison of the approaches.

18

5 Discussion

As a result of the subject renewal (LK 20), the Norwegian mathematics curriculum has changed to
include programming. This study aims to give a better understanding of the current implementa-
tion of programming into Matematikk 1T on the upper secondary level. This study gives insight
into how in-service teachers enrolled in programming training envisions the implementation in
their own classroom. The investigation is conducted through analysis of the teachers’ preliminary
projects (PPs) for lecture designs. The research questions I have explored in this study are:

• RQ1: Which mathematics-related learning objectives do the teachers address?

• RQ 2: Which programming-related learning objectives do the teachers address?

• RQ3: Which programming-related student prerequisites are the lecture designs based on?

• RQ4: Which learning activities have teachers scheduled to obtain the learning objectives?

5.1 RQ4 – Learning activites classified through three approaches

The model created through this study classifies the scheduled learning activities into three ap-
proaches. Either the teaching activities address programming-related learning objectives, apply
programming to enhance mathematics, or a combination of both. Prerequisites have an influence
on the choice of approach. This model is the main finding from this study. Through research
questions RQ1, RQ2 and RQ3 the learning objectives and prerequisites included into the three
approaches will be discussed further.

5.2 RQ1 – Mathematics-related learning objectives

Figure 2 showed that within the 21 PPs, 12 of the 14 competence aims from the National curriculum
were represented. The most frequently occurring mathematical topic was Trigonometry. Differ-
ential calculus and introductory programming was also frequently present as mathematics-related
learning objectives.

A pertinent question to address in relation to the mathematical topics in focus is whether introduct-
ory programming could be regarded as learning mathematics or not. I have made the assumption
that programming is included into the scope of ”mathematics” on the basis that the curriculum in
Matematikk 1T includes programming in competence aim 1, as shown in section 4.1.2. This topic
needs to be discussed further as influences the role of programming in mathematics education. One
example of the influence is the three approaches described in this paper, where both approach 1
and 3 include classroom activities where new programming concepts is taught. Are these activities
within the area of responsibility for mathematics?

5.3 RQ3 – Programming-related student prerequisites

As described in section 4.2.1, the approach chosen by a teacher is influenced by pupils’ programming
prerequisites. One variation seen in the data material is that the teachers build their lectures on
the assumption that pupils do not know any programming. The argumentation is closely tied to
the fact that programming in Matematikk 1T is still in the implementation process. Hence, this
approach is relevant as of now, but as students get more programming prerequisites in the future
from earlier school stages, it will become less relevant.

The other possibility is that teachers build their lectures on pupil programming prerequisites. They
either refer to a set of basic programming skills without stating the contents of such a set, or they
explicitly spell out which prerequisites are required or expected.

19

As seen through the three approaches, student prerequisites influence the approach to integ-
rating programming into mathematics. Programming-related prerequisites are closely tied with
programming-related learning objectives. This will be further discussed in 5.4.

5.4 RQ2 – Programming-related learning objectives

15 of the 21 PPs in the data material address programming-related learning objectives. These
are the PPs categorized to Approach 1 and Approach 3. In Approach 2, the main goal is to
apply programming in order to enhance mathematics learning. As already discussed, depending on
student prerequisites, among other influencing factors, teachers choose one of the three approaches,
and adjust the programming-related learning objectives accordingly. When students have obtained
the required prerequisites, the mathematics-related learning objectives gets the main focus, as
displayed through Approach 2. Consequently, the set of basic programming skills that makes up
the basis for applying programming seems important to elaborate on.

I will discuss the specific programming-related learning objectives that make up the foundation
and compare them to other studies. The list below displays the programming topics considered as
a foundation in the data material. All the topics are never covered within a single lecture design,
and the frequency of occurrence is decreasing further down the list.

• Definite loops

• Indefinite loops

• Conditionals

• Variables

• Defining and calling functions

• Textual output (print)

• Primitive data types

• Arithmetic operators

• Import and use of third party libraries

• Recursion

• What is an algorithm

• Debugging

• Composite data types such as lists

• User interaction (input function)

• Visual output (graph plotting).

This finding is relatively close in line with previous research on which components make up the
core of basic programming. A thorough process from 2010 identified the ten most critical topics
of an introductory programming course on the university level:

• Fundamentals: Variables, assignments, expressions

• Logical operators

• Testing and selecting alternatives (e.g., if statements)

• Definite loops (for loops)

20

• Indefinite loops (while loops)

• Arrays

• Functions and methods with parameters

• Functions and methods with return values

• Recursion

• Object-oriented basics (e.g. reading a class definition and calling methods on an object)

(Guzdial, 2015, pp. 25-26)

When comparing the findings from this study to the 2010 overview, I have considered Arrays
to be analogous to Lists, and Logical operators and selecting alternatives to be included into
Conditionals, as if statements are built on logical operators. When comparing the 2010 overview
to the findings, the most pertinent differences are object oriented programming and testing. These
two concepts are not considered within the scope of basic programming in this study. When
comparing the other way, it gets more interesting. There are several topics recurring in the data
material that are not on the 2010 top ten list. Some of these seem fundamental: what is an
algorithm, textual output (print), arithmetic operators and user interaction (input). Other topics
seem less fundamental: Import and use of third party libraries, debugging and visual output (graph
plotting). The differences are probably influenced by the fact that the 2010 overview is concerned
with introductory computer science classes (CS1), whereas the data material in this study is from
mathematics classes. Nevertheless, the content is strikingly similar.

The time dedicated to learning the building blocks of programming is another aspect to take into
consideration. As described in section 4.1.1, the average time dedicated to programming in the
data material was 7h of the total 140h in a year that make up Matematikk 1T. It is a mathematics
subject, and the curriculum is made up of 14 competence aims where only two address digital
tools, and one addresses programming as seen in section 4.1.2. The CS1 course described in
Guzdial (2015, pp. 24-27) also consisted of one year of classes. The total number of hours is
unknown. Nevertheless, the 10 programming concepts described above make up the essential
learning objectives expected to be obtained by young adults throughout the course.

This points to the question whether the programming prerequisites expected from pupils inMatem-
atikk 1T are realistic or not. As both Guzdial (2015) and Luxton-Reilly et al. (2018) repeatedly
stresses, realistic expectations is crucial to make programming more available to everyone, as well
as getting rid of the assumption that programming is inherently hard. The question sets the stage
for my master thesis. Through this preliminary study, I have mapped out three approaches to
teaching programming and their associated prerequisites and learning objectives. I have identified
which mathematical topics the teachers envision connects most closely to programming in Matem-
atikk 1T. The next step is designing series of lectures informed by this preliminary study, test out
the lectures in the classroom and report on the findings. That will be one step closer to investig-
ating which programming expectations we can have for students when they start Matematikk 1T
and when they finish Matematikk 1T.

5.5 Limitations

A small sample of preliminary projects for lecture designs are analyzed in this study. Analyz-
ing a larger number of PPs has the potential to reveal more details about the three approaches
identified, such as the most pertinent mathematical topics in each approach. Data triangulation
through interviews with the teachers who created the lecture designs would also give insight into
the rationales behind the lecture designs. Due to anonymization, it was not possible to identify
and contact any of the contributing teachers.

Furthermore, the population can be considered both a strength and a weakness of the study. The
teachers who have created the lecture designs were all enrolled in programming training. This is a

21

strength because the population makes informed decisions in regard to programming, but it also
raises questions whether the results would be the same if a random sample of teachers created the
lecture designs. It is a possible direction for further research to do the same analysis with lecture
design created by the more general population of mathematics teachers teaching Matematikk 1T.

Another limitation of the study worth pointing out is the fact that only one researcher has conduc-
ted the study. Especially the coding process would benefit from a more rigorous and transparent
process of two coders collaborating and comparing their results (Robson & McCartan, 2016). To
counter the researcher bias, I have arranged a meeting to discuss codes and coded segments with
my supervisor. However, the results might still be subject to researcher bias.

Lastly, this is an interdisciplinary study between mathematics and programming. Whereas the term
programming has been rigorously defined in the theory section 2.1, the termmathematics and topics
within mathematics such as trigonometry and differentiation has not been defined or discussed in
the same manner. The understanding of these concepts lean on the implicit understanding of the
reader and the researcher. A more rigorous investigation of the terms did not fit into the scope of
this study. To strengthen the reliability of the results, such investigation would be appropriate.

5.6 Further research

Several questions have emerged from the investigations. One of the contributions of this paper has
been to identify which programming skills and knowledge is expected for pupils to obtain through
the course Matematikk 1T. A derived question is whether the expected programming learning
objectives are appropriate or not. My subsequent master thesis will investigate this question
further. Informed by the findings of this study, a lecture series implementing programming into
Matematikk 1T will be designed. The design will be tested in a classroom setting during the spring
of 2022. The report on the results from the implementation aims to give further insight into which
learning outcomes can be expected from pupils enrolled in Matematikk 1T.

6 Conclusion

Mathematics is being included in compulsory education across Europe. In Norway, programming
has become part of the mathematics subject through the renewal of the National curriculum (LK20)
(Sevik, 2016). As described in Forsström and Kaufmann (2018), research on programming in
compulsory mathematics education is needed. This study contributes to the field by giving insight
into possible approaches to the implementation through lecture designs integrating programming
into the subject Matematikk 1T.

The constant comparative method has been applied in this project to analyze 21 preliminary pro-
jects (PPs) for lecture designs. Descriptive statistics has been a supplementary method of analysis
of the data. The PPs are submitted by Norwegian in-service teachers enrolled in programming
training at the Norwegian University of Science and Technology (NTNU).

The main finding from this study is three different approaches to integrating programming into
Matematikk 1T identified through the data material. The approaches can be understood in relation
to each other when comparing programming-related student prerequisites and expected learning
objectives. Approach 1 builds on the assumption that students have no programming prerequisites,
and the learning activities aim to teach students basic programming skills. Approach 2 builds on
the assumption that students have obtained necessary programming prerequisites, and hence the
learning activities aim to teach students mathematical applications of programming. Approach
3 combines Approach 1 and 2, where both learning new programming concepts and applying
programming concepts in mathematics is the aim of the learning activities.

As the study is small-scale and conducted by a single researcher, the findings are not generalizable.
Broadening the scope of participants, or doing teacher interviews would give valuable insights to
the implementation of programming into Matematikk 1T. Additionally, this study calls for further

22

investigations to give a better understanding of whether the expected student programming skills
are appropriate or not. My subsequent master thesis will build on this study, and will investigate
the integration of programming into Matematikk 1T through implementing a lecture series design
in the classroom and reporting on the results.

23

Bibliography

Forsström, S. E. & Kaufmann, O. T. (2018). A literature review exploring the use of programming
in mathematics education. International Journal of Learning, Teaching and Educational
Research, 17 (12), 18–32. http://hdl.handle.net/11250/2599710

Guzdial, M. (2015). Learner-centered design of computing education: Research on computing for
everyone. Morgan & Claypool.

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A., Giannakos, M., Kumar, A. N., Ott, L., Pa-
terson, J., Scott, M. J., Sheard, J. & Szabo, C. (2018). Introductory programming: A
systematic literature review. Proceedings Companion of the 23rd Annual ACM Conference
on Innovation and Technology in Computer Science Education, 55–106. https://doi.org/
10.1145/3293881.3295779

Meld. St. 28. (2015–2016). Fag – fordypning – forst̊aelse : En fornyelse av kunnskapsløftet [Subjects
- specialization - understanding: A renewal of Kunnskapsløftet]. Kunnskapsdepartementet.
https://www.regjeringen.no/contentassets/e8e1f41732ca4a64b003fca213ae663b/no/pdfs/
stm201520160028000dddpdfs.pdf

Norstein, A. & Haara, F. O. (2018). Matematikkundervisning i en digital verden [Mathematics
teaching in a digital world]. Cappelen Damm akademisk.

Norwegian University of Science and Technology. (n.d.). IT6204 - Anvendt programmering for
lærere [IT6204 - Applied programming for teachers]. Retrieved 4th December 2021, from
https://www.ntnu.no/studier/emner/IT6204

NOU 2015:8. (2015). The school of the future: Renewal of subjects and competences. Kunnskapsde-
partementet. https://www.regjeringen.no/contentassets/da148fec8c4a4ab88daa8b677a700292/
en-gb/pdfs/nou201520150008000engpdfs.pdf

Postholm, M. B. (2005). Kvalitativ metode : En innføring med fokus p̊a fenomenologi, etnografi
og kasusstudier [Qualitative research: An introduction focusing on phenomenology, ethno-
graphy and case studies]. Universitetsforlaget.

Robson, C. & McCartan, K. (2016). Real world research : A resource for users of social research
methods in applied settings (4th ed.). Wiley.

Rouhani, M., Divitini, M. & Olsø, A. (2021). Project-based learning and training of in-service
teachers in programming: Projects as a bridge between training and practice. 2021 IEEE
Global Engineering Education Conference (EDUCON), 262–271. https://doi.org/10.1109/
EDUCON46332.2021.9453934

Rouhani, M., Divitini, M., Vujosevic, V., Stai, S. & Olstad, H. A. (2019). Design of a programming
course for teachers supporting flexible learning trajectories. Proceedings of the 8th Com-
puter Science Education Research Conference, 33–38. https://doi.org/10.1145/3375258.
3375263

Sanne, A., Berge, O., Bungum, B., Jørgensen, E. C., Kluge, A., Kristensen, T. E., Mørken, K. M.,
Svorkmo, A.-G. & Voll, L. O. (2016). Teknologi og programmering for alle - En faggjen-
nomgang med forslag til endringer i grunnopplæringen - august 2016 [Technology and
programming for all - A subject review with proposals for changes in compulsory educa-
tion - August 2016]. Utdanningsdirektoratet. https://www.udir.no/globalassets/filer/tall-
og-forskning/forskningsrapporter/teknologi-og-programmering-for-alle.pdf

Sevik, K. (2016). Programmering i skolen [Programming in schools]. Senter for IKT i utdanningen.
https://www.udir.no/globalassets/filer/programmering i skolen.pdf

The National Committee for Research Ethics in the Social Sciences and the Humanities. (2019).
Guidelines for Research Ethics in the Social Sciences, Humanities, Law and Theology.
https://www.forskningsetikk.no/en/guidelines/social-sciences-humanities-law-and-theology/
guidelines-for-research-ethics-in-the-social-sciences-humanities-law-and-theology/

Utdanningsdirektoratet. (2019). Algoritmisk tenkning [Computational thinking]. https://www.udir.
no/kvalitet-og-kompetanse/profesjonsfaglig-digital-kompetanse/algoritmisk-tenkning/

Utdanningsdirektoratet. (2020). Curriculum for mathematics vg1 theoretical (mathematics t) (MAT09-01).
https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT09-01.pdf?lang=eng

Wing, J. M. (2010). Computational thinking–what and why? http://www.cs.cmu.edu/∼CompThink/
papers/TheLinkWing.pdf

24

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 1 av 7

IT6204 – Anvendt programmering for lærere
Forprosjekt

Utført av:

Maks 3 deltagere kan jobbe med samme forprosjekt

Tid og sted:

Appendices

A Preliminary project template

25

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 2 av 7

Innhold
Tema på undervisningsopplegg i programmering ... 3

Undervisningsopplegg i programmering for fag ... 3

Læreplanmål .. 3

Læringsmål .. 4

Forkunnskaper ... 5

Overordnet prosjektbeskrivelse .. 5

Overordnet beskrivelse av undervisningsopplegget ... 6

Arbeidsform ... 6

Gjennomføring .. 6

Tidsplan ... 6

Utstyrsliste ... 6

26

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 3 av 7

Tema på undervisningsopplegg i programmering
Eksempel: Modellering og uttesting av luftmotstand for vannrakett

Undervisningsopplegg i programmering for fag
Eksempel: Matematikk 2P (MAT05‑04), Kunst og håndverk (KHV01‑02)

Læreplanmål
Eksempel:

Tall og Algebra

Tolke, bearbeide, vurdere og drøfte det matematiske innhaldet i ulike tekstar

Vurdere, velje og bruke matematiske metodar og verktøy til å løyse problem frå ulike fag
og samfunnsområde og reflektere over, vurdere og presentere løysingane på ein
formålstenleg måte

Rekne formlar, parentesuttrykk og rasjonale og kvadratiske uttrykk med tal og bokstavar.

Omforme ei praktisk problemstilling til ei likning, ein ulikskap eller eit likningssystem, løyse
det matematiske problemet både med og utan digitale verktøy, presentere og grunngje
løysinga og vurdere gyldigheitsområde og avgrensingar

Geometri

Bruke geometri i planet til å analysere og løyse samansette teoretiske og praktiske
problem med lengder, vinklar og areal

Lage og bruke skisser og teikningar til å formulere problemstillingar, i oppgåveløysing og
til å presentere og grunngje løysingane, med og utan bruk av digitale verktøy

Funksjonar

Lage, tolke og gjere greie for funksjonar som beskriv praktiske problemstillingar, analysere
empiriske funksjonar og finne uttrykk for tilnærma lineære samanhengar, med og utan
bruk av digitale verktøy

27

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 4 av 7

Gjere greie for funksjonsomgrepet og kunne omsetje mellom ulike representasjonar av
funksjonar

Berekne nullpunkt, ekstremalpunkt, skjeringspunkt og gjennomsnittleg vekstfart, finne
tilnærma verdiar for momentan vekstfart og gje nokre praktiske tolkingar av desse aspekta

Læringsmål
Eksempel:

Dette opplegget tar utgangspunkt i store deler av nesten alle kompetansemålene for

læreplan i 1TY, i tillegg både blokkprogrammering og koding i Python. Følgende

læringsmål er foreslått.

Elevene kan gjennomføre en regresjonsanalyse i Geogebra, og vil lære å overføre denne

kunnskapen til matlibplot.

Eleven kan ved hjelp av oppgitte formler, omregne fra akselerasjon til både fart og

distanse ved hjelp av digitale verktøy.

Elevene kan plotte grafer og bruke rette linjer til å beregne gjennomsnittsfart og

momentanfart. Elevene har kjennskap til at farten varierer i alle punkt i en

polynomfunksjon. En ball er et fint eksempel på vise at en fart kan være positiv, null og

negativ, ved hjelp av rette linjer.

Elevene kan kjenne igjen og forklare lineære og ikke-lineære sammenhenger i praktiske

situasjoner og beskrive lineære sammenhenger ved hjelp av matematiske modeller på

formen \bigmf(x)=ax+b.

I tillegg skal elevene lære seg å bruke enheter for lengder i modellering i 3D. De skal ha

forståelse av volum og kunne legge til og trekke fra ulike volum for å designe figurene slik

at micro:bit kan festes til figuren.

Gjennom 3D modelleringen skal eleven lage og bruke skisser og tegninger til å formulere

problemstillingene. De skal ha plass til en micro:bit som skal stå fast i selve ballen. De skal

og kunne lage presentasjon med og uten digitale verktøy. Dette ville også være god en

øvelse til muntlig eksamen i matematikk.

28

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 5 av 7

Elevene vil både lære blokkprogrammering i Micro:bit og 3D BlockCads i tillegg til enkle

kommandoer i Python for å lage graf i mat.plot.lib, som blir det digitale graf verktøyet.

Forkunnskaper
Eksempel: Be elevene komme med eksempler på forskjellige kurver som viser akselerasjon,

fart og avstand. Repeter hva stigningstall i rette linjer kan fortelle om, når de tangerer

polynomer. Elevene utfordres i komme med algoritmisk tenking i hvordan vi skal løse

programmeringsbiten. Vi skal programmere to micro:bit, en skal måle akselerasjon og en

skal skrive ut til et regneark. Elevene utfordres til å tenke på hva akselerasjon er og hvilke

opplysninger vi kan bruke fra disse dataene. Elevene vil trenge hjelp til omgjøre

akselerasjon til fart, da det ikke er i pensumet i 1TY. Men det er ingenting i veien å forklare

sammenhengen

Overordnet prosjektbeskrivelse
Eksempel: Elevene skal sette opp et forsøk som kan vise hvordan luftmotstanden varierer
for en vannrakett etter oppskyting og sammenligne teoretiske modellverdier med
eksperimentelle verdier. Målingene skal foregå ved hjelp av micro:bit.

29

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 6 av 7

Overordnet beskrivelse av undervisningsopplegget
Arbeidsform Eksempel:

Elevene starter med modelleringen, og når 3D printerne jobber, starter

elevene på koding.

For å starte modellering, må de ta fram skyvelære i sitt verktøyskrin. De

må måle opp hvor stor mirco:bit de har

Gjennomføring Eksempel:

Elevene må testkjøre opplegget sitt et par ganger, for å se om de er

fornøyd med målingene. Når målingene foreligger, starter

databehandlingen og den store matematikk utfordringen. Da skal

elevene finne muligheter til å beregne farten og lengden ut fra

akselerasjonen…

Tidsplan
Eksempel:

Del 1: Sette seg inn i micro:bit og bruk av innebygde funksjoner som akselerasjonssensor

og radiosender/mottager. Her skal både blokkbasert og tekstbasert programmering

brukes. Ca 6 undervisningstimer.

Del 2: …

Utstyrsliste
Eksempel:

3D printere for modellering – klassesett

30

 Mal v1.0 11.01.2020

 Dato 11. januar 2020

IT6204 – Anvendt programmering for lærere | Forprosjekt Side 7 av 7

Micro:bit klassesett på 15 med kabler og batteriholdere.

Egen PC

Gummistrikk klassesett

Blyant og papir

Program:

3D BlocksCad

Micro:bit.org

Python og pyplotlib som må være lastet ned før prosjektet starter

31

Codes

Approach

Name

Builds on basic programming skills

Builds on little or no programming skills

Builds on unspecified programming skills

Exams

Learn basic programming

Programming to enhance mathematics learning

Programming when it fits best into mathematics

Duration

Learning objectives

Content knowledge

Computational thinking

Abstraction

Algorithmic thinking

Automation

Decomposition

Evaluation

Generalization

Persistance

Learn Python language

Mathematical topics

Analysis

Calculus

Equations

Geometry

Trigonometry

Modeling

Number theory

Figurate numbers

B Coding scheme hierarchy

32

Codes
Name

Numerical methods

Proofs

Statistics

Regression analysis

Problem solving

Programming topics

Algorithm

Arithmetic

Code reuse

Conditionals

Data structures and data types

Lists

Debugging

Define functions

Flowchart

Iterative improvement of code

Loops

Output or print

Pseudo code

Read from file

Recursion

Robot programming

Testing

Use libraries

User interaction

Variables

Visual output

Write understandable code

Social learning objectives

Confidence

33

Codes
Name

Have fun

Motivation

Mathematical prerequisites

Not relevant

Activities in the classroom and home

Class discussions

Collaboration

Pair programming

CS Unplugged

Deliverables

Differentiated instruction

Exploration

Facilitation

Formative assessment

Game programming

Homework

In-depth learning

Individual work

Open exercises

Peer review

Play

Practical experiments

PRIMM

Investigate

Modify programs

Write own programs

Real data sets

Repetition

Scaffolding

Student presentations

34

Codes
Name

Teacher lecturing or giving instructions

Technical checkup

Watch video

Worked examples

Cross-curricular

Digital instruction

IT6204

Makes me curious

Recipe

Teacher community of practice

Regulations from the National curriculum

Basic skills

Calculation skills

Digital skills

Competence aims 1T

Aim 1

Aim 10

Aim 12

Aim 13

Aim 14

Aim 2

Aim 3

Aim 4

Aim 6

Aim 7

Aim 8

Aim 9

Core elements

Abstraction and generalization

Exploration and problem solving

35

Codes
Name

Mathematical knowledge areas

Modeling and applications

Reasoning and argumentation

Representation and communication

Tools

Calculator

CAS

CoSinus

Counting chips

Excel

Fable robot

GeoGebra

Google Colab

Hand writing

Handouts or worksheets

Jupyter notebook

Measuring tape

Pasco Smart Cart + track

Personal computer

PyCharm

Python plotting library

Sensor to register data

Sphero rvr

Spyder

Theory book

Trinket

YouTube

36

Programmering i matematikk 1T –
Hvordan kan vi støtte
matematikklærerne?

RFEL3100 – Høsten 2020

KANDIDATNUMMER: 10018

ANTALL ORD: 4997

12. JANUAR 2021

N Pilot Project Report

126

1

Innholdsfortegnelse

1 Innledning ... 2

1.1 Oppgavens oppbygning ... 2

2 Bakgrunnsteori ... 3

2.1 Begrepsavklaringer: Programmering, koding og algoritmisk tenkning .. 3

2.2 Litteratursammendrag ... 3

3 Teoretisk rammeverk – TPACK ... 4

3.1 Syv kunnskapsområder .. 5

3.2 Kontekst i utvidelsen av TPACK .. 6

3.2.1 Omfangsdimensjonen ... 7

3.2.2 Aktørdimensjonen – Elever .. 7

4 Metode .. 7

4.1 Forskningsdesign ... 7

4.2 Datainnsamling .. 8

4.3 Analysemetode .. 8

4.3.1 Forarbeid .. 8

4.3.2 Åpen koding ... 9

4.3.3 Aksial koding ... 9

4.4 Refleksjoner rundt metode .. 10

5 Analyse ... 10

5.1 Epistemologisk analyse ... 10

5.1.1 Valg av teknologi ... 11

5.1.2 Grunnleggende programmering .. 12

5.2 Resultater ... 12

5.2.1 – Kompetanseheving av lærerne .. 12

5.2.2 – Nasjonale føringer som tar hensyn til elevenes forkunnskaper ... 13

6 Diskusjon .. 15

7 Avslutning .. 17

Referanser .. 18

Vedlegg A – Plakat om algoritmisk tenkning fra Udir .. 20

Vedlegg B – Intervjuguide innsendt til Norsk senter for forskningsdata (NSD) 21

Vedlegg C – Grunnlag for epistemologisk analyse ... 22

2

1 Innledning

Fagfornyelsen er en oppdatering av læreplanverket, og endrer innholdet i fagene i norsk skole

(Meld. St. 28 (2015-2016)). Høsten 2020 trådte de første endringene i kraft for fellesfagene på

videregående. I matematikk har programmering blitt en del av fagets metoder, blant annet i

matematikk 1T (Utdanningsdirektoratet [Udir], 2020b). Nye kompetansemål er på plass, men

hvordan innføringen utspiller seg ser man først nå, gjennom operasjonalisering av læreplanen

i klasserommet.

Innføring av programmering på ulike måter i skolefagene er en strømning i Europa (Sevik,

2016). Programmering sees på som en viktig faktor på vei mot et større mål – nemlig å gi

elevene undervisning i kompetanser og ferdigheter for det 21. århundre. Det finnes ulike

definisjoner på hva disse kompetansene og ferdighetene er (Sevik, 2016). Utredningen

«Fremtidens skole» (NOU 2015: 8), er en sentral del av grunnlaget for Fagfornyelsen (Meld.

St. 28 (2015-2016)). I rapporten deles kompetanser for det 21. århundre inn i fire områder:

Kompetanse i å lære, kompetanse i å utforske og skape, kompetanse i å kommunisere,

samhandle og delta, og fagspesifikk kompetanse (NOU 2015: 8). Gjennom kompetansene skal

elevene være rustet til å møte morgendagens utfordringer og arbeidsmarked (NOU 2015: 8),

og programmering kan være med på å styrke alle de fire kompetanseområdene (Sevik, 2016).

Spesielt potensialet for dypere forståelse er trukket frem som grunnlag for å inkludere

programmering i matematikkfaget (Norstein & Haara, 2018). På den andre siden er det

argumentert for at programmering vil forsterke stofftrengselen som allerede finnes i

matematikkfaget, og dermed hindre at det blir tid til dypere forståelse (Sanne et al., 2016).

Formålet med denne oppgaven er å belyse hvordan man kan møte utfordringen med nettopp

stofftrengsel i matematikkfaget. Dette vil jeg gjøre med utgangspunkt i læreren, ettersom det

er lærerne som operasjonaliserer læreplanen. Denne oppgaven har derfor til hensikt å besvare

dette forskningsspørsmålet:

Hvilke ressurser etterspør tre matematikklærere for å støtte deres arbeid med implementering

av programmering i faget matematikk 1T i forbindelse med Fagfornyelsen?

1.1 Oppgavens oppbygning

Først innleder jeg fokusområdet for oppgaven, og dens relevans. Videre definerer jeg sentrale

begreper, gir et litteratursammendrag for fagfeltet og forklarer det teoretiske rammeverket

3

brukt i dataanalysen. Videre beskrives og begrunnes metodene brukt i studien. Del fem

presenterer resultater av analysen, og del seks drøfter av resultatene. Del syv er en avslutning.

2 Bakgrunnsteori

2.1 Begrepsavklaringer: Programmering, koding og algoritmisk tenkning

Programmering er et sentralt begrep i denne oppgaven. Det finnes variasjoner i hvor bredt

definisjoner av begrepet favner (Norstein & Haara, 2018). Jeg vil i denne oppgaven definere

begrepet tett opp mot definisjonen til Sevik (2016). Programmering er en

problemløsningsprosess som fører til en programkode som kan kjøres på en datamaskin. En

del av prosessen er å forstå og å formulere problemet som skal løses. Programmering favner

også feilsøking og forbedring av et program, samt å vurdere ulike løsninger (Sevik, 2016, s.

9).

En distinksjon mellom programmering og koding er verdt å trekke frem. Koding kan forstås

som å skrive programkode en datamaskin forstår. Slik begrepene brukes i skolesammenheng,

er koding mindre komplekst enn programmering, og begrenses til å skrive mindre avanserte

dataprogrammer. Programmering består av blant annet koding, men også av en

problemløsningsprosess som gjerne kalles algoritmisk tenkning (Computational thinking)

(Norstein & Haara, 2018).

Algoritmisk tenkning er kreativ og systematisk problemløsning. Begrepet forstås i

Fagfornyelsen som et sett at arbeidsmåter og nøkkelbegreper i problemløsning.

Programmering nevnes ikke i Udirs utgreiing av begrepet, så algoritmisk tenkning behøver

ikke å innebære skriving av programkode (Udir, 2019). Likevel er det verdt å presisere at

programmering ofte trekkes frem som en aktivitet som fostrer algoritmisk tenkning (Norstein

& Haara, 2018; Sevik, 2016). Vedlegg A inneholder oversikt over nøkkelbegreper og

arbeidsmåter Udir trekker frem som sentrale i algoritmisk tenkning.

2.2 Litteratursammendrag

Europeiske land har lagt ulike strategier for å innføre programmering i obligatorisk

undervisning. Finland og Sverige inkluderer programmering i matematikkfaget i grunnskolen

(Sanne et al., 2016; Sevik, 2016). I Estland anses «Teknologi og innovasjon» som et

tverrfaglig tema i alle skolefag, og programmering er ett av flere verktøy estiske lærerne kan

velge å benytte i fagene sine (Sevik, 2016). I England er «Computing» et eget skolefag, hvor

algoritmisk tenkning og programmering er store bestanddeler (Sanne et al., 2016; Sevik,

4

2016). Oppfordringen i utredningen om fremtidens teknologifag i skolen er å innføre et

liknende skolefag i grunnskolen i Norge, «teknologi og programmering» (Sanne et al., 2016).

Tross anbefalingen er det gjennom Fagfornyelsen bestemt at programmering skal inn i

eksisterende skolefag. I læreplanen i matematikk 1T står det at elevene skal «formulere og

løse problemer ved hjelp av algoritmisk tenkning, ulike problemløsingsstrategier, digitale

verktøy og programmering» (Udir, 2020b, s. 5). Utfra ordlyden i kompetansemålet velger jeg

derfor i denne oppgaven å se på forskningsfeltet som «anvendelse av programmering i

matematikk i videregående opplæring». Forskningsfeltet finner seg i grenseland mellom

programmeringsdidaktikk, matematikkdidaktikk og pedagogisk bruk av digitale verktøy. Jeg

vil kort presentere status for de tre fagfeltene i Norge i dag.

Problemløsning er trukket frem som en naturlig inngang til programmering i matematikk

(Sanne et al., 2016). Problemløsning i matematikk har sin kanon i «How to solve it» av Pólya

fra 1945, og også i matematikkdidaktisk forskning har problemløsning en lang tradisjon

(Olafsen & Maugesten, 2015). Pedagogisk bruk av digitale verktøy har siden innføring av

begrepet «digital kompetanse» med Kunnskapsløftet i 2006 blitt aktuelt (Gilje, 2017). For

eksempel SAMR-modellen, som beskriver potensialet teknologi har til å omforme og skape

nye muligheter i undervisningsaktiviteter. Fire integrasjonsnivåer av teknologi beskrives i

modellen: Uendrede aktiviteter, teknologien gir funksjonelle forbedringer av en uendret

aktivitet, modifikasjon av aktiviteter og transformasjon av aktiviteter. (Gilje, 2017).

Programmeringsdidaktikk har på den andre siden ikke en like definert tradisjon hverken i

norsk eller internasjonal sammenheng. På bakgrunn av strømningene rundt programmering i

Europa, er det likevel grunn til å tro at mer forskning vil komme på dette område i nær

fremtid (Tiller, 2019).

3 Teoretisk rammeverk – TPACK

TPACK er akronym for Technological PedAgogical Content Knowledge. På norsk finnes det

flere ulike oversettelser, men jeg vil forholde meg til «teknologisk-pedagogisk fagkunnskap».

TPACK er en utvidelse av Shulmans rammeverk for pedagogisk fagkunnskap (PCK).

Opprinnelig ble PCK laget for å forklare hvilke spesielle kunnskaper og ferdigheter som gode

lærere har for å undervise et konkret fagstoff på en pedagogisk måte. Shulman ville belyse at

en lærers spesialkunnskap er mer enn fagkunnskap og pedagogisk kunnskap sett hver for seg

(Shulman, 1986, sitert i Mishra & Koehler, 2006). Hensikten med TPACK er den samme,

5

men utvider rammeverket til å inkludere påvirkningskraften til anvendelse teknologi i

undervisningen (Mishra & Koehler, 2006).

3.1 Syv kunnskapsområder

Grunnmuren i TPACK er de tre kunnskapsområdene teknologisk kunnskap (TK),

fagkunnskap (CK) og pedagogisk kunnskap (PK). Satt sammen i et Venn-diagram skaper de

fire snitt, hvorpå snittet av alle de tre kunnskapsområdene kalles for TPACK, og betegner

lærerens teknologisk-pedagogiske fagkunnskap (Mishra & Koehler, 2006). Rammeverket har

fått navn etter dette kunnskapsområdet. De tre områdene illustreres gjerne slik figur 1 på neste

side viser. Videre vil TPACK referere til rammeverket, mens teknologisk-pedagogisk

fagkunnskap refererer til kunnskapsområdet. Fire av kunnskapsområdene i rammeverket blir

beskrevet i denne oppgaven, da det er disse jeg har brukt i koding av transkripsjonene.

Fagkunnskap er lærerens kjennskap til fagstoffet og tema som skal undervises. Teknologisk

kunnskap beskriver lærerens kunnskap om og ferdigheter i bruk av alle former for relevante

teknologier. Ikke bare digitale teknologier, men også for eksempel tavle og kritt. Teknologisk-

pedagogisk fagkunnskap betegner en lærers evne til å velge, og bruke, teknologi til å

undervise et spesielt fagstoff på en måte som er hensiktsmessig tatt i betraktning av

pedagogiske hensyn som klassetrinn. Det er å gjøre fagdidaktiske avveininger hvor

teknologien egner seg til både fagstoffet som er i fokus, og klassen som skal lære (Mishra &

Koehler, 2006).

6

Figur 1

Illustrasjon av TPACK-rammeverket

Note. Ofte illustreres de syv kunnskapsområdene i TPACK-rammeverket slik: Et Venn-

diagram med tre parvise og ett trippelt snitt. En kontekst betinger kunnskapen. Bearbeidet fra

«Context and Technological Pedagogical Content Knowledge (TPACK): A systematic

review», av Rosenberg og Koehler, 2015, Journal of Research on Technology in Education,

47(3), s. 187 (https://doi.org/10.1080/15391523.2015.1052663).

3.2 Kontekst i utvidelsen av TPACK

Slik figur 1 viser, er lærerens kunnskap betinget en kontekst i TPACK. Det er fire faktorer

som trekkes fram i konteksten: Fagstoffet som skal undervises, klassetrinn, elevforutsetninger

og hvilke teknologier som er tilgjengelig (Mishra & Koehler, 2006, s. 1032). Jeg velger i

denne oppgaven å bruke en utvidelse av TPACK fra Porras-Hernández og Salinas-Amescua

(2013) hvor de nyanserer bestanddelene i konteksten. Dette er fordi funnene i analysen av

datamaterialet reflekterer et mer nyansert bilde på kontekst enn det opprinnelige rammeverket

legger til rette for.

Porras-Hernández og Salinas-Amescua (2013) forstår konteksten ut fra en omfangsdimensjon

(scope) og en aktørdimensjon (actors). Omfangsdimensjonen tar for seg tre nivåer: Makro,

meso og mikro, hvor hvert av nivåene inneholder føringer som læreren må forholde seg til.

7

Dette er på henholdsvis internasjonalt og nasjonalt nivå (makro), i nærmiljøet slik som fylke,

kommune og innad på skolen (meso), og i klasserommet (mikro). Aktørdimensjonen

beskriver inngående elevers og læreres egenskaper, da disse sees på som de viktigste

deltakerne i en undervisningssituasjon. Andre aktører enn lærere og elever inngår på makro-,

meso- og mikronivåene (Porras-Hernández & Salinas-Amescua, 2013).

3.2.1 Omfangsdimensjonen

Styringsdokumenter på nasjonalt nivå faller innenfor makronivået (Porras-Hernández &

Salinas-Amescua, 2013). I norsk sammenheng forstår jeg dette nivået som blant annet

føringer fra Udir og Kunnskapsdepartementet, slik som læreplaner, eksamensordning, samt

fag- og timefordeling. Videre inneholder makronivået informasjon om andre sosiale, politiske,

økonomiske og teknologiske forhold på både nasjonalt og globalt nivå (Porras-Hernández &

Salinas-Amescua, 2013), slik som for eksempel strømninger i Europa rundt kompetanser for

det 21. århundre.

3.2.2 Aktørdimensjonen – Elever

Læreren må ha begrep om egenskapene til elevene i klassen (learners’ inner characteristics).

Dette handler blant annet om deres holdninger og forkunnskaper, samt forforståelser om seg

selv, andre mennesker og faginnhold. Videre er elevene formet av kulturen de er en del av

(habitus), og læreren må derfor ha kunnskap også om konteksten rundt elevene. Elevene både

som gruppe og enkeltindivider er med andre ord faktorer som påvirker valgene læreren gjør,

og har mulighet til å gjøre i undervisningen (Porras-Hernández & Salinas-Amescua, 2013, s.

231). Også når de skal velge å ta i bruk programmering, som er spesielt relevant for denne

oppgaven.

Da meso- og mikronivåene i omfangsdimensjonen og lærerens egenskaper i aktørdimensjonen

ikke benyttes i analyse av datamateriale i denne oppgaven, vil jeg ikke beskrive dem mer

inngående.

4 Metode

4.1 Forskningsdesign

Studien jeg har gjennomført hører til det kvalitative forskningsparadigme. Dette kan

begrunnes gjennom formål og metoder. Studien har ikke til hensikt å tallfeste generelle

tendenser, men forsøker heller gjennom et fåtall intervjuer å forstå en kontekstbetinget

situasjon. Like viktig er det at designet er fleksibelt, og dermed har blitt til i løpet av

8

semesteret (Robson & McCartan, 2016). En sentral del av konteksten for studien er at dette er

første semester hvor programmering er en del av faginnholdet i matematikk, og da spesielt i

matematikk 1T som jeg har undersøkt. Dermed har jeg lagt opp studien til å være småskala

med trekk fra casestudie. Det er fenomenet «innføring av programmering i matematikk 1T»

som studeres (Robson & McCartan, 2016).

4.2 Datainnsamling

For å belyse forskningsspørsmålet har jeg gjennomført semistrukturerte intervjuer med lærere

fra to ulike fylker som alle underviser faget matematikk 1T høsten 2020. På forhånd laget jeg

en intervjuguide, se vedlegg B. Fordi intervjuene var semistrukturerte, varierte ordlyden og

rekkefølgen noe i alle intervjuene (Robson & McCartan, 2016). Intervjuene skulle opprinnelig

gjennomføres på skolen hvor lærerne arbeidet, men på grunn av smittesituasjonen knyttet til

covid-19, ble intervjuene flyttet over på videokonferanseverktøyet Zoom. Vendingen

muliggjorde intervjuer med lærere også i en annen del av landet. Fire intervjuer ble

gjennomført, men jeg har valgt å se bort fra ett av intervjuene. Materialet jeg satt igjen med

etter datainnsamlingen var lydopptak av intervjuene, samt håndskrevne notater jeg tok

underveis.

4.3 Analysemetode

I denne oppgaven har jeg benyttet en tilpasning av konstant komparativ analysemetode

(CCM). CCM har sitt opphav i Grounded theory, en rigorøs metode for datadreven kvalitativ

forskning, men egner seg også i andre fleksible forskningsdesign som casestudier (Postholm,

2005). I CCM deles analyseprosessen inn i tre faser: Åpen koding, aksial koding og selektiv

koding. Målet er å merke liknende meningsbærende datasegmenter med koder, gruppere

kodene i kategorier, og abstrahere kategoriene til en eller flere kjernekategorier som favner

essensen av budskapet i datamaterialet (Postholm, 2005; Robson & McCartan, 2016). Jeg

valgte CCM fordi jeg ikke visste helt hvilket teoretisk rammeverk som best ville forklare

funnene mine, og da kunne en datadreven tilnærming passe. Jeg har tilpasset metoden ved at

jeg ikke har identifisert en kjernekategori gjennom selektiv koding, men besvarer

forskningsspørsmålet gjennom tre kategorier fra den aksiale kodingsprosessen.

4.3.1 Forarbeid

Ifølge Robson og McCartan (2016) er den første delen av dataanalyse å bli kjent med

datamaterialet. Jeg laget kronologiske innholdsoversikter med tidsstempel som kartla

ordlyden og rekkefølgen av spørsmål som jeg stilte, samt kulepunkter i stikkordsform over

9

svarene til lærerne. I margen av innholdsoversikten noterte jeg interessante utsagn, en metode

som kalles «memoing» (Robson & McCartan, 2016). Dette la jeg grunnlaget for å velge ut

hvilke deler av intervjuene som inneholdt de mest interessante utsagnene, og belyste likheter

og ulikheter i oppfatningene til lærerne jeg intervjuet. Lærerne ble anonymiserte, og fikk de

fiktive navnene Helge, Kristian og Pernille. Deretter transkriberte jeg deler av intervjuene.

Dette tok meg over i neste fase.

4.3.2 Åpen koding

Problemer med innføringen av programmering og tilknyttede støttetiltak ble tidlig to

gjennomgående tema i intervjuene. I den åpne kodingsprosessen markerte jeg relaterte utsagn

fra transkripsjonene med fargekoder, som til slutt ble til seks ulike koder. Kodene gjengis i

figur 2. Det var en iterativ prosess mellom transkripsjonene og ulike teoretiske rammeverk,

før jeg identifiserte at TPACK-rammeverket med en nyansering av kontekst favnet om de

fargekodene utsagnene.

4.3.3 Aksial koding

Den åpne kodingsprosessen førte til en glidende overgang til aksial koding. Tre kategorier av

koder utkrystalliserte seg i datamaterialet: Lærerens ønske om kompetanseheving, forbedring

av elevers forkunnskaper, og nasjonale føringer. De tre kategoriene bruker jeg som basis for å

besvare forskningsspørsmålet. Figur 2 viser hvilke koder jeg har brukt, samt innunder hvilke

kategorier kodene hører til.

10

Figur 2:

Koder og kategorier

Note. Relasjonen mellom koder og kategorier jeg endte opp med etter konstant komparativ

analyse av datamaterialet. Egen illustrasjon.

4.4 Refleksjoner rundt metode

Jeg har i dette emnet lært mer og mer om forskningsdesign underveis, og følgelig har designet

utkrystallisert seg i takt med læringsprosessen. Jeg hadde tidlig et for bredt

forskningsspørsmål, noe som ble reflektert i intervjuene. Det hadde det vært mer fruktbart å

planlegge en snevrere studie fra starten av. Dette er en svakhet ved min forskning, ettersom

det førte til at jeg ikke hadde en klar nok sammenhengen mellom det endelige

forskningsspørsmålet og datamaterialet jeg samlet inn.

5 Analyse

5.1 Epistemologisk analyse

Programmering er nytt i læreplanen, og det er derfor fortsatt uklart akkurat hva som utgjør

kjernen av «programmering i matematikk 1T». Jeg tolker formuleringen i kompetansemålet

dithen at man skal forbi grunnopplæring, og ta steget opp til anvendelse av programmering i

11

matematikkfaget. Jeg vil i denne delen av oppgaven redegjøre for valg av teknologi som må

tas av læreren, samt de grunnleggende programmeringsverktøyene som elevene bør å kjenne

til for å anvende programmering. Materialet jeg bygger denne analysen på er læringsressurser

for elever og lærere. Se vedlegg C.

5.1.1 Valg av teknologi

For å skrive programkode, må man ha valgt et programmeringsmedium og et

programmeringsspråk. Normen ser ut til å bli tekstbasert programmering i Python 3 i

matematikk 1T. Videre vil jeg referere til Python 3 når jeg skriver Python. Alle ressurser jeg

har undersøkt bruker Python. Også den opprinnelige utgaven av eksempeloppgaver til

eksamen fra Udir benyttet Python, selv om de nå har trukket tilbake valg av

programmeringsspråk (Udir, 2020a). At valget har falt på Python ser ut til å være noe

tilfeldig, og noe faglig forankret. Et hovedpoeng for å velge Python til utdanningsformål er at

språket har lav inngangsterskel og høyt tak. Begrunnelsene for dette kan oppsummeres som

nedenfor:

 Språket er godt dokumentert åpent på nettet.

 Python er mye brukt i arbeidslivet.

 Syntaksen ligger tett opp mot de engelske språket.

 Python er tilgjengelig gratis for de fleste operativsystem.

 Det finnes utallige utvidelser til Python.

(Tollervey, 2015)

I tillegg til å velge programmeringsspråk og programmeringsmedium, må man velge

utviklingsmiljø. Dette består gjerne av en kodeeditor og en tolker (interpreter), slik at man

både kan skrive og utføre koden. De to utviklingsmiljøene som virker mest utbredt for bruk

sammen med Python er Spyder i Anaconda, og Trinket. Trinket er en nettbasert tjeneste, mens

Spyder laster man ned lokalt på datamaskinen sin.

Begge de to alternativene håndterer nødvendige utvidelser av Python som trengs i matematikk

1T. Den automatiske håndteringen ser ut til å være en viktig grunn for valg av utviklingsmiljø,

da alternativet til automatisk håndtering av utvidelser er å selv installere de nødvendige

utvidelsene, noe som krever en viss teknisk kompetanse.

12

5.1.2 Grunnleggende programmering

Da det ville blitt et eget innføringskurs å forklare elementene i grunnleggende Python-

programmering, vil jeg heller forsøke å gi oversikt over det mest gjentakende innholdet i

materialet jeg har gjennomgått. Oversikten er ikke utfyllende, og variasjoner forekommer.

Krever konseptuell forståelse, og kjennskap til syntaks:

 Variabler og datatyper

 Aritmetiske og logiske operatorer

 For-løkker og while-løkker

 If-elif-else-strukturen for kontroll av programflyt

 Input og output gjennom de innebygde funksjonene «input» og «print»

 Formattering av store og små tall

 Definering av og kall til egne funksjoner

 Importering og bruk av utvidelser

Retningslinjer for god programmeringskultur:

 Kommentering av kode

 Feilsøking og lesing av feilmeldinger

5.2 Resultater

5.2.1 – Kompetanseheving av lærerne

Kompetanseheving av lærerne er en nødvendig ressurs for å støtte innføringen av

programmering i matematikk 1T. Dette uttrykker både Helge som har arbeidet mange år i

skolen som lærer i naturfag, fysikk og matematikk, og Kristian som nettopp fullførte

lektorutdanningen i biologi og matematikk. De ønsker likevel ikke den samme

kompetansehevingen, de har ulike behov.

Helge uttrykker at den viktigste støtten for han vil være et kompetanseløft i programmering.

Jeg har plassert følgende tilknyttede utsagn inn i koden fagkunnskap (CK):

H: For min del har jeg ønske om mest å lære meg skikkelig å bruke programmeringen

selv. Med syntaks, og bruke kommandoene, og bli fortrolig med kommandoene. […]

[D]u må jo egentlig ha det i hodet selv, og ha jobbet med det selv, og ha programmert

selv en del oppgaver. Og gjort feilene selv. Det er et langt lerret å bleke det å skulle

13

undervise et fag. Når du knapt nok har hatt det før! For min del, har jeg hatt det for 30

år siden.

Kristian opplever at han gjennom blant annet numeriske matematikkfag i lektorutdanningen

har fått tilstrekkelig erfaring med programmering i Python. Jeg koder dette som at han er

tilfreds med nivået på egen fagkunnskap om programmering. Noe han lurer på er likevel

hvordan han skal undervise programmering i klasserommet. Dette har jeg plassert i koden

teknologisk-pedagogisk fagkunnskap (TPACK).

K: Mange av de lærerne som jobber på skolen vår, de er bare trent med å

programmere. Sånn som jeg også er. Vi har hatt veldig lite om hvordan man skal

undervise elevene. Det må du finne litt ut av selv. Jeg skulle gjerne ønske man hadde

didaktikkurs i forhold til undervisning av elevene.

At to lærere med såpass forskjellige bakgrunner trekker frem ønske om et kompetanseløft kan

bety at det er grunn til å prioritere etterutdanning for matematikklærere med innføringen av de

nye læreplanene.

5.2.2 – Nasjonale føringer som tar hensyn til elevenes forkunnskaper

De tre lærerne i denne studien trekker fram at egen kompetanseheving ikke er nok støtte for å

implementere programmering i matematikk 1T på en god måte. De savner tydeligere føringer

for faginnholdet på nasjonalt nivå, i kombinasjon med at det tas høyde for at elevenes

forkunnskaper i programmering øker over tid. Dette forstår jeg som støtte til

omfangsdimensjonen og aktørdimensjonen, som i utvidelsen av TPACK-rammeverket er

betingende for lærerens teknologisk-pedagogiske fagkunnskap, og avgjørende for hvordan og

når lærere velger å ta i bruk teknologier (Porras-Hernández & Salinas-Amescua, 2013).

Omfangsdimensjonen: Føringer på makronivå

Lærerne ønsker en avklaring av hvilken del av programmeringsopplæringen de skal ha ansvar

for i matematikk 1T. Helge problematiserer planlegging av undervisning når

programmeringsopplæring kan bety mye forskjellig:

H: [...] Hvert fall nå i en startperiode hadde det vært greit å ha noen føringer for: Hvor

mange uker er det meningen at vi skal bruke på [programmering] [i] faget? Hva skal vi

legge vekt på? Skal vi legge vekt på syntaksen? Eller skal vi bare tenke på forståelsen

for koden og kommandoene, er det det som er hovedvekten? Det er lite føringer i de

14

ulike fagene. Det blir veldig individuelt: Hvor mye læreren legger vekt på

programmering. Og de ulike delene av programmeringen.

Han utdyper videre at det må defineres et ambisjonsnivå for de ulike delene av

programmeringsopplæringen:

H: Hvor høye ambisjoner har man? Noen har kanskje bare ambisjoner om at hvis

elevene klarer å bruke print-funksjonen og lage helt enkle løkker, så [er det nok].

Mens andre vil at de skal lage programmer på både én og to sider, og skal gjøre

avanserte gruppearbeid.

Pernille er den eneste av de tre lærerne som allerede har etterutdanning i programmering. Hun

oppsummerer hvor viktig avklaringer vil være for hennes undervisning:

P: Hvis jeg vet ved skolestart hva som er målet, hvor [langt] jeg skal komme, så ville

jeg sikkert klare med mitt nivå og min erfaring å lage en plan for å komme til dette

målet.

Aktørdimensjonen: Elevenes forkunnskaper

At lærerne ønsker seg følgende avklaringer, henger tett sammen med elevene de skal

undervise. Elevenes forkunnskaper må tas hensyn til i undervisningen. De fleste elevene i

deres klasser har aldri vært borti programmering før. Elevenes evner til å håndtere digitale

teknologier som PC er også på et lavt nivå. Lærerne understreker at ambisjonsnivået i faget

må henge sammen med elevenes forkunnskaper. Entydig uttrykker de tre lærerne at de fleste

elevene ikke har tilstrekkelige forkunnskaper til at anvendelse av programmering kan

forventes allerede våren 2021. Kristian benytter eksempeleksamensoppgavene som en

rettesnor for ambisjonsnivået til programmering i læreplanen:

K: […] [J]eg synes at de gikk veldig hardt på. Og hvis det er dette nivået elevene skal

kunne etter bare ett år med programmering, så har den norske skolen et problem.

Han utdyper videre hva han faktisk bruker tiden på i undervisningen:

K: […] Jeg skulle gjerne ønske at alle [elevene] var kjempegode i det digitale, og det

tekniske rundt, slik at man kunne fokusere på den programmeringsbiten. Men det blir

mye mer komplekst enn det når man får det tekniske rundt i tillegg.

Læreren Helge uttrykker noe av den samme frustrasjonen:

15

H: […] Det skjer oftere enn man tror altså! […] Så det er litt sånn idealisert føler jeg,

hele greia med at vi skal putte inn ekstra ting i fagene som ikke var der før. […] For to

pluss to sånn tidsmessig, blir ikke bestandig fire: To pluss to kan bli både fem og seks

og sju, sånn tidsmessig, når man putter inn ekstra momenter. Det føler jeg ikke er helt

tatt hånd om.

Det Helge og Kristian trekker frem, er utfordringer jeg har plassert inn under kodene

grunnopplæring i programmering og opplæring i bruk av datamaskin. Dette er aktiviteter

klassen bruker tid på i opplæringen som ikke bidrar direkte inn mot læring i

kompetansemålene. Det er et for lavt nivå til å kunne forstås som anvendelse av

programmering i matematikk. De bruker dermed av tiden som skulle vært brukt til faget

matematikk 1T, til heller å heve elevenes kompetanse opp til nivået som skulle vært

forkunnskaper i tråd med den nye læreplanen.

 6 Diskusjon

Den utvidede versjonen av TPACK-rammeverket som jeg har brukt i denne oppgaven

nyanserer at lærerens kunnskap er kompleks – og hvordan ulike lærere med ulike bakgrunner

ønsker ulik kompetanseheving. Rammeverket tar høyde for at den teknologisk-pedagogiske

kunnskapen til læreren er betinget av en kontekst bestående av egenskapene til både læreren

og elevene, samt føringer på makro- meso- og mikronivå. Gjennom rammeverket blir

mangelen på føringer på nasjonalt nivå konkretisert som et problemområde i

makrodimensjonen. Videre gir rammeverket et teoretisk forankret grunnlag for å

problematisere at ny teknologi, slik som programmering i Python, har stor innvirkning på

lærerens teknologisk-pedagogiske kunnskap. Rammeverket har dermed gitt en kompleks og

detaljert inngang til å besvare forskningsspørsmålet:

Hvilke ressurser etterspør tre matematikklærere for å støtte deres arbeid med implementering

av programmering i faget matematikk 1T i forbindelse med Fagfornyelsen?

Oppgaven begrunner at kompetanseheving må tilbys for alle lærere som skal undervise i

matematikk 1T. Læreren bør ha medbestemmelsesrett i akkurat hva de ønsker å lære mer om,

da de sitter med ulik kunnskap fra arbeidsliv og utdanning. Jakobsen (2019) kommer i sin

masteroppgave til en liknende konklusjon, og peker på at etterutdanning kan bidra til at

lærerne har større forståelse for hvilken del av programmeringen som er mest relevant å

undervise i deres matematikkfag. Slik læreren Helge sa: «Det er et langt lerret å bleke, å

16

skulle undervise et fag når du knapt har hatt det selv!». Kompetanseheving av lærere må tas

på alvor, og etterutdanning er en mulig løsning.

Potensialet for programmering er stort. Det kan bidra til å utvikle elevenes kompetanse i å

kommunisere, samhandle og delta, kompetanse i å utvikle og skape, fagspesifikk kompetanse,

og kompetanse i å lære (Sevik, 2016). Dette er kunnskapene og ferdighetene som er

forespeilet at elevene vil trenge i samfunnet de skal vokse opp i (NOU 2015: 8). Denne

oppgaven bidrar til å belyse hvordan visjonen kan realiseres gjennom å sette inn tre ressurser,

i stedet for at stofftrengsel blir utfallet av programmering i matematikkfaget. I tillegg til at

lærerne i matematikk 1T ønsker seg et kompetanseløft, etterspør de at elevene må lære

grunnleggende programmering på grunnskolen.

Progresjonen i kompetansemålene reflekterer at elevene skal få grunnleggende opplæring i

programmering på grunnskolen (Udir, 2020b). At dette gjennomføres vil ha stor betydning for

matematikk 1T i årene som kommer. Kompetansemålet som spesifikt nevner programmering i

matematikk 1T, har en ordlyd som vektlegger at programmering skal brukes som verktøy i

problemløsning (Udir, 2020b). Dette er en anvendelse av programmering, og forutsetter at

elevene er kjent med hvilke grunnleggende strukturer som er tilgjengelige for dem i

programmering. Denne studien belyser at for å ha tid til nettopp å anvende programmering på

VG1, må grunnskolen ta dette ansvaret. I kombinasjon med tydeligere avgrensning på

nasjonalt nivå av matematikk 1T sitt kortsiktige og langsiktige ansvar i

programmeringsopplæringen, vil stofftrengselen da kunne motvirkes.

17

7 Avslutning

I denne oppgaven har jeg undersøkt hvilke ressurser lærere selv oppfatter som

hensiktsmessige for å gjøre innførelsen av det nye læreplanverket smidigere. Studien har jeg

gjort med formålet å forstå, fra perspektivet til de lærerne som står for undervisningen i

klasserommet, hvordan man kan møte utfordringene som oppstår i forbindelse med innføring

av programmering i faget. For å besvare forskningsspørsmålet har jeg gjennomført analyse av

intervjuer med tre lærere som alle har ulik utdanning og fartstid i læreryrket.

Et av de viktigste funnene mine er at lærerens kompetanse trenger et løft. Dette kan gjerne

skje gjennom etterutdanning. Lærere har individuelle behov basert på hva de allerede mestrer,

og det er derfor naturlig å trekke slutningen at ett og samme etterutdanningsløp ikke

nødvendigvis vil passe alle lærere. Det andre viktige funnet er at heving av lærerens

kompetanse alene ikke er nok. Målet for programmeringsopplæringen i faget er ikke tydelig

nok avgrenset, og ambisjonene er foreløpig for høye når elevenes forkunnskaper tas i

betraktning. Spesielt at læreren Pernille som har etterutdanning sier dette, veier tungt.

Grunnopplæring i programmering på grunnskolen, og føringer på nasjonalt nivå er derfor også

etterspurte ressurser.

Interessant for videre forskning er elevperspektivet. Hva er elevenes opplevelse av

programmering i matematikk 1T? Hva sitter de igjen med etter noen år med nye læreplaner i

matematikk? Jeg vil ta elevperspektivet med meg videre i masterskriving og arbeidsliv. Det

viktigste jeg tar med meg fra denne studien er at et godt forskningsdesign er grunnmuren i et

prosjekt. Problemene jeg har hatt med å definere forskningsspørsmålet på en presis måte kan

spores tilbake til for lite grundig forarbeid med forskningsdesignet. Men jeg har lært, og er

fornøyd med at jeg etter RFEL3100 er mer beredt til å skrive masteroppgave.

18

Referanser

Gilje, Ø. (2017). Læremidler og arbeidsformer i den digitale skolen. Fagbokforlaget.

Jakobsen, R. E. (2019). Programmering i matematikk – muligheter og utfordringer : En

studie rundt innføringen av programmering som del av matematikkfaget i den norske

skolen og hvilke argumenter som taler for eller imot innføringen [Masteroppgave,

Universitetet i Agder]. AURA. https://uia.brage.unit.no/uia-

xmlui/handle/11250/2646381

Meld. St. 28 (2015-2016). Fag – fordypning – forståelse : En fornyelse av Kunnskapsløftet.

Kunnskapsdepartementet.

https://www.regjeringen.no/contentassets/e8e1f41732ca4a64b003fca213ae663b/no/pd

fs/stm201520160028000dddpdfs.pdf

Mishra, P. & Koehler, M. J. (2006). Technological pedagogical content knowledge: A

framework for teacher knowledge. Teachers College Record, 108(6), 1017-1054.

https://doi.org/10.1111/j.1467-9620.2006.00684.x

Norstein, A. & Haara, F. O. (2018). Matematikkundervisning i en digital verden. Cappelen

Damm.

NOU 2015: 8. (2015). Fremtidens skole: Fornyelse av fag og kompetanser.

Kunnskapsdepartementet.

https://www.regjeringen.no/contentassets/da148fec8c4a4ab88daa8b677a700292/no/pd

fs/nou201520150008000dddpdfs.pdf

Olafsen, A. R. & Maugesten, M. (2015). Matematikkdidaktikk i klasserommet (2. utg.).

Universitetsforlaget.

Porras-Hernández, L. H. & Salinas-Amescua, B. (2013). Strengthening TPACK: A broader

notion of context and the use of teacher's narratives to reveal knowledge construction.

Journal of Educational Computing Research, 48(2), 223-244.

https://doi.org/10.2190/EC.48.2.f

Postholm, M. B. (2005). Kvalitativ metode : En innføring med fokus på fenomenologi,

etnografi og kasusstudier. Universitetsforlaget.

Robson, C. & McCartan, K. (2016). Real world research : A resource for users of social

research methods in applied settings (4. utg.). Wiley.

Rosenberg, J. M. & Koehler, M. J. (2015). Context and technological pedagogical content

knowledge (TPACK): A systematic review. Journal of Research on Technology in

Education, 47(3), 186-210. https://doi.org/10.1080/15391523.2015.1052663

19

Sanne, A., Berge, O., Bungum, B., Jørgensen, E. C., Kluge, A., Kristensen, T. E., Mørken, K.

M., Svorkmo, A.-G. & Voll, L. O. (2016). Teknologi og programmering for alle - En

faggjennomgang med forslag til endringer i grunnopplæringen - august 2016.

Utdanningsdirektoratet. https://www.udir.no/globalassets/filer/tall-og-

forskning/forskningsrapporter/teknologi-og-programmering-for-alle.pdf

Sevik, K. (2016). Programmering i skolen. Senter for IKT i utdanningen.

https://www.udir.no/globalassets/filer/programmering_i_skolen.pdf

Tiller, M. (2019). Didaktiske valg i valgfag programmering [Masteroppgave, OsloMet].

ODA. https://oda.oslomet.no/handle/10642/8735

Tollervey, N. H. (2015). Python in education: Teach, learn, program. O'Reilly.

Utdanningsdirektoratet. (2019). Algoritmisk tenkning. https://www.udir.no/kvalitet-og-

kompetanse/profesjonsfaglig-digital-kompetanse/algoritmisk-tenkning/

Utdanningsdirektoratet. (2020a). Eksempeloppgaver i matematikk T. Hentet 22. desember

2020 fra https://www.udir.no/eksamen-og-

prover/eksamen/eksempeloppgaver/matematikk-eksempeloppgaver/

Utdanningsdirektoratet. (2020b). Læreplan i matematikk fellesfag Vg1 teoretisk (matematikk

T) (MAT09‑01). https://data.udir.no/kl06/v201906/laereplaner-lk20/MAT09-

01.pdf?lang=nob

20

Vedlegg A – Plakat om algoritmisk tenkning fra Udir

Figur 1

Den algoritmiske tenkeren

Note. Nøkkelbegreper og arbeidsmåter som kjennetegner den algoritmiske tenkeren. Fra
Algoritmisk tenkning, av Utdanningsdirektoratet, 2019 (https://www.udir.no/kvalitet-og-
kompetanse/profesjonsfaglig-digital-kompetanse/algoritmisk-tenkning/).

21

Vedlegg B – Intervjuguide innsendt til Norsk senter for forskningsdata

(NSD)

Intervjuguide

Har du brukt programmering i din(e) klasse(r) denne høsten?

Hvilke muligheter for læring ser du i innføringen av programmering i faget?

Hvilke utfordringer forventer du å støte på i forbindelse med programmering?

Hvilke krav føler du det stilles til deg som lærer i forbindelse med innføring av

programmering?

Hvordan har du forberedt deg til å undervise programmering denne høsten?

Om noen, hvilken oppfølging ønsker du for å være mer forberedt til å undervise i

programmering?

22

Vedlegg C – Grunnlag for epistemologisk analyse

Nye lærebøker i matematikk 1T

Matematikk 1T

Borge, I. C., Engeseth, J., Haug, H., Heir, O., Moe, H., Norderhaug, T. T., & Vie, S. M.

 (2020). Matematikk 1T (4. utgave). Aschehoug undervisning.

Mønster

Kalvø, T., Opdahl, J. C. L., Skrindo, K., Weider, Øystein J., & Wilmann, S. (2020).

 Mønster : matematikk 1T : studieforberedende utdanningsprogram. Gyldendal.

Sinus 1T

Oldervoll, T., Svorstøl, O., Vestergaard, B., Gustafsson, E., Osnes, E. R., Pedersen, T. A., &

 Jacobsen, R. B. (2020). Sinus 1T : matematikk : studieforberedende vg1 (4. utgave).

 Cappelen Damm.

Programmeringsbøker myntet på lærere

Bueie, H. (2019). Programmering for matematikklærere. Universitetsforlaget.

Haraldsrud, A. D., Sveinsson, H. A. & Løvold, H. H. (2020). Programmering i skolen.

 Universitetsforlaget.

Tollervey, N. H. (2015). Python in education: Teach, learn, program. O'Reilly.

Eksempeleksamensoppgaver fra Utdanningsdirektoratet

Utdanningsdirektoratet. (2020). Eksempeloppgaver i matematikk T. Hentet 22. desember 2020

fra https://www.udir.no/eksamen-og-prover/eksamen/eksempeloppgaver/matematikk-

eksempeloppgaver/

Art Production w
ith Program

m
ing and Trigonom

etry
Anne M

. V. Bosch

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

Anne Margrethe Vestgøte Bosch

Art Production with Programming
and Trigonometry

An Experiment in Mathematics 1T According to
the Principles of Didactical Engineering

Master’s thesis in Natural Science with Teacher Education
Supervisor: Majid Rouhani
June 2022

M
as

te
r’s

 th
es

is

	Abstract
	Sammendrag
	Preface
	Table of Contents
	Introduction
	Motivation
	Problem Statement and Research Questions
	Methodology
	Structure of the Report

	The Theory of Didactical Situations in Mathematics
	Origins
	Choice of Framework
	Concepts
	Fundamental Situation
	Didactical Situation
	Milieu
	Didactical Variables

	TDS in this Study

	Methodology
	Research Design - Didactical Engineering
	Preliminary Analysis
	Design and a priori Analysis
	Realization and Data Collection
	A posteriori Analysis and Validation

	Pilot Realization
	Participants
	Data Collection
	Student Programs
	Observation
	Semi-Structured Interviews

	Data Analysis
	Validity and Reliability
	Ethical Considerations
	Privacy
	Consent to Participate
	The Dual Researcher-Teacher Role

	Preliminary Analysis of Trigonometry
	Two Conflicting Definitions
	Units for Angle Measurement
	Implications
	The SAS Theorem
	The Law of Sines
	The Law of Cosines

	Preliminary Analysis of Programming
	Definitions
	Programming
	Subroutine

	Epistemological Analysis
	Origins of Subroutines
	Implementation of Subroutines

	Didactical Analysis
	PRIMM
	Pair Programming
	Debugging

	Institutional Analysis
	Results from the Pilot Project
	Results from the Specialization Project
	Information about the Investigated Classes

	Result of Design Development
	Duration
	Connection to the Curriculum
	Target Knowledge
	Programming Component of the Target Knowledge
	Mathematical Component of the Target Knowledge

	Main Problem and Solution Proposal
	Main Problem
	Art Program Solution Proposal

	Milieu
	Debugging Poster
	Pair Programming
	Assignments
	Python Cheat Sheet
	Paper and Pencil
	Driver PC
	Navigator Resources
	Intellectual Milieu

	Session 1
	Devolution
	Adidactical Work Phase
	Institutionalization

	Session 2
	Devolution
	Adidactical Work Phase
	Institutionalization

	Session 3
	Devolution
	Adidactical Work Phase
	Institutionalization

	Results from the Classroom Realizations
	Session 2
	Hard-Coding Triangles
	Special Cases of Triangles
	Redundant For-Loops

	Session 3
	Repeated Function Calls
	Calculation of Area
	Variable and Parameter Scope

	Perceptions of Motivational Factors
	Ambivalence to Pair Programming
	Debugging Perceptions
	Debugging Observations
	Evaluation of Target Knowledge Attainment

	Discussion
	Students' Progression in the Assignments
	Engagement
	Focus on Visual Results over Process
	Technical Overhead
	Misconceptions of Loops
	Imprecise Wording in the Assignments
	Local Scope in Subroutines
	Unsystematic Debugging
	Duration

	Conclusion
	Answering the Research Questions
	Implications
	Limitations
	Further Research
	Computational Thinking
	Digital Art Production in the Mathematics Subject
	Didactical Engineering

	Professional Relevance

	Bibliography
	Appendices
	NSD Approval
	Interview Guide in Norwegian
	Form of Consent
	Form of Consent (Pilot)
	Area Formula Derived from The SAS Theorem
	Proof of The Law of Sines
	Proof of The Law of Cosines
	Debugging Poster in Norwegian
	Python Cheat Sheet in Norwegian
	Assignments in Norwegian
	Live Coding in Session 2
	Transcription Codes
	Specialization Project Report
	Pilot Project Report

