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Abstract

This is the first part of a two-article series that deals with the investigation of the anomalous behaviour in the radius
measurement signal of the Czochralski (Cz) process and its mitigation in a feedback control system. The inverse
or anomalous behaviour is indeed a measurement signal response, which initially is opposite to that of the expected
response. This is a crucial and limiting factor in feedback control system design. The paper presents the development of
a rigorous 3D ray-tracing method to investigate the inverse response behaviour in the measurement signal. The results
of this study provide an insight into the dynamic behaviour of the Cz growth process. It can serve as a guideline for
achieving effective crystal radius control, which is addressed in the second part of this article series.
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1. Introduction

The Czochralski (Cz) crystal growth process is a well-
established and highly automated method, that is indeed
a workhorse for the commercial production of monocrys-
talline silicon (Si) ingots. It also plays an important role
in the growth of germanium and oxide crystals. The crys-
tallization of the mono-crystalline ingots takes place inside
a Cz puller assembly as sketched in Fig. 1. In case of Si
crystal growth the feed material is first melted inside a ro-
tatable quartz crucible. For that purpose heaters surround
the crucible from all sides, including the base. Once Si is
heated up to a temperature slightly higher than its melt-
ing point, the growth of a crystal ingot is then initiated
by immersing a seed crystal into the melt and then gradu-
ally pulling it upwards. The pulling rod that supports the
seed crystal is not just pulled upwards but also rotated –
usually in the direction opposite to that of crucible rota-
tion. Also the crucible itself is lifted gradually such that
the solid-liquid interface of the growing crystal is kept in
a fixed position. The pulling of a crystal from the melt
results in a slightly raised liquid volume that extends from
the growing crystal interface to the flat melt surface. This
volume is denoted as the meniscus throughout this pa-
per. Fig. 2 shows a schematic view. The dynamics of the
meniscus is most important for the growth of the crystal.

The growth of a crystal ingot starts with a thin neck.
After achieving the desired neck size, the neck stage gradu-
ally transitions into the body stage by going through inter-
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Figure 1: Assembly of a typical Cz puller [1].

mediate stages of crown and shoulder growth. Out of dif-
ferent ingot segments, it is the cylindrical segment (crystal
body), that is processed later by the device manufacturers.

The primary performance objective of the Cz process
is to attain a uniform cross-section throughout the body
length. Variations in crystal cross-section are commonly
referred to as pinches. Crystal structure defects, such as
the number of inclusions, nonuniform dopant distributions,
etc. have a much higher propensity to occur at the pinch lo-
cations [2]. Therefore, to avoid pinch formation, a uniform
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crystal growth rate and cross-section is desired. This re-
quires precise tracking of the crystal pulling speed and the
heater temperatures such that the meniscus is influenced
in a targeted manner. Especially in the body phase the
crystal diameter should remain constant. Unfortunately,
the process is highly sensitive with respect to any distur-
bances acting on it. Accordingly, it is a challenging task
to design a reliable and robust automated growth control
system.

Figure 2: Schematic view of the melt-crystal interface.

1.1. Measurement anomaly
Any automated feedback control system needs mea-

sured quantities in order to gain information about the
current state of the process, especially the deviation of the
quantities to be controlled from their set point values (i.e.,
the crystal radius and the growth rate). In the Cz process,
the measured variable generally used for the feedback con-
trol of the crystal radius can either be the force acting on
a load cell connected with the upper end of the pulling rod
(usually referred to as weight measurement1) [3–5] or the
radius measurement of a CCD camera mounted at the top
of the plant and looking downward into the vessel (Fig. 3)
[6–9]. Since the boundary between crystal and the melt is
indistinguishable, the CCD-camera is adjusted to continu-
ously focus the meniscus in the vicinity of the three-phase
boundary. It optically senses the radius of a specific bright
ring formed on the meniscus. The bright annular rings on
the meniscus are caused by the reflection of light by the
curved meniscus in such a way that the hotter crucible
wall and the heat shield underside form varying bright-
ness pattern on the illuminated meniscus. Any clearly and
consistently identifiable point on this brightness pattern,
illuminated by a specific component within the hot zone,
may serve as a basis for the crystal radius measurement.
Therefore, in the jargon of crystal growers, this very radius
measurement is termed as the bright ring radius denoted

1In fact it measures the weight of the crystal and the forces result-
ing from the surface tension and hydrostatic pressure of the meniscus.

Figure 3: Actual image of the plant, captured by a CCD camera
while focusing on the melt surface within the Cz growth furnace.
The complete view of the bright circular ring on the meniscus is
occluded by the crystal ingot in the centre. However, the radius of
this bright ring serves as an estimate for the crystal radius.

by rbr. Fig. 3 shows an image of the illuminated menis-
cus as captured with a CCD camera. It is apparent that
the bright ring image is a view-occluded glowing ring as
some of the meniscus reflections from the opposite side of
the camera are obscured either by the heat shield or the
cylindrical ingot in the center or both.

The idea behind the weight measurement method is
that the change of crystal mass per time unit divided by
the pulling speed is proportional to the square of the crys-
tal radius. For that purpose, the measured weight signal is
differentiated with respect to time and used as an indirect
value for the controlled variable. However, since the mea-
sured weight signal is also affected by the meniscus dynam-
ics this equality does not hold, especially during changes
of the radius. For example, in the case of a crystal radius
increase the vertical component of the meniscus’ surface
tension decreases. Additionally, the melt column below
the crystal (responsible for the static pressure) decreases
and – because the density of the melt is larger than that of
the solid – another decreasing effect is added. As a conse-
quence, the measured variable initially responds inversely
to the radius. This anomaly in the measured signal is de-
picted in Fig. 4 (middle) for a change of the crystal radius
in a positive direction. This fact is well known and widely
investigated in the Cz crystal growth literature [10–13].

A similar anomalous behaviour is known to be pos-
sessed by the bright ring measurement in a qualitative
sense [13]. For example, with a decrease in pulling speed,
the meniscus height decreases, making the meniscus pro-
file flatter. This effect will result in an increase in the
crystal radius, while at the same time causing the cam-
era to initially detect a decrease in the bright ring radius.
Only after the crystal radius has grown significantly will
the camera detect an increase in the bright ring radius.
Fig. 4 (bottom) pictorially illustrates this anomalous be-
haviour measuring the bright ring radius. Although there
are publications dealing with the calculation of the bright
ring diameter [14] a thorough investigation of the impact of
the anomalous behaviour on control system performance
remains. This work, in particular, aims at investigating
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Figure 4: Illustration of anomalous behaviour in the bright ring and
weight measurement signals.

the aforementioned from both systematic and quantitative
standpoint.

For this purpose, the first part of this two-article series
contains a detailed investigation of the phenomena causing
the anomalous behaviour. The second part of the series
describes the control design to mitigate the detrimental
effects of the anomalous measurement behaviour on the
control of crystal radius. Some of the results of this two-
article series have previously been presented in an abridged
form for to a control audience in conference publications
[15, 16]. This two-article series aims to present the re-
sults in full detail and accessible also to a crystal growth
audience, without requiring expert knowledge of control.

1.2. Paper organization
Section 2 gives an overview of the control of the Czoch-

ralski process as it is currently done in an industrial envi-
ronment. A simplified process model describing the overall
Cz dynamics appropriate for control design is derived in
Section 3 comprising a rigorous description of the crystal
growth dynamics (section 3.1) and simplified temperature
dynamics (section 3.2). A method based on ray-tracing
for the bright ring radius estimation and inverse response
investigation is presented in section 4. Finally, Section 5
provides conclusions and points to further work to be pre-
sented in part II of this article series.

2. Conventional control of the Cz process using op-
tical diameter measurement

The challenging task in control system design is that
the Cz process is a complex process with a combination of
both faster as well as slower dynamics. The dynamics at
the crystallization interface controlled by the pulling speed
is quite fast. It can affect the crystal radius, meniscus
height and the corresponding growth conditions quickly

compared to the slower dynamics associated with the heater
temperature input and the highly complex nonlinear heat
transfer phenomena. The heat transfer from the heaters
to the crystallization front undergoes both lag and long
time delays. Thus, the effect of heat input on the crystal
growth rate is noticeable after a significant time lapse.

In conventional Cz control these different dynamics are
addressed by a cascaded controller structure comprising
three control loops: The automatic diameter controller
(ADC), the automatic growth rate controller (AGC) and
the automatic temperature controller (ATC), respectively
[17], (cf. Fig. 5).

Figure 5: Schematics showing a conventional control structure of the
Cz system.

During a typical growth cycle in the body stage, a tar-
get temperature trajectory is applied to the temperature
controller. In an actual process, the target temperature
trajectory has an increasing trend to compensate for the
following events occurring throughout the growth cycle
within the Cz growth chamber: (i) A gradual uplift of
the crucible, therefore progressively reducing the crucible
exposure to the heaters. (ii) With the ongoing crystalliza-
tion, the crystal continues to protrude into the colder areas
above the heat shield, thereby increasing the heat transfer
away from the interface. The temperature controller takes
its measurement from a pyrometer. There is a small open-
ing in the containment structure that allows for pyrometer
insertion, providing the pyrometer with a view of graphite
lining surrounding the heater element. This thereby pro-
vides a measurement for the heater temperature.

The growth rate controller and the temperature con-
troller are connected in series with each other. The track-
ing error for the pulling speed triggers the growth rate
controller, which in turn, adds a trim value to the target
temperature trajectory. Due to sluggish dynamics from
heater power to crystal growth rate, a time-varying tar-
get temperature trajectory is introduced. The intent of
introducing the target temperature trajectory is to coun-
teract the factors described above that change the heat
transfer characteristics, and thereby, provide anticipative
action to reduce variations in the crystal growth rate. A
well-designed temperature trajectory implies better track-
ing of pulling speed and will therefore reduce the contri-
bution from the growth rate controller.
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3. A low order model of the Cz dynamics

For a rigorous investigation of the bright ring anomaly
and its impact on the control system performance, a basic
model of the Cz dynamics is required. The Czochralski
process comprises of crystal growth dynamics at the in-
terface explained in detail in Section 3.1 and additionally
of the heater/ temperature dynamics which significantly
affects the outcome of the process. Especially the growth
rate vg driving the basic growth dynamics is a result of the
thermal situation at the crystallization interface. However,
an accurate model representing the temperature dynam-
ics and the complex heat transfers within the Cz process
would have to be derived from describing the system us-
ing partial differential equations, and thereafter applying
discretization on a fine grid to arrive at a large set of or-
dinary differential equations representing the temperature
dynamics [18, 19]. While such a model may be appropriate
for process design studies, it is commonly considered too
large and impractical for control design studies. In Sec-
tion 3.2, we will therefore develop two simplified models
instead, based on a coarse lumped model, adapted from
the model presented in [1]. While the heat transport is
of little importance for the investigation of the bright ring
measurement in Section 4.5 of this paper, it is central when
evaluating control performance in a qualitatively reason-
able manner in part II of this article series. Therefore,
Section 3.2 can be skipped by readers interested only in
the analysis of the bright ring measurement.

3.1. Growth dynamics
The standard Cz growth model commonly referred to

as either the hydromechanical-geometrical model [20] or
simply the crystal growth dynamics at the crystal-melt
solidification interface, is given by (cf. Fig. 2 also):

ṙc = vg tan(αc) (1a)

ḣc = vp − vg (1b)
rbr = fbr(rc, hc) (1c)

αc = arcsin

{
1−

(
hc
a

)2[
1 + 0.6915

(
rc
a

)−1.1]}
− α0

(1d)

vg =
φs − φl
ρs∆H

(1e)

where rc is the crystal radius, hc is the height of the menis-
cus at the three-phase boundary, vp is the pulling speed, vg
is the growth rate of the crystal (in axial direction assum-
ing a flat solid-liquid interface) and αc is the cone angle
at the interface. Finally, the output rbr is the bright ring
radius obtained from the camera image. Its dependence
on the crystal radius and the meniscus height can be ex-
pressed in general by the function fbr. That this approach
is reasonable will be shown later in this paper. With ref-
erence to (1e), φs is the heat flux from the interface into
the crystal, while φl is the heat flux from the meniscus to

the interface. ρs is the density of the solid crystal, and
∆H is the specific latent heat of fusion. The derivative
of the meniscus height expressed in (1b) assumes perfect
compensation for melt level changes through crucible lift.

The expression of αc in (1d) is derived from the analyti-
cal approximation of meniscus height hc given by [21]. The
overall growth angle is expressed as α = α0 +αc, where α0

is the contact angle at constant radius growth, i.e., αc = 0.
We will assume α0 = 11° [22, 23]. The Laplace constant
a, also termed the capillary length, is given by a =

√
2σLG
ρL·g

with the specific surface tension σLG of the Si melt, the
Si melt mass density ρL and gravitational acceleration g.
One has a value of a = 7.62 mm as calculated for Si with
σLG = 0.732 N m−1 and ρL = 2570 kg m−3

Under the steady-state growth conditions, the heat flux
φl entering the interface from the meniscus, the heat flux
φh = %s∆Hvg released due to phase change and the heat
flux φs directed into the crystal are balanced. The crys-
tal growth rate (1e) is defined on the basis of this heat
balance. The heat balance across the crystallization inter-
face should be maintained such that the net flow of heat
is towards the crystallizing interface. In other words, the
continuous heat loss from the meniscus into the crystal
(heat of fusion/latent heat) ensures the ongoing crystal-
lization/solidification [20].

3.2. Heater/Temperature dynamics
The total path for the heat transfer, from the heaters

to the interface, is divided into control volumes. A con-
trol volume is a fictitious volume with constant physical
properties. For each control volume a heat balance can be
established from which an ordinary differential equation
for its temperature can be deduced. In the following, two
different assumptions are used as a basis for describing the
mode of heat transfer and resulting in an expression for φl
in (1e).

I. The heat transfer from the bulk of the melt into
the meniscus is caused by convection, while the heat
transfer across the meniscus itself is based on pure
conduction. This results in a model consisting of
four control volumes (cf. Fig. 6a). In this model, the
heat flux entering the solid-liquid interface from the
melt will depend on the meniscus height, as will be
shown in Section 3.2.1.

II. The heat transfer from the bulk of the melt to the
interface is based on convection only resulting in a
model consisting of three control volumes (cf. Fig. 6b).
Here, the varying meniscus height does not have any
influence on the heat flux entering the solid-liquid
interface (cf. section 3.2.2).

Though these two assumptions are in a sense two ex-
tremes, however, the actual heat transfer across the menis-
cus is likely to be a combination of both convection and
conduction. Thus, a control design that works for both
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models can be expected to work for the heat transfer mode(s)
occurring in the actual process.

As in our previous work [15, 16], we will refer to the
resulting models as Model I and Model II, respectively.

(a) Model I: Conduction based heat transport across the meniscus.

(b) Model II: Convection based heat transport across the meniscus.

Figure 6: Illustration of the lumped heat transport models with their
control volumes.

3.2.1. Heat transport in Model I
In the case of Model I (cf. Fig. 6a), the first two con-

trol volumes are used to provide a coarse second order ap-
proximation to the dynamics of the heat transfer from the
heater to the melt. The temperature T1 of control volume
1 may roughly correspond to the temperature measured
by the pyrometer on the graphite lining surrounding the
heaters, while the second control volume of fictional tem-
perature T2 introduces an additional time lag representing
the thermal inertia of the inner assemblies surrounding the
crucible. Their dynamics is given by

Ṫ1 =
QH −Q1 −Qloss,1

τ1
(2a)

Ṫ2 =
Q1 −Qin −Qloss,2

τ2
(2b)

where τ1, τ2, represent the parameters proportional to time-
delay for the heat transfers through control volumes 1 and
2, respectively [23]. These parameters are chosen to ap-
proximate an effective time delay of 600 s for each of the
two control volumes. In (2) one has the heat input QH
from the heaters, i.e., the manipulated variable for the
ATC controller, the thermal energy Q1 that enters the
control volume 2 from control volume 1 and the thermal
energy Qin that enters the melt. These heat transfer rates
are modelled using [23]

Q1 = β1 (T1 − T2) (3)

and
Qin = β2 (T2 − Tbulk), (4)

with the overall heat transfer coefficients β1, β2 between
the control volumes and the melt bulk with temperature
Tbulk. The two heat losses Qloss,1 and Qloss,2 in (2) are as-
sumed to be constant for a shorter time scale of dynamical
analysis.

The last two control volumes to the right of this model
(cf. Fig. 6a) distinctively represent the melt bulk region
and the meniscus, respectively. The heat transfer is mod-
elled as two heat transfers in series: the convective heat
transfer from the bulk of the melt into the meniscus and
the conductive heat transfer across the meniscus to the
crystallization interface. The dynamics of the melt bulk
temperature Tbulk reads

Ṫbulk =
Qin −Qint,I −Qrad

Vs · ρl · Cp
, (5)

where Vs, ρl and Cp define the melt volume, the density
and the specific heat capacity of liquid Si, respectively.
The convection based heat flow Qmb, bulk from the melt
bulk region into the meniscus of temperature TB can be
calculated from

Qmb, bulk = βconv,I (Tbulk − TB), (6)

with the overall heat transfer coefficient βconv,I .
The conductive heat flow Qint,mb from the meniscus

to the crystallization interface (with Si melting point tem-
perature TS) reads

Qint,mb =
kcond,I Ai (TB − TS)

hc
, (7)

where Ai = π r2
c is the cross-sectional area of the solid-

ification interface and kcond,I is the heat conductivity of
liquid Si2. Due to the short height of the meniscus it is rea-
sonable – on the timescale of relevance for crystal growth
– to neglect the dynamics of TB , i.e., ṪB = 0, and assume
the two heat transfers Qint,mb and Qmb, bulk to be equal.
This allows us to eliminate TB from (6),(7) and arrive at
the following expression for the overall heat flow Qint,I
entering the crystallization interface from the bulk:

Qint,I = βint(Tbulk − TS) (8)

The coefficient βint = (β−1
conv,I + hc k

−1
cond,I A

−1
i )−1 is the

overall heat transfer coefficient that combines the two co-
efficients from expressions (6) and (7) in series. Similarly
(from (6),(7)) the heat transfer coefficient βconv,I is given
by

βconv,I =
kcond,I (TB,0 − TS)Ai
hc (Tbulk,0 − TB,0)

, (9)

2As can be seen in Eq. (7), the temperature gradient is assumed to
be (TB −TS)/hc which is a quite rough but common approximation
in lumped parameter models of the Cz process [24]. In reality, the
thickness of the thermal boundary layer is the driving force for con-
ductive heat transfer. But since this layer is not modelled here this
approximation is used. It simply reflects the heuristic assumption
that the closer the interface to the hot melt, the more the crystal-
lization is inhibited [25].
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using initial steady-state values TB,0, Tbulk,0 for TB , Tbulk,
respectively. Hence, its value is assumed constant through-
out the simulations. Moreover, βconv,I is adjusted to achieve
the observed crystal growth rate.

Finally, the radiative heat loss Qrad from the melt sur-
face is expressed as:

Qrad = Afm Fmc εm σ (T 4
bulk − T 4

env) (10)

whereAfm is the free melt surface area expressed asAfm =
π (R2

cru− r2
c ), Fmc is the radiation view factor considering

the heat radiation from the free melt surface to the crystal
surroundings, εm is the melt emissivity, σ is the Stefan-
Boltzmann constant and Tenv is the temperature of the
environment.

3.2.2. Heat transport in Model II
In case of model II convective heat transport from the

melt to the crystallization interface is considered only, i.e.,
the bulk of the melt, as well as the temperature of the
meniscus, are at the same temperature level. Hence, the
model consists of only three control volumes (cf. Fig. 6b).

The temperature dynamics of the first two control vol-
umes is given by (2), while the bulk melt temperature Tbulk
is given by:

Ṫbulk =
Qin −Qint,II −Qrad

Vs · ρl · Cp
. (11)

In the above equation (11), the radiative heat loss Qrad
is formulated as in Eq. (10), while Qint,II , the convective
heat transfer from the melt bulk to the crystallization in-
terface, is given as

Qint,II = βconv,II (Tbulk − TS), (12)

where βconv,II represents the convective heat transfer from
the bulk of the melt to the crystallization interface. The
value of βconv,II given by

βconv,II =
φlAi

(Tbulk,0 − TS)

is adjusted to achieve the observed crystal growth rate.

3.3. Overall model
With the results from sections 3.1 and 3.2 the overall

Cz dynamics, including both growth and temperature dy-
namics, can be written in the so-called state-space form
with the state x = (rc, hc, Tbulk, T1, T2)T :

ẋ =


vg tan(αc)
vp − vg

(Qin −Qint −Qrad)/(Vs ρl Cp)
(QH −Q1 −Qloss,1)/τ
(Q1 −Qin −Qloss,2)/τ

 = f(x,u) (13a)

y =

(
rbr
T1

)
, u =

(
vp
QH

)
. (13b)

In (13a), Qint can either be Qint,I or Qint,II depending
on the choice of the heater model. The growth rate vg is
calculated according to (1e) with φl = Qint/Ai. In this
model, u indicates the input vector comprising of two ma-
nipulating inputs (vp, QH), while the measured output y
comprises of the bright ring radius rbr and the tempera-
ture T1 sensed by the pyrometer. Note, that in case of
model I the growth rate depends on the meniscus height
(cf. (7), (8)). A method for determining rbr, proposed in
the next section, is the main topic of this paper.

4. Ray-tracing method for bright ring radius esti-
mation

In this section a rigorous ray-tracing simulation, com-
bined with the crystal growth dynamics, is developed to
simulate the camera image of the illuminated meniscus.
The simulated camera image is then used to calculate the
bright ring radius for control system design and analysis.
In [14], ray-tracing is used to estimate the bias between the
actual crystal radius and the measured bright ring radius
for a static case. This paper presents a method to simulate
the actual camera image and the dynamic analysis of the
resultant bright ring radius measurement that can aid in
effective and improved control system design.

The light incident on the meniscus from different com-
ponents in the hot zone assembly gets reflected from the
meniscus surface and captured by the camera as a bright
ring image. Fig. 7 shows a simplified ray-tracing setup. It
presents the vertical cross-sectional view of the Cz growth
furnace (crucible wall, heat-shield, and camera location).
For the sake of simplicity, only one ray from each source
is shown to be incident onto the meniscus and reflected
thereof before reaching the camera. Though the rays may
undergo multiple reflections before reaching the camera,
an instance of the ray reflected twice from the meniscus is
shown by a dashed line in the same figure.

It is clear that a key factor when modeling the dy-
namics of the bright ring radius is the knowledge of the
meniscus shape. The meniscus shape can be calculated
from the so-called Laplace-Young equation that accounts
for surface tension, gravity, and hydrostatic pressure to ex-
press the shape and height of the meniscus. Unfortunately,
there is no analytical solution to the Laplace-Young equa-
tion, which, therefore, has to be solved numerically [26].
An alternative to the aforementioned approach is the use
of an analytical approximation of the meniscus shape.

4.1. Meniscus shape approximation
An approximation of the meniscus profile based on the

actual crystal radius rc at the interface and the meniscus
height hc is presented in [27]:

r(hc, rc, z) = rc +

√
2

A
− h2

c −
√

2

A
− z2

− 1√
2A

ln

[
z

hc
·
√

2 +
√

2−A · h2
c√

2 +
√

2−A · z2

] (14)
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where r and z are the radial and vertical coordinates of
the meniscus surface, respectively. Thus, one has (r, z) =
(rc, hc) where the meniscus connects to the crystal, while
roughly (r, z) = (Rcru, 0) at the crucible wall. The param-
eter A is defined as

A =
1

a2
+

cos(α)

2rc hc
.

This meniscus profile can be extended to define a full 3D
meniscus surface by rotating the profile about the z axis,
i.e., 360◦ along the azimuthal plane.

The ray-tracing simulation relies primarily on the knowl-
edge of the Cz growth model parameters (rc, hc) as dis-
cussed in Section 3.1 combined with the information about
the meniscus shape profile (14) to simulate the image of
the CCD camera.

4.2. Hot zone geometry
The aspects of the hot zone geometry used in describ-

ing the ray-tracing method are shown in Figs. 7 and 8. The

Figure 7: Ray-tracing set up showing incident and reflected light
rays within the growth furnace.

reference frame origin O is placed at the level of the free
melt surface such that the horizontal x-axis and the lateral
y-axis form the xy-plane spanning the base of the menis-
cus, while the z-axis extends vertically along the center of
the ingot. The camera is located in the xz-plane (y = 0).
In terms of cylindrical coordinates, the camera location is
in the rz-plane, i.e., in the 0◦ azimuthal plane. The hot
zone components, such as the crucible wall and annular
heat shield surrounding the growing crystal, have dimen-
sions defined as:

• Crucible radius: Rcru

• The coordinates for the heat shield underside are de-
scribed in terms of its height as well as inner and outer
radii given by:

– zhs is the height of the heat shield underside w.r.t.
the free melt surface

– rhsi is the inner radius of the heat shield underside
w.r.t. O

– rhso is the outer radius of the heat shield underside
w.r.t. O

• The camera location w.r.t. O is described by the posi-
tion vector ~pc such that: ~pc = xcamî + 0ĵ + zcamk̂

3,
where

– zcam is the height of the camera w.r.t. the free melt
surface

– xcam is the radial location of the camera, i.e., xcam =
rcam as ycam = 0

Figure 8: 3D ray-tracing scheme featuring an instance of an incident
ray ~sm emerging from the crucible wall. The reflected ray from a
point (m) reaches the camera with location marked as (c). The
incident and reflected rays may or may not exist in the same plane.

4.3. Computation of tangents and normals to the menis-
cus surface

Followed by the generation of 3D meniscus surface is
the calculation of tangents and normals to the entire menis-
cus surface. This, in turn, helps to determine the incoming
and outgoing rays for the camera image simulation. The
tangents and the unit normals to the meniscus surface are
mathematically notated by ~T and ~N in R3, respectively.
Since the meniscus surface is axisymmetric, tangents and

3 î, ĵ and k̂ are the unit vectors directed along x, y and z-axes,
respectively
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normals can be calculated using the 2D meniscus curve,
and then rotate these around the z-axis to the required
azimuthal orientation.

For any arbitrary point (xm0
, 0, zm0

) (or equivalently
(rm0

, 0, zm0
) in cylindrical coordinates) on the meniscus

profile such that zm0 = f(rm0), the tangent vector can be
calculated as:

~T|(rm0
,0,zm0

) =
1√

1 + f ′2(r)

 ∆r
∆r
∆θ
∆r

∆f(r)
∆r

 ∣∣∣∣∣
(rm0 ,0,f(rm0 )

=
1√

1 + f ′2(rm0
)

 1
0

f ′(rm0
)

 .
(15)

The normal vector is orthogonal to the tangent, and hence
we have

~N|(rm0
,0,zm0

) =
1√

1 + f ′2(rm0)

−f ′(rm0
)

0
1

 . (16)

Finally, the unit normal to any arbitrary point in question
(say m(r,θ,z)) can be determined by rotating ~N|(rm0 ,0,zm0 )

through an angle θ about the z-axis, such that

~Nm(rm,θ,zm)
= Rz(θ) · ~N|(rm0 ,0,zm0 ), (17)

where Rz(θ), the rotation matrix yielding the desired ro-
tation through an arbitrary angle θ, about the z-axis is
given as

Rz(θ) =

cos(θ) −sin(θ) 0
sin(θ) −cos(θ) 0

0 0 1

 . (18)

4.4. Computing incoming and outgoing rays
A rigorous ray-tracing method that abides the laws of

reflection is employed to simulate the bright ring formation
over the curved meniscus. Fig. 8 illustrates the schematic
of the 3D ray-tracing. The outgoing ray that enters the
camera after reflection from a point m on the meniscus
(described by position vector ~pm in cylindrical coordinates
as (rm, θ, zm) or as (xm, ym, zm) in Cartesian coordinates)
is given by

−→cm = ~pc − ~pm =

(xcam − xm)̂i − ymĵ + (zcam − zm)k̂. (19)

Based on the knowledge of meniscus normals given in (17),
the incoming and outgoing rays to the meniscus and cam-
era, respectively can be determined such that the angle
of incidence equals the angle of reflection, though the two
angles need not to be be co-planar. For a specific point on
the meniscus, the projection of the reflected ray −→cm in the
direction of normal vector ~N at the same point is given by

proj~N
−→cm = (−→cm · ~N)~N, (20)

where (·) indicates the vector dot product operation. Sim-
ilarly, the projection of −→cm in the direction orthogonal to
~N is given as

proj⊥−→~N
−→cm = −→cm−proj~N

−→cm = −→cm−(−→cm · ~N)~N. (21)

The orthogonal projection of incoming ray vector −→sm is the
same as the reflected ray vector −→cm but with the opposite
sign, i.e., proj~N

−→sm = −−→cm + (−→cm · ~N)~N However, the
projection of incoming ray vector in the direction of normal
vector ~N is the same as that of reflected ray vector, i.e.,
proj~N

−→sm = (−→cm · ~N)~N Thus, the incoming ray from a
given source point inside the hot zone, represented as −→sm,
is given by

−→sm = (−→cm · ~N)~N−−→cm + (−→cm · ~N)~N

= 2(−→cm · ~N)~N−−→cm

= 2~N(~N
T −→cm)−−→cm

= (2~N~N
T
− I)−→cm,

(22)

where I is the identity matrix. It is noteworthy that the in-
cident rays−→sm and the reflected rays−→cmmay pass through
planes corresponding to different azimuthal orientations.
In order to determine if the source of illumination on the
illuminated meniscus is the crucible wall or the heat shield
underside, the following steps can be followed:

The sum of the two vectors, given by

~ps = ~pm + −→sm, (23)

describes a position vector ~ps for the point of incidence,
s w.r.t. O. In (23), −→sm shall not be confused with the
incoming ray (cf. Fig. 8). Instead, the expression (23)
makes use of vector mathematics (head-to-tail rule of vec-
tor addition) by interpreting −→sm as a vector that has to be
extended appropriately up to the source point, as in (24).

The intersection of the incident ray with the crucible
wall can be found by scaling the position vector −→sm by a
factor ‘k’ such that it emerges from the crucible wall of ra-
dius Rcru. This can be achieved by solving the expression
given in (24) for the positive root of ‘k’:

(xm + k−→smx)2 + (ym + k−→smy)2 = R2
cru. (24)

The elevation of the scaled up incident ray k−→sm emerg-
ing from the crucible wall is given by its k−→smz. The double
reflection (shown in Fig. 7) is caused by the incoming ray
that emerges from the portion of the crucible wall lying
below the melt level, i.e., the z-coordinate of k−→sm is neg-
ative (k−→smz < 0). The origin of rays undergoing double
reflection can be found by calculating another reflection
where the incoming ray hits the meniscus surface. The
details are omitted for brevity. Note that it is possible for
some rays to be reflected more than twice, especially when
the meniscus close to the crystal is highly curved, which
may occur when the meniscus is high. Such multiple re-
flections have not been considered further in this work –
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but the calculations required to include them in the ray
tracing are more tedious than difficult.

The incident ray from the heat shield is the one whose
x and y-coordinates at zhs satisfy the following inequality
condition:

rhsi <
√
sm2

x + sm2
y < rhso : (25)

Thus, a 3D ray-tracing simulation, based on the proce-
dure outlined above, traces every ray that reaches the cam-
era back to its emission point (the complete annular heat
shield surrounding the growing crystal and the cylindrical
crucible wall containing the molten Si). The rays, which
are reflected twice from the meniscus, are also included
in the simulated bright ring image. However, some of the
reflections from the meniscus surface, lying on the side far-
ther to the camera, are obscured either due to the presence
of a cylindrical crystal ingot or by the heat shield. Like-
wise, the heat shield blocks many of the light rays which
emanate from various emission points, above and beyond
the heat shield underside, from reaching the camera.

The various sources of illumination on the bright ring
image are depicted in Fig. 9 by different gray-scale values.

Figure 9: Meniscus image showing different regions illuminated by
various components in the hot zone. The view is symmetric on either
side of the xz-plane/camera plane4.

The brightness sensed by the camera will depend on
three factors: i.) The brightness of the emitting surface.
ii.) The orientation of the emitting surface relative to the
direction of the emitted ray. iii.) The focusing of light
caused by the curvature of the meniscus.

Accounting accurately for i.) will require knowledge
both of the emissivity of the heat shield and crucible wall,
as well as the temperature distribution along these sur-
faces. Such information is not available to the present

4The x and y axes in Figs. (9 & 10) define the radial coordinates of
the meniscus, i.e., r =

√
x2 + y2, while z-axis represents the height

of the meniscus above the melt surface. Thus, the plane of the camera
expressed in cylindrical coordinates is (r, θ = 0, z)

authors, and would require the output from some very de-
tailed simulators. Instead, it is assumed that both the
underside of the heat shield and the crucible wall have
uniform (and the same) brightness. Luckily, this simplifi-
cation does not impede our ability to study the bright ring
anomaly, as will become apparent.

Factors ii.) and iii.) are accounted for by performing
small perturbations around the point on the meniscus where
the ray is reflected before entering the camera. Let these
perturbations define the vertices of a region on the menis-
cus surface, and let Am be the area of that region when
projected in the direction of the ray −→cm. Reflection calcu-
lations are then performed to find the point of origin for
each of the perturbed rays. The origins of the perturbed
and reflected rays define a region on the emitting surface.
Let As be the area of this region of the emitting surface,
when projected in the direction of the emitting ray −→sm. A
relative brightness measure5 is then found from the ratio
of As to Am.

The calculated brightness profile obtained, therefore, is
illustrated in Fig. 10 where the color denotes the brightness
of the reflection.

Figure 10: Theoretically calculated brightness profile as observed by
the camera. Minimum brightness (blue); maximum brightness (red).
Since, the view is symmetric on either side of the xz-plane/camera
plane, the left portion of the meniscus is not shown.

In order to use a feature of the camera image for control
of the crystal radius, two obvious criteria must be fulfilled:
i.) the feature should be located close to the actual crystal
radius, and ii.) the feature should be clearly and reliably
identifiable in the camera image for all conditions that are
expected during the body stage of the process (i.e., for
all values of crystal radius and meniscus height that are
likely to occur in the body stage). Studying the calculated
reflection images (and comparing to the camera image in
Fig. 3), two such features can be identified:

5Note that it would be easy to account also for the brightness of
the emitting surface, if such information is available.
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• The highest point on the crucible wall (same as the
outermost edge of the underside of heat shield) illumi-
nating a point ‘ ’ on the meniscus in Figs. 7 & 9.

• The innermost edge of the underside of heat shield)
illuminating a point‘ ’ on the meniscus in Figs. 7 & 9.

The first of these features indicated by ‘ ’ is closer to
the actual crystal radius and is therefore the preferred fea-
ture to use for crystal radius control. It corresponds to the
lower brightness border in the overexposed Fig. 3. Knowl-
edge of the point from where the light that causes this
feature originates, allows us to study the behaviour of the
corresponding measurement under dynamical process con-
ditions.

4.5. Anomaly detection via 3D ray-tracing simulation
Under normal operating conditions, the physical sys-

tems rarely encounter any abrupt changes in their physical
parameters/state variables. Therefore, the objective is to
input a smooth crystal radius change to the ray-tracing
simulation and investigate how the resultant bright ring
measurement differs from the actual input signal (crystal
radius). Thus, a pulling speed profile is selected6 such
that it drives the Cz dynamics to generate an output that
comprises of smooth profile for the crystal radius. Further-
more, it is worth mentioning that for this particular choice
of a smooth pulling speed profile, the crystal growth rate
is assumed to be constant.

Fig. 11 depicts how the chosen pulling speed profile,
driving the Cz dynamics, results in the desired crystal ra-
dius (rc) variation. Besides, the same figure shows the
system trajectories for meniscus height (hc) and cone an-
gle (αc).

For a smoothly varying crystal radius profile (cf. sec-
ond subfigure in Fig. 11), the corresponding bright ring
measurement based on the ray-tracing method is carried
out at various points along the highest contrast line on
the 3D meniscus image. One of the aforementioned illu-
minated meniscus points lies in the plane of the camera (0◦
azimuth), while the others lie in the planes at azimuthal
orientations 10◦, 20◦, 30◦ and 40◦ off the camera plane.

The resultant bright ring radii responses versus the
expected crystal radius rc response presented in Fig. 12,
clearly reveal the presence of the inverse response behaviour
in the measurement signal.

6Details can be seen in [28]
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Figure 11: Smooth and continuous profile for the applied pulling
speed (solid) and the resultant profiles (dash-dotted) for crystal ra-
dius, meniscus height and growth angle.
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Figure 12: Actual crystal radius rc (solid) v.s. bright ring signal
rbr (dotted) measured at different azimuthal orientations, indicated
respectively, at the bottom right corner of each subfigure.

5. Conclusions and way forward

This work primarily focuses on a 3D ray-tracing method
that simulates the glowing meniscus image captured with
the CCD camera. The simulated camera image provides
a reference point for the bright ring radius measurement,
a crucial measure for the controlled variable. Through
dynamic simulation based on the ray-tracing scheme, the
exhibition of inverse response behaviour by the bright ring
measurement signal is verified. This peculiar behaviour
can pose fundamental limitations to the design of the Cz
control system. The mitigation of this inverse response
in the context of control, circumventing fundamental lim-
itations with feedback control by combining feedback and
parallel compensation,will extensively be dealt with in the
second part of the two-article series.
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Symbol Unit Description Initial
value

States/ parameters common between the two thermal models
QH kW Heater input 58.6
Q1 kW Heat energy entering the control volume 2 (quartz crucible)

from control volume 1 (graphite crucible)
27.3

Qin kW Heat entering the melt 7.3
Qloss,1 kW Heat loss from control volume 1 30
Qloss,2 kW Heat loss from control volume 2 20
Qout kW Heat transferred away from the melt 7.3
T1 K Intermediate temperature 1970
T2 K Intermediate temperature 1914
TS K Temperature in the vicinity of crystallization interface 1683
TB,0 K Initial temperature of the meniscus 1688.6
Tbulk,0 K Initial temperature of the melt bulk 1704
ρl kg m−3 liquid state density of Si 2570
ρs kg m−3 solid state density of Si 2330
Cp J kg−1 K−1 Specific heat capacity of Si melt 1000
∆H J kg−1 Latent heat of fusion 1.79× 106

φs W m−2 Heat flux into the solid crystal from the crystallization in-
terface

1.3× 105

φl W m−2 Heat flux entering the meniscus 4.6× 104

εm – Melt emissivity [29] 0.2
σ W m−2 K−4 Stefan-Boltzmann constant 5.67× 10−8

Tenv K Temperature of the environment [29] 1262
Fmc – Radiation view factor from free melt surface to the crystal

surroundings
0.5

States and parameters exclusive to thermal model I
Tbulk K Temperature of the melt bulk 1704
TB K Temperature at the base of the meniscus 1688.6
Qmb kW Heat entering the meniscus 7.3
kcond,I W m−1 K−1 conductivity of liquid Si at 1700K 57

States and parameters exclusive to thermal model II
Tbulk K Temperature of the melt bulk including the temperature of

the meniscus
1704

Table 1: Parameters/ states for thermal models I and II. The initial values are taken from [23]
.

12



References

[1] P. Rahmanpour, Model-based control of the Czochralski silicon
crystal pulling process, Ph.D. thesis, Department of Engineering
Cybernetics, NTNU (2017).

[2] V. Tatartchenko, Chapter 2, The Possibility of Shape Stabil-
ity in Capillary Crystal Growth and Practical Realization of
Shaped Crystals, in: Crystal Growth Processes Based on Capil-
larity: Czochralski, Floating Zone, Shaping and Crucible Tech-
niques, John Wiley & Sons, Ltd, 2010, pp. 51 – 114.

[3] J. Levinson, Temperature control for crystal pulling, uS Patent
2,908,004 (Oct. 6 1959).

[4] W. Bardsley, B. Cockayne, G. Green, D. Hurle, G. Joyce,
J. Roslington, P. Tufton, H. Webber, M. Healey, Developments
in the weighing method of automatic crystal pulling, Journal of
Crystal Growth 24 (1974) 369–373.

[5] W. Bardsley, D. Hurle, G. Joyce, The weighing method of au-
tomatic Czochralski crystal growth: I. basic theory, Journal of
Crystal Growth 40 (1) (1977) 13–20.

[6] E. Patzner, R. Dessauer, M. Poponiak, Automatic diameter con-
trol of Czochralski crystals, Semiconductor Products and Solid
State Technology 10 (10) (1967) 25.

[7] T. Digges, R. Hopkins, R. Seidensticker, The basis of auto-
matic diameter control utilizing “bright ring” meniscus reflec-
tions, Journal of Crystal Growth 29 (3) (1975) 326–328.

[8] R. Lorenzini, F. Nuff, D. Blair, An overview of silicon crystal
growth processes, Solid State Technology 2 (1974) 33.

[9] T. Duffar, Crystal growth processes based on capillarity:
Czochralski, Floating zone, shaping and crucible techniques,
John Wiley & Sons, 2010.

[10] W. Bardsley, D. Hurle, G. Joyce, G. Wilson, The weighing
method of automatic Czochralski crystal growth: II. control
equipment, Journal of Crystal Growth 40 (1) (1977) 21–28.

[11] D. Hurle, Control of diameter in Czochralski and related crystal
growth techniques, Journal of Crystal Growth 42 (1977) 473–
482.

[12] M. A. Gevelber, G. Stephanopoulos, M. J. Wargo, Dynamics
and control of the Czochralski process II. Objectives and control
structure design, Journal of Crystal Growth 91 (1-2) (1988) 199–
217.

[13] M. A. Gevelber, Dynamics and control of the Czochralski pro-
cess III. interface dynamics and control requirements, Journal
of Crystal Growth 139 (3-4) (1994) 271–285.

[14] S. L. Kimbel, J. A. O’Sullivan, Shape estimation for online di-
ameter calibration in Czochralski silicon crystal growth, in: Pro-
cess Imaging for Automatic Control, Vol. 4188, International
Society for Optics and Photonics, 2001, pp. 45–57.

[15] H. Z. Bukhari, M. Hovd, J. Winkler, Limitations on control per-
formance in the Czochralski crystal growth process using bright
ring measurement as a controlled variable, IFAC-PapersOnLine
52 (14) (2019) 129 – 134, 18th IFAC Symposium on Control,
Optimization and Automation in Mining, Mineral and Metal
Processing, MMM 2019.

[16] H. Z. Bukhari, M. Hovd, J. Winkler, Design of Paral-
lel Compensator and Stabilizing Controller to mitigate non-
minimum phase behaviour of the Czochralski Process, IFAC-
PapersOnLineSubmitted to 21st IFAC World Congress (2020).

[17] K. Lee, D. Lee, J. Park, M. Lee, MPC based feedforward
trajectory for pulling speed tracking control in the commer-
cial Czochralski crystallization process, International Journal
of Control, Automation, and Systems 3 (2) (2005) 252–257.

[18] E. Dornberger, W. von Ammon, N. van den Bogaert,
F. Dupret, Transient computer simulation of a Cz crystal
growth process, Journal of Crystal Growth 166 (1996) 452–457.
doi:10.1016/0022-0248(96)00068-1.

[19] K.-H. Hoffmann, A. Voigt, M. Metzger, Numerical simula-
tion and control of industrial crystal growth processes, in:
W. Jäger, H.-J. Krebs (Eds.), Mathematics — Key Technology
for the Future: Joint Projects between Universities and Indus-
try, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp.
331–342. doi:10.1007/978-3-642-55753-8_27.
URL https://doi.org/10.1007/978-3-642-55753-8_27

[20] J. Winkler, M. Neubert, J. Rudolph, N. Duanmu, M. Gevelber,
Chapter 3, Czochralski Process Dynamics and Control Design,
in: Crystal Growth Processes Based on Capillarity: Czochral-
ski, Floating Zone, Shaping and Crucible Techniques, John Wi-
ley & Sons, Ltd, 2010, pp. 115–202.

[21] T. H. Johansen, An improved analytical expression for the
meniscus height in Czochralski growth, Journal of Crystal
Growth 141 (3-4) (1994) 484–486.

[22] V. Tatarchenko, Shaped Crystal Growth, Vol. 20, Springer Sci-
ence & Business Media, 1993.

[23] P. Rahmanpour, S. Sælid, M. Hovd, Run-to-run control of the
Czochralski process, Computers & Chemical Engineering 104
(2017) 353 – 365.

[24] D. Hurle, G. Joyce, M. Ghassempoory, A. Crowley, E. Stern,
The dynamics of Czochralski growth, Journal of Crystal Growth
100 (1-2) (1990) 11–25.

[25] M. Neubert, J. Winkler, Nonlinear model-based control of the
Czochralski process IV: Feedforward control and its interpreta-
tion from the crystal grower’s view, Journal of Crystal Growth
404 (2014) 210–222.

[26] C. Huh, L. Scriven, Shapes of axisymmetric fluid interfaces
of unbounded extent, Journal of Colloid and Interface Science
30 (3) (1969) 323–337.

[27] D. Hurle, Analytical representation of the shape of the meniscus
in Czochralski growth, Journal of Crystal Growth 63 (1) (1983)
13–17.

[28] J. Winkler, M. Neubert, J. Rudolph, Nonlinear model-based
control of the Czochralski process I: Motivation, modeling and
feedback controller design, Journal of Crystal Growth 312 (7)
(2010) 1005–1018.

[29] M. A. Gevelber, G. Stephanopoulos, Dynamics and control of
the Czochralski process: I. modelling and dynamic characteri-
zation, Journal of Crystal Growth 84 (4) (1987) 647–668.

13


