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Abstract

Self-localization for autonomous systems is essential for unsupervised operations,
and for maneuvering drones, estimation of Visual-Inertial Odometry (VIO) is a vi-
able option for this. In this thesis, it was found that using VIO estimation for self-
localization of an autonomous ferry sailing in an urban environment is a much
harder task than the aforementioned case of drone flight. This was due to distant
landmarks and slow motions. It was deemed necessary to have a high resolution
for cameras and a robust initialization procedure for depth-estimation of features,
if the VIO is to be accurate. However, despite showing poor standalone perform-
ance, VIO was shown to be very useful when used in tandem with a Global Nav-
igation Satellite System (GNSS) such as GPS. This made it possible to localize the
ship in locations where it previously was impossible, e.g. when driving under a
bridge. Due to this, it was deemed that camera-based localization adds value also
in a maritime setting.
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Sammendrag

Selvlokalisering for autonome systemer er helt essensielt for å kunne operere uten
tilsyn. For droner og andre høyhastighetsfartøy så er visuell-treghetsbasert odo-
metri (Visual-Inertial Odometry) et godt alternativ. I denne mastergraden ble det
oppdaget at å bruke dette som et lokaliseringsverktøy for trege, autonome ferger,
seilende i bymiljø var en større utfordring enn for droner. Det var flere grunner til
dette, men et stort problem var at landemerkene som ble avbildet var alle langt
unna båten. Det ble anslått som nødvendig å ha høyere oppløsning på videokam-
eraene, samt at estimatene for dybden til de avbildede landemerkene måtte ha
en mer robust initialisering. Likevel, på tross av dårlig lokaliseringsnøyaktighet i
isolasjon, viste det seg at å bruke visuell-treghetsbasert odometri for lokalisering
i tandem med GPS var veldig nyttig. Dette gjorde at det var mulig å lokalisere ski-
pet, selv på steder som GPSen hadde problemer. Det ble derfor konkludert med
at kamera har lokaliseringsmessig nytteverdi, også på en liten autonom ferge.
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Chapter 1

Introduction

“Intelligent unmanned autonomous systems are systems that are man-made and
capable of carrying out operations or management by means of advanced techno-
logies without human intervention“[1]. This was once a topic reserved for highly
advanced weaponry and space exploration systems. However, these systems have
matured both in terms of robustness and costs in the last two decades. Today,
autonomous systems can be found in a wide variety of industries such as private
and public transport, inspections of industrial facilities, and mowing of lawns[2][3][4][5].

1.1 Zeabuz: Autonomous Waterborn Urban Mobility

Zeabuz is a company which specializes in autonomous systems, especially autonom-
ous ships[6]. They aim to make small autonomous ferries which can be used for
public and private transport in rivers, fjords and canals. The technology originates
from years of reasearch at the Department of Engineering Cybernetics and the De-
partment of Marine Technology at NTNU[7][8][9]. See Figure 1.1 for concept art.

Figure 1.1: Concept of operations set in Bjørvika, Oslo

1
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1.2 Motivation

An autonomous ferry which is to sail in rivers and canals needs to constantly
make choices regarding how to move, stop and most importantly, avoid collisions
if necessary. This is illustrated in Figure 1.2. Making these types of choices in an
informed manner requires that the ferry is aware of the situation and its surround-
ings. Among other things, this consists of knowing the location of surrounding
ships and humans, the distance from the dock, and the location of the autonom-
ous ferry itself.

Figure 1.2: The process a ferry goes through by perceiving, planning and acting,
when sailing autonomously. Figure is courtesy of Zeabuz [6]

1.2.1 Pose and egomotion

This latter piece of information, i.e. the position, orientation and movement of
the autonomous ferry, is crucial to carrying out any autonomous operations. The
position and orientation are referred to as the pose of the ship, and the movement
is referred to as the egomotion. In open sea conditions, the absolute position of
a ship can be estimated using a Global Navigation Satellite System (GNSS), such
as Global Positioning System (GPS). However, GNSS reception in urban environ-
ments might be reduced due to echo from buildings, or completely terminated for
longer periods when sailing under bridges or through tunnels. GNSS positioning
will therefore not suffice for an autonomous urban ferry, and backup solutions
must be in order.
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1.2.2 Visual-inertial navigation

A camera setup and an Inertial Measurement Unit (IMU) is sensor pairing which is
popular for this purpose in the robotics community. An IMU is a small sensor which
measures its own acceleration and angular velocity. For the camera setup, either
a single monocular camera or a stereo camera setup is used. This combination is
popular due to its low cost and small size, and how it fits well on a drone or a
small robot. There has been remarkable progress in using cameras and an IMU
to estimate motion in the last ten years, and for drones, it serves as a very viable
option in the absence of a GNSS signal. Using a camera together with an IMU to
estimate motion is referred to as visual-inertial navigation.

1.2.3 Motion and maneuvers

When a drone is flying, it is often maneuvering and moving quickly. Because of
this, all degrees of freedom might experience forces such as centrifugal force and
gravity. This makes the measurements of the acceleration and angular velocity
from the IMU informative of how the drone flies. An autonomous, small ferry will
move slowly, and therefore the forces such as the centrifugal forces when turning
will be experienced to a much lesser extent. This is good for passengers, but bad
for information, as the sensors will carry little information about how the ship
truly moves. Due to these differences, the state-of-the-art methods used for visual-
inertial estimation in the robotics community will not necessarily be applicable to
autonomous ships, and this need to be investigated.

1.3 Milliampere 2

Milliampere 2 is a small electric ship made by NTNU, aiming to serve as a prototype
for small, urban ferries. It is used both for researching new technology, as well as
for demonstrating and testing existing technology. Among other sensors, the ferry
has a stereo camera setup, an IMU and a GNSS receiver, and will thus serve as
the test platform to gather data. With two cameras and an IMU, there are three
different sensor combinations which can utilized for visual-inertial navigation:

• An IMU and stereo cameras
• An IMU and a monocular camera
• Stereo cameras only
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1.4 Problem Definition

The aim of this thesis is two-fold. Firstly, it aims to quantify how state-of-the-art
methods for visual-inertial estimation works in a maritime environment. Secondly,
it also aims to map which of the sensor combinations from Section 1.3 works best
for visual-inertial navigation, first as an isolated case, and then in combination
with GNSS data.

1.5 Structure of the report

In Chapter 2 relevant terms to the task and subject are introduced. The theory
deemed necessary for understanding the visual-inertial estimation techniques is
reviewed in Chapter 3, and in Chapter 4 related work is discussed. Chapter 5 and
Chapter 6 reviews the software methods used for sensor fusion and in Chapter 7
the hardware used to collect data is presented. In Chapter 8 the estimation results
are presented and discussed. Finally, in Chapter 9 the findings are summarized
and concluding remarks are left.



Chapter 2

Relevant Sensors, Concepts and
Terms

“Sensor fusion is the practice of combining sensor data from disparate sources
such that the resulting information has less uncertainty than would be possible
when these sources were used individually“, formulated in [10]. This thesis will
focus on sensor fusion in the sense of using data from different types of sensors,
or modalities, to estimate a common state of a system. This is referred to as state
estimation. This chapter will serve as a verbal introduction to the sensors, along
with terms and concepts relevant to this thesis.

2.1 Global Navigation Satellite System

As mentioned in Chapter 1, the absolute position of a ship, or anything else, can
be obtained using a Global Navigation Satellite System (GNSS). This position is
measured in latitude, longitude and altitude and is calculated using signals from
several satellites in orbit[11]. Examples of GNSS are Global Positioning System
(GPS) and Global Navigation Satellite System (GLONASS).

2.1.1 Accuracy

One issue with GNSS measurements is that the signals can be noisy. Even though
the position is absolute, they generally have an accuracy of 5-10 meters [12],
which is not nearly enough for autonomous operations. However, there are solu-
tions to this problem. Using Real-Time Kinematic (RTK) positioning, one compares
the satellite signals received by a base station whose position is known, with the
signals received at the ship. This will increase the accuracy of the position from a
GNSS to centimeter precision[13].

5



6

2.1.2 Signal reception

A secondary problem, is that the frequency of these positional updates can become
low, especially when moving in areas with poor satellite reception. In these cases,
there can be several seconds between positional updates, or the connection can
be completely broken. Therefore, to estimate the position when moving in these
types of areas, other techniques must be used.

2.2 Odometry

The process of using data from motion sensors to estimate the position relative to
an initial location, i.e. the last known positional measurement from the GNSS, is
referred to as odometry [14]. In early applications for cars, odometry was obtained
by integrating wheel encoders. The estimate obtained from this wheel odometry
quickly drifted due to wheel slippage and other noise, making the estimate unus-
able after only a few meters [15]. For high-speed ships, maneuvering at sea might
require a higher frequency of positional updates than the GNSS can produce. A
widely used solution to this problem is using an Inertial Navigation System (INS).
This system numerically integrates measurements from an Inertial Measurement
Unit (IMU) as odometry between GNSS updates.

2.3 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a commonly used sensor due to its small
size and low cost. The sensor consists of three accelerometers and three gyro-
scopes. The accelerometers measure linear acceleration along the axes connected
to its body, and the gyroscopes measure angular velocity around these axes. The
rotational degrees of freedom associated with the different angles, as well as a
general illustration can be seen in Figure 2.1.

Figure 2.1: The axes from which an IMU measures data. Illustration is highly
inspired by illustration in [16]
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2.3.1 Measurement noise

An IMU generally gives sensor readings at a very high rate, typically 100-200 Hz.
These readings can be integrated to directly perform pose odometry. However, as
these readings are extremely noisy, the uncertainty associated with the estimates
will quickly become too noisy to trust. Because of this, navigation for an extended
time without GNSS measurements, requires more sensors than an IMU.

2.4 Visual-Inertial Odometry

A sensor which is often used together with an IMU to measure motion is a video
camera. By tracking how the environment appears to move through a sequence
of images, it is possible to simultaneously reconstruct both the motion of the ship
relative to the world and a three-dimensional map of the environment. This is
referred to as Visual Odometry. When this information of motion is used in tandem
with an IMU to estimate odometry, it is referred to as Visual-Inertial Odometry
(VIO).

2.4.1 Loop closure

The model of the environment created by the VIO can be used to recognize when
one has returned to a previously visited location. This is referred to as loop closure.
The difference between odometry when using loop closure and not is illustrated
in Figure 2.2. The loop closure is performed as a measure to eliminate drift. How-
ever, when using Visual-Inertial Odometry for navigation, the inclusion of GNSS
measurement will always perform better for this purpose.

A A

B C B C

Figure 2.2: Odometry to the left makes the path look like it is in a long hallway.
To the right the loop closure recognizes that one has returned to a previously
visited position. Illustration in [15].

VO, VIO and VSLAM

Performing VIO with loop closure can often be referred to as Visual Simultaneous
Localization and Mapping (VSLAM) or Simultaneous Localization and Mapping
(SLAM).





Chapter 3

Background Theory

This chapter aims to first give an introduction to the theory needed for under-
standing the algorithms used for visual and visual-inertial odometry, thereafter
provide an introduction to how the algorithms generally work. This section was
partly developed in the specialization project, in the fall of 2021.

3.1 Random Variables and the Gaussian Distribution

As sensor fusion intrinsically is about inference using data which has uncertainty
involved, this section will contain a short introduction to random variables and
the Gaussian distribution.

3.1.1 Random Variables and Probability Distributions

A random variable does not have a set value, but is considered in terms of its
probability distribution function. A scalar random variable X being distributed
according to p(x) is written as Equation (3.1)

X ∼ p(x) (3.1)

3.1.2 Discrete and continous random variables

Furthermore, there is a distinction between discrete and continuous random vari-
ables. The position of the ship is a continuous quantity, whereas the value a dice
will take when thrown, is a discrete random value. The distinction comes from the
outcome space of the random variable. If it can take every infinitesimally different
value, such as the position in the world, it is said to be continuous. If the random
variable only can be realized as certain distinct values, as with the dice throw, it
is discrete.

9
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Discrete random variables

In the case of a single dice throw, the dice can take on six different realizations,
each with equal probability. To quantify probability for different events, especially
for discrete random variables, the Point Mass Function (PMF) is applied. A discrete
random variable X, with distribution according to the PMF p(x) is described by
(3.2)

X ∼ p(x) = Probability{X = x} ∈ R (3.2)

Continuous random variables

For the continuous-valued random variable, e.g. in the case of the position of a
ship, it is no longer possible to talk about point probabilities, that is Probabil-
ity{X=x}. This is due to the point probability of a random variable being zero.
Therefore, for the continuous random variables, the probabilities are contained
in the Cumulative Distribution Function (CDF) P(x) (3.3)

Probability{X < x}= P(x) (3.3a)

Probability{x < X }= 1− P(x) (3.3b)

Probability{x1 < X < x2}= P(x2)− P(x1) (3.3c)

By taking the derivative of the CDF, the Probability Density Function (PDF) p(x)
is acquired.

p(x) =
∂ P(x)
∂ x

The cumulative probabilities can now be expressed in terms of an integral over
the PDF

Probability{X < x}=
∫ x

−∞
p(x)d x

Probability{X > x}=
∫ ∞

x
p(x)d x

Probability{x1 < X < x2}=
∫ x2

x1

p(x)d x

The CDF may not always exist in closed-form, so modeling it as an integral over
a PDF is often necessary to get the probabilities.

3.1.3 Independence, conditionality and Bayes rule

Two random variables X and Y are independent if their joint distribution can
be written as the product of their marginal distributions. This is mathematically
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formulated in Equation (3.4).

X ∼ p1(x) (3.4a)

Y ∼ p2(y) (3.4b)

X and Y independent: =⇒ p(X , Y ) = p1(X )p2(Y ) (3.4c)

The conditional distribution is defined as

p(X |Y ) =
p(X , Y )

p(Y )

and if they are independent, this reduces to just the marginal of X . Bayes rule
defines how to switch conditionality

p(X |Y ) =
p(Y |X )p(X )

p(Y )

3.1.4 The Univariate Gaussian Probability Distribtuion

One of the most known probability distributions is the Gaussian distribution. The
Gaussian distribution is also referred to as the normal distribution and its PDF
is often called the bell curve due to its shape. The Gaussian PDF is defined as in
Equation (3.5)

p(x) =N (x; x̄ ,σ2) =
1

p
2πσ2

ex p

�

(x − x̄)2

2σ2

�

(3.5)

In Equation (3.5) x̄ is the expectation and σ2 is the variance. The expectation of
a random variable is the realization that one expects the variable to take and is
defined as a weighted average over the PDF

x̄ = E[X ] =

∫

x p(x)d x

The variance is a measure of the uncertainty of the variable. The variance is
defined as

σ2 = Var[X ] = E[(X − E[X ])2] = E[X 2]− E[X ]2

The square root of the variance is the standard deviation

σ = Std[X ] =
Æ

Var[X ]

The Gaussian distribution, with its expectation and standard deviation is illus-
trated in Figure 3.1.
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̄x̄x− σ ̄x+ σ

Figure 3.1: The Gaussian probability distribution

Linearity and independence

Given two independent random variables X and Y

X ∼N ( x̄ ,σ2
x)

Y ∼N ( ȳ,σ2
y)

and two scalars a ∈ R and b ∈ R. Then the linear combination of the two random
variables has the following distribution

aX + bY ∼N (µ,σ2)

µ= ax̄ + b ȳ

σ2 = (aσx)
2 + (bσy)

2

3.1.5 The multivariate Gaussian distribution

In odometry, there are usually several variables or states to be estimated. To de-
scribe uncertainty in a multivariate system, one can use a multivariate probability
distribution and the Gaussian distribution is easily extended to this case. The ran-
dom vector X is distributed according to the multivariate Gaussian with the PDF

X∼N (x̄,Σ) =
1

(2π)
n
2 |Σ|

1
2

exp
�

−
1
2
(x− x̄)⊤Σ−1(x− x̄)

�

(3.6)
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In Equation (3.6) x̄ is a vector of expectations for the random variables contained
in the vector X. Σ is the covariance matrix. This matrix both holds the variance of
the random variables contained in x along its diagonal, but also the covariances
between the different variables.

�

X
Y

�

X

∼N







�

x
y

�

x

;

�

x̄
ȳ

�

x̄

,

�

σ2
x x σ2

x y
σ2

y x σ2
y y

�

Σ






(3.7)

For a multivariate Gaussian with two variables, the height of the graph can be
visualized with height curves. This is illustrated in Figure 3.2. Illustration is highly
inspired by illustration in [10].

x [σx]

y [σy]

39.35%

47.12%

12.42%

86.47%
98.89%

Σ=

�

σ2
x 0

0 σ2
y

�

Figure 3.2: Gaussian distribution with two variables. Probability mass contained
in height curves shown.

Independence

Consider the random vectors X ∈ Rn and Y ∈ Rm which are distributed as in
Equation (3.8)

X∼N (x̄,Σx) (3.8a)

Y∼N (ȳ,Σy) (3.8b)

they are independent if and only if the following holds[10]:
�

X
Y

�

∼N
��

x̄
ȳ

�

,

�

Σx 0
0 Σy

��

(3.9)

Linearity

Consider the random vector X ∈ Rn which is randomly distributed according to
Gaussian distribution N (x̄,Σ). If X undergoes the linear transformation Y= FX+
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b, the random variable Y is then distributed according to

Y∼N
�

Fx̄+ b,FΣF⊤
�

Marginalization and conditioning

The random vector
�

X Y
�⊤

is distributed according to
�

X
Y

�

∼N
��

x̄
ȳ

�

,

�

Σx Σx y
Σy x Σy

��

The marginal distribution of Y is then given by

Y∼N (ȳ,Σy)

and the distribution of X conditional on Y, p(X|Y= y) is given by

p(X|Y= y) =N
�

x̄x |y ,Σx |y
�

x̄x |y = x̄+Σx yΣ
−1
y (y− ȳ)

Σx |y = Σx −Σx yΣ
−1
y Σy x

3.1.6 Canonical form of the Gaussian

As shown above, describing the information contained in a Gaussian distribution
can be done in terms of its expectation and covariance. This is known as moment-
based parameterization. A second parameterization is the canonical form. The
parameters for the canonical form are the information matrix Λ and the the po-
tential vector η. They are defined as

Λ= Σ−1

η= Λx̄

For a Gaussian distribution N (x̄,Σ), the equivalent canonical form is written

N−1(η,Λ) =N (Λ−1η,Λ−1)

Marginalization and conditioning in canonical form

If the random vectors X and Y are distributed according to joint Gaussian distri-
bution

p(x,y) =N−1

��

ηx
ηy

�

,

�

Λx Λx y
Λy x Λy

��

Then the marginal distribution of Y is given by

p(y) =N−1
�

η∗,Λ∗
�

η∗ = ηy −Λy xΛ
−1
x ηx

Λ∗ = Λy −Λy xΛ
−1
x Λx y
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and the conditional distribution of X given Y= y is

p(x|Y= y) =N−1
�

ηx |y ,Λx |y
�

ηx |y = ηx −Λx yy

Λx |y = Λx

3.1.7 Stochastic processes and the autocorrelation function

As discussed in Section 3.1.2, the outcome of a dice throw can be described by a
discrete random variable. One could model five dice throws as five random vari-
ables that are Independent and identically distributed (IID), or a random vector
d ∈ R5 where each element is IID. However, if one is to consider the trajectory of
a robot, that is its position ∈ R3 and how it evolves through time, this would in
theory yield a vector with an infinite dimension. The possible realizations of the
trajectory are now functions of time on the form x(t) : R→ R3.

Wiener process and white gaussian noise

To introduce stochastic processes, "The grandfather" of all stochastic processes,
i.e. the Wiener process, must first be defined[10]. Let the stochastic process x(t)
be defined as

x(t) = x(nT )

n≜
t
T

,

x(nT ) =
n
∑

i=1

x i , i ∈ 1,2, ..., n

where the x i are IID random variables with expectation 0 and variance T. The
Wiener process b(t) can then be defined as

b(t) = lim
T→0

x(t)

The timestep T goes to zero while n goes to infinity. The Wiener Process is of-
ten described as a random walk [10]. Further, white Gaussian noise is another
essential stochastic process. In discrete time, white Gaussian noise is a sequence
of IID random variables with a Gaussian distribution and zero expectation. In the
continuous case, the stochastic process n(t), white Gaussian noise is defined as

n(t) = lim
∆→0

b(t +∆)− b(t)
∆

= b′(t)

Autocorrelation function

For a stochastic process x(t), the Autocorrelation Function (ACF) can be defined
as

R(t1, t2) = E[x(t1)x(t2)
⊤].



16

The ACF measures how a stochastic process correlates with itself at different
points in time. Some stochastic processes have an ACF that exhibits the following
property: It depends only on the difference τ= t2 − t1:

R(τ) = E[x(t)x(t +τ)⊤]

If the stochastic process has a constant expectation as well as this property, it is
said to be wide sense stationary[10]. For a Gaussian white noise process with unit
variance, the ACF is defined as

R(τ) = δ(τ),

which means it is completely uncorrelated with itself at all times except at the
current time, as well as being wide-sense stationary.

3.2 Least Squares Optimization

As will be evident later, optimization is a central part of the VIO problem. Op-
timization is finding the minimum of an objective function, subject to some con-
straints. This section will introduce some central concepts within linear and non-
linear least-squares optimization.

3.2.1 Linear least squares

Consider the case where there is n linear equations

e(x) =













e1(x)
e2(x)

...
en−1(x)
en(x)













= 0 (3.10)

with m variables.
x=
�

x1 x2 . . . xm−1 xm
�⊤

When n > m, Equation (3.10) generally does not have a solution. However, by
formulating this as a least-squares minimization problem, one can get the values
of x which puts the system e(x) closest to zero.

x∗ = arg min
x

f (x) (3.11)

= arg min
x

e(x)⊤e(x) (3.12)

= arg min
x
||e(x)||2 (3.13)

Since the equations in e(x) are linear, the system of equations can be written in
the following way

e(x) = Ax− b
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Thus, the objective function can be written as

f (x) = ||Ax− b||2 (3.14)

The values of x which minimizes Equation (3.14) are given by

x∗ = arg min
x
||Ax− b||2

and for this function to be at a minimum, its gradient must be zero.

∇ f (x∗) =∇||Ax∗ − b||2 =

⇒ 2A⊤(Ax∗ − b) = 0

This can be written in a form which gives us the normal equations

x∗ = (A⊤A)−1A⊤b (3.15)

And this can be solved using QR- or Cholesky factorization.

3.2.2 Nonlinear least squares

In the linear case, the solution to the optimization problem comes straight from
the normal equations. However, when the systems of equations e(x) in Equa-
tion (3.13) is nonlinear, which generally is the case for VIO, the normal equations
can not be used to minimize Equation (3.13) directly. Instead, it can be assumed
that e(x) is approximately linear around the current estimate, using its first order
Taylor-expansion

e(x0 +δx)≈ e(x0) +
∂ e(x0)
∂ x

δx

Where ∂ e(x0)
∂ x is the Jacobian as defined in Equation (3.16).












e1(x+δx)
e2(x+δx)

...
en−1(x+δx)
en(x+δx)













≈













e1(x0)
e2(x0)

...
en−1(x0)
en(x0)













+













∂ e1
∂ x1

∂ e1
∂ x2

. . . ∂ e1
∂ xn−1

∂ e1
∂ xn

...
...

...
...

∂ en
∂ x1

∂ en
∂ x2

. . . ∂ en
∂ xn−1

∂ en
∂ xn

























δx1
δx2

...
δxn−1
δxn













(3.16)
This is now a linear least squares problem

e(x+δx)≈
�

∂ e(x0)
∂ x

�

A

�

δx
�

x
−
�

−e(x0)
�

b

and can be solved using the normal equations from Equation (3.15).

δx∗ = (A⊤A)−1A⊤b

=

�

�

∂ e(x0)
∂ x

�⊤�∂ e(x0)
∂ x

�

�−1�
∂ e(x0)
∂ x

�⊤
(−e(x0))



18

Gauss-Newton

Directly applying this step to the objective function produces a new set of values
in the vector of equations

e(x1) = e(x0 +δx∗) (3.17)

This can in turn be linearized and solved again. Iteratively linearizing, solving and
applying the solution is called the Gauss-Newton Algorithm and is summarized in
Algorithm 1[17].

Algorithm 1 Gauss-Newton Algorithm

Require:
f (x) = ||e(x)||2 ▷ Objective function in least squares form
δe(x)
δx ▷ Analytic Jacobian of error function

x̂0 ▷ Initial estimate which is close to solution
for k = 0, 1, . . . , kmax do

b← (−e(x̂k)) ▷ Calculate constant term at current estimate
A← δe(x̂k)

δx ▷ Calculate Jacobian at current estimate
δx∗← (A⊤A)−1A⊤b ▷ Calculate solution
x̂k+1← x̂k +δx∗k

if f (x̂k+1)< ε f or |δx∗|< εx then
If updated value or step length is below treshold, end earlier
x̂← x̂k+1
return

end if
end for

If the initial estimate is close to the solution and the objective function is close
to quadratic around the solution, this will converge. However, if the quadratic fit
is poor or the initial estimate is far away from the solution, the algorithm may not
converge.

Levenberg-Marquardt

Levenberg-Marquadt is a trust region method. A trust region method will define
an area around its current estimate which it trusts to be quadratic. Instead of just
solving the normal equaions in Equation (3.15), a nonnegative constant is added
to the diagonal as in Equation (3.18)

�

A⊤A+λdiag
�

A⊤A
��

δx= A⊤b (3.18)

if λ = 0, this reduces to Gauss Newton. If λ is big, the update step will be large
when the gradient is small, and smaller when the gradient is large. The complete
algorithm can be seen in Algorithm 2.
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Algorithm 2 Levenberg-Marquardt Algorithm

Require:
f (x) = ||e(x)||2 ▷ Objective function in least squares form
δe(x)
δx ▷ Analytic Jacobian of error function

x̂0 ▷ Initial estimate
λ← 10−4 ▷ Initial value for trust region parameter
for k = 0, 1, . . . , kmax do

b← (−e(x̂k)) ▷ Calculate constant term at current estimate
A← δe(x̂k)

δx ▷ Calculate Jacobian at current estimate
δx∗← (A⊤A+λdiag

�

A⊤A
�

)−1A⊤b ▷ Calculate solution

if f (x̂k +δx∗)< f (x̂k) then
Accept update and increase trust region
x̂k+1← x̂k +δx∗

λ← λ/10
else

Reject update and decrease trust region
x̂k+1← x̂k
λ← λ ∗ 10

end if

if f (x̂k+1)< ε f or |δx∗|< εx then
If updated value or step length is below treshold, end earlier
x̂← x̂k+1
return

end if
end for

The trust region methodology somewhat relaxes the need for an initial estim-
ate which is close to the solution, as it will converge to a local minima, at the
expense of speed[17].

3.3 Rigid Body Kinematics

A point in space, e.g. the position of a robot, is a physical entity. To describe this
physical entity, one may use a coordinate vector. There are several ways of rep-
resenting the position. Two examples are Cartesian coordinate vectors ∈ R3 and
homogeneous coordinates ∈ P3. Describing the position and orientation of ob-
jects in three-dimensional space is a fundamental piece of the VIO problem, so
this section will give a summary of the theory behind this. Figures in this section
are inspired and guided by the open-source code in [18].
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3.3.1 Cartesian coordinates

A Cartesian coordinate vector describing the displacement of the point X in Eu-
clidean space R3 relative to the axes of Cartesian Coordinate frame Fa is denoted
xa.

xa =





x
y
z



 ∈ R3

The Cartesian Coordinate frame is a set of orthogonal axes which intersect at a
point called the origin. The relation between xa, Fa and X is illustrated in Fig-
ure 3.3.

Fa

xa

X

Figure 3.3: Cartesian coordinate vector describing point X

3.3.2 Homogeneous coordinates

An alternative to Cartesian coordinates is to describe points using homogeneous
coordinates in Projective space.

x̃=







x̃
ỹ
z̃
w̃






∈ P3

A unique property of the projective space is that all points that are proportional
to each other are equal, formally noted as:

x̃= λx̃ ∀λ ∈ R\{0} (3.19)

Conversion between homogeneous and Cartesian coordinates

Given a Cartesian coordinate vector,

x=





x
y
x



 ∈ R3
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this can be expressed as a Homogeneous Coordinate by appending a one as the
last coordinate

x̃=







x
y
z
1






∈ P3

From Equation (3.19), it is evident that this is equivalent to any scaled version of
x̃.

x̃ ∈ P3

x̃= λx̃ ∈ P3

x̆=







x
y
z
1






= λx̃, λ= 1

There are infinitely many differently scaled versions of this, but only one version
has its fourth coordinate set to one. When this is the case, it is referred to as a
normalized homogeneous coordinate. To signal that it is a normalized homogen-
eous coordinate, x̆ is used. For the conversion from homogeneous to Cartesian
coordinates, one can consider the homogeneous coordinate

x̃=







x̃
ỹ
z̃
w̃






∈ P3

This is converted back to Cartesian coordinates as shown in Equation (3.20)

x=





x̃/w̃
ỹ/w̃
z̃/w̃



 ∈ R3 (3.20)

This implies that it is not possible to convert homogeneous coordinates with w̃=
0, as this represents coordinates that are infinitely far away from the Cartesian
coordinate frame origin.

3.3.3 Multiple coordinate frames

As will be evident later in this chapter, having multiple coordinate frames can
simplify modelling. This situation is illustrated in Figure 3.4.
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Fa

xa

Fb

xb

X

Figure 3.4: Point X described with respect to multiple coordinate frames

The relationship between two Cartesian coordinate frames Fa and Fb is de-
termined by the position and orientation of frame Fb relative to frame Fa.

Rotation between frames

The axes of Fb are rotated compared to the axes of Fa. To compensate for this,
a rotation of the coordinates is done with Rab. This is a Rotation matrix and has
three degrees of freedom. A rotation of the coordinate system is illustrated in
Figure 3.5

a1

a2

a3

Fa

b1

b2

b3

Fb

Rab

Figure 3.5: Two Frames rotated with respect to each other

Rotation matrices are in the SO(3) Lie Group (special orthogonal group of
dimension 3), which is a set of matrices with the following attributes

SO(3) = {R|R ∈ R3x3,R is orthogonal and det(R) = 1} (3.21)

The inverse of this matrix is given by

R−1
ab = R⊤ab = Rba
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Translation Between Frames

The translational offset between the two frames is summarized in the vector ta
ab.

This is the position of the origin of Fb with respect to Fa given in the coordinates
of Fa.

ta
ab =





xa
ab

ya
ab

za
ab





This operation is illustrated in Figure 3.6

Fa

Fb

ta
ab

Figure 3.6: Compensating for the translational offset of the origin in Fb with
respect to the origin in Fa

Rotation and translation between frames

The combination of the position and orientation is referred to as the pose of
the frame. Considering this, the relation between xa and xb is given by Equa-
tion (3.22)

xa = Rabxb + ta
ab (3.22)

Frame transformations with homogeneous coordinates

The conversion between the two coordinate systems can be summarized in Fig-
ure 3.7 and consists of a matrix product and a sum.
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Fa

xa

Fb

xb

X

Rab

ta
ab

Figure 3.7: Conversion between coordinates

Using homogeneous coordinates however, this operation can be summarized
in a single matrix product:

x̃a = Tabx̃b

Tab is a homogeneous transformation matrix

Tab =

�

Rab ta
ab

01x3 1

�

∈ SE(3)

and SE(3) is the Special Euclidian group of dimension three:

SE(3) =

�

T=

�

R t
01x3 1

�

∈ R4

�

�

�

�

R ∈ R3x3, RR⊤ = I, det(R) = 1, t ∈ R3

�

(3.23)
The inverse of Tab is given by

Tab = T−1
ab =

�

R⊤ab −R⊤abta
ab

01x3 1

�

The matrix operation is illustrated in Figure 3.8

Fa

x̃a

Fb

x̃b

X

Tab

Figure 3.8: Relation between homogeneous coordinates x̃a and x̃b



Chapter 3: Background Theory 25

3.3.4 Alternative representations of rotation

In addition to representing rotation by rotation matrices, they can be represented
using Euler angles and unit quaternions.

Euler angles

Since a body in space intrinsically has three rotational degrees of freedom, it is
possible to minimally represent this. A minimal representation uses the same num-
ber of variables as degrees of freedom. For rotational degrees of freedom, this is
called Euler Angles. They are conventionally denoted by θ ,φ and ψ respectively
for pitch, roll and yaw. Euler angle rotations are executed in a sequential manner,
where different conventions are applied. The sequence of which the rotations are
carried out matters. With the zyx conventions, a rotation is given by

R(ψ,θ ,φ) = Rz,ψRy,θRx ,φ ,

Rz,ψ =





c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0

0 0 1





Ry,θ =





c(θ ) 0 s(θ )
0 1 0

−s(θ ) 0 c(θ )





Rx ,φ =





1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)





For, e.g. ships considering a dynamical positioning problem and other "slow"
dynamical systems, this is a good representation. However, for systems undertak-
ing highly dynamic operations, such as an Unmanned Aerial Vehicle or a robot
navigating dynamic terrain, this representation will eventually suffer from singu-
larities, where an infinite number of possible Euler angles will be a valid attitude
representation. [10, 16, 19]

Unit quaternions

Just as the multiplication of complex numbers can model rotation in the complex
plane, a unit quaternion model rotations in three dimensions. A quaternion is a
four-dimensional number, which comprises the sum of one real number and three
imaginary numbers. To highlight the similarity between two-dimensional complex
numbers and quaternions, a quaternion can be written as

q = η+ ε1i + ε2 j + ε3k
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where η represents the real part, ε is the complex part, and i, j and k are the com-
plex axes, all perpendicular to each other and to the real-valued axis. However,
depending on the convention, a quaternion is often written more compactly as

q=

�

η

ε

�

,η ∈ R,ε ∈ R3

As the entity to be modelled has three degrees of freedom, the quaternion is set
to the unit norm. This brings the degrees of freedom for the quaternion down
to three. A quaternion with a unit norm is called a unit quaternion. Similarly to
standard complex numbers, addition with quaternions are done in a straightfor-
ward manner

qa + qb =

�

ηa
εa

�

+

�

ηb
εb

�

=

�

ηa +ηb
εa + εb

�

Multiplication of quaternions are however more involved. A quaternion product
is defined as

qa ⊗ qb =

�

ηaηb − ε⊤a εb
ηbεa +ηaεb + εa × εb

�

Some additional useful concepts are the conjugate quaternion, the identity qua-
ternion, the quaternion norm and the inverse of a quaternion. The identity qua-
ternion is given by Equation (3.24) with the property described in Equation (3.25).
The conjugate of a quaternion is given by Equation (3.26). The norm of a qua-
ternion is given by Equation (3.27). For a unit quaternion, this is always 1. The
inverse of a quaternion is given by Equation (3.28) and has the property that
Equation (3.29) holds. For a unit quaternion, this always reduces to the conjug-
ate only.

qI =

�

1
0

�

(3.24)

qI ⊗ qa = qa ⊗ qI = qa (3.25)

q∗ =

�

η

−ε

�

(3.26)

||q||=
q

η2 + ε2
1 + ε

2
2 + ε

2
3 (3.27)

q−1 =
q∗

||q||
(3.28)

q−1 ⊗ q= q⊗ q−1 = qI (3.29)

Rotation by the means of a quaternion can now be defined. For a rotation given
by the angle-axis-representation v′ = Rn,αv, the rotation can also be written as

�

0
v′

�

= q⊗
�

0
v

�

⊗ q∗,

q=

�

η

ε

�

=

�

cos
�

α
2

�

n sin
�

α
2

�

�
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3.4 Lie Theory

Variables such as pose and orientation lie on the manifold. This complicates things
in regards to perturbing, which in turn complicates things with regards to taking
derivatives and calculating probability distributions. The groups SO(3) and SE(3)
which was introduced in Equation (3.21) and Equation (3.23) are referred to as
Matrix Lie Groups and are examples of this. To illustrate this, consider the follow-
ing case

R ∈ SO(3),δR ∈ SO(3), R+δR ̸∈ SO(3) (3.30a)

T ∈ SE(3),δT ∈ SE(3), T+δT ̸∈ SE(3) (3.30b)

Evident from Equation (3.30), perturbing a rotation matrix or pose matrix will not
produce elements which still are in these groups. Lie theory [20] describes how
one can use the tangent space to these manifolds to add, subrtract, take derivatives
and describe probability distributions for rotations and poses. Most of this section
is heavily based on [18] and [20].

3.4.1 The Lie group

In general, a Lie-group is both a manifold and a group. A group (G,◦) consists of
a set G and a composition operator ◦. The group must satisfy the group axioms:
For the elements X ,Y and Z ∈ G

Closure under ◦ : X ◦Y ∈ G
Identity E : E ◦X = X ◦ E = X

Inverse X−1 : X−1 ◦X = X ◦X−1 = E
Associativity : (X ◦Y) ◦Z = X ◦ (Y ◦Z)

In addition to this, a Lie group can perform an action · on other sets. Given an
element of the Lie-group X ∈ M and an element of an arbitrary set v ∈ V, a
group action · must satisfy the axioms:

Identity : E · v = v

Compatibility : (X ◦Y) · v = X · (Y · v)

SO(3) and SE(3)

For the rotation group SO(3) and the pose group SE(3), the elements are matrices,
the composition operation is matrix multiplication, and the inversion operation is
matrix inversion. The action on vectors is R · x ≜ Rx for rotations R ∈ SO(3) and
T · x≜ Rx+ t for poses T ∈ SE(3).
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3.4.2 The tangent space and the Lie algebra

The tangent space to the Lie group M at X is denoted T MX . The structure of the
tangent spaces on a Lie group manifold is the same everywhere, but the tangent
space at the identity E is called the Lie Algebra of M. This is denoted m

Lie Algebra : m≜ T ME (3.31)

The Lie Algebra is a vector space. Its elements τ∧ ∈ m can have a complex struc-
ture, but details of this are deemed unnecessary here. They can however also be
identified with vectors τ ∈ Rm. The capitalized exponential operator maps ele-
ments in the Lie Algebra vector space to the manifold.

Exp : Rm 7→M
Exp(τ) = X

The capitalized logarithmic operator maps elements on the manifold to the Lie
Algebra vector space

Log : M 7→ Rm

Log(X ) = τ

Figure 3.9 illustrates the tangent space, manifold and its elements.

Figure 3.9: A manifold with its Lie Algebra vector space as the transparent grey
area. In green there is the on-manifold group element X and in blue its corres-
ponding Lie Algebra vector τ
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Tangent space, Logarithmic Map and Exponential Map for SO(3)

The tangent space vector for the rotational matrix Lie group SO(3) group has
three degrees of freedom, θ ∈ R3. θ corresponds to the angle-axis representation
of a rotation

Log(R) = θ ≜ θu

Where u is the axis of rotation and θ is the angle of rotation. The Exp-map from
the tangent space vector to the rotation matrix is then given by rodriguez formula

R= Exp(θ ) = I+ sinθ
�

u
�

× + (1− cosθ )
�

u
�2
× (3.32)

In Equation (3.32)
�

·
�

× represents the skew symmetric-matrix

�

u
�

× =





u1
u2
u3





×

=





0 −u3 u2
u3 0 −u1
−u2 u1 0





Tangent space, logarithmic and exponential map for SE(3)

The tangent space vector ξ of matrix Lie group for pose, SE(3), has six degrees of
freedom, three for translation and three for rotation.

ξ=

�

ρ
θ

�

∈ R6 (3.33)

The Exponential map is then given by

T= Exp(ξ) =

�

Exp(θ ) V(θ )ρ
0⊤ 1

�

=

�

R t
0⊤ 1

�

∈ R4x4

where V(θ ) is defined as

V(θ ) = I+
1− cosθ
θ

�

u
�

× +
θ − sinθ
θ

�

u
�2
×

The Logarithmic map is defined as

ξ= Log(T) =

�

V−1(θ )t
θ

�

The variables ρ and t are thus not the same but related by the matrix V(θ ).

3.4.3 Addition and subtraction on the manifold

Again, consider the manifold M. Using the composition operator ◦, it is possible
to define a group transformation Y ∈ M, in two ways. One composed of first
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performing group transformation X then an on-manifold perturbation δ, and one
composed of first doing the on-manifold perturbation δ, then X :

Y = X ◦δX (3.34a)

= δE ◦X (3.34b)

The composition operator is not communicative, so in general δX ̸= δE . The on-
manifold perturbations δE and δX in Equation (3.34) can also be described using
the tangent space perturbation τ. The composition then looks like

Y = X ◦ Exp(τX ) (3.35a)

= Exp(τE) ◦X (3.35b)

The tangential perturbation performed in Equation (3.35a) is referred to as right
perturbation, and conversely, the perturbation in Equation (3.35b) is referred to
as left-perturbation. By doing the transformations in reverse and taking the capit-
alized logarithm, one can obtain the tangential perturbations which separates X
and Y

τX = Log(X−1 ◦Y) (3.36a)

τE = Log(Y ◦X−1) (3.36b)

From Equation (3.35) and Equation (3.36) one can define the equivalent of ad-
dition and subtraction for Lie groups by performing right perturbations. This is
referred to as right plus Equation (3.37) and right minus operators:

Y = X ⊕τX ≜ X ◦ Exp(τX ) ∈M (3.37)

τX = Y ⊖X ≜ Log(X−1 ◦Y) ∈ T MX (3.38)

For completeness, the left plus and left minus operators are defined as

Y = τE ⊕X ≜ Exp(τE) ◦X ∈M

τE = Y ⊖X ≜ Log(Y ◦X−1) ∈ T ME

The difference between right plus and left plus is illustrated in Figure 3.10
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Figure 3.10: The difference between right and left perturbations, as well as the
difference between the right plus and left plus operator

3.4.4 Derivatives on the Manifold

Using the new plus and minus operators defined in Equation (3.37) and Equa-
tion (3.38) it is possible to define derivatives of Lie groups. This is necessary when
running algorithms such as Algorithm 1 and Algorithm 2 to solve optimization
problems involving Lie groups. For a function f : M 7→ N , the right derivative is
given by

J=
∂ f (X )
∂X
≜ lim
τ→0

f (X ⊕τX )⊖ f (X )
τX

=
Log
�

f (X )−1 ◦ f (X ◦ Exp(τX ))
�

τX
(3.39)

3.4.5 Probability distributions on the manifold

A random variable on the manifold can be expressed as a perturbation

X = X̄ ⊕τ, X̄ ∈M
τ ∼N (0,Σ) ∈ T MX̄

3.5 Sensor Models

When estimating the states of the system, such as position, velocity and orienta-
tion, it is necessary to have a model of the sensor for prediction and optimization.
In this section, modelling theory for the relevant sensors will be introduced.

3.5.1 IMU modelling

An IMU is usually mounted at the center of gravity of a moving body. That way,
one can model its measurements without accounting for lever arms. The body-
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frame Fb is a coordinate frame fixed to the IMU and is the frame in which the
measurements are modelled. Measurements from an IMU are usually assumed to
be affected by two types of noise. One component is a slowly varying bias and
another is Gaussian white noise. Consider the true acceleration ab ∈ R3 and the
true angular velocity ωb ∈ R3 of the system, both given in the body frame. They
are then corrupted according to Equation (3.40)

ã= a+ ba +wa (3.40a)

ω̃=ω+ bω +wω (3.40b)

and the noise components are defined as Equation (3.41)

ḃa = ba +wba, ba ∈ R3 (3.41a)

ḃω = bω +wbω, bω ∈ R3 (3.41b)






wa
wω
wba
wbω






∼N













0
0
0
0






,







Σa 0 0 0
0 Σω 0 0
0 0 Σba 0
0 0 0 Σbω












(3.41c)

Positional inference from IMU

Considering the acceleration measurements and no angular velocity, one can make
a toy model of how the position p ∈ R3 would change according to the measure-
ments from the accelerometer. This is shown in Equation (3.42)

ṗw = Rwbvb (3.42a)

v̇b = ab (3.42b)

ab = ãb − ba −wa (3.42c)

ḃa = ba +wba (3.42d)

3.5.2 Camera modelling

Geometric camera models describes the camera projection process. In the general
case a camera projection π is a function that maps a point in 3D from the camera
frame Fc to the image domain Ω

π : R3→ Ω

u=

�

u
v

�

= π(xc)
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Ω ⊂ R2 is the image domain of all valid pixels. The inverse gives us the point in
3D given a point u in the projected image and the depth d.

π−1 : Ω×R+→ R3

xc =





x c

y c

zc



= π−1(u, d)

For camera projections, projective space P2 and homogeneous coordiantes are
helpful. To convert image coordinates to normalized homogeneous coordinates,
just append a single one to the end

�

u
v

�

∈ R2 7→





u
v
1



 ∈ P2

The conversion back from homogeneous to Cartesian coordinates is done the fol-
lowing way:





ũ
ṽ
w̃



 ∈ P2 7→
�

ũ/w̃
ṽ/w̃

�

∈ R2

Pinhole projection model

The most commonly used camera projection model is the Frontal Pinhole Projec-
tion Model. In this model, the real-world point xc , given in the camera frame Fc , is
projected onto a plane which is at zc = f . This distance is called the focal length.
For an ideal camera, the focal length f = 1. This results in the images being pro-
jected to the normalized image plane, and this process is illustrated in Figure 3.11.

Figure 3.11: The projection of point xc to the normalized image plane
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Normalized image plane

Mathematically, one can project the three-dimensional point xc , given in normal-
ized homogeneous coordinates, x̆c , onto the normalized image plane with homo-
geneous perspective projection matrix Π0 and scaling factor 1

zc .

x̆n =
1
zc
Π0x̆c , x̆n ∈ P2, x̆c ∈ P3 (3.43a)





xn
yn
1





x̆n

=
1
zc





1 0 0 0
0 1 0 0
0 0 1 0





Π0







x c

y c

zc

1







x̆c

(3.43b)

In Equation (3.43), a point in three dimensional projective space is mapped onto
a two-dimensional plane.

x̆n = xc
n =

1
zc

xc (3.44a)




xn
yn
1





x̆n

=





x c
n

y c
n

1





xc
n

=





x c

zc
y c

zc
zc

zc





1
zc xc

(3.44b)

Here, the point xc is scaled down to xc
n, so it resides in the normalized image

plane.

Image plane and the calibration matrix

However, most cameras neither have a centered origin nor a focal length of 1.
Cameras have intrinsic differences and this is accounted for in the matrix K

ŭ= Kx̆n




u
v
1





ŭ

=





fu sθ cu
0 fv cv
0 0 1





K





xn
yn
1





x̆n

The matrix K is called the intrinsic matrix or the calibration matrix. The terms in
the matrix can be explained the following way.

• fu: Size of the unit length in horizontal pixels.

◦ Alternatively it can be described in terms of the product f su:

− f: focal length in metric units
− su: Scaling factor that describes the horizontal pixel density in

pixels per metric unit
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• fv: The same as fu, just for vertical units
• cu: u-coordinate of principal point in Fi
• cv: v-coordinate of principal point in Fi
• sθ : Skew-factor

◦ Proportional to cotθ , where θ is the angle between u and v
◦ This is neglected in the rest of the chapter, as it makes some expressions

easier

The projection into u is illustrated in Figure 3.12. The terms in K are estimated

Figure 3.12: Projection of point xc onto the image plane

by calibrating a camera. If K is known, one can obtain the calibrated normalized
image coordinates from the pixel coordinates:

x̆n = K−1ŭ

Full projection model

Combining the preciding camera theory, one can mathematically project a point
in three-dimensional projective space onto the image plane and obtain its pixel
coordinates

ŭ= K
1
zc
Π0x̆c





u
v
1





ŭ

=





fu sθ cu
0 fv cv
0 0 1





K

1
zc





1 0 0 0
0 1 0 0
0 0 1 0





Π0







x c

y c

zc

1







x̆c

The equivalent Euclidean projection function is

u= π(xc;K) =

�

1 0 0
0 1 0

�

K
1
zc

xc =

�

fu
x c

zc + cu

fv
y c

zc + cv

�
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and the back-projection is

xc = π−1
p (u, zc;K) = zcK−1ŭ= zc





u−cu
fuv−cv
fv

1





3.6 Probabilistic Estimation

"Estimation is the task of inferring knowledge about an unknown quantity x from
data z, which is related to x. In the probabilistic paradigm, the relationship between
z and x is in the form of a probabilistic model p(z|x)." [10]. The unknown quant-
ity x is as mentioned in Chapter 2 referred to as the state of the system. Two well
known probabilistic state estimators are the Maximum Likelihood (ML) estimator
and the Maximum A Posteriori (MAP) estimator. The ML estimator is defined as

x̂ = arg max
x

p(z|x)

If there is some prior knowledge about the state to be estimated, this can be in-
cluded in the prior probability distribution of the state p(x). In this case, the Max-
imum A Posteriori (MAP) Estimator can be formulated.

x̂ = argmax
x

p(x |z)

= argmax
x

p(z|x)p(x)

If the random variable is Gaussianly distributed, this corresponds to finding the
expectation of the distribution p(x |z).

3.6.1 Filtering

The filtering problem consists of estimating the current state of a stochastic, dy-
namic system from a series of noisy measurements. Thus, it also consists of mar-
ginalizing out older states to get the best estimate of the current state of the sys-
tem, or in mathematical terms: we want to find MAP estimate of the state xk such
that

x̂k = argmax
xk

p(xk|z1:k)

The filtering problem is formulated in terms of two models; the process model
and the measurement model.

Filtering models

The process model is defined as

p(xk|x1:k−1,z1:k)
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and the measurement model is defined as

p(zk|x1:k,z1:k−1)

however, when only focusing on filtering, the Markov property is assumed to hold

p(xk|x1:k−1,z1:k−1) = p(xk|xk−1)

p(zk|x1:k,z1:k−1) = p(zk|xk)

3.6.2 Factor graphs and smoothing

As mentioned in the previous section, filtering is marginalizing previous inform-
ation and finding the best estimate of the most recent state. On the other hand,
the smoothing problem concerns finding estimates of older states as well. When
doing smoothing, one is thus often interested in the full trajectory of the system:

x̂1:k = argmax
x1:k

p(x1:k|z1:k)

Factor graph

A factor graph is a graphical way of modeling variables and probabilistic depend-
encies. It is a bipartite graph, which means it consists of two types of nodes, vari-
able nodes and factor nodes. Variable nodes represent states at different timesteps.
Factor nodes represent the probabilistic dependencies between the states at the
different timesteps, as well as the relationships between states and measurements.
This is illustrated in Figure 3.13.

Figure 3.13: A factor graph representing the probabilistic structure of a MAP
estimation problem.

3.6.3 On-manifold, nonlinear optimization-based estimation

Consider the case of smoothing, where one has the history of state vectors
¯
X1:k.

For a single state vector
¯
Xi , some states lie in normal vector spaces Rm and some

states lie on the manifold M.

¯
Xi =

�

xi ∈ Rm

Xi ∈M

�
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By broadening the definition of the manifold, one can claim that the vectors x ∈
Rm also are a Lie group under addition. This implies the following:

Exp : Rm 7→ Rm, x= Exp(x)

xa ⊕ xb = xa + xb

xa ⊖ xb = xa − xb

By additionally defining
¯
M as the composite manifold which can cover both vector

spaces, orientations, poses and other manifolds

¯
M=







M0
...

Mi







(3.45)

One can say that

¯
X ∈

¯
M

Consider then also that one receives measurements z1, . . . ,zk which depends on
X0 . . .Xk through the the nonlinear function h(

¯
X ) and are corrupted by white

noise. This is mathematically formulated as

z= h(
¯
X ) +w

w∼N (0,Σ)

z ∈ Rn

¯
X ∈

¯
M

This implies that
z∼N (h(

¯
X ),Σ)

Since the noise is white, the measurements z1, . . . ,zk are assumed independent.
Thus, they only depend on the underlying state values X1 . . .Xk. This implies that

p(z1:k|¯
X1:k) = p(z1)p(z2) . . . p(zk) (3.47a)

=N (h(
¯
X1),Σ) ·N (h(¯

X2),Σ) . . .N (h(
¯
Xk),Σ) (3.47b)

=
k
∏

i=1

1

(2π)
n
2 |Σ|

1
2

exp

�

−
1
2

�

zi − h(
¯
Xi)
�⊤
Σ−1
�

zi − h(
¯
Xi)
�

�

(3.47c)

The ML estimator of this problem is the value of X1:k which maximizes Equa-
tion (3.47), that is

¯
X ∗1:k = argmax

¯
X

p(z1:k|¯
X1:k) (3.48)

If one has some prior knowledge of this state, one can incorporate this as p(X1:k)
in Equation (3.47) and Equation (3.48), which in turn gives the MAP estimator

¯
X ∗1:k = arg max

¯
X

p(
¯
X1:k|z1:k) = arg max

¯
X

p(z1:k|¯
X1:k)p(¯

X1:k) (3.49)



Chapter 3: Background Theory 39

The maximization in Equation (3.49) is equivalent to minimizing the sum of the
squared Mahalanobis norm, ∥·∥2

Σ, between the measurements and the states:

¯
X ∗1:k = arg min

¯
X

k
∑

i=1

�

�

zi − h(
¯
Xi)
�⊤
Σ−1
�

zi − h(
¯
Xi)
�

�

(3.50a)

= arg min
¯
X

k
∑

i=1

�

Σ−
1
2

�

zi − h(
¯
Xi)
�

�⊤�

Σ−
1
2

�

zi − h(
¯
Xi)
�

�

(3.50b)

= arg min
¯
X

k
∑

i=1








Σ−
1
2
�

zi − h(
¯
Xi)
�










2
(3.50c)

= arg min
¯
X

k
∑

i=1

∥zi − h(
¯
Xi)∥

2
Σ (3.50d)

Using either Gauss-Newton optimization (Algorithm 1) or Levenberg-Marquardt
(Algorithm 2), one can solve the system in Equation (3.50) as a nonlinear optim-
ization problem each time a new measurement arrives.

3.7 Estimating Pose and Structure with a Camera

In Chapter 2, Visual-Inertial Odometry was presented as a simultaneous estima-
tion of pose and construction of the environment model surrounding the pose.

3.7.1 Construction of the model

Consider a very visible landmark, e.g. a black stone in a snowy field. The position
of this landmark is given in the world frame Fw by the three dimensional vector
xw ∈ R3. Consider then a camera with pose Twc relative to the world frame. The
position of the landmark relative to the camera frame Fc is given by xc .

x̆w = Twc x̆
c

When capturing the image, the position xc is projected into the image domain
with the projection function π(·), and the position in the image domain is given
by uc .

uc = π(xc) = π(T−1
wc xw)

Consider then that the camera takes a picture of this landmark from multiple
different poses Twc1

,Twc2
, . . . ,Twck

. This produces image projections from multiple
views:

uc1 = π(x̆c1) = π(T−1
wc1

x̆w)

...

uck = π(x̆ck) = π(T−1
wck

x̆w)



40

Consider now that one has l different landmarks.

xw
1 ,xw

2 , . . . ,xw
l

If a camera with pose Twc1
takes a picture of these points, there will be l projections

in this camera.

uc1
1 ,uc1

2 , . . . ,uc1
l

Consider again that the camera captures images of these landmarks from multiple
poses Twc1

,Twc2
, . . . ,Twck

. Then there will be l new projections for each picture.

uc1
1 ,uc1

2 , . . . ,uc1
l

uc2
1 ,uc2

2 , . . . ,uc2
l

...

uck
1 ,uck

2 , . . . ,uck
l

Constructing a model of the environment consists of estimating positions for all
these landmarks. See Figure 3.14 for an example of such a model.

Figure 3.14: A collection of points forming a model of the environment around
Holmenkollen. The picture is courtesy of [18].

3.7.2 Bundle adjustment

One can estimate the position of these landmarks, as well as the poses of the cam-
era when taking the pictures, Twc1

, . . . ,Twck
by defining an ML estimation problem,
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minimizing the reprojection error. This is referred to as bundle adjustment.

X ∗ = arg min
X

l
∑

i=1

k
∑

j=1








u
c j

i − h(xw
i ,Twc j

)









2

Σi j

(3.51a)

= arg min
X

l
∑

i=1

k
∑

j=1








u
c j

i −π(T
−1
wc j

xw
i )









2

Σi j

(3.51b)

X =
�

xw
1 xw

2 . . . xw
l Twc1

. . . Twck

�

(3.51c)

Given that the the initial state estimate is close enough to the solution, this can be
solved using the nonlinear optimization schemes introduced in Section 3.2.2. The
part of the system performing the bundle adjustment is referred to as the backend
of the visual-inertial state estimator.

3.8 Frontend and Pre-Processing of Images

Before a bundle adjustment can use data from cameras, the data must be pro-
cessed into meaningful information. The part of an estimation system handling
the data pre-processing is referred to as the frontend of the system. In Section 3.7,
the position of very visible landmarks in a picture was assumed to be detected, ex-
tracted, as well as recognized in several pictures. Methods deploying this type of
strategy in the frontend are known as indirect or feature-based methods. However,
contrary to feature-based methods, some methods minimize the pixel intensity dif-
ferences between images directly to calculate poses. These methods are referred
to as direct methods.

3.8.1 Feature-based methods

A feature is a point in an image which can be used for determining the pose. Op-
timally, this should be anchored in a real-world landmark [21]. Feature-based
methods use detection schemes to decide which features are good enough to
be tracked. Examples of good features are corners, which can be easily tracked
throughout images. After deciding on features, they must be found in similar im-
ages. To be recognizable, quantitative descriptors are employed. Indirect methods
provide robustness to photometric and geometric distortions, but come at the price
of higher computational cost and are dependent on the feature extraction step to
work.

3.8.2 Direct methods

Direct methods skip the feature extraction step and use the image intensity values
directly to optimize the photometric error. Consider two images Ia(u) and Ib(u).
Given the relative pose Tab between these two images, one can define the warp
function w

ua = w(ub, zb,Tab) = πp(Tab ·π−1
p (u

b, zb))
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This function maps a pixel in Ib to Ia. The photometric error to be minimized is
then given by

ep(u
b, zb,Tab) = Ia(w(u

b, zb,Tab))− Ib(u
b)

Where z is the depth of the pixel at the coordinate u. Direct methods typically
represent structure as a sparse or dense map rather than building it with three-
dimensional points. They do not require that geometrical primitives are recognis-
able by themselves, but can sample across all parts of the image. This makes direct
methods more robust to effects such as motion blur and better suited in sparsely
textured environments, but they are vulnerable to photometric and geometric dis-
tortions.

3.8.3 Semi-direct methods

Some methods do not directly fit the description of using a fully direct or indirect
frontend but use some elements from each. These methods fall under the descrip-
tion "Semi-Direct".



Chapter 4

Related Work

To choose methods fitting for the tasks defined in Chapter 1, a literature review
was conducted. This was partially conducted in the fall of 2021 for the specializ-
ation project and partially in the spring 2022 for the masters thesis.

4.1 Visual and Visual-Inertial Odometry

There is a wide variety of techniques for visual-inertial state estimation. This sec-
tion will present some of the most prominent and known methods.

4.1.1 OKVIS: Open Keyframe-based Visual-Inertial SLAM

Open Keyframe-based Visual-Inertial SLAM (OKVIS) [22][23] is a visual-inertial
framework for Odometry and SLAM using a feature-based frontend. The keypoints
are detected using a SSE-optimized multiscale Harris Corner Detector [24] and a
Binary Robust Invariant Scalable Keypoints (BRISK) [25] keypoint descriptor. In
a new photo, keypoints are first matched against all other keypoints in the local
map of maintained features, followed by outlier rejection using a χ2-test. In the
final step, the bundle adjustment is performed. However, to bound computational
complexity, this is not performed over all pictures and landmarks, but only selected
keyframes. The bundle adjustment is solved with the Ceres solver [26].

4.1.2 DSO: Direct Sparse Odometry

Direct Sparse Odometry (DSO) is a visual odometry method based on a sparse
and direct structure from motion formulation, and can be considered the direct
methodology counterpart to OKVIS[27][28]. It combines a fully direct probabil-
istic model (minimizing a photometric error) with consistent, joint optimization
of all model parameters. The method does not depend on keypoint detectors or
descriptors. Therefore, it can naturally sample pixels from across all image regions
that have intensity gradients. This includes edges and smooth intensity variations

43
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on essentially featureless walls. The model includes a full photometric calibration
accounting for exposure time, lens vignetting and non-linear response functions.

4.1.3 ROVIO: Robust Visual-Inertial Odometry

Robust Visual-Inertial Odometry (ROVIO) [29][30] is a Monocular Visual Inertial
Odometry Algorithm based on a semi-direct frontend and an Extended Kalman
Filter (EKF) backend. It uses direct pixel intensities errors of multilevel image
patches to describe landmarks instead of features. After detecting landmarks, the
tracking of multilevel patch features is closely coupled to the underlying EKF by
directly using the intensity errors as innovation term during the update step. The
position of the 3D-Landmarks is estimated w.r.t the current camera pose. As RO-
VIO uses an EKF backend, the algorithm is among the simpler ones in terms of
technical aspects. Nevertheless, this is a robust technique that works well in low
lighting, even in the absence of corners.

4.1.4 SVO: Semi-direct visual odometry

Semi-direct Visual Odometry (SVO)[31][32] is a visual odometry method with
a semi-direct frontend for Monocular and Multi-Camera Systems. Several ver-
sions are available, but the most tested and mature version uses a keyframe-based
backend, just like OKVIS. Once features are extracted, a direct method is applied
to track features. Sparse image alignment estimates frame-to-frame by minimiz-
ing the intensity difference of features corresponding to the projected location of
the same 3D point in several pictures. A subsequent step relaxes the geometric
constraint to obtain sub-pixel feature correspondence. This step introduces a re-
projection error which is finally refined by solving the bundle adjustment problem.
The code is open source and updated to support the latest software.

4.1.5 VINS-Fusion: Optimization-based multi-sensor state estimator

VINS-Mono is a monocular Visual-Inertial System (VINS), known for being robust
and versatile [33]. It has an indirect frontend and a keyframe-based backend,
very similar to OKVIS. The robustness and versitility originiate from the full func-
tionality from measurement preprocessing, sensor calibration, estimator initializ-
ation, tightly coupled VIO, relocalization and global pose graph optimization. In
VINS-Fusion, VINS-Mono was extended to support stereo cameras, in addition to
a monocular camera. This method is also open source and updated to support the
latest software.
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4.2 Observability

An observable state is a physical quantity determined with the available sensor
data. On the other hand, when a state is unobservable, there are infinitely many
different states which could produce the observed sensor data.

4.2.1 Constrained motion

Martinelli showed analytically that the following states are all observable modes
during motion which excites all degrees of freedom[34]:

• Absolute roll, φ
• Absolute pitch, θ
• Three-dimensional speed given in the body-frame, vb

• Scale, λ
• The biases of the IMU, ba and bg

This leaves the following unobservable modes

• Absolute position in the global frame
• Absolute yaw, ψ

As mentioned previously, the spatial trajectories of a small Unmanned Aerial Vehicle
(UAV) are quite different from the trajectories an autonomous ship produces. In-
tuitively, it should be a much easier trajectory to estimate, as the movements are
slow and predictable. However, on the contrary, in [34] it was proved that con-
stant speed renders scale λ unobservable. Further investigations in [35] found
that for planar motion, moving in straight lines, that is no rotation, renders the
pitch θ and roll φ unobservable as well.

4.3 Fusion of Global and Local Data

When performing state estimation, there is a difference between what is referred
to as tightly and loosely coupled fusion of data.

4.3.1 Tightly coupled estimation

A tightly coupled estimation framework will model all sensor modalities and use
their raw inputs into the bundle adjustment problem. The reasoning behind it is
to best capture all correlations between measurements, additionally to bringing
a minimal amount of estimation error into the problem from the beginning. The
bundle adjustment would then typically look like Equation (4.1).

x= argmin
x
=
∑

zlocal

∥zlocal − hlocal(x)∥
2
Σ +
∑

zglobal





zglobal − hglobal(x)






2
Σ

(4.1)

Applying a tightly coupled approach typically give higher accuracy in terms of
estimation error.
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Approaches using tight coupling

GVINS [36] is an example of a tightly coupled fusion of local and global meas-
urements. This method is built on top of the visual-inertial odometry estimator
VINS-Mono, with only a slight variation for marginalizing older states. Another
method having tight coupling between VIO and GNSS is "Tight-coupling of global
positional measurements into VIO"[37]. In this paper, SVO was used as the fron-
tend.

4.3.2 Loosely coupled estimation

Loosely coupled state estimation will not model sensor modalities in the bundle
adjustment. Instead, solutions from previous state estimation problems are in-
cluded together in a new bundle adjustment

x∗global = argmin
x

∑

zglobal





zglobal − hglobal(x)






2
Σ

x∗local = argmin
x

∑

zlocal

∥zlocal − hlocal(x)∥
2
Σ

x∗f used =
∑








x f used − x∗global










2

Σ
+
∑





x f used − x∗local







2
Σ

This is faster, as it can be parallelized, at the cost of generally having worse per-
formance than tight coupling w.r.t accuracy. However, for the fusion of local and
global sensors, a clear advantage of being loosely coupled is that it gives options in
regards to calculating local odometry. VINS-Fusion offers a loosely coupled solu-
tion for this matter [38], where the positional estimates from the GNSS are used
in tandem with a six-degrees-of-freedom pose estimate from an arbitrary method
for fusing local sensors.
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Global Pose Estimation:
VINS-Fusion

For fusion of local and global odometry estimates, VINS-Fusion was chosen, due
to the advantages presented in Chapter 4. A sketch of the system structure for
VINS-Fusion is visualized in Figure 5.1. In this chapter the fusion of local and
global odometry estimates is presented in detail.

Figure 5.1: An overview of the VINS-Fusion framework
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5.1 Loosely Coupled Global Pose Estimation

The estimation problem for global pose is formulated as a bundle adjustment

X ∗ = arg min
X
=

n
∑

t=0





zV IO
t − hV IO

t (X )






2
Σk,t

+
n
∑

t=0





zGNSS
t − hGNSS

t (X )






2
Σk,t

X = {x0,x1, . . . ,xn}
xt = {pw

bt
,Rwbt

}

Where pw
bt

is the position of the body frame Fb relative to the world frame Fw
at timestep t, and Rwbt

is its orientation. The probabilistic model underlying this
optimization problem can be formulated as a factor graph. In this factor graph,
the probabilistic connections between the states are represented as factor nodes.
This is illustrated in Figure 5.2

...

Local factor (VO/VIO)

Global factor (GNSS)

Figure 5.2: Factor graph representation of probabilistic model underlying the
optimization problem in the global pose estimation

5.1.1 Local factors from visual-inertial odometry

As mentioned earlier, the framework assumes that the VIO produces pose estim-
ates relative to a local frame, which is the initial position assumed in the vio. The
local frame is denoted Fl .
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Considering two sequential time steps t − 1 and t, the local factor is defined
as

zV IO
t − hV IO(X )

= zV IO
t − hV IO(xt−1,xt)

= zV IO
t − hV IO({pw

bt−1
,Rwbt−1

}, {pw
bt

,Rwbt
})

=

�

R−1
l bt−1
(pl

bt
− pl

bt−1
)

R−1
l bt−1

Rl bt

�

⊖
�

R−1
wbt−1

(pw
bt
− pw

bt−1
)

R−1
wbt−1

Rwbt

�

=

�

pb−1
bt

Rbt−1 bt

�

⊖
�

R−1
wbt−1

(pw
bt
− pw

bt−1
)

R−1
wbt−1

Rwbt

�

The factor graph containing the two states xt−1 and xt and their probabilistic
relationship can be seen in Figure 5.3.

... ...

Figure 5.3: Factor graph relating the states xt−1 and xt with VIO-output as a
measurement
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5.1.2 Global factors from GNSS measurements

The GNSS measurements are received from a GPS. These consists of longitude,
latitude and altitude. An East-North-Up frame is then initalized with its origin set
as the first received GNSS measurements. The factor relating the GPS measure-
ments to the states are then given by

pGPS
t =
�

xw
t yw

t zw
t

�⊤

zGPS
t − hGPS

t (xt)

pGPS
t − pw

t

Graphically, this is stated as in Figure 5.4

Figure 5.4: Probabilistic relation between state and GPS measurement

5.1.3 Optimization

Once the optimization problem is formed, it is solved once every second, using
the Ceres solver [26]. By doing this, the transformation between the global frame
Fw and the frame of the last pose Fbt

, Twbt
is calculated. This allows using the

poses calculated by the VIO in real time while they arrive. When the optimization
problem gets large, the oldest states are marginalized out.
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Local Pose Odometry Estimation:
VINS-Fusion and SVO

In Chapter 4, some of the most prominent methods for producing visual-inertial
odometry were presented. In this thesis, however, to test state-of-the-art visual-
inertial odometry methods in maritime settings, the choice was narrowed down
to Semi-direct Visual Odometry (SVO) and VINS-Fusion. In this chapter, the reas-
oning behind this, as well as how these methods work, will be reviewed.

6.1 VINS-Fusion

The visual-inertial odometry estimator bundled with VINS-Fusion is a modified
version of VINS-Mono, a state estimator known for being robust and versatile.
It is modified to support the configuration stereo camera setup, in addition to
a monocular camera setup and an IMU. To reiterate Chapter 1, this gives three
sensor combinations: monocular camera and IMU, stereo camera and IMU, as
well as stereo cameras alone. VINS-Fusion has a feature-based frontend and a
keyframe-based backend. A keyframe-based backend means it smooths the states
involved in these keyframes, as well as the states in a little window of the most
recent frames. The estimator also has a powerful loop-closure feature, however
as GNSS measurements will serve to eliminate drift, this is disregarded.

6.1.1 Estimated states

The full state vector to be estimated comprises the following

X = [x0, . . . ,xn,ximu
1 , . . . ,ximu

n ,xcam],

xt = [p
w
bt

,Rwbt
]

ximu
t = [vw

bt
,ba,bg]

xcam = [λ0, . . . ,λl]
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The superscript w here denotesFl , which is the local world frame to the estimation
problem, and Fbt

is the body frame at timestep t. The terms in the vector is defined
as

• pw
bt

: Position of Fb at timestep t w.r.t Fl expressed in Fl

• vw
bk

: Velocity of Fb at timestep t w.r.t Fl expressed in Fl

• Rwbt
: Orientation of Fb w.r.t Fl at timestep t

• ba: Bias of the accelerometer in the IMU
• bg : Bias of gyroscope in the IMU
• λl : The inverse distance of the lth feature from its first observation

6.1.2 Vision preprocessing frontend

Feature quality in tracking is detected and determined using the Shi-Tomasi-score
introduced in Good Features to Track [21]. This gives a set of coordinates for
the most informative features for tracking. Existing features are tracked frame-to-
frame using the KLT sparse optical flow algorithm [39]. KLT optical flow calculates
a displacement vector for each feature, such that one obtains the feature coordin-
ates in the next frame. If stereo cameras are used, this technique is also used
to find feature correspondences between the stereo cameras. Outlier rejection is
done using RANSAC with a fundamental matrix model [40].

6.1.3 IMU preintegration

IMU measurements come at a much higher rate than camera images, and per-
forming the optimization every time a new IMU measurement arrives will not be
possible. Because of this, a technique referred to as IMU preintegration is widely
used in the VIO literature, and VINS-Fusion is no exception.

Integration

The measurements originating from the IMU, which is not corrected w.r.t biases
and noise, is denoted ât and ω̂t for acceleration and angular rates respectively.
Consider the body frame Fbt

at timestep t and Fbt+1
at timestep t+1. The change

in the position, velocity and orientation between t and t +1 can be calculated by
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integrating the measurements during the time interval [t, t + 1]:

α
bt
bt+1
=

∫ ∫

τ∈[t,t+1]
Rbt bτ(âτ − baτ)dτ

2

β
bt
bt+1
=

∫

τ∈[t,t+1]
Rbt bτ(âτ − baτ)dτ

γ
bt
bt+1
=

∫

τ∈[t,t+1]

1
2
Ω(ω̂τ − bωτ)γ

bt
bτ

dτ

Ω(ω̂τ − bωτ) =

�

−[ω̂τ − bωτ]
× ω̂τ − bωτ

−(ω̂τ − bωτ)
⊤ 0

�

Bias correction

The states αbt
bt+1

,β bt
bt+1

and γbt
bt+1

does not directly depend on the underlying po-
sition, velocity and orientation. They do, however, depend on the IMU bias. If
the biases changes considerably, the preintegrated states must be recalculated.
However, if they only change marginally, the states can be modifed using their
first-order approximations

α
bt
bt+1
≈ α̂bt

bt+1
+ Jαba

δbat
+ Jαbωδbωt

β
bt
bt+1
≈ β̂ bt

bt+1
+ Jβba

δbat
+ Jβbωδbωt

γ
bt
bt+1
≈ γ̂bt

bt+1
⊗
�

1
1
2Jγbωδbωt

�

6.1.4 Keyframe-based factor graph backend

The estimation is done by performing bundle adjustment on selectd keyframes.
Just like in Chapter 5, the residuals in the optimization problem are equivalent to
factors in a factor graph.

Camera factors

The sensor model for the lth feature which is defined as

h(X cam
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Where the frame Fc is the camera frame, Fbi
is the frame of the body at the

timestep where the lth feature was first observed and Fbt
is the body frame at a
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later time t. Thus, the
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A term like this is made for every subsequent keyframe where the lth feature is
visible. Putting this under a sum gives
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Where T is the set of keyframes after Fi where the lth feature is visible. The
covariance matrixΣ is the uncertainty of the feature in the image and is a constant
value. The complete residual related to every feature is given by
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Where the set K is the entire set of keyframes and I is the set of features which
is first observed in keyframe k.

IMU Factors

As described in Section 6.1.3, IMU measurements are preintegrated between two
camera images. Consider the two timesteps t − 1 and t. The sensor model for a
preintegrated IMU measurement arriving at time t is then defined as
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and thus the residual is given by
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Marginalization

As mentioned early in this section, the bundle adjustment is not performed over all
states, but only on selected keyframes. As removing states directly is equivalent to
conditioning on the current estimates of the states, this can lead to overconfidence.
Thus, states are marginalized out. Consider the bundle adjustment

arg min
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The normal equations are then given by
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To go from all the states X1:n down to Xm:n, one can split the linear system into
the states and matrices related to Xm = X1:m−1, the states which are to be mar-
ginalized out, and the remaining states Xr = Xm:n
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The bundle adjustment problem is then reduced to

X ∗m:n = arg min
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6.1.5 Reasoning for choice of VINS-Fusion

As VINS-Fusion was chosen for GNSS-fusion, the bundled visual-inertial estim-
ator was a natural choice due to compatibility. Additionally, VINS-Fusion supports
all the necessary sensor combinations and has an up-to-date open-source code.
According to the review of monocular visual-inertial methods in [41] and [42],
VINS-Fusion is also one of the top performers in regards to accuracy and robust-
ness, and thus it was a natural choice.

6.2 SVO: Visual-Inertial Odometry Using a Semi-Direct
Frontend

Originally a semi-direct visual odometry frontend, Semi-direct Visual Odometry
(SVO)[31][32][43], is now a widely used visual-inertial odometry framework. As
stated in Chapter 4, there have been made several versions of SVO utilizing differ-
ent backends, while the most prominent is the keyframe-based CERES-backend.
In the frontend, features are only tracked for selected keyframes, which reduced
computation time significantly. Once extracted, a direct method is used to track
features. The system runs on two parallel threads, one thread for motion estima-
tion and one thread for mapping.

6.2.1 Motion Estimation

In this thread, the depth of some pixels is assumed known from the mapping
thread. The motion estimation consists of three steps. Sparse image alignment,
relaxation and refinement.

Sparse image alignment

The sparse image alignment estimates the camera motion, that is the relative pose
between two camera frames. This is done by minimizing the photometric error
residual of all pixels that observe the same three-dimensional point. The optimiz-
ation problem is formulated as
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= arg min
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(6.2)

Tbt bt−1
is the relative pose between the two body frames and Tbc is the body to

camera transformation. The projection function πmaps a 3D-point in the camera
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frame xc ∈ R3 to the image domain Ω.

π : R3→ Ω

The back projection function maps the image point back to the real world, given
the real world depth of that pixel zc

π−1 : Ω×R→ R3

The intensity image recorded at timestep t is denoted It

It : Ωt ⊂ R2→ R

The residual in Equation (6.2) represents two pixels observing the same point.
Rt−1 ⊆ Ωt−1 is the set pixels in image It−1, Ωt−1 where the depth is known at time
t − 1, and the subset R̄t−1 ⊂ Rt−1 is the set of pixels where the back-projected
points are also visible in image It , that is the set Ωt

R̄t−1 = {u|u ∈Rt−1 ∧π
�

Tbt bt−1
Tbcπ

−1(u,λ)
�

∈ It}

To make this sparse approach more robust, the photometric cost is summed over
a small patch around the pixels as well, with assumed similar depth.

Relaxation and alignment of 2D-features

This first direct alignment process only serves as a coarse alignment between two
subsequent frames as they arrive. The keypoints which have their depth estimated
are all registered with the frame where they first appeared, Fr . KLT optical flow
is then applied to get sufficient coordinate matches between this frame and the
subsequent frames where they appear.

Refinement

The last step is performing a bundle adjustment. In this step, preintegrated IMU
errors are also introduced
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where K is the set of all keyframes, LC
k is the set of all corner features and LE

k is
the set of all edge features in keyframe k.
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6.2.2 Mapping thread

In the mapping thread, feature depth is estimated. Here motion is assumed known
from the motion estimation thread. The mapping thread estimates depth from
multiple observations utilizing a recursive Bayesian depth filter. A new keyframe
is selected, and thus new depth filters are initialized at corners and along edges
when the number of tracked features falls below some threshold. New depth fea-
tures are initialized with large uncertainty and undergo a recursive Bayes-update
every subsequent frame. Every depth filter is associated with a reference frame
r. For all previous frames, as well as every subsequent frame, a search along the
epipolar lines is performed, and the zero mean sum of squared differences is com-
puted. From the pixel with maximum correlation, the depth of the measurement
is triangulated. When the depth of point is properly converged, it is inserted into
the map used by the relaxed feature alignment in the motion estimation thread.

6.2.3 Reasoning for choice of SVO

Just as with VINS-Fusion, SVO supports all the sensor combinations relevant to
this thesis. It is also rated as a good alternative in regards to accuracy and robust-
ness in [41] and [42]. However, what sets it apart from other frameworks, is its
handling of depth estimation, with a separate mapping thread. As this is different
to how VINS-Fusion handles depth, complementary problems in regards to map-
ping might be solved by VINS-Fusion and SVO, and thus a more informative result
regarding sensor combination might be acquired.



Chapter 7

MilliAmpere2: Experimental
Setup

Figure 7.1: MilliAmpere2, docked at Trondheim Sentralstasjon

As mentioned in Chapter 1, MilliAmpere 2 is a prototype for a small and elec-
tric ferry made by NTNU [44]. It is equipped with a wide variety of sensors and
is used to test autonomy software for ships. It is the successor of the first NTNU
ferry prototype, milliAmpere, and aims to improve all of its shortcomings, such
as size, thruster power and sensor placement. In this chapter, only the sensors
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used for VSLAM purposes will be presented. A picture of the ferry can be seen in
Figure 7.1.

7.1 SentiPack

MilliAmpere2 uses a bundled system for IMU and GNSS called SentiPack. Senti-
Pack consists of a SentiBoard, an IMU and a GNSS receiver. The SentiBoard is a
microcontroller with a very high temporal resolution, which allows timestamping
with an accuracy of 10 nanoseconds.

7.1.1 Inertial Measurement Unit

The IMU model is ADIS 16490. It has an output rate of 98.8hz and output integ-
rated values. Since VIO libraries generally prefer raw IMU measurements, they
must be converted. If the IMU has the rate r and receives an integrated measure-
ment x ∈ R6, a simple multiplication will give the raw measurement

xraw = x · r =


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




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

ax · r
ay · r
az · r
gx · r
g y · r
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













7.1.2 RTK-GNSS

The GNSS receiver used in SentiPack is a Dual u-blox F9P. This outputs latitude,
longitude and altitude of the ship at a rate of 1hz. Using a base station located at
Nyhavna, SentiPack gets RTK and thus has centimeter accuracy of its localization.

7.1.3 SentiFusion

In addition to measurements from the IMU and GNSS, SentiPack has an Inertial
Navigation System (INS) running, using an EKF. This outputs pose of the ship and
serves as ground truth in the experiments.

7.2 Cameras

To capture video, milliAmpere2 has 8 FLIR Blackfly S GigE 50S5C-C [45] cam-
eras. The cameras are equipped with a 5mm lens [46] and are mounted in pairs in
the corners of the ferry. They capture video at 10hz with a resolution of 1224x1024.
The camera pairs sit in housings as shown in Figure 7.2. In this thesis, only two
cameras are used. These are the two front-facing cameras located at the two
front-facing corners, front-starboard and front-port. The corners are marked in
Figure 7.3.
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Figure 7.2: The camera housing which each camera pair is mounted in

Figure 7.3: The position of the two cameras used in this thesis

7.2.1 Timestamping

The cameras are hardware synchronized and capture video at a rate of 10hz. They
are triggered simultaneously to capture an image using the SentiBoard, and the
image is paired with the timestamp of the trigger pulse in the camera driver.





Chapter 8

Results and Discussion

In this chapter, the local and global estimation results are presented and discussed.

8.1 Evaluation and Metrics

For evaluation, the metrics Absolute Positioning Error (APE) and Relative Posi-
tioning Error (RPE) will be used.

8.1.1 Absolute positioning error

Absolute Positioning Error (APE) measures the absolute error between the ground
truth and the estimated path:

TwGTt
⊖ Twbt

Where TwGTt
is the pose of the ground truth. This metric quantifies how much an

estimator drifts over its lifespan and can be used for e.g. assessing how much drift
accumulates when going for a longer time without GNSS measurements.

8.1.2 Relative positioning error

As the odometry from the VIO estimators are fused with GNSS measurements
later in this thesis, assessing drift over its entire lifespan is a somehow constructed
scenario. The Relative Positioning Error (RPE) measures error between pose deltas
and thus quantifies how well an estimator works locally to its measurements.

8.1.3 Pose, position and orientation

The APE or RPE can also be applied to just the orientation or position.

RGTt−1GTt
⊖Rbt−1 bt

pGTt−1
GTt

− pbt−1
bt
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8.2 Local Pose Estimation

In this section, the results regarding pure visual-inertial odometry using SVO and
VINS-Fusion are presented and discussed. These results are produces using three
different sensor combinations

• A monocular camaera and an IMU
• Two cameras in a stereo setup and an IMU
• Two cameras alone in a stereo setup

As there is only one monocular sensor combination, this might be referred to as a
monocular sensor suite or just mono.

8.2.1 Short and Straight Path with Semi-Distant Features

In this dataset, the ferry starts just outside the dock of Ravnkloa and crosses over
to the dock at Fosenkaia. This is a typical operational scenario and will tell what
visual-inertial odometry can offer in the case of complete GNSS failure during a
simple crossing. The trajectory in this scenario has very little rotation and accel-
eration involved. Considering the observability theory in Chapter 4, this should
make the scale drift. The cameras are facing backwards considering the motion.
The trajectory is drawn in Figure 8.1 and a sample of the view from the camera
can be seen in Figure 8.2.

Figure 8.1: An illustration of the trajectory in the first dataset
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Figure 8.2: The stereo view from the ferry when crossing

Estimated trajectories

The estimated paths can be seen in Figure 8.3, Figure 8.4 and Figure 8.5. This
is not informative other than "giving a feeling" for how good these estimates are.
Just by inspection, it is possible to see that only the monocular sensor suites are
close to the ground truth.
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Figure 8.3: All method and sensor combinations



66

−500 −480 −460 −440 −420
x (m)

−40

−20

0

20

40

z (
m

)

ground_truth
svo_mono
svo_stereoIMU
svo_stereo
vf_mono
vf_stereoIMU
vf_stereo

Figure 8.4: Trajectories in the xz-plane

−500 −480 −460 −440 −420
x (m)

−380

−360

−340

−320

−300

−280

y 
(m

)

ground_truth
svo_mono
svo_stereoIMU
svo_stereo
vf_mono
vf_stereoIMU
vf_stereo

Figure 8.5: Trajectories in the xy-plane
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Scale ambiguity

In Figure 8.6, the RPE for the estimators are quantified. For the trajectories estim-
ated by VINS-Fusion, much of the faulty estimation can be credited due to drift
in scale. This is shown in Figure 8.7, where the RPE is calculated again, but now
with corrected scale. The monocular SVO-estimator seems to have less drift in
scale than VINS-Fusion, and this can be credited to its depth-convergent nature,
by just tracking properly converged landmarks. Once the scale problem is solved
for VINS-Fusion, its monocular accuracy beats SVO for all sensor combinations.
For SVO, the performance is not enhanced by correcting for scale. For the multi-
camera estimators, this seems to be due to a divergent path.
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Figure 8.6: Boxplot for Relative Positioning Error (RPE)
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Figure 8.7: Boxplot for Relative Positioning Error (RPE) with corrected scale
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Scale-corrected estimated trajectories

The estimated rotational and translational trajectories with corrected scale can
be seen in Figure 8.9 and Figure 8.8. It is evident that what separates the ac-
curate from the less accurate estimates is having a substantial amount of drift in
the motion directions which is not excited when sailing. These directions include
translational z, as well as pitch and roll.

Figure 8.8: Estimated translational degrees of freedom
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Figure 8.9: Estimated rotational degrees of freedom
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8.2.2 Long and Straight Path with Very Distant Features

In this dataset, the ship sails from Trondheim Sentralbanestasjon to Fosenkaia.
This is illustrated in Figure 8.10.

Figure 8.10: The trajectory that is sailed in the second dataset

Figure 8.11: Stereo view from the ferry during the second dataset.

Estimated Trajectories

The estimated trajectories for the second dataset can be seen in Figure 8.12, Fig-
ure 8.13 and Figure 8.14. It is evident at once that scale is an issue to an even
larger extent in this dataset.
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Figure 8.12: Estimated trajectories for the second dataset.
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Figure 8.13: Trajectories in the xz-plane
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Figure 8.14: Trajectories in the xz-plane
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Scale corrected trajectories

The trajectories in the xy-plane with corrected scale can be seen in Figure 8.15. A
more detailed view can be seen in Figure 8.16 and Figure 8.17.
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Figure 8.15: Scaled planar trajectory
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Figure 8.16: Estimated euler angles
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Figure 8.17: Estimated translation
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Estimation performance

Once again it is also evident that there is a clear drift in the degrees of freedom
which lacks excitation. Furthermore, during most of the trajectory, there are very
few close and tangible features. Many features are initialized either in the sky or
in the distant mountain tops. Additionally, features are also sometimes initialized
in the river. This is shown in Figure 8.18. These features will not give any useful
information for the estimator and rather introduce noise. Furthermore, many of
the features which are "closer", such as the houses along the shore, still are very
distant. A higher resolution could make these features easier to triangulate. In
Figure 8.19, the RPE is visualized for the raw, non-corrected estimate. Even with
all these sources of drift, errors and other problems, this plot suggests that the
estimates are all pretty accurate locally, and thus can be used with some drift-
correcting measures.

Figure 8.18: VINS-Fusion Stereo with features initialized in the sky, distant
scenery and river
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Figure 8.19: Box plots for the RPE in the second dataset
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8.2.3 Summary of Performance

The RMSE values for the translational APE given in meters can be seen in Table 8.1.
The RMSE for the APE related the orientation can be seen in Table 8.2 the RMSE
for the RPE can be seen in Table 8.3.

Mono Stereo+IMU Stereo
VINSFusion SVO VINSFusion SVO VINSFusion SVO

Dataset1 4.44808 2.16709 20.4712 22.3034 24.9475 7.93014
Dataset2 31.0204 7.53749 575.604 83.9225 138.686 66.6406

Table 8.1: Root Mean Square Error (RMSE) values for the Absolute Positioning
Error (APE) in the two datasets. This APE is related to position, given in meters

Mono Stereo+IMU Stereo
VINSFusion SVO VINSFusion SVO VINSFusion SVO

Dataset1 0.304383 0.243381 2.05569 1.02385 5.34307 1.47624
Dataset2 2.20548 2.70781 3.07706 3.42738 12.1584 4.66823

Table 8.2: Root Mean Square Error (RMSE) values for the Absolute Positioning
Error (APE) in the two datasets. This APE is related to orientation, given in de-
grees

Mono Stereo+IMU Stereo
VINSFusion SVO VINSFusion SVO VINSFuison SVO

Dataset1 0.0594244 0.0761816 0.175409 0.152424 0.237337 0.232179
Dataset2 0.109572 0.0850113 3.57238 0.207382 1.35082 0.108765

Table 8.3: Root Mean Square Error (RMSE) values for the Relative Positioning
Error (RPE) in the two datasets
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8.2.4 Discussion on Local Visual-Inertial Odometry

The local visual-inertial odometry estimates are not great for either SVO and VINS-
Fusion. The erroneous estimation manifests mostly as drift in scale, but also drift
in other degrees of freedom. The result is that only the most robust of the methods,
that is the monocular methods, have a performance which could be used in a real
scenario for pure VIO. This can be happening due to many reasons.

Landmark initialization

Convergence of landmark position was a problem during the estimation. One
reason for this could be that the estimators chose poor features. Poor features
are features which are not anchored in rigid three-dimensional landmarks, but
rather the sky or in the river. A way to discriminate the horizon and river from the
image should help with this. Additionally, as most landmarks are far away from
the ship, the resolution of the cameras must be higher. Increasing the resolution
would make it easier to discriminate between camera angles, and make depth con-
vergence more robust. Solving the problem with depth-convergence could yield
great results, bringing the sensor suites based on stereo cameras to a competit-
ive level. This is apparent from SVO outperforming VINS-Fusion in almost every
aspect before scale-correction. Landmarks and features are an aspect of visual-
inertial odometry estimation which is very different for a maritime setting com-
pared to a in-door drone flight.

Motion-constrained optimization

Additionally, there is an observed drift in the degrees of freedom which are not
excited. A penalizing term for this type of estimated motion could be added. This
type of erroneous estimation could originate from the issues related to observ-
ability discussed earlier in this thesis. By incorporating the prior knowledge of
planar motion with little to no pitch and roll, discrimination between IMU bias
and motion-induced measurements could be easier when performing the non-
accelerated motion, such as constant speed and total stop.
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8.3 Global Pose Estimation

In the previous section, it was found that using VIO-methods in maritime condi-
tions with big open areas function is sub-optimal. However, the reason for includ-
ing VIO in the navigation system is not to use it in areas where the GNSS-reception
is good and works well, but to aid it in conditions where it otherwise struggles,
such as under bridges and in tunnels. VIO systems generally work well in areas
rich with close features, and as will be evident in the following section, a tunnel
under a bridge is an example of exactly this.

8.3.1 Path through a tunnel

In this dataset, the ship sails as illustrated in Figure 8.20. It starts outside the canal
and sails under the railway through a tunnel. It ends by docking at Ravnkloa.

Figure 8.20: The path of the ship

Estimated trajectories

For this dataset, VINSFusion with a monocular sensor-suite is used to estimate
the Visual-Inertial Odometry. This was used due to its theoretical edge in per-
formance over SVO in optimal conditions, in addition to its natural compatibility
with VINSFusion-GNSS. The ground truth is, as mentioned previously, the path
estimated by the INS bundled with SentiPack. Due to the missing reception, this
estimation process fails. Therefore there is no ground truth for this scenario. The
resulting three-dimensional path from the VIO estimator, the GNSS-VIO fused es-
timator and the ground truth is shown in Figure 8.21 and Figure 8.22.
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8.3.2 Discussion

The INS struggles to estimate the path when sailing through the tunnel. The VIO
estimator, however, thrives in these conditions. A picture of the estimated path
and map can be seen in Figure 8.23

Figure 8.23: The view of the monocular camera, as well as the map it is estimating
when sailing through the tunnel.

Since there are a significant amount of close features, VINSFusion has an easy
time estimating the VIO accurately. The resulting GNSS-VIO-fused estimate re-
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ceives some of the oscillation caused by the loss of GNSS reception, but the VIO
estimate does a good job of dampening this. In an optimal setup, the covariances
of the GNSS measurements should be inflated more, such that only the Visual-
Inertial Odometry is trusted during the time in the tunnel. However, the point of
the dataset still stands: using a camera as a motion sensor in addition to an IMU
and the GNSS has value also at sea, even though using VIO as a sole method for
localization has subpar results.



Chapter 9

Conclusion

In this thesis, SVO and VINSFusion, two state-of-the-art methods for estimation of
Visual-Inertial Odometry have been tested at sea. This was done using three sensor
combinations: 1) A monocular camera and an IMU, 2) a stereo camera setup and
an IMU and 3) a stereo camera setup alone. For this purpose, only the monocu-
lar sensor setup showed sound performance for localizing the ship. Drift in scale
showed to be a big problem, especially for the stereoscopic sensor combinations.
A proposed reason for this was that as most landmarks observed were either semi-
distant or very distant from the ship, the depth of the corresponding features was
not converging properly to their real position. A proposed solution was incorpor-
ating a more robust check on depth convergence for points before using them for
bundle adjustment. Also, using a higher resolution for the video cameras as well
as filtering out the sky and the sea from the camera image was deemed as poten-
tially performance-improving measures. Additionally, the monocular sensor setup
was tested together with a method for fusing GNSS measurements and Visual-
Inertial Odometry. This was deemed a success, as localization based on GNSS
and Visual-Inertial Odometry hold complementary properties. Localization when
sailing through a tunnel where there was a corrupted GNSS reception was greatly
improved by incorporating measurements from a camera. For this reason, it was
deemed that despite the bad isolated performance, using a camera setup as a part
of the localization sensor suite holds great value in urban, and maritime condi-
tions.
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