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Abstract

We develop a financial option hedging framework called X Hedging that utilises new Artificial
Intelligence methods, is inherently explainable, and is adaptable to di↵erent market models, market
frictions, and hedging instruments. The topic of pricing and hedging financial options is broadly
studied in the financial literature. Recent methods use neural networks’ ability to map complex non-
linear relationships to create general and versatile methods, however, at the expense of explainability.
We propose a hedging framework that uses gradient boosted decision trees to increase the explain-
ability of the state-of-the-art frameworks without sacrificing performance. X Hedging is validated in
experiments against the well-known option pricing and hedging model by Black and Scholes [1973],
and the recent Deep Hedging model by Bühler et al. [2019], achieving the same performance. We
exemplify how the method by Shapley [1953] achieves global explainability for X Hedging and “black-
box” hedging models such as Deep Hedging. Thereafter, we discover that the derivative change of the
underlying asset influence the final profit and loss along with the magnitude of the underlying asset
value. Finally, we show that X Hedging complies with the newly proposed guidelines and regulations
related to Explainable Artificial Intelligence through local explainability, highlighting the practical
usability of the hedging framework in the industry.
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Sammendrag

Vi utvikler et rammeverk for sikring (eng: hedging) av finansielle opsjoner. Rammeverket bruker
nye metoder innen kunstig intelligens, er mulig å forklare, og tilpasselig til ulike markedsmodeller,
markedsfriksjoner, og sikringsinstrument. Temaet som omhandler prising og sikring av finansielle
opsjoner er omfattende studert i litteraturen. Nyere metoder bruker nevrale netts ferdigheter som
omhandler å forbinde ikke-lineære forhold til å lage generelle og allsidige metoder. Dette kommer
dog p̊a bekostning av forklarbarheten (eng: explainability) til metoden. Vi foresl̊ar et rammeverk
for sikring som bruker gradientforsterkede beslutningstrær (eng: gradient boosted decision trees) til
å øke forklarbarheten til de nyeste rammeverkene, uten reduksjon av ytelsen. X Hedging er validert
i eksperimenter mot den velkjente opsjonsprisings- og sikringsmodellen av Black and Scholes [1973],
og den nylige Deep Hedging-modellen utviklet av Bühler et al. [2019], hvor vi oppn̊ar samme ytelse.
Vi eksemplifiserer hvordan metoden til Shapley [1953] oppn̊ar global forklaring for X Hedging og
“black-box” sikringsmodeller som Deep Hedging. Deretter oppdager vi at den deriverte av det un-
derliggende aktivumet p̊avirker det endelige resultatet sammen med størrelsen p̊a den underliggende
aktivumets verdi. Til slutt viser vi at X Hedging overholder de nylig foresl̊atte retningslinjene og
forskriftene knyttet til forklarbar kunstig intelligens (eng: Explainable Artificial Intelligence) gjen-
nom lokal forklaring, noe som fremhever den praktiske anvendeligheten av sikringsrammeverket i
bransjen.
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1 Introduction

1 Introduction

Artificial Intelligence (AI) methods used in finance show great performance, speed, and versatility, but
lack explainability. Explainability is especially important for regulatory oversight, risk management
models, and ethical decision making. We contribute to the literature in the intersection between finance,
AI, and regulations within the two fields. This is done by developing a financial model that utilises new
AI methods, is inherently explainable, and is specifically developed for risk-takers such as market makers
and over-the-counter (OTC) traders that trade in financial derivatives.

Options are popular financial derivatives that grant the holder the right to buy (call) or sell (put) an
underlying asset at a predetermined price until a specific point in time. Market makers provide liquidity
to options markets by buying and selling options from and to the participants in the market, even when
there are no direct counterparts for the participants. The consequence is that the market makers take
on risk associated with being obligated to deliver the underlying asset at a specific point in time. For
options, the magnitude of this risk will depend on the option’s maturity and how volatile the underlying
asset is. The market makers are compensated for this risk by selling the option at a higher price than
they buy it, thus profiting from the bid-ask spread. However, the market maker still wishes to o↵set the
risk as much as possible and increase the possibility of profiting. They do this by hedging their short
option positions; buying or selling a certain amount of the opposite position via a hedging instrument.
The same is true for OTC traders, as the seller (writer) in an OTC option trade also wishes to hedge
their short option position and mitigate the risk.

A considerable body of research has developed hedging models, or hedging frameworks1, to define how
much a hedger should invest in a specific hedging instrument at a particular point in time to neutralise
the risk associated with the position. To produce hedging strategies, strict assumptions are commonly
considered for the behaviour of the market, the input signals for the hedging model, and the hedging
instruments. For instance, the famous option pricing and hedging model by Black and Scholes [1973]
(Black-Scholes model) assumes zero market frictions, only the underlying asset price as input, and specific
greeks as hedging instruments. Since the introduction of the Black-Scholes model, researchers have
generalised and extended it to create frameworks that can handle a more realistic set of assumptions.
The introduction and advancements of machine learning (ML) and AI in finance have coincided with
the development of such frameworks. This ranges from neural network models that directly learn the
Black-Scholes option prices and hedging ratios, e.g. Hutchinson et al. [1994], to deep reinforcement
learning frameworks that learn the market dynamics without any prior assumptions and produce hedging
strategies therefrom, such as Bühler et al. [2019].

As hedging models have moved from analytical formulas to more sophisticated AI models, the trend is
increased generalisability but decreased explainability. Neural networks are well understood in terms of
how they can approximate any continuous function [Hornik et al., 1989], but studying the neural network
does not give insights into the characteristics of the function being approximated. Due to this, they are
usually called “black-box” models, and it raises challenges related to regulatory demands on explainability
through transparency for financial firms. Even though these models might produce accurate results, if
the companies cannot report how the models made specific decisions, they may not be able to use them.

The field of developing AI models that can be explained is called Explainable Artificial Intelligence
(XAI). The Bank for International Settlements (BIS) presents in Prenio and Yong [2021] that several
entities have recently issued guidelines and regulatory frameworks on AI governance in general terms and
specifically within the financial sector, where XAI is highlighted as necessary. These include international
organisations such as the Organisation for Economic Cooperation and Development (OECD) and G20,
and governments of countries including the United States and Germany. Common for all the guidelines
is that explainability through transparency and interpretability is a key issue for decision-making models
that could require supervisory oversight and accountability. This highlights the relevance of studying
XAI together with risk management and specifically option hedging frameworks.

We propose an explainable option hedging framework termed X Hedging that meets the demands of
the most important regulations and guidelines on XAI. X Hedging uses inherently explainable ensemble

1The term hedging model relates to any method that produces hedging strategies, while the term hedging framework
(or abbreviated framework) specifically denotes a more general hedging model. For instance, X Hedging and the model by
Black and Scholes [1973] are hedging models, but only X Hedging is labelled as a hedging framework.
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1 Introduction

tree methods that recently have proven to match the performance of neural networks [Makridakis et al.,
2022]. Furthermore, we apply an explainable framework to X Hedging and the current state-of-the-art
Deep Hedging framework proposed by Bühler et al. [2019], and highlight the benefits of the former.

The thesis is structured as follows. A review of the current literature on hedging, AI in finance, and
regulatory frameworks related to XAI is presented in Section 2. In Section 3 we present X Hedging along
with relevant methods used for the experiments. The experimental results, along with an interpretation
and discussion, are presented in Section 4. Section 5 concludes the thesis.

2



2 Literature Review

2 Literature Review

Black and Scholes [1973] propose in their well-known model, an analytical solution to pricing and hedging
vanilla European options. They calculate the option greeks, which are the partial derivatives of the option
value with respect to di↵erent variables, such as the underlying asset price (�) and volatility (V). These
greeks can be used to o↵set the risk of the option by trading the greek amount of the corresponding
hedging instrument. A shortfall of the Black-Scholes model is that the strict assumptions it makes
about the market often do not hold in reality, which can produce inaccurate pricing and hedging results.
For instance, the model assumes no market frictions, but market frictions such as transaction costs are
expected for real-world asset and options trading. This was already noted in the original paper by
Black and Scholes [1973]. Furthermore, the model assumes constant volatility, but this is seldom true
for real markets. A negative correlation between the volatility and the underlying asset price was first
observed by Black [1976]. This was later confirmed by Swidler and Diltz [1992] in an empirical study of
data from the Chicago Board Options Exchange (CBOE) and Institute for the Study of Security Markets
(ISSM). Via the same empirical study, the authors also show that transaction costs are present. Neither
the Black-Scholes assumption of normally distributed asset returns holds because most markets have
frictions and non-constant volatility. Instead, as noted by McDonald [2014] in Chapter 18.6 and papers
like Mandelbrot [1963], Fama [1965], and Baillie and DeGennaro [1990], the distributions of asset returns
frequently have leptokurtosis and fat tails contrary to the thin tail of a normal distribution.

In an attempt to make the Black-Scholes model more general and suitable in real-world market situations
such that pricing and hedging can be done as accurately as possible, researchers have proposed relaxations
of its strict assumptions. Transaction costs have been introduced by Leland [1985], Hodges and Neuberger
[1989], Davis et al. [1993], and Atkinson and Alexandropoulos [2006]. Leland [1985] adds proportional
transaction costs by discretising and adjusting the magnitude of the volatility parameter. The volatility
increases with a positive proportional transaction cost, a↵ecting the option price and the greeks used to
hedge. Hodges and Neuberger [1989] state that the method proposed by Leland [1985] is not optimal
and suggests using dynamic programming to o↵set the risk of an option with proportional transaction
costs or other cost structures. This method maximises the expected utility of the terminal wealth. They
are able to produce smaller hedging errors than Leland [1985]. Davis et al. [1993] use a similar approach
to Hodges and Neuberger [1989] by ways of dynamic programming, but their method does not assume
any particular market model, making it more general. Davis et al. [1993] prove that when they limit the
transaction costs in the model to zero, the option values approach the Black-Scholes values. Atkinson and
Alexandropoulos [2006] extend both Hodges and Neuberger [1989] and Davis et al. [1993] by increasing
the number of underlying assets of the options while still allowing for transaction costs. They also
provide an analytical solution to the di↵erence in hedging strategies with and without transaction costs.
Researchers have also extended the Black-Scholes model with other market frictions. Rogers and Singh
[2010] address illiquidity, modelling it as a temporary impact on the underlying asset price based on
the trading volume. This translates to a non-linear transaction cost, and they can still find the optimal
hedging strategies. Bank et al. [2017] extend the temporary price impacts introduced by Rogers and Singh
[2010], and propose to use the model by Bachelier [1900] instead of the Black-Scholes model, arguing that
the former generalises better whenever market frictions are present.

To further generalise the Black-Scholes model, researchers have introduced non-constant volatility. This
allows for the creation of a certain type of skew of the implied volatilities, a volatility smile. This is
observed in real markets, and it is common knowledge for researchers, as noted by McDonald [2014],
Chapter 24.1. Merton [1973] highlights that the original Black-Scholes model can be adjusted for time-
varying volatility, but this assumes a time deterministic function for the volatility. The same author
proposes a model in Merton [1976] where the asset prices follow a stochastic jump process. This is known
as the Merton jump-di↵usion model, where adding jumps creates volatility smiles. To obtain a similar
volatility smile, a di↵erent approach is to allow for stochastic volatility and let there be a correlation
coe�cient between the underlying asset price and the volatility itself. Papers that have extended the
Black-Scholes model to incorporate this stochastic volatility include Cox [1975], Hull and White [1987],
Wiggins [1987], Scott [1987], and Heston [1993]. Cox [1975] propose a model where the volatility directly
varies with the stochastic movement of the asset value. The model allows for negative correlation between
asset price and volatility, which will result in a more realistic volatility skew. Hull and White [1987],
Wiggins [1987], and Scott [1987] extend the work of Cox [1975] by allowing the correlated volatility to
follow its own stochastic process. Heston [1993] comments that the disadvantage of these papers is that

3



2 Literature Review

the option valuation and hedging ratios need to be found via extensive numerical approximations. He
rather suggests a closed-form formula for option valuation and hedging when the correlated volatility
follows its own stochastic process.

The introduction of ML and AI into finance has allowed for greater generalisation of models, and a
key contributor has been the neural network. Rosenblatt [1958] laid the foundation of the modern
neural network as he developed the single-layer perceptron. This was later to become the multi-layer
perceptron (MLP), what we know today as the modern neural network. Among the first papers to
introduce these neural networks into finance are Felsen [1975] and Felsen [1976]. The author uses neural
networks to recognise investment decision patterns and forecast stock price movements. He obtains
forecasting accuracy better than the average of the best methods that existed at the time, but he states
that his models should be used in combination with human decision making. Kimoto et al. [1990] extend
the previous works of Felsen [1975] and Felsen [1976] by using modular neural networks to forecast
stock movements on the Tokyo stock exchange. They are able to produce very accurate results, which
at the time led to an increased interest in the use of neural networks for financial forecasting. Some
later notable papers on this subject include Donaldson and Kamstra [1996], Huarng and Yu [2006], and
Bao et al. [2017]. These papers specifically comment on the neural networks’ ability to map non-linear
relationships as a benefit for forecasting financial time series. According to Buchanan [2019], a report
issued by the Alan Turing Institute, several other domains within finance have been able to utilise the
performance benefits of neural networks. This includes algorithmic trading, where Sezer and Ozbayoglu
[2018] notably propose a model that uses convolutional neural networks to treat financial time series as
images. Also fraud detection, advisory services, and loan approvals are mentioned in the report. In those
circumstances, classification algorithms that use neural networks to detect outliers have been popularised.

Hutchinson et al. [1994] introduce neural networks to hedging by proposing a non-parametric method
that simulates GBMs and learns the Black-Scholes option prices and followingly solves for the hedge
ratios. They apply their method out-of-sample to delta hedge S&P500 options, and compare their results
to the corresponding Black-Scholes values. Carverhill and Cheuk [2003] extend Hutchinson et al. [1994]
by investigating the best way to set up a neural network for option pricing and hedging. They argue that
it is better to train the neural networks on option price changes instead of the actual prices and from
there derive the hedge ratios. Amilon [2003] is also similar to Hutchinson et al. [1994] in that he uses the
Black-Scholes model to compare his neural network model for pricing and hedging. However, he extends
Hutchinson et al. [1994] by adding multiple input variables to the neural network in order to capture
better the relationship between the prices of the underlying asset and the options. He concludes that his
model is able to outperform the Black-Scholes model in terms of hedging and pricing of Swedish stock
index call options. Further applying neural networks to hedging is Sutcli↵e and Chen [2011]. They use
deep neural networks to price and hedge short Sterling options. They conclude that their hybrid neural
networks outperform both simpler neural networks and the Black-Scholes model on real-world market
data. The paper highlights the advantages of neural networks when it comes to pricing and hedging
non-vanilla options since they are more complex. Von Spreckelsen et al. [2014] is similar to the previous
papers in using neural networks for pricing and hedging, but their model can be used in real-time for
applications in high frequency trading.

Reinforcement learning, sometimes used with neural networks, has also allowed for greater generalisation
of models in finance. Charpentier et al. [2021] give an overview of applications for reinforcement learning
in finance, and including options pricing and hedging (risk management), there are mainly two other
areas; optimal asset allocation (portfolio optimisation), and market impact modelling. Moody et al.
[1998] and Moody and Sa↵ell [2001] were among the first to apply reinforcement learning to portfolio
optimisation as they use recurrent reinforcement learning to discover investment policies. Since the model
is recurrent, previous investment decisions describe the current investment decision. At the time, they
showed improved results compared to other trading strategies using real-world data. Deng et al. [2017]
extend the work by Moody et al. [1998] and Moody and Sa↵ell [2001] by introducing deep learning to
their reinforcement learning model. Additionally, they describe their approach as a first-time using deep
learning in combination with reinforcement learning for real-time trading. Almahdi and Yang [2017]
extend the work on recurrent reinforcement learning, but di↵er from the beforementioned papers as
they allocate assets based on the expected maximum drawdown risk measure. They conclude that they
outperform current hedge fund benchmark in portfolio performance. Wang and Zhou [2020] develop a
reinforcement learning-based portfolio selection model based on mean-variance selection in continuous
time. They state that their approach is almost model-free and works with both real data and simulated

4



2 Literature Review

data. Interestingly, they choose a simpler reinforcement learning model compared to one with neural
networks, due to the latter’s “black-box” nature and di�culties with small data sets2. This is also
remarked in our work. In market impact modelling, some notable papers include Spooner et al. [2018],
Guéant and Manziuk [2019], and Baldacci et al. [2019]. They all use reinforcement learning to improve
market maker decisions based on the information in order books, bid-ask spreads and other market
factors. These papers advocate for the benefits of using reinforcement learning to model market maker
behaviour.

Halperin [2017] is among the first to propose deep reinforcement learning to price and hedge options.
Their Q-learning algorithm learns the hedging strategies and prices based on trading data for a replicating
portfolio of a stock and a cash amount. It is first created in a parametric setting, but then it is able to
learn the strategies without any assumptions about the market, i.e. it becomes model-free. The model
is extended in Halperin [2019] on three specific points which include more comprehensive testing of the
performance of the model, inverse reinforcement learning, and a model to price and hedge a portfolio
of options instead of just a single option. Bühler et al. [2019] propose a general hedging framework
based on reinforcement learning and neural networks termed Deep Hedging which is regarded as the
state-of-the-art of hedging model. It is developed by researchers from the investment bank JP Morgan
with the aim of creating a hedging framework that can be applied in practice without the need for strict
assumptions or frequent human intervention. The framework does not assume any particular process for
the underlying asset (model-free), neither does it need to compute the traditional greeks (greek-free), and
it does not require any pricing model for the option. Compared to Halperin [2017] it also does not require
any parametric initial setup. The authors state that their framework can be used with high dimensional
derivatives, for any kind of liability, market dynamic, and market friction. Bühler et al. [2019] specifically
build on the ideas of Dupire et al. [1994], who propose a model that is able to compute greeks that are not
only dependent on the factors asset price and volatility, but also forward rate and implied volatilities. The
paper also extends the previous work by Bühler [2019], where the author discusses how one may hedge
a portfolio of derivatives for one step in the presence of transaction costs. Additionally, he advocates
for the use of quadratic conditional value at risk (Quadratic CVaR), a convex risk measure more suitable
for optimisation in the hedging framework than regular conditional value at risk (CVaR). This remark is
taken into account in our work.

Bühler et al. [2019] show that their hedging framework produces accurate hedging results alongside
generability and flexibility. However, we consider two drawbacks of the algorithm; the neural networks
do not perform well with small data sets, and the neural networks provide low explainability. Financial
datasets are often small (see for instance Lommers et al. [2021]), and some attempts have been made
to address this issue within Deep Hedging. The original authors admit to the issue related to small
data sets, and propose in Bühler et al. [2020] to use Variational Autoencoders to produce synthetic data
that accompany real data. In a similar fashion, Cuchiero et al. [2020] use generative adversarial neural
networks to calibrate local stochastic volatility models, with potential applications in Deep Hedging.
Besides the issue of small data sets, the neural networks are called “black-boxes”, meaning they do not
provide any direct insight into how the decisions are made, i.e. they lack direct transparency and are thus
not explainable by nature. This is partly due to the composition of multiple ridge functions within the
neural networks. Neither are they neural networks equipped with interpretability, meaning it is di�cult to
logically interpret the relationship between inputs and outputs3. These are topics of XAI, an increasingly
important part of regulatory frameworks in finance. In this thesis, we address both the shortcomings of
Bühler et al. [2019], emphasising the latter.

The BIS report Prenio and Yong [2021] studies the current guidelines and regulations that financial
institutions have to adhere to when it comes to AI governance, emphasising the importance of XAI.
They identify explainability through transparency and interpretability as essential factors for financial
institutions to implement in their services to provide insights to supervisors and customers. This means
that financial institutions should easily be able to explain how decisions are made, even if they are
performed by an algorithm. A practical test to verify the transparency of models is if the way they work
can be understood by non-technical board members, then this would imply that they can be understood by
supervisors as well. There are two main approaches to achieve this; use inherently explainable models (see

2Small data sets refers to datasets that are small in size, meaning lack of training samples.
3As the literature frequently mix the terms explainability, transparancy, and interpretability, we will for the purpose of

clarity relate transparency to insights to the inner workings of a model, interpretability to the relationship between input
and output, and explainability as the collection of the two terms.
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Rudin [2019]), or use explainable frameworks around “black-box” models. The two approaches relate to
two di↵erent types of explainability. It is important to distinguish between local and global explainability,
as noted by Molnar [2022], Chapter 3. Local explainability concerns how a model explicitly reaches a
particular decision by looking at individual components, while global explainability explains the overall
workings of a model. To further clarify the terms, we relate transparency to local explainability, while
interpretability helps explain a model locally and globally. Our work investigates a particular financial
model with both of these facets in mind.

Prenio and Yong [2021] further state that explainability and specifically transparency is a prerequisite for
some of the other guidelines on AI governance, such as reliability and accountability. The reason is that
without explainability, it might be challenging to track and solve errors and hold anyone accountable for
these errors. Prenio and Yong [2021] reference a report by the Financial Sector Supervisory Commission
of Luxembourg, Curridori [2018], and explain that explainability is particularly important when models
are “o↵-the-shelf”. That is, models and frameworks that are not developed in-house but rather acquired
from another entity or are open-source. It could be argued that this is case for general and open models
such as Deep Hedging by Bühler et al. [2019]. Prenio and Yong [2021] specifically refer to the OECD AI
Principles4 and G20 AI Principles5 as important contributions to the regulatory framework on XAI. These
guidelines mention transparency as an important general factor for the development of benefitial AI. The
European Union6, Germany7, Hong Kong8, the Netherlands9, Singapore10 and United States11 have all
issued AI principles for their respective financial sectors, and they list explainability as an important
factor for models whenever monetary gains are the objective.

We develop a general explainable hedging framework inspired by the work of Bühler et al. [2019], where
we use tree ensemble methods instead of neural networks for estimation of the hedging strategies. To the
best of our knowledge, this is the first time such an approach is proposed in the literature, and it neatly
combines subjects of AI, finance, and regulations. A major benefit of tree ensemble methods is that they
provide direct insight and transparency towards the decisions that are made within the model, while
still being able to map complex relationships between input and output (non-linearities). Additionally,
tree methods usually work better on small data sets compared to neural networks [Treboux et al., 2018],
and depending on the structure of the data, they might outperform neural networks as in the medical
paper Lundberg et al. [2020]. In finance, Krauss et al. [2017] combine gradient boosted trees with neural
networks to improve out-of-sample predictions of statistical arbitrage. Furthermore, Gradojevic and
Kukolj [2022] state that they address the interpretability of non-parametric option pricing models by use
of random forest and the extreme gradient boosting models for di↵erent market regimes. They show
the superiority of these explainable ML models in terms of accuracy and explainability compared to the
neural networks pricing model presented by Culkin and Das [2017].

In this thesis we adopt the LightGBM model introduced by Ke et al. [2017]. LightGBM extends the
primary proposal on Gradient Boosting Decision Trees by Friedman [2001], but also extend later models
such as pGBRT by Tyree et al. [2011], and XGBoost by Chen and Guestrin [2016]. It di↵ers from the
previous ones because it delivers substantially higher speed at approximately the same accuracy. Papers
applying LightGBM and XGBoost in finance are primarily concerned with classification tasks such as
default predictions and customer loyalty predictions. These methods preferably require large datasets,

4Organisation for Economic Cooperation and Development (2019): OECD Principles on Artificial Intelligence: https:
//oecd.ai/en/ai-principles

5G20 (2019): G20 ministerial statement on trade and digital economy: https://wp.oecd.ai/app/uploads/2021/06/
G20-AI-Principles.pdf

6European Insurance and Occupational Pensions Authority (2021): Artificial intelligence governance principles: to-
wards ethical and trustworthy artificial intelligence in the European insurance sector : https://www.eiopa.europa.eu/
document-library/report/artificial-intelligence-governance-principles-towards-ethical-and_en

7Federal Financial Supervisory Authority of Germany (2021): Big data and artificial intelligence: Principles for the
use of algorithms in decision-making processes: https://www.bafin.de/SharedDocs/Downloads/EN/Aufsichtsrecht/dl_
Prinzipienpapier_BDAI_en.html

8Hong Kong Monetary Authority (2019): High-level Principles on Artificial Intelligence: https://www.hkma.gov.hk/
media/eng/doc/key-information/guidelines-and-circular/2019/20191101e1.pdf

9Netherlands Bank (2019): General principles for the use of AI in the financial sector : https://www.dnb.nl/media/
voffsric/general-principles-for-the-use-of-artificial-intelligence-in-the-financial-sector.pdf

10Monetary Authority of Singapore (2018): Principles to promote fairness, ethics, accountability and transparency in
the use of AI and data analytics in Singapore’s financial sector : https://www.mas.gov.sg/~/media/MAS/News%20and%
20Publications/Monographs%20and%20Information%20Papers/FEAT%20Principles%20Final.pdf

11National Association of Insurance Commissioners (2020): Principles on Artificial Intelligence: https://content.naic.
org/sites/default/files/inline-files/AI%20principles%20as%20Adopted%20by%20the%20TF_0807.pdf
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2 Literature Review

and a couple of notable papers include Zhou et al. [2019] and Machado et al. [2019]. In addition to using
a more explainable model, we calculate Shapley values to improve the interpretability of X Hedging and
Deep Hedging, and to highlight the local explainability of X Hedging that Deep Hedging does not have.
In line with this work is Buckmann et al. [2021], who use Shapley values to explain neural networks that
forecast financial time series. They are able to explain feature importance akin to conventional methods
that are not “black-box”.
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3 Methodology

3 Methodology

Our hedging framework, X Hedging, is inspired by Bühler et al. [2019], with some important new proposals
that we highlight in this section. The main motivation for a market maker or an OTC trader that hedges
against a liability Z is to minimize the risk of their total position to profit from the bid-ask spread.
Hedging occurs at discrete time steps tk, where the time index k = 0, 1, 2, . . . n. Further are t0 = 0 and
tn = T , where T is the maturity of the liability Z. The purpose is to find the optimal strategy �k 2 R of
the hedging instrument Sk at each discrete time step tk12. The hedging positions are defined as

(� · S)T :=
n�1X

k=0

�k · (Sk+1 � Sk). (1)

One of the main advantages of a non-parametric hedging model is that it can account for market frictions
such as transaction costs and liquidity constraints. To simplify the notation, we define ��1 = �n = 0.
The latter condition will also imply full liquidation in T . The market frictions’ impact will depend on
the change in the hedging strategies, and the total sum of the market frictions may be written generally
as

CT (�) :=
nX

k=0

ck(�k � �k�1), (2)

where ck : R! R, and �k � �k�1 is the change in the hedging strategy between two time steps. We focus
on two types of market frictions, namely fixed and proportional transaction costs. As we have seen, these
transaction costs have been extensively studied in the literature by Leland [1985], Hodges and Neuberger
[1989], Davis et al. [1993], and even Bühler et al. [2019]. Given a cost constant  > 0, fixed transaction
costs are defined as

ck(x) := 1|x|�✏, (3)

where 1 is the identicator function which is zero for inputs below ✏ and one for inputs above ✏, and ✏ is
the hedging strategy change threshold. Proportional transaction costs are given by,

ck(x) := Sk|x|. (4)

The fixed transaction cost will impose the same cost for every change in hedging strategy that is larger
than the threshold ✏, and zero otherwise. The proportional transaction cost will impose a cost proportional
to the amount of change in the hedging strategy and proportional to the value of the hedging instrument.
That is, a higher value of the hedging instrument, and a higher change in hedging strategy will impose a
greater cost compared to a smaller value of the hedging instrument and a smaller change in the hedging
strategy.

The total portfolio position of the hedger at time step T , which translates to the final profit and loss
(P&L), is given by

P&LT (Z, p, �) := �Z + p+ (� · S)T � CT (�), (5)

where p amounts to the initial cash injection, and the premium of the liability is Z. Negative values of
the P&LT relate to losses while positive values relate to gains. The goal of the hedger is to minimize the
expected value of a loss function ` associated with the P&L, i.e.

12The framework can be extended to d hedging instruments where the optimal hedging strategy for the d’th instrument

S
(d)
k is �

(d)
k 2 Rd.
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⇡ := inf
�
E[`(P&LT (Z, p, �))] (6)

The optimal choice of � in Equation (6) is based on the information available to the hedger at each time
step tk, denoted by Ik. We use Ik = Sk. Since we define the hedging instrument Sk as the value of an
asset at time tk, Ik may be interpreted as the information about the movement of the underlying asset
at time step tk13.

We define the liability Z as a European vanilla call option with payo↵ max {ST �K, 0}, where ST is the
value of the underlying asset at maturity, and K is the option strike price14. In summary, the framework
hedges a vanilla call option by trading the underlying asset, based on the underlying asset’s movement.
This is equivalent to standard delta-hedging by Black and Scholes [1973], providing a solid reference point
to benchmark our hedging model. Under the risk-neutral measure, we assume the underlying asset value
S follows a Geometric Brownian Motion (GBM),

dSt = (r � �)Stdt+ �StdWt, (7)

where St is the continuous price of the underlying asset, dSt is the incremental change in the underlying
asset, r is the constant interest rate, � is the continuous dividend yield, � is the annual volatility, and
{Wt : t � 0} is a standard Brownian motion. The analytical solution to the stochastic di↵erential equation
(SDE) in Equation (7) is given by

St = S0e
(r����2

2 )t��Wt , (8)

where S(0) represents the initial asset price. To simulate the evolution of the asset price, we discretize
Equation (8) for the discrete time steps tk as follows,

Sk+1 = Ske
(r����2

2 )�t��
p
�tWk , (9)

where �t = tk+1 � tk is the incremental time change.

Deep Hedging by Bühler et al. [2019] uses a set of deep neural networks to map the information set
{I0, I1, . . . , In} to the hedging strategies �k. A feed-forward neural network �k := Fk(Ik; ✓k) for each time
step tk will be a function of the information at time tk given the neural network parameters ✓k. The
objective of the neural networks at each time step tk is to optimize the parameters ✓k such that ⇡ in
Equation (6) is obtained. This is achieved by obtaining a loss for each input and using backpropagation
and stochastic gradient descent (SGD) to update the weights. For an in-depth explanation of these key
concepts of neural networks we refer to Goodfellow et al. [2016]. Bühler et al. [2019] prove that the
neural networks theoretically find the optimal hedging strategy by applying the universal approximation
theorem. We use Deep Hedging to benchmark the performance of X Hedging, and to highlight the
advantages of X Hedging.

To make Deep Hedging more explainable we propose to replace the neural networks and followingly the
loss gradient calculations with more explainable tree ensemble methods and a custom loss function setup
and optimization. This is the basis for X Hedging. We replace the neural networks Fk(Ik; ✓k) with a
specific gradient boosting decision tree (GBDT) method Gk(Ik; ✓̇k) for each time step tk where ✓̇k are
the parameters of the GBDTs. GBDT is a class of tree ensemble method first proposed by Friedman
[2001], and works by sequentially creating weak decision trees gkm(Ik; ✓̈k) for m 2 N0 where the model
parameters ✓̈k are selected to improve the loss of the previous weak decision tree. This is called boosting,
and the final ensemble is a combination of the weak decision-trees, Gk(Ik; ✓̇k) =

P
m wkmgkm(Ik; ✓̈k),

where wkm is the importance weight associated with the m-th weak decision tree at time step tk. An

13The framework can be extended to include multiple information sources, e.g. news sentiment analyses or trader opinions.

In this case, I
(u)
k 2 Ru would denote the u-th information source at time tk.

14Any type of liability, or financial derivative, may be used with this hedging framework as long as the payo↵ is well-
defined.
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important attribute of these tree methods is that they provide explainability of each output by visually
tracking every decision the model makes along the tree.

The specific GBDTmethod we implement is LightGBM proposed by Ke et al. [2017]. The key contribution
of LightGBM is that it is more e�cient than other GBDT models while it still produces accurate results.
Ke et al. [2017] attributes this to their two novel techniques; Gradient-Based One-Side Sampling (GOSS)
and Exclusive Feature Bundling (EFB). GOSS works by using all the instances with large gradients and
randomly sampling the ones with low gradients. This is an alternative to simply using a subset of the
instances. EFB reduces the number of features by bundling the most important ones together.

Figure 1 shows both X Hedging and Deep Hedging for the first time step, an arbitrary time step, and
the last time step.
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Figure 1: Visual overview of X Hedging and Deep Hedging frameworks. Green boxes contain inputs
and outputs. The blue boxes represent mathematical operations. The orange boxes represent all the
terms that are subtracted in Equation (5), and the yellow boxes are the neural network or tree-based
model and their output.

An important di↵erence between X Hedging and Deep Hedging is that the former cannot use SGD and
backpropagation of the loss function `(P&LT ) to obtain optimal values of ✓̇k for Equation (6). This is
due to how the parameters are updated in the trees in LightGBM. Instead, each LightGBM model Gk

needs to be fitted individually based on the global loss function `(P&LT ). After fitting all the LightGBM
models sequentially for one iteration, we train each model in random order to introduce stochasticity.
The stochasticity is introduced to reduce the probability of finding a local minimum, instead of a global
one. This uses the same principles as SGB to avoid ending up in local minima. As far as we know, this
is a novel approach to optimizing a reinforcement learning model, consisting of multiple tree ensemble
models.

Furthermore, compared to the neural networks, the LightGBM models need not only the gradients of
the loss function, but also the Hessians. That is, the second derivate of the loss function `(P&LT ) with
respect to �k. The complexity of the loss function `(P&LT ) makes it di�cult to analytically derive a
formula for the gradients and the Hessians. Therefore, a computational graph of `(P&LT ) is created to
simplify the calculation process. The graph uses automatic di↵erentiation, more specifically reverse-mode
auto di↵erentiation, for fast computation of the first and second order derivatives. Assume that we want
to calculate the gradients and the Hessians for Gk(Ik; ✓̇k). For Figure 1, the final green box with P&LT

needs to be di↵erentiated with respect to the yellow boxes with �k. This can be e�ciently computed by
using the chain rule.

LightGBM regressions are constructed by multiple trees, where each node in the trees divide the data
based on a greater or equal condition for one feature. Therefore, the final regression line will consist
of multiple orthogonal lines, making it non-smooth and noisy. However, the hedging strategies �k are
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assumed to be smooth functions since the setup of the framework resembles delta hedging by Black and
Scholes [1973]. Based on this assumption, a Savitzky–Golay filter, proposed by Savitzky and Golay [1964],
is used to smooth the regression line. The smoothing is performed by a convolution, where successive
adjacent data points are fitted to a second order polynomial with linear least squares. This step is only
used for inference after the models are trained. The smoothing increases the performance of X Hedging
without losing the benefit of explainability and transparency of the framework. Smoothing is a common
approach to preprocess financial data. Meinl and Sun [2015] review some methods that are used to
smooth financial data, and explain the importance of this process.

The type of loss function ` in Equation (6) inherently decides what the hedger wants to achieve. We
consider three di↵erent loss functions. The first is the mean squared error (MSE), defined as

MSE(Y ) =
1

N

NX

i=1

(Ŷi � Yi)
2, (10)

where N is the number of samples, Ŷi are the estimated target values, and Yi are the true target values.
In our case, with MSE as the loss function, we are minimizing the mean squared error between the
calculated P&LT in Equation (6) and zero, which is our target. Zero is the target such that the bid-ask
spread, which is not included in Equation (5), will be the profit of the hedger. The second loss function
we consider is the Quadratic CVaR, defined by Bühler [2019], and derived from the CVaR. CVaR is
a convex risk measure, and has some properties found to be useful for financial portfolio optimization.
These properties include convexity (diversification of assets), monotonocity (less cash injection is needed
in a better portfolio), and cash-invariance (cash deposits reduce the risk equivalent to the deposit value).
Convex risk measures are studied in the literature by Xu [2006], Föllmer and Schied [2008], İlhan et al.
[2009], and Bühler et al. [2019], among others. The CVaR at ↵% level is the expected return on the
portfolio in the worst ↵% of the cases, defined for any random variable Y as

CVaR↵(Y ) =
1

↵

Z ↵

0
VaR�(Y )d�, (11)

where VaR�(Y ) is the value at risk at the ↵% level. Using CVaR as the loss function means that we
are specifically punishing the hedging decisions that result in very large losses. We are minimizing the
risk of the tails in the distribution of P&LT . This transforms the learning problem from a supervised
learning problem when Equation (10) is used, to a reinforcement learning problem. This is characterized
as a reinforcement learning problem since there are no targets, and the reward function is in our case the
convex risk measure. Let Y 0 be the set with the ↵% smallest values, then the discrete CVaR is calculated
by,

CVaR↵ =
1

|Y 0|
X

y02Y 0

y0, (12)

where y0 is the ↵% lowest P&LT . The second derivative of Equation (12) with respect to y0 is zero.
Since LightGBM needs both the gradients and the Hessians of `, we use Quadratic CVaR, also proved
to be a convex risk measure. Bühler [2019] argues that Quadratic CVaR is an e�cient risk measure for
optimization, and that it is easy to interpret the result because of the relation to the traditional CVaR.
The second derivative of Quadratic CVaR is non-zero, thus applicable for X Hedging. The discrete
Quadratic CVaR is given by,

Quadratic CVaR↵ =
1

|Y 0|
X

y02Y 0

(y0)2. (13)
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The proposed algorithm for X Hedging is described in Algorithm 1.

Algorithm 1 X Hedging

1: T : number of time steps
2: N : number of asset paths
3: K : options strike price
4: S : T ⇥N simulated asset prices
5: Z : European vanilla call payo↵, max{ST �K, 0}
6: c : market friction for each time step tk. Either 0, fixed, or proportional.
7: ` : loss function, MSE or Quadratic CVaR
8: G : n-1 LightGBM models
9: J : Number of iterations for random training

10: �0 : Black-Scholes delta
11: for t from n to 1 do
12: �t  Gk(Sk) for all N paths
13: Compute loss ` between output and target

14: Compute gradient @`(P&LT )
@�k

and Hessian @2`(P&LT )
@�2k

15: Update model weights of Gk

16: end for
17: R : Sample n random values from 1 to n
18: for j in J do
19: for k in R do
20: �k  Gk(Sk) for all N paths
21: Compute loss ` between output and target

22: Compute gradient @`(P&LT )
@�k

and Hessian @2`(P&LT )
@�2k

23: Update model weights of Gk

24: end for
25: end for
26: Calculate P&LT (Z, p,Gk), and apply Savitzky–Golay filter.

In our experiments, we consider as a baseline hedging a European vanilla call option with an underlying
asset that follows a GBM, and we assume no market frictions. The Black-Scholes model can be used
to solve for the hedging strategies in this setup. To o↵set the risk produced by the movement of the
underlying asset at time t, �t underlying assets are purchased, where

�t = e��(T�t)N(d1), (14)

where N(x) is the cumulative function of a standard normal distribution, and d1 is defined by

d1 =
ln(S/K) + (r � �+ 0.5�2)

�
p
T

. (15)

Replacing � with � in Equation (5) we get the baseline model P&LT (Z, p,�).

To benchmark X Hedging when we add transaction costs, we use the extended Black-Scholes model by
Leland [1985]. This particular extended model is selected due to its simplicity and wide adoption in the
literature. Leland [1985] shows that the Black-Scholes delta hedging with proportional transaction costs
c can be obtained by discretizing the Black-Scholes equation and transforming the variance �2 into

�̂2(�2, k,�t) = �2

"
1 + 

p
2/⇡

�
p
�t

#
. (16)

We want to compare the hedging strategy obtained by the Black-Scholes model without and with trans-
action costs to the hedging strategies from Deep Hedging and X Hedging. For clarity, we term these
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hedging models BS Hedging and BS-L Hedging. BS Hedging refers to the hedging model that uses the
Black-Scholes model, while BS-L Hedging refers the extended Black-Scholes model by Leland [1985].

To achieve global explanation of X Hedging, as well as Deep Hedging and the benchmark Black-Scholes
hedging models, we use Shapley values to interpret the relationship between input and output in the
model. SHapley Additive exPlanations (SHAP)15 performs a complex sensitivity analysis which is based
on Shapley values. SHAP only requires a model that maps inputs to outputs and may be used to interpret
all prediction models. Lundberg and Lee [2017] explains how Shapely values are calculated for machine
learning models. Shapley values are a solution concept from cooperative game theory, first introduced by
Shapley [1953]. The concept works by assigning each cooperative game a unique distribution of a total
surplus generated by the coalition of all players. The Shapley values are calculated by

�i(v) :=
X

U✓M\i

|U |!(m� |U |� 1)!

m!
(v(U [ i)� v(U)), (17)

where m is the total number of players, M is the set of all players, U is a coalition of players, v(U) is
the worth of the coalition, and i is one player. This concept has become a valuable theoretical principle
for XAI. It transforms the setting by treating each feature as a player, the set of features as a set of
players, and the model as a game. The calculated Shapley values are interpreted as the contribution of
each feature to the prediction.

To compare the di↵erent hedging models, we need a statistical distance between the resulting histograms
of the final P&LT . We use Kullback–Leibler divergence or relative entropy, proposed by Kullback and
Leibler [1951], which is given by,

DKL(P ||Q) =
X

x2X

P (x) log

✓
P (x)

Q(x)

◆
, (18)

where P and Q are two discrete probability distributions, and X is the set of all values of x with non-
zero probability for P and Q distributions. The KL-divergence is non-negative and does not have any
upper limit. A KL-divergence of zero indicates that the two probability distributions are identical. A
disadvantage of the KL-divergence is that it is not symmetric, meaning, DKL(P ||Q) 6= DKL(Q||P ). This
is a problem when we want to compare models without any benchmark model. Therefore, we need a
symmetric statistical distance to compare probability distributions when a reference distribution does not
exist. The Jenssen-Shannon divergence (JS-divergence), defined by Lin [1991], is a statistical distance
that is based on KL-divergence, and given by,

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (19)

where M = 1
2 (P +Q). Since JS-divergence is symmetric, we have DJS(P ||Q) = DJS(Q||P ). As we move

from the baseline models in our experiments to add more complexity, this is an advantageous feature. As
with KL-divergence, a JS-divergence value of zero indicated that the two probability distributions being
compared are identical.

15Documentation: https://shap.readthedocs.io/en/latest/index.html
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4 Results and Discussion

4 Results and Discussion

Various numerical experiments16 of X Hedging and Deep Hedging are considered. At first, we validate the
performance of X Hedging in Section 4.1 to show that the framework produces accurate hedging strategies
in various configurations, and that it is on-par with Deep Hedging and the Black-Scholes benchmarks.
The configurations include di↵erent market frictions, including proportional and fixed transaction costs,
no transaction costs, and two types of loss functions, namely MSE and Quadratic CVaR. Then, in
Section 4.2 we comment on the small data issue raised in Section 2 and Section 3 by analysing X Hedging
and Deep Hedging for a varying number of in-sample training paths. Finally, in Section 4.3 we discuss the
explainability of X Hedging and Deep Hedging based on the SHAP framework, and the inherent benefits
of the tree ensemble method in X Hedging.

The parameters used to simulate the underlying asset for the vanilla European call options are presented
in Table 1. In Sections 4.1 and 4.3 the hedging models are trained in-sample on 20 000 simulated GBM
paths and tested out-of-sample on 10 000 other simulated GBM paths. In Section 4.2 the in-sample
training paths varies, but the number of out-of-sample test paths remains the same. The parameters
used for the LightGBM models in X Hedging17 and for the neural networks in Deep Hedging18 are given
in Tables 2 and 3, respectively. Appendix A provides an overview of all experiments conducted in this
entire section along with their di↵erent configurations.

S0 K r � � T n N
1 1 0.0 0.0 0.2 1 10 20 000

Table 1: GBM and option parameters used to simulate the underlying asset prices.

N. data leaf N. leaves N. boost rounds Learning rate Early stopping Iterations
5 10 + j 10 + 5j 0.1 10 15

Table 2: Parameters used for the LightGBM models in X Hedging.

Activation function Optimizer Initial learning rate Neurons Batch size Epochs
tanh Adam 0.01 32 1024 10000

Table 3: Parameters used for the neural networks in Deep Hedging.

4.1 Performance Validation

We start by validating X Hedging with MSE defined in Equation (10) for these scenarios: no market
frictions, proportional transaction costs, and fixed transaction costs. Table 4 summarises the results
from experiments with X Hedging, Deep Hedging, and BS Hedging when there are no market frictions,
and MSE defined is the loss function `. In this base-case, BS Hedging, with deltas shown in Equation
(14), is used as the benchmark because the Black-Scholes assumptions hold. Observable from the means,
standard deviations and JS-Divergence values, the results show that both X Hedging and Deep Hedging

16The computations were performed on a MacBook Pro with 2.2GHz Intel Core i7 CPU - 4 core, and 16Gb RAM.
17The minimum amount of data points in each leaf node is given by N. data leaf. Larger values will result in lower

variance. The maximum number of leaves for each tree, where j is the current iteration, is given by N. leaves. For every
iteration the maximum number of leaves will increase in order to create a more complex model without overfitting in the
beginning. The number of boosting rounds used to reduce the loss of the model output, where j is the current iteration,
is given by N. boost rounds. For every iteration the number of boosting rounds will increase to create a more complex
model. The learning rate multiplier for each weak learner is the learning rate. The maximum of boosting rounds without
loss improvement is set by early stopping. The number of times we randomly iterate over each model at each time step is
given by iterations.

18The activation function tanh is used due to its similarities with the Black-Scholes hedging strategies, which should
make finding the correct strategies more e�cient. The stochastic gradient descent optimizer Adam is chosen due to its
well-documented performance. The initial learning rate 0.01 is chosen as a standard value. The size of the neural networks,
the number of neurons is set to 32 as experiments showed that this gave good results. The same argument holds for the
batch size and the number of epochs.
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are similar to BS Hedging. All the hedging models have a mean close to the target value zero, which is
a good indication that they produce the optimal hedging strategies. Both X Hedging and Deep Hedging
produce JS-divergence values (see Equation (19)) with BS Hedging lower than 0.00119. The values are not
exactly zero, but some of the error in the JS-divergence might be a result of discretizing the P&LT into 50
bins. The high similarity in the P&LT distributions indicates that both frameworks are good estimators in
this base-case20. Observing the mean values, and comparing the JS-divergence values between X Hedging
and BS Hedging, and Deep Hedging and BS Hedging, we that X Hedging is closer to BS Hedging and has
a higher mean. However, X Hedging has a slightly higher standard deviation. These di↵erences between
X Hedging and Deep Hedging are not large enough to conclude that one of the frameworks outperforms
the other. Noting the di↵erent computational times in Table 4, it is as expected that the analytical
solution of BS Hedging uses significantly less time than the two AI models. What is more interesting is
that the computational times of X Hedging and Deep Hedging are fairly similar. This similarity could
be interpreted as advantageous for X Hedging as it does not limit its practical applicability compared
to Deep Hedging. However, it should be noted that more sophisticated hyperparameter optimization
could lead to faster convergence for the neural networks in Deep Hedging. The histograms in Figure 2
reveal not only the similarities of the three P&LT distributions, but also the characteristics of them. All
histograms are similar to a normal distribution, but with a longer tail for negative values. This implies
that the hedging strategy will give big losses in some edge cases, but that most of the strategies produced
are acceptable.

Mean St.Dev JS(DH||z) JS(XH||z) Time

BS -0.000192 0.021327 0.000437 0.000398 10.0
DH -0.000152 0.021415 - 0.000632 803.0
XH -0.000146 0.021482 - - 872.0

Table 4: Summary of results from X Hedging (XH), Deep Hedging (DH), and BS Hedging (BS) with
no market frictions and MSE as the loss function. Presented is the mean and the standard deviation
for each P&LT distribution together with the JS-divergence values between them. The computational
time is given in seconds, and z is a placeholder.

Figure 2: Histograms for X Hedging (XH), Deep Hedging (DH), and BS Hedging (BS) with no market
frictions and MSE as the loss function.

19In the development of these experiments we have analysed histograms of multiple P&LT distributions, and come to
the conclusion that a JS-divergence value of 0.001 is a reasonable performance threshold to indicate adequate similarity
between two distributions.

20We report results related to the P&LT as opposed to `(P&LT ) to compare results between experiments that use di↵erent
loss functions.
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Figure 3 shows the hedging strategies for X Hedging, Deep Hedging, and BS Hedging with no market
frictions and MSE as the loss function `, at each time step tk. The hedging strategies for k = 0 is not
visualised since S0 has the same value for all simulated paths, and hence the strategies will only consist
of one point at S0. Neither do we show the strategy for k = 10 since hedging does not occur at the last
time index, indeed it is where the P&LT is calculated. From k = 1 to k = 9, the hedging strategies
from X Hedging and Deep Hedging approach the delta strategies from BS Hedging. One can observe
that X Hedging and Deep Hedging are most di↵erent from BS Hedging for small and large values of S
when k = 1 and k = 2. This is expected since the simulated data does not reach these ranges for small k
values. X Hedging has an almost horizontal line in these intervals, which correspond to the leaves with the
lowest and highest hedging strategies. This lets us observe which ranges the simulated underlying asset
prices are within. It is important to notice that the seemingly inaccurate strategies for the early time
steps in Figure 3 do not particularly a↵ect the final P&LT negatively because very few paths will reach
the low and high values. It is also evident that the shapes of the hedging strategies are approximately
linear at the first time steps, but then they approach step functions towards k = 9. This is natural since
it is harder to predict where each path will end up at earlier time steps compared to the ones closer
to maturity. Meaning, at early time steps few decisive hedging decisions are made, while at the later
time steps the hedging models either hedge a lot or nothing. One final observation about the strategies
is the di↵erence in smoothness. X Hedging produce less smooth strategies than the other two hedging
models. This is because the decision trees in X Hedging produce uneven strategies, and even applying
the Savitzky–Golay filter does not make the strategies completely smooth.

Figure 3: Hedging strategies for X Hedging (XH), Deep Hedging (DH), and Black-Scholes (BS) from
k = 1 to k = 9. No market frictions are considered and MSE is the loss metric. Sk denotes the
underlying asset value, and �k denotes the corresponding hedging strategy at time index k.

Table 5 summarises the results from experiments with X Hedging, Deep Hedging, and BS-L Hedging
when proportional transaction costs defined in Equation (4) are considered and MSE is the loss function
`. BS-L Hedging is used to benchmark X Hedging and Deep Hedging by adjusting BS Hedging with
a di↵erent volatility, as shown in Equation (16). In these experiments, we consider the proportional
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transaction cost constant  = 0.005. This value is realistic in terms of applications for real markets,
and it is in the interval of values that Leland [1985] considers. The mean and standard deviations in
Table 4 are very similar for the three hedging models. The JS-divergence value between X Hedging
and Deep Hedging once again highlights that our novel approach is able to produce similar results to
Deep Hedging. However, comparing X Hedging and Deep Hedging to the benchmark BS-L Hedging, we
see that the JS-divergence values are significantly higher than without transaction costs in Table 4. In
this instance it is worth noting that the values are still roughly at the performance threshold of 0.001,
indicating good performance towards the benchmark. We should also mention that X Hedging and Deep
Hedging handle the transaction costs in a di↵erent manner to BS-L Hedging, which adjusts the magnitude
of the volatility parameter. As a consequence, we can hypothesize that X Hedging and Deep Hedging in
fact should be the preferred methods since they handle the transaction costs directly and in a general
sense, instead of indirectly via the specific volatility parameter. Comparing Table 4 and Table 5 it should
also be mentioned that after adding the proportional transaction cost to the hedging models, their mean
values decrease. This is expected since the market frictions make it more expensive to hedge the options.

Mean St.Dev JS(DH||z) JS(XH||z) Time

BS-L -0.007318 0.022197 0.001039 0.001285 10.0
DH -0.007338 0.021980 - 0.000651 850.0
XH -0.007299 0.022011 - - 967.0

Table 5: Summary of results from X Hedging (XH), Deep Hedging (DH), and BS-L Hedging (BS-L)
with proportional transaction costs and MSE as the loss function. Presented is the mean and the
standard deviation for each P&LT distribution together with the JS-divergence values between them.
The computational time is given in seconds, and z is a placeholder.

The histograms of the P&LT distributions of X Hedging, Deep Hedging and BS-L Hedging in Figure 4
show how similar results the three hedging models produce. The characteristics of the distributions are
similar to the ones in Figure 2, but there are a few di↵erences. For one, the distributions are shifted
to the left. As mentioned, this implies a more negative mean, but one can observe that this indicates
higher values for the left-most outliers. Also, BS-L Hedging separates itself from X Hedging and Deep
Hedging in a more prominent way around the mean. The standard deviations from this experiment are
higher than the experiment without any market frictions. A higher standard deviation may indicate a
more di�cult hedging problem since the hedging model is not able to remove as much variation in the
P&LT . Therefore, it can be argued that it is harder to produce accurate hedging strategies when market
frictions are added.

Figure 4: Histograms for X Hedging (XH), Deep Hedging (DH), and BS-L Hedging (BS-L) with
proportional transaction costs and MSE as the loss function.
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The hedging strategies for X Hedging, Deep Hedging, and BS-L Hedging are presented in Figure 5 when
proportional transaction costs are considered and MSE is the loss function. Equivalent to Figure 3, the
strategies are the most dissimilar at early time steps, before they approach almost the same strategy
towards the end. As in the previous experiment, the strategies from X Hedging approximate well the
benchmark, even with the horizontal lines at the early time steps.

Figure 5: Hedging strategies for X Hedging (XH), Deep Hedging (DH), and Black-Scholes Leland
[1985] (BS-L) from k = 1 to k = 9. Proportional transaction costs are considered and MSE is the loss
metric. Sk denotes the underlying asset value, and �k denotes the corresponding hedging strategy at
time index k.

Table 6 summarises the results from experiments with X Hedging and Deep Hedging when fixed transac-
tion costs as defined in Equation (3) are considered and MSE is the loss function `. The fixed transaction
cost constant is set to  = 0.001 and the change threshold is ✏ = 0.0001. For this case only X Hedg-
ing and Deep Hedging are compared to each other, since as far as our research indicates there are no
analytical solutions for this type of fixed transaction costs in this specific setting. The results show
that X Hedging and Deep Hedging have similar performance under these conditions. The means and
standard deviations are very close, and the JS-divergence value between the two frameworks is as low as
the previous experiments. Compared to Table 4 it is evident that the fixed transaction costs a↵ect the
final P&LT . The mean values in Table 6 are approximately two orders of magnitude more negative than
the corresponding mean values in Table 4, which is expected since this is equivalent to the number of
hedging opportunities multiplied with the fixed transaction cost. These results show that the frameworks
consider it more profitable to hedge and pay the cost of the transaction, as opposed to not hedging and
avoiding the transaction costs. Since the standard deviations are approximately the same in Tables 4 and
6, we can further argue that the P&LT distributions are similar, but simply shifted by a factor of one
hundred to the left. The histograms in Figure 6 support this claim, as it is evident that the value for 
determines how much the distributions will be shifted. An increase in  results in a bigger shift towards
the left. For small values of ✏ the general observation of shift would still be the same. This might be due
to the gradient of the identicator function in the fixed transaction cost function (see Equation (3)). The
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gradient is one if the underlying asset is bought, and zero if it is not bought. A constant gradient will not
a↵ect the learning, and thus have a small influence on the strategies. It could be argued that it would
be reasonable to include a constructed gradient that reflects the bias of the traders. This is because a
trader does not buy a small position when there exists a fixed transaction cost. Instead, the trader buys
less frequent and larger positions to reduce the sum of transaction costs. This bias could be created by
introducing a constructed gradient which shifts the hedging strategies to the right and make them more
similar to a step function.

Mean St.Dev JS(DH||X) Time

DH -0.010187 0.021443 0.000682 888.0
XH -0.010106 0.021581 - 1012.0

Table 6: Summary of results from X Hedging (XH), and Deep Hedging (DH) with fixed transaction
costs and MSE as the loss function. Presented is the mean and the standard deviation for each P&LT

distribution together with the JS-divergence values between them. The computational time is given
in seconds, and z is a placeholder.

Figure 6: Histograms for X Hedging (XH), and Deep Hedging (DH) with fixed transaction costs and
MSE as the loss function.

Figure 7 visualises the hedging strategies for X Hedging and Deep Hedging when fixed transaction costs
are considered. Similar to the previous experiments, the strategies of the two frameworks converge
towards each other as the option approaches maturity, but are particularly di↵erent for the early time
steps. The strategies are especially di↵erent for small and large values of the underlying asset S, where
X Hedging will assume the same strategy, but Deep Hedging continuously changes strategy. Again, since
few asset values are in these ranges, their di↵erence will not be notable in the final P&LT distributions.
Upon further inspection, it is observable that the strategies are similar to the strategies in Figure 3,
where no market frictions are considered. This is probably due to to the small e↵ect from the constant
gradients of Equation (3).
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Figure 7: Hedging strategies for X Hedging (XH), and Deep Hedging (DH) from k = 1 to k = 9.
Fixed transaction costs are considered and MSE is the loss metric. Sk denotes the underlying asset
value, and �k denotes the corresponding hedging strategy at time index k.

The preceding experiments have validated X Hedging with MSE as the loss function for various market
frictions. The next case considers Quadratic CVaR defined in Equation (13) as the loss function, but
only with proportional transaction costs as this is the most complex setting for the hedging models.
Table 7 summarises the results from experiments with X Hedging, Deep Hedging, and BS-L Hedging
when proportional transaction costs are considered and Quadratic CVaR is the loss function `. Bühler
[2019] argues that a small quantile ↵ for Quadratic CVaR will lead to a sparse gradient, and therefore a
slow convergence when we optimize using this loss function. Therefore, there is a tradeo↵ between the
computational time and the size of ↵, and we select ↵ = 0.5 to increase the convergence speed while still
reducing the tail loss. Table 7 reveals that the mean values of the distributions for Deep Hedging and X
Hedging are higher when Quadratic CVaR is used compared to MSE (see Table 5). Thus for minimizing
losses, this indicates that Quadratic CVaR should be the preferred loss function `. We observe that the
JS-divergence values between all the models are notably higher than in the previous experiments. This
might be because Quadratic CVaR is a more complex function to minimize due to the sparse gradients.
The increased JS-divergence between X Hedging and Deep Hedging shows that maybe the frameworks
could have been trained longer when Quadratic CVaR is used. Table 7 also shows that X Hedging has a
lower mean and a lower JS-divergece against BS-L Hedging than Deep Hedging, which proves that our
proposed hedging framework performs better in this setup.
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Mean Std JS(DH||z) JS(XH||z) Time

BS-L -0.006963 0.022263 0.00294 0.002170 10.0
DH -0.006747 0.022440 - 0.001093 860.0
XH -0.006626 0.022412 - - 833.0

Table 7: Summary of results from X Hedging (XH), Deep Hedging (DH), and BS-L Hedging (BS-L)
with proportional transaction costs and Quadratic CVaR as the loss function. Presented is the mean
and the standard deviation for each P&LT distribution together with the JS-divergence values between
them. The computational time is given in seconds, and z is a placeholder.

Figure 8 shows the histograms of the di↵erent P&LT distributions when proportional transaction costs
and Quadratic CVaR is considered. Comparing Figure 8 to Figure 4 one can see that the left tail is
slightly smaller when Quadratic CVaR is used, even though BS-L Hedging produces one great outlier
at approximatly �0.19. This behavior is expected since Quadratic CVaR minimize with respect to the
greatest losses. If we had reduced ↵ from 0.5 to e.g. 0.05, even more outliers on the left side of the
histograms would disappear, reducing the largest losses of the hedger.

Figure 8: Histograms for X Hedging (XH), Deep Hedging (DH), and BS-L Hedging (BS-L) with
proportional transaction costs and Quadratic CVaR as the loss function.

The hedging strategies for the models with proportional transaction cost and Quadratic CVaR in Figure 9
follow the same pattern that we have seen in the previous experiments. That is, the strategies for X
Hedging seem to converge towards the BS-L Hedging as t approaches maturity. Even though there are
some di↵erences at the smallest and largest values of Sk, X Hedging and Deep Hedging produce accurate
strategies. One di↵erence between BS-L Hedging and the other two hedging models, is that the former
seems to have a steeper slope around Sk = 1.0. Both strategies of X Hedging and Deep Hedging intersects
the hedging strategies produced by BS-L Hedging around Sk = 1.0. This means that a small change in
the underlying asset price a↵ects �k less in X Hedging or Deep Hedging compared to BS-L Hedging.
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Figure 9: Hedging strategies for X Hedging (XH), Deep Hedging (DH), and Black-Scholes Leland
[1985] (BS-L) from k = 1 to k = 9. Proportional transaction costs are considered and Quadratic
CVaR is the loss metric. Sk denotes the underlying asset value, and �k denotes the corresponding
hedging strategy at time index k.

Throughout the preceding experiments, we have observed that X hedging performs on-par with Deep
Hedging and the Black-Scholes based benchmarks. In fact, nothing indicates that Deep Hedging should
be preferred over X Hedging with the setups we have considered. This lays a good foundation for the
performance of X Hedging, which makes it even more relevant to adress issues related to small data sets
and explainability.

4.2 Impact of Training Set Size Reduction

As noted, Bühler et al. [2020] highlight that one of the limitations of Deep Hedging is that it needs a
large training set to find the correct hedging strategies because of the neural networks’ many degrees
of freedom. Our aim is therefore to investigate if X Hedging with its tree ensemble methods, known to
better handle small data sets, outperforms Deep Hedging on a small data set. Specifically, we test how a
reduction in the number of simulated in-sample paths a↵ects X Hedging and Deep Hedging. The setup is
the same as in the first experiment, which means that we do not consider any market frictions, and MSE
is the loss function `. X Hedging and Deep Hedging are considered for an increasing number of in-sample
training paths from 2000 to 20 000, with an interval of 1000, and compared against BS Hedging. The
resulting JS-divergence values between X Hedging and BS Hedging, and Deep Hedging and BS Hedging,
are shown as a function of the number of paths in Figure 10. Additionally, the di↵erence between the
JS-divergence values for the two frameworks is plotted to show which is a↵ected the most by the number
of paths.
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Figure 10: The JS-divergence between BS Hedging (BS), and X Hedging (XH) and Deep Hedging
(DH) as a function of the number of paths, together with the di↵erence between them. The shadows
around the lines illustrate the 95% confidence interval of the JS-divergence.

The highest JS-divergence values for both frameworks appear from 2000 to 8000 paths, which indicates
that both hedging frameworks struggle with a small data set. Based on the JS-divergence values with
their confidence intervals, it could be argued the X Hedging does not have any clear benefit over Deep
Hedging. However, the 95% confidence intervals of the two frameworks overlap in some intervals, which
makes it di�cult to conclude that any of the two outperform the other. It is also worth noting that the
two frameworks have di↵erent starting points for learning the hedging strategies. Deep Hedging uses tanh
as the activation function, a function that closely resembles the hedging strategies the hedging models
are trying to learn, as in Figure 3. So even though neural networks are universal approximators and
should be able to fit any continuous function regardless of the chosen activation function, this bias could
be of help when there is few training data. X Hedging does not have any such bias towards the function
it tries to approximate. This could be an explanation for why the two frameworks perform almost
equally for a small data set; Deep Hedging benefits from the bias it has towards the correct strategy
while X Hedging might adapt to the a small data set somewhat better. This unsatisfactory performance
is at least expected for Deep Hedging since neural networks are known for requiring large datasets to
generalize well [Linjordet and Balog, 2019]. It could be argued that both hedging models have the need
for methods that expand the datasets, as demonstrated by Bühler et al. [2020] and Cuchiero et al. [2020].
Moreover, the introduction of an even simpler hedging strategy approximator could prove to outperform
both LightGBM and the neural networks in this experiment, but the simpler model would probably not
be able to perform well with added complexity such as di↵erent market frictions and multiple inputs.
Considering a JS-divergence value of 0.001, both frameworks work well when the number of paths is
above 8000. The reduction in JS-divergence is small when the number of paths increases from 8000 to
20 000, and the di↵erence between X Hedging and Deep Hedging is almost also constant in this range.

4.3 Explainability

As previously mentioned, there is a distinction between local and global explainability. We first discuss
global explainability of X Hedging, Deep Hedging and BS Hedging using SHAP, and then local explain-
ability of X Hedging by interpretation of the trees in the hedging model. Decision plots from the SHAP
framework are used to explain and interpret the three hedging models. These plots show the Shapley
values �i, as defined in Equation (17), for all the input features i. In the context of this thesis, the input
feature i is the underlying asset price Sk at time step tk. Meaning, the input features are the underlying
asset prices at each time index k. The paths that occur in the decision plots are called decision paths, and
they show how each input feature contribute to individual predictions, and adding all the contributions
together results in the final P&LT . This makes it easier to understand how complex models arrive at
their final predictions.
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Figure 11 explains how X Hedging, Deep Hedging and BS Hedging arrive at the P&LT outputs for one
specific underlying asset price path. Figure 11a illustrates the movements of one underlying asset Sk

for each time step tk that is used as input to each of the hedging models, while Figure 11b contains
decision paths that show how much each of the input features contribute to the final output based on
the movement of the underlying asset. The decision paths for all hedging models have a vertical line for
input feature S0 at zero because all the underlying paths have S0 = 1.0, which means that S0 does not
change the final P&LT . An analysis of the two plots reveals which movements of the underlying asset
contribute to a negative and positive P&LT . The underlying asset price experience a sudden decrease
from approximately 1.0 to 0.8 from time index k = 4 to k = 7. The decision paths reveal that this sudden
decrease moves the P&LT down starting at S4. The P&LT recover after time index k = 7, where the
underlying asset has smaller changes. Based on the behaviour of the underlying asset and the decision
paths, one can observe that the hedging models perform better when the underlying asset exhibit small
changes as opposed to large changes. When the changes of the underlying asset are low to moderate,
the impact on the P&LT is relatively low, while for large changes it is high. Figure 11 also highlights
that the decision paths for all three hedging models are quite similar and arrive at similar values for the
P&LT , which matches the results from Section 4.1.

(a) Underlying asset path movements for time index k. (b) SHAP decision plot.

Figure 11: Underlying asset path movement to the left together with a decision plot for X Hedging
(XH), Deep Hedging (DH), and BS Hedging (BS) to the right. The decision paths show how each
input feature contribute to the final output.

For the subsequent analyses using SHAP, only Deep Hedging is selected as the hedging model of study
to avoid redundancy. Deep Hedging may only be explained through global explainability, and is selected
to later emphasize the advantage of local explainability in X Hedging.

Hedging aims at reducing the risk of excessive losses. Therefore, it is valuable for a hedger to understand
which underlying asset paths that makes the hedging framework trend towards negative P&LT . Figure 12
shows three di↵erent underlying asset paths and how the resulting outputs are explained. The underlying
asset paths in Figure 12a result in the minimum, the maximum, and the median of the predicted P&LT

outputs in Figure 12b. The path that creates the minimum P&LT has larger fluctuations relative to
the two others. This is because the GBM simulation for this underlying asset more frequently draws
Wk close to ±1 which makes the stochastic term in Equation (7) close to ±�

p
�t. That is, it inhibits

the largest possible movements for the GBM simulation. The decision plot shows that for the minimum
P&LT Deep Hedging experience significant loss after S7, which corresponds to highly variable movements
of the underlying asset. It is also evident that the underlying asset path that yields the maximum P&LT

in Figure 12a has small movements. It is easier to hedge an option with an underlying asset that has a
stable behaviour. This can also be seen in the decision plot in Figure 12b where all the input features
contribute to a positive P&LT in this case. The underlying asset paths that create the minimum and
maximum P&LT values are both extraordinary in the sense that they inherit very large and very small
fluctuations. The remaining underlying asset paths simulated via GBM have movements somewhere in
between the two outliers, as illustrated by the underlying asset path that results in the median P&LT ,
it has moderate movements. It is reasonable that the Deep Hedging model hedges the option with these
paths more reliably, since this is an expected behaviour from the GBM simulations.
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(a) Underlying asset paths movements for time index k. (b) SHAP decision plot.

Figure 12: Three underlying assets paths to the left together with a corresponding decision plot for
Deep Hedging to the right. These specific underlying asset paths result in the minimum, median, and
maximum P&LT .

SHAP provides the opportunity to perform sensitivity analyses. This is done by selecting one underlying
asset path, and adding and subtracting small values to one of the time steps, or input features. Figure 13
shows a sensitivity analysis of S5, with the underlying asset paths in Figure 13a and the corresponding
decision plot in Figure 13b. One underlying asset path is selected, and six new paths are created from
this selected path. Three equally distributed values between zero and 0.05 are added and subtracted to
S5. The derivative of the underlying asset path is changed between S4 and S5, and between S5 and S6.
The paths are again equal after S6. This process results in the seven paths plotted in Figure 13a. The
decision plot in Figure 13b shows the original trajectory of the P&LT as a dotted line, without the small
adjustments in the underlying asset path. All the decision paths in Figure 13b are as expected on top of
each other until the change occurs at S4, before they start to deviate between S4 and S5. The deviation is
not considerable in this interval, but it is more significant in the next interval. The decision paths where
the derivatives of the underlying asset paths have changed the most move towards negative P&LT , while
the other decision paths move towards positive P&LT . The decision paths which move towards negative
P&LT at S5 correspond to the underlying asset path at the top and at the bottom of Figure 13a. This
implies that if the absolute change in the derivative is above some threshold, then the hedging model will
end up with a decrease in P&LT . The decision paths are not parallel between S6 and S7 even though
all the paths are equal in this interval. All the decision paths are parallel after S7. These observations
indicate that there is a lag of one interval in the hedging model.

(a) Underlying asset path movements for time index k. (b) SHAP decision plot.

Figure 13: Sensitivity analysis on a small change in S5 by using a SHAP decision plot along with its
corresponding underlying asset path. One random path is selected, and this path is adjusted such that
three values of S5 are higher, and three values are lower than the original value of S5. The decision
path with a highlighted dotted line corresponds to the original underlying asset path.
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Another way to perform a sensitivity analysis using SHAP is to introduce di↵erent changes to the un-
derlying asset at one time step, and thereafter keep the resulting paths parallel. Figure 14 illustrates the
result from this sensitivity analysis. One underlying asset path is selected, and six new paths are created
from the selected path. Three equally distributed values between zero and 0.05 are added and subtracted
to all time indexes after k = 4. This process results in the seven decision paths in Figure 14a, and aims at
revealing how the magnitude of the underlying asset value influence the P&LT . Once again, Figure 14b
shows that the decision paths are on top of each other when the corresponding underlying paths are
equal. The change of the underlying asset in S5 makes the decision paths deviate. The decision paths
are not parallel after this point, which implies that the magnitude of the underlying asset will influence
the final P&LT . The decision paths in are further apart for S5, S8 and S9 than the other input features
after the underlying asset paths starts to deviate at k = 5. The prominent deviation between the decision
paths at S5 can be explained by the underlying asset paths having di↵erent derivative changes, and hence
moving in di↵erent directions. This finding was also observed in the previous sensitivity analysis, where
the underlying asset paths with the biggest absolute change in derivative influenced the decision path
the most towards lower P&LT . This is however not the case for S8 and S9, where all the paths have the
same change in derivatives. For these input features, the underlying asset values are small, which might
be an explanation for the large deviations in P&LT at these values. This sensitivity analysis indicates
that the decision paths depend on the magnitude of the underlying asset paths together with the change
of derivative of the same underlying asset paths.

(a) Underlying asset paths movements for time index k. (b) SHAP decision plot.

Figure 14: Sensitivity analysis on a small change in S5 that is not reverted, by using a SHAP decision
plot along with its corresponding underlying asset path. One random path is selected, and this path
is adjusted at S5 such that three paths are higher, and three paths are lower than the original path.
The decision path with a highlighted dotted line corresponds to the original underlying asset path.

Interestingly, all the decision paths in Figure 14b end up at approximately the same P&LT of zero. This is
a good sign for the performance of the framework, as it seems to be robust against an upward or downward
shift in the underlying asset path. However, the final value of the P&LT is not the only characteristic of
a good hedging strategy. It is also beneficial that the decision path is close to the expected model output
for all the input features. This implies that P&LT is close to zero throughout the entire time period since
we in this instance use MSE as the loss function and target zero. This corresponds to having a lower
risk for deviating from the expected model output at maturity. The leftmost decision path in Figure 14b
has the minimum absolute deviation from zero, and hence has a lower risk of ending far away from zero.
As a result, this implies that it is possible to use decision plots to analyse which paths of the underlying
asset provide the greatest risk.

It is possible to identify typical decision paths by analysing the model behaviour for a greater number
of underlying asset paths. Figure 15 reveals how the typical decision paths look for all out-of-sample
underlying asset paths. The purple decision paths show that most of the predictions stay between �0.03
and 0.03 for all the features, which indicates that the hedging model is quite robust. We observe some
outlier paths that provide quite di↵erent P&LT . In fact, the leftmost outlier in Figure 15 is equivalent
to the minimum P&LT path in Figure 12.
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Figure 15: SHAP decision plots for all underlying asset paths. This illustrates the typical decision
paths of the model together with decision path outliers.

The previous analyses using decision plots show that it is possible to gain some level of global explainability
from AI models using SHAP. However, it is not possible to obtain local explainability of Deep Hedging
since it is based on neural networks. This is where X Hedging prosper since tree models are locally
explainable by design. Moreover, one common critique of SHAP is that a “black-box” is used to explain
a “black-box” [Kumar et al., 2020]. One may consider SHAP a “black-box” since it uses advanced
techniques to approximate Shapley values.

For X Hedging, each node in the tree contains a condition on one of the input features, and the child
node depends on whether the condition is fulfilled or not. Meaning, every node relates to a condition on
Sk, and the proceeding nodes depend on if the condition is met by the value of Sk. This structure makes
it easy to explain a hedging strategy at a time step tk. The hedging strategy is obtained by traversing
all the trees in Gk until a leaf node is reached. Ultimately, the final decision of the model will be a
linear combination of multiple trees in the ensemble, but each decision is still possible to backtrack. An
example of one of the fitted trees is shown in Figure 16. This shows the transparency the model o↵ers.
It is possible to explain all the intermediate decisions the model makes from the input to the output.
Additionally, tree models o↵er the opportunity to understand what happens if the input changes. With
local explainability the trust and confidence in the hedging model increases, and it is possible to meet
the demands of regulations and guidelines on explainability and XAI.

Figure 16: One of the X Hedging LightGBM decision trees visualised at k = 9. Binary splits of S9

happen at each node, and values in the nodes meet the condition in the preceding node. The leaf
nodes are the final values of �9. A linear combination of the leaf node values for multiple trees at k = 9
gives the true prediction of X Hedging.
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In Figure 17 the python package dtreeviz21 is used to visualise how decisions are made within a section
of one of the trees in X Hedging at time index k = 8, along with information about how the hedging
strategies are distributed along the tree. Appendix B visualises the entire tree. The hedging strategy
curve is split throughout the tree, and each data point in the curve end up in a leaf node, where it is
associated with a specific hedging strategy �8. The data points are underlying asset path values. It is
worth noting that the hedging strategy curve in the root of tree strongly resembles the hedging strategies
presented in Section 4.1.Figure 17 also shows how many strategies that belong to each leaf node, which is
useful information to characterize common prediction paths throughout the tree. The leaves in Figure 17
contain between 21 and 1952 data points. The leaves with most data points are located around S8 = 1.0,
which reflect the zero interest rate. The leaves with few data points can be treated as outliers, and
hedgers should pay attention to these. A smaller change to S8 might change which leaf the data point
ends up in. Hence, tree based models o↵er a way to explain the certainty of the output. Leaves that
contain more training data o↵er more trusted predictions than leaves with few data samples.

To demonstrate the local explainability of X Hedging, we have highlighted a prediction path for S8 = 1.03
with orange boxes and arrows in Figure 17. This shows all the decisions the tree does to end up with a
prediction of 0.06. It is easy to follow all the decisions, since they only consist of comparing numerical
values. Such easy interpretation of decisions is not possible in Deep Hedging due to the “black-box”
neural networks. Since strategy curves are plotted together with the vertical decision line, it is also
possible to see how close the data point is to end up in another leaf. This is the case in the third node
of the highlighted prediction path. A small increase of S8 will make the data point end up in the other
successive node. As have been shown in this example, trees o↵er an intuitive way to explain the decisions
of the hedging model.

Figure 17: Prediction path in one tree for S8 = 1.03.

Throughout this thesis, only small values of the underlying asset path have been considered, with S0 = 1
and � = 0.2. Neural networks converge faster for input values close to zero, but trees are indi↵erent to
the magnitude of the input values. This is due to the fact that tree based models only perform simple
numerical comparisons. It is adviced to scale the data such that the mean is close to zero when using
neural networks [Koprinkova and Petrova, 1999]. As a consequence, it is recommended to downscaling,
or normalising, the data if a GBM with large values such as S0 = 100 is used. This scaling drastically
reduces the explainability of the model because the numerical values loose their expressiveness. After
scaling the data, it is not possible to directly relate the scaled input to the original data. This also a↵ects

21Dtreeviz documentation: https://github.com/parrt/dtreeviz
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the global explainability since the decision plot in this case disclose how the scaled input contributes
to the final prediction. High input features does not a↵ect the local or the global explainability of tree
models since scaling does not a↵ect the performance of trees. As such, this is a substantial positive for
X Hedging.

We have demonstrated the benefits of local explainability in X Hedging with concrete numerical examples,
but it is also worth emphazising the more practical use cases for the framework in the industry. As we
have previously highlighted, there are no restrictions on what information X Hedging need in order to
produce hedging strategies. Meaning, the information could just as well be news sentiment (see Shapiro
et al. [2022]), as information about the movement of an asset (as we have demonstrated). If we consider
an example where a market maker wishes to hedge an option on Brent Crude Oil22, X Hedging could be
used with various inputs including news sentiment to o↵set the risk as much as possible. Considering a
situation where Crude Brent Oil experience great volatility due to the outbreak of a war between two
countries, the market maker may be able to o↵set the risk using news information about the war. This
could raise questions by supervisors or customers regarding how such good performance could be achieved
amidst an unstable political situation. The market maker could then backtrack the X Hedging, and show
how each intermediate decision was made, and if any were based on news from sources worthy of critique.

22Such financial derivates are for instance provided by the CME Group, https://www.cmegroup.com/trading/energy/
brent-crude-oil.html
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5 Conclusion

In this thesis, we present a novel hedging framework termed X Hedging that is inherently explainable.
The framework hedges financial options, helping to o↵set the portfolio risk for market makers and OTC
traders. It complies with the newly developed regulations and guidelines that concerns Explainable
Artificial Intelligence within finance. As such, the framework is developed to be used by practitioners
in the industry, as well as to expand the academic literature. X Hedging is a general framework in the
sense that it handles di↵erent market frictions, di↵erent hedging instruments, and it does not assume a
specific behaviour for the underlying asset.

Since the introduction of the famous option pricing and hedging model by Black and Scholes [1973],
researchers have developed more general pricing and hedging models, culminating in the Deep Hedging
framework by Bühler et al. [2019]. We provide evidence that X Hedging equals the performance of Deep
Hedging by validating it for market frictions such as fixed and proportional transaction costs, and for the
loss functions Mean Squared Error and Quadratic Conditional Value at Risk. The type of loss function
determines if X Hedging is classified as supervised learning or reinforcement learning. The key di↵erence
between X Hedging and Deep Hedging is that the former uses gradient boosted decision trees, namely the
popular LightGBM by Ke et al. [2017], instead of neural networks to approximate the hedging strategies
as in the latter. LightGBM benefits from being able to map complex non-linear relationships, the same
as neural networks, but is locally explainable in the sense that it is possible to observe how individual
decisions are made within the hedging model. To the best of our knowledge, this is the first time a model
that optimizes a group of connected LightGBM models is proposed. To implement the connected models
in X Hedging, we design an innovative algorithm that uses the gradients and the Hessians of the total
loss function. This approach introduces stochasticity in the training of X Hedging, which neural networks
are already equipped with in form of stochastic gradient descent.

Due to the known drawback of neural networks when it comes to small training data sets, we investigate
whether or not the tree methods in X Hedging are better suited in this regard. We observe that X
Hedging and Deep Hedging perform similarly on small training data sets. Ultimately, we do not find any
major performance benefits with of the tree models in X Hedging, and thus recommend solutions like
Cuchiero et al. [2020] and Bühler et al. [2020] to simulate market data. However, we briefly mention that
this could be due to the bias of neural networks’ tanh activation functions. We also discuss that even
simpler models could handle small training data sets better, like a single decision tree, but these models
probably struggle with increased complexity of the market environment.

To highlight X Hedging’s practical use case, we discuss how one may achieve local explanation of X
Hedging through a specific example from the industry. In addition, we illustrate how one may achieve
global explainability of X Hedging and “black-box” hedging models such as Deep Hedging using Shapley
values. We discover that the change in the derivative of the underlying path influences the final profit
along with the magnitude of the underlying asset value.

For future work, we propose to further validate the generality of X Hedging by applying it with di↵erent
settings and investigate the possibility to replace LightGBM with other Artificial Intelligence methods
that are explainable. Specifically, we suggest to validate X Hedging for an increasing number of features
(e.g. asset volatilities, news sentiments), and introduce more hedging instruments to o↵set the risk
of the hedger’s portfolio. The latter proposal would imply an update to LightGBM for multioutput
regression, or the introduction of a di↵erent explainable method that handles multioutput regression such
as CatBoost23. We also recommend testing di↵erent stochastic processes such as the models proposed
by Merton [1976] and Heston [1993] to simulate the underlying asset, and to test the framework with
real market data. Even though such experiments may be conducted, it is worth emphasizing that the
performance validation presented in this thesis already proves the practical usability of X Hedging.

23CatBoost documentation: https://catboost.ai
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Appendix

A Experiments Overview

Market frictions Loss function Cat. Model
no. Zero PTC FTC MSE QCVaR Data Shap TV XH DH BS BS-L
1
2
3
4
5
6
7
8
9
10
11
12

Table 8: Sequential overview of the experiments as they appear in Section 4. The experiments either
contain no market frictions, proportional transaction costs (PTC), or fixed transaction costs (FTC).
The loss function is either MSE or Quadratic CVaR (QCVaR). The experiments are divided into three
categories (Cat.), called Data, Shap, and tree visualization (TV). The experiments that do not have a
checkmark for category is used for performance validation.
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B X Hedging Tree Visualisation

B X Hedging Tree Visualisation

Figure 18: Prediction path in one tree for S8 = 1.03. Entire tree.
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