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Abstract

We prove several results about integers represented by positive definite quadratic forms, using a
Fourier analysis approach. In particular, for an integer ℓ≥ 1, we improve the error term in the
partial sums of the number of representations of integers that are a multiple of ℓ. This allows us
to obtain unconditional Brun–Titchmarsh-type results in short intervals and a conditional Cramér-
type result on the maximum gap between primes represented by a given positive definite quadratic
form.

1. Introduction

In this paper, we combine tools from Fourier analysis, analytic number theory and algebraic num-
ber theory to prove a number of new estimates related to integers represented by positive definite
quadratic forms. In particular, we improve some results given by Zaman [33, Proposition 7.1 and
Theorem 1.4], concerning these types of estimates. As an application, assuming the Generalized
Riemann Hypothesis (GRH), we establish a Cramér-type result, extending the method developed by
Carneiro, Milinovich and Soundararajan [5].

1.1. Background

A classical problem in number theory is to understand the distribution of primes represented by
positive definite quadratic forms. The survey [9] byD. A. Cox is the classical reference on the subject,
describing some of the historical milestones of its study and showing how it leads to class field theory.

An integral quadratic form in two variables is a function defined by

f(u,v) = au2 + buv+ cv2,

where a,b,c ∈ Z. Its discriminant −D is given by −D= b2 − 4ac. For simplicity, we refer to a form
(or quadratic form) as a function f defined in this way. We say that f is positive definite ifD> 0 and f
is primitive if its coefficients a,b, and c are relatively prime. In the set of primitive forms, we define
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540 A. CHIRRE AND E. QUESADA-HERRERA

an equivalence relation in the following way: f and g are properly equivalent if there are integers
p,q, r, s such that

f(u,v) = g(pu+ qv,ru+ sv) and ps− qr= 1.

Note that two properly equivalent forms have the same discriminant. A primitive positive definite
form f is reduced if |b| ≤ a≤ c and if, in addition, when |b|= a or a= c, then b≥ 0. Classical
theorems in the theory of quadratic forms (see [9, Theorem 2.8 and Theorem 2.13]) establish that
every primitive positive definite form is properly equivalent to a unique reduced form. Moreover, for
each D> 0, the number of classes of primitive positive definite forms of discriminant −D is finite,
and it is equal to the number of reduced forms of discriminant −D. This number is called the class
number and it is denoted by h(−D).

1.2. Congruence sums

An integer n is represented by the quadratic form f if there is (u,v) ∈ Z2 such that n= f(u,v). For
n≥ 0 an integer, define

rf(n) = #{(u,v) ∈ Z2 : f(u,v) = n},

that is, the number of representations of n by f. Motivated by applications using sieve theory, we are
interested in estimating the congruence sums∑

n≤x
ℓ|n

rf(n), (1.1)

where x≥ 1 is a real number and ℓ≥ 1 is an integer. In the case ℓ= 1 and f(u,v) = u2 + v2, the
congruence sum (1.1) corresponds to the classical Gauss circle problem.1 Here, Gauss used a lat-
tice point counting argument to prove that (1.1) has the asymptotic formula πx+O(x1/2). Later,
Sierpiński improved the error term toO(x1/3) using ideas from Voronoi’s work on the Dirichlet divi-
sor problem. Afterward, Landau [21, Treatise I] extended this asymptotic formula to positive definite
quadratic forms (still in the case ℓ= 1), with error term O(x1/3), but without making explicit the
dependence on f in this error term. For the case where ℓ≥ 1 is a square-free2 integer, we prove the
following result:

Theorem 1.1 Let f(u,v) = au2 + buv+ cv2 be a reduced positive definite quadratic form of discrim-
inant −D and let ℓ≥ 1 be a square-free integer. Then, for x≥ D2 we have

∑
1≤n≤x
ℓ|n

rf(n) =
2π√
D
g(ℓ)x+O

(
τ(ℓ)ℓ

D1/6
x1/3 +

τ(ℓ)ℓ5/2D3/4

a7/4
x1/4

)
, (1.2)

1For a survey of this problem, see [17, Section 2.7] and [1].
2As we shall see in (3.7), our result also holds for an arbitrary integer ℓ≥ 1, with an adequate function g(ℓ) and perhaps a
modification in the error term.
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 541

where g is the multiplicative function defined by

g(p) =
1
p

(
1+χ(p)− χ(p)

p

)
for all primes p, χ= χ−D =

(−D
·
)
is the corresponding Kronecker symbol and τ is the divisor

function.

Theorem 1.1 improves a result of Zaman [33, Proposition 7.1], whose error term is of magnitude
x1/2. Note that, when ℓ= 1, we recover Landau’s result, with an explicit dependence on f in the
error term.

As we shall see in the next section, a direct application of Selberg’s sieve allows us to
use Theorem 1.1 to obtain upper bounds for the number of primes represented by f, in short
intervals.

1.3. Brun–Titchmarsh-type result

Assume that f is a primitive positive definite quadratic form. For x≥ 1, let πf(x) be the number of
primes represented by f up to x, that is,

πf(x) = #{p≤ x : p= f(u,v) for some (u,v) ∈ Z2}.

The classical result for πf(x) goes back to de la Vallée Poussin (see, for instance [25]), and establishes
that, as x→∞,

πf(x)∼
δf x

h(−D) logx
,

where

δf =


1
2
, if f(u,v) is properly equivalent to f(u,−v);

1 otherwise.
(1.3)

Assuming the GRH, we also have (see [20])

πf(x) =
δfLi(x)
h(−D)

+O
(
x1/2 log(Dx)

)
, (1.4)

for x≥ 2, where

Li(x) =
∫ x

2

1
log t

dt.

Recently, Thorner and Zaman [27, Corollary 1.3] established a Brun–Titchmarsh result, improving
upon the Chebotarev version given by Lagarias–Montgomery–Odlyzko [19]. Unconditionally, they
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542 A. CHIRRE AND E. QUESADA-HERRERA

showed that, for D sufficiently large,

πf(x)<
2δfLi(x)
h(−D)

, for x≥ D700. (1.5)

We want to establish a result similar to (1.5) for primes in short intervals.3 For instance, if we assume
GRH, from (1.4) we get that

πf(x)−πf(x− y)�
δf y

h(−D) logy
,

for (Dx)1/2+ε ≤ y≤ x. Unconditionally, Zaman used his asymptotic formula for the congruence
sum (1.1) and Selberg’s sieve to establish a similar Brun–Titchmarsh-type result in short intervals
[33, Theorem 1.4], with the same order of magnitude.

Theorem 1.2 (Zaman [33]) Let f(u,v) = au2 + buv+ cv2 be a reduced positive definite quadratic
form of discriminant −D, and let ε > 0 be arbitrary. Suppose that

(
D2

a

)1/2+ε

x1/2+ε ≤ y≤ x. (1.6)

Then,

πf(x)−πf(x− y)<
2

(1− θ′)
·

δf y
h(−D) logy

(
1+Oε

(
log logy
logy

))
,

where

θ′ =
logx
2logy

+

(
3
4
+

ε

4

)
logD
logy

− loga
2logy

.

Using Theorem 1.1, we are able to establish an analogous result to Theorem 1.2, for a range beyond
(1.6).

Theorem 1.3 Let f(u,v) = au2 + buv+ cv2 be a reduced 4 positive definite quadratic form of
discriminant −D. Then, the following statements hold:

3Montgomery and Vaughan [23, Theorem 2] gave a classical version for primes in arithmetic progressions, in short intervals.
4The hypothesis of being reduced can be removed, and Theorem 1.3 holds for any primitive positive definite quadratic form,
by considering a= 1 in the range (1.7) and in the values of θ1 and θ2. A similar situation occurs in Theorem 1.2 (see Remark
(ii) in [33, Theorem 1.4]).
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 543

(1) Let 0< ε < 1/20 be arbitrary and suppose that

D2

a
x1/3+ε ≤ y≤ x4/9. (1.7)

Then,

πf(x)−πf(x− y)<
4

(1− θ1)
·

δf y
h(−D) logy

(
1+Oε

(
log logy
logy

))
,

where

θ1 =
logx
3logy

+

(
4
3
+ ε

)
logD
logy

− loga
logy

.

(2) Suppose that

x4/9 ≤ y≤ x3/5 and x≥ D18. (1.8)

Then,

πf(x)−πf(x− y)<
7

(1− θ2)
·

δf y
h(−D) logy

(
1+O

(
log logy
logy

))
,

where

θ2 =
logx
4logy

+
31logD
12logy

− 7loga
4logy

.

Theorem 1.3 states a Brun–Titchmarsh-type inequality in short intervals, for x1/3+ε ≲ y≤ x3/5,
extending the range (1.6) in Theorem 1.2. This also improves the constant in the range x1/2+ε ≤
y≤ x3/5, since we have that

7
1− θ2

<
2

1− θ′
<

2
ε
.

The associated constants in our results can be estimated, uniformly, by

16<
4

1− θ1
<

16
9ε

and 12<
7

1− θ2
≤ 672

11
.

We highlight that, unlike in Theorem 1.2, even under the assumption of GRH, the order of magnitude
of the bounds in Theorem 1.3 cannot be obtained using (1.4).5

As we shall see, the special case y= x1/2 will be useful in the following form:

5Assuming GRH for quadratic Dirichlet L-functions modulo D, Theorem 1.3 can be stated with slight changes in the power
of D on the ranges, and in the definition of θ1 and θ2. A similar situation occurs in Theorem 1.2 (see [33, Theorem 1.4]).
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544 A. CHIRRE AND E. QUESADA-HERRERA

Corollary 1.4 Let f(u,v) = au2 + buv+ cv2 be a fixed primitive positive definite quadratic form
of discriminant −D. Then,

πf(x+
√
x)−πf(x)≤

28δf
√
x

h(−D) logx
(1+ o(1)),

as x→∞.

1.4. Cramér-type result

Let π(x) denote the number of primes up to x. A classical theorem of Cramér [10] states that,
assuming the Riemann Hypothesis (RH), there are constants c,α > 0 such that

π(x+ c
√
x logx)−π(x)√
x

> α

for all x sufficiently large. Recently, using a Fourier analysis approach, Carneiro, Milinovich and
Soundararajan [5, Theorem 1.3] established this estimate in an optimized explicit form. They proved
that, under RH, for α≥ 0 we have

inf

{
c> 0; liminf

x→∞

π(x+ c
√
x logx)−π(x)√
x

> α

}
<

21
25

(1+ 2α).

This was slighlty improved by Chirre, Pereira and de Laat [7], replacing 21/25= 0.84 by 0.8358.
Furthermore, they obtained an analogous result for primes in arithmetic progressions. Our next result
extends these techniques for primes represented by quadratic forms.

Theorem 1.5 Let f be a primitive positive definite quadratic form of discriminant −D. Assume the
GRH for Hecke L-functions. Then, for α≥ 0,

inf

{
c> 0; liminf

x→∞

πf (x+ c
√
x logx)−πf(x)√
x

> α

}
< 1.837

(δf+α)h(−D)
δf

.

In particular, for a fixed primitive positive definite quadratic form f of discriminant −D, there is
always a prime number represented by f in the interval [x, x+ 1.837h(−D)

√
x logx], for x sufficiently

large. Then, we deduce the following conditional estimate for large gaps between primes represented
by a quadratic form.6

Corollary 1.6 Let f be a primitive positive definite quadratic form of discriminant −D, and let pn,f
be the n-th prime represented by f. Assume the GRH for Hecke L-functions. Then,

limsup
n→∞

pn+1,f− pn,f√
pn,f logpn,f

< 1.837h(−D). (1.9)

6To the best of our knowledge, there is no other explicit result of this type in the literature.
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 545

Remark 1.7 Consider the quadratic form f(u,v) = u2 +mv2, where m is a positive integer. It is
known that there are at most 66 positive integers m, such that f represents a prime p if and only
if p belongs to a certain union of arithmetic progressions (see [9]). For instance, when m= 1, a
classical theorem of Fermat states that a prime p is represented by f, if and only if p≡ 1(mod4). In
this case, D= 4, h(−D) = 1, and we can recover the estimate (1.9) from [7, Corollary 2], with the
better constant 1.7062. However, in general, the characterization of such primes is more subtle. For
instance, consider the casem= 27, whereD= 108 and h(−D) = 3. A conjecture of Euler, proven by
Gauss, states that p has the form u2 + 27v2 if and only if both p≡ 1(mod3) and 2 is a cubic residue
(modp). This cannot be described by just unions of arithmetic progressions, so the results of [7] no
longer apply.

1.5. Outline of the proof

There are two main themes that will be ubiquitous throughout this paper. The first theme is the use of
Fourier analysis, in the following way: We begin by finding a summation formula that connects our
object of study with an arbitrary function and its Fourier transform. Then, we choose an appropriate
test function that recovers the desired information in an optimized manner. The second is the well-
known theme that propositions about quadratic forms can be stated in two other equivalent languages:
ideals of number fields and lattices. We now discuss the main ideas in each theorem.

Congruence sums
The first step is obtaining a summation formula associated with the coefficients rf(n), relating it to
an arbitrary test function and its Fourier transform. These types of formulas are well known and are
equivalent to the modularity of certain theta series associated with a quadratic form f and a discrete
periodic function χ (see, for instance, [18, p. 83] and [30, p. 32]), the latter which, in this case, allows
us to filter out the congruence condition ℓ |n. Since we were unable to find an explicit statement in
the literature, we provide a proof of the specific summation formula that we require. In Section 2, we
obtain the desired expression from an application of the classical Poisson summation formula for the
lattice associated with the quadratic form f, combined with the discrete Fourier expansion of the peri-
odic function χ. In Section 3, we prove Theorem 1.1 following an approach outlined in [18, Section
4.4], which was applied to the Gauss circle problem in [18, Corollary 4.9]. By choosing an appropri-
ate test function in our summation formula and carrying out an asymptotic analysis (for instance, see
Lemma A.1 in Appendix), we arrive at our new estimate for (1.1). We highlight that a good explicit
dependence on ℓ and the parameters of f are required. This imposes significant technical difficulties
when compared to the argument in [18] and requires a careful analysis and delicate manipulations
with a reduced quadratic form.

Remark 1.8 Higher moments of rf(n) have also been studied by Blomer and Granville [2]. Later,
Xu [28] gave some improvements in their error terms. Additionally, he proved that, when ℓ= 1 in
Theorem 1.1, the optimal error term in (1.2) satisfies Ω(D1/4x1/4), which generalizes the classical
omega result given originally by Hardy and Landau (see [17]).

Brun–Titchmarsh-type result
In Section 4 we prove Theorem 1.3, following Zaman’s general outline in [33]. Here the main
strategy is an application of Selberg’s sieve [11, Theorem 7.1], which transforms the problem of
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546 A. CHIRRE AND E. QUESADA-HERRERA

obtaining an upper bound for primes represented by f in short intervals, into the problem of esti-
mating the associated congruence sums (1.1). We remark that our extended range in Theorem 1.3
comes from the improved error term in our estimate of the congruence sums (1.1), of the form
Of,ℓ(x1/3), given in Theorem 1.1. When x is large compared to ℓ, this improves the estimateOf,ℓ(x1/2)
given in [33, Proposition 7.1], and it allows us to take intervals around x of size as small as roughly
x1/3.

Cramér-type result
We follow the argument of Carneiro, Milinovich and Soundararajan in [5, Section 5], to prove
Theorem 1.5. Here, we work with the language of ideals in imaginary quadratic fields. This allows us
to use the machinery of Hecke characters and Hecke L-functions to obtain information about prime
ideals in a given ideal class, and therefore, about prime numbers represented by a given quadratic
form f. We first give some necessary background on Hecke L-functions and their relation to quadratic
forms, in Section 5. The main ingredients in Theorem 1.5 are our version of the Brun–Titchmarsh
inequality in Corollary 1.4, and the Guinand–Weil explicit formula for L-functions (see, for instance,
[18, Theorem 5.12] and [4, Lemma 5]). Then, we establish a version for Hecke L-functions that aver-
ages over all Hecke characters in a given congruence class group. We finish the proof of Theorem 1.5
in Section 6. Following [5], we start with an arbitrary function F in our version of the Guinand–Weil
formula. The strategy then consists of taking a suitable dilation and modulation of F, so that we
emphasize, in our explicit formula, intervals containing few prime numbers represented by f. We
must then carry out an asymptotic analysis, and choose an appropriate function F at the end, to con-
clude the desired result. In Section 7, we discuss some qualitative aspects of the problem of choosing
an optimal function F, related to the uncertainty principle.

1.6. Remarks and Notation

Let f(u,v) = au2 + buv+ cv2 be a positive definite quadratic form of discriminant −D, and without
loss of generality assume that a, c≥ 1. In the case when f is reduced, since |b| ≤ a≤ c, we have
that a�

√
D and D≥ 3. We will use these frequently. Moreover, we have that rf(0) = 1 and a is the

smallest positive integer represented by f.
The symbols �, O( ·), o( ·) and � are used in the standard way. In the subscript, we indicate
the parameters on which the implicit constant may depend. We also denote x+ :=max{x,0}. For
a function G ∈ L1(Rn), we define its Fourier transform by

Ĝ(ξ) =
∫
Rn

G(y)e−2πiξ ·ydy.

For a radial function G : Rn → R, we use the notation G(x) = G(|x|).

2. Summation formula for rf(n)

Let f(u,v) = au2 + buv+ cv2 be a positive definite quadratic form of discriminant −D. We recall that,
for n≥ 0,

rf(n) = #
{
(u,v) ∈ Z2 : f(u,v) = n

}
.
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 547

Lemma 2.1 Let G ∈ L1(R2) be a radial continuous function. Suppose that

|G(x)| � 1
(1+ |x|2)1+δ

and |Ĝ(ξ)| � 1
(1+ |ξ|2)1+δ

, (2.1)

for some δ > 0. Then, for an integer ℓ≥ 1, we have

∞∑
n=0
ℓ|n

rf(n)G(
√
n) =

2 g̃(ℓ)√
D

∞∑
n=0

rf(n) Ĝ

(√
4n
D

)

+O

(
g̃(ℓ)ℓ2√

D
max

0≤r, s<ℓ
(r,s)∈Z2\(0,0)

∑
(u,v)∈Z2

∣∣∣∣∣Ĝ
(√

4f(u− r/ℓ, v− s/ℓ)
D

)∣∣∣∣∣
)
,

(2.2)

where

g̃(ℓ) =
1
ℓ2

#
{
(u,v) ∈ Z2 : 0≤ u,v< ℓ, and ℓ | f(u,v)

}
. (2.3)

Proof. We start associating a lattice Λ⊂ R2, defined by the basis {ω1,ω2}, to the quadratic form f
in such a way that a= |ω1|2, b= 2ω1 ·ω2 and c= |ω2|2. This implies that

|uω1 + vω2|2 = f(u,v) and rf(n) = #{ω ∈ Λ : |ω|2 = n}, for n≥ 0. (2.4)

Let us consider the abelian group7 (Λ/ℓΛ,+) of order ℓ2, and let χ : Λ/ℓΛ→ C be the function
defined by

χ(ω) =

{
1, if ℓ | |ω|2;
0 otherwise.

Then, since G satisfies (2.1), we have∑
ω∈Λ
ℓ | |ω|2

G(ω) =
∑
ω∈Λ

χ(ω)G(ω). (2.5)

On the other hand, we consider the dual lattice Λ∗ = {ω∗ ∈ R2 : ω ·ω∗ ∈ Z, for all ω ∈ Λ}. It has a
basis {ω∗

1 ,ω
∗
2}, given by ω∗

1 = 4cω1/D− 2bω2/D and ω∗
2 = 2bω1/D− 4aω2/D. This implies that

|uω∗
1 + vω∗

2 |2 = 4f(v,u)/D and rf(n) = #{ω∗ ∈ Λ∗ : |ω∗|2 = 4n/D}, for n≥ 0. (2.6)

For each λ∗ in the set P= {sw∗
1 + rw∗

2 : 0≤ s, r< ℓ and s, r ∈ Z}, we define a character eλ∗ in
the group (Λ/ℓΛ,+) by eλ∗(w) = e2πiω ·λ∗/ℓ. Since the cardinality of P is ℓ2, we conclude that

7We recall that the set Λ/ℓΛ is defined by the equivalence classes in Λ given by ω = {ω+ ℓλ : λ ∈ Λ}.
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548 A. CHIRRE AND E. QUESADA-HERRERA

{eλ∗}λ∗∈P are all the characters in the group (Λ/ℓΛ,+) (see [26, Theorem 2.5 in Chapter 7]). Now,
we define the Fourier coefficient of χ with respect to eλ∗ , by

χ̂(eλ∗) =
1
ℓ2

∑
ω∈Λ/ℓΛ

χ(ω)e−2πiω ·λ∗/ℓ.

Then, the Fourier inversion formula (see [26, Theorem 2.7 in Chapter 7]) yields

χ(w) =
∑
λ∗∈P

χ̂(eλ∗)e2πiω ·λ∗/ℓ. (2.7)

Combining (2.5), (2.7) and Fubini’s theorem, we get

∑
ω∈Λ
ℓ | |ω|2

G(ω) =
∑
λ∗∈P

χ̂(eλ∗)

(∑
w∈Λ

G(w)e2πiω ·λ∗/ℓ

)
.

Recalling that vol(Λ∗) =
√
4/D, we use the Poisson summation formula for lattices in the above

inner sum (since G satisfies (2.1)) to find that

∑
ω∈Λ
ℓ | |ω|2

G(ω) =

√
4
D

∑
λ∗∈P

χ̂(eλ∗)
∑

w∗∈Λ∗

Ĝ

(
w∗ − λ∗

ℓ

)
. (2.8)

On the other hand, if we define

g̃(ℓ) =
1
ℓ2

#
{
ω ∈ Λ/ℓΛ : ℓ | |ω|2

}
,

it is clear that χ̂(e0∗) = g̃(ℓ) and |χ̂(eλ∗)| ≤ g̃(ℓ). Therefore, isolating the point λ∗ = 0 in (2.8) gives
us

∑
ω∈Λ
ℓ | |ω|2

G(ω) =
2 g̃(ℓ)√
D

∑
ω∗∈Λ∗

Ĝ(ω∗)+
2√
D

∑
λ∗∈P\{0∗}

χ̂(eλ∗)
∑

w∗∈Λ∗

Ĝ

(
w∗ − λ∗

ℓ

)

=
2 g̃(ℓ)√
D

∞∑
n=0

rf(n) Ĝ

(√
4n
D

)

+O

 g̃(ℓ)ℓ2√
D

max
0≤r, s<ℓ

(r,s)∈Z2\(0,0)

∑
(u,v)∈Z2

∣∣∣∣∣Ĝ
(√

4f(u− r/ℓ, v− s/ℓ)
D

)∣∣∣∣∣
 ,

where we have used (2.6) and the fact that Ĝ is radial. We conclude the proof using (2.4). □
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 549

The following technical lemma will help us estimate the error term. We compare a small translation
of f with the untranslated value, outside of a finite number of exceptions.

Lemma 2.2 Suppose that f is reduced. Let ℓ, r, s be integers such that ℓ≥ 1 and 0≤ r, s< ℓ. Then,

#

{
(u,v) ∈ Z2 : f

(
u− r

ℓ
, v− s

ℓ

)
<
f(u,v)
2

}
�

√
D
a
.

Proof. Define the set

A=

{
(u,v) ∈ Z2 : f

(
u− 2r

ℓ
, v− 2s

ℓ

)
< 6c

}
.

First we show that {
(u,v) ∈ Z2 : f

(
u− r

ℓ
, v− s

ℓ

)
<
f(u,v)
2

}
⊂ A. (2.9)

Indeed, if (u,v) ∈ Ac, using that f is reduced, we have

2 f(r, s)
ℓ2

≤ 6c≤ f

(
u− 2r

ℓ
, v− 2s

ℓ

)
. (2.10)

Applying the identity

f(u− x,v− y) = f(u,v)+ f(x,y)− 2aux− buy− bxv− 2cvy (2.11)

in (2.10) yields

2 f(r, s)
ℓ2

≤ f(u,v)+
4 f(r, s)
ℓ2

− 4aur+ 2bus+ 2bvr+ 4cvs
ℓ

.

Then,

− f(r, s)
ℓ2

+
2aur+ bus+ bvr+ 2cvs

ℓ
≤ f(u,v)

2
.

Using this inequality and identity (2.11), we see that

f

(
u− r

ℓ
, v− s

ℓ

)
= f(u,v)+

f(r, s)
ℓ2

− 2aur+ bus+ bvr+ 2cvs
ℓ

≥ f(u,v)
2

.

This shows (2.9), and it now suffices to obtain an upper bound for the cardinality of A. Observe that

#A=#{(u,v) ∈ Z2 : f(uℓ− 2r,vℓ− 2s)< 6cℓ2}

≤#{(u,v) ∈ Z2 : f(u,v)≤ 6cℓ2, u≡−2r(modℓ), v≡−2s(modℓ)}.

We now proceed with the well-known argument in [2, Lemma 3.1] as follows: Rewriting f(u,v), we
must bound the number of integer solutions to the inequality (2au+ bv)2 +Dv2 ≤ 24acℓ2.A solution

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/2/539/6378791 by N
TN

U
 Library user on 04 O

ctober 2022



550 A. CHIRRE AND E. QUESADA-HERRERA

(u, v) must satisfy that |v| � ℓ (where we used that ac� D), and that

−
√
24acℓ2 −Dv2 − bv

2a
≤ u≤

√
24acℓ2 −Dv2 − bv

2a
.

Therefore, v belongs to an interval of size at most � ℓ, and u belongs to an interval of size at most
�

√
Dℓ/a (once again using that ac� D). Hence, the number of solutions (u, v) with the desired

congruences modulo ℓ is at most �
√
D/a. □

3. Proof of Theorem 1.1

In [33, Proposition 7.1], Zaman used a lattice point counting argument, via geometry of numbers
methods, to estimate (1.1). He established the following: for a primitive positive definite quadratic
form f of discriminant −D, and a square-free integer ℓ≥ 1, we have

∑
n≤x
ℓ|n

rf(n) =
2π√
D
g(ℓ)x+O

(
τ3(ℓ)a1/2

D1/2
x1/2 +

τ(ℓ)τ3(ℓ)ℓ
1/2D1/4

a3/4
x1/4 + 1

)
, (3.1)

for x≥ 1. Here, g is a multiplicative function satisfying

g(p) =
1
p

(
1+χ(p)− χ(p)

p

)
(3.2)

for all primes p, χ= χ−D is the corresponding Kronecker symbol, and τ 3 is the 3-divisor function.
The main goal here is to improve the error term in (3.1), reducing x1/2 to x1/3.

3.1. Proof of Theorem 1.1

We partially follow the approach outlined in [18, Corollary 4.9]. Assume that x≥ 1 is a real number
and ℓ≥ 1 is an integer. Let 1≤ y≤ x1/2 be a parameter to be chosen. We will apply Lemma 2.1 to
the radial function G : R2 → R supported in 0≤ r≤ (x+ y)1/2, and defined by

Gx,y(r) = G(r) :=min

{
r2,1,

x+ y− r2

y

}
.

By Lemma A.1, the function G satisfies the conditions (2.1), with the bounds

∣∣Ĝ(√ξ)
∣∣� x1/4

|ξ|3/4
for |ξ| 6= 0, and

∣∣Ĝ(√ξ)
∣∣� x3/4

y|ξ|5/4
for |ξ| ≥ 1. (3.3)

Now, let us analyze the right-hand side of (2.2). We recall that rf(0) = 1, and by Lemma A.1, we
know that Ĝ(0) = πx+O(y). Letting z= Dx/y2 (note that 4z/D≥ 1), and using the estimates in
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 551

(3.3) we obtain

∣∣∣∣∣
∞∑
n=1

rf(n) Ĝ

(√
4n
D

)∣∣∣∣∣=
∣∣∣∣∣ ∑
a≤n≤z

rf(n) Ĝ

(√
4n
D

)
+
∑
n>z

rf(n) Ĝ

(√
4n
D

)∣∣∣∣∣
� D3/4x1/4

∑
a≤n≤z

rf(n)

n3/4
+
D5/4x3/4

y

∑
n>z

rf(n)

n5/4
.

To estimate the sums above, we use integration by parts and the well-known result (see
[2, Lemma 3.1])

∑
a≤n≤x

rf(n) =
2πx√
D

+O

(√
x
a

)
,

for x≥ a. Therefore,

∣∣∣∣∣
∞∑
n=1

rf(n) Ĝ

(√
4n
D

)∣∣∣∣∣� D3/4x1/4

a3/4
+
D1/2x1/2

y1/2
.

We now estimate the translated terms in (2.2). Let r, s be integers such that 0≤ r, s< ℓ and (r, s) 6=
(0,0). Let

B :=

{
(u,v) ∈ Z2 : f

(
u− r

ℓ
, v− s

ℓ

)
<
f(u,v)
2

}
∪{(0,0)}

be the set in the statement of Lemma 2.2 (with the point (0,0) included). First, let us bound the sum
over (u,v) ∈ B. Wewill use the fact that f(u− r/ℓ, v− s/ℓ)≥ a/ℓ2 for all (u,v) ∈ Z2, and Lemma 2.2.
Then, recalling that a� D1/2 and using (3.3), we see that

∑
(u, v)∈B

∣∣∣∣∣Ĝ
(√

4f(u− r/ℓ, v− s/ℓ)
D

)∣∣∣∣∣� (#B) max
(u,v)∈Z2

{
x1/4D3/4

f(u− r/ℓ, v− s/ℓ)3/4

}
� ℓ3/2D5/4x1/4

a7/4
.
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552 A. CHIRRE AND E. QUESADA-HERRERA

We analyze the sum over (u,v) ∈ Bc, by splitting it once more into the sets Bc ∩{ f(u,v)≤ z} and
Bc ∩{ f(u,v)> z}. We estimate it using (3.3) as follows:

∑
(u, v)∈Bc

∣∣∣∣∣Ĝ
(√

4f(u− r/ℓ, v− s/ℓ)
D

)∣∣∣∣∣
�

∑
(u, v)∈Bc∩{f(u,v)≤z}

D3/4x1/4

f(u− r/ℓ, v− s/ℓ)3/4
+

∑
(u, v)∈Bc∩{f(u,v)>z}

D5/4x3/4

y f(u− r/ℓ, v− s/ℓ)5/4

� D3/4x1/4
∑

(u, v)∈Bc∩{f(u,v)≤z}

1
f(u,v)3/4

+
D5/4x3/4

y

∑
{f(u,v)>z}

1
f(u,v)5/4

� D3/4x1/4
∑
a≤n≤z

rf(n)
n3/4

+
D5/4x3/4

y

∑
n>z

rf(n)
n5/4

� D3/4x1/4

a3/4
+
D1/2x1/2

y1/2
.

Therefore, since G(0) = 0, we combine all the terms in (2.2) to find, for 1≤ y≤ x1/2,

∞∑
n=1
ℓ|n

rf(n)Gx,y(
√
n) =

2π√
D
g̃(ℓ)x+O

(
g̃(ℓ)

(
ℓ7/2D3/4x1/4

a7/4
+

ℓ2x1/2

y1/2
+

y

D1/2

))
, (3.4)

where g̃(ℓ) was defined in (2.3). Since Gx,y(r)≥ 0, we truncate the sum on the left-hand side of (3.4)
over 1≤ n≤ x. Using the definition of G, this implies that

∑
1≤n≤x
ℓ|n

rf(n)≤
2π√
D
g̃(ℓ)x+O

(
g̃(ℓ)

(
ℓ7/2D3/4x1/4

a7/4
+

ℓ2x1/2

y1/2
+

y

D1/2

))
. (3.5)

To obtain the inverse inequality, we replace x by x − y (in this case 1≤ y≤ (x− y)1/2) in (3.4) and
use the fact that

∞∑
n=1
ℓ|n

rf(n)Gx−y,y(
√
n) =

∑
1≤n≤x
ℓ|n

rf(n)Gx−y,y(
√
n)≤

∑
1≤n≤x
ℓ|n

rf(n).

This yields

∑
1≤n≤x
ℓ|n

rf(n)≥
2π√
D
g̃(ℓ)x+O

(
g̃(ℓ)

(
ℓ7/2D3/4(x− y)1/4

a7/4
+

ℓ2(x− y)1/2

y1/2
+

y

D1/2

))
. (3.6)
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 553

Then, choosing y= D1/3x1/3/21/2 in (3.5) and (3.6), we conclude8 that, for x≥ D2

∑
1≤n≤x
ℓ|n

rf(n) =
2π√
D
g̃(ℓ)x+O

(
g̃(ℓ)ℓ2x1/3

D1/6
+
g̃(ℓ)ℓ7/2D3/4x1/4

a7/4

)
. (3.7)

Now, if we compare the main terms in (3.1) and (3.7), we plainly see that g̃(ℓ) = g(ℓ) for any ℓ
square-free integer. Also note that, for each prime p, (3.2) implies that |g(p)| ≤ 2/p. Since g is a
multiplicative function, for a square-free integer ℓ= p1 . . .pk, we have

|g̃(ℓ)|= |g(ℓ)|= |g(p1 . . .pk)| ≤
2k

p1 . . .pk
=

τ(ℓ)

ℓ
.

Inserting this estimate in the error term of (3.7), we conclude.

Remark 3.1 We highlight that the asymptotic formula (1.2) in Theorem 1.1 holds for x≥ D2. We
can establish a similar result for x≥ 3, if we choose y= x1/3/21/2 in the previous proof. Then, for
x≥ 3,

∑
1≤n≤x
ℓ|n

rf(n) =
2π√
D
g(ℓ)x+O

(
τ(ℓ)ℓx1/3 +

τ(ℓ)ℓ5/2D3/4

a7/4
x1/4

)
.

Also, note that the above formula can be extended to any primitive positive definite quadratic form,
not necessarily reduced, by considering a= 1 in the error term.

4. Proof of Theorem 1.3

Let f(u,v) = au2 + buv+ cv2 be a reduced positive definite quadratic form of discriminant −D, and fix
0< ε < 1/20. To prove Theorem 1.3, we follow the idea developed in [33]. Letχ= χ−D(·) :=

(−D
·
)

denote the corresponding Kronecker symbol, which is a quadratic Dirichlet character, and let L(s,χ)
be the associated L-function. We remark that, in the ranges (1.7) and (1.8), using the fact that f is
reduced, we have that x≥ x− y≥ D2.

Let us define w=#{(p,q, r, s) ∈ Z4 : ps− qr= 1 and f(u,v) = f(pu+ qv,ru+ sv)}. By
[29, p. 63 Satz 2], we have that w= 6 when D= 3, w= 4 when D= 4, and w= 2 otherwise. This
implies that, if p is a prime represented by f, then it is represented with multiplicity δ−1

f w, where
δf is defined in (1.3). The number w is related to the class number h(−D) through the class number
formula (see [29, p. 72, Staz 5]):

h(−D) = w
√
D

2π
L(1,χ). (4.1)

We start by dividing into cases, depending on the size of L(1,χ).

8Note that, so far, ℓ≥ 1 is not necessarily a square-free integer. Using the estimate |̃g(ℓ)| ≤ 1, we obtain a general version of
Theorem 1.1.
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554 A. CHIRRE AND E. QUESADA-HERRERA

4.1. The case L(1,χ)≥ (logy)−2

Let z≥ 2 be a parameter to be chosen later, and define P=
∏

p≤z p. Then, one can see that

w
δf

(
πf(x)−πf(x− y)

)
≤

∑
x−y<n≤x
(n,P)=1

rf(n)+
w
δf
π(z). (4.2)

Let us bound the sieved sum on the right-hand side of (4.2). For a square-free integer ℓ≥ 1,
Theorem 1.1 gives us

∑
x−y<n≤x

ℓ|n

rf(n) =
2π y√
D
g(ℓ)+Eℓ, (4.3)

where

|Eℓ| �
τ(ℓ)ℓ

D1/6
x1/3 +

τ(ℓ)ℓ5/2D3/4

a7/4
x1/4. (4.4)

Then, (4.3) and a direct application of Selberg’s upper bound sieve (see [11, Theorem 7.1 and
Eq. (7.32)] with level of distribution z2 give us

∑
x−y<n≤x
(n,P)=1

rf(n)≤
2π y√
D
J−1 +

∑
ℓ|P
ℓ<z2

τ3(ℓ)|Eℓ|, (4.5)

where J=
∑

ℓ<z,ℓ|P h(ℓ), and h is a multiplicative function defined by

h(ℓ) =
∏
p|ℓ

g(p)
1− g(p)

.

To bound the main term in (4.5), we treat g as a completely multiplicative function, to obtain
(see [33, Eq. (8.8)])

J≥
∑
ℓ<z

g(ℓ). (4.6)

To bound the sum on the right-hand side of (4.5), we use (4.4), and integration by parts with the
estimate (see [22, Theorem 1])

∑
n≤x

τ3(n)τ(n)� x(logx)5.
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It follows that ∑
ℓ|P
ℓ<z2

τ3(ℓ)|Eℓ| �
x1/3

D1/6

∑
ℓ<z2

τ3(ℓ)τ(ℓ)ℓ+
D3/4x1/4

a7/4
∑
ℓ<z2

τ3(ℓ)τ(ℓ)ℓ
5/2

� x1/3z4(logz)5

D1/6
+
D3/4x1/4z7(logz)5

a7/4
. (4.7)

We now combine (4.2), (4.5), (4.6), (4.7), the prime number theorem, and the fact that x≥ D2. We
obtain

w
δf

(
πf(x)−πf(x− y)

)
≤ 2π y

√
D
∑
ℓ<z

g(ℓ)
+O

(
x1/3z4(logz)5

D1/6
+
D3/4x1/4z7(logz)5

a7/4

)
. (4.8)

To analyze the main term in the right-hand side of (4.8), we use some bounds given in [33]. Com-
bining Lemma 4.3, Lemma 4.4 and Lemma 8.2 of [33], for any fixed 0< ε < 1/20, it follows that

∑
ℓ<z

g(ℓ)≥ L(1,χ) logz−
(
1
8
+ ε

)
L(1,χ) logD+O

(
L(1,χ)+ z−ε2/2

)
, (4.9)

for any z≥ 1 such that z� D1/4+ε.

The first range (1.7)
We recall that, in the range

D2

a
x1/3+ε ≤ y≤ x4/9,

we have x≥ D18/a9 ≥ D13, since f is reduced. Now, we choose

z=
a1/4y1/4(logy)−2

D5/24x1/12
+ 2.

Note that logz� logy. Then, from (4.8) we see that

w
δf

(
πf(x)−πf(x− y)

)
≤ 2π y

√
D
∑
ℓ<z

g(ℓ)
+O

(
y√

D(logy)3

)
.

Using the class number formula (4.1) and the well-known estimate L(1,χ)� logD� logy, we get

πf(x)−πf(x− y)≤
δf y

h(−D)(L(1,χ))−1
∑
ℓ<z

g(ℓ)
+O

(
δf y

h(−D)(logy)2

)
. (4.10)
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556 A. CHIRRE AND E. QUESADA-HERRERA

On the other hand, since z≥ 1 and z� D1/4+ε/4, from (4.9) it follows that

(L(1,χ))−1
∑
ℓ<z

g(ℓ)≥ logz−
(
1
8
+

ε

4

)
logD+O

(
1+(logy)2z−ε2/32

)
≥ 1

4
logy− 1

12
logx−

(
1
3
+

ε

4

)
logD+

1
4
loga+O(log logy)

=
1− θ1
4

logy+O(log logy),

where θ1 is defined as

θ1 =
logx
3logy

+

(
4
3
+ ε

)
logD
logy

− loga
logy

.

One can see that 9ε/4< 1− θ1 < 1/4. Therefore,

1

(L(1,χ))−1
∑
ℓ<z

g(ℓ)
≤ 4

(1− θ1) logy

(
1+O

(
log logy
logy

))
.

Inserting this in (4.10), we obtain the desired result.

The second range (1.8)
We recall that, in the range

x4/9 ≤ y≤ x3/5,

we are assuming that x≥ D18. Now, we choose

z=
a1/4 y1/7(logy)−2

D5/24x1/28
+ 2.

Note that z≥ 1, z� D1/4+1/28 and logz� logy. We proceed as in the previous case to obtain (4.10).
Using (4.9), it follows that

(L(1,χ))−1
∑
ℓ<z

g(ℓ)≥ 1
7
logy− 1

28
logx− 31

84
logD+

1
4
loga+O(log logy)

=
1− θ2
7

logy+O(log logy),

where θ2 is defined by

θ2 =
logx
4logy

+
31
12

logD
logy

− 7
4
loga
logy

.
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Then, 11/96≤ 1− θ2 < 7/12, and we obtain

1

(L(1,χ))−1
∑
ℓ<z

g(ℓ)
≤ 7

(1− θ2) logy

(
1+O

(
log logy
logy

))
.

Inserting this in (4.10), we obtain the desired result.

4.2. The case L(1,χ)< (logy)−2

Applying Theorem 1.1 with ℓ= 1, we have that

w
δf

(
πf(x)−πf(x− y)

)
≤

∑
x−y<n≤x

rf(n) =
2π y√
D

+O

(
x1/3

D1/6
+
D3/4x1/4

a7/4

)
.

Then, using the class number formula (4.1) and the bound L(1,χ)< (logy)−2, it follows that, in
both ranges,

πf(x)−πf(x− y)≤
{
1+O

(
D1/3x1/3

y

)
+O

(
D5/4x1/4

a7/4y

)}
δf y

h(−D)
L(1,χ)� y

h(−D)(logy)2
.

This implies our desired result in this case, and we conclude the proof of Theorem 1.3. □

5. Hecke characters and Hecke L-functions

In this section, we will review the necessary background on Hecke L-functions, and their relation to
quadratic forms, to prove Theorem 1.5.

5.1. From quadratic forms to ideals of quadratic fields

It is well-known that there is a bijection between equivalence classes of positive definite quadratic
forms, and equivalence classes of certain ideals in imaginary quadratic fields (see [9, Section 7] and
[29] for expositions). More precisely, let f be a positive definite primitive form of discriminant −D,
and let K=Q(

√
−D) be the associated imaginary quadratic field. We can write

D= q2DK, (5.1)

where q is some positive integer and DK is the absolute discriminant of K over Q. To describe the
classes of ideals that correspond to quadratic forms, we must first introduce some notation.9 We
follow Zaman’s notation in [31] and [32].

9This notation and some of our subsequent results in this section could be given for arbitrary algebraic number fields, as in
[31]. However, for simplicity, we will only state the definitions and results in the case of imaginary quadratic fields, which
is the case relevant to positive definite quadratic forms.
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558 A. CHIRRE AND E. QUESADA-HERRERA

Denote by N the norm in K over Q, and let q be an integral ideal of K. Let I(q) be the group of
fractional ideals of K relatively prime to q, and let Pq be the group of principal ideals (α) of K such
that α is positive and α≡ 1(modq). Let

Cl(q) := I(q)/Pq (5.2)

be the narrow ray class group of K modulo q. Additionally, let H be a subgroup of I(q) such that

Pq ⊂ H⊂ I(q). (5.3)

For such an H, we call the quotient I(q)/H a congruence class group, and we denote by hH :=
|I(q)/H| its cardinality. Note that I(q)/H⊂ Cl(q). In our setting for quadratic forms, we will mainly
need the above with the principal ideal q= (q), where q is given in (5.1); and with H0 the group of
principal ideals (α) of K such that α≡ a(modq), for some a ∈ Z with ((a),q) = 1 (that is, with (a)
and q coprime). Note that Pq ⊂ H0 ⊂ I(q). With this notation, we can state the equivalence between
ideals and forms.

Lemma 5.1 For each equivalence class of primitive positive definite quadratic forms [f], there is a
unique A= Af ∈ I(q)/H0 such that, for any integer m, m is represented by f if and only if there is an
integral ideal a ∈ A, with Na=m. This correspondence is bijective.

Proof. This follows from Theorem 7.7 and Proposition 7.22 of [9]. See also [9, pp. 144-145] for the
slightly more general framework of congruence class groups that we use here. □

In particular, note that h(−D) = hH0 = |I(q)/H0|, where h(−D) is the number of proper equivalence
classes of primitive quadratic forms of discriminant −D.

5.2. Hecke characters

We define a Hecke character χ(modq) to be a character of the group Cl(q), which we defined in
(5.2). Additionally, a character χ(modH) is a character of a congruence class group I(q)/H. Given
a Hecke character χ(modq), abusing notation, we can extend the definition of χ to a multiplicative
function over all integral ideals ofK, such that χ(n) = 0 when (n,q) 6= 1, and χ(n) = 1 when n ∈ Pq.
With this correspondence, the characters χ(modH) of a congruence class group correspond exactly
to the Hecke characters mod q such that χ(h) = 1, for all h ∈ H. From now on, we will work with
this extended definition of Hecke characters, as functions over all integral ideals.

We denote the trivial character mod q by χ0, so that χ0(n) = 1 when (n,q) = 1, and 0 other-
wise. Given a character χ(modq), there is a unique fχ |q, the conductor of χ, such that χ is induced
by a primitive character χ∗ (mod fχ). This implies that χ(n) = χ∗(n)χ0(n). See, for instance, [31]
for further background on Hecke characters. For any congruence class group, we also have the
orthogonality relations (see [18, p. 44]): for all A ∈ I(q)/H,

∑
χ(modH)

χ(A) =

{
hH, if A= H,
0, if A 6= H.
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In particular, for an integral ideal a, we have that

∑
χ(modH)

χ(A)χ(a) =

{
hH, if a ∈ A,
0, if a /∈ A. (5.4)

5.3. The family of Hecke L-functions

Here, we describe the family of Hecke L-functions in the framework of [18, Chapter 5]. Below, we
adopt the notation

ΓR(z) := π−z/2Γ
( z
2

)
,

where Γ is the usual Gamma function. For a character χ(modq), we define the function

L(s,χ) :=
∑
a

χ(a)

(Na)s
=
∏
p

(
1− χ(p)

(Np)s

)−1

,

where the sum and the product run over all integral ideals a and prime ideals p of K, respectively,
and both converge absolutely to L(s,χ) on {s ∈ C ; Res> 1}. When χ is primitive, it is known that
L(s,χ) satisfies the following conditions (see [18, p. 129] and [31, Section 2]):
(1) There exists a sequence {λχ(n)}n≥1 of complex numbers (λχ(1) = 1), such that the series

∞∑
n=1

λχ(n)
ns

converges absolutely to L(s,χ) on {s ∈ C ; Res> 1}. In fact, the sequence {λχ(n)}n≥1 is defined by

λχ(n) =
∑
a

Na=n

χ(a).

(2) For each prime number p, there exist α1,χ(p) and α2,χ(p) in C, such that |αj,χ(p)| ≤ 1 and10

L(s,χ) =
∏
p

(
1− α1,χ(p)

ps

)−1(
1− α2,χ(p)

ps

)−1

.

The product converges absolutely on the half plane {s ∈ C;Res> 1}.

10This follows from the factorization law of primes in imaginary quadratic fields (see, for instance
[18, p. 57]).
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(3) Denote Dχ := DKNfχ. The completed L-function

Λ(s,χ) := Ds/2
χ ΓR(s)ΓR(s+ 1)L(s,χ)

is a meromorphic function of order 1. It has no poles other than 0 and 1, which have the same
order r(χ) ∈ {0,1}. Additionally, r(χ) = 1 if χ is the trivial character mod q, and 0 otherwise.
Furthermore, the function Λ(s,χ) satisfies the the functional equation

Λ(s,χ) = ϵ(χ)Λ(1− s,χ),

where ϵ(χ) is a complex number of absolute value 1. In particular, when q= (1) and χ= χ0, the
function L(s,χ0) is the Dedekind zeta function ζK(s) ofK, defined as in [18, Section 5.10]. Moreover,
we have that

L′

L
(s,χ) =−

∞∑
n=2

Λχ(n)
ns

converges absolutely for Res> 1, where11

Λχ(n) =
∑
a

Na=n

χ(a)ΛK(a), (5.5)

and

ΛK(a) =

{
logNp, if a= pr for some integer r≥ 1,
0, otherwise.

(5.6)

Logarithmically differentiating the Euler product, it can be shown that |Λχ(n)| ≤ 2Λ(n), whereΛ(n)
is the usual von Mangoldt function. In particular, one can see that∑

a
Na=n

ΛK(a)≤ 2Λ(n). (5.7)

Remark 5.2 If χ (mod q) is a non-primitive character induced by the primitive character χ∗ (mod
fχ), we have the relation

L(s,χ) = L(s,χ∗)
∏
p|q

(
1− χ∗(p)

(Np)s

)
. (5.8)

In particular, L(s,χ) also extends to a meromorphic function, such that L(s,χ) and L(s,χ∗) have the
same set of zeros in the strip 0< Res< 1.

11We also extend this definition of Λχ to any function defined over integral ideals, in place of χ.

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/2/539/6378791 by N
TN

U
 Library user on 04 O

ctober 2022



FOURIER OPTIMIZATION AND QUADRATIC FORMS 561

5.4. The Guinand–Weil formula

The classical Guinand–Weil explicit formula establishes a relationship between the zeros of an L-
function, the associated coefficients Λχ(n) (given in this case in (5.5)), an arbitrary function G, and
its Fourier transform Ĝ. In the case of a Hecke L-function L(s,χ), the coefficients Λχ(n) contain
information about prime ideals, twisted by the character χ.

We will use the version of this formula in [4, Lemma 5]. However, this only applies to the case
of a primitive Hecke character mod q, and we will need a version that averages over all characters,
primitive and non-primitive, in a given congruence class group. The result is the following, which
could be of independent interest for further applications.12

Lemma 5.3 Let q be an integral ideal of the imaginary quadratic field K. Let I(q)/H be a congruence
class group as in (5.3) and let A ∈ I(q)/H. Let G(s) be analytic in the strip |Ims| ≤ 1

2 + ε, for some
ε>0. Assume that |G(s)| � (1+ |s|)−(1+δ) for some δ >0, when |Res| →∞. Then

∑
χ(modH)

χ(A)
∑
ρχ

G

(
ρχ − 1

2

i

)
= G

(
1
2i

)
+G

(
− 1
2i

)

+
hHκH(A)

π

∫ ∞

−∞
G(u)

{
Re

Γ′
R

ΓR

(
1
2 + iu

)
+ Re

Γ′
R

ΓR

(
3
2 + iu

)}
du

− hH
2π

∞∑
n=2

1√
n
Ĝ

(
logn
2π

)
∑
a∈A
Na=n

ΛK(a)


− 1

2π

∞∑
n=2

1√
n
Ĝ

(
− logn
2π

) ∑
χ(modH)

χ(A)Λχ(n)


+O

(
hH log(DKNq)‖Ĝ‖∞

)
,

where the sum over ρχ runs over all zeros of L(s,χ) in the strip 0< Res< 1. The coefficients Λχ(n)
and ΛK(a) are defined in (5.5); κH(A) = 1 when A=H, and 0 otherwise.

Proof. We follow the approach used in [7, Lemma 3] for Dirichlet characters modulo q≥ 3. The
Guinand–Weil formula in [4, Lemma 5], when specialized to L(s,χ) for a primitive Hecke character

12Like the rest of this section, the previous lemma is only stated for the case of imaginary quadratic fields, to simplify the
technical details of some of the definitions. However, a similar statement holds true for families of Hecke L-functions of
arbitrary algebraic number fields, with a similar proof.
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χ(modq), states the following:

∑
ρχ

G

(
ρχ − 1

2

i

)
= r(χ)

{
G

(
1
2i

)
+G

(
− 1
2i

)}
+

logDχ

2π
Ĝ(0)

+
1
π

∫ ∞

−∞
G(u)

{
Re

Γ′
R

ΓR

(
1
2 + iu

)
+ Re

Γ′
R

ΓR

(
3
2 + iu

)}
du

− 1
2π

∞∑
n=2

1√
n

{
Λχ(n) Ĝ

(
logn
2π

)
+Λχ(n) Ĝ

(
− logn
2π

)}
,

(5.9)

where the sum on the left-hand side runs over the zeros of Λ(s,χ), which coincide with the zeros of
L(s,χ) in 0< Res< 1. Now, let χ be a non-primitive character mod q. Let χ∗ (mod fχ) be the unique
primitive character that induces χ, where fχ |q, so that χ= χ∗χ0, where χ0 is the trivial character
mod q. We can then write χ∗(a) = χ(a)+χ∗(a)χ̃0(a), where χ̃0(a) = 1−χ0(a). Applying (5.9)
for χ∗, it follows that

∑
ρχ∗

G

(
ρχ∗ − 1

2

i

)
= r(χ)

{
G

(
1
2i

)
+G

(
− 1
2i

)}
+

logDχ∗

2π
Ĝ(0)

+
1
π

∫ ∞

−∞
G(u)

{
Re

Γ′
R

ΓR

(
1
2 + iu

)
+ Re

Γ′
R

ΓR

(
3
2 + iu

)}
du

− 1
2π

∞∑
n=2

1√
n

{
Λχ(n) Ĝ

(
logn
2π

)
+Λχ(n) Ĝ

(
− logn
2π

)}

− 1
2π

∞∑
n=2

1√
n

{
Λχ∗χ̃0(n) Ĝ

(
logn
2π

)
+Λχ∗χ̃0(n) Ĝ

(
− logn
2π

)}
.

Since χ̃0(a) = 0 when a and q are coprime, by Lemma A.2, the last sum can be bounded by

∣∣∣∣∣ 12π
∞∑
n=2

1√
n

{
Λχ∗χ̃0(n) Ĝ

(
logn
2π

)
+Λχ∗χ̃0(n) Ĝ

(
− logn
2π

)}∣∣∣∣∣�‖Ĝ‖∞
∑

p|q, k≥1

logNp
(Np)k/2

�‖Ĝ‖∞
√
log(Nq+ 1).

Letting QH :=max{Nfχ : χ(modH)}, note that

logDχ ≤ log(DKQH)≤ log(DKNq).

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/73/2/539/6378791 by N
TN

U
 Library user on 04 O

ctober 2022



FOURIER OPTIMIZATION AND QUADRATIC FORMS 563

By (5.8), L(s,χ) and L(s,χ∗) have the same zeros in 0< Res< 1. Then, for any non-primitive
character χ(modH), we obtain that13

∑
ρχ

G

(
ρχ − 1

2

i

)
= r(χ)

{
G

(
1
2i

)
+G

(
− 1
2i

)}

+
1
π

∫ ∞

−∞
G(u)

{
Re

Γ′
R

ΓR

(
1
2 + iu

)
+ Re

Γ′
R

ΓR

(
3
2 + iu

)}
du

− 1
2π

∞∑
n=2

1√
n

{
Λχ(n) Ĝ

(
logn
2π

)
+Λχ(n) Ĝ

(
− logn
2π

)}
+O

(
log(DKNq)‖Ĝ‖∞

)
.

We now multiply by χ(A) and sum over all χ(modH). Using r(χ) = 1 if χ is the trivial character,
and 0 otherwise, we get that

∑
χ(modH)

χ(A)
∑
ρχ

G

(
ρχ − 1

2

i

)
= G

(
1
2i

)
+G

(
− 1
2i

)

+
∑

χ(modH)

χ(A)
1
π

∫ ∞

−∞
G(u)

{
Re

Γ′
R

ΓR

(
1
2 + iu

)
+ Re

Γ′
R

ΓR

(
3
2 + iu

)}
du

− 1
2π

∞∑
n=2

1√
n
Ĝ

(
logn
2π

) ∑
χ(modH)

χ(A)Λχ(n)


− 1

2π

∞∑
n=2

1√
n
Ĝ

(
− logn
2π

) ∑
χ(modH)

χ(A)Λχ(n)


+O

(
hH log(DKNq)‖Ĝ‖∞

)
.

Using (5.5), Fubini’s theorem and the orthogonality relations (5.4), we obtain the desired result. □

6. Proof of Theorem 1.5

We follow the argument of Carneiro, Milinovich and Soundararajan in [5, Section 5]. To begin,
fix a primitive positive definite quadratic form f of discriminant −D, and let A ∈ I(q)/H0 be the
corresponding ideal class as in Lemma 5.1. Assume GRH for all Hecke L-functions associated with
characters χ(modH0). Furthermore, take a fixed even and bandlimited Schwartz function F : R→ R
such that F(0)> 0 and supp(F̂)⊂ [−N,N], for some N≥ 1. We can extend F to an entire function,
and using the Phragmén–Lindelöf principle, the hypotheses of Lemma 5.3 are satisfied. Let 0<∆≤

13In fact, in this step we have the slightly better error term ≪
(
log(DKQH)+

√
log(Nq+ 1)

)
∥Ĝ∥∞.
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1 and 1< σ be free parameters, to be chosen later, such that

2π∆N≤ logσ.

We remark that we will send σ →∞ and∆→ 0. In this section, we will allow all implicit constants
to depend on the fixed quadratic form f, its discriminant, and the fixed function F, but not on the free
parameters σ and ∆.

6.1. Asymptotic analysis

The following computations are similar to those in [5] and [7], so we highlight the differences.
Consider the function G(z) :=∆F(∆z)σiz. We apply Lemma 5.3 to G, with our specific choices of
q, H0 and A. This gives

∑
χ(modH0)

χ(A)
∑
γχ

G(γχ) = G

(
1
2i

)
+G

(
− 1
2i

)

+
h(−D)κH0(A)

π

∫ ∞

−∞
G(u)

{
Re

Γ′
R

ΓR

(
1
2 + iu

)
+ Re

Γ′
R

ΓR

(
3
2 + iu

)}
du

− h(−D)
2π

∞∑
n=2

1√
n
Ĝ

(
logn
2π

)
∑
a∈A
Na=n

ΛK(a)


− 1

2π

∞∑
n=2

1√
n
Ĝ

(
− logn
2π

) ∑
χ(modH0)

χ(A)Λχ(n)

+O(1),

(6.1)

where the inner sum on the left-hand side runs over the imaginary parts of the zeros of L(s,χ) on the
line Res= 1

2 . The first, second and fourth lines in the right-hand side of (6.1) can be estimated as in
[5, pp. 553–554]. In this way, we obtain the following:

∑
χ(modH0)

χ(A)
∑
γχ

G(γχ) = ∆F(0)
√
σ − h(−D)

2π

∞∑
n=2

1√
n
Ĝ

(
logn
2π

)
∑
a∈A
Na=n

ΛK(a)


+O

(
∆2√σ

)
+O(1).

Therefore,

∆F(0)
√
σ ≤

∑
χ(modH0)

∑
γχ

∣∣G(γχ)∣∣+ h(−D)
2π

∞∑
n=2

1√
n
Ĝ

(
logn
2π

)
+


∑
a∈A
Na=n

ΛK(a)


+O

(
∆2√σ

)
+O(1).

(6.2)
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To analyze the first sum on the right-hand side of (6.2), we recall the formula [18, Theorem 5.8]

N(T,χ) =
T
π
log

(
DχT2

(2πe)2

)
+O(logT+ logDχ),

where N(T,χ) denotes the number of zeros of L(s,χ) in the rectangle 0< σ < 1 and |γ| ≤ T. This
holds for both primitive and non-primitive characters. Note that the term T2 comes from the fact
that K is an algebraic extension of Q of degree 2. For each χ(modH0), integration by parts gives us
(see [5, Eq. (5.4)]) that

∑
γχ

|G(γχ)|=
log(1/2π∆)

π
‖F‖1 +O(1).

Then,

∑
χ(modH0)

∑
γχ

∣∣G(γχ)∣∣= h(−D) log(1/2π∆)

π
‖F‖1 +O(1). (6.3)

6.2. From ideals to primes represented by f

We now consider the second sum on the right-hand side of (6.2). This sum is given by

∞∑
n=2

1√
n
Ĝ

(
logn
2π

)
+


∑
a∈A
Na=n

ΛK(a)

=
∞∑
n=2

1√
n
F̂

(
log(n/σ)
2π∆

)
+


∑
a∈A
Na=n

ΛK(a)

 . (6.4)

We first make some reductions to the sum over n. Initially, since supp(F̂)⊂ [−N,N], the sum
runs over σe−2π∆N ≤ n≤ σe2π∆N. Note that the sum is supported over integers n that are (integer)
prime powers, since ΛK is supported on powers of prime ideals. Furthermore, by the relationship
between ideals and forms (Lemma 5.1), the sum over n is actually supported over prime powers that
are represented by f. Using (5.7), the contribution of the prime powers n= pk, with k≥ 2, is O(1).
The sum (6.4) is therefore reduced, up to an error termO(1), to a sum over primes p represented by f,
such that p ∈ [σe−2π∆N,σe2π∆N]. Our version of the Brun–Titchmarsh theorem, Corollary 1.4, will
be useful to estimate the contribution near the endpoints of this interval.

We continue by choosing the parameters ∆ and σ, and bounding the corresponding contribution
of the primes in the interval (σe−2π∆,σe2π∆] to the sum (6.4). Fix α≥ 0 and assume that c> 0 is a
fixed constant such that

liminf
x→∞

πf
(
x+ c

√
x logx)−πf(x)√
x

≤ α.

Then, for any ε> 0, there exists a sequence of x→∞, such that there are at most (α+ ε)
√
x primes

represented by f in the interval (x,x+ c
√
x logx]. For each x in this sequence, we choose σ and ∆
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such that

[
x,x+ c

√
x logx

]
=
[
σe−2π∆,σe2π∆

]
.

This implies that (see [5, Eq. (5.7)-(5.8)])

4π∆= c
logx√
x

+O

(
log2 x
x

)
and σ = x+O(

√
x logx).

Note that δf = 1/2 (defined in (1.3)) if and only if A= {ā : a ∈ A}. Using the factorization law of
primes in imaginary quadratic fields [18, p. 57], we can plainly see that

∑
a∈A
Na=p

ΛK(a) = logp
∑
a∈A
Na=p

1≤ logp
δf

. (6.5)

Using (F̂(t))+ ≤ ‖F‖1 and (6.5), we bound the contribution in this interval by

‖F‖1
∑

p∈(σe−2π∆,σe2π∆]

1
√
p


∑
a∈A
Na=p

ΛK(a)

≤ ‖F‖1
δf

∑
p∈(σe−2π∆,σe2π∆]

logp
√
p

≤ ‖F‖1
δf

(α+ ε)
√
x
logx√
x

=
‖F‖1
δf

(α+ ε) logx.

Finally, we estimate the contribution of the primes in the intervals [σe−2π∆N,σe−2π∆] and
[σe2π∆,σe2π∆N]. We will need the following estimate: for g ∈ C1([a,b]) we have

0≤ S(g+,P)−
∫ b

a
(g(t))+ dt≤ δ(b− a) sup

x∈[a,b]
|g′(x)|, (6.6)

where P is a partition of [a,b] of norm at most δ and S(g+,P) is the upper Riemann sum of the
function g+ and the partition P. We apply (6.6) with the function

g(t) = F̂

(
log(t/σ)
2π∆

)
,

and the partition P= {x0 < .. . < xJ} that covers the interval [σe2π∆,σe2π∆N]⊂ ∪J−1
j=0 [xj, xj+1], with

x0 = σe2π∆, xj+1 = xj+
√
xj. Defining Mj = sup{g+(x) : x ∈ [xj, xj+1]}, by Corollary 1.4, (6.5) and
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 567

(6.6) we bound the contribution in this interval as follows:14

∑
1≤ log p/σ

2π∆ ≤N

1
√
p
F̂

(
log(p/σ)
2π∆

)
+


∑
a∈A
Na=p

ΛK(a)


≤ 1

δf

∑
1≤ log p/σ

2π∆ ≤N
p represented by f

F̂

(
log(p/σ)
2π∆

)
+

logp
√
p

≤
J−1∑
j=0

(
logxj√
xj
Mj

)
(28+ ε)

√
xj

h(−D) logxj
≤ (28+ ε)

√
σ (2π∆)

h(−D)

∫ N

1
(F̂(t))+ dt+O(1).

We treat the other interval in a similar way. Combining the two intervals, we obtain

∑
1<| log(p/σ)

2π∆ |≤N

1
√
p
(F̂)+

(
log(p/σ)
2π∆

)
∑
a∈A
Na=p

ΛK(a)

≤ (28+ ε)
√
σ (2π∆)

h(−D)

∫
[−1,1]c

(F̂(t))+ dt+O(1).

Grouping the previous estimates, we conclude that

∞∑
n=2

1√
n
(Ĝ)+

(
logn
2π

)
∑
a∈A
Na=n

ΛK(a)

≤ ‖F‖1
δf

(α+ ε) logx

+
(28+ ε)

√
σ (2π∆)

h(−D)

∫
[−1,1]c

(F̂(t))+ dt+O(1).

(6.7)

Then, inserting the estimates (6.3) and (6.7) in (6.2), and reordering the terms, we obtain

√
σ∆

(
F(0)− (28+ ε)

∫
[−1,1]c

(F̂(t))+ dt

)
≤ h(−D)‖F‖1

2π

[
(α+ ε)

logx
δf

+ 2log(1/2π∆)

]
+O(1).

Sending x→∞ along the sequence, and then sending ε→ 0, we obtain that

c≤ 2
(δf+α)h(−D)

δf

‖F‖1
F(0)− 28

∫
[−1,1]c(F̂(t))+ dt

, (6.8)

wherewe assume that the denominator is positive. By the approximation argument in [5, Section 4.1],
equation (6.8) also holds for any even continuous function F ∈ L1(R), with the mentioned restriction
on the denominator. Now we must find a suitable function F.

14See [7, p. 7] for details in this computation.
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568 A. CHIRRE AND E. QUESADA-HERRERA

6.3. Construction of F

Inspired by Gorbachev’s constructions in [14] for a related Fourier optimization problem (see also
the remark in [5, p. 536]), we search numerically for optimal dilations of functions of the form

H(x) = cos(2πx)
n∑
j=1

aj
(2j− 1)2 − 16x2

. (6.9)

Using a greedy algorithm, we found the function

F(x) = H
( x
0.98644

)
, (6.10)

where

H(x) = cos(2πx)

(
68

1− 16x2
+

5
9− 16x2

+
1

25− 16x2

)
,

which, by numerical experiment,15 gives

‖F‖1
F(0)− 28

∫
[−1,1]c(F̂(t))+ dt

< 0.91833. (6.11)

Therefore, inserting it in (6.8) we conclude the desired result. □

7. Uncertainty and Fourier optimization

In this section, we discuss some qualitative aspects on the problem of choosing an optimal function
F in (6.11). For 1≤ A<∞, in [5] the authors introduced the functionals

JA(F) :=
|F(0)| −A

∫
[−1,1]c |F̂(t)| dt

‖F‖1

and

J+A (F) :=
F(0)−A

∫
[−1,1]c(F̂(t))+ dt

‖F‖1
,

whereF is a continuous function such thatF ∈ L1(R) \ {0}. They considered the following problems:

15The bound 0.91833 in (6.11) was determined rigorously, using ball arithmetic with the ARB library.
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 569

Problem 7.1 Define A to be the class of continuous functions F : R→ C, with F ∈ L1(R) \ {0},
and E = {F ∈ A : suppF̂⊂ [−1,1]}. Find

C(A) :=


sup
F∈A

JA(F), if 1≤ A<∞;

sup
F∈E

|F(0)|
‖F‖1

, if A=∞.

Problem 7.2 Define A+ to be the class of even and continuous functions F : R→ R, with F ∈
L1(R) \ {0}, and E+ = {F ∈ A+ : F̂(t)≤ 0 for |t| ≥ 1}. Find

C+(A) :=


sup
F∈A

J+A (F), if 1≤ A<∞;

sup
F∈E+

F(0)
‖F‖1

, if A=∞.

The authors show that, for all 1≤ A≤∞, we have 1≤ C(A)≤ C+(A)≤ 2. The proof in Section 6
and an approximation argument ([5, Section 4.1]) show that, to optimize the value of the constant
in Theorem 1.5, we must find C+(28), where 28 is the constant in the Brun–Titchmarsh-type result
given in Corollary 1.4.
One way to construct good functions for some Fourier optimization problems is to consider those of
the form F(x) = P(x)e−πx2 , where P is a polynomial. They were constructed in [7] via semidefinite
programming. Note, however, that when A=∞, these functions do not even belong to the family
E , as they are never bandlimited. Similarly, when A→∞, optimizing JA(F) requires an increasing
concentration of the mass of F̂ in the interval [−1,1]. For the same reason, by the uncertainty prin-
ciple, we might expect that functions of the form P(x)e−πx2 , when P has bounded degree, become
inadequate as A grows, while bandlimited functions of the form (6.9), which give the best known
bounds when A=∞ (see [14]), become better. This qualitative observation can be formalized in the
following way:

Proposition 7.3 Let n≥ 1 be an integer. Let Fn be the class of functions of the form P(x)e−πx2 ,
where P ∈ R[x] is a polynomial of degree at most n (not identically 0). Then, there exists An > 1,
such that, for all A≥ An, we have

sup
F∈Fn

JA(F)≤ 0.

In particular, for large A, polynomials of bounded degree times a gaussian are always far from the
(positive) supremum.

Proof. Note that Fn ∪{0} is a vector space of dimension n+ 1, and it is invariant under the Fourier
transform. Clearly, for any interval I⊂ R, the function

(a0, a1, . . . , an) 7→
∫
I

∣∣∣∣∣∣
n∑
j=0

ajx
j

∣∣∣∣∣∣e−πx2 dx
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570 A. CHIRRE AND E. QUESADA-HERRERA

Table 1. Table of lower bounds for C+(A) via semidefinite programming and bandlimited functions.

A C+(A) : F82 C+(A) : F122 C+(A) : PW A C+(A) : F82 C+(A) : F122 C+(A) : PW

1.0 1.9016 1.9307 1.9602 18.0 1.0893 1.0944 1.0931
1.5 1.4070 1.4089 1.3430 18.5 1.0887 1.0938 1.0928
2.0 1.2900 1.2933 1.2417 19.0 1.0881 1.0933 1.0925
2.5 1.2346 1.2378 1.1972 19.5 1.0875 1.0928 1.0922
3.0 1.2025 1.2049 1.1719 20.0 1.0870 1.0923 1.0919
3.5 1.1807 1.1830 1.1555 20.5 1.0865 1.0918 1.0917
4.0 1.1653 1.1673 1.1439 21.0 1.0860 1.0914 1.0914
4.5 1.1538 1.1555 1.1355 21.5 1.0856 1.0909 1.0912
5.0 1.1448 1.1467 1.1290 22.0 1.0852 1.0905 1.0909
5.5 1.1378 1.1396 1.1239 22.5 1.0848 1.0901 1.0907
6.0 1.1320 1.1339 1.1198 23.0 1.0845 1.0897 1.0905
6.5 1.1271 1.1294 1.1164 23.5 1.0841 1.0893 1.0903
7.0 1.1228 1.1255 1.1136 24.0 1.0838 1.0890 1.0901
7.5 1.1191 1.1222 1.1112 24.5 1.0835 1.0886 1.0900
8.0 1.1159 1.1192 1.1091 25.0 1.0832 1.0883 1.0898
8.5 1.1131 1.1166 1.1073 25.5 1.0830 1.0880 1.0896
9.0 1.1107 1.1142 1.1058 26.0 1.0827 1.0876 1.0895
9.5 1.1086 1.1121 1.1044 26.5 1.0825 1.0873 1.0893
10.0 1.1067 1.1101 1.1031 27.0 1.0823 1.0871 1.0892
10.5 1.1049 1.1084 1.1020 27.5 1.0820 1.0868 1.0890
11.0 1.1033 1.1068 1.1010 28.0 1.0818 1.0865 1.0889
11.5 1.1019 1.1054 1.1001 28.5 1.0816 1.0863 1.0888
12.0 1.1005 1.1041 1.0993 29.0 1.0814 1.0860 1.0886
12.5 1.0992 1.1030 1.0985 29.5 1.0812 1.0858 1.0885
13.0 1.0980 1.1019 1.0978 30.0 1.0810 1.0856 1.0884
13.5 1.0969 1.1009 1.0972 30.5 1.0809 1.0854 1.0883
14.0 1.0959 1.1000 1.0966 31.0 1.0807 1.0852 1.0882
14.5 1.0949 1.0992 1.0960 31.5 1.0805 1.0850 1.0881
15.0 1.0940 1.0984 1.0955 32.0 1.0804 1.0848 1.0880
15.5 1.0931 1.0976 1.0951 32.5 1.0802 1.0847 1.0879
16.0 1.0922 1.0969 1.0946 33.0 1.0800 1.0845 1.0878
16.5 1.0915 1.0962 1.0942 33.5 1.0799 1.0844 1.0877
17.0 1.0907 1.0956 1.0938 34.0 1.0797 1.0842 1.0876
17.5 1.0900 1.0950 1.0935 34.5 1.0796 1.0841 1.0875

is a continuous function fromRn+1 toR, and homogeneous of degree 1. Therefore, by a compactness
argument, there exists a function F0 ∈ Fn that maximizes the quantity

Dn := max
F∈Fn

∫ 1
−1 |F(x)| dx∫
R |F(x)| dx

= max
F∈Fn

∫ 1
−1 |F̂(t)| dt∫
R |F̂(t)| dt

.

Since F0 is not bandlimited, we have 0< Dn < 1. Additionally, note that, for F ∈ Fn, we have

|F(0)| ≤
∫
R
|F̂(t)| dt≤ 1

1−Dn

∫
[−1,1]c

|F̂(t)| dt.
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FOURIER OPTIMIZATION AND QUADRATIC FORMS 571

Table 2. Table of lower bounds for C+(A) via bandlimited functions, with the corresponding parameters as defined in (7.1)
and (7.2).

A C+(A) in PW {a1,a2,a3} λ A C+(A) in PW {a1,a2,a3} λ

1.0 1.9602 {81, −69, 0} 0.100000 18.0 1.0931 {297, 18, 1} 0.977220
1.5 1.3430 {189, −63, −20} 0.660234 18.5 1.0928 {297, 18, 1} 0.977843
2.0 1.2417 {243, −57, −20} 0.765530 19.0 1.0925 {270, 18, 1} 0.978433
2.5 1.1972 {216, −39, −20} 0.819517 19.5 1.0922 {270, 18, 1} 0.978992
3.0 1.1719 {216, −27, −20} 0.852929 20.0 1.0919 {270, 18, 1} 0.979523
3.5 1.1555 {216, −18, −20} 0.875775 20.5 1.0917 {270, 18, 2} 0.980027
4.0 1.1439 {243, −15, −20} 0.892422 21.0 1.0914 {270, 18, 2} 0.980508
4.5 1.1355 {270, −9, −20} 0.905109 21.5 1.0912 {270, 18, 2} 0.980966
5.0 1.1290 {297, −6, −20} 0.915104 22.0 1.0909 {270, 18, 2} 0.981402
5.5 1.1239 {324, −3, −20} 0.923186 22.5 1.0907 {270, 18, 2} 0.981820
6.0 1.1198 {378, 0, −20} 0.929858 23.0 1.0905 {270, 18, 2} 0.982219
6.5 1.1164 {405, 3, −20} 0.935461 23.5 1.0903 {270, 18, 2} 0.982600
7.0 1.1136 {243, 3, −10} 0.940232 24.0 1.0901 {270, 18, 3} 0.982966
7.5 1.1112 {297, 6, −12} 0.944345 24.5 1.0900 {243, 18, 2} 0.983317
8.0 1.1091 {270, 6, −9} 0.947928 25.0 1.0898 {243, 18, 3} 0.983653
8.5 1.1073 {216, 6, −7} 0.951076 25.5 1.0896 {243, 18, 3} 0.983976
9.0 1.1058 {297, 9, −8} 0.953865 26.0 1.0895 {243, 18, 3} 0.984287
9.5 1.1044 {270, 9, −7} 0.956353 26.5 1.0893 {297, 21, 4} 0.984586
10.0 1.1031 {243, 9, −5} 0.958586 27.0 1.0892 {297, 21, 4} 0.984874
10.5 1.1020 {297, 12, −6} 0.960601 27.5 1.0890 {297, 21, 4} 0.985151
11.0 1.1010 {270, 12, −5} 0.962429 28.0 1.0889 {68, 5, 1} 0.986440
11.5 1.1001 {270, 12, −4} 0.964095 28.5 1.0888 {297, 21, 4} 0.985676
12.0 1.0993 {243, 12, −3} 0.965619 29.0 1.0886 {297, 21, 4} 0.985924
12.5 1.0985 {243, 12, −3} 0.967019 29.5 1.0885 {297, 21, 4} 0.986165
13.0 1.0978 {297, 15, −3} 0.968309 30.0 1.0884 {270, 21, 4} 0.986397
13.5 1.0972 {297, 15, −2} 0.969502 30.5 1.0883 {270, 21, 4} 0.986622
14.0 1.0966 {270, 15, −2} 0.970609 31.0 1.0882 {270, 21, 4} 0.986839
14.5 1.0960 {270, 15, −1} 0.971638 31.5 1.0881 {270, 21, 4} 0.987049
15.0 1.0955 {270, 15, −1} 0.972597 32.0 1.0880 {270, 21, 4} 0.987253
15.5 1.0951 {270, 15, −1} 0.973494 32.5 1.0879 {270, 21,4} 0.987450
16.0 1.0946 {243, 15, 0} 0.974334 33.0 1.0878 {270, 21, 4} 0.987642
16.5 1.0942 {243, 15, 0} 0.975122 33.5 1.0877 {270, 21, 4} 0.987827
17.0 1.0938 {243, 15, 0} 0.975863 34.0 1.0876 {270, 21, 4} 0.988007
17.5 1.0935 {297, 18, 0} 0.976561 34.5 1.0875 {270, 21, 4} 0.988182

Therefore, for A> 1
1−Dn

, and F ∈ Fn, we have JA(F)< 0, and this implies the desired result. □

We conjecture that a similar behavior holds for the problem C+(A), as A→∞. For instance,
functions constructed by David de Laat via semidefinite programming (applying the methods used
in [7]), with polynomials of degree at most 122, imply the estimate C+(28)≥ 1.0865. Meanwhile,
the bandlimited function defined in (6.10) gives C+(28)≥ 1.0889.

In general, for some values16 of A, Table 1 compares the lower bounds for C+(A) that are obtained
via semidefinite programming, with those obtained using bandlimited functions. The functions

16From [5, Theorem 1.2], it is known that C+(1)=2, and we include our bounds for the sake of comparison. For the other
values of A, our bounds in Table 1 slightly improve the general lower bounds obtained in [5, Theorem 1.2 and 1.3].
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572 A. CHIRRE AND E. QUESADA-HERRERA

constructed via semidefinite programming (following [7, Section 4]) have the form P(x)e−πx2 , where
P is a polynomial of degree at most 82 or 122 (that is, functions in F82 or F122). On the other hand,
the aforementioned bandlimited functions F are constructed as in (6.10) (that is, F ∈ PW).17 Table 2
gives the necessary parameters to define these functions. They have the form

F(x) = H

(
x
λ

)
, (7.1)

where

H(x) = cos(2πx)

(
a1

1− 16x2
+

a2
9− 16x2

+
a3

25− 16x2

)
, (7.2)

with a1,a2,a3 ∈ R. This gives strong evidence for the following conjecture:

Conjecture 7.4 There exists an absolute ε> 0, such that the following holds: for n≥ 1 an integer,
there exists A+

n > 1, such that, for A≥ A+
n , we have

sup
F∈Fn

J+A (F)≤ C+(A)− ε.

However, proving it seems more subtle and is related to the concentration of positive mass of a
function, instead of total mass. Sign uncertainty principles of this type were first considered by
Bourgain, Clozel and Kahane [3] and have recently attracted considerable attention (see, for instance,
[6, 8, 12, 13]). In particular, a similar conjecture for the functions P(x)e−πx2 of bounded degree was
stated in [8, Conjecture 3.2].
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Appendix A Some useful estimates

Lemma A.1 Let x,y≥ 1 be two parameters. Consider the radial function G : R2 → R defined by

G(r) =

 min

{
r2,1,

x+ y− r2

y

}
, if 0≤ r≤ (x+ y)1/2;

0, if r> (x+ y)1/2.

Then G ∈ L1(R2), and its Fourier transform Ĝ satisfies the following properties:

(1) For ξ ∈ R2 and ξ 6= 0,

∣∣Ĝ(ξ)∣∣� (x+ y)1/4

|ξ|3/2
. (A1)

(2) For ξ ∈ R2 and |ξ| ≥ 1,

∣∣Ĝ(ξ)∣∣� 1
|ξ|5/2

(
1+

x3/4

y

)
. (A2)

(3) For ξ= 0,

Ĝ(0) =

(
x+

y
2

)
π− π

2
, (A3)

Proof. It is clear that G ∈ L1(R2). Since G is a radial function, it follows that (see [16, p. 429]),

Ĝ(ξ) = 2π
∫ ∞

0
rG(r)J0(2πr|ξ|) dr, (A4)

for ξ ∈ R2, where J0 is the Bessel function of order 0. Since J0(0) = 1, a simple computation shows
(A3). Let us start proving the estimate (A1). For ξ 6= 0, we split the integral in (A4) into the ranges
0≤ r< 1/|ξ| and 1/|ξ| ≤ r<∞. Using the estimates |J0(t)| � 1 and |G(r)| ≤ 1, it follows that

∣∣∣∣∫ 1/|ξ|

0
rG(r)J0(2πr|ξ|) dr

∣∣∣∣� 1
|ξ|2

. (A5)

To estimate the second integral, by [15, 8.451-1] we recall that

J0(t) =

(
2
πt

)1/2{
cos(t− π

4 )+
1
8t

sin(t− π
4 )+O

(
1
t2

)}
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574 A. CHIRRE AND E. QUESADA-HERRERA

for |t| � 1. Then, using integration by parts and the facts that |G(r)| ≤ 1, and
∫∞
0 G(r)/r3/2 dr<∞,

we obtain that∫ ∞

1/|ξ|
rG(r)J0(2πr|ξ|) dr

=− 1
2π2|ξ|3/2

∫ ∞

1/|ξ|
(r1/2G(r))′ sin(2πr|ξ| − π

4 ) dr

+
1

32π3|ξ|5/2

∫ ∞

1/|ξ|

(
G(r)

r1/2

)′

cos(2πr|ξ| − π
4 ) dr+O

(
min

{
1

|ξ|5/2
,
1
|ξ|2

})
.

(A6)

Therefore,∣∣∣∣∫ ∞

1/|ξ|
rG(r)J0(2πr|ξ|) dr

∣∣∣∣� 1
|ξ|3/2

∫ ∞

1/|ξ|

∣∣(r1/2G(r))′∣∣ dr+ 1
|ξ|5/2

∫ ∞

1/|ξ|

∣∣∣∣(G(r)r1/2

)′∣∣∣∣ dr
+min

{
1

|ξ|5/2
,
1
|ξ|2

}
� 1

|ξ|3/2

∫ ∞

0

∣∣∣∣G(r)r1/2

∣∣∣∣ dr
+

1
|ξ|3/2

∫ ∞

0

∣∣r1/2G′(r)
∣∣ dr+ 1

|ξ|2
.

Splitting the above integrals according to the definition of G, and using the mean value theorem, it
follows that, for 1/|ξ| ≤

√
x+ y, we have∣∣∣∣∫ ∞

1/|ξ|
rG(r)J0(2πr|ξ|) dr

∣∣∣∣� (x+ y)1/4

|ξ|3/2
. (A7)

Combining (A5) and (A7) we obtain (A1) in the case 1/|ξ| ≤ (x+ y)1/2. When 1/|ξ|> (x+ y)1/2,
we bound as in (A5) to obtain

∣∣Ĝ(ξ)∣∣= ∣∣∣∣2π∫ (x+y)1/2

0
rG(r)J0(2πr|ξ|) dr

∣∣∣∣� x+ y� (x+ y)1/4

|ξ|3/2
.

This concludes the proof of the estimate (A1). Now, let us prove (A2). Suppose that |ξ| ≥ 1. We split
the integral in (A4) as in the previous case, and we bound the first integral as follows:∣∣∣∣∫ 1/|ξ|

0
rG(r)J0(2πr|ξ|) dr

∣∣∣∣� ∫ 1/|ξ|

0
r3 dr� 1

|ξ|4
. (A8)

On the other hand, in (A6) we split the last integrals (depending on the value of 1/|ξ| ≤ 1) and use
integration by parts (one more time). In this way, we obtain that∣∣∣∣∫ ∞

1/|ξ|
rG(r)J0(2πr|ξ|) dr

∣∣∣∣� 1
|ξ|5/2

(
1+

x3/4

y

)
. (A9)

Then, combining (A8) and (A9) we obtain (A2). □
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Lemma A.2 Let K be an imaginary quadratic field and let q be an integral ideal. Then,

∑
p|q, k≥1

logNp
(Np)k/2

�
√
logNq.

Proof. Using the factorization law of primes in imaginary quadratic fields [18, p. 57], one can see
that, for each k≥ 1,

∑
p|q

logNp
(Np)k/2

=
∑
p

∑
p|q

Np=p

logNp
(Np)k/2

+
∑
p

 ∑
p|q

Np=p2

logNp
(Np)k/2

�
∑
p|Nq

logp
pk/2

.

It is clear that the sum over k≥ 3 in the above expression contributes O(1), and the sum when k= 2
is bounded by the sum when k= 1. Let us analyze the latter case. Assume that Nq≥ 3. We denote by
ω(n) the number of distinct positive integer prime factors of n, and by pn the n-th prime number. Since
pn ≤ Cn logn for someC > 0, and the function y 7→ y−k/2 logy is eventually decreasing, it follows that

∑
p|Nq

logp
√
p

�
∑

p≤pω(Nq)

logp
√
p

�
∑

p≤Cω(Nq) log(ω(Nq))

logp
√
p

�
√
ω(Nq) log(ω(Nq)),

where we used integration by parts in the last step. We conclude our desired result using the classical
estimate for ω(n) (see [24, Theorem 2.10]):

ω(n)� logn
log logn

.

□
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21. E. Landau, AusgewÄhlte Abhandlungen zur Gitterpunktlehre, Herausgegeben von Arnold
Walfisz VEB Deutscher Verlag der Wissenschaften, Berlin, (1962), 292.
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