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d This suggests that internal network mechanisms maintain
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In brief

The position of an animal in its

environment is represented in the

entorhinal cortex by distinct modules of

grid cells. Waaga, Agmon et al. show that

in darkness, the internal representation of

position drifts relative to the true position

of the animal; yet, it remains tightly

coordinated across the distinct modules.
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SUMMARY
The representation of an animal’s position in the medial entorhinal cortex (MEC) is distributed across several
modules of grid cells, each characterized by a distinct spatial scale. The population activity within eachmod-
ule is tightly coordinated and preserved across environments and behavioral states. Little is known, however,
about the coordination of activity patterns across modules. We analyzed the joint activity patterns of hun-
dreds of grid cells simultaneously recorded in animals that were foraging either in the light, when sensory
cues could stabilize the representation, or in darkness, when such stabilization was disrupted. We found
that the states of different modules are tightly coordinated, even in darkness, when the internal representa-
tion of position within theMEC deviates substantially from the true position of the animal. These findings sug-
gest that internal brain mechanisms dynamically coordinate the representation of position in different mod-
ules, ensuring that they jointly encode a coherent and smooth trajectory.
INTRODUCTION

Recently, techniques that enable simultaneous recording of ac-

tivity in dozens to hundreds of neurons (Ghosh et al., 2011; Jun

et al., 2017; Steinmetz et al., 2021; Zong et al., 2017) have

enabled a shift from the measurement of single-cell activity in

relationship to external correlates to the investigation of the joint

population activity patterns in large neural ensembles. This

change of perspective has led to various attempts to charac-

terize neural activity patterns as residing within restricted, low-

dimensional spaces using linear (Gallego et al., 2018; Mazor

and Laurent, 2005; Stringer et al., 2019) or non-linear (Chaudhuri

et al., 2019; Gardner et al., 2022; Rubin et al., 2019; Rybakken

et al., 2019) dimensionality reduction techniques. One of the

most striking outcomes of these attempts has emerged in neural

circuits involved in the representation of an animal’s position

relative to the environment. In several such circuits in flies and

mammals, neural activity patterns have been shown to robustly

reside in low-dimensional non-linear manifolds, even when the

neural activity is dissociated from external inputs to the network

(Chaudhuri et al., 2019; Gardner et al., 2022; Kim et al., 2017; Ry-

bakken et al., 2019; Seelig and Jayaraman, 2015). This finding
Neuron 110, 1843–1856, J
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opens up the possibility to decode the low-dimensional variable

that is represented within these circuits and to examine how the

brain utilizes such representations across multiple sub-circuits

to implement computational functions.

Here, we examine the dynamics of grid cells in the medial en-

torhinal cortex (MEC). Grid cells exhibit multiple firing fields as a

function of an animal’s spatial location. The fields are arranged

on a hexagonal lattice in open-field environments (Hafting

et al., 2005). Within each individual animal, grid cells are allo-

cated to discrete modules, each defined by a common grid

spacing and angular orientation (Barry et al., 2007; Stensola

et al., 2012). Jointly, the activity of grid cells acrossmultiplemod-

ules implements a highly efficient population code for position

(Burak, 2014; Fiete et al., 2008; Mathis et al., 2012; Sreenivasan

and Fiete, 2011; Welinder et al., 2008).

The spatial tuning curves of individual grid cells indicate that

grid-cell population activity within each module is confined to

lie on a low-dimensional manifold with toroidal topology (Gard-

ner et al., 2022). Accumulating evidence has suggested that

this confinement is achieved through network mechanisms

within the MEC, under diverse behavioral conditions and inde-

pendently of inputs from other brain regions. Early evidence
une 1, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1843
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came from observing the correlation structure of activity in pairs

of cells: phase relationships between grid cells within a module

are tightly preserved over time and across environments (Fyhn

et al., 2007; Yoon et al., 2013). The phase relationships are main-

tained also during sleep (Gardner et al., 2019; Trettel et al., 2019)

and under hippocampal inactivation, despite the absence of a

grid-like spatial response pattern (Almog et al., 2019). Very

recently, simultaneous recordings of spiking activity in dozens

of cells provided direct evidence that neural activity patterns

are closely confined to two-dimensional manifolds with toroidal

topology, which are tightly preserved across environments and

in sleep (Gardner et al., 2022). Thus, grid cells within a module

encode together a two-dimensional quantity, which, in some

conditions, could be dissociated from the true position of the

animal.

All of the above findings are in agreement with predictions

made by continuous attractor network (CAN) theory (Burak and

Fiete, 2009; Fuhs and Touretzky, 2006; Guanella et al., 2007;

McNaughton et al., 2006). According to this theory, grid cells

within each module are recurrently connected and thus form a

sub-network within theMEC. The recurrent synaptic connectivity

within each module constrains the joint activity of cells to a

restricted, but continuous, repertoire of possible coactivation

patterns that is stable across behavioral states and conditions,

even in the absence of sensory inputs.

Single modules alone, however, cannot represent a unique

position of an animal within a typical environment. It is necessary

to consider the coordination of activity acrossmodules to assess

how grid cells encode the brain’s internal representation of posi-

tion. The question of coordination becomes especially important

under conditions in which sensory cues are poor or absent

(Burak, 2014). Since population activity of an individual module

lies on a two-dimensional manifold, the joint activity of M mod-

ules spans, at least in principle, a 2M dimensional space. How-

ever, during continuous motion in a given environment, and in

the presence of salient sensory cues, the state of each module

is faithfully mapped to the location of the animal in two-dimen-

sional space. Hence, under continuous motion of the animal,

the joint population activity patterns of multiple modules span

a highly restricted two-dimensional subspace of the full 2M

dimensional space. This raises the question as to whether the

states of different modules are updated in a similarly coordinated

manner when the states of individual modules are dissociated

from the true position of the animal, e.g., in the absence of salient

sensory cues.

The coordination of activity across grid-cell modules is highly

consequential from the perspectives of neural coding and dy-

namics. The modular structure of the grid-cell code for position

confers it with large representational capacity (Burak, 2014; Fiete

et al., 2008; Mosheiff and Burak, 2019; Sreenivasan and Fiete,

2011; Welinder et al., 2008). However, within a given environ-

ment, the modularity of the grid-cell code poses a significant

challenge for the neural circuitry that maintains the representa-

tion and updates it based on self-motion. Under conditions in

which sensory inputs are absent or poor, the representation of

position in individual grid-cell modules might drift relative to

the actual position of the animal. If these drifts are not identical

in different modules, they would rapidly lead to combinations
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of spatial phases that do not represent any position in the vicinity

of the animal, resulting in abrupt shifts in the represented posi-

tion. Thus, independent drifts lead to catastrophic errors when

activities are read out from multiple grid-cell modules and would

therefore be highly detrimental for the coding of position by grid-

cell activity. The difficulty arising from occurrence of such

catastrophic readout errors has been identified in early works

on grid-cell coding (Fiete et al., 2008). Since then, two solutions

have been proposed. In one solution (Agmon and Burak, 2020;

Sreenivasan and Fiete, 2011; Welinder et al., 2008), the hippo-

campal network reads out the position represented by grid cells,

and feedback projections from hippocampus to theMEC correct

small, incompatible drifts accrued in each of themodules. A sec-

ond solution (Kang and Balasubramanian, 2019; Mosheiff and

Burak, 2019) involves synaptic connectivity between modules.

Empirically, however, very little is known about the relationship

between population activity patterns of grid cells across distinct

modules. Previous research has focused on coactivation pat-

terns within modules for two reasons: first, simultaneously re-

corded cells using tetrodes often belonged to the same module.

Second, coactivation patterns of inter- and intra-module grid-

cell pairs are fundamentally different. Grid cells within a module

maintain strict relationships in their activities that can be probed

by analyzing the joint activity in pairs of simultaneously recorded

cells. On the other hand, the activity of two cells that belong to

different modulesmight be correlated or anti-correlated depend-

ing on the animal’s position, even within a fairly small environ-

ment. Due to this lack of an expected rigid correlation (or anti-

correlation), it is difficult to characterize inter-module coordina-

tion based on pair recording analysis. To identify higher-order

dependencies acrossmodules, it is necessary to decode activity

from multiple cells within each module—requiring larger

numbers of simultaneously recorded cells from multiple mod-

ules, which have only recently become available.

Here, using Neuropixels silicon probes (Jun et al., 2017; Stein-

metz et al., 2021), we recorded the simultaneous activity of grid

cells frommultiple modules with dozens of units in each module.

Rats were deprived of visual cues to test whether the internal

representations of position in distinct modules remain coordi-

nated even when dissociated from the animal’s true position.

By decoding the simultaneous grid-cell activity, we demon-

strated that grid-cell modules retain, to a high extent, coordina-

tion even when the mapping between grid-cell activity and

position deteriorates. These results indicate that network mech-

anisms within the brain coordinate the activity of different mod-

ules, independently of external sensory inputs.

RESULTS

We recorded spiking activity from rats foraging in a circular arena

with a diameter of 150 cm under light and complete dark condi-

tions (Figure 1A). The arena was cue-less except for a single verti-

cal cue card at a fixed location along its circumference, whichwas

visible in light and completely invisible in darkness, and tactilely

inaccessible. The circular arena was rotationally symmetric, thus

minimizing the information about absolute position coming from

encounters with the walls (Hardcastle et al., 2015; Keinath et al.,

2018). The arena was surrounded by a floor-to-ceiling blockout



Figure 1. Experimental setup and module classification

(A) Recording arena: electrophysiological recordings of the spiking activity in theMECwere collected while the rat ran freely in a 150 cmdiameter cylindrical arena

surrounded by a floor-to-ceiling blind and a single, fixed, and tactile inaccessible cue card.

(B) Protocol: first the animals ran in darkness, then in the same arena with the lights on.

(C) The spikes of a representative grid cell from the most dorsal module (red distribution in D) are superimposed in red on the traveled path of the rat in gray, in the

dark (1) and light (2) trials.

(D) Left: illustration of implantation site for Neuropixels probe. Right: sagittal section of the rat brain (#26018), showing the probe shank through the superficial

layers of MEC. The histogram shows the grid-cell count across dorso-ventral recording depths from three modules. The distance between two adjacent ticks

along the probe shank axis corresponds to 1 mm.

(E and F) Module classification for the two recording sessions with the largest number of simultaneously recorded grid cells. Left: for each recording, scatterplots

show the two-dimensional UMAP (McInnes et al., 2018) projection of all recorded units’ autocorrelograms. Each point is color coded by its DBSCAN cluster

assignment (Ester et al., 1996).Right:meanautocorrelograms for eachcluster andvalidity (DBCV) index (STARMethods), includingorexcluding thenon-grid cluster.
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blind toeliminateaccess todistal visualcues, and theexperimental

protocol was designed to minimize other positional cues (STAR

Methods).

Data were collected from four animals and an overall of five

recording sessions, each consisting of a 50–60 min recording

in the dark immediately followed by a 30–60 min recording in

the light (Figures 1B and 1C). Neuropixels probes were im-

planted in MEC (Figures 1D and S1). Out of 3,310 recorded cells

with >500 spikes in the five light trials, 842 grid cells were iden-

tified and classified into modules as described in STARMethods

and in Gardner et al. (2022). Briefly, a non-linear dimensionally

reduction technique (McInnes et al., 2018) was applied to feature

vectors derived from the spatial autocorrelation of each cell-rate

map, followed by clustering (Ester et al., 1996). The procedure

ensures modular separation as grid cells with similar auto-corre-

lograms, and thus similar spacing and orientation, are separated

into distinct clusters, whereas cells lacking a spatially periodic

tuning feature are separated from the grid-cell clusters. In addi-

tion to overcoming problems from traditional classification

methods caused by skewed grid patterns, false positives would
only occur in the unlikely event that the auto-correlogram of a

non-grid cell randomly has a pattern with the same spacing

and orientation as the real grid cells. Using this procedure, a

clear and unambiguous clustering of grid cells into modules

was observed in all the sessions (Figures 1E, 1F, and S2). In

four out of five recording sessions, many simultaneously re-

corded grid cells (ranging from 31 to 118 in individual modules)

were obtained from three distinct modules, and in one session,

such data were obtained from two distinct modules (Table 1).

Several measures indicated that the association between grid-

cell activity and the position of the animal deteriorated in the

sensory-deprived condition. The characteristic periodicity

of grid cells was significantly disrupted in the dark trials

(Figures 2A and S3A). Gridness score and information content

were considerably reduced compared with the baseline light tri-

als (Figures 2B and 2C). In addition, we decoded position from

the population activity patterns and compared the magnitude

of decoding errors in the light and dark trials. We have done so

using two types of decoders that are used later in themanuscript

and are described in STAR Methods. The mean absolute error
Neuron 110, 1843–1856, June 1, 2022 1845



Table 1. Numbers of simultaneously recorded grid cells

(allocated to modules) for each recording session

Recording session Module 1 Module 2 Module 3

#25843 89 118 51

#26018a 41 74 90

#26018b 40 68 78

#26820 31 44 35

#26718 47 36 –
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(MAE) of the decoded position relative to the animal’s true posi-

tion was substantially larger in dark trials than in baseline light tri-

als (Figures 2D and 2E). This was consistent when the decoding

of simultaneous spike trains from dark trials was performed us-

ing either light- or dark-generated rate maps (Figures S3B and

S3C) and across the two decoders. For this reason, and since

dark-generated rate maps are degraded, the rate maps used

for decoding (both in light and dark trials) from here onward

were extracted from the full extent of the light trials.

Pairwise correlations
As a first step to address the question of inter-module coordina-

tion, we considered pairwise correlations of the spiking activity,

smoothed with a 50 ms Gaussian kernel (spike-rate correlations,

STAR Methods), similar to previous works that were based on

tetrode recordings (Almog et al., 2019; Chen et al., 2016; Fyhn

et al., 2007; Gardner et al., 2019; Pérez-Escobar et al., 2016;

Trettel et al., 2019; Yoon et al., 2013). Differences in the correla-

tion structure of inter- versus intra-module pairs were expected

under light conditions for the following reason: the activity of

intra-module grid-cell pairs is either correlated or anti-correlated

irrespective of the position of the animal, whereas the activity of

inter-module grid-cell pairs can be correlated in some parts of

the environment and uncorrelated in others (Figure 3A). Conse-

quently, weaker absolute spike-rate correlations were expected

on average in inter-module pairs compared with intra-module

pairs. Indeed, under light conditions, intra-module pairs showed

higher absolute spike-rate correlations compared with inter-

module pairs (Figure 3B). The observed zero-lag correlations

could be explained quite well by the cells’ rate maps and the an-

imal’s trajectory, even in inter-module pairs (Figure 3C). Thus, the

correlations observed in the spiking activity of inter-module pairs

were weak but still driven, to a large extent, by their spatial

selectivity.

Having established that spike-rate correlations are related to

spatial selectivity both in intra-and inter-module pairs, we next

compared pairwise spike-rate correlations in dark and light trials.

We reasoned that if, in darkness, grid cells cease to consistently

encode a unique spatial location, their spike-rate correlations

would diminish. The absolute magnitude of the spike-rate corre-

lations in intra-module pairs was similar, on average, to that

observed in the light (Figure 3D), even when, in the dark, the

spatial stability of single-grid cell representations was disrupted.

This is in accordance with recordings performed in mice in dark

environments (Chen et al., 2016; Pérez-Escobar et al., 2016),

with results found in sleep (Gardner et al., 2019), and as ex-

pected based on CAN models. However, the average absolute
1846 Neuron 110, 1843–1856, June 1, 2022
magnitude of spike-rate correlations in inter-module pairs was

similar in light and dark conditions as well. Furthermore, zero-

lag correlations were preserved between light and dark condi-

tions at the level of individual cell pairs both for inter- and

intra-module pairs (Figure 3E).

The preservation of inter-module spike-rate correlations in the

dark supports the hypothesis that modules maintain coordina-

tion even in the absence of sensory cues. However, it is difficult

to interpret this result quantitatively, since inter-module spike-

rate correlations are already low even in the light and may be

influenced also from sources other than the correlation between

their spatial receptive fields, such as co-fluctuation of firing rates

in the entire population (Okun et al., 2015; Figures S4C and S4D).

Analysis of our simultaneous recordings fromdozens of grid cells

per module (Table 1) could potentially overcome these limita-

tions by revealing higher-order dependencies in the activity of

cells from different modules that are not strongly evident in

spike-rate correlations within pairs of cells. Therefore, we next

analyzed the recorded simultaneous population activities using

two complementary approaches.
Likelihood of the simultaneous population spike trains
In the absence of sensory cues and under the hypothesis of inter-

module coordination, a unique position should be coherently

represented by the joint activity of grid cells in different modules,

even when spatial firing patterns of individual grid cells seem dis-

rupted. When the joint representation is read out under these

conditions, it can, however, deviate substantially from the ani-

mal’s true position compared with baseline light trials. We there-

fore sought to identify a measure for the coherence of the joint

simultaneous spike trains, which is independent of the animal’s

true position.

In the first analysis approach, we derived the likelihood of the

simultaneously recorded spike trains, summed over all possible

trajectories (thus, independently of the actual trajectory) under

simple assumptions that are outlined below. This likelihood is

written as

pðStÞ =
X
X t

pðX tÞ,pðStjX tÞ (Equation 1)

where St represents the simultaneous spike trains emitted by all

the neurons in the population from the beginning of the experi-

ment up to time t, and X t represents a particular trajectory of

the animal. The likelihood of the spike trains conditioned on the

trajectory, pðStjX tÞ, is evaluated under the assumption of Pois-

son firing, with a rate that is determined by X t and by the tuning

curves of all the neurons in the population. Finally, we assumed

that the trajectories are continuous (following random walk sta-

tistics for simplicity), enforced through the prior pðX tÞ (see also

STAR Methods).

On the right-hand side of Equation 1, a probability is assigned

to each particular realizable trajectory irrespective of the spike

trains, followed by a multiplication with the probability of the

simultaneously recorded spike trains conditioned on this partic-

ular trajectory. This probability is subsequently averaged over all

possible trajectories, weighted by the prior. The outcome pðStÞ
can be interpreted as a measure that describes the likelihood



Figure 2. Grid-cell spatial responses deteriorate in darkness

(A) Example of rate maps from each session for light and darkness conditions. Three more examples from each recording session are shown in Figure S3A.

(B) Gridness scores in light and darkness for all cells across all recording sessions (left) and for all cells from single recording sessions (right). Red lines indicate

median, and the lower and upper box limits indicate 1st and 3rd quartiles, respectively. Whisker lengths indicate 1.5 times the interquartile range. Red crosses

show outliers that lie more than 1.5 times outside the interquartile range. Notches indicate 95% confidence interval of the median.

(C) Spatial information in light and darkness for all cells across all recording sessions (left) and for all cells from single recording sessions (right). Box plots are

plotted as in (B).

(D) Mean absolute error (MAE) of the Markov decoder (STAR Methods) in light (red) and darkness (blue) for each recording session. Error bars are ±SEM.

(E) Same as (D) but for the kernel decoder (STAR Methods).
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that the simultaneously recorded spike trains represent some

continuous (yet unknown) trajectory, drawn from the prior distri-

bution. Importantly, in a practical implementation there is no

need to explicitly calculate the specific probabilities for each of

the possible trajectories, which would be unfeasible. Instead,

we derived a simpler, exact analytical expression for the average

log likelihood per time bin, denoted by L (STAR Methods; Equa-

tion 3). The evaluation of L using this expression relies on the

Markov property of the spiking model and the prior pðX tÞ and in-

volves decoding of the spiking activity using a Markov decoder

(STAR Methods; Methods S1).

In the expression for the likelihood (Equation 1), it is assumed

that all the neurons fire in response to the same trajectory X t,

regardless of the identity of the module to which they belong. If

this assumption is correct, then this trajectory, as well as nearby

trajectories, will make a large contribution to the likelihood (Fig-
ure 4A). However, if differentmodules accrue drifts independently

in the dark and thus represent internally different trajectories,

there will be no single trajectory in the sum within Equation 1

that makes a large contribution to the likelihood, and we expect

the sum tobe significantly smaller. Thus, the likelihood introduced

above (Equation 1) can serve as a measure of coherence.

To validate that the likelihood can be used to distinguish be-

tween the scenarios of coordinated and uncoordinated drifts

across modules, we first analyzed simulated spike trains. All neu-

rons in the simulated data fired according to the same recorded

trajectory and based on measured tuning curves, which were

taken from one of our datasets. Therefore, the different modules

were precisely coordinated in the simulation. Tomimic the conse-

quences of uncoordinateddrifts acrossmodules in away that can

be applied also to recorded datasets, we introduced artificial

spatial shifts during the decoding process in the neuron’s rate
Neuron 110, 1843–1856, June 1, 2022 1847



Figure 3. Spike-rate correlations of intra- and inter-module pairs

(A) Schematic illustration showing spatial tuning curves of two intra-module (left, red, and turquoise) and two inter-module (right, blue, and red) grid cells. Firing

fields of intra-module pairs (left) either overlap throughout the whole environment (as shown in the figure) causing temporally correlated firing or are disjoint

throughout the whole environment causing anti-correlated firing. In contrast, in inter-module pairs (right), the degree of correlation (or anti-correlation) between

firing fields varies in different parts of the environment: firing fields overlap inside the small dashed square and are disjoint elsewhere. Consequently, absolute

spike-rate correlations tend to be weaker in inter-module pairs than in intra-module pairs. This effect is more pronounced in large environments compared with

small environments (Figures S4A and S4B).

(B) Absolute cross-correlation (Pearson coefficient) of inter- and intra-module light spiking activities, averaged over cell pairs, in the two recording sessions with

the largest number of simultaneously recorded neurons (left and right panels). Shaded error bars are ±SEM.

(C) Pairwise correlations of all possible intra- (top) and inter- (bottom) module pairs from recorded light spiking activity versus Poisson generated spikes using

measured rate maps and the corresponding recorded light trajectory. Correlation coefficient and p value are specified in the inset. Fit shown in solid gray and the

identity line is shown for reference (dashed black line).

(D) Same as (B) but with superimposed inter- and intra-module spiking activities from darkness.

(E) Pairwise correlations of all possible inter- and intra-module pairs from recorded light spiking activity versus recorded dark spiking activity.
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maps (STAR Methods) that, for simplicity, were constant

throughout each simulation. Such shifts were identical within

each module but drawn randomly and independently in different

modules (and were thus uncoordinated across modules).

We observed that applying independent spatial shifts reduced

the likelihood (Figure 4B, black trace). As expected, such shifts

also increased the MAE of the decoder with respect to the true

position (Figure 4C, black trace). In contrast, the likelihood was

nearly unaffected when the artificial spatial shifts were identical

across all modules, even though the MAE with respect to the

true position increased significantly (Figures 4B and 4C, gray

traces). The small reduction in the likelihood seen in Figure 4B

(gray trace) is due to boundary effects and vanishes when

such effects are eliminated (Figure S4E; see also Figure S6B

below). The application of spatial shifts to the neuron’s rate

maps during decoding is analogous to application of shifts in

the encoded position (Figure S4F; Note that the latter can be

applied only to simulated data). The results shown in Figure 4
1848 Neuron 110, 1843–1856, June 1, 2022
confirmed that the average log likelihood could be used as a

measure of coherence of the simultaneous spike trains.

We next applied the likelihood-based approach to recorded

datasets from the light and dark conditions (5 recordings ses-

sions from 4 animals; Table 1) to assesswhethermodules remain

coordinated in the dark. If, in the dark, the phases of individual

modules accrued independent drifts relative to the animal’s

true position, a reduction in the likelihood would be expected

relative to the light. To faithfully compare likelihoods between

light and dark conditions, it was necessary to take into account

modifications in the mean firing rates of individual neurons

across the two conditions: specifically, mean firing rates were

more likely to reduce than increase in darkness, resembling pre-

vious results from mice (Pérez-Escobar et al., 2016). Thus, we

evaluated rate-adjusted likelihoods of dark and light simulta-

neous spike trains, obtained by down-sampling spikes to match

the mean firing rates between the two trials (STAR Methods;

Methods S1), henceforth referred for convenience as likelihood.



Figure 4. Likelihood of simultaneous spike trains can serve as a measure of coordination across modules

(A) Schematic illustration demonstrating the likelihood approach with a few illustrated trajectories, each starting from an arrowhead and ending in a point. The true

trajectory of the animal is the black trace. The likelihood of the simultaneous spike trains is evaluated independently for each specific trajectory and is averaged

across all possible trajectories. A few possible representative trajectories are illustrated: trajectories l1 and l2 (turquoise) are two trajectories which are close to the

true trajectory and thus have a high likelihood based on the spiking activity. Trajectory l3 is very similar to trajectories l1 and l2 but has low likelihood (red) since it

goes in the opposite direction, thus having reversed temporal structure. Trajectory l4 is an identical copy of trajectory l2 but at a different part of the arena, thus

also having low likelihood (red). Trajectories l5 and l6 are two other trajectories with low likelihood (red).

(B) Likelihood of simulated Poisson spikes usingmeasured rate maps and the recorded light trajectory from recording session #26018b, evaluated versus varying

magnitudes of spatial shifts. When shifts are applied independently in each module (black trace), the likelihood decreases significantly, but it decreases only

slightly (due to boundary conditions) when these shifts are identical (gray trace). Error bars are ±SEM.

(C) The corresponding mean absolute error (MAE) of the decoder. The MAE increases significantly both for independent and for identical spatial shifts as their

magnitude increases. Error bars are ±SEM.
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We found that the likelihood of simultaneously recorded spike

trains in light trials was slightly higher than the likelihood in dark

trials, although the MAE was much larger in darkness than in

baseline light trials (Figure 5A, zero spatial shift). To demonstrate

that the observed similarity in likelihoods was not simply an

outcome of the rate-adjustment procedure, we also considered

permuted, rate-adjusted spike trains, which preserved the mean

firing rates. Under such a permutation, the evaluated likelihood

decreased drastically and the MAE drastically increased (Fig-

ure S5A), demonstrating the importance of temporal structure

of the simultaneous spike trains. To assess the significance of

the small observed likelihood differences in relation to the ques-

tion of module coordination, we evaluated the expected reduc-

tion in the likelihood under independent spatial shifts of varying

magnitudes, as in Figures 4B and 4C. We found that the spatial

shifts required to reduce the likelihood in the light to the value

observed in the dark (point p1 in Figure 5A, left) would only

generate a small increase in the MAE—of a few centimeters

(point p2 in Figure 5A, right), whereas much larger spatial shifts

would be required to match the actual MAE observed in the

dark when using zero spatial shifts. Thus, the small reduction

in the likelihood in the dark recordings at zero spatial shifts rela-

tive to the light is consistent with only small independent shifts

across modules, of a few centimeters.

Conversely, the spatial shifts required to increase the MAE in

the light to the value observed in the dark (point q1 in Figure 5A,

right) would produce a substantial decrease in the likelihood, if

applied in an uncoordinated manner to the spike trains from

the light recordings (point q2 in Figure 5A, left), to a value that

is much smaller than the zero-shift likelihood observed in the

dark recordings. Thus, the increase in the zero-shift MAE

observed in the dark recordings must arise mostly from coordi-

nated drifts across the modules. To validate that coordinated

drifts across modules can increase the MAEwithout significantly
reducing the likelihood, we introduced identical spatial shifts

across all modules as in Figures 4B and 4C. As expected, the

likelihoods of dark and light trials were only slightly reduced,

whereas the corresponding MAE’s increased substantially (Fig-

ure 5B). As in Figure 4B, the small reduction observed in the like-

lihoods with the introduction of coordinated spatial shifts is due

to boundary conditions.

Results for additional datasets are shown in Figures 5C and

S6A. Similar results were obtained when applying spatial rota-

tions instead of spatial shifts (Figure S6B). Finally, we verified

that differences in the motion statistics between light and dark

trials are not expected to substantially affect the likelihood (Fig-

ure S5B). Movies showing typical examples of decoding from

light and dark trials are shown in Videos S1 and S2.

Decoding from individual modules
The likelihood-based approach described above can be

applied to datasets with moderate numbers of cells per mod-

ule, where the decoded position is very noisy. In most of our

datasets, the large number of simultaneously recorded cells

enabled testing for inter-module coordination using a more

direct approach, based on the decoding of position from indi-

vidual modules.

In this approach,which is schematically illustrated in Figure 6A,

an internal multi-module representation of position, denoted bybm, was first estimated by decoding spiking activity from all the

grid cells. We used a kernel decoder, which estimates position

based on spikes within a fixed time window, unlike the Markov

decoder which has access to the entire spiking history (STAR

Methods). As expected, the multi-module posterior typically ex-

hibited a single prominent peak within the enclosure, which

could potentially deviate from the true position of the animal

(X in Figure 6A). Next, spiking activity from each module was

decoded separately. As expected, single-module posteriors
Neuron 110, 1843–1856, June 1, 2022 1849



Figure 5. Analysis of likelihood of recorded

simultaneous spike trains indicates coordi-

nation across modules

(A) Likelihood of simultaneously recorded spike

trains (left) and corresponding mean absolute error

(MAE, right) from dark and light trials, shown for

varying magnitudes of independent module-wise

spatial shifts applied on a single recording session

(#26018a). Applying a maximal spatial shift of

6.9 cm in the light recording achieves the same

likelihood as that of the dark recording with zero

spatial shift (point p1, left panel) but generates only

a slight increase of less than 2 cm in the corre-

sponding MAE of the light recording relative to its

zero spatial shift value (point p2, right panel).

Conversely, applying a maximal spatial shift of

19.6 cm in the light recording achieves the same

MAE as that of the dark recording with zero spatial

shift (point q1, right panel) but generates a dramatic

decrease in the likelihood (point q2, left panel). The

difference in the likelihood between point q2 and

the zero spatial shift point of the dark recording is

much larger than the difference between the like-

lihood values of light and dark zero spatial shift

points. TheMAEs under the null hypotheses (STAR

Methods) for the light and dark trials are � 68 and

� 66 cm, respectively. Error bars are ±SEM.

(B) Same as (A) but with identical spatial shifts in all

modules (full color traces; results for independent

spatial shifts, same as in (A), are superimposed

using faded colors for comparison). Under iden-

tical spatial shifts the dark and light likelihoods

decrease only slightly (due to boundary conditions,

left), whereas the corresponding MAE increases

significantly in both cases (right).

(C) Same as (A) but for another recording session

(#25843) and with identical spatial shifts plotted in

faded colors. The MAEs under the null hypotheses

for the light and dark trials are � 69 and � 66 cm,

respectively.
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typically exhibited approximately periodic peaks. To resolve this

ambiguity, the position which maximized the posterior within the

local vicinity of the position bm was selected as the correspond-

ing decoded position bui for each module i (STAR Methods).

Finally, the distances between the position bm to each positionbui (denoted by di) and between bui pairs (denoted by Dij) were

evaluated and compared between dark and baseline light trials

(Figure 6A right). Typical examples of decoding from light and

dark trials are shown in Videos S3 and S4.

The MAE of position bm, with respect to the animal’s true po-

sition, was higher in darkness than in baseline light trials (one

example shown in Figure 6B), indicating that the internal repre-

sentation of position in the dark drifted relative to the true po-

sition. The distances di and Dij were noisy and fluctuated in

time both in dark and light conditions, but their mean was

only slightly higher in darkness than in light (Figure 6B). This

is consistent with the results from the previous approach (Fig-

ure 5), which demonstrated slightly higher likelihoods for simul-
1850 Neuron 110, 1843–1856, June 1, 2022
taneously recorded light spike trains compared with corre-

sponding dark trials.

Since the single-module readout positions bui were restricted

to a vicinity of the position bm, which, by definition, best agrees

with activities from all modules, it was important to verify that

the similarity of distances in light and dark trials was not an inev-

itable consequence of the methodology. Therefore, we intro-

duced independent spatial shifts in the rate maps of all neurons

that belong to the samemodule during the decoding process in a

similar fashion as performed in the previous likelihood approach.

We found that the mean distances di and Dij increased dramati-

cally as the magnitude of spatial shifts increased, indicating that

these measured distances could have potentially been much

higher than observed and did not arise simply because of the

selection of positions bui in proximity to bm (Figures 6C and 6D).

Therefore, the preservation of these small distances in the

dark, while the position bm deviated substantially from the ani-

mal’s true position (Figure 6E), is an explicit indication of tight



Figure 6. Decoding of population activity from individual modules reveals tight coordination of phases across modules in darkness

(A) Schematic illustration of the uni-module decoding approach. Left: decoding the spiking activity from all grid cells typically produces a posterior with a unique

blob in the arena, and the position of its maximum is chosen as the estimate of themulti-module internal representation (gray circle bm). This estimation can deviate

from the true position of the animal (black X symbol). Decoding the spiking activity from a single module typically produces a periodic posterior (faded green

circles). The blob that is nearest to position bm is selected (dark green circle), and the position of its maximum is chosen as the estimate of the uni-module internal

(legend continued on next page)
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coordination between the modules. As expected, identical

spatial shifts did not affect di and Dij, although they dramatically

increased the MAE (faded traces in Figures 6C–6E). Similar re-

sults from additional datasets are shown in Figures 6F–6I and S7.

We finally tested whether module coordination remained tight

in darkness, specifically during periods in which the multi-mod-

ule readout bm deviated substantially from the true position of the

animal. To address this question, we focused on non-overlap-

ping continuous segments of the dark recordings in which the

MAE was particularly high and on non-overlapping continuous

segments within the same recording in which the MAE was

particularly low (STAR Methods). Although the deviation of the

internal representation from the true position was in the order

of � 30 cm in the high-MAE segments (compared with order of

� 5 cm in the low-MAE segments), the distances di remained

small as in the low-MAE segments (Figure 7A). Importantly, these

distances di could have potentially beenmuch higher, as demon-

strated above (Figures 6C and 6D). This result indicates that

representations within individual modules did not accrue any

additional, significant relative drifts even when the multi-module

representation of position deviated substantially from the ani-

mal’s true position.

Furthermore, we considered all time points fromdark trials and

examined the joint distributions of di and the MAE and the joint

distributions of Dij and the MAE. We expected that if modules

are coordinated then the conditioned distributions of di and Dij

will be nearly independent of the MAE and in particular remain

narrowly distributed even when theMAE is large. Figure 7B dem-

onstrates that, indeed, the distances di and Dij were distributed

nearly identically for different values of the MAE. This is yet

another explicit indication that coordination between modules

remains tight, even when the internal representation of position

deviates from the true position of the animal. Results for addi-

tional datasets are shown in Figures 7C–7H.

DISCUSSION

In contrast to the rigid relationships in activity of cells within a

module, activity in different modules spans diverse phase com-

binations, allowing them to represent a large range of positions

and environments. Nevertheless, here we showed that dynami-

cally, the phases of different modules are coupled. Even when

the internal representation of position in the MEC deviates sub-

stantially from the true position of the animal, updates to the
representation, denoted by bu1. Middle: this procedure is repeated for each ind

position for each module (bu1, bu2, and bu3 ). Right: the distance from position bm
absolute error (MAE). Themean distance between position bm to each position bui is

defined as Dij .

(B) ThemeasuredMAE and distances di for dark and light from a single recording s

in baseline light trials. Error bars are ±SEM.

(C) The distances di for varying magnitudes of module-wise independent spatial

independent spatial shifts increases di dramatically, indicating that these meas

identical spatial shifts has no effect. The dis under the null hypotheses (STAR Me

25.7) cm, respectively. Error bars are ±SEM.

(D) Same as (C) but for the corresponding distances Dij .

(E) Similar as (C) but for the corresponding MAE. The MAE increases for both mo

(F–I) Same as (B)–(E) but for another recording session (#25843). The dis under th

(16.4, 25.7, 32.8) cm, respectively.
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phases remain coordinated across the different modules, thus

maintaining a coherent representation of a two-dimensional

trajectory.

The likelihood-based approach and the uni-module decod-

ing approach both led to the conclusion, consistently across

different animals and sessions, that the inter-module phases

are dynamically coupled. Both methods also pointed to a

small increase in the mismatch between modules in darkness

compared with light conditions, indicating that sensory inputs

help coordinate the states of different modules. The picture

that emerges from these results is that when sensory inputs

are poor or absent, small mismatches can develop in the

phases of different modules, but internal brain mechanisms

prevent these mismatches from accruing over time, thus

maintaining a coordinated and coherent representation across

the full grid-cell population. It has been previously hypothe-

sized that such internal mechanisms may exist (Burak, 2014;

Welinder et al., 2008), possibly supported by recurrent synap-

tic connectivity within the MEC (Kang and Balasubramanian,

2019; Mosheiff and Burak, 2019) or by the reciprocal synaptic

connectivity of the MEC with the hippocampus (Agmon and

Burak, 2020; Sreenivasan and Fiete, 2011; Welinder et al.,

2008). It will be of great interest to explore these underlying

mechanisms in future studies, for example, by testing whether

inputs from the hippocampus are required to maintain phase

coordination.

The analyses of the recorded spike trains relied on simplifying

assumptions.Grid cells aremodeled as independent units,which

emit Poisson spike trains that are solely dictated by their spatial

selectivity, alongside a random walk prior (in the likelihood

approach). However, the actual mechanisms that govern grid-

cell activities are more complex. Therefore, the decoders are

not optimal (or tailored) for the actual recorded data. Note, how-

ever, that we do not compare decoding performance of simu-

lated and recorded spike trains, but instead compare the decod-

ing performance of recorded light and dark spike trains. This

enables us to reliably quantify and compare the coherence of re-

corded population activities across the dark and light conditions.

Our spatial shift controls, which induce inter-module incoordina-

tion, are directly generated from the recorded data and thus do

not require a comparison of the quantified coherence from the re-

corded data with that obtained from simulated spike trains. Alto-

gether, these analyses indicate that internal brain mechanisms

enforce coordination between distinct grid-cell modules.
ividual module (green, orange, and blue) producing an estimated uni-module

to the true position of the animal is averaged over time to produce the mean

defined as di, and themean distance between each pair of positions bui and buj is

ession (#26018a). The distances di in darkness are only� 1 cm larger than those

shifts and for identical spatial shifts. Increasing the magnitude of module-wise

ured distances di could potentially be much higher. The same magnitude of

thods) for the light and dark trials are � (13.7, 18.2, 25.5) cm and � (13.8, 18.3,

dule-wise independent and identical spatial shifts.

e null hypotheses for the light and dark trials are � (16.2, 25.6, 32.7) cm and �
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Despite a major reduction of sensory cues, their elimination

was probably not complete. Although the arena was carefully

cleaned during and between trials, leftover olfactory cues may

have provided some spatial information. The rare encounters

with the walls could also provide limited spatial information

(Hardcastle et al., 2015); yet, it is unlikely that absolute position

could be inferred from such encounters, as the arena was rota-

tionally symmetric. Although the elimination of sensory cues

was probably imperfect, the disruption of the spatial rate maps

and the increased MAE of decoded population activities in dark-

ness (Figure 2) demonstrated that a large mismatch between in-

ternal representation and true position was typical under these

conditions. Importantly, the typical mismatch was in the order

of tens of centimeters, whereas the misalignment between mod-

ules was in the order of a few centimeters, even during periods in

which the MAE was particularly large (Figure 7). The likelihood

approach (Figure 5) points to similar conclusions because unco-

ordinated spatial shifts of more than a few centimeters applied

onto the dark recording have led to a large decrease in its likeli-

hood, relative to the baseline difference between the light and

dark likelihoods.

Previous studies that examined grid-cell activity in mice in

dark environments (Chen et al., 2016; Pérez-Escobar et al.,

2016) have shown that even when the periodic firing patterns

of grid cells lose their spatial stability, grid cells within a module

preserve the pairwise spiking correlations that they exhibited in

the light. However, these works did not test whether the coacti-

vation patterns of distinct modules are coordinated during

darkness. Due to the recording technique (classical tetrodes),

simultaneously recorded cell pairs from distinct modules were

rare, and the data collected did not enable analysis based on

population decoding as performed in the present work.

The spatial response patterns of individual grid cells in the

mouse studies (Chen et al., 2016; Pérez-Escobar et al., 2016)

were more strongly degraded in darkness than those observed

in rats in our study (Figures 2B and 2C). These differences might

possibly emerge from different dead-reckoning capabilities of

rats and mice: unlike mice, rats have been shown to exhibit sta-

ble grid fields in darkness (Hafting et al., 2005). Consequentially,

it was necessary in our study to take extreme measures (large

circular arena, removing odors) to obtain strong degradation of

the grid response patterns. The decoding results (Figures 2D

and 2E) confirmed that our rats were indeed disoriented in dark-

ness, even when the dark data were decoded from dark-gener-

ated rate maps (Figures S3B and S3C). Previous work in the

hippocampus (Bjerknes et al., 2018) has demonstrated excellent

ability of place cells to express precisely localized fields on a

linear track in darkness, under conditions that ensured absence

of any relevant external sensory information. Therefore, it is
Figure 7. Module population activity patterns are tightly coordinated e

(A) The measured mean absolute error (MAE) and distances di during large- and s

Error bars are ±SEM.

(B) Top: corresponding normalized distributions of the distances di for varying va

(C and D) Same as (A) and (B) but for another recording session (#25843). Note t

(E–H) Same as (A) and (B), for two additional recording sessions (#26018b and #26

recordings from three modules were available in these datasets, the numbers of s

session #26820; Table 1), leading to inaccurate decoding.
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possible that with scarce remaining sensory cues, rats canmain-

tain spatial maps—in hippocampus and MEC—more accurately

than mice. Another possibility is that differences in the degrada-

tion of grid responses result from subtle differences in the envi-

ronments or training protocols used by the mouse and rat

studies. However, the origin of these differences in the precision

of spatial representation during darkness is not the subject of this

study. What is crucial for the study of coordination between grid-

cell modules is that substantial disorientation was achieved.

Previous work (Stensola et al., 2012) pointed to a functional in-

dependence in the response of modules to an abrupt environ-

mental deformation (Barry et al., 2007) in which the enclosure

was compressed by moving one of the walls. A key finding

was that this manipulation resulted in compression of the rate

maps that occurred in some modules but not in others. Thus,

the distinct responses of different modules to the environmental

deformation were indicative of functional independence in their

dynamics. Nevertheless, the implications of this result for the dy-

namics of module coordination are not yet sufficiently clear: one

possibility is that even shortly after the environmental deforma-

tion, grid-cell firing remains anchored to position. In this case,

the rates of phase updates, as a function of position, are modi-

fied comparedwith baseline conditions. Under this interpretation

of the experiment, the dynamical coordination of modules is dis-

rupted everywhere within the enclosure, possibly transiently.

Alternatively, it has been suggested (Keinath et al., 2018; Ocko

et al., 2018) that module phases are updated abruptly upon en-

counters with the walls due to interactions with border cells. Un-

der this interpretation of the experiment, rate maps are altered

due to spatial shifts of the grid firing fields that depend on recent

encounters with the walls. Yet, the phase update rates remain

largely unmodified within the interior of the environment, and

dynamical module coordination remains intact between encoun-

ters with the walls. Based on the tetrode recordings that were

available in the deformation experiment (Stensola et al., 2012),

it is difficult to conclusively distinguish between these possibil-

ities. To do so, it will be beneficial to decode module phases

from population activity patterns and analyze their joint dy-

namics, utilizing large numbers of simultaneously recorded grid

cells from different modules.

The analysis in this work relied on the ability to simulta-

neously record spikes from dozens to hundreds of grid cells

and our results demonstrate the power of this technique in

elucidating dynamics within large neural circuits (Chaudhuri

et al., 2019; Gallego et al., 2018; Gardner et al., 2022; Pfeiffer

and Foster, 2013). With several dozens of cells from each mod-

ule, decoding of phases from single modules was sufficient to

obtain strong measures of coordination between the modules,

based on statistics that were collected across long periods of
ven during high-MAE periods

mall-MAE periods from a single recording session (#26018a) during darkness.

lues of the MAE. Bottom: same as top but for distances Dij .

hat outliers in (D) are traces with largest MAE.

820) in which recordingswere obtained from threemodules. Note that, although

imultaneously recorded grid cells were relatively small (especially in recording
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motion. Future studies, with even larger numbers of simulta-

neously recorded cells, may enable more precise dynamical

tracking of the states of individual modules over single trials.

Such analysis may include extraction of toroidal coordinates

from the joint activity in each module independently of the

spatial selectivity (Gardner et al., 2022), which requires more

simultaneously recorded cells than was available for most mod-

ules in the present study. With such finer temporal and spatial

resolution, it may be possible to characterize more precisely

how the small mismatch that does exist between modules

evolves over time, in relation to behavior or external stimuli.

Such analysis may further elucidate the mechanisms that un-

derlie coordination between attractor networks in the entorhinal

cortex and the hippocampus.
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METHOD DETAILS

Subjects
Experimental testing took place at the Kavli Institute for Systems Neuroscience, NTNU, Norway. Data were obtained from 4 male

Long Evans rats (300-500 grams when implanted, at ages P 73-107 days old at day of recording). After weaning at three weeks,

the rats were group-housed with their siblings until the implantation date. After implantation, each rat was housed alone in a
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12 hr light / 12 hr dark schedule. Experiments took place in the dark phase of the schedule. All procedures were performed in accor-

dance with the Norwegian Animal Welfare Act and the European Convention for the Protection of Vertebrate Animals used for Exper-

imental and Other Scientific Purposes.

Electrode implantation surgery
The rats were implanted with single-shank 384-site Neuropixels probes (Jun et al., 2017) targeting themedial entorhinal cortex (MEC)

in either one or both hemispheres. Rat #26018 was implanted only in the right hemisphere, while rats #25843 and #26820 were im-

planted bilaterally with prototype Neuropixels ’phase 3A’ probes. Rat #26718 was implanted with a Neuropixels 1.0 probe in the right

hemisphere. Before implantation, the rats were anaesthetized with isoflurane in an induction chamber and given subcutaneous in-

jections of buprenorphine (Temgesic) and Meloxicam (Metacam). They were then fixed in a Kopf stereotaxic frame with continuous

isoflurane administered through a mask. Local analgesic bupivacaine (Marcaine) was injected subcutaneously before making the

incision. Craniotomies were drilled above the MEC area. The probes were inserted at a maximum depth of 5-6 mm from the brain

surface, 4.4-4.6 mm lateral to the midline suture, 0.1-0.3 mm anterior to the transverse sinus, at angles between 25-26 degrees

from the vertical plane, with the tip of the probe pointing in the anterior direction. A single jewellers screw was secured through

the skull above the cerebellum and connected to the probe ground with an insulated silver wire. The implants were secured in place

with dental adhesive (Optibond from Kerr) and Venus composite (Kulzer) and protected by fitting a modified falcon tube. Postoper-

ative analgesia (meloxicam and buprenorphine) was administered during the surgical recovery period.

Electrophysiological recordings
Electrophysiological signals were recorded with a Neuropixels acquisition system as described previously (Gardner et al., 2022; Jun

et al., 2017). The spike band signal was recorded and amplified with a gain of 500, filtered to keep a bandwidth from 0.3 to 10 kHz and

then digitized at 30 kHz on the probe circuit board. The signal was further multiplexed and transmitted to a Xilinx Kintex 7 FPGA board

(‘phase 3A’) or a Neuropixels PXIe acquisition module (1.0) via a 5 m tether cable before being streamed via ethernet connection to a

local computer. Rat #26018 had two recording sessions: recording session #26018a was performed 4 days before recording session

#26018b, with partial overlap of recorded cells between the two sessions.

Behavioural tracking
During recording, a rigid bodywith five retroreflective markers was attached to the rat’s implant and trackedwith a 3Dmotion capture

system (six OptiTrack Flex 13 cameras and Motive software) at � 120 Hz. To synchronise the timestamps of the two recording sys-

tems, randomized sequences of digital pulses generated by an Arduinomicrocontroller were sent to both the Neuropixels acquisition

system as direct TTL input and to the OptiTrack system via infrared LEDs placed on the edge of the arena.

Behavioural procedures
The rat’s movement was tracked as it moved freely in a circular open field arena. The recording arena was a 150 cm diameter, matt

black plastic cylinder with 50 cm high walls and a matt black hard rubber floor, surrounded by floor-to-ceiling dark blue blackout

curtains on all sides � 1m from the arena edge. Three additional layers of blackout curtains separated the recording arena from

the part of the room with the recording computer. The same behavioural arena was used in both darkness and light recordings.

Open-field foraging trials in darkness
Complete darkness was ensured by turning off all potential sources of light in the recording room. Light sources which could not be

turned off weremaskedwith aluminium foil and electrical tape and/or blackout curtains. Before starting the experiment, the arena and

floors were thoroughly cleaned with soap water and dried. The rat’s Neuropixels probe was connected to the recording system

outside the closed curtains before the final lights were shut off, and the rat was introduced to the recording arena at an arbitrary po-

sition and direction. For 50-60minutes, the rat was left to freely explore the arena and forage small pieces of corn foam snack thrown

into the arena during the trial by an experimenter wearing night-vision goggles (Armasight Nyx-7 pro). To avoid delivery of systematic

orientational cues, the experimenter accessed and left the ring of curtains from random locations, and quickly dropped food pellets

and removed excrement and urine using a paper towel while the rat was in a different location in the arena. Light conditions were not

changed during these times.

Open-field foraging task in light
After the open foraging task in darkness, while the rat was still foraging in the arena, or with a short break to untwist the Neuropixels

tether cables, the experimenter turned on the light and continued the recording for another 30-60 minutes. During the light task, a

single white textile cue card (� 45 cm wide, � 150 cm high) hanging on the blue curtains outside the arena was visible from within

the arena. The only light source in the light task was a single LED strip (6 m, 120 LEDs, 2800K color temp) placed as a uniform � 2 m

diameter ring directly above the arena at a height of � 2.8 m, evenly illuminating the arena and ensuring no shadows were cast on

the floor.
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Perfusion and histology
The rats were anaesthetized with isoflurane in an induction box and given a lethal injection of pentobarbital. When unresponsive, the

rats were perfused transcardially with 0.9% saline, followed by 4% Formalin solution. The brain was extracted and stored in 4%

Formalin solution for at least 24 hours before being sliced in 30 mm sagittal sections on a cryostat. The brain sections were stained

with Cresyl Violet, and photomicrographs were taken through a Zeiss Axio Imager.

Spike sorting and single-unit selection
Spike sorting was performedwith a version of KiloSort 2.5 (Steinmetz et al., 2021), optimised forMEC/PaS recordings as described in

Gardner et al. (2022), includingmanual supervision of cluster split andmerge processes. Single units were excluded from further anal-

ysis if more than 1%of intervals in their interspike interval distributionwere shorter than 2ms or if they had less than 500 total spikes in

the light task.

Module classification
Grid cell and module classification was done by vectorizing the spatial autocorrelation from the rate map of every cell and adding

them as feature columns in a matrix used as input to the UMAP (Uniform Manifold Approximation and Projection) dimensionality

reduction algorithm (McInnes et al., 2018), before DBSCAN (Ester et al., 1996) was used to assign cluster identities to the resulting

2D point clouds, as in Gardner et al. (2022) (Figures 1E, 1F, and S2A–S2C). Briefly, for each recorded cell, rate maps were generated

by dividing the arena into 8-10 cm bins and counting the number of spikes within each bin divided by the time spent in that bin. Au-

tocorrelograms of the rate maps were calculated, and values from the bins in a circular area within a 3-bin radius from the center bin

were removed along with the bins outside a radius defined by the edge of thematrix. The autocorrelograms were then vectorized and

used as features in UMAP used to project the values down to a point cloud in 2 dimensions. DBSCANwas used to cluster the points,

which yielded a single large cluster with non-grid cells and single clusters for each module (identified by a clear grid pattern and high

gridness score in the mean autocorrelogram of each cluster); grid modules could be ordered by the grid spacing and orientation

calculated from the mean autocorrelogram of each cluster. Of all recorded cells, only those from clusters with a clear grid pattern

in the mean autocorrelogram, and a validity index (see clustering validation section) close to 1.0 were used for further analysis.

Grid pattern classification was defined as follows: for each cluster, we took the mean of the gridness scores of all cells in the cluster.

We considered the clusters which had a high within-cluster mean gridness score of order 1, as grid clusters (M1, M2, M3), and clus-

ters with a low within cluster mean gridness score (close to 0) as non-grid. The lowest mean gridness score in a cluster classified as a

grid-cell cluster was 0.66 (M2 in session #26718) and the highest mean gridness score in a cluster classified as ‘‘non grid-cell’’ was

0.13 (session #26018b). The mean, SD, and SEM of the gridness scores for each cluster and for all recording sessions are shown in

Figure S2F.

Clustering validation
The grid cell andmodule classification results were validated by calculating a density-based clustering validation (DBCV) index (Mou-

lavi et al., 2014) for each DBSCAN-assigned cluster identity in the 2D UMAP point cloud (Figures 1E, 1F, and S2A–S2C). The DBCV

index has a range of -1 to 1, where a cluster gets a positive value if the lowest density region inside the cluster is higher than the high-

est density in the region that separates it from other clusters (Figures S2G–S2K).

Rate map analysis
The firing rate li [Hz] of grid cell i at each position x! in the arena was generated as follows:

lið x!Þ =
Pni

j = 1g
�
x!j

i � x!�
Dt

PT
t = 1g

�
y!t � x!�

where ni is the total number of spikes emitted by neuron i, and x!j

i is the animal’s position when spike jwas emitted. The position of the

animal at time t is denoted by y!t, and g is a two-dimensional Gaussian kernel with diagonal covariance matrix
P

ii = 25 cm2. Spike

trains and tracking data were binned at Dt = 1
120 s resolution, and only time bins where the animal was moving at a speed greater or

equal to 3 cm
s were used for spatial analyses.

Gridness score
The gridness score was computed to measure the degree of hexagonal spatial periodicity, as in Langston et al. (2010). For each cell,

an autocorrelogram was calculated from its rate map and rotated in five steps of 30 degrees, correlating each rotated matrix with the

original autocorrelation in the following manner: First, the values correlated were restricted to a ring of bin indexes around the center

peak of the autocorrelogram; then, this ring of bins was expanded stepwise until its outer edge reached the edge of the autocorrelo-

gram matrix. For each step, a score was calculated as the difference between the lowest correlation at [60, 120] degrees and the
Neuron 110, 1843–1856.e1–e6, June 1, 2022 e3



ll
OPEN ACCESS Article
highest correlation at [30, 90, 150] degrees. The gridness score was taken as the mean of the three scores surrounding and including

the step with the maximum score, resulting in a theoretical score range of [-2, 2].

Information content
The spatial information content [bits/spike] (Skaggs et al., 1996) of neuron i is defined as

XN
i = 1

pi

li

l
log2

�
li

l

�

where li is the unit’s mean firing rate in the i-th bin of the ratemap, l is the overall mean firing rate and pi is the probability of the animal

being in the i-th bin (time spent in the i-th bin divided by the duration of recording).

Pairwise correlations
Spike trains were binned at Dt = 1

120 s resolution and smoothed using a Gaussian kernel with s = 50 ms. Pearson correlation coeffi-

cients were then calculated for pairs of spike trains from simultaneously recorded grid cells.

In Figures 3B and 3D neurons were divided into ten equally sized groups with equal distributions of neurons from eachmodule and

cross-correlations were calculated across inter- and intra-module pairs that belong to the same group to obtain independent eval-

uations. Cross-correlations were calculated by iteratively lagging one of the spike trains relative to the other. To avoid cancellations of

positive and negative contributions from intra-modular cell pairs with different phase relationships, we averaged the absolute magni-

tude of the correlations over pairs within each of the independent groups.

In Figures 3C, 3E, and S4B, the Pearson correlation coefficients were calculated for all possible inter- and intra-module pairs

without lagging any of the spike trains.

Markov decoder
The Markov decoder updates its posterior likelihood for position r as follows:

pðr; t + DtÞ = 1

ZðtÞ
� Z

pðr 0; tÞpDðrjr 0Þdr 0
�
pSðr; tÞ (Equation 2)

where pDðrjr0Þ describes the animal’s probability to run from location r0 to location r during time interval Dt. The term pSðr; tÞ is the

probability for all the neurons to emit the observed spikes within the time interval Dt, given the position r. The posterior likelihood

is iteratively normalized by ZðtÞ.
Explicitly, pDðrjr0Þ is a two-dimensional Gaussian distribution centered around position r0 with diagonal covariance matrix

P
ii =

4 cm2. The time step, Dt = 1
120 s, is equal to the sampling rate of the data. Thus, the diffusion coefficient is D = 480 cm2

s , which

was chosen to roughly minimize the MAE in the light recording sessions.

The posterior extracted from spiking activity was evaluated assuming independent Poisson firing, namely

pSðr; tÞ =
YN
i = 1

1

ni!
ðfiDtÞniexpð�fiDtÞ

where fiðrÞ is the tuning curve and ni is the spike count of the i’th neuron during the time interval Dt.

Finally, the estimate of position is the maximum likelihood estimate

br = argmax
r

pðr; tÞ

Likelihood of simultaneously recorded spike trains
The probability for observed spike trains pðStÞ is given in Equation 1. By exploiting theMarkov decoder’s properties, the likelihood for

simultaneous observed spikes turns out to be simply proportional to the multiplication of its iterative normalization factors pre-

sented above,

pðStÞ =
Yt
i =1

Zi

A detailed analytical derivation is given in Methods S1.

We present in Figures 4 and 5 the average log likelihood per time unit defined as

L = ClogðZÞDt (Equation 3)

Since decoding was Markovian we decoded all the data, but only time bins where the animal was moving at a speed greater or

equal to 3 cm
s were used for further analyses.
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Rate-adjusted likelihood
In order to evaluate the likelihood using the Markov decoder and faithfully compare this quantity across light and dark conditions, it is

necessary to make concrete assumptions on the neural tuning curves. Since individual grid cells differed in their firing rates in these

two conditions, it was necessary to analyze how the firing rate influences the likelihood, and then compensate for this influence.

Counter intuitively, the evaluated likelihood decreases as the number of total spikes in the recording increases (see Methods S1

for an analytical derivation which elucidates this finding).

Our assumption is that neuronsmaintain the same underlying structure of tuning curves in light and dark conditions, up to a scaling

factor that adjusts the firing rate (see also Methods S1; Figure S8). Therefore, wematched the mean firing rates by randomly omitting

spikes in the condition in which the firing rate was higher, yielding spike trains from each neuron with the samemean firing rate in the

dark and light conditions. This was done separately for time bins where the animal was moving at a speed smaller than 3 cm
s , and for

time bins where the animal was moving at a speed greater or equal to 3 cm
s since these time bins were used for further analysis.

Mean absolute error (MAE)
The MAE is defined as the average Euclidean distance between the decoded position and the true position of the animal.

Spatial shifts
For each module, a spatial shift was chosen at random from the range ½ � a;a�, independently for each of the two spatial dimensions

(horizontal and vertical). These shifts were fixed throughout the duration of each simulation. The variable a is plotted as the ‘Max

spatial shift’ axis in the figures throughout this article. Rate maps of all neurons that belong to the samemodule were shifted accord-

ing to their corresponding random shifts, thus producing shifted rate maps. Rate maps were set to zero in positions outside of the

arena. Firing rates at new positions that were included within the arena boundaries only after the shift but were outside of the arena

boundaries before the shift were set to zero. Identical spatial shifts were applied in a similar procedure, but only a single set of two-

dimensional shifts were chosen at random and were applied to the rate maps of all neurons as described above, regardless of the

module they belong to. Thirty such independent realizations were simulated for each ‘Max spatial shift’ value.

Rotational Shifts
For each module, a spatial rotation angle was chosen independently and at random from the range ½ � a;a�. These shifts were fixed

throughout the duration of each simulation. The variable a is plotted as the ‘Max spatial rotation’ axis in Figure S6B. Rate maps of all

neurons that belong to the same module were rotated with respect to the arena’s origin, according to their corresponding random

angle, and thus producing rotated rate maps. Identical rotational shifts were applied in a similar procedure, but only a single angle

was chosen at random and was used to rotate the rate maps of all the neurons as described above, regardless of the module they

belong to. Thirty such independent realizations were simulated for each ‘Max rotational shift’ value.

Idealized grid cell tuning curves
The idealized grid cells had the same allocation to modules as in the recording sessions (Table 1) mentioned in Figures S4B and S4F

captions, with corresponding grid spacings of l
!

= ½45; 65;95� cm. Tuning curves were modeled as a sum of Gaussian blobs whose

peaks lie on a perfect hexagonal lattice. In each module, the Gaussian blobs had a diagonal covariance matrix
P

ii = 0:015, l2 cm2.

The peak firing rate was 30 Hz. Phases of cells from the same module were uniformly distributed, and the angular orientation of each

module was independently and randomly chosen.

Kernel decoder
The kernel decoder updates its posterior likelihood for position r based on recent emitted spikes, weighted exponentially (Mosheiff

et al., 2017). It is straightforward to express the log likelihood of spike counts ni, observed within a temporal window of duration Dt, as

a function of the position r:

log pðfnigjrÞ =
X
i

fðr� riÞDt +
X
i

ni logffðr� riÞDtg �
X
i

ni!= c+
X
i

ni log fðr� riÞ (Equation 4)

where c is a constant that does not depend on r. The term
P

i fðr�riÞ contributes only to this constant because of the assumption of

dense, transnationally invariant receptive fields with uniform distribution. The index i runs over grid cells: either all the cells to produce

the multi module posterior, or on all the cells within a module to produce the corresponding uni-module posterior. A maximum likeli-

hood estimator for r (assuming uniform prior) will chose

brðfnigÞ = argmax
r

X
i

ni log fðr� riÞ:
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The spikes from recent history are weighted with a temporal kernel hðtÞ. Thus, we generalize ni to:

ni =

Z t

�N

hðt� t0Þxiðt0Þdt0:

Here, xiðtÞ is a series of delta functions that represents the spike from neuron i, and

hðtÞ = exp

�
�t

t

�

where we used t = 100 ms. In Equation 4 Dt is replaced by t.

Only time bins where the animal was moving at a speed greater or equal to 3 cm
s were used for analyses.

Uni-module decoding
As expected, the posterior was approximately periodic when activity was decoded from single modules. To remove ambiguity, the

decoded position bui of eachmodule iwas defined as the position that maximized the posterior within a circular area. The circular area

had a diameter equal to � 90% of the corresponding module spacing and was centered around the multi-module position bm (Fig-

ure 6A). Thus, only a single blob was included within the circular area around the multi-module represented position bm.

Small and large dark error periods
In Figures 7A, 7C, 7E, and 7G the error between the joint kernel decoded position and true position during darkness was first tempo-

rally smoothed using a Gaussian kernel with s = 50 ms. Periods with particularly small error are defined as continuous non-overlap-

ping segments spanning at least 1 s with a maximal smoothed error (SE) of 10 cm. Periods with particularly large error are defined as

continuous non-overlapping segments spanning at least 1 s with a minimal SE of 20 cm, and amaximal SE which was determined as

follows: the maximal SE was chosen as the value corresponding to 80% of the cumulative distribution of the error between the joint

kernel decoded position and true position. Time points with errors larger than this cutoff were discarded from the analysis in accor-

dance with the cutoff used in Figures 7B, 7D, 7F, and 7H (largest MAE value shown in legend) due to sparseness of the joint distri-

bution with the distance between bui and bm (= di). Recording session #25843 had 257 large-error segments and 305 small-error

segments. Recording session #26018a had 426 large-error segments and 126 small-error segments. Recording session #26018b

had 460 large-error segments and 156 small-error segments. Recording session #26820 had 384 large-error segments and 92

small-error segments.

Null hypotheses of MAEs and dis
The null hypothesis for the MAE was evaluated for the light and dark trajectories in each recording session (as specified in Figures 5

and S6A captions). It is defined as the mean of Euclidean distance between a randomly chosen position and the true position of the

animal in the arena. Thirty realizations have been simulated for each recording session and illumination condition, yielding SEMs in

the order of 10�2 cm.

The null hypotheses for the di s (as specified in Figures 6 and S7 captions) are defined similarly, but the distances were calculated

between the multi-module decoded position and a randomly chosen position within the corresponding module’s circular area as

defined above (Uni-module decoding). Thirty realizations have been simulated for each recording session and illumination condition,

yielding SEMs in the order of 10�3 cm.

SEM of correlated time series
Whenever the standard error of the mean (SEM) of a single time series signal ðSÞwas evaluated, correlations were taken into account

by updating the signal’s variance based on the auto-correlation function ðACFðSÞÞ.
For an independent signal the variance is simplyACF0. However, for a temporally correlated stationary signal, the actual variance is

written as

VarðSÞ = ACF0 +
XN
i = 1

2,ACFi

where in practice the cutoff point of the sum remains to be determined. We trimmed the sum at a point corresponding to an auto-

correlation value satisfying ACFi % 0:15,ACF0. Finally, the SEM is defined as SEM=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðSÞ=np

where n is the total number of points

in the signal.
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