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Abstract

This report considers the estimation of depth from monocular images using methods based on

deep learning, and is aimed at producing the structure of the underwater environment for an

autonomous underwater vehicle. Depth estimation, despite being a popular research topic, has

not been extensively studied for underwater operations, and therefore motivates further invest-

igation in this area.

A review of the current state-of-the-art methods for estimating depth from monocular scenes

is given, with the aim of forming an overview of different architectures and design choices pop-

ularly used for depth estimation. The variational autoencoder is chosen among the methods

as a promising model for the underwater environment, and is implemented for testing on two

synthetic datasets.

Results from the datasets show promising results, displaying the predictive performance of

the variational autoencoder, and simultaneously the strength of using the estimated uncertainty

of the predictions for further reasoning. There are, however, shortcomings in the trained model,

and results from real underwater images indicate that there is still more to learn.
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Sammendrag

Denne rapporten tar for seg estimering av dybde fra monokulære bilder ved bruk av met-

oder basert på dyp læring, og er rettet mot å produsere strukturen til undervannsmiljøet for

et autonomt undervannsfartøy. Dybdeestimering, til tross for at det er et populært forskning-

stema, har ikke blitt grundig studert for undervannsoperasjoner, og motiverer derfor videre un-

dersøkelser på dette området.

Det gis en gjennomgang av dagens toppmoderne metoder for å estimere dybde fra monok-

ulære bilder, med hensikten å danne en oversikt over ulike arkitekturer og designvalg populært

brukt for dybdeestimering. Variasjonsautokoderen er valgt blant metodene som en lovende mod-

ell for undervannsmiljøet, og er implementert for testing på to syntetiske datasett.

Resultater fra datasettene viser lovende resultater, som viser den prediktive ytelsen til den

variasjonelle autokoderen, og samtidig styrken ved å bruke den estimerte usikkerheten til pre-

diksjonene for videre resonnering. Det er imidlertid mangler ved den trente modellen, og res-

ultater fra ekte undervannsbilder indikerer at det fortsatt er mye å lære.
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1 | Introduction

Autonomous robots have in recent years demonstrated increasingly complex capabilities for a

variety of tasks, both previously and currently, performed by human operators. Aiming to close

the gap between humans and robots, the robotics community incrementally makes technological

advancements towards a future where robots replace humans in everyday tasks, but importantly

also in dangerous and harsh environments with high risk of human lives. The Autonomous

Robots for Ocean Sustainability (AROS) project aims to replace human operators in underwater

operations, like visual inspection of man-made structures in underwater environments, as seen in

Figure 1.1, where the visual perception of the robot plays a vital role. Mapping the environment

is an essential part of any robots perceptual system, for many reasons, but in this work the

target is a full (dense) map which can be used for e.g visual inspection and collision avoidance,

reconstructing the geometry of the scene by visual information from cameras.

1.1 Problem description

The objective of this report is rooted in the objective of AROS, and more specifically investigating

methods for densly mapping the environment of an autonomous underwater vehicle (AUV) us-

ing monocular cameras. Estimating structure from individual images is inherently ill-posed[1],

but deep learning methods have recently shown great promise even in these cases. Although

they perform well on the popular above-water datasets, it remains to see how they tackle more

challenging data. This motivates an investigation into how deep learning methods perform in

underwater environments, and if they can be modified to achieve similar performance as in the

above-water scenarios. The following subtasks are therefore considered for this project:

1. A literature study on related work, state-of-the-art methods and theory for dense depth

estimation based on deep learning for monocular images.

2. Implementation of a deep learning-based model for predicting dense depth from images.

3. Verification and testing of the implemented method on datasets realistically relating to the

targeted underwater environment.

To limit the scope of the project, considerations such as real-time performance and handling

visual degradation in images from underwater environments are not investigated. These are

both important considerations, especially the latter, which heavily affects the performance of the

methods discussed in this report, and they are therefore left as possible future work.
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Figure 1.1: Inspection of underwater structures using the Eelume robot. Image courtesy: eelume. com .

1.2 Contributions

The contributions of this project are in summary:

• The first open-source implementation (as far as the author knows) of a variational autoen-

coder for depth estimation, located at: https://github.com/andersfagerli/Depth-CVAE.

• A review and comparison of different state-of-the-art methods for depth estimation using

deep learning, with respect to conditions and constraints imposed on the AROS project.

• An evaluation of the VAROS Synthetic Underwater dataset for deep learning-based meth-

ods.

1.3 Thesis outline

The structure of the report reflects the proposed subtasks, and is therefore outlined as follows.

Chapter 2 briefly presents the related work, which is further expanded on in Chapter 3 and

Chapter 4. Chapter 3 explains theory and methods for single-view methods, while Chapter 4

describes the multi-view counterpart. In Chapter 5, a choice is made for the specific model to

be tested, with implementation details of the chosen model. The results from testing the model

on two datasets are presented in Chapter 6, with accompanying discussion. Finally, the report is

concluded in Chapter 7, with suggestions for further work.

2
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2 | Related work

Depth estimation from images has been a heavily researched topic for numerous years, early on

mainly by inferring the structure of the scene from the motion of the camera or using known

relative poses between the cameras. In the last decade, methods based on deep learning have

shown promising results in a large variety of computer vision related tasks, with depth estimation

among them. Monocular depth estimation has been of greatest focus, as estimating depth from

individual images is ill-posed and not possible without geometric priors of the scenes[1], and is

also the focus of this work. The reviewed and related work is therefore limited to monocular

methods that utilize deep learning to estimate depth.

Eigen et al.[2] were among the first to use a pure CNN-based architecture for depth estima-

tion. Global context and cues for a single image were extracted by a deep contracting path, giving

a coarse prediction of the depth in the scene, which was then fused with a finer, higher-resolution

path to refine the coarse depth map into a fine-grained map that preserves local details. The

method achieved state-of-the-art performance on popular datasets, and set the foundation for

later CNN-based depth estimation methods to come. The key contribution is perhaps how they

preserved local details with global context by concatenating the coarse depth map with finer

feature maps, sharing the same conceptual idea as the later introduced, and popularly used,

U-Net[3].

Laina et al.[4] used the residual connections of [5] to predict depth from a very deep CNN,

using the typical contracting path for calculating deep features, and a subsequent expanding

path with upsampling to get a dense map of higher resolution. Networks using a combination

of contracting and expanding paths are typically called autoencoders, and are frequently seen in

dense prediction tasks such as depth estimation or segmentation.

In Wofk et al.[6], a combination of the feature concatenation in [2] and autoencoder struc-

ture of [4] was used, with a focus on achieving real-time performance on smaller platforms.

Computational complexity was lowered by fusing feature maps through addition rather than

concatenation, and by pruning away redundant parameters.

Different from the previously described methods, Ranftl et al.[7] used a Transformer for

predicting depth, relying on the attention-mechanism instead of convolutions to extract global

context. The architecture was, however, similar to an autoencoder, and fused features from the

encoder with convolutional layers in the decoder, same as e.g [6]. The model outperformed all

others on the popular datasets, and is the current state-of-the-art for depth estimation.

Generative models have also shown competing performance in inference tasks as depth es-

timation, even though they are primarily targeted at data generation. Bloesch et al.[8] used a

variational autoencoder conditioned on the deep features of the images, generating depth maps

from a compact latent representation. A key contribution is the latent representation itself, being

a compressed and lower-dimensional representation of the depth maps, which exhibits useful
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properties for further dense 3D reconstruction or visual simultaneous localization and mapping

(VSLAM).

The works described so far have predicted depth from individual images, and have not used

information from multiple views. In Godard et al.[9], temporally adjacent frames were used

to train an autoencoder in a self-supervised manner, using photometric errors as a loss function

rather than ground truth depth values. Similarly in Yang et al.[10], two subsequent autoencoders

were used to predict the disparity maps instead of depth directly, and by training on stereo

images, a virtual stereo term was adopted to improve the accuracy in monocular odometry.

4



3 | Single-view depth estimation

In this chapter, an overview is given of the different architectures and theory for deep depth

estimation using individual images, mainly using CNN-based architectures in a supervised fash-

ion. Theory for autoencoder-like architectures are first presented, before Transformers and their

adaptation to depth estimation is shown. Finally, generative models for depth estimation are

discussed, with a focus on variational autoencoders.

3.1 Autoencoders

Autoencoders have become a standard for fine-grained classification and regression tasks, such

as semantic segmentation and depth estimation. They typically consist of a contracting path,

called the encoder, and an expanding path, called the decoder. The encoder shares the structure

of typical classification networks[5], [11], [12] and is used to capture global context, while

the decoder is used for enabling fine-grained predictions, often in the same resolution as the

input. A problem is that local context, or localization of high resolution features, is lost in

the contracting path, giving coarse predictions, and a common approach to solving this is to

combine feature maps in the contracting path and the feature maps in the expanding path. This

was popularly introduced in [3] for segmentation, but already in [2] an autoencoder-like CNN

for depth estimation was used in the same manner. The most prevalent implementations using

this structure for depth estimation are [2] and [4].

3.1.1 Coarse-to-fine prediction

A vanilla autoencoder, as shown in Figure 3.1a, is typically used to learn encodings of the data,

and not for inference directly. The encoding, typically called the latent representation, is a lower

dimensional feature which can be interpreted as a compressed version of the input, which is

useful for reducing the number of features that describe the data, but this in the domain of

dimensionality reduction, and not directly useful for inferring e.g depth from images. As it

aims to encode the data, it is trained on reconstructing the input at the output, minimizing the

reconstruction loss, giving an encoding that can be decoded into the original data. This is not the

aim in this particular chapter, and will therefore not be explained further here, but is revisited in

Chapter 3.3.1 where it is of more relevance.

Autoencoders are more commonly used for fine-grained predictions, either for classification

or regression. This is partly possible due to the expanding path in the decoder, but also be-

cause high dimensional features from the encoder can be added to the decoder, as shown in

Figure 3.1b. This is usually done by concatenating feature maps channel-wise in the decoder, as

displayed in Figure 3.2a. This increases the number of channels in the respective decoder layer,

5



OutputInput Encoder Decoder

(a) Vanilla autoencoder composed of encoder and de-
coder.

OutputInput Encoder Decoder

Concatenation

(b) Autoencoder with connections between encoder and
decoder for fine-grained predictions.

Figure 3.1: Graphical representations of CNN-based autoencoders.

Encoder Decoder

Conv

Copy and
concatenate

(a) Concatenation of feature maps.

Encoder Decoder

Copy
and add

(b) Addition of feature maps.

Figure 3.2: Different connection types between encoder and decoder.

and a subsequent convolution is usually performed to reduce the channels afterwards, producing

the final decoder feature map. An alternative is to instead add feature maps, as in Figure 3.2b.

The connections effectively give the decoder more information about the features of the input,

and by connecting higher dimensional feature maps, more fine-grained information is retained

in the decoder.

3.1.2 Loss functions

There are a variety of different loss functions used in the literature for evaluating the estimated

depth, ranging from a simple `2 loss to more involved combinations using geometric constraints

as well. As this chapter is focused on supervised methods, the following loss functions will

assume that ground truth depth is available, and are applicable to all supervised depth estimation

architectures, and will therefore not be repeated in the subsequent chapters. In the following, y

is denoted as the ground truth depth and ỹ is denoted as the estimated depth, each at a single

pixel in the depth map.

`1 loss

The `1 loss,

L1(y, ỹ) = |y − ỹ|, (3.1)

measures the absolute distance between ground truth and prediction.
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`2 loss

The `2 loss is perhaps the most common loss function in regression, and is defined as

L2(y, ỹ) = ‖y − ỹ‖22 , (3.2)

aimed at minimizing the squared euclidean norm between the ground truth and prediction.

Although it is common for regression, it is not commonly used in depth estimation.

Huber loss

A robust regression loss, the Huber loss is a weighted combination of `1 and `2 that is less

sensitive to outliers,

Lδ(y, ỹ) =

 1
2 ‖y − ỹ‖

2
2 |y − ỹ| ≤ δ,

δ(|y − ỹ| − 1
2δ) otherwise,

(3.3)

where δ is a parameter to be chosen.

Reverse Huber loss

The reverse Huber loss,

Bδ(y, ỹ) =

 1
2 |y − ỹ| |y − ỹ| ≤ δ,

δ(‖y − ỹ‖22 −
1
2δ) otherwise,

(3.4)

is just the reverse ordering of the Huber loss, also parameterized by δ.

Edge-aware smoothness loss

The edge-aware smoothness loss,

Lsmooth(D, I) =
∑
u∈Ω

|∇xD|e−|∇xI| + |∇yD|e−|∇yI|, (3.5)

is a regularizer used in combination with one of the above loss functions, ensuring that the

predicted depth map D is locally smooth by minimizing the gradients along the x and y-axis,

weighted by the image gradients, at every pixel u.

3.1.3 Autoencoders for depth estimation

The main ideas from the previous chapters are using an expanding decoder and concatenating

features, which both can be used for estimating depth from images, either by themselves or

together. The seminal work of [2] used a contracting path to predict a coarse depth map, and

refined it by concatenating it to a finer contracting path with higher resolution, giving both local

and global context in the final prediction. In [4], an autoencoder without connections between

the encoder and decoder was used, and instead increased the number of layers substantially

by using the residual blocks in [5], using the deeper connections to predict local information

from global context. A combination is used in [6], where the connections between the encoder

and decoder are performed by addition, rather than concatenation, giving better computational

performance while still retaining information. Common for all these works is the autoencoder

7
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Figure 3.3: Blocks of a Transformer, using N encoder and decoder blocks, and a multilayer perceptron at the output. The
figure is highly inspired by [13].

(or autoencoder-like) structure for estimating depth, a structure that will be seen in the coming

chapters as well.

3.2 Transformers

The Transformer, first introduced in [13], is a new neural network architecture that uses an

attention mechanism instead of the popularly used convolutions, and is therefor entirely non-

convolutional. Its main use has been for natural language processing, in tasks such as translation,

but has recently been adapted to computer vision as well[14]. At its core is attention, which has

a global receptive field, in contrast to convolutions, which need multiple stages to infer global

context. A generic example of its architecture is shown in Figure 3.3. As this is an entirely new

architecture, each block will be described in the following, with emphasis on the attention block.

3.2.1 Architecture

As many dense prediction networks, the Transformer uses an encoder-decoder architecture for

densely mapping the input to a high resolution output. Following this structure, the Trans-

former first encodes input data x = (x1, ..., xn) to a latent representation z = (z1, ..., zn), and

then decodes it into the output y = (y1, ..., ym). Notice that the dimensionality of the latent

representation is the same as the input, but the output may be of another dimensionality. In

Transformer terminology, each data point is referred to as a token. Using the example of natural

language processing, a token is a word in a sentence, so e.g the sentence

‘Can Transformers be used for depth estimation?’

has the tokens ‘Can’, ‘used’, ‘?’, etc.

Embedding and positional encoding

The input data is first embedded into a vector representation using numbers, before it is passed

to the encoder. In the above sentence, the token ‘Can’ may e.g have t1 = [0.1, 0.34, 0.45]T as

embedding. Typically, the embeddings themselves are learned by the model through some linear

transformation, which results in tokens of dimension dmodel.

For the Transformer to use information about the order of the sequence of data, we need

to give it relative or absolute position of each token. This is implemented by concatenating an

additional positional token to the original token.

8



Encoder and decoder stacks

The encoder consists ofN identical blocks, where each block has two components. The first is the

self-attention mechanism and the second is a fully connected feed-forward layer. Additionally,

there is a residual connection[5] around each of these components, and normalization after

each.

The decoder also hasN identical blocks and follows the exact structure of the encoder, but has

an additional attention layer that takes as input the output of the encoder stack. The architecture

shown in Figure 3.3 is specialized towards natural language processing, and has elements for

this specific task, such as the masked multi-head attention and output as additional input to

the decoder. This is not the case for the vision-adapted Transformers, and these elements will

therefore not be expanded on here.

Attention

At the core of the Transformer, this operation computes the relationship between the different

tokens and scores them based on how they are related. For each token ti, we create vectors

query qi, key ki and value vi. Each of these vectors are computed from a linear transformation

of the token, such that

qi = Wqti ∈ Rdk , (3.6a)

ki = Wkti ∈ Rdk , (3.6b)

vi = Wvti ∈ Rdv , (3.6c)

where each weighting matrix W is a learned transformation. Note that the weights are shared

for all tokens, and the queries and keys are of same dimension. For a neural network, these

matrices correspond to the weights of a linear layer.

The tokens are then scored against each other by taking the inner product of the query of

one token with the key of another, scoreij = qTi kj . Each token will then get a score for each of

the other tokens, where the score tells how much they relate to each other. All the scores for

each token, scoresi = (scorei1, scorei2, ..., scorein), are then normalized by a Softmax such that

they all sum to one. The value vi for each token is then multiplied by the normalized scores,

producing n value vectors for each token. The n value vectors are then summed to produce the

final value vector for a single token, and this is done for every token. The final value vector gives

the value of the token compared to all the other, and gives information about how important the

single token is in the global context.

In practice, the attention for multiple tokens is computed simultaneously by packing the

vectors into matrices, so e.g the query vectors are packed into Q = [qT1 , q
T
2 , ..., q

T
n]T. This is also

done for the keys and values, giving matrices K and V. The output of the attention operation

can then be written

Attention(Q,K,V) = Softmax

(
QKT

√
dk

)
V, (3.7)

producing an output of dimension n × dv, and 1 × dv after summing the n vectors. Before

normalizing the scores, it is common to scale each score by
√
dk as in (3.7), as this gives better

gradient flow during backpropagation[13].
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Figure 3.4: Multi-head attention using h attention heads.

A problem is that the weights are shared for all tokens, inhibiting the model to learn more

complex relationships. A solution is to use several attention blocks in parallel, called multi-head

attention, as shown in Figure 3.4. The multi-head attention operation is then

MultiHead(Q,K,V) = Concat(head1, ...,headh)WO, (3.8a)

headi = Attention(QWQ
i ,KWK

i ,VWV
i ), (3.8b)

where h is the number of heads and the projection matrices have dimensions WO ∈ Rhdv×dmodel ,

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk and WV
i ∈ Rdmodel×dv .

Feed forward

The output of the attention block is forwarded through a small, fully connected layer that has an

optional number of hidden layers and non-linearities, producing the final encoder block output

for each token of dimension dmodel. At the last encoder block, we have the latent representation

for each token, z, which is forwarded to the decoder.

3.2.2 Transformers for depth estimation

The Transformer was first used for a vision-related task in [14], namely for classification, and

further adapted to depth estimation in [7], which is the current state-of-the-art. As it is not clear

from the previous chapter how a Transformer may be used to infer depth, a brief description is

given in the following.

The main idea of [14] is to divide the image into smaller, non-overlapping patches that are

embedded into tokens. This is a bag-of-words[15]-like mechanism, where each patch (or token)

is a visual word in the bag. This embedding is, as previously, done by a learned linear projection.

The tokens are then forwarded through multiple encoder layers, each computing the attention

for each token. The Transformer in [7] does, however, not use a decoder similar to Figure 3.3,

but rather something closer to the decoder described in Chapter 3.1. The overall architecture is

shown in Figure 3.5. After each encoder block, the tokens are concatenated to form an image-

like feature map, and then upsampled to produce an image at a higher resolution, which is at last

fused with the feature map from the decoder stream by addition. The decoder stream does not

have any attention mechanism, and only uses convolutions and upsampling, as in Chapter 3.1.

At last is a task-specific output head, which computes the final depth values.
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Figure 3.5: Architecture of a Transformer predicting depth from an image. The image is divided into patches and embedded
into tokens (orange), before the tokens are forwarded through multiple encoder blocks. Latent representations after each
encoder block are concatenated and upsampled to produce feature maps, which are further fused with the convolutional
decoder.

3.3 Generative models

Generative models have in recent works been shown to produce depth maps of competing per-

formance to the preceding methods [8], [16]–[19]. Although these models are primarily tar-

geted at generation of data, they also possess useful properties for inference. Of these models,

it is mainly generative adversarial networks (GANs) and variational autoencoders (VAEs) that

have shown success in depth estimation. To limit the scope, only VAEs are considered in this

chapter, and the reader is referred to [16] for more details on how GANs can be used for depth

estimation.

3.3.1 Variational autoencoders

First introduced by [20], and later adapted for depth estimation by [8], the VAE adds a vari-

ational component to the previously described autoencoder architecture to enable generation

of new data. The VAE is originally rooted in variational inference for probabilistic models, and

not within deep learning directly, but is often implemented by a neural network. The following

chapters will therefore describe the VAE from a probabilistic perspective, but with emphasis on

the practical implementation using neural networks. Finally, we see how the VAE can be used

for estimating depth from monocular images, with the crucial properties it inhabits for further

dense structure from motion (SfM) and VSLAM.

Variational inference with intractable latent posteriors

The motivation of [20] is to solve inference problems where we have directed probabilistic mod-

els with latent variables whose posterior distribution is intractable. For observable variables x

and latent (unobservable) variables z, the described model will contain probability distributions

pθ(z|x), pθ(x|z), pθ(z) and pθ(x), all parameterized by the model parameters θ. In the context

of data generation, we want to sample new data x from the distribution pθ(x), so in this case

our objective is to find pθ(x). Using the law of total probability,

pθ(x) =

∫
pθ(x|z)pθ(z)dz, (3.9)
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(a) Bayesian network of the model [20]. Solid lines are
the generative model, pθ(x|z) and pθ(z), while dashed
lines are the variational approximation qφ(z|x).

Output Latent variableInput

Encoder Decoder

(b) Model implemented as a CNN using the autoen-
coder architecture, with distributions corresponding to
encoder, latent variable and decoder.

Figure 3.6: Different graphical representations of the directed probabilistic model under consideration.

we see that the latent variable z can be used to infer knowledge of x. The question is now how

to find the correct latent distribution and mapping from z to x, and how to solve the (generally

intractable) integral in (3.9). The idea is to sample z that produce x, meaning we need some

distribution pθ(z|x) to give the z that are likely under x. Using Bayes’ rule,

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
, (3.10)

we see that this distribution is in the general case intractable to solve, as it includes the intract-

able (3.9). Variational bayesian methods solve this by the approximation qφ(z|x) ≈ pθ(z|x),

parametrized by φ, where the aim is to find a distribution that is close to the intractable pos-

terior. This is typically done by finding the parameters φ that minimize the difference between

qφ(z|x) and pθ(z|x). A graphical representation of the model can be seen in Figure 3.6a.

Relating the above to neural networks, we denote qφ(z|x) as the encoder and pθ(z|x) as

the decoder in an autoencoder, with pθ(z) being the distribution we sample z from, where z is

typically denoted as the code. Figure 3.6b shows how the distributions can be implemented as a

CNN. The parameters φ and θ are then the weights of the different layers, and by training the

network on a dataset, the optimal parameters are learned.

The stochastic gradient variational bayes estimator

As we desire a model we can sample new data from, we want to find the parameters that max-

imizes the marginal likelihood pθ(x). Assuming we have a dataset X = {x(i)}Ni=1 of N i.i.d

samples of some random variable x, the marginal log-likelihood is a sum over each individual

log-likelihood for every data point

log pθ(x(1),x(2), ...,x(N)) =

N∑
i=1

log pθ(x(i)). (3.11)

As shown in Appendix A.1, each data point can be written

log pθ(x(i)) = DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z|x(i))
)

+ L(θ,φ,x(i)), (3.12)
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where

DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z|x(i))
)

= Eqφ(z|x(i))

[
log qφ(z|x(i))− log pθ(z|x(i))

]
(3.13)

is the Kullback-Leibler (KL) divergence, measuring the difference between two probability dis-

tributions, Eq[·] is the expectation w.r.t q, and L(θ,φ,x(i)) is the variational lower bound on

the marginal likelihood. Since the KL divergence by definition is always non-negative, we have

log pθ(x(i)) ≥ L(θ,φ,x(i)), which is why L(θ,φ,x(i)) is called the lower bound. As seen in

Appendix A.1, this bound can further be written

L(θ,φ,x(i)) = Eqφ(z|x(i))

[
− log qφ(z|x(i)) + log pθ(x(i)|z) + log pθ(z)

]
= −DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z)
)

+ Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
. (3.14)

Our objective is to maximize (3.11), but since the KL divergence in (3.11) involves the unknown

pθ(z|x(i)), we cannot maximize it directly. Instead, we estimate the marginal log-likelihood by

the variational lower bound, as this involves distributions we can control, and instead maximize

this. We then need to specifically define the distributions qφ(z|x), pθ(z) and pθ(x|z).

It is most common to set all distributions to Gaussians, specifically

qφ(z|x) ≡ N (µz(x),Σz(x)), (3.15a)

pθ(z) ≡ N (0, I), (3.15b)

pθ(x|z) ≡ N (µx(z),Σx(z)), (3.15c)

where Σz(x) is diagonal. For a neural network, as in Figure 3.6b, µz(x) will map the input to the

latent variable’s expectation, Σz(x) will map the input to the latent variable’s covariance, µx(z)

will map the latent variable to the expected output and Σx(z) is the output’s corresponding cov-

ariance, each defined by the network layers. Although the assumptions of (3.15) are simplifying,

they allow for efficient computations, and turn out to give good performance. Having defined

the distributions, the objective in (3.14) can more explicitly be defined.

The first term to define is the KL divergence. In the general case this must be estimated by

e.g Monte Carlo methods[20], but using the distributions defined in (3.15) it takes the explicit

form

DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z)
)

=
1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σx(x(i))|

)
, (3.16)

as shown in Appendix A.2, where k is the dimensionality of z.

The second term is more problematic, as the expectation is over distributions that are yet to

be parametrized by θ and φ. It could be estimated by averaging log pθ(x(i)|z) for a sufficient

amount of samples L,

Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
≈ 1

L

L∑
l=1

log pθ(x(i)|z(i,l)), (3.17)

but this is computationally expensive. Instead, we approximate the expectation by log pθ(x(i)|z(i)),

where z(i) is a single sample corresponding to x(i). This is usually a poor approximation, but

since we are averaging over a batch of data when training the model, the approximation holds.
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Using the distributions defined in (3.15), we get

Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
≈ logN

(
µx(z(i)),Σx(z(i))

)
= −k

2
log 2π − 1

2
log |Σx(z(i))| − 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σx
, (3.18)

where ‖·‖Σ is the Mahalanobis norm.

This in total gives the approximation of the variational lower bound,

L̃(θ,φ,x(i)) = −DKL

(
qφ(z|x(i))

∣∣∣∣∣∣pθ(z)
)

+ log pθ(x(i)|z(i))

= −1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σz(x(i))|

)
+

(
−k

2
log 2π − 1

2
log |Σx(z(i))| − 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σx

)
, (3.19)

called the stochastic gradient variational bayes (SGVB) estimator. As we commonly compute the

gradients over minibatches XM = {x(i)}Mi=1, where M ≤ N , the minibatch estimator is

L̃M (θ,φ,XM ) =
1

M

M∑
i=1

L̃(θ,φ,x(i)). (3.20)

The optimal parameters, and thus the distributions, can then be found by maximizing (3.20) for

a sufficient amount of minibatches M , as an approximation to (3.11).

A problem when calculating the gradients of (3.20) is that there is a random sampling step

in the calculation of L̃(θ,φ,x(i)), namely sampling z(i) from qφ(z|x(i)). This has no gradient, as

it is sampled, and a solution is to reparameterize z(i) by the differentiable transformation

z(i) = µz(x(i)) + Σ
− 1

2
z (x(i)) · ε, (3.21)

where ε ∼ N (0, I). The random sampling is now in the auxiliary noise variable ε, and the

gradient of z(i) can be taken w.r.t the parameters. Note that (3.21) is just another way of writing

z(i) given from (3.15a), as E[z(i)] = µz(x(i)) and Cov(z(i)) = Σz(x(i)).

The approximation to the log-likelihood (3.11) can finally be solved by finding

θ∗,φ∗ = argmax
θ,φ

1

M

M∑
i=1

L̃(θ,φ,x(i))

= argmax
θ,φ

1

M

M∑
i=1

−1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σz(x(i))|

)
+

(
−1

2
log |Σx(z(i))| − 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σz

)
= argmin

θ,φ

1

M

M∑
i=1

1

2

(
tr(Σz(x(i))) + µz(x(i))Tµz(x(i))− k − log |Σz(x(i))|

)
+

(
1

2
log |Σx(z(i))|+ 1

2

∥∥∥x(i) − µx(z(i))
∥∥∥2

Σz

)
, (3.22)

where the constant terms in (3.19) have been removed in the optimization. Note that this gives

the optimal parameters of the minibatch, which again is an approximation to the whole dataset.

Using a stochastic optimization method, e.g stochastic gradient descent, we can repeatedly draw
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(b) CVAE conditioned on feature maps.

Figure 3.7: Possible CNN implementations of a VAE (a) and a CVAE (b).

minibatches from the whole dataset to find the optimal parameters of the whole dataset.

Note also the two terms in (3.22) we aim to minimize, specifically the KL divergence and

the reconstruction error. The reconstruction error is the direct measure of how well the model

reconstructs the data, which we naturally want to be as low as possible. In the case of Gaussian

distributions, the error is weighted by the uncertainty in the reconstruction, and log |Σx(z(i))|
naturally acts as a regularizer to ensure the error isn’t minimized by just driving the uncertainty

to large values. The KL divergence, as mentioned previously, is a measure of distance between

two distributions, in this case qφ(z|x) and pθ(z), both given in (3.15). As pθ(z) is fixed to a

standard Gaussian and not affected by the changing parameters θ and φ, the KL divergence

forces qφ(z|x) close to a standard Gaussian during the optimization. This is important to ensure

that the model is regularized sufficiently, so that any code sampled from the latent space is

decoded into something meaningful. Otherwise, the reconstruction error would ensure (near)

perfect reconstructions of the data, but new data couldn’t be sampled from the code, as the

model is only trained to reconstruct the data it has seen. The KL divergence ensures continuity
and completeness, namely that close points in the latent space should give similar output, and

that points sampled from the latent space should give meaningful output.

The end result is the distribution pθ(x|z), which now can be use to sample new data from.

The sampling procedure is then:

1. Sample a latent value z from pθ(z).

2. Sample a new data point x from pθ(x|z).

Illustrated by the VAE in Figure 3.7a, the generation of new data only involves sampling the code

z and decoding it with the decoder pθ(x|z). The encoder is therefore not used at run-time.

Conditional variational autoencoders

A limitation of the VAE is that we have no control over the data it generates. If it is trained on

generating new numbers from the MNIST dataset [21], a random code will give a random digit,
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which means we can’t generate specific digits. In the case of generating depth maps it becomes

even worse, as a (pseudo) randomly drawn depth map would most likely give no meaningful

structure. The conditional variational autoencoder (CVAE) [22] solves this by modeling a condi-
tional distribution pθ(x|y), conditioned on some y. In the case of MNIST, we could condition on

the number we want to generate, e.g pθ(x|y = 3) for the number 3. For depth maps it is more

complicated, as we want to generate a depth map of a given image, and we need to condition

on this image. Instead of conditioning on the whole image itself, one could condition on its

deep features (typically extracted by a CNN), as shown in Figure 3.7b. Here, the conditioning

is implemented by concatenation, which effectively gives the network information about what it

should reconstruct.

The variational lower bound in (3.14) can be re-written (without individual samples x(i) for

notational simplicity) using the conditional distribution as

log pθ(x|y) ≥ L(θ,φ,x,y)

= −DKL

(
qφ(z|x,y)

∣∣∣∣∣∣pθ(z|y)
)

+ Eqφ(z|x,y) [log pθ(x|z,y)] , (3.23)

giving the SGVB estimator

L̃(θ,φ,x,y) = −1

2

(
tr(Σz(x,y)) + µz(x,y)Tµz(x,y)− k − log |Σz(x,y)|

)
+

(
−k

2
log 2π − 1

2
log |Σx(z,y)| − 1

2
‖x− µx(z,y)‖2Σx

)
. (3.24)

As seen from (3.24), the objective to be optimized for the CVAE is exactly the same as for the

VAE in (3.22).

In practice, weighing the reconstruction error by the covariance of the prediction Σx(z,y) is

strictly not necessary, but often beneficial. After all, the output of interest for the VAE and CVAE

is the reconstruction itself (or rather the newly reconstructed data), and not how uncertain the

model is in its reconstruction. This is effectively done by setting Σx(z,y) = I, giving

L̃(θ,φ,x,y) = −1

2

(
tr(Σz(x,y)) + µz(x,y)Tµz(x,y)− k − log |Σz(x,y)|

)
+

(
−k

2
log 2π − 1

2
‖x− µx(z,y)‖22

)
,

which results in a mean squared error (MSE) loss for the reconstruction. This doesn’t require

the model to estimate Σx(z,y), but may give poorer results in not doing so. Otherwise, the

uncertainty must be estimated same as the reconstruction, and must be an additional output of

the model. This is identical to estimating the aleatoric uncertainty as in [23].

CVAEs for depth estimation

Although these models originate and have their main use within generation of data, recent works

have attempted to adapt them to inference of data. Most notably, [8] used a CNN-based CVAE

for predicting depth from individual grayscale images. This work was a step towards a new

direction of possible SLAM and 3D reconstruction methods, mainly contributed by the compact

representation of depth that the code in the CVAE provides. This is effectively a compressed

representation of a depth image, with far fewer parameters, and has two main benefits:
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Figure 3.8: CNN-based implementations of CVAEs for depth estimation from intensity images.

1. The reduced parameter-space allows for joint optimization of pose and map in dense

VSLAM and SfM.

2. The compressed representation is computationally less memory-demanding than its full

counterpart, consuming less memory when storing the map of the environment.

The first point is the main contribution to the VSLAM community, as optimizing pose and map

in a dense manner has previously not been possible due to computational real-time constraints.

However, the accuracy in the predicted depth maps, and particularly how well the code and

decoding captures the full structure, is a limitation of this method. Compared to state-of-the-

art methods for monocular depth estimation [7], [24], neither of the CVAE-based methods [8],

[17]–[19] seem to produce comparable results, indicating that the code (and how well it is

decoded) may be a bottleneck. Research into improving the prediction may therefore be valuable

for establishing the CVAE in the fields of VSLAM and 3D reconstruction.

Following the work of [8], a CVAE for depth estimation may be implemented by conditioning

on the deep features of the intensity image (e.g grayscale or RGB). The simplest solution is to

use a pre-trained classification CNN, extract the feature maps from it and concatenate them with

the features in the encoder and decoder of the CVAE, as shown in Figure 3.8a. This architecture

consists of two streams: the top stream for extracting features of the input and the bottom stream

for encoding and decoding depth conditioned on the features. As the learned features from a

pre-trained network may not be optimal for depth estimation, the top stream may instead be

trained together with the bottom stream.

As the SGVB estimator in (3.24) naturally incorporates uncertainty, we can estimate the

uncertainty of the depth as well. This is useful for weighing the reconstruction, as the model

will put large weights on areas it struggles to reconstruct, and small weights on areas it has no

problem with, ultimately letting the model focus on well-posed areas. The uncertainty is also

useful by itself for further inferring information about the estimated depth, as it enables the

possibility of choosing which estimates to use and not. As the uncertainty map (uncertainty of

each pixel) is a dense prediction, it is typically estimated by an expanding path for enabling
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fine-grained predictions, as in Figure 3.8b.

Properties for dense SfM and VSLAM

One of the main reasons for using a CVAE for depth estimation is its useful properties in dense

SfM or VSLAM. This typically involves the joint optimization of both pose and map, which be-

comes infeasible (at least in real-time) due to the large number of parameters the dense map

presents in the optimization. As shown in [8], the reduced parameter-space of the code solves

this problem to some extent, making joint optimization of pose and dense map possible. There

is still a question of real-time performance, and how much detail is lost when using the compact

representation of the code.
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4 | Multi-view depth estimation

As estimating depth from single images is inherently ill-posed, a natural question is how multiple

images can be leveraged in deep learning to estimate depth. Since the targeted application is

still inferring depth from a monocular setup, the multi-view methods cannot rely on stereo ima-

ging, severely restricting the number of relevant methods. This chapter will thus only focus on

temporal multi-view methods, in addition some adaptations using stereo configurations during

training, but not during testing. As the methods share many of the underlying concepts described

in Chapter 3, the discussion will be very brief here, only focusing on the new core ideas.

4.1 Temporal and static multi-view

Compared to the single-view methods in Chapter 3, which all need supervision by known depth,

the multi-view methods can take advantage of other signals, like using direct photometric meas-

urements and relative poses between images to infer depth. This is identical to the core concept

in direct SfM or VSLAM, namely finding map and/or pose by minimizing photometric errors

between images,

ep(u
b, zb,Tab) = Ia(w(ub, zb,Tab))− Ib(ub), (4.1)

where Ia and Ib are two images with overlapping views, and w(·) is the warp function for trans-

forming pixels ub in Ib to the corresponding pixels ua in Ia using the depth z and relative pose

between the images Tab. The depth and relative pose are usually unknown, and are the variables

we need to solve for, typically done by non-linear optimization. This does, however, assume that

photometric and geometric distortions are not present in the images, such that the photometric

error should be zero for corresponding pixels.

In [9], the depth is estimated by an autoencoder that aims to minimize the photometric error

between consecutive images in a stereo setup, using temporal and/or static views. The relative

pose between the stereo image pairs are naturally known, but not for temporally adjacent frames,

which is why the pose also must be estimated in this case, here by a separate CNN. The key

contribution is that this training setup does not require ground truth depth, which in many cases

is difficult to acquire, and the training is therefore self-supervised. At run-time, the network

has learned to predict depth from single images, and the method therefore works for monocular

setups as well. There are various improvements and implementation details that will not be

expanded upon here, like using SSIM[25] for photometric errors and edge-aware smoothness

(3.5) as a geometric prior, and further details are left to the reader.

Sharing many similarities with the previously described method, [10] estimates the disparity
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maps of two stereo images instead of the depth directly, which relates to depth by

disp =
b · fx
z

, (4.2)

where b is the baseline between the two views, fx is the focal length along the x-axis of the

calibrated cameras and z is the depth. The disparity maps for both the left and right images

are predicted from an autoencoder using only the left stereo image, and the training signal is

a combination of multiple loss functions using the reconstructed right stereo image from the

disparity maps. Additionally, a subsequent autoencoder is used to refine the predicted dispar-

ity maps, calculating the residual between the predicted disparity and actual disparity. As the

ground truth disparity maps can be calculated from the stereo image pairs, the method is also

self-supervised. Interestingly, a supervised signal is also used to improve the predictions, where

estimated sparse disparities from Stereo DSO[26] are used in aiding the prediction of the full

disparity map. Additional loss functions are left-right consistency loss and regularizers for local

smoothness and occlusions, which will not be expanded on here.

A useful property of [10] is that the network learns to predict the corresponding stereo image

from a monocular image by the disparity maps. The input to the network can be interpreted as

e.g the left image, and it will be able to reconstruct the corresponding right image in a stereo

setup using the predicted disparities. The baseline between the images will be the same baseline

as used when training, and is therefore dependent on the stereo setup in the training set. This

virtual stereo can be further used to improve the accuracy of odometry or SLAM methods based

on e.g the self-supervised methods described here, by incorporating a photometric loss based on

the virtual stereo image pairs.

A question one may ask is how multiple views can be incorporated into the single-view meth-

ods in Chapter 3, using both ground truth depth maps and signals available with multiple views

to supervise the training. Intuitively, this should give better performance than using individual

images alone, since estimating depth inherently requires several views. The author is currently

not aware of any methods that fuse the two, and research into how this can be done is left as

possible future work.
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5 | Method

The two previous chapters have served as a review of some of the state-of-the-art methods for es-

timating depth from images, with the purpose of understanding and deciding which methods are

most applicable to the problem at hand. This chapter aims to first weigh the different methods

against each other, with respect to underwater mapping using monocular images, before finally

deciding on a method. Finally, implementation details of the chosen method is described.

5.1 Choice of method

Before delving into the methods, some words should be said about the data they will be applied

to. The Eelume underwater snake robot provides monocular images in a harsh underwater en-

vironment, with examples of possible test data shown in Figure 5.1. The data collected at the

present time does not contain any measurements which can be used as ground truth, mainly due

to the difficulty of acquiring this underwater, and the images have highly varying lighting con-

ditions and photometric distortions, which is a natural product of the underwater environment.

Two important considerations should be made from this alone:

1. Methods requiring ground truth depth cannot be trained on the data from the robot.

2. Methods relying on photometric consistency, like using photometric error, will most likely

fail due to the photometric distortions.

As the methods in Chapter 3 require ground truth depth, and the methods in Chapter 4 assume

photometric consistency, it appears none of the methods are suited. This should, however, not

be viewed as a limitation of the reviewed methods, but more so evidence of how challenging the

targeted application is. Since training on this data is not possible without modifying the reviewed

methods heavily, this work will use other data that hopefully translate well to the underwater

environment, later described in Chapter 6.

The multi-view methods discussed in Chapter 4 are the only methods directly applicable

to the underwater data, and are from this consideration alone advantageous to the methods in

Figure 5.1: Examples of images captured by the Eelume snake robot.
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Chapter 3. This is, however, not the case for the data used in this work, which has known ground

truth, but also has a photorealistic environment with photometric distortions. These methods will

therefore ultimately fail without complex modifications, and are therefore not considered further

in this work. Although they are not considered here, solving the issues related to photometric

consistency is still an important area, and is therefore left as future work.

The Transformer of [7] is the current state-of-the-art for depth estimation, and may therefore

seem like a good choice for further investigation. The authors, however, report that it requires

large amounts of training data to achieve state-of-the-art performance, and performs sub-par on

smaller datasets. The solution is to train on a large, similar dataset, or use a pre-trained network,

before using transfer learning on the targeted data. As there isn’t any large dataset of similar

data to the ones considered here, this may give poor results, and the Transformer is therefore

not regarded as suitable for this work.

The plain autoencoders are perhaps the simplest models, but still perform relatively well com-

pared to the Transformers. The details of Chapter 3.1 are lacking with regard to the modifications

and complexity that can be done with an autoencoder, and e.g [27] use a plain autoencoder with

a more complex pyramid-scheme in the decoder to achieve near state-of-the-art performance.

They are therefore good candidates for further investigation.

The variational counterpart to the autoencoder, as thoroughly presented in Chapter 3.3.1,

seems to perform worse than the plain autoencoders, mainly due to the regularization that the

latent code presents. However, the latent code itself exhibits useful properties for further refine-

ment of the dense geometry, as the reduced parameter-space is more easily optimized over in e.g

photometric bundle adjustment. It is difficult to say exactly how well this refinement performs

compared to predictions from other methods, but due to the useful properties for further dense

3D reconstruction and VSLAM, the variational autoencoder is chosen for further investigation,

and specifically the CVAE for depth estimation. As this model consists of a plain autoencoder

in its top stream, it is also easy to test the plain autoencoder for depth estimation using this

architecture.

5.2 Implementation

A CVAE was implemented1 in PyTorch[28], adapting and expanding the deep learning frame-

work provided by [29] to depth estimation instead of detection. The network, termed Depth-

CVAE, is shown in Figure 5.2, with additional details given in Table B.1 and Table B.2 in Ap-

pendix B. Much inspired by [8], the top stream is a U-Net that predicts the uncertainty map for

the predicted depth, and the bottom stream is the CVAE conditioned on the deep features from

the U-Net, which ultimately predicts the depth of each pixel in the image.

5.2.1 Loss function

There are some exceptions in the implementation from what is outlined in Chapter 3.3.1. The

traditional noise model is a Gaussian, but the Depth-CVAE uses a Laplace distribution for model-

ing the noise,

p(x) =
1

2b
exp

(
−|x− µ|

b

)
, (5.1)

1https://github.com/andersfagerli/Depth-CVAE
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Figure 5.2: Graphical structure of the CNN-based CVAE (Depth-CVAE) used in the experiments, with the example of RGB
images of size 288× 512 as input.

where b > 0 is referred to as the diversity of the distribution, but in practicality is a measure of

uncertainty, and plays the exact same role as Σ in the Gaussian case. The resulting reconstruction

error is now an `1 loss, instead of `2, which has been shown to produce better results in computer

vision related deep learning problems concerning depth [4].

Additionally, the code layer normally has a prediction of Σz, but is in the Depth-CVAE pre-

dicted as log Σz instead. This is to increase the numerical stability, as the KL divergence in (3.24)

involves taking the log of Σz, which is unstable for values close to zero.

A common problem when training VAEs using the objective in (3.22) is that the KL diver-

gence is quickly driven towards zero[30]–[32]. This intuitively doesn’t sound like a problem,

as we after all are aiming to minimize the objective, but it heavily regularizes the model from

the beginning. The result is a latent representation which units are inactive during the rest of

the training, as they are pruned away before learning a useful representation, with minimum

gradient flow between the encoder and decoder. The solution is to penalize the KL term at the

start of the optimization, making the model encode as much useful information in z as it can

before it is regularized towards the prior, pθ(z). The new objective can be written

L̃(θ,φ,x) = Lrecon(θ,φ,x) + βLKL(θ,φ,x), (5.2)

where Lrecon is the reconstruction loss, LKL is the KL divergence and β is the weight on the KL

divergence. A popular KL annealing schedule is to set β = 0 for the first couple of epochs, then

gradually increase it to β = 1. A more advanced schedule can be seen in [32].

5.2.2 Code

To reduce the number of parameters in the network, it is common to let µz(x) and Σz(x) share

layers. This is typically done by sharing all the convolutional layers before two separate fully
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Figure 5.3: Implementation of the code using neural networks. The final layer of the encoder is flattened and forwarded
through two separate fully connected layers that each make up the expectation and covariance of the code distribution. The
code z is then sampled using the reparameterization (3.21), and forwarded through one fully connected layer to generate the
first decoder layer.

connected layers are used for each of them. A possible implementation of the code block is

shown in Figure 5.3. The covariance matrix is assumed to be diagonal, such that each element

of Σz in Figure 5.3 corresponds to each element in the diagonal.

The code is an encoded version of the ground truth depth image during training, but at run-

time, when the model predicts depth from an image alone, the code must be sampled from the

prior, pθ(z). As the prior is a standard Gaussian, it has a distinct peak at its expectation, called

the zero-code. Based on all training data, this geometric prior is the most expected to observe,

and is therefore used at run-time. A code is thus not sampled, but just chosen as z = 0.
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6 | Results and discussion

This chapter presents the experimental setup and results for the implemented CVAE for monocu-

lar depth estimation. The datasets used for the experiments are first presented, before results

and details from experiments are finally shown, demonstrating the performance of the CVAE.

6.1 Datasets

Two datasets were used in the evaluation of the CVAE: the SceneNet RGB-D [33] dataset and

the VAROS Synthetic Underwater [34] dataset. Both provide photorealistic synthetic RGB images

generated in artificial environments, with corresponding precise ground truth depth images. The

benefit of using synthetic data is that the much needed ground truth depth is available, which

otherwise is usually obtained with depth-measuring sensors such as RGB-D cameras or laser

scanners, preferably highly accurate, but these fail in the case of underwater environments. The

extent of realism in the synthetic scene is however a possible bottleneck, especially how well the

photorealistic images translate to real scenes. The question remains whether a network trained

on synthetic images will perform sufficiently on real underwater data.

6.1.1 The SceneNet RGB-D dataset

SceneNet RGB-D is a dataset composed of photorealistic renderings of different indoor environ-

ments, with a total of 5M rendered RGB-D images from 15K trajectories of different scenes. The

large amount of available data makes this dataset suitable for deep learning tasks, such as se-

mantic segmentation, object detection and, most importantly, depth estimation. Some examples

from the dataset can be seen in Figure 6.1. As seen from the rightmost images in Figure 6.1, the

Figure 6.1: Examples of the SceneNet RGB-D images (top) and corresponding depth (bottom).
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(a) Underwater RGB (b) Uniform lighting (c) Surface normals (d) Depth

Figure 6.2: Examples of the VAROS dataset.

dataset contains some images that are poorly suited for depth estimation, and training a deep

network on many of these images will negatively affect its performance.

The dataset was primarily used as a means of verifying the working condition of the imple-

mented CVAE, as the dataset had previously been successfully used in [8]. The scenes do not

represent the targeted underwater environment, however, and will therefore not be used in fu-

ture work, but it gave valuable insight during initial testing. A possible further use could be

to use it as a pre-training dataset, as learned features and structure may still be transferable to

other data, but this was not tested here.

6.1.2 The VAROS Synthetic Underwater dataset

VAROS is a dataset composed of photorealistic renderings of an underwater environment, with

a current total of 4715 rendered RGB images, with corresponding depth maps, surface normal

maps, and uniformly lighted images with no water. Two examples of the scene and its corres-

ponding data can be seen in Figure 6.2.

As VAROS provides a realistic underwater environment, modeling the varying illumination

and visual degradation present in underwater scenes, it serves as a good test bench for real

underwater images. At the current time, however, the dataset contains far too few images for

training deep models, especially considering that the targeted application is reliable and accurate

predictions used in a maneuvering robot. The current sequence of data is also sequential, taken

from a trajectory of a supposed robot, meaning consecutive frames are highly similar. This

reduces the amount of unique scenes seen by the model even further, and specializes it heavily

on the sequence it is trained on. Choosing a representative test set from the limited data is

therefore also a challenge.

6.2 Experiments

The Depth-CVAE was trained and tested on both SceneNet RGB-D and VAROS, but without sub-

stantial hyperparameter-tuning, architecture experimentation, data augmentation, pre-training

or other possible ways of optimizing the performance. The extent of this work is mainly to test

and verify the working degree of a CVAE on underwater images, and further optimization of its

performance is left as future work. Qualitative results are therefore presented in this work, with

more quantitative results reserved for later.
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RGB Ground truth Prediction Uncertainty

Figure 6.3: Examples from the test set of SceneNet RGB-D using the Depth-CVAE. For ground truth depth, predicted depth
and uncertainty, brighter areas indicate higher values.

6.2.1 Experimental setup

All experiments were conducted on a NVIDIA GeForce GTX 1060 6GB with hyperparameters pro-

posed in [8], using the Adam optimizer with learning rate α = 0.0001 and β1 = 0.9, β2 = 0.999,

training for 10 epochs using a batch size of 32. A KL annealing schedule was used during train-

ing, gradually increasing the weight on the KL divergence from 0 to 1 by a sigmoid function after

3 epochs. The RGB images were normalized using the calculated mean and standard deviation

for each dataset, and the depth values were transformed to the range [0,1] by the proximity

parameterization proposed in [8]. The dimension of the code was set to 128.

6.2.2 SceneNet RGB-D

SceneNet RGB-D provides 17 training set splits, each composed of around 300K images, but

only the first was used for training due to memory constraints on the computer. The official test

set was not available at the time of testing, so another training set split was used for validation

instead. Results from testing on the test set can be seen in Figure 6.3, with additional results

shown in Appendix C.

As seen in Figure 6.3, the model is successful in estimating the main structure of the scene, but

struggles with finer details. This is not uncommon for VAEs[35], which have the disadvantage

of producing blurry or smoothed results compared to e.g GANs. The advantage of the compact

representation of the images in the code, however, still remains, which could further be used to

refine the estimated depth as in [8], [17], [19]. The uncertainty map can also be seen to provide
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Figure 6.4: Examples from the test set of VAROS using the Depth-CVAE. For ground truth depth, predicted depth and
uncertainty, brighter areas indicate higher values.

useful information in which areas in the prediction to trust, and which to not trust. In e.g the

second row of Figure 6.3, the network struggles to predict the beams in the upper left corner,

but also allocates higher uncertainty in that region. This gives us the opportunity of discarding

possibly poor predictions, and e.g keeping only the ones within a certain threshold.

6.2.3 VAROS

The test set for VAROS was difficult to choose, due to its limited size and most notably the

sequential recording of data. Random images could therefore not be removed and used in the test

set, as they would have very similar images in the training set, giving a highly biased indication

of the models performance. A larger sequence of data was therefore removed from the training

set and used as the test set, such that the test set did not contain images that were consecutive

or very similar to any image in the training set. Specifically, all images that viewed the pipes,

as seen in Figure 6.2, from the right side were removed. This resulted in a training set of 4265

images, and a test set of 450 images. Results from the test set can be seen in Figure 6.4, with

additional results shown in Appendix C.

Similar to the results from SceneNet RGB-D, the Depth-CVAE succeeds in capturing the main

structure of the scene, but again struggles with the finer details. Perhaps even less so than for

SceneNet RGB-D, but this is probably due to fewer finer details in VAROS, and because the

network is, still, to a large degree specialized on the few scenes it sees. It would be more

interesting to see how it predicts the structure of an object is has not previously seen, which

would give a better indication of the reliability of the model. As seen from the uncertainty in

Figure 6.4, the network allocated higher uncertainty around the upper edges of the scene, which

corresponds well to the RGB images as this region is unobservable. The last example also shows

an artifact in the prediction, indicating that there may be some instability in the predictions, but

the corresponding uncertainty is also high in that region.

To further test the capabilities of the model, the images in Figure 6.4 were vertically flipped
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Figure 6.5: Examples from the test set of VAROS with vertically flipped images.

before giving them to the network. This should present the model with an even further diverse

scene, which is also realistic for the robot, as it may rotate its body upside down. The results are

shown in Figure 6.5, producing similar results to Figure 6.4, but with slightly higher uncertainty.

The artifact, oddly enough, still remains on the lower part of the prediction, in regions with low

uncertainty, and should therefore be investigated in future work.

6.2.4 Eelume footage

The final question, and perhaps the most interesting, is how well the trained model transfers its

knowledge to real underwater scenes. Estimating the depth in real underwater scenes is, after

all, the end goal of this work. Results using images captured by the Eelume snake robot is shown

in Figure 6.6, using a model trained on either VAROS or SceneNet RGB-D. As seen, the model

struggles heavily in capturing the geometry of the images.

The model trained on VAROS predicts some of the geometry and structure correctly, but even

for these areas it is difficult to say how correct the predictions actually are. The results are at first

sight disappointing, but not unexpected. Since the VAROS dataset is so small, and the variety of

the scenes so scarce, it would be surprising if the model correctly predicted the structure of an

object it has previously not seen. The only man-made object it has seen is the pipes in Figure 6.4,

which alone is not enough to correctly predict the more complex object in Figure 6.6. For this

reason, a model trained on SceneNet RGB-D was also evaluated, as this dataset contains both

more data and more objects. The results in Figure 6.6b are, however, even worse. This could

be explained by the object in the scene, which is different from those in SceneNet RGB-D, or the

underwater images, which have very different image intensities than SceneNet RGB-D.

A question is also how well the synthetic data of VAROS translates to real underwater images,

and if this is a deciding factor. It is difficult to reason about this, as the limited size of the dataset

is likely a larger contributor to the poor performance. The model has also not been subject to

regularization, like data augmentation, which may improve the results on the Eelume footage.
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(a) Results using a network trained on VAROS.

RGB Prediction Uncertainty

(b) Results using a network trained on SceneNet RGB-D.

Figure 6.6: Results on footage from the Eelume snake robot.
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7 | Conclusion

The goal of this report was to investigate depth estimation methods based on deep learning

for monocular images, and to propose, implement and test a suitable method on data from an

underwater environment.

To accomplish this, several state-of-the-art methods for depth estimation using monocular

images were reviewed. Deep learning architectures based on autoencoders, Transformers, vari-

ational autoencoders and multi-view photometric consistency were considered, with emphasis

on their theoretical inner workings. This was done in order to propose a suitable method, based

on one or multiple of the reviewed methods, for inferring depth in underwater environments.

A variational autoencoder was implemented, conditioned on the deep features of the images

it predicts depth from. The model was trained and tested on two datasets: the SceneNet RGB-

D dataset for verification and comparison of its performance to a state-of-the-art variational

autoencoder, and the VAROS Synthetic Underwater dataset for final testing of its performance

in an underwater environment. Qualitative results show that the model performs well on both

datasets, but the limited size of VAROS makes it difficult to reason on its generalization to more

diverse underwater scenes. Experiments on real underwater footage from the Eelume robot

indicate that the model has much to learn, or perhaps that the synthetic data doesn’t translate

well to the real scenes it aims to model.

7.1 Further work

There are numerous possible ways of improving the models performance on depth estimation.

Improvements of the currently implemented model can be considered by itself, but there are

also more substantial changes to the overall depth estimation pipeline to be considered. In the

following, some ideas and potential improvements are listed for further work.

The implemented model was not thoroughly explored:

• The architecture of the model may not be optimal for the problem, and further research

into how this can be changed should be done. E.g using residual connections, allowing a

deeper encoder and decoder, may improve performance.

• The U-Net predicts the uncertainty of the predictions, but a possible improvement may be

to predict both the uncertainty and depth, as in [24]. This way, the decoder of the U-Net

has feature maps that are more directly linked to deep features of depth, and the CVAE is

perhaps better conditioned to predict depth as well.

• Additional information can be given to the Depth-CVAE, e.g a sparse depth map as in [17].

In [19], the reprojection error map is additionally given, resulting in better predictions.
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• More complex loss functions can be used to give stronger geometric priors, for instance

using the edge-aware smoothness regularizer (3.5).

• Using pre-trained encoders may expose the model to a larger variety of data, and thus

improve performance. This should also decrease the amount of training time required for

the model to learn optimal parameters. An interesting experiment could also be to pre-train

on e.g SceneNet RGB-D to learn geometric structures, and fine tune on VAROS.

• Data augmentation was not used to allow the creation of a representable test set, but

should be done to increase generalization. For instance, since an AUV may rotate about

all axes in three-dimensional space, both horizontal and vertical flipping with rotations are

relevant augmentations.

• Hyperparameters always leave room for improvement, and since the model trained in this

work did not undergo considerable tuning, this should be further looked into.

As discussed in Chapter 6, the limitations of VAROS impose some difficulties for deep learning

models:

• More data should be collected to expand the number of scenes the model can train on.

This shouldn’t only be sequences from a robot trajectory, but more pseudo-random scenes.

A possible solution is to sample images from pseudo-random poses in the underwater en-

vironment, which can substantially increase the number of images. These must, however,

be valid and realistic, which may be difficult to implement.

• The underwater environment should be expanded to include more diverse scenes, and

should e.g contain more man-made objects that are likely to be seen in real footage.

A big disadvantage of the proposed model is that it can’t train on real footage without having

ground truth depth, which is difficult to obtain underwater. The CVAE is also regularized towards

its own prior, leading to poorer predictions (but with the upside of a smooth and optimizable

latent space). Some ways to tackle these problems are:

• Propose a way to solve the photometric inconsistency in underwater images, making multi-

view methods applicable. This allows the use of other deep learning methods, but also

makes it possible to refine the predictions through multi-view optimization based on pho-

tometric errors, realizing the strength of the proposed CVAE.

• Propose other metrics that allow multi-view optimization, which are robust to the visually

degraded images from underwater environments.

• Implement and test other deep learning methods for depth estimation in the underwater

environment.
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A | Proofs

A.1 Marginal log-likelihood for VAEs

We want to find the best approximation qφ(z|x) to the intractable pθ(z|x), which can be done

by minimizing the KL divergence (3.13) between the two distributions:

DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

= Eqφ(z|x) [log qφ(z|x)− log pθ(z|x)] .

Using Bayes’ rule (3.10) on log pθ(z|x), we get

DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

= Eqφ(z|x) [log qφ(z|x)− (log pθ(x|z) + log pθ(z)− pθ(x))]

= Eqφ(z|x) [log qφ(z|x)− log pθ(x|z)− log pθ(z)] + pθ(x) (A.1)

where pθ(x) is taken out of the expectation as it is not a function of z. Solving (A.1) for the

marginal log-likelihood, we get

pθ(x) = DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

+ Eqφ(z|x) [− log qφ(z|x) + log pθ(x|z) + log pθ(z)] (A.2)

= DKL

(
qφ(z|x)

∣∣∣∣∣∣pθ(z|x
)

+ L(θ,φ,x),

where the expectation in (A.2) is the variational lower bound.
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A.2 KL divergence between two Gaussians

For two multivariate Gaussians, N1(µ1,Σ1) and N2(µ2,Σ2), the KL divergence takes the explicit

form

DKL

(
N1(µ1,Σ1)

∣∣∣∣N2(µ2,Σ2)
)

= EN1 [logN1(µ1,Σ1)− logN2(µ2,Σ2)]

= EN1

[
− log(2π)

k
2 − log |Σ1|

1
2 − 1

2
(x− µ1)TΣ−1

1 (x− µ1)

−
(
− log(2π)

k
2 − log |Σ2|

1
2 − 1

2
(x− µ2)TΣ−1

2 (x− µ2)

)]
=

1

2

(
log |Σ2| − log |Σ1|+ EN1

[
−tr

(
(x− µ1)TΣ−1

1 (x− µ1)
)]

+ EN1

[
(x− µ2)TΣ−1

2 (x− µ2)
])

=
1

2

(
log
|Σ2|
|Σ1|

+ EN1

[
−tr

(
Σ−1

1 (x− µ1)(x− µ1)T
)]

+ (µ1 − µ2)TΣ−1
2 (µ1 − µ2) + tr

(
Σ−1

2 Σ1

))
=

1

2

(
log
|Σ2|
|Σ1|

+ EN1

[
−tr

(
Σ−1

1 Σ1

)]
+ (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

+ tr
(
Σ−1

2 Σ1

))
=

1

2

(
log
|Σ2|
|Σ1|

+ EN1
[−tr (I)] + (µ1 − µ2)TΣ−1

2 (µ1 − µ2)

+ tr
(
Σ−1

2 Σ1

))
=

1

2

(
log
|Σ2|
|Σ1|

− k + (µ1 − µ2)TΣ−1
2 (µ1 − µ2) + tr

(
Σ−1

2 Σ1

))
,

where we have used identities from [36] and the cyclic property of the trace. In the special case

where one of the Gaussians is standard, the KL divergence is

DKL

(
N (µ,Σ)

∣∣∣∣N (0, I)
)

=
1

2

(
tr(Σ) + µTµ− k − log |Σ|

)
.



B | Depth-CVAE architecture

B.1 U-Net

Layer Layer type Act Norm Input Output shape
Encoder (E) 0 Input - - - 3× 288× 512

1 Downsample - - - 3× 144× 256
DoubleConv 3× 3 ReLU BN - 16× 144× 256

2 Downsample - - - 16× 72× 128
DoubleConv 3× 3 ReLU BN - 32× 72× 128

3 Downsample - - - 32× 36× 64
DoubleConv 3× 3 ReLU BN - 64× 36× 64

4 Downsample - - - 64× 18× 32
DoubleConv 3× 3 ReLU BN - 128× 18× 32

5 Downsample - - - 128× 9× 16
DoubleConv 3× 3 ReLU BN - 256× 9× 16

Decoder (D) 0 DoubleConv ReLU BN - 256× 9× 16
1 Upsample - - - 256× 18× 32

Conv 3× 3 - - - 128× 18× 32
Concatenate - - E4 256× 18× 32
DoubleConv 3× 3 ReLU BN - 128× 18× 32

2 Upsample - - - 128× 36× 64
Conv 3× 3 - - - 64× 36× 64
Concatenate - - E3 128× 36× 64
DoubleConv 3× 3 ReLU BN - 64× 36× 64

3 Upsample - - - 64× 72× 128
Conv 3× 3 - - - 32× 72× 128
Concatenate - - E2 64× 72× 128
DoubleConv 3× 3 ReLU BN - 32× 72× 128

4 Upsample - - - 32× 144× 256
Conv 3× 3 - - - 16× 144× 256
Concatenate - - E1 32× 144× 256
DoubleConv 3× 3 ReLU BN - 16× 144× 256

5 ConvTranspose 2× 2 Sigmoid BN - 1× 288× 512

Table B.1: Detailed network architecture for the U-Net stream of the Depth-CVAE. Downsample layers use 2×2 max-pooling,
BN is batch normalization, DoubleConv n×n applies a n×n filter two times, each with activation and normalization given
in the table, Upsample layers use bilinear interpolation and ConvTranspose n × n uses a n × n transposed convolution for
upsampling.
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B.2 CVAE

Layer Layer type Act Norm Input Output shape
Encoder 0 Input - - - 1× 288× 512

1 Downsample - - - 1× 144× 256
Conv 3× 3 - - - 16× 144× 256
Concatenate - - UNET-D4 32× 144× 256
Conv 3× 3 - - - 16× 144× 256

2 Downsample - - - 16× 72× 128
Conv 3× 3 - - - 32× 72× 128
Concatenate - - UNET-D3 64× 72× 128
Conv 3× 3 - - - 32× 72× 128

3 Downsample - - - 32× 36× 64
Conv 3× 3 - - - 64× 36× 64
Concatenate - - UNET-D2 128× 36× 64
Conv 3× 3 - - - 64× 36× 64

4 Downsample - - - 64× 18× 32
Conv 3× 3 - - - 128× 18× 32
Concatenate - - UNET-D1 256× 18× 32
Conv 3× 3 - - - 128× 18× 32

5 Downsample - - - 128× 9× 16
Conv 3× 3 - - - 256× 9× 16
Concatenate - - UNET-D0 512× 9× 16
Conv 3× 3 - - - 256× 9× 16

Code 0 Flatten - - - 1× (256 · 9 · 16)
1 Linear(µ) - - - 1× 128

Linear(log Σ) - - - 1× 128
Reparameterize(z) - - - 1× 128
Linear - - - 1× (256 · 9 · 16)

2 Reshape - - - 256× 9× 16

Decoder 0 Concatenate - - UNET-D0 512× 9× 16
DoubleConv 3× 3 ReLU BN - 256× 9× 16

1 Upsample - - - 256× 18× 32
Conv 3× 3 - - - 128× 18× 32
Concatenate - - UNET-D1 256× 18× 32
DoubleConv 3× 3 ReLU BN - 128× 18× 32

2 Upsample - - - 128× 36× 64
Conv 3× 3 - - - 64× 36× 64
Concatenate - - UNET-D2 128× 36× 64
DoubleConv 3× 3 ReLU BN - 64× 36× 64

3 Upsample - - - 64× 72× 128
Conv 3× 3 - - - 32× 72× 128
Concatenate - - UNET-D3 64× 72× 128
DoubleConv 3× 3 ReLU BN - 32× 72× 128

4 Upsample - - - 32× 144× 256
Conv 3× 3 - - - 16× 144× 256
Concatenate - - UNET-D4 32× 144× 256
DoubleConv 3× 3 ReLU BN - 16× 144× 256

5 ConvTranspose 2× 2 Sigmoid BN - 1× 288× 512

Table B.2: Detailed network architecture for the CVAE stream of the Depth-CVAE. Downsample layers use 2×2 max-pooling,
DoubleConv n × n applies a n × n filter two times, each with activation and normalization given in the table, Upsample
layers use bilinear interpolation and ConvTranspose n × n uses a n × n transposed convolution for upsampling. The linear
layers in the code are separate, not subsequent, and each predict µ or logΣ.



C | Additional results

C.1 SceneNet RGB-D

Figure C.1: Additional results from the SceneNet RGB-D test set, with randomly drawn samples. Each figure displays (from
left to right): RGB, ground truth depth, predicted depth and uncertainty. Zoom in to better view the results.
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C.2 VAROS

Figure C.2: Additional results from the VAROS test set, with randomly drawn samples. Each figure displays (from left to
right): RGB, ground truth depth, predicted depth and uncertainty. Zoom in to better view the results.
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