
Department of Engineering
Cybernetics

TTK4550 - Engineering Cybernetics,
Specialization Project

Underwater Real-Time
Incremental Surface

Reconstruction from Dynamic 3D
Point Clouds

Magnus Stray Schmidt

Supervisor:

Annette Stahl, Department of Engineering Cybernetics

Co-supervisors:

Mauhing Yip, Department of Engineering Cybernetics

Rudolf Mester, Department of Computer Science

20th December 2021

Trondheim, Norway

Abstract

For an autonomous robot, having a map of its surroundings is crucial to perform

certain tasks such as path planning and interaction with the environment. In this

project report, we implement a method for emulating VSLAM data on a synthetic

dataset of an underwater scene. In addition to the raw images, the dataset contains

ground truth pose of the camera and depth at each pixel, which is utilized for pro-

jecting points into space. Both random sampling of points in each frame and the use

of ORB feature detection and matching is implemented and compared. We then test

a state-of-the-art real-time incremental surface reconstruction method – identified

through a literature review – on the emulated VSLAM data, and compare the results

obtained from different parameter settings for the reconstructor and VSLAM data.

The reconstruction accuracy and speed is evaluated qualitatively and quantitatively,

respectively.

Magnus Stray Schmidt i 20th December 2021

Preface

This report constitutes the Specialization Project of the Master’s Degree Program in

Cybernetics and Robotics at the Norwegian University of Science and Technology,

and was supported by the Autonomous Robots for Ocean Sustainability (AROS)

project1. The AROS project is funded by the Research Council of Norway. The

goal of the AROS project is to improve existing marine robotics technology in or-

der to achieve full autonomy in subsea operations, including underwater sensing,

situational awareness, and motion planning, in addition to energy autonomy. This

allows for the ability to perform demanding observation and intervention tasks, in

order to achieve greener, safer and more cost-efficient operations. This report is a

part of work package two of project AROS: Next-best-view and 3D reconstruction

for AIAUVs.

1https://prosjektbanken.forskningsradet.no/en/project/FORISS/304667?Kilde=FORISS&
distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&
resultCount=30&offset=0&Fritekst=aros. Project number 304667.

Magnus Stray Schmidt ii 20th December 2021

https://prosjektbanken.forskningsradet.no/en/project/FORISS/304667?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=aros
https://prosjektbanken.forskningsradet.no/en/project/FORISS/304667?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=aros
https://prosjektbanken.forskningsradet.no/en/project/FORISS/304667?Kilde=FORISS&distribution=Ar&chart=bar&calcType=funding&Sprak=no&sortBy=score&sortOrder=desc&resultCount=30&offset=0&Fritekst=aros

Table of Contents

List of Figures v

List of Tables v

1 Introduction 1

1.1 Motivation . 1

1.2 Objective and Contribution . 1

1.3 Structure of Report . 2

2 Selected Literature 3

2.1 Preliminaries . 3

2.2 Surface Reconstruction from Point Clouds 5

2.2.1 Surveys . 5

2.2.2 Selected Methods . 11

2.3 Incremental Surface Reconstruction from Point Clouds 13

2.3.1 Incremental Solid Modeling from Sparse and Omnidirectional

Structure-from-Motion Data 13

2.3.2 Incremental Reconstruction of Urban Environments by Edge-

Points Delaunay Triangulation 20

2.3.3 Real-Time CPU-Based Large-Scale Three-Dimensional Mesh

Reconstruction . 22

3 Method 24

3.1 The Car-Cube Dataset . 26

3.2 Point Projection . 27

3.3 Random Sampling . 31

3.4 ORB Feature Detection and Matching 31

3.5 Combination of Random Sampling and ORB 33

4 Results 35

4.1 Point Selection . 35

4.2 Reconstruction Progression . 36

4.3 Steiner Points . 37

4.4 Number of Keypoints . 38

4.5 Number of Frames . 39

4.6 Inverse Cone Heuristic . 40

5 Discussion 43

5.1 Point Selection . 43

Magnus Stray Schmidt iii 20th December 2021

5.2 Reconstruction Progression . 43

5.3 Steiner Points . 44

5.4 Number of Keypoints . 45

5.5 Number of Frames . 45

5.6 Inverse Cone Heuristic . 45

5.7 Error Metric . 47

6 Further Work 49

7 Conclusion 50

Bibliography 51

Appendix 54

A The PointManager Class . 54

Magnus Stray Schmidt iv 20th December 2021

List of Figures

1 Steiner grid . 16

2 Point insertion . 16

3 Visual artifact . 19

4 Greedy selection . 19

5 Inverse cone heuristic . 21

6 Sample images . 27

7 Pinhole camera model . 29

8 Similar triangles . 30

9 Reconstruction comparison . 36

10 Reconstruction progression . 37

11 Steiner points . 38

12 Number of keypoints . 39

13 Inverse cone heuristic . 41

14 Random sample effect . 42

List of Tables

1 Step length of Steiner points influence on running time 37

2 Number of sampled points per frame influence on running time 38

3 Number of frames influence on running time using random sampling

only . 39

4 Number of frames influence on running time using ORB features only 40

5 Different weight setups for the inverse cone heuristic 40

Magnus Stray Schmidt v 20th December 2021

1 Introduction

1.1 Motivation

The last decades have seen an increasing amount of autonomy in robots. Increas-

ingly, these robots operate in rather unconventional environments. For example, one

may want an underwater vehicle, such as the Eelume vehicle (Eelume AS, 2021), to

operate on the ocean floor. The conditions here are challenging, both from a control

perspective and from a sensing perspective. Several of the sensors used above water

have reduced functionality, or are simply unusable underwater. Alternatively, they

are usable but expensive, heavy, and thus not suitable for an autonomous underwa-

ter robot. In recent years, Visual Simultaneous Location and Mapping (VSLAM)

methods based purely on RGB-cameras have gained much attention, and have be-

come increasingly accurate. An example of a state-of-the-art VSLAM system is

ORB-SLAM3 (Campos et al., 2020), which uses the ORB feature detector (Rublee

et al., 2011).

From a VSLAM system, the result will often be an incrementally adjusted point

cloud in R3. However, this point cloud is usually insufficient for an agent to infer

enough information about its environment to carry out its expected tasks. For

an underwater robot, such tasks could be path planning, inspection, cleaning, and

operating valves. Therefore, one may want to reconstruct a surface from the point

cloud. This reconstructed surface should – in some sense – minimize the difference

between the actual surface of the scene and the reconstructed surface. At the same

time, the reconstruction should be fast and lightweight, in order to gain real-time

performance. This is especially crucial for path planning and collision avoidance.

Several different reconstruction methods exist, and there is usually a trade-off

between different performance measures, notably time-complexity, space-complexity,

and some measure of geometric and topological accuracy. Furthermore, different

methods assume different properties on the input data, and will seek to optimize

certain properties of the output data. There is also an element of mathematical

complexity of the methods, and this report will therefore also provide some math-

ematical preliminaries.

1.2 Objective and Contribution

The objective of this project report is twofold. The first objective is to identify a

suitable real-time surface reconstruction method that only uses information about:

i) the images and detected points in each image, ii) the pose of the camera at

each image, and iii) the location of the points in the point cloud. We will identify

such a reconstruction method through a literature review. When a method has been

Magnus Stray Schmidt 1 20th December 2021

1.3 Structure of Report

identified, we want to test the method on a synthetic dataset of an underwater scene,

which is a precursor to the VAROS dataset (Zwilgmeyer et al., 2021). VSLAM data

for this dataset is not readily available, but can be obtained either by running an

existing VSLAM method on the dataset or by using the accompanying ground truth

depth images and poses to emulate VSLAM data from the dataset. The latter has

the advantage of being more easily customized and more robust.

The second objective is thus to emulate VSLAM data on the synthetic dataset.

Then, we will evaluate the selected surface reconstruction method on the emulated

VSLAM data. The reconstruction accuracy and speed will be tested in various ways

and presented qualitatively and quantitatively, respectively.

The main contribution of this report is to provide a method for emulating

VSLAM data on the synthetic dataset, which can be directly applied to the VAROS

dataset. The emulated VSLAM data can readily be used for a variety of purposes,

such as surface reconstruction, testing loop closure methods, and comparing different

VSLAM methods in underwater environments. We will use the emulated VSLAM

data to test the performance of an incremental surface reconstruction method.

1.3 Structure of Report

We will first explore some relevant literature in section 2, including some preliminary

mathematics, some surveys on 3D surface reconstruction with further references,

and different methods of reconstructing surfaces from static and dynamic 3D point

clouds. In section 3, we will present our method for emulating VSLAM data on the

synthetic dataset. In section 4, we will test a selected surface reconstruction method

on the emulated VSLAM data, and the results will be discussed in section 5. In

section 6, we will present some potential areas of further work. Lastly, we add some

conclusive remarks.

To avoid confusion, we will usually refer to surface reconstruction methods as

“surface reconstructors”, while “our method” refers to the method of emulating

VSLAM data.

Magnus Stray Schmidt 2 20th December 2021

2 Selected Literature

In this section, we will present selected literature relating to surface reconstruction

from point clouds. For all definitions, we will see how they relate to the subject

of surface reconstruction. First, in the preliminaries, we will touch upon the topics

of manifoldness and its relation to the Delaunay triangulation. Second, there will

be presented a summary of different techniques in surface reconstruction from point

clouds, through selected surveys. Lastly, we will build our way to a state-of-the-art

incremental surface reconstructor through a review of the historical progress of these

methods. There are many different branches of this active research area, and we

will focus on the history of methods leading up to the surface reconstructor to be

discussed in this report.

2.1 Preliminaries

Topology and manifolds. Informally, topology is the study of spatial structure

and properties of geometric objects that are preserved under continuous deform-

ations: It studies how objects are “put together” rather than the exact shape of

objects. An example of a topological space is an n-dimensional manifold, which

is a space that locally is homeomorphic to Euclidean space. For example, a two-

dimensional manifold, or 2-manifold, is called a surface, which locally resembles the

Euclidean plane. More formally, let S ⊆ R3 be the surface. If all points in S have

a neighborhood in S that is homeomorphic to a disk, then S is a 2-manifold in R3

(Lhuillier, 2014). Manifolds in some sense extend the notion of Euclidean spaces to

include curved spaces, where regular notions of angles and distances generally do

not hold. The genus of a surface is, informally, the number of holes in the surface.

Delaunay triangulations and Voronoi diagrams. A Delaunay triangulation is

often defined through its dual, the Voronoi diagram. Given a set P of N vertices in

a 3D Euclidean space, P = {P1 · · ·PN}, the Voronoi diagram is a sequence V1 · · ·VN
of convex polyhedra where all points in Vi have Pi as its nearest vertex. Formally,

Vi = {x ∈ R3 : ∀j, 1 ≤ j ≤ N, |x−Mi| ≤ |x−Mj|}, (1)

as described in (Boissonnat, 1984). Now, if we link together the vertices whose

Voronoi cells are adjacent, we obtain a Delaunay triangulation of the original ver-

tices, resulting in a set of tetrahedra. This set of tetrahedra satisfies what we will

call the Delaunay property. A triangulation of a set satisfies the Delaunay property

if none of the vertices in the set lies in the circumsphere of any tetrahedron in the

triangulation. A circumsphere of a tetrahedron is a sphere that passes through all

Magnus Stray Schmidt 3 20th December 2021

2.1 Preliminaries

vertices in the tetrahedron.

A significant advantage of the Delaunay triangulation for surface reconstruc-

tion is that it can be computed efficiently. This makes it suitable for real-time

applications, where processing speeds are crucial.

Another advantage is that if we view the vertices as samples of a given surface,

then the boundary of a Delaunay triangulation for a set of vertices can be viewed

as its convex hull, which is an approximation of the surface of the object. In fact,

(Boissonnat, 1984) states that it is the best polyhedral approximation of the surface

according to criteria such as distance between the approximation and the object.

Further, one may impose several properties on the boundary of a Delaunay

triangulation of an object sampled at the surface. One such property is that it is a

2-manifold. This property is useful because it allows for descriptions of the surface

in terms of surface normal and curvature which is used by many mesh processing

algorithms, e.g. smoothing (Litvinov & Lhuillier, 2013). Intuitively and informally,

it means that the surface behaves “nicely” in that it does not allow for self-crossings

and each direction is well defined. Also, the Delaunay triangulation has “theoret-

ical warranties for surface reconstruction in both geometric and topological senses”

(Litvinov & Lhuillier, 2014).

There are many ways to construct a Delaunay triangulation. Some examples

provided in (Su & Drysdale, 1997) are “Dwyer’s divide and conquer algorithm,

Fortune’s sweepline algorithm, [...] and Barber’s convex hull based algorithm”.

Of these, they showed Dwyer’s divide and conquer algorithm to be the fastest.

(Biniaz & Dastghaibyfard, 2012) proposes an even faster, circle-sweep Delaunay

triangulation algorithm.

Manifold checks for triangulated surfaces. We define three tests to check

whether a given surface reconstruction is manifold: The general test; the subtraction

test; and the addition test.

First, we need some definitions. We use a notation inspired by (Lhuillier, 2014)

and (Litvinov & Lhuillier, 2013).

Given vertices a,b, c in space, let ab, ac,bc be the undirected edges connecting

the vertices, and let abc denote the triangle formed by the vertices. The a-opposite

edge is then bc. Given a list L of tetrahedra formed by a triangulation of some

space, let δL denote the list of triangles included in exactly one tetrahedron in L,

i.e. the triangles on the boundary of L. Let |δL| denote the union of triangles in

δL, forming the boundary of L.

Now, let T be a triangulation of a space. Let O ⊆ T be a set of tetrahedra

such that every triangle in δO is bounded. The task at hand is to show that |δO| is
manifold.

Magnus Stray Schmidt 4 20th December 2021

2.2 Surface Reconstruction from Point Clouds

The general test is passed if and only if for every vertex v in every triangle of

δO, the following property holds: All triangles in δO that have v as a vertex can be

ordered as t0 · · · tk such that ti∩ t(i+1) mod (k+1) is an edge, and this edge is contained

in exactly two triangles (Lhuillier, 2014). An alternative formulation is that the

v-opposite edges must form a cyclic graph (Litvinov & Lhuillier, 2013).

Now let ∆ ∈ O denote a tetrahedron. Let |δ(O \ ∆)| denote the boundary

obtained by removing ∆ from O, in our case the new surface. If |δO| is manifold,

then |δ(O\∆)| is manifold if the combination of number of (vertices,edges,triangles)

is in {(0, 0, 0), (3, 3, 1), (4, 5, 2), (4, 6, 3), (4, 6, 4)}. We call this the subtraction test

on {∆, O}.
The addition test on {∆, O} is similar to the subtraction test, except that

∆ ∈ T \O and we check for manifoldness on |δ(O∪∆)| (Litvinov & Lhuillier, 2013).

2.2 Surface Reconstruction from Point Clouds

2.2.1 Surveys

Survey on 3D Surface Reconstruction (Khatamian & Arabnia, 2016) dis-

cusses some issues encountered in surface reconstruction, most of which are discussed

in further detail in (Berger et al., 2016), and will be presented in the paragraphs

related to that survey. For now, we restrict ourselves to a summary of a typical

constraint faced in surface reconstruction: The dataset size. Some methods are not

able to handle very large datasets, due to a lack of available hardware resources.

Furthermore, there is a trade-off between accuracy and performance in surface re-

construction algorithms. Accuracy can be measured in many different senses, for

example topological consistency and geometric accuracy, and so can performance.

One can for example either look at spatial complexity or time complexity. Filtering

and simplification are two measures that can be taken for increasing the perform-

ance. Filtering reduces unwanted or unnecessary input points while simplification

samples the input to decrease the input size. Both of these techniques increase the

performance by reducing the size of the input data, but might decrease the accuracy

for the same reason.

In (Khatamian & Arabnia, 2016), they also present different ways of classifying

surface reconstructors. There are three main ways of doing so:

i) Explicit vs. Implicit. An explicit method yields a surface that is expli-

citly defined, in that a function precisely defines the location of the surface. There

are two main distinctions within the explicit surfaces: parametric and triangulated.

To quote the paper, “A parametric surface is the deformation of a primitive model

that covers an arbitrary portion of the points”. The other type of explicit sur-

Magnus Stray Schmidt 5 20th December 2021

2.2 Surface Reconstruction from Point Clouds

faces is created from connecting points with their neighbors to obtain triangles or

tetrahedra, and is thus called triangulated. It is a very intuitive representation of

a surface, but may not be resilient to different artifacts of the input data. One

such method is the Ball-Pivoting Algorithm (Bernardini et al., 1999), which will be

elaborated on in section 2.2.2.

An implicit surface is usually described by a function at a constant value, i.e.

the points

x ∈ R3 s.t. f(x) = γ, (2)

where γ is a constant value in R.

There are two types of implicit surfaces: variational and typical. Typical impli-

cit surfaces use radially symmetric basis functions. One important typical implicit

surface reconstruction is the Poisson surface reconstruction (Kazhdan et al., 2006),

which will also be presented in section 2.2.2. Variational implicit surfaces use a

variety of basis functions to represent more complex shapes.

Several kinds of functions are used to represent implicit surfaces. Regular

choices are distance functions and convolutions of symmetric functions. The first is

related to cost minimization techniques and the latter to fitting techniques.

The process of finding an implicit surface consists of two parts. First, one needs

to find a function that fits the input data, and then it has to be post-processed in

order to be visualized, for example by marching cubes (Lorensen & Cline, 1987),

because the implicit function is usually quite complex.

ii) Interpolated vs. Approximated. Another distinction found in literat-

ure is whether the method is interpolated or approximated. The distinction is not

too different from the explicit versus implicit distinction, as interpolated methods

are usually explicit and approximated methods are usually implicit. For a surface

to be interpolated, at least a subset of the input points must lay on the reconstruc-

ted surface. This is not a requirement for approximated surfaces, as these surfaces

usually involve some kind of minimization problem over parts of – or the entire –

surface.

iii) Anisotropic vs. Isotropic. Informally, a manifold is isotropic if meas-

urements coming from all directions are the same. In this sense, it relates to how

smooth the surface is, and that it does not have sharp edges, corners, instantan-

eous jumps, and other features where measurements depend on the direction. If the

surface has such features, it is anisotropic.

Magnus Stray Schmidt 6 20th December 2021

2.2 Surface Reconstruction from Point Clouds

A Survey of Surface Reconstruction from Point Clouds (Berger et al.,

2016) mostly discusses priors that can be utilized in the reconstruction, but also

touches upon issues and alternative data in the point cloud. We will split the

discussion in three parts. Part A discusses common issues with the input point

cloud that should be dealt with. Different methods clearly have different degrees of

resilience against these issues. Part B is a short discussion on what types of data

accompany the input point cloud, and how these can be utilized. Part C examines

how different a priori knowledge, or priors, in short, can be utilized to create the

best surface reconstruction for the purpose.

A. Common issues with input point cloud

• Non-uniform sampling density

Typically, 3D point clouds originating from real scanners have spatially vary-

ing sampling densities. This causes trouble for defining a local neighborhood

around a point. A neighborhood is a set of points “close” to a given point.

One method is to select the k nearest neighbors (knn) of the point. Another

is to define a ball of radius ε and choose the points in this ball centered at the

given point. More sophisticated methods exist, but will not be discussed here.

• Noise

3D point clouds originating from images or scanners are not perfect and are

usually subject to some level of noise. Noise is considered to be a small random

displacement of a point on the surface, with the distribution depending on

different aspects of the scanner. In the presence of noise, one should be careful

interpolating every point exactly, as the points generally will not be exactly

on the surface.

• Outliers

An outlier is a misdetected point that is not near the surface. They can be

considered to be distributed in space according to some distribution. These

points should ideally be disregarded when constructing the surface, usually

through robust methods like RANSAC.

• Misalignment

Misalignment is a common source of error in VSLAM based point cloud con-

struction. This is because one tends to have drift in these systems, resulting

in an increasingly erroneous estimated pose. Thus, during loop closure, one

can have two misaligned scans of the same object, which has to be dealt with,

for example by adjusting the estimated pose of the scanner.

• Missing data

Missing data refers to regions of the surface where the sampling density equals

Magnus Stray Schmidt 7 20th December 2021

2.2 Surface Reconstruction from Point Clouds

zero. They are a common artifact of vision-based surface reconstruction due

to occlusions and textureless regions. Several assumptions can be applied to

the surface to deal with this problem, which will be discussed in the next

segments.

B. Point cloud input that can be utilized

• Surface normals

The normals of the points in the point cloud can be considered as a sampled

normal of the surface, and is very useful in certain reconstructors, such as the

Poisson surface reconstruction. They may be constructed from the point cloud

alone, and can be either oriented or unoriented. They are usually computed

using some notion of the neighborhood of the point, e.g. an ε-ball or knn, for

estimating the local geometry of the shape. One way to obtain an unoriented

normal is to use principal component analysis: Let oi be the centroid of the

neighborhood of xi, Nbhd(xi), and let ⊗ define the outer product of two

vectors. Defining the matrix

N =
∑

y∈Nbhd(xi)

(y − oi)⊗ (y − oi) (3)

we let n be the smallest eigenvector of N , or its negative (i.e. we do not know

its orientation). A way to construct an oriented normal is to take the output

of the previous procedure, connect the points in a graph, and let the weights in

the graph’s edges correspond to the similarity of the edge’s vertices normals.

Then, starting from a seed point, one can propagate the normal orientation

over the resulting graph. Both of these methods are described in more detail

in (Hoppe et al., 1992).

• Scanner/Camera information

Scanner information can give useful information about the reliability of the

point cloud, in regards to outliers, noise, and shape. For example, if we know

that a LIDAR has been used to scan a surface that is very tilted with respect to

the scanner, then we know that the confidence of these points is low. Further,

RGB-cameras can be used to complement other scanners, finding features

where typical depth sensors may not. RGB-cameras can also be used alone,

as is typical in VSLAM methods.

C. Priors that can be utilized

• Surface smoothness priors

We first introduce some notation. Let P be a point cloud sampling of a shape

Magnus Stray Schmidt 8 20th December 2021

2.2 Surface Reconstruction from Point Clouds

S. Points in P are denoted as pi ∈ P . There may also be a normal field

N such that for each pi there is an accompanying normal ni ∈ N , i.e. the

surface normal at each point is part of the input data. Different kinds of

surface smoothness surface priors can be imposed on the surface. They can be

divided into two main useful priors: local and global smoothness.

Local smoothness assumes that the surface is smooth only close to the

data. (Hoppe et al., 1992) used the method of signed distance fields to recreate

a surface, by finding an approximation of the distance of each point in space

to the surface, i.e. by finding a function Φ : R3 → R, that maps every point x

in space to its distance to the surface, i.e.

Φ(x) = ||(x− p)|| (4)

where p is the closest point on the surface to the arbitrary point x. Since we

only have sample points of the surface we could instead take the distance from

x to the tangent plane of the point pi, using a first-order approximation of the

surface around pi. The resulting distance function is then

Φ(x) = (x− pi) · ni, (5)

where pi is the closest point to x in the point cloud, and ni is the corres-

ponding normal. This method is quite sensitive to noisy data and especially

inverted normals. Several methods have been developed to deal with this is-

sue, typically by adjusting the signed distance function to utilize moving least

squares, hierarchical, or locally optimal projection methods.

Global smoothness priors are utilized with radial basis functions, in-

dicator functions and volumetric segmentation.

Radial basis functions uses a low-degree polynomial g : R3 → R and a

basis function φ : R+ → R to construct the implicit function

Φ(x) = g(x) +
∑
j

λjφ(||x− qj||) (6)

where λi are found by enforcing Φ(pi) = 0. The radial basis functions are

typically selected as φ(r) = r2 log(r), φ(r) = exp (−cr2), or φ(r) =
√
r2 + c2

(Carr et al., 2001).

Indicator functions work by labeling which points are in the interior and

exterior of the object. These methods work by viewing the input points and

normals as samples of the surface normals, and the methods conceptually boil

Magnus Stray Schmidt 9 20th December 2021

2.2 Surface Reconstruction from Point Clouds

down to minimize a quadratic equation of the form

arg min
χ

∫
||∇χ(x)−N (x)||22 (7)

Since the equation is quadratic, the solution is found by applying the gradient

to form the Poisson equation

∆χ = ∇ · N (8)

Methods of this kind are sensitive to wrongly oriented normals, but methods

exist to account for this (Alliez et al., 2007).

Volumetric segmentation works by discretizing the volume, for example

through a Delaunay triangulation of the points, and explicitly labeling which

cells are inside and outside of the surface. The smoothness can then be utilized

to perform this labeling. This method resembles the method in (Litvinov &

Lhuillier, 2013), which will be described in detail in section 2.3. The differ-

ence is that they utilize a scanner visibility prior to perform the labeling, as

described in the next point.

• Visibility priors

There are three types of visibility priors described in (Berger et al., 2016):

Scanner visibility, exterior visibility, and parity.

Scanner visibility is often used to obtain the line of sight of each point

in the point cloud. Through the use of space carving, the goal is to mark

the regions observed by the scanner as empty, and the regions not observed

as not empty. The regions that are not empty can then often be inferred as

the interior of the model, while the empty regions are defined as the exterior.

The empty regions can e.g. be inferred through a triangulation of the points

followed by labeling which points are observed from which poses, defining a

line of sight, or ray, through the tetrahedra which can be marked as empty.

Exterior visibility refers to the visibility information that stems purely

from the position of the observing camera, i.e. without other information

from the scanner such as which points are observed at which pixels. Methods

exploiting this prior seek to find which points are occluded when viewing the

point cloud from a given position.

The parity prior is used to determine whether a given point is inside or

outside a model with a closed surface. Given a ray from the camera to the

point, if the ray intersects the surface an odd number of times, the point is

inside the model. Conversely, the point is outside the model if it intersects the

surface an even number of times.

Magnus Stray Schmidt 10 20th December 2021

2.2 Surface Reconstruction from Point Clouds

• Other priors

The volume smoothness prior refers to how fast the volume of a shape varies

spatially. The prior is often used to compensate for lacking data. By assum-

ing, for example, that the volume varies smoothly in any direction, one can

say something about how the shape looks in the presence of missing data.

These methods often use the radius of spheres traveling along the medial axes

to measure local thickness, and the local thickness should then be smoothly

varying. Often, the medial axes are approximated by curves called skeletons,

where the skeleton curve and its distance to the point cloud can for example

be parameterized cylindrically (Tagliasacchi et al., 2009).

One assumption one can make about the object to be reconstructed is

that it can be reconstructed with a combination of simple, primitive, geometric

shapes. This gives rise to the prior known as geometric primitives. It can be

used to remove noise from the model, but similarly one may lose fine details

in the model as it may be treated in the same way as noise.

The global regularity prior makes use of the fact that many objects, es-

pecially man-made objects, have certain recurring elements to the structure.

For example, a building may have many similar windows in a certain pattern,

and walls in between. This can be used as a prior to fill in more details when

data is missing, especially details which are impossible to infer from the data

alone. It can also be used to correct for drift and other forms of imperfect

scans.

If large amounts of data on 3D objects are available, one can utilize this

in reconstructions where scans are highly incomplete. The reconstructor can

for example store a database of objects, and look up the objects when a new

imperfect scan is arriving to check for best matches. This is called a data-

driven prior.

In the user-driven prior the user is involved in the reconstruction adjusting

certain aspects of the reconstructed shape, such as smoothness, regularity, and

geometric primitives.

2.2.2 Selected Methods

We here briefly present two surface reconstructors that we upon further study de-

cided not to use. The Poisson surface reconstruction was avoided due to reconstruc-

tion time complexity. It is usually used as an offline batch surface reconstruction

technique that processes all points at the same time. The Ball-Pivoting Algorithm

was skipped due to the reduced quality of the mesh, and the advantage Delaunay

triangulations have that they can easily utilize visibility priors. As the Delaunay

Magnus Stray Schmidt 11 20th December 2021

2.2 Surface Reconstruction from Point Clouds

methods are the basis of our approach, we study them further in section 2.3.

Poisson Surface Reconstruction (Kazhdan et al., 2006) is an example of an

implicit function method. In this method, a model, M , is represented as an indicator

function, χ, taking values of 1 inside the model and 0 outside the model.

The key idea of the Poisson reconstruction method is that “the oriented point

samples can be viewed as samples of the gradient of the model’s indicator function”.

The gradient of the indicator function, ∇χ, will be zero everywhere, except near

the border of the model, ∂M . At the border, it will be unbounded, representing an

instantaneous jump in the indicator function from 0 to 1. Therefore, the indicator

function has to be convolved with a smoothing filter, F̃ , before one can consider

its gradient. Denoting the set of sampled points S, they arrive at the following

approximation for the gradient of the indicator function, partially utilizing Stokes’

theorem:

∇χF (q) = ∇(χM ∗ F̃)(q) ≈
∑
s∈S

|Ps|F̃s.p(q)s. ~N ≡ ~V (q) (9)

∆χF ≡ ∇ · ∇χF = ∇ · ~V (10)

In the paper, they arise at the Poisson equation because “~V is generally not

integrable (i.e. it is not curl-free)”. Another viewpoint, presented in (Kazhdan &

Hoppe, 2013), can be the following:

Given a vector field ~V on the domain M, we want to find the scalar function χ

that, when taking the gradient, is closest to ~V , i.e.

min
χ

∫
M

|∇χ− ~V |2 =⇒ ∆χ = ∇ · ~V (11)

where the implication comes from the fact that a minimum should have a derivative

of 0. The key idea here is anyways that the Poisson equation can be used to “in-

tegrate” a vector field. The resulting surface can be extracted from the estimated

indicator function. This is done by selecting all the points in space that have the

same value as the average of the indicator function at the sampled points. If γ

denotes this value, the surface can be extracted according to eq. (2).

The Ball-Pivoting Algorithm for Surface Reconstruction (Bernardini et

al., 1999) is mathematically simpler than Poisson reconstruction. It is a triangulated

explicit method, and interpolates the points in the point cloud. The key idea is to

define a sphere with radius ρ, and from a seed triangle let the ball pivot over one

of the triangle’s edges until it hits another point. When it hits another point, the

Magnus Stray Schmidt 12 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

algorithm connects the point to the mesh by creating a triangle from the edge to

the point. This is done for each new edge in each triangle until a mesh unfolds on

the sampled surface. If there are points that are not covered by this first mesh,

the algorithm selects a new seed and creates another mesh from that seed. See

algorithm 1 for pseudocode of the high-level workflow.

This algorithm is computationally cheap, but it is not very accurate. The mesh

tends to have a lot of holes, and it might connect the wrong points to go in the

mesh. It is not resilient to noise, since it interpolates all, or most of, the points.

Algorithm 1 The Ball-Pivoting Algorithm

1: procedure BPA(S, ρ) . S: point cloud, ρ: radius of pivoting ball
2: while new seed triangle found do
3: create seed triangle
4: mark edges as active
5: while active edges remaining do
6: get active edge
7: ball-pivot around edge
8: if hit new point then
9: create triangle from edge to point

10: mark new edges as active
11: else if hit point in mesh and adding point keeps mesh manifold then
12: create triangle from edge to point
13: mark new edges as active
14: else
15: mark edge as inactive
16: end if
17: end while
18: end while
19: return Mesh
20: end procedure

2.3 Incremental Surface Reconstruction from Point Clouds

2.3.1 Incremental Solid Modeling from Sparse and Omnidirectional

Structure-from-Motion Data (Litvinov & Lhuillier, 2013)

(Litvinov & Lhuillier, 2013) introduces a method for reconstructing a manifold sur-

face from point clouds which are incrementally updated with new points and camera

poses. The method builds on the more general sculpting methods in 3D Delaunay

Triangulation, in which one labels tetrahedra inside and outside the model, and

the surface is inferred as the border between these. An important topic through

the paper is to preserve the manifold property of the surface, i.e. it cannot cross

itself or otherwise act non-physically. The three different manifold tests defined in

Magnus Stray Schmidt 13 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

section 2.1 are imposed to check for manifoldness.

Information is also used about the camera pose and its relation to the observed

3D points: through the use of ray tracing one obtains information about which

tetrahedra are inside and outside of the model. This is a visibility prior, as discussed

in section 2.2.1. For example, if a point is visible ’through’ a tetrahedron previously

thought to be inside the model, one should perhaps now label it as outside.

Sculpting methods in a 3D triangulation. The so-called sculpting methods

are the foundations for the real-time reconstructors discussed in this report. The

name of this group of methods gives an intuitive illustration of the workings of these

methods. Given a 3D triangulation of a set of vertices in space, these methods seek to

carve away the tetrahedra which are outside the model or surface, and leave behind

the matter inside the surface. Informally, in a computer vision context, one can

view the vertices as points stemming from a VSLAM system, and rays going from

the camera to the surface as beams that evaporate tetrahedra between the camera

and detected point. This makes sense, because the space between the camera and

the point detected on the surface must naturally be free space. The exception is

when one is dealing with transparent objects, but then the camera is better assisted

with other sensors for scene reconstruction anyways. When tetrahedra have been

marked as “matter” and “free”, or similarly, “inside” and “outside” the model, the

surface is extracted has the border between these two categories of tetrahedra, i.e.

the triangles with one side pointing inside the model and the other outside, given

that this triangulated surface mesh satisfies the manifold property.

These sculpting methods can be augmented to work incrementally. The paper

suggests six steps to handle each increment in the reconstruction process: Enclosing,

shrinking, point insertion, ray tracing, growing, and post-processing. Each of these

steps will be explained in the following paragraphs, after an introduction to the

notation.

We use a notation inspired by (Litvinov & Lhuillier, 2013), but omit most of

the time information. The method operates on:

• a 3D Delaunay triangulation T . This is a triangulation of all points added in

the model so far.

• a list F of freespace tetrahedra such that F ⊆ T . The list is given from the

ray-tracing procedure, and the tetrahedra in F may or may not be included

in the tetrahedra outside the model, O, defined in the next point. Thus, even

though a tetrahedra is actually free space, it may in the reconstruction be a

part of the interior of the model, i.e. marked as matter. This is due to the

manifold restriction we set on |δO|.

Magnus Stray Schmidt 14 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

• a list O such that O ⊆ F . δO is the list of triangles that are included in exactly

one tetrahedra of O, |δO| is the union of triangles in δO, and |δO| must be

manifold. The tetrahedra in O are the tetrahedra outside the model, and the

border of O, |δO| is the surface of the reconstructed model. All tetrahedra in

O will thus not be visible in the reconstruction, i.e. they are marked as free.

• a list Pt′ of new Structure-from-Motion points obtained at step t′, each new

point accompanied by observations from a list of camera locations ct, t ≤ t′.

At each step t′, the 3D triangulation T is updated with the added points Pt′ ; the

list F is updated with new visibility information and points, and so is O and δO,

while preserving the manifold property on |δO|.
The methods rely on three assumptions for complexity reasons. The first as-

sumption is that a reconstructed point does not rely on future images. This assump-

tion is naturally valid for VSLAM systems, because future images are not known

at the time the point is constructed. Also, if a point needs to be updated, it can

simply be deleted and inserted another place. The second assumption is that all

rays from camera to point pict are bounded. Detection of far-away objects such as

stars would practically violate this condition, and in a VSLAM system, one may

have to be careful not to violate this condition. Underwater, however, we do not

consider this an issue, as the sight is limited. The third assumption is that the

diameters of the tetrahedra are bounded, and this condition is met through the in-

sertion of Steiner points. The Steiner points are a set of points distributed evenly

in space such that they form a 3D grid. A simple example is shown in fig. 1. The

step length, lSteiner, of the Steiner grid, or Steiner points, is defined as the shortest

distance between two Steiner points, which should be equal for all Steiner points.

We now proceed to describe the workflow of the six steps as outlined earlier,

which is the general workflow of all methods building on this method.

1) Enclosing. The enclosing step ensures that all tetrahedra that are affected

by the point insertion will be removed from O, because they will now invalidate the

Delaunay property and will have to be recreated. If D is the set of all tetrahedra

that are destroyed by the point insertion for this reason, then define an enclosing set

E, such that D ⊆ E ⊆ T , and stop the shrinking process when O∩E = ∅. (Litvinov

& Lhuillier, 2013) states that the reason we use such an enclosing set is that it works

better in practice. In this method, E is chosen as the set of all tetrahedra contained

in a ball of radius r + l centered in the camera location. Here, l is the maximum

diameter of the tetrahedra, i.e.
√

3lSteiner, and r is the length of the ray pict. This

enclosing set may seem needlessly large, and it is in fact one of the aspects improved

in (Romanoni & Matteucci, 2018).

Magnus Stray Schmidt 15 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

Figure 1: 3D Steiner grid example. The blue dots are the Steiner points. Here, the
step length, lSteiner, is set to 10m. The longest distance between two Steiner points,
which is the bounding diameter of the tetrahedra, is

√
3lSteiner.

Figure 2: Workflow of the incremental point insertion in 2D, illustrating the import-
ant steps in the method (b-e), and why direct insertion is not ideal (f). All triangles
are in T , white triangles are in F , and the red line is |δO|. Copied from (Litvinov
& Lhuillier, 2013).

Magnus Stray Schmidt 16 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

2) Shrinking. The shrinking step aims to iteratively remove tetrahedra from

O while |δO| remains manifold, until none of the destroyed triangles D are in O, i.e.

we stop when O ∩ E = ∅, which implies O ∩D = ∅, because D ⊆ E. The order in

which we remove tetrahedra from – or add tetrahedra to – O is not inconsequential,

and we would like to minimize the chance that a tetrahedron which is very likely free

is removed from O, as O represents the outside of the model. By “very likely free”,

we mean that it has a large intersection counter as outlined in step 4) ray tracing.

To reduce the chance that we remove free-space tetrahedra from O, we greedily

remove tetrahedra from O that have a low intersection counter. The tetrahedra

may be removed one at a time, each time testing for the manifold property using

the subtraction test, as described in section 2.1. They also may be removed several

at a time, each time testing for the general test on the entire boundary. The way

the shrinking is performed does not actually guarantee O ∩ D = ∅. In this case,

the point insertion must be treated specially in order to maintain the Delaunay and

manifold property, as described in the next paragraph.

3) Point addition. When we have shrunk |δO| while maintaining the mani-

fold property, the next step is to insert the points in the model. Each point added

will destroy a set D of tetrahedra that invalidates the Delaunay property. Some

elements of D may also be elements of O, as mentioned in the last step. The way

the method handles this is to simply not add the point to the model, and remove

the point entirely from consideration. The paper states that this is expected to be

rare. If none of the elements of D are in O, then we simply insert the point and

create new tetrahedra in place of D, which are initially labeled matter. See fig. 2

(c) for a graphical illustration.

4) Ray tracing. The ray tracing of a single point roughly consists of the

following two steps: 1. Create a ray from camera location ct to point pi; 2. For

each tetrahedron the ray intersects, increment its intersection counter. A näıve way

of doing this in an application is to do ray tracing for all points and all views for

the current 3D triangulation. This would be very expensive and not suitable for a

real-time application. We thus only do ray tracing for two sets of rays. The first is

the set of rays belonging to the new points arriving at the current time-step. We

trace the rays both from current and previous views to these new points. The second

set is the set of rays accumulated to the previous time step that can intersect the

new tetrahedra. For details on an efficient way to find this set, we refer to (Litvinov

& Lhuillier, 2013).

Magnus Stray Schmidt 17 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

5) Growing. The growing step is done by adding tetrahedra from F \O that

has a triangle in δO into O while maintaining the manifold property of |δO|, and

the goal is to make O as large as possible. See fig. 2 (e) for an illustration. The

growing step can be seen as an inverse of this shrinking step. We greedily select the

tetrahedron with the highest intersection counter to add in O. Furthermore, several

tetrahedra can be added at once to allow for genus changes. Also here we refer to

the paper for details.

6) Post-processing. The nice effect of enforcing the manifold property on

the surface is that it easily allows for mesh refinements, such as smoothing. The

method applies a genus refinement procedure and an incremental surface smoothing

as explained in (Yu & Lhuillier, 2012a) and (Yu & Lhuillier, 2012b), respectively.

Visual artifacts. We devote some space to the discussion of visual artifacts, i.e.

elements of the reconstructed surface that do not resemble the real surface. Visual

artifacts were a problem in (Litvinov & Lhuillier, 2013), and the authors discussed

and suggested a solution to this problem in (Litvinov & Lhuillier, 2014), which

involves a post-processing step. Before delving into solutions to the problem, we

study the definition and cause of these artifacts.

(Litvinov & Lhuillier, 2014) defines a visual artifact in the following way: A

visual artifact A is a set of tetrahedra A ⊆ F \O and ΓA is connected. ΓA is the ad-

jacency graph of the tetrahedra A, where the nodes are the tetrahedra and the edges

are the triangles connecting the tetrahedra. This means that A is reconstructed as

matter, i.e. A ∩O = ∅, but it is actually free space, i.e. A ⊆ F .

An example of a visual artifact is shown in fig. 3. The white triangles are free

space F , the grey triangles are matter, T \ F . Furthermore, the red line defines the

border |δO|, so the white triangles to the left of the border are the outside triangles,

O. The triangle labeled 1, which we denote A1, is a visual artifact, because it is

white, i.e. A1 ⊆ F , but it is not in O, i.e. A1∩O = ∅. In the reconstruction, this will

therefore appear as matter, or occluded space, whereas it in reality is free space. In

a typical reconstruction, there might be a lot of visual artifacts, and most of them

are not critical. (Litvinov & Lhuillier, 2013) therefore defines the terms visually

critical artifact and visually critical edge: A visually critical edge is a line ab such

that a ∈ P,b ∈ P and ∃c ∈ C such that âcb > α. A visually critical artifact

is then a visual artifact with at least one tetrahedron containing a visually critical

edge. The parameter α is user-defined, and the paper suggests setting it to 5°. The

idea behind why these particular artifacts are critical, is that the critical edge is so

long that it is is deemed unrealistic and severely reduces the reconstruction quality.

The cause of these visual artifacts lies in the nature of the reconstruction al-

Magnus Stray Schmidt 18 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

Figure 3: The triangle labeled 1, A1, illustrates a visual artifact in 2D. All triangles
are in T , white triangles are in F , and the red line is |δO|. In this case, A1 ∈ F , but
A1 /∈ O. Figure copied from (Romanoni & Matteucci, 2018).

Figure 4: 2D illustration of how a greedy algorithm might not select the “optimal”
surface. The greedy algorithm chooses triangle A, while choosing C and D would
have been better. All triangles are in T , the white triangle is in O, and the red line
is |δO|, assuming that the object is surrounded by triangles in O. Figure copied
from (Romanoni & Matteucci, 2015).

Magnus Stray Schmidt 19 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

gorithm. By imposing a manifold constraint on the surface, there will be situations

where free space tetrahedra cannot be added to O, as it would break the manifold

property of |δO|. The greedy method presented previously does not guarantee an

“optimal configuration” of O. An optimal configuration of O could for example

be to maximize the total intersection count of the tetrahedra in O. We may get

stuck in local extrema with the greedy method. Consider fig. 4, which shows an

example of how the method might get stuck in a local extremum. The grey tri-

angles are T \ O and the white is O. The greedy algorithm will select triangle A

to put in O next because it has the highest intersection counter: 9.0. However, this

prevents triangles C and D from being added to O, which has a total incremental

counter of 11.5, because it would violate the manifold property of |δO|. (Litvinov

& Lhuillier, 2014) thus suggests removing some tetrahedra from O and adding some

other, to “kick the algorithm out of its local extrema”, as they describe it. This is

a post-processing step, and it improves other post-processing steps that e.g. break

the Delaunay property, which is unfortunate for previously discussed reasons. The

drawback of (Litvinov & Lhuillier, 2014) is still the time complexity of the operation,

preventing it from running in real-time.

2.3.2 Incremental Reconstruction of Urban Environments by Edge-Points

Delaunay Triangulation (Romanoni & Matteucci, 2015)

(Romanoni & Matteucci, 2015) improves (Litvinov & Lhuillier, 2013) in two import-

ant ways. The first contribution is a new selection of points to triangulate, i.e. a new

feature extractor that they call “Edge-points”. The second contribution, and the

one we will direct most attention to, is a new heuristic for removing visual artifacts

in the reconstruction. We begin with a brief discussion of the edge-points before

presenting the new heuristic.

Edge-points. The extraction of edge points is inspired by the geometry of a typ-

ical urban environment, and the inspiration is made clear already in the name of the

paper. The main idea behind this feature is that the edges of the 3D triangulation

should lay close to real-world 3D edges, and the claim is that the usual Harris corner

detector does not sufficiently give rise to this property. We will not devote much

attention to this feature extractor as the scope of our report is to construct a surface

from any given VSLAM data.

Inverse cone heuristic. As discussed, visual artifacts in the reconstruction were

a problem in (Litvinov & Lhuillier, 2013). (Romanoni & Matteucci, 2015) suggests

another solution, which can be used in addition to the method proposed in (Litvinov

& Lhuillier, 2014). This solution is based on preemptively removing the visual

Magnus Stray Schmidt 20 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

(a) (b)

Figure 5: The inverse cone heuristic applied to a triangulation in the ideal (continu-
ous) setting (a), and the discrete setting (b). The intensity of the color represents
the value of the weights. Figure copied from (Romanoni & Matteucci, 2015).

artifacts, by augmenting the intersection counter in the ray tracing step so that the

greedy algorithm chooses a different ordering of the tetrahedra.

As inferred from (Litvinov & Lhuillier, 2014), the long edges are likely to be

visually critical edges. We thus want to make sure to correctly label large tetrahedra.

Now, another observation made in (Romanoni & Matteucci, 2015) is that the large

tetrahedra are usually around the camera trajectory. This is because the camera

is often looking at a scene from some distance, and is usually not very close to

the observed features, where the tetrahedra are quite small. Thus, in a continuous

setting we would want to assign weights to a large space around the front of the

camera, and a small space closer to the point. This gives rise to the inverse cone

heuristic, which can be viewed as a cone with the tip at the point.

One way of accomplishing this in the discrete setting is by utilizing the men-

tioned observations. If we add weights to neighboring tetrahedra to the tetrahedra

intersected by the ray, this will usually naturally form some kind of inverse cone by

the observation that larger tetrahedra are close to the camera and vice versa. This

is illustrated in fig. 5. Hence, they have called this intersection weight scheme the

inverse cone heuristic.

With this heuristic, they were able to reduce the runtime of the artifact removal

from 0.43 seconds in (Litvinov & Lhuillier, 2014) to 0.001-0.010 seconds. The results

are not exactly comparable, as they were run on different datasets and different

hardware, but the paper states that both the datasets and hardware are “similar”.

Nevertheless, the runtime of the entire surface reconstruction algorithm did not

reach real-time performance. A real-time solution is presented in section 2.3.3.

Magnus Stray Schmidt 21 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

2.3.3 Real-Time CPU-Based Large-Scale Three-Dimensional Mesh Re-

construction (Romanoni & Matteucci, 2018)

The method presented in (Romanoni & Matteucci, 2018) further improves (Roman-

oni & Matteucci, 2015) by optimizing it in order to run in real-time on a single

CPU. It accomplishes this through five main improvements:

1. Incremental Steiner Points insertion for incremental map expansion.

2. Shrink only what you need for less shrinkage, and resultingly less growing.

3. Boundary spatial hashing for faster lookup of boundary elements.

4. Next tetrahedra caching to check if the ray we are tracing goes through the

same tetrahedra as some previous ray, so that we start looking with these.

5. Ray tracing scheduler to handle moving points in the point cloud, and effi-

ciently perform the ray tracing step when points are moved.

We go through each of these steps in the following paragraphs.

The first improvement is the incremental Steiner points insertion. The idea is

that the Steiner points initially span a volume around the camera, and when new

points are added outside this volume, new Steiner points have to be added in this

direction to always have all observed points inside the volume spanned by the Steiner

points. This is different from the previous method, where the Steiner points were

fixed.

The second improvement is what they call shrink what you need. As mentioned

in section 2.3.1, the enclosing set was needlessly large, and thus a new way of

retrieving the enclosing set is defined. Instead of looking at the maximum distance

between the camera and added point, we are now only concerned in the position of

the added points relative to the Steiner points. The maximum distance between two

Steiner points is, as explained previously,
√

3lSteiner, where lSteiner is the step length

of the Steiner points. The ideal enclosing set is then found through the convex

hull of the added points expanded by a radius of
√

3lSteiner. If (i, j, k) defines the

position of a Steiner grid cell in which a new point, p, appears, we want to enclose

all tetrahedra with vertices in cells with location (a, b, c) where

i− 2 ≤ a ≤ i+ 2

j − 2 ≤ b ≤ j + 2

k − 2 ≤ c ≤ k + 2,

i.e. the cube centered at the grid cell of the new point, with length, width, and

height equal to 5lSteiner.

Magnus Stray Schmidt 22 20th December 2021

2.3 Incremental Surface Reconstruction from Point Clouds

The third improvement is the use of boundary spatial hashing. The motivation

behind this improvement is that when new tetrahedra should be added to O, the

previous methods had to consider the entire surface of the boundary, which does

not scale as the boundary grows. The boundary spatial hashing, hashes the position

of a grid cell, (i, j, k) into a vector containing pointers to the boundary tetrahedra

intersecting the cell, so that relevant tetrahedra can be quickly retrieved.

The fourth improvement is the next tetrahedron caching. This is based on the

assumption that many rays generally tend to go in the same direction. Thus, we can

utilize information from previous ray tracings when tracing the path of a new ray.

The way ray tracing is performed in previous methods is to start at the detected

point, loop through the four facets of its incident tetrahedra until reaching the facet

the ray intersects, move to the neighboring tetrahedron containing that triangle,

and repeat the process for each tetrahedron traversed. In this new method, each

tetrahedron traversed saves the index of the next tetrahedron the ray tracing moves

moves to. This way, when another ray passes through this tetrahedron, the first

triangle we check for a ray passing through, is the facet corresponding to the saved

next tetrahedron, possibly saving the time it takes to check the other three facets.

The fifth improvement is the ray tracing scheduler. The ray tracing procedure

in this method does, in contrast to (Litvinov & Lhuillier, 2013) and (Romanoni &

Matteucci, 2015), handle moving points. This is done in three steps: Ray tracing;

ray retracing and ray untracing. Ray tracing is done in the same way as before,

using the inverse cone heuristic. Ray retracing only traces rays passing through

new tetrahedra created through a point insertion or removal. Ray untracing is

conceptually the opposite of ray tracing, meaning that weights are decremented and

the ray is deleted.

When a point is deleted, the ray retracing step is performed on the affected

tetrahedra. Then, ray untracing is performed for all rays from all cameras ending

in the removed point. Conversely, when we add a point, ray tracing is performed on

all rays ending in the point, and then perform ray retracing on all rays intersecting

the conflicting tetrahedra. This way, when a point is moved, we can simply remove

the point, triggering the associated ray tracing/untracing, and then add the point at

the new location. For efficacy, the operations are scheduled in a particular manner,

avoiding duplicate operations. For detailed information, we refer to (Romanoni &

Matteucci, 2018).

As a final remark, the method has the ability to update the manifold surface

every n-th time step of the VSLAM system, instead of at every single time step. All

the same points and information will still be included in the reconstruction. As a

default setting in the distributed code, n = 4.

Magnus Stray Schmidt 23 20th December 2021

3 Method

In this section, we present our method for emulating VSLAM data on the synthetic

dataset. The motivation for emulating VSLAM data is to test a suitable surface

reconstructor on this data. We considered the reconstructor presented in Real-

Time CPU-Based Large-Scale Three-Dimensional Mesh Reconstruction (Romanoni

& Matteucci, 2018) to be suitable for our purpose of incrementally reconstructing a

surface from a dynamic point cloud in real-time, and we started by considering the

installation and input data format required by the reconstructor.

There were several issues in the process of figuring out how to correctly run

the reconstructor. The installation procedure was not trivial: The project is not

maintained anymore, and so the project turned out not to be compatible with

newer versions of some of the required packages. Thankfully, we were able to install

everything successfully through a thorough inspection of the issues on the repository

combined with several increments of trial and error in package installing. Successful

installation could be verified through a provided SFM reconstruction example.

The authors had also provided some code on how to run the VSLAM recon-

struction, but unfortunately had not provided any data. Nor was the format of the

necessary VSLAM data provided. Thus, if we wanted to test the method, we had

to inspect the source code to reverse engineer the format. After some discussion,

it was decided to spend the necessary amount of time to manually figure out the

input data format, by reading the source code of the method. We chose this course

of action because we believed the method was suitable for our purpose and could be

a good starting point for further work. In addition, it was beneficial that the entire

source code of the method was available under the GNU General Public License

v3.0.

The resulting data format that was interpolated from the source code is listed

in listing 1, and requires some explanation. The data is formatted as a JSON. All

numerical values presented are for illustrative purposes. The “slam data version”

is there because the source code checks that it is correct in some sense, i.e. that it

is version 0.2 or 0.3. We put it in just to make sure it passed the check.

The “root path” refers to the root path for the data. We put the data so that

the root path was as given in the listing. The “intrinsics” refers to the camera

matrix. For our data, all pictures have the same intrinsics as they are taken with

the same simulated camera, so we only need one entry in this list. The code adds

the ability to have several different intrinsic matrices. However, the code does not

allow for non-square pixels or a skew parameter. From the source code, we so far do

not see the purpose of having the camera intrinsics in so many levels, i.e. “value”,

“ptr wrapper”, “data”.

Magnus Stray Schmidt 24 20th December 2021

1 {

2 "slam_data_version": "0.3",

3 "root_path": "./",

4 "intrinsics": [

5 {

6 "intrinsicId": 0,

7 "value": {

8 "ptr_wrapper": {

9 "data": {

10 "focal_length": 25,

11 "principal_point": [959.5, 529.5]

12 }

13 }

14 }

15 }

16],

17 "views": [

18 {

19 "viewId": 1,

20 "local_path": "",

21 "filename": frame1,

22 "width": 1920,

23 "height": 1080,

24 "id_intrinsic": 0,

25 "extrinsic": {

26 "rotation" : R1,

27 "center": t1

28 },

29 "observations": [

30 {

31 "pointId": 1,

32 "X": [0.1234, 2.44, 3.435]

33 },

34 {

35 "pointId": 2,

36 "X": [2.234, 3.564, 7.54]

37 },

38 ...

39]

40 },

41 ...

42]

43 }

Listing 1: Input VSLAM data format

Magnus Stray Schmidt 25 20th December 2021

3.1 The Car-Cube Dataset

Most of the data is stored in the “views” element of the JSON. The element

contains a list with one entry for each view in the video stream. The views are

selected by the VSLAM method creating the data. Each view is assigned an ID and

its picture’s corresponding filename. Also, the width and height in pixels must be

given. Furthermore, one must link the view to its corresponding intrinsics through

the “id intrinsic” parameter. The extrinsics for the view must also be assigned.

In listing 1, R1 is a 3 × 3 rotation matrix relating the camera frame to the world

frame, and t1 is the translation from the camera frame to the world frame. The

observations refer to which points are observed from the current view. The points

are given IDs, so that two matched points are registered as the same points. The

position must also be given, even if the point ID and position are given from an

earlier view. This is because the method allows for updating the position of the

points. The ellipsis symbol in the attached listing means that the data pattern

repeats. For the observed points, it repeats for the number of observed points at the

current view, and for the views it repeats for the number of views in the dataset.

When we had successfully installed the method and resolved the required input

format, we wanted to test the method on a custom dataset of a synthetic underwater

dataset.

3.1 The Car-Cube Dataset

The dataset used for testing the incremental surface reconstructor will be referred

to as the Car-Cube dataset. The dataset contains an image sequence of a synthetic

underwater scene containing a car and a cube, accompanied by the ground truth

depth images and poses. This let us test the method isolated from errors in these

variables. See fig. 6 for some sample images and corresponding depth images. The

dataset is a precursor to the VAROS dataset (Zwilgmeyer et al., 2021). We used the

Car-Cube dataset instead of the VAROS dataset simply because of issues relating

to the size of the VAROS dataset and the hardware at hand. The trajectory of the

camera in these datasets is simulated with a physics-based model, and is realistic

in terms of an AUV vehicle. However, the lighting conditions in the Car-Cube

dataset are unrealistically good. This will perhaps give a better performance of

feature detectors than with more non-uniform lighting. At the same time, it lets

us test the surface reconstruction method in isolation from poor feature detection.

Furthermore, the dataset let us use points not detected by a regular feature detector,

such as untextured areas, as we could simply extract the depth information for each

pixel.

Magnus Stray Schmidt 26 20th December 2021

3.2 Point Projection

Figure 6: Sample color images and corresponding depth maps. Red is near and
violet is far.

3.2 Point Projection

The ground truth depth in the Car-Cube dataset is truncated at 10 meters, so all

depths greater than 10 meters have the same value in the depth map. We used the

NumPy library (Harris et al., 2020) for implementing points and matrices as arrays.

It is imported with the name np. We used the OpenCV library (Bradski, 2000) for

reading images and performing feature extraction and matching.

The ground truth pose given in the dataset was utilized for the emulated

VSLAM. The pose was given as a 6-dimensional vector, where the first three ele-

ments give the position, and the following three give the orientation. The ground

truth orientation is given in Euler angles. To get the rotation matrix from the data,

we used the Scipy library (Virtanen et al., 2020), as such:

def get_rotation_matrix(euler_angles)

r = scipy.spatial.transform.Rotation.from_euler('xyz', euler_angles)

return r

The full transformation could then be reconstructed from the rotation matrix,

r, and the translation, t.

Magnus Stray Schmidt 27 20th December 2021

3.2 Point Projection

def compose_T(r, t):

T = np.eye(4)

T[:3, :3] = r.as_matrix()

T[:3, 3] = t

return T

The inverse T matrix was calculated using the same Scipy library:

def invert_T(T0):

T = T0.copy()

r = Rotation.from_matrix(T[:3, :3])

t = T[:3, 3]

r_inv = r.inv()

T_inv = np.eye(4)

T_inv[:3, :3] = r_inv.as_matrix()

T_inv[:3, 3] = - r_inv.apply(t)

return T_inv

For the projection, we assume an ideal camera, with no distortion or skewing. The

intrinsic camera matrix then becomes quite simple, i.e.

K =

fx 0 cx

0 fy cy

0 0 1


In our case, the intrinsic camera matrix was, in pixel values

K =

1263 0 959.5

0 1263 539.5

0 0 1


or in meters,

K =

0.02500 0 0.01899

0 0.02500 0.01068

0 0 1


It is crucial to always use correct measurement units for the coordinates, and

using wrong units was the main source of error throughout the project. Two logical

measurement units were considered in our method: meters and pixels, and we allow

for the use of both. Having square pixels of a fixed size, the conversion is simple:

One can simply multiply the coordinates given in meters by the number of pixels

per meter to obtain the coordinates given in pixels. Conversely, one can divide the

pixel coordinates by the pixels per meter to obtain coordinates in meters.

Magnus Stray Schmidt 28 20th December 2021

3.2 Point Projection

Figure 7: Pinhole camera model. Point W is projected onto image plane, I, to
obtain image point mk, or vice versa. Camera coordinate system is related to world
coordinate system by (R, t). Copied from (Huang & Huang, 2020).

Using the pinhole camera model, we could utilize the ground truth depth in-

formation to project the detected point at coordinates (u, v) into space. See fig. 7

for an illustration of the pinhole camera model. The projection can be performed

using the method of similar triangles, as illustrated in fig. 8. In the illustration, f,

y, and Z are known, and we want to find Y. Y can be found as

Y

Z
=
y

f

Y =
y

f
Z, (12)

with y = u − cx or y = v − cy. In our method we implemented it in the following

function, where K is the intrinsic camera matrix:

def project_2d_to_3d(u, v, z, K):

c_x = K[0, 2]

c_y = K[1, 2]

f_x = K[0, 0]

f_y = K[1, 1]

x = ((u - c_x) / f_x) * z

y = ((v - c_y) / f_y) * z

return [x, y, z]

The coordinates of the points are then given in the camera frame of reference,

Magnus Stray Schmidt 29 20th December 2021

3.2 Point Projection

Figure 8: The figure shows a crossection of space, where the Y coordinate of the
scene point can be found using the method of similar triangles. Copied from (Szpak,
2013).

centered at the center of the camera with x and y coordinate basis vectors spanning

a plane parallel to the image plane and the z vector perpendicular to this plane, i.e.

pointing in the direction the camera is viewing. We can use a transformation matrix

to transform the coordinates of the points from the camera reference frame to the

world reference frame, with the use of the ground truth pose. The reference frame

must then be rotated and translated into the world frame, which can be done with

a transformation matrix, T, so we simply apply X̃world = TX̃camera to each point,

where the tildes imply that the points are given in homogeneous coordinates. In

Python, this can be implemented as:

def transform_3d_points(T, X):

return T @ X

The question now remained how we could obtain appropriate sample points on

the image plane. Two main approaches were considered and tried out: Random

sampling and feature detection. The first approach has the advantage that, over

many frames, one would get a quite representative sampling of the depths in the

images and thus of the scene. The implementation of random sampling is presented

in section 3.3. The feature detection method could suffer from a concentration of

feature points around strong visual appearances in the image, and ignore points of

little visual information. However, it might be more realistic in terms of true VSLAM

data. Feature detection should then also imply feature matching to produce realistic

VSLAM data. The feature detection and matching is presented in section 3.4.

Magnus Stray Schmidt 30 20th December 2021

3.3 Random Sampling

3.3 Random Sampling

The random sampling of points was implemented by producing random integers in

the range of the image width and height, as illustrated in the function sample keypoints:

def sample_keypoints(num_kpts, width=1920, height=1080):

us = np.random.randint(width, size=num_kpts)

vs = np.random.randint(height, size=num_kpts)

uvs = np.vstack((us, vs))

return uvs

This function gives a set of points in pixel coordinates. Now, our depth map gives a

depth value for each pixel. Thus, we can project each point into space and transform

it into world coordinates, and we obtain a point cloud. The projection can be

performed with the function project 2d to 3d, as described in section 3.2.

When random sampling is used, one may have the side effect that sampled

image points in different views are projected very closely in space, and that they

would otherwise be detected as a feature match. This effect could be eliminated,

and we did indeed implement a näıve approach to solve this problem by searching

through all points and checking if they are near the projected point. The search was

very computationally expensive, and we did not spend much time on optimizing

it. Therefore it was decided to remove the search altogether, and rather accept

the possible reduction of the data quality. The data produced with this random

sampling approach did thus not include matching of points across views, which led

to quite artificial data in that regard. This would also keep adding points to the

system at a high rate, even when standing still, deteriorating the performance of the

real-time reconstructor.

3.4 ORB Feature Detection and Matching

We decided to use ORB for feature extraction and description, as it is the feature

detector used in the state-of-the-art ORB-SLAM3 method (Campos et al., 2020)

and it gives a descriptor that can be used for matching. For matching, we use a

FLANN-based matcher (Muja & Lowe, 2009), for its efficiency. As new points are

detected, we for each point check if it is in the model. If so, we simply add that point

to the list of observed points from this view, and proceed. For debugging purposes,

we also added an option of marking the point on the image in order to compare the

keypoint coordinates from the feature detection with the coordinates resulting from

projecting the 3D point onto the image plane.

If the point is not in the model, i.e. it did not produce a good match with any

other point, we add the point to the model with the described method of projection

Magnus Stray Schmidt 31 20th December 2021

3.4 ORB Feature Detection and Matching

and also add the point to the list of observed points from this view.

Each unique point is assigned a unique integer, which acts as its identifier (ID).

From this, we can easily describe which points are viewed from which frames, which

is a part of the emulated VSLAM data, and crucial for the reconstruction process.

The FLANN-matcher is initialized as with the following parameters, inspired

by the OpenCV tutorial on feature matching (OpenCV, 2021):

index_params = dict(algorithm=6,

table_number=6,

key_size=12,

multi_probe_level=1)

search_params = dict(checks=50)

flann = cv.FlannBasedMatcher(index_params, search_params)

Now, if we define des i as the descriptors in the current image, and previous des

as descriptors in the previous images we can do feature matching in the following

way:

matches = flann.knnMatch(des_i, previous_des, k=2)

and filter out the poor matches by performing Lowe’s ratio test (Lowe, 2004). We

use a distance of 0.75 in the ratio test, as follows:

good = []

for m, n in matches:

if m.distance < 0.75 * n.distance:

good.append(m)

Then we add the ID of the matched point to the list of observed point in the current

view, and note that it is previously detected. The ID corresponds to the index of

the matched point, so we can add it as such:

for match in good:

old_point = match.trainIdx

new_point = match.queryIdx

observations[current_view].append(old_point)

prev_detected[new_point] = old_point

Using ORB features also included the possibility of false matches. However, in our

code, this will not lead to outliers. The reason is that we do not triangulate the

Magnus Stray Schmidt 32 20th December 2021

3.5 Combination of Random Sampling and ORB

points. Rather, points are projected using the ground truth depth map as already

outlined.

Nevertheless, to force the selected ORB features to comply with an outlier

rejection method used by a triangulation, we choose to exclude points with false

matches from the model. To do this, we project the 3D points, X, to the image

frame in pixel coordinates and compare with the detected features. This is done

with the following function, where the point coordinates given to the function are

not homogeneous. The function allows for projecting one or several points at once:

def project_3d_to_2d(K, X, pose):

num_points = X.shape[1]

ones = np.full(num_points, 1)

X1 = np.append(X, [ones], axis=0)

uvw = K @ (pose @ X1)[:3, :]

uvw /= uvw[2, :]

return uvw[:2, :]

Then, one can compare a detected point in the current image, (u, v), with its

corresponding point in the model projected into the current frame, (u hat, v hat),

and mark the point as an outlier if it is above some defined threshold. If the units

are converted from meters into pixels, we considered a suitable threshold to be 5

pixels:

if abs(u-u_hat) > 5 or abs(v-v_hat) > 5:

pm.mark_as_outlier(train_idx)

The points are marked as outliers in an instance of the PointManager class, pm. This

is where points are added to, retrieved from and edited. For the implementation of

this class, we refer to appendix A.

3.5 Combination of Random Sampling and ORB

As a compromise to the problems discussed with purely using ORB-features or ran-

dom sampling, we lastly decided to implement a combination of the two approaches,

using some randomly sampled points and some detected features in each frame. In

our code, the use of random samples can be toggled on and off, and one can specify

the number of keypoints and frames to run:

USE_RANDOM_KPTS = True

NUM_RANDOM_KPTS = 20

NUM_FRAMES = 500

Magnus Stray Schmidt 33 20th December 2021

3.5 Combination of Random Sampling and ORB

When we use the random sampling and ORB in combination, we perform fea-

ture matching on the ORB features, while the randomly sampled points are projected

as it otherwise would, without any feature matching or “duplicate removal”. With

this combination, we will therefore continue to add points to the model for each

frame, even when viewing the scene from a static viewpoint, just as we would using

only random sampling.

Magnus Stray Schmidt 34 20th December 2021

4 Results

Unless otherwise mentioned, the Steiner point step length is set to 10m; the inverse

cone heuristic weights are set to setup 1, as specified in table 5; and the scene is

reconstructed using random sampling only. Generally, the triangles surrounding the

reconstructed scene arise from the Steiner points surrounding the scene and are not

visual artifacts.

4.1 Point Selection

We begin by comparing the different keypoint selections: ORB features only, random

sampling only, and a combination of ORB features and random sampling. The result

is shown in fig. 9. The green dots show the keypoints in space. Recall that even if we

use ORB features, we use the ground truth depth for 3D localization of the point.

A color image from the scene is given in fig. 9d for comparison. All reconstructions

are based on 30 frames of video.

The ORB-only feature extraction extracts 1000 features per frame. Due to

feature matching and depth truncation, the total number of points in the model is

11490. The result is shown in fig. 9a.

The random sampling is done with 400 keypoints per frame over 30 frames.

However, we do not project points where the depth is truncated. The resulting

number of points in the model is then 10746. The result is shown in fig. 9b.

The combination of ORB features and random sampling uses 1000 ORB features

per frame and 20 random points per frame. The resulting number of points is 12011,

521 more than from ORB alone. The result is shown in fig. 9c.

Magnus Stray Schmidt 35 20th December 2021

4.2 Reconstruction Progression

(a) ORB features only (b) Random sampling only

(c) ORB and random sampling (d) Color image of scene

Figure 9: Comparison between the different image points used for reconstruction,
with color image for reference. The green dots are the points in the model.

4.2 Reconstruction Progression

We include some increments in the reconstruction process. The points are extracted

from random sampling only. We sample 400 keypoints per frame over 30 frames.

Figure 10 shows the reconstruction for some selected frames. Figures 10a to 10d

shows the reconstruction after 8, 16, 24 and 30 frames, respectively. The green

points are the points in the model. The frames used in the reconstruction are the

same as in section 4.1.

Magnus Stray Schmidt 36 20th December 2021

4.3 Steiner Points

(a) After 8 frames (b) After 16 frames

(c) After 24 frames (d) After 30 frames

Figure 10: Reconstruction progression as more and more frames are incrementally
added to the model.

4.3 Steiner Points

In this section, we test the influence of the density of Steiner points in the recon-

struction. The density of Steiner points is defined as the step length between each

Steiner point. Recall that the step length between Steiner points is the shortest dis-

tance between two Steiner points, which is equal for all points as they are distributed

evenly in a grid in space.

The visual results are shown in fig. 11. In this test, we again use random

sampling only, 400 keypoints per frame and 30 frames. The resulting mesh is the

result after all frames have been processed. The results on running time are sum-

marized in table 1.

Steiner point step length (m) 0.1 1 10 100
Reconstruction time (s) 12.8844 4.81415 4.21665 4.15063
Reconstruction time per frame (s) 0.42948 0.16047 0.14056 0.13835

Table 1: Step length of Steiner points influence on running time

Magnus Stray Schmidt 37 20th December 2021

4.4 Number of Keypoints

(a) Step length = 0.1m (b) Step length = 1.0m

(c) Step length = 10m (d) Step length = 100m

Figure 11: Influence of the step length of the Steiner grid on the reconstruction
quality.

4.4 Number of Keypoints

Here we present the influence of the number of keypoints in the visual reconstruction

as well as the reconstruction time. All surfaces presented are constructed from the

same 800 frames. The visual results for 2, 8, 15, and 50 keypoints per frame are

presented in figs. 12a to 12d, respectively. The results on running time are presented

in table 2

Number of points per frame 2 8 15 50
Reconstruction time (s) 3.71947 22.5017 51.1882 274.777
Reconstruction time per frame (s) 0.004649 0.028127 0.063985 0.34347

Table 2: Number of sampled points per frame influence on running time

Magnus Stray Schmidt 38 20th December 2021

4.5 Number of Frames

(a) 2 points per frame (b) 8 points per frame

(c) 15 points per frame (d) 50 points per frame

Figure 12: Influence of number of keypoints sampled at each frame on the quality
of the reconstruction.

4.5 Number of Frames

Here we present the number of frames’ influence on running time. We randomly

sample 50 points per frame. The results are presented in table 3.

Number of frames 100 200 400 800
Reconstruction time (s) 3.21262 12.6656 60.2912 274.777
Reconstruction time per frame (s) 0.0321262 0.063328 0.150728 0.343471

Table 3: Number of frames influence on running time using random sampling only

An important result can be summarized with the following example. For the

first 100 frames, the reconstruction time is about 0.03 seconds per frame. For the

last 400 frames, i.e. from frame 401 through 800, the reconstruction time per frame

is approximately 275−60
400

s ≈ 0.54s, which is about 18 times more than for the first

100 frames.

Exchanging random sampling with ORB feature detection, we obtain the results

presented in table 4. We detect 1000 features per frame.

Magnus Stray Schmidt 39 20th December 2021

4.6 Inverse Cone Heuristic

Number of frames 100 200 400 800
Reconstruction time (s) 46.7501 190.371 821.87 3380.83
Reconstruction time per frame (s) 0.46750 0.95186 2.054675 4.22603

Table 4: Number of frames influence on running time using ORB features only

4.6 Inverse Cone Heuristic

In this section, we present the effect of the inverse cone heuristic. We only present

the visual effects in a qualitative manner. The reconstruction time does not differ

significantly between the different weights.

We refer to weights of the intersected tetrahedra as w1, weights of their neigh-

bors as w2, and weight of the neighbors’ neighbors as w3.

The different weight setups are presented in table 5. Setup 4 is simply to not

use the inverse cone heuristic, in the same manner as previous methods, such as in

(Litvinov & Lhuillier, 2013). The results for setup 1, 2, 3 and 4 are presented in

figs. 13a to 13d respectively. The reconstructed is run with 400 randomly sampled

points per frame over 30 frames.

Weights
w1 w2 w3

Setup 1 10 2.0 1.0
Setup 2 1.0 0.8 0.2
Setup 3 2.0 0.8 0.2
Setup 4 1.0 - -

Table 5: Different weight setups for the inverse cone heuristic

Since the random sampling of points can affect the reconstruction, we include

results from four randomized models with the same parameters. These are presented

in fig. 14. The number of frames equals 30 and the number of points per frame equals

400. The frames are the same in all reconstructions. The inverse cone heuristic for

the reconstruction uses weight setup 1. Inspection reveals that the tetrahedra in

front of the cube in fig. 14d are created somewhere in the last two frames of the

reconstruction. Updating the manifold more often than every 4 frames removed the

artifact, but introduced other artifacts.

Magnus Stray Schmidt 40 20th December 2021

4.6 Inverse Cone Heuristic

(a) Weight setup 1 (b) Weight setup 2

(c) Weight setup 3 (d) Weight setup 4

Figure 13: Influence of different weights used in the inverse cone heuristic on the
reconstruction quality and artifact removal.

Magnus Stray Schmidt 41 20th December 2021

4.6 Inverse Cone Heuristic

(a) Random sampling 1 (b) Random sampling 2

(c) Random sampling 3 (d) Random sampling 4

Figure 14: Four different models created of the same scene, using the same frames
and the same parameters, but with randomly sampled points from each frame. This
illustrates the effect of randomness in our sampling method on the reconstruction.

Magnus Stray Schmidt 42 20th December 2021

5 Discussion

5.1 Point Selection

We see that using ORB features alone do not give more than the very general

structure of the scene, even though 1000 features were extracted at each frame over

30 frames. One issue with the ORB feature extraction on the simulated scene that

we noticed quite early is that it tended to find a lot of features concentrated around

small areas. Meanwhile, large portions of the images did not have any features

extracted.

In addition, the feature matching of the ORB features was not really robust.

The matching procedure produced a lot of false negative matches. This resulted in

multiple points at approximately the same location, that should really have been

one point. One reason for this artifact might be that we did not impose the necessity

of a point being visible from multiple frames, as is usually the case in a VSLAM

system. This might have filtered some of the false negative matched points away, in

that we would not project them into space.

One can vaguely see these effects in fig. 9a, where there are dense clusters

of green dots, which correspond to features. In contrast, see fig. 9b, where the

green dots are quite evenly spread out. Interestingly, the number of points in the

two models are almost the same: 11490 using only ORB features and 10746 using

random samples only. Actually, the model with only random samples has fewer

points, but gives far more visually interpretable results. When points are more

evenly selected over multiple frames, this effect is strengthened further. For this

reason, we used random sampling for testing other aspects of the reconstruction

process. Nevertheless, we do see quite a few visual artifacts in the reconstruction.

This will be elaborated upon further in section 5.6.

5.2 Reconstruction Progression

From the reconstruction process, we can see the car and the cube appear more

clearly as more frames are processed. This is naturally the behavior we expect. We

also see that the density of green points gets higher and higher, as more points are

added. Roughly the same amount of points are added to the reconstruction for each

frame when using the random sampling method as we do here.

However, a surprising result is that visual artifacts appear to be introduced. For

example, there are a number of visual artifacts created between frames 8 and 16. The

ray tracing should prevent such artifacts from occurring, especially by introducing

the inverse cone heuristic. As this was quite surprising to us, we decided to test

different weights on the inverse cone heuristic, as well as without the heuristic, using

Magnus Stray Schmidt 43 20th December 2021

5.3 Steiner Points

only ray tracing. This was tested in section 4.6, and will be discussed in section 5.6.

5.3 Steiner Points

From fig. 11a, where the step length of the Steiner points is set to 10cm, we see

that the scene is almost unrecognizable. The first explanation is how the result is

presented, with only a single image of the scene without texture. A video moving

the resulting mesh around the view would probably give more information of the

geometry in the model, as the shading of the small triangles gives a lot of visual

clutter in a still image. The report format does, however, restrict us to the use of

images for presentation of the results.

Besides the still image representation, the model is still quite poorly represented.

There are a lot of tetrahedra floating in arbitrary positions in space, and the car

is not easily recognizable, no matter how much we studied the model. The reason

for the floating tetrahedra might be that there are no, or few, rays passing through

these tetrahedra. As the Steiner points get denser, and resultingly the tetrahedra

smaller, the rays would have to pass through more tetrahedra to mark all of them

as free space. However, depending on the number of points observed, there will not

be enough points distributed evenly in space to pass rays through all tetrahedra.

We also believe this effect would be further strengthened if using the ORB feature

extraction only. As discussed, these features tend to cluster in small areas, and this

would further reduce the number of tetrahedra marked as free space.

Qualitatively, there is a big shift in the quality of the reconstruction when

moving from 0.1m step length to 1.0m step length. However, the difference is not so

large when moving from 1m to 10m or 100m. This may be because when the step

length of the Steiner points is this large, the ray tracing does not suffer from the

problem discussed in the previous paragraph. The quality of the reconstruction is

then mainly defined by the points in the model, as they are much denser than the

Steiner points.

We also tested the effect of the size of the Steiner points on the running time.

From table 1, we see that there is a significant drop when increasing from 0.1m to

1.0m. Further, there is a slight drop when increasing from 1.0m to 10m. However,

the drop is not that significant when increasing the step length further. The running

time also slightly varies from run to run, and sometimes, having 100m step length

was faster than 10m.

There are two conflicting mechanisms relating the size of the Steiner step length

to running time: ray tracing and the enclosing set. As the Steiner step length is

larger, the rays have to pass through fewer tetrahedra resulting in faster computa-

tion. This is especially the case when the robot is exploring new territory, where

Magnus Stray Schmidt 44 20th December 2021

5.4 Number of Keypoints

the Steiner points are largely defining the size of the tetrahedra. However, when the

step length increases, so does the number of tetrahedra in the enclosing set. Recall

that the size of the enclosing set in (Romanoni & Matteucci, 2018) is proportional

to
√

3lSteiner. Thus, increasing lSteiner increases the enclosing set, resulting in more

shrinking, and thus more growing, both of which result in more computation.

5.4 Number of Keypoints

We see from table 2 that the reconstruction time increases a little more than linearly

with the number of new points per frame. These results are not so surprising, as we

reconstruct from 800 frames of roughly the same scene. If the robot was moving in

a straight line, as when driving a car on a road, we would expect the reconstruction

time to increase roughly linearly with the number of sampled points per frame.

However, when the robot travels in a loop with the camera always facing the cube,

there will also be an effect of point clustering in this area of the model slowing down

the running time.

5.5 Number of Frames

The results in tables 3 and 4 are a little more surprising. The reconstruction becomes

extremely slow after a while. When using random sampling, this can be explained

by the fact that we keep adding points to the model for each frame. After 800 frames

one would then have almost 40 000 points in the model, closely located.

We thus also tried using ORB only, but the effect was the same, and the recon-

struction time was in fact even worse. One explanation for this when using ORB

is the number of false negative matches as discussed before, so that we keep adding

points to the model also here, even though they are actually previously added.

Some causes for this behavior might be the same as described in section 5.4. The

simulation loops around the same scene with the camera roughly facing the box the

entire time. Thus, it may the case that the first 100 frames are more representative

of a continuously moving robot. However, the results are not satisfactory for a robot

involved in inspection and other tasks that require a thorough investigation of a local

scene.

5.6 Inverse Cone Heuristic

Clearly, there is a problem with visual artifacts in the results. In the same manner

as (Romanoni & Matteucci, 2015), (Romanoni & Matteucci, 2018) uses the inverse

cone heuristic. However, the standard values for the weights as distributed in the

code in (Romanoni & Matteucci, 2018), does not comply with the specifications of

Magnus Stray Schmidt 45 20th December 2021

5.6 Inverse Cone Heuristic

(Romanoni & Matteucci, 2015). Specifically, the weights in the distributed code are

w1 = 10.0, w2 = 2.0, w3 = 1.0.

However, (Romanoni & Matteucci, 2015) specifies that the following relation

should be satisfied between the weights: w3 = w2

4
, because 4 is the maximum number

of neighboring tetrahedra that may have received weights for a single array. Thus,

we should never be able to get a higher weight in the neighbors of neighbors, than

in the neighbors of intersecting tetrahedra. Because of this peculiarity, we wanted

to test for different values for these weights. Luckily, this was easily adjustable in

the source code of the surface reconstructor.

We see from the results that none of the combinations really remove the visual

artifacts, even though they are in perfect compliance with the values suggested in

(Romanoni & Matteucci, 2015). When we remove the inverse cone heuristic, the

car is more deteriorated but there appear to be fewer visual artifacts. This is a

somewhat surprising result. The visual artifacts appearing from the different values

of the weights appear quite similar, but the artifacts that appear without the inverse

cone heuristic look quite different. This might be a peculiarity of this dataset, and

it may be that the artifacts with the heuristic are more “correct” when viewed from

a ray tracing procedure. However, it is hard to see whether this is actually the case.

The viewpoint from which the reconstructed scene is presented is quite similar

to the view from which the first of the 30 frames is taken. Thus, the artifacts

appearing in front of the car should not really be there, especially considering that

we sample 400 points over 30 frames. The density is comparable to that in fig. 10d,

where we see that there should be enough points behind the artifacts, i.e. enough

rays passing through the artifact tetrahedra, to remove them.

The periphery of the scene may influence the reconstruction and introduce

some artifacts. For example, in fig. 11d some artifacts appear to be connected to

the periphery of the scene. However, this cannot explain most of the visual artifacts

appearing. As an example, most of the artifacts in fig. 12d are far away from the

periphery of the scene.

There is also an element of randomness in the model creation, as we randomly

sample points from the image to project into space. The three models using the

inverse cone heuristic in fig. 13 happened to be quite similar. However, this is not

always the case. Figure 14 illustrates this. Here we run the model-creation with

the same parameters, and thus only the sampled points are different across the

reconstructions, due to the random sampling. We see that the reconstructions give

quite different visual artifacts. Nevertheless, we are not able to explain why some

of them occur. For example, Figure 14d shows a large artifact in front of the cube,

Magnus Stray Schmidt 46 20th December 2021

5.7 Error Metric

i.e. between the cube and the camera. This artifact should have been removed due

to ray tracing. It is also stunning that it is in fact so large.

As stated in section 4.6, the tetrahedra in front of the cube are created some-

where in the last two frames. (Litvinov & Lhuillier, 2013) states that when new

tetrahedra are created, old rays possibly passing through that tetrahedra should be

retraced. This is why it remains an open question to us how this artifact is intro-

duced. Interestingly, the artifact was removed when the manifold is updated more

frequently, but then other artifacts were introduced. Hence, we can not state that

this is the root of the problem.

5.7 Error Metric

In this report, we have only presented qualitative results with respect to the recon-

struction quality. This is because we consider the task of finding an accurate and

descriptive error metric challenging.

First, the synthetic dataset does not come with the ground truth surfaces.

However, it does come with the ground truth depth for each pixel in each frame.

Thus, one could define an error metric similarly to (Romanoni & Matteucci, 2015)

or (Romanoni & Matteucci, 2018). The two methods define two errors metrics

that appear quite similar, but that could give significantly different results. Both

are based on Velodyne LIDAR measurements, which are comparable to our ground

truth depth.

The error metric in (Romanoni & Matteucci, 2015) is defined as “the average

of the distances between each Velodyne point and the nearest mesh triangle”. We

interpret that to mean that the depth at each lidar point measurement is projected

into space, yielding a 3D coordinate, x, of the measurement. Then, one finds the

Euclidean distance between x and the mesh triangle with the smallest Euclidean

distance to x. They then take the average over all these measurements errors.

In (Romanoni & Matteucci, 2018), they define the error metric as “comparing

the depth images of the reconstruction rendered in each frame, against the distance

of the Velodyne points projected on the same image”. We interpret this error metric

as follows. For each camera frame, the 3D reconstructed surface is rendered onto

the frame, creating a pixel-wise depth map of the scene as predicted from the model.

Then this prediction is compared to the lidar measurements on the pixels that also

have associated lidar measurements. Then the average is taken over all these errors.

In a near-perfect reconstruction, these metrics should yield approximately the

same result. However, due to occlusions and visual artifacts, they will generally not

give the same result. Consider for example the visual artifact in front of the cube in

fig. 14d. Using the error metric in (Romanoni & Matteucci, 2015) would probably

Magnus Stray Schmidt 47 20th December 2021

5.7 Error Metric

give a smaller error than the error metric in (Romanoni & Matteucci, 2018). This is

because when the lidar measurement is projected into space it will be located close

to the surface of the cube. However, if the 3D model is rendered onto the current

frame and one extracts the depth, one will get the depth to the visual artifact, while

the measurement will measure depth to the cube. Thus, we will get a large error in

this case.

The difference between the two error metrics illustrates an important obstacle

in defining an accurate and consistent error metric: One does generally not know

which point on the reconstructed surface corresponds to which point on the real

surface, without distinct texture. Taking the Euclidean distance between a point on

the reconstructed surface and its closest point on the real surface clearly does not

give an accurate error metric: Several points on the reconstructed surface may be

mapped to the same point on the real surface and vice versa. Also, one would not

know how to properly align the two surfaces for comparison. Furthermore, focusing

on one axis direction, e.g. simply taking the error in the z-axis, would not solve the

issue either, because it would not accommodate for shifts and errors in the x- and

y-direction.

One way to try to accommodate for this problem could be to provide texture to

the reconstruction. This would, however, in the general case not solve the issue. In

areas of the surface with unclear texture it will be difficult to find correspondence

to the real surface. Furthermore, it may be difficult to texture the scene model

consistently, especially in the presence of visual artifacts.

Consider a theoretical scene, which is a single, infinitely large plane in a single

color. Consider then a bounded, textured surface reconstruction of the plane, which

is slightly bumpy and shifted in a direction perpendicular to the plane. Finding

a general, precise, and consistent error metric of this scene is in fact an ill-posed

problem, in that it is no one true way of doing this.

Magnus Stray Schmidt 48 20th December 2021

6 Further Work

One line of further work is to define an error metric on the synthetic dataset, by

somehow measuring the distance between the actual surface and the reconstruction.

One possible way to do this is as follows. If one has a ground truth depth map for

each frame, one can obtain a very dense point cloud of the scene. Then, an accurate

surface reconstruction method can be applied to the dense point cloud, e.g. Poisson

surface reconstruction, which will likely give a good approximation of the ground

truth surface. Now, for each frame in the reconstruction process, we match the

pixels involved in point projection to the pixels used for creating the ground truth,

to know which 3D points are the same in the two reconstructions. Then, when

comparing the surfaces, we can align them by “anchoring” these matched 3D points

to each other, and one can e.g. measure the distance in the z-axis between the actual

surface and the incrementally constructed surface.

Another line of further work is to improve the method of emulating the VSLAM

data. Especially, we see an improvement in removing duplicate points. As discussed

in section 3.3, we abandoned the idea in this report, due to the time complexity

of our näıve search. One way to improve this, inspired by the boundary spatial

hashing in (Romanoni & Matteucci, 2018), is to provide a spatial hashing of the

points created from random sampling. This way, one can more quickly retrieve

points that are near each other. Another way is to store the k nearest neighbors of

the point.

Furthermore, there remains a need to study the appearance of the visual ar-

tifacts in the reconstructions performed in this report. Along with this, one may

want to test the VSLAM emulation and the reconstruction method on more diverse

synthetic data, e.g. on the entire VAROS dataset (Zwilgmeyer et al., 2021).

Lastly, one can test the identified real-time reconstruction method on real un-

derwater video streams, to see how well it performs. To do this, one would first have

to run a VSLAM algorithm on the data, and this will be more prone to errors than

the emulated VSLAM data from simulated scenes and trajectories. Nevertheless,

the final goal of the scene reconstruction is to make it work in a real underwater

setting, and as such one may need to evaluate the different methods on real data.

Magnus Stray Schmidt 49 20th December 2021

7 Conclusion

In this report, we have performed a review of selected literature on surface recon-

struction from point clouds, and identified a real-time manifold surface reconstruc-

tion method that can handle moving points. This method has been tested on a

synthetic underwater dataset, and evaluated qualitatively and quantitatively. To

perform these tests, we emulated VSLAM data on the dataset. The emulated data

took use of the ground truth depth at each pixel and the ground truth pose of the

camera, and had the ability to both detect ORB features in the images and sample

random points at the image, and project these. We noticed that visual artifacts

were an issue in the reconstruction, and that the reconstruction time could get slow

as more and more frames were added, and lastly, we discussed why it is challenging

to define an accurate error metric on the reconstruction.

Acknowledgements

I would like to thank Annette Stahl, Rudolf Mester, and Andreas Teigen for helpful

guidance and input throughout the project, and I am especially thankful for the

help provided by Mauhing Yip from start to end.

Magnus Stray Schmidt 50 20th December 2021

Bibliography

Bibliography

Alliez, P., Cohen-Steiner, D., Tong, Y. & Desbrun, M. (2007). Voronoi-based vari-

ational reconstruction of unoriented point sets. Symposium on Geometry pro-

cessing, 7, 39–48.

Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Levine, J., Sharf, A., Silva,

C., Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Guennebaud, G. &

Sur-, A. (2016). A Survey of Surface Reconstruction from Point Clouds To

cite this version : HAL Id : hal-01348404 A Survey of Surface Reconstruction

from Point Clouds. Computer Graphics Forum.

Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C. & Taubin, G. (1999). The

ball-pivoting algorithm for surface reconstruction. IEEE Transactions on

Visualization and Computer Graphics, 5 (4), 349–359. https://doi .org/10.

1109/2945.817351

Biniaz, A. & Dastghaibyfard, G. (2012). A faster circle-sweep delaunay triangulation

algorithm. Advances in Engineering Software, 43 (1), 1–13.

Boissonnat, J.-D. (1984). Geometric structures for three-dimensional shape repres-

entation. ACM Transactions on Graphics (TOG), 3 (4), 266–286.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Campos, C., Elvira, R., Gómez, J. J., Montiel, J. M. M. & Tardós, J. D. (2020).

ORB-SLAM3: An accurate open-source library for visual, visual-inertial and

multi-map SLAM. arXiv preprint arXiv:2007.11898.

Carr, J. C., Beatson, R. K., Cherrie, J. B., Mitchell, T. J., Fright, W. R., McCallum,

B. C. & Evans, T. R. (2001). Reconstruction and representation of 3d objects

with radial basis functions. Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, 67–76.

Eelume AS. (2021). Eeulume. Retrieved 10th December 2021, from https://eelume.

com/

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,

Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Ŕıo,

J. F., Wiebe, M., Peterson, P., . . . Oliphant, T. E. (2020). Array programming

with NumPy. Nature, 585 (7825), 357–362. https://doi.org/10.1038/s41586-

020-2649-2

Hoppe, H., DeRose, T., Duchamp, T., McDonald, J. & Stuetzle, W. (1992). Surface

reconstruction from unorganized points. SIGGRAPH Comput. Graph., 26 (2),

71–78. https://doi.org/10.1145/142920.134011

Huang, H.-Y. & Huang, S.-Y. (2020). Fast hole filling for view synthesis in free view-

point video. Electronics, 9, 906. https://doi.org/10.3390/electronics9060906

Magnus Stray Schmidt 51 20th December 2021

https://doi.org/10.1109/2945.817351
https://doi.org/10.1109/2945.817351
https://eelume.com/
https://eelume.com/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/142920.134011
https://doi.org/10.3390/electronics9060906

Bibliography

Kazhdan, M., Bolitho, M. & Hoppe, H. (2006). Poisson surface reconstruction. Pro-

ceedings of the fourth Eurographics symposium on Geometry processing, 7.

Kazhdan, M. & Hoppe, H. (2013). Screened poisson surface reconstruction. ACM

Trans. Graph., 32 (3). https://doi.org/10.1145/2487228.2487237

Khatamian, A. & Arabnia, H. (2016). Survey on 3d surface reconstruction. Journal

of Information Processing Systems, 12, 338–357. https://doi.org/10.3745/

JIPS.01.0010

Lhuillier, M. (2014). 2-manifold tests for 3d delaunay triangulation-based surface

reconstruction. Journal of Mathematical Imaging and Vision, 51, 98–105.

Litvinov, V. & Lhuillier, M. (2013). Incremental solid modeling from sparse and

omnidirectional structure-from-motion data. BMVC 2013 - Electronic Pro-

ceedings of the British Machine Vision Conference 2013, 1–11. https://doi.

org/10.5244/C.27.61

Litvinov, V. & Lhuillier, M. (2014). Incremental solid modeling from sparse structure-

from-motion data with improved visual artifacts removal. 2014 22nd Inter-

national Conference on Pattern Recognition, 2745–2750.

Lorensen, W. E. & Cline, H. E. (1987). Marching cubes: A high resolution 3d surface

construction algorithm. ACM siggraph computer graphics, 21 (4), 163–169.

Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. In-

ternational journal of computer vision, 60 (2), 91–110.

Muja, M. & Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic

algorithm configuration. International Conference on Computer Vision The-

ory and Application VISSAPP’09), 331–340.

OpenCV. (2021). Feature Matching tutorial. Retrieved 19th December 2021, from

https://docs.opencv.org/4.x/dc/dc3/tutorial py matcher.html

Romanoni, A. & Matteucci, M. (2015). Incremental reconstruction of urban envir-

onments by Edge-Points Delaunay triangulation. IEEE International Con-

ference on Intelligent Robots and Systems, 2015-Decem, 4473–4479. https :

//doi.org/10.1109/IROS.2015.7354012

Romanoni, A. & Matteucci, M. (2018). Real-Time CPU-Based Large-Scale Three-

Dimensional Mesh Reconstruction. 3 (3), 1584–1591.

Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. (2011). Orb: An efficient al-

ternative to sift or surf. 2011 International Conference on Computer Vision,

2564–2571. https://doi.org/10.1109/ICCV.2011.6126544

Su, P. & Drysdale, R. L. S. (1997). A comparison of sequential delaunay triangulation

algorithms. Computational Geometry, 7 (5-6), 361–385.

Szpak, Z. (2013). Constrained parameter estimation in multiple view geometry (Doc-

toral dissertation).

Magnus Stray Schmidt 52 20th December 2021

https://doi.org/10.1145/2487228.2487237
https://doi.org/10.3745/JIPS.01.0010
https://doi.org/10.3745/JIPS.01.0010
https://doi.org/10.5244/C.27.61
https://doi.org/10.5244/C.27.61
https://docs.opencv.org/4.x/dc/dc3/tutorial_py_matcher.html
https://doi.org/10.1109/IROS.2015.7354012
https://doi.org/10.1109/IROS.2015.7354012
https://doi.org/10.1109/ICCV.2011.6126544

Bibliography

Tagliasacchi, A., Zhang, H. & Cohen-Or, D. (2009). Curve skeleton extraction from

incomplete point cloud. Acm siggraph 2009 papers (pp. 1–9).

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,

D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J.,

Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones,

E., Kern, R., Larson, E., . . . SciPy 1.0 Contributors. (2020). SciPy 1.0: Fun-

damental Algorithms for Scientific Computing in Python. Nature Methods,

17, 261–272. https://doi.org/10.1038/s41592-019-0686-2

Yu, S. & Lhuillier, M. (2012a). Genus refinement of a manifold surface recon-

structed by sculpting the 3d-delaunay triangulation of structure-from-motion

points. Proceedings of the 21st International Conference on Pattern Recogni-

tion (ICPR2012), 1021–1025.

Yu, S. & Lhuillier, M. (2012b). Incremental reconstruction of manifold surface from

sparse visual mapping. 2012 Second International Conference on 3D Imaging,

Modeling, Processing, Visualization & Transmission, 293–300.

Zwilgmeyer, P. G. O., Yip, M., Teigen, A. L., Mester, R. & Stahl, A. (2021). The

varos synthetic underwater data set: Towards realistic multi-sensor under-

water data with ground truth. Proceedings of the IEEE/CVF International

Conference on Computer Vision, 3722–3730.

Magnus Stray Schmidt 53 20th December 2021

https://doi.org/10.1038/s41592-019-0686-2

A The PointManager Class

Appendix

A The PointManager Class

The PointManager class creates a layer of abstraction when dealing with the points

and their descriptor and ID, as well as whether they are marked as outliers. The

class is implemented as follows:

import numpy as np

class PointManager:

def __init__(self, tot_max):

store it like np array to get quick

access to all descriptors

self._points = np.ndarray((tot_max, 1 + 32 + 3))

self._id_counter = 0

def add_point(self, des, loc) -> int:

self._points[self._id_counter, :] = [

self._id_counter, *des, *loc

]

point_id = self._id_counter

self._id_counter += 1

return point_id

def get_everything(self):

return self._points

def get_inliers(self) -> np.ndarray:

inliers = np.asarray(

self._points[:self._id_counter, 0] != -1

).nonzero()[0]

return self._points[inliers, :]

def get_descriptors(self):

inliers = np.asarray(self._points[:, 0] != -1).nonzero()[0]

return self._points[inliers, 1:33].astype(np.uint8)

Magnus Stray Schmidt 54 20th December 2021

A The PointManager Class

def mark_as_outlier(self, index):

self._points[index, 0] = -1

def is_outlier(self, index):

return self._points[index, 0] == -1

Magnus Stray Schmidt 55 20th December 2021

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective and Contribution
	Structure of Report

	Selected Literature
	Preliminaries
	Surface Reconstruction from Point Clouds
	Surveys
	Selected Methods

	Incremental Surface Reconstruction from Point Clouds
	Incremental Solid Modeling from Sparse and Omnidirectional Structure-from-Motion Data
	Incremental Reconstruction of Urban Environments by Edge-Points Delaunay Triangulation
	Real-Time CPU-Based Large-Scale Three-Dimensional Mesh Reconstruction

	Method
	The Car-Cube Dataset
	Point Projection
	Random Sampling
	ORB Feature Detection and Matching
	Combination of Random Sampling and ORB

	Results
	Point Selection
	Reconstruction Progression
	Steiner Points
	Number of Keypoints
	Number of Frames
	Inverse Cone Heuristic

	Discussion
	Point Selection
	Reconstruction Progression
	Steiner Points
	Number of Keypoints
	Number of Frames
	Inverse Cone Heuristic
	Error Metric

	Further Work
	Conclusion
	Bibliography
	Appendix
	The PointManager Class

