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Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU)
for partial fulfilment of the requirements for the degree of Philosophiae Doctor.

The work was carried out at both the Analytical Department of eSmart Systems, in Halden,
Norway, and the Department of Mechanical and Industrial Engineering at NTNU, in
Trondheim, Norway. Professor Nicola Paltrinieri from the Department of Mechanical and
Industrial Engineering at NTNU was the main supervisor. Dr. Davide Roverso, Chief Analytics
Officer at eSmart Systems, as well as Pierluigi Salvo Rossi, Professor at the Department of
Electronic Systems at NTNU were the first and the second co-supervisors respectively.

This Industrial Ph.D. project was funded by eSmart Systems and the Norwegian Research
Council (NeringsPh.D. program - Project No.: 276404). The author was also involved in
research activities supported by the European Space Agency (ESA) through the GridEyeS
project (Contract No.: 4000127831/19/NL/MM/ra).

The target audience of this work includes researchers and practitioners interested in the
following areas: risk management, power grid management, data management, systems
engineering, software development. The work may also be beneficial to regulatory authorities
and standardization institutions.

Michael Pacevicius

Strasbourg, 2022



il



Summary

Modern societies strongly rely on the reliable functioning of power grids. However, the
management of such infrastructures is a challenging task. It requires the existence of efficient
solutions enabling adequate decision making, both during normal working conditions and in
emergency situations. Unfortunately, blackouts and other large-scale outages continue to be
regularly observed over the globe, impacting millions of people with sometimes fatal
consequences. One reason for the occurrence of such events is the inadequate capture and
processing of data, which has hindered the development of performant risk-focused tools to be
used in practice by utilities. This can be observed in the management of vegetation along power
lines, a common source of disturbances that has contributed to the occurrence of multiple well-
known high-impact outages.

The digitalization of our society represents an opportunity for more accurate, data-informed
risk analysis, as it supports facilitated access to more and better data. However, there is still a
lack of standards, guidelines, and recommendations indicating how the data can be processed
in the field of power grid management to reduce the probabilities and consequences of
undesired, critical events.

The present Ph.D. addresses this gap by investigating both the fields of risk analysis and
power grid management. It starts by taking advantage of the strong industrial environment in
which this Ph.D. has been executed to adequately identify the relevant stakeholders and
understand their needs and constraints. This is particularly important, as it directly impacts the
development and thus the performance of tools to be used in the future by power grid managers.
The thesis also determines, after an intensive literature review, which gaps need to be addressed
in the field of risk analysis to enable efficient, large-scale heterogeneous data processing.

The main contributions of this thesis can be summarized as follows:

(1) We diversify the panel of exploitable data sources for risk analysis and fully explore
the analysis level scale.

(2) We augment conventional risk assessment frameworks to enable efficient, large-scale
heterogeneous data processing.

(3) We provide multiple solution development propositions enabling power grid operators
to make better risk-based decisions. The propositions are based on various perspectives
and enable finding an adequate trade-off between global and local analyses of the grid,
by always keeping the user-needs at the center of the solution definition.

(4) We make multiple recommendations usable by power grid operators to optimize the
exploitation of historical data and the planning of future data capture.

(5) We use the four previously reported contributions to indicate how vegetation
management along power lines may be improved

From a risk perspective, this Ph.D. first contributes to the understanding and clarification
of basic risk-related concepts. The findings of this work then enable risk analysis processes to
better leverage accessible data sources. Those especially enable more robust decision-making
by reducing uncertainties relative to data integration, therefore “better knowing how well we
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know”. In addition, the results strongly contribute to a better quantification of problems at
scope in risk analysis, de facto enabling more objective decision-making.

The thesis is also particularly valuable from a power grid management perspective. It first
provides a familiarization opportunity with the notion of risk for the stakeholders requiring
further insights in that field. It then shows how this knowledge can be used in combination with
news data capture and processing solutions to enable the emergence of innovative tools
supporting power grid operators in their daily operations.

The final results are discussed, and different evolution opportunities are reported along with
the provided contributions, such as executing risk quantification or analyzing other hazards.
The provided suggestions represent as many possibilities to reinforce and further extend the
results of this doctoral project. They are also an indication that further development is required
to facilitate more robust decision-making when practical implications and currently existing
technical limitations are faced.

This thesis is a good illustration of the benefits of braking silos and encouraging cross-
disciplinary cooperation. It stimulates power grid operators to further investigate the advances
made in the academic world. At the same time, it also favors the communication of constraints
faced in real-world situations but maybe too often excluded from the research scope in
fundamental research.
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Thesis Structure

This Ph.D. thesis has been prepared as a collection of articles, which is nowadays the most
common way of preparing a thesis at NTNU. The dissertation consists in a compilation of the
different research activities that have been executed and reported for dissemination during the
doctoral project.

This thesis consists of two main parts: Part [ — Main Report and Part Il — Articles.
Part I — Main Report

The first part summarizes the research activities executed during the thesis. It highlights
the main objectives, results, and contributions and shows how the mentioned articles are
interrelated.

Part II — Articles

The second part consists of 10 articles submitted to international peer-reviewed conferences
or journals. Nine have been published or accepted, and one is currently under review. Those
articles represent the backbone of the present thesis, are stand-alone, and can be read in any
order.

First, considering Part | enables obtaining a complete overview of the doctoral project,
while Part II goes deeper into the research details. Therefore, I also suggest this order for the
reading of the thesis. However, both parts are stand-alone, and it is up to the reader to decide
about the most convenient reading order based on their preferences.
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Introduction

1. Introduction

The ever-growing power demand of modern societies requires reliable infrastructures.
Power grids represent core elements to that extent and transport energy from power producers
to power consumers. However, the management of power grids is challenging for multiple
reasons. For instance, power grids correspond to geographically extended infrastructures.
Therefore, they are exposed to a variety of hazards, such as weather, vegetation in the proximity
of the power lines, terrain instability or pests. In addition, utilities operate under constant
societal and economic pressure. They must constantly identify the strategy providing the best
trade-offs between different Key Performance Indicators (KPIs), such as satisfaction of the
dynamic power demand, reinvestments in infrastructures and compliance with regulations —
among others (Brown and Spare, 2004; Sand et al., 2007).

The importance of power grids for our societies has motived numerous research activities
(See for instance Bell et al., 2012; Ciapessoni et al., 2016; Doostan et al., 2019; Guikema et
al., 2006; Johansson et al., 2011; Radmer et al., 2002; Sand et al., 1989; Wanik et al., 2017,
2015). The European Union has also financed multiple projects in the last decade to reinforce
the collaborations around the topic of power grid management (e.g. AFTER, Umbrella, iTesla,
HyRiM, Garpur) (European Commission, 2014a, 2015, 2016, 2017a, 2017b). Supporting this
type of projects enables to reinforce international cooperation for the management of an across-
country connected infrastructure. Such projects also enable sharing experiences and expertise,
increasing resilience when facing unexpected events.

Risk-based solutions have regularly been recommended as a conclusion of such research
activities (Ciapessoni et al., 2016; Nordgard, 2010; Perkin, 2018; Vefsnmo et al., 2015).
Conceptually, such solutions should optimize resource management by indicating the most
critical tasks for which an action is required.

The pertinence of risk-based solutions relies on three main elements to be usable in practice
(Nordgérd, 2010):

(1) Data.
Risk-based solutions require data to understand the grid's behavior and monitor it in the
long run.

(2) Dynamic methods.
Risk-based solutions need to integrate dynamic methods to cope with internal and
external context modifications potentially requiring structural changes in the risk
analysis.

(3) User-need acknowledgment.
Risk-based solutions need to be engineered in a way that optimally suits the power grid
operator's needs.

The digitalization of our societies and the regular emergence of technologies unlock new
ways of capturing data are thus critical steps toward risk-based solutions. In addition, the rise



over the last decade of Dynamic Risk Analysis (DRA) methods has increased the opportunities
for developing such solutions.

However, there is still a lack of adequate frameworks to make risk-based solutions a
common practice in power grid management. Numerous questions remain unanswered
regarding, for instance, data selection. Which decision criteria shall be considered when
accessing a large panel of heterogeneous datasets? In which circumstances should such criteria
be applied? Should they be identically applied to all datasets in any circumstances? How should
conflicting information be managed?

In addition, the DRA methods remain in an embryonic phase, especially regarding
applications in real-world configurations. The practical constraints that can be faced in such
situations must be acknowledged to adequately support the development of tools and platforms
that can be used for power grid operations.

The present thesis addresses those problems. It aims in particular at:

(1) Reinforcing the state-of-the-art for risk analysis applied in a real-world industrial
context by exploiting the benefits of digitalization.

(2) Contributing to the development of adequate solutions enabling to support power grid
operators with the decision-making processes relative to risk reduction and further
resource management optimization.

To achieve these objectives, the thesis focuses principally on the management of over-head
power lines. It investigates more specifically how vegetation management along such
infrastructures could be facilitated in a Norwegian environment. Vegetation along power lines
represents a well-known sources of outages (Doostan et al., 2019; Eggum, 2019; Hansen, 2018)
and has been reported as a main contributing factor in various major blackouts in the world
(Haes Alhelou et al., 2019; Sforna and Delfanti, 2006; U.S.-Canada Power System Outage
Task Force, 2004). The thesis explores how heterogeneous data sources can be used to address
this hazard. It does so by first benchmarking the existing technologies and data processing
technics using a cross-disciplinary mindset. It then assesses and addresses the requirements for
exploiting the identified data sources with conventional risk analysis. The thesis then examines
how practical constraints influence the development of software solutions aimed to be
implemented in control rooms; It finally provides recommendations for both the development
and exploitation of the suggested solutions.

The remainder of the first part of this thesis (Part I) is organized as follows. Section 2
provides the relevant research background. It recalls information essential for the
understanding of Risk Analysis in general and reports how the topic is considered in the field
of Power Grid Management. It also provides a high-level overview of the information
commonly considered for risk analysis in power grid management. Section 3 explicitly
formulates the research challenges and adequately frames the resulting research questions
around which the present thesis is built. The research objectives defined on the basis of those
questions are reported in Section 4. Section 5 informs about the context in which the research
was executed and describes the working configuration of the thesis. Section 6 describes the
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research approach that was chosen for achieving the work. Section 7 reports the main
contributions of the Ph.D. by summarizing the research findings of the articles provided in the
second part of this thesis (Part II). Those contributions are discussed in Section 8. The
conclusions and suggestions for further work are finally reported in Section 9.






Research Background

2. Research Background

There is a large body of literature in both the fields of risk analysis and power grid
management. In addition, various disciplines have been explored to generate, acquire, pre-
process, analyse and compare the multiple datasets that have been used for the present thesis.
The intention of the present section is not to provide a literature review of each of those fields.
Instead, it aims to provide the reader with sufficient background knowledge in risk analysis
and power grid management to understand which research gaps have been identified and
addressed in the present Ph.D. The reader is directed to section 6 for a further detailing of
additional methods that have been considered for this work and to the articles in Part II of this
manuscript for more details on how those methods have been applied.

2.1.Risk management, risk assessment, and risk analysis

Risk management is a broad concept that can be addressed in multiple ways, depending on
the field in which it is applied (Aven, 2012). Despite some nuances, there is general agreement
that Risk is a function of three main elements: (1) a scenario s that could happen, (2) the
probability p of this scenario happening, and (3) the consequences c of this scenario happening
(Eq. 2-1) (Kaplan and Garrick, 1981).

Risk = f(s,p,c) (Eq. 2-1)

Risk management consists of a combination of three directly linked processes (Raussand,

2011):

(1) Risk analysis.

This consists of characterizing each element of the risk definition to obtain a
relevant risk picture (i.e., listing of hazards and identification of critical events to define
the relevant scenarios, definition of the related probabilities of occurrence, definition
of the related consequences).

(2) Risk Evaluation
This consists of generating a judgment of the generated risk picture (e.g., by comparing
it with some reference criteria) and making one or several propositions to reduce the
risk level.

(3) Risk control.
This consists in selecting and implementing the most relevant proposition provided in
the risk evaluation based on pre-defined context-relevant objectives. It also consists of
assessing the impact of the implemented measures and communicating the results.
Finally, the outcome of this process shall cyclically be fed back to the previous
processes to inform future reanalyses.



These concepts are summarized in Figure 2-1, adapted from (Raussand, 2011). Figure 2-1
also shows that the combination of the risk analysis and risk evaluation processes can be
defined as “Risk Assessment”.

Risk Management

Risk Assessment

Ill. Determine Frequencies &
Consequences
IV. Establish Risk Picture

Il. Propose Risk-reducing
Measures

1ll. Assess Alternative
Risk-reducing Measures

Risk Analysis Risk Evaluation Risk Control
I. Identify Hazards I. Evaluate Risk with regard I. Select optimal Risk-reducing
Il Identify Critical Events to Reference Criteria Measures

. Implement Risk-reducing
Measures

Ill. Assess Impact

IV. Communicate Risk

; t )

Figure 2-1: Linking between Risk Management, Risk Assessment and Risk Analysis (adapted from
(Raussand, 2011))

Multiple standards relative to risk assessment are found in the literature (e.g., CSA Q850-
97 (Canadian Standards Association (CSA), 1997), ISO 31000:2018 (ISO - International
standardization organization, 2018); Risk governance framework (IRGC - International Risk
Governance Council, 2009); NORSOK Z-013 - Risk and emergency preparedness assessment
(NORSOK, 2010)). The process of the standard NORSOK Z-013 (NORSOK, 2010)
established by the Norwegian petroleum industry is reported in Figure 2-2.
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Figure 2-2: Description of the Risk Assessment process as defined by the standard NORSOK Z-013
(adapted from (NORSOK, 2010)). The first step consists in adequately defining 9 different points as
reported at the bottom of the figure. The causes (Step 3) and consequences (Step 4) of the critical events
relative to the hazards under review are also further detailed.



The standard NORSOK Z-013 is chosen as a core reference in the present thesis for the
following reasons:

- The description of the risk assessment in this standard is clear and systematic.

- This standard is aligned with others, as it is based on ISO 31000 (ISO - International
standardization organization, 2018).

- The oil & gas industry is a leading industry in preparing risk-related standards in
Norway. As such, experience and knowledge acquired in this industry should be
considered as a reference for other sectors.

In addition, the standard NORSOK Z-013 has also been used as a reference in more recent
works focusing on Dynamic Risk Analysis (DRA) (Villa et al., 2016). The need for DRA
solutions has emerged in the last decades and been demonstrated by the occurrence of major
accidents for which the realized scenarios were initially considered as improbable, and thus
ignored (Paltrinieri et al., 2012). The main conclusion in post-accident analyses was thus that
the conventionally implemented risk analysis processes were not capable of acknowledging the
impact of structural modifications that occurred in the operational phase (Kalantarnia et al.,
2009; Pasman and Reniers, 2014).

DRA addresses this issue by focusing on the adaptability requirement of the methods. The
nature of risks can drastically change over an infrastructure's lifetime due to internal and
external context modifications (ISO - International standardization organization, 2018).
Organizations must thus cope with such risk modifications by potentially reconsidering the
tools used to manage them. Empowering this adaptability relies on both (1) the existence of
data sources capable of informing the risk analysis under review and (2) being able to
reconsider assumptions and models retained in previous cycles of the assessment if new risk
evidence calls for updates (Kalantarnia et al., 2009; Khakzad et al., 2012; Paltrinieri et al.,
2013b, 2013a; Paltrinieri and Khan, 2020).

Such methods enable, thus, theoretically, to optimize future restructuration of the risk
analysis while minimizing the required reshaping efforts (Bucelli et al., 2018). However, DRA
remains in an embryonic phase (Lee et al., 2019; Paltrinieri and Khan, 2020; Yang et al., 2018).
Although DRA methods aim to enable adaptive responses over the lifetime of a system, there
is paradoxically still a lack of feedback on the applicability of such method in the exploitation
phase of the analyzed systems. The recency of both these methods and the digitalization of the
society enabling a data source diversification has hindered the development of solutions usable
in operation in the past and call thus for further investigations in that direction.

2.2.Power grid management and risk analysis in power grids

Power grids are sometimes referred to as the word’s largest machines (Motter et al., 2013).
They consist of a combination of large and small power producers of different types, numerous
types of power consumers and thousands of substations — all linked with each other using power
lines. The size of the grid exposes it to a plurality of hazards that can cause large blackouts. A
blackout can be defined as a total or almost total absence of voltage in the transmission grid
(i.e., complete collapse of the network), with consequences on a supra-regional level (European
Network of Transmission System Operators for Electricity (ENTSO-E), 2010). Blackouts have
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in fact relatively regularly been observed all over the world, leaving thus millions of people
without power (e.g., Canada (1998): 3 million; France (1999): 3,4 million; North America
(2003): 50 million; Italy (2003): 45 million; Moscow (2005): 10 million; USA (2011): 6,69
million; India (2012): 620 million; USA (2012): 8,66 million; Ukraine (2015): 230 million;
USA (2017): 6 million; Sudan (2018): 41,5 million; Brazil (2018): 10 million; USA (2021): 5
million (Haes Alhelou et al., 2019; Isaias Task Force, 2020; NERC, 2018; Sforna and Delfanti,
2006; Sullivan and Malik, 2021; Task Force on Power Outages - Eurelectric, 2006; U.S.-
Canada Power System Outage Task Force, 2004; United States Department of Energy, 2013;
Yu and Pollitt, 2009).

Power grid management is mainly the responsibility of two types of stakeholders:
Transmission System Operators (TSOs) and Distribution System Operators (DSOs). TSOs
usually manage grids with a voltage level above 100 kV (European Network of Transmission
System Operators for Electricity (ENTSO-E), 2019). They are responsible for the power
exchanges on an international level. They are also especially responsible for power transport
on a national level, from the main production plants (e.g., dams, nuclear power plants or coal
power plants) down to significant power-consuming endpoints (e.g., big factories) and down
to the regional grid. DSOs then take over the power distribution down to smaller power
consumers such as small and medium enterprises or private households. Therefore, the grid's
voltage managed by DSOs is usually lower (i.e., below 100 kV), the majority of which is even
below 1 kV (Eurelectric, 2020; U.S.-Canada Power System Outage Task Force, 2004).

The activities of TSOs and DSOs are particularly challenging for multiple reasons. For
instance, the frequency of Extreme Weather Events (EWE) is expected to continuously increase
in the future due to climate changes (Masson-Delmotte et al., 2018; Smith, 2021). This
increases the risk level in an aging power grid as it increases both the probability and the
consequences of damageable events (Libertson, 2021). Utilities are also continuously set under
pressure regarding various socio-technical criteria. Grid operators must constantly find the
right trade-off between different Key Performance Indicators (KPIs), such as satisfaction of the
dynamic power demand, reinvestments in infrastructures and compliance with regulations —
among others (Brown and Spare, 2004; Sand et al., 2007). These sometimes-conflicting
objectives turn the network management into a complicated task, which has led to inadequate
decision-making in the past. Inadequate reinvestments and maintenance strategies have been
pointed out as important influencing factors in large-scale outages (FERC and NERC, 2011;
Sforna and Delfanti, 2006; U.S.-Canada Power System Outage Task Force, 2004).

Numerous research activities have addressed the various aspects impacting the reliability
of power grids (see for instance Bell et al., 2012; Ciapessoni et al., 2016; Doostan et al., 2019;
Guikema et al., 2006; Johansson et al., 2011; Radmer et al., 2002; Sand et al., 1989; Vefsnmo
etal., 2015; Wanik et al., 2017, 2015). Different projects have also obtained a financial support
from the European Union over the last decade (e.g. AFTER, Umbrella, iTesla, HyRiM, Garpur)
(European Commission, 2014a, 2015, 2016, 2017a, 2017b). Those projects aimed to reinforce
the collaborations around power grid management and favor knowledge sharing in an
international configuration.
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Many of the research conclusions converge around the need to move towards a
probabilistic-oriented risk assessment of power grids (Ciapessoni et al., 2016; Nordgard, 2010;
Perkin, 2018; Vefsnmo et al., 2015). However, there is also an acknowledgment that this
requires further research activities. Some recommendations regarding data and models were,
for instance, provided at the end of the GARPUR project (GARPUR Project, 2017). Among
them:

- Collect more asset-specific data to improve currently applied models.

- Integrate new types of data anytime this can be done in a cost-efficient way;
evaluate how those data can be combined with existing datasets.

- Better anticipate future challenging situations; consider both large-scale and
location-specific scenarios.

- Enlarge the knowledge basis with regards to new technologies.

- Enlarge both the quality and the quantity of data to gather.

- Determine the value of potentially unreliable data sources.

- Define frameworks and guidelines for collecting, maintaining, and sharing data and
models.

- Explore automatization possibilities related to risks using machine learning
techniques.

- Sustain a gradual development, implementation, and testing of methods relevant to
a framework's definition, rather than waiting for a final holistic solution to be
proposed.

- Develop new tools and sustain the formation of cross-disciplinary experts capable
of providing risk-oriented analyses of heterogeneous datasets.

Nevertheless, there is still a lack of guidelines (Khuntia et al., 2017; Nordgard, 2010; Perkin et
al., 2017; Vadlamudi et al., 2016) enabling to understand specifically:

- which data type can be considered as relevant,

- how this data should be assessed when different datasets are compared before being
considered in a risk analysis,

- how the solutions shall technically be developed.

2.3.Information management for risk analysis in power grids

Ensuring that data can be considered as valuable for a risk analysis requires first to
adequately determining who the end-users are, so that their needs can correctly be identified.
In the case of power grid management, three types of operators can schematically be reported:

(1) Grid operators in control rooms.
Those operators focus on real-time to short-term management of the grid. Their main
tasks are basically to stabilize fluctuations and ensure in real-time that the power
demand can be met. This implies anticipating planned outages and trying to minimize
the impact of unexpected disturbances.

(2) Maintenance operators.
Those operators focus on short-term to middle-term management of the grid. Their
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main tasks are basically to plan and handle the maintenance operations required to
maximize the uptime of the grid.

(3) Planning operators.
Those operators focus on middle-term to long-term management of the grid. Their main
tasks are to plan and supervise the modification and extension projects of the grid. Such
projects can, for instance, be motivated by the need to anticipate increases in future
power demands.

The temporal rate differences of the variables involved in each of the operator tasks directly
determine the type of data source that may be relevant. Grid operators in control rooms must
be reactive and rely, thus, essentially on data sources providing information in near-real-time.
They will mostly rely on load data and weather information. Historical and real-time records
are available and used to understand the current power demand and predict coming variations.
The information used by maintenance operators consists of periodic reliability assessments of
the components, helping to define the infrastructure's operationality level (Catrinu and
Nordgard, 2011). Planning operators finally build on the return of experience regarding the
effective reliability of the components, maps enabling to characterize the environment where
power grids may be installed and information regarding the nature of the future power demand
(e.g., city extension, new industries) to plan the future grid modifications.

Data type selection for the operators’ decision-making mainly results from practical
constraints, such as data availability, or constraints relative to new data capture and processing.
Indeed, factors such as acquisition price, time to data acquisition, data accuracy, knowledge to
analyze the data, existence of processing solutions etc. are elements that directly impact the
type of technologies that will be used to obtain the required information. The lack of resources
and knowledge may therefore lead to a sub-optimal pre-selection of data capture and processing
solutions, potentially leading to more uncertainties in a less accurate risk picture depiction.

In addition, gaps in tools and knowledge to process the data may also lead to a data
accumulation paradox. In such situations, some data types may largely be collected (e.g.,
inspection images, past outage reports) without further processing. This inefficiency can be
costly for utilities. It can lead them to miss opportunities to adequately capture the true risk
level, therefore missing opportunities to improve their grid's resilience. There is thus a need for
new tools enabling to facilitate the decision-making of the operators.

2.4.The vegetation case-study

Vegetation along power is a well-known and a main source of outages in the field of power
grid management (Doostan et al., 2019; Eggum, 2019; Hansen, 2018). Vegetation can be
damageable in two ways: (1) by growing under a power line until it connects two phases and
thus creates shortcuts, or (2) by falling on the power lines. Although the costs of repairing
collapsed infrastructures are relatively acceptable, the disturbances that can result from such
events can be quite massive. In fact, tree falls on power lines can result in large-scale wildfires
(Doostan et al., 2019; Kumagai et al., 2004). Tree falls have also been reported as main
contributing factors to some well-documented blackouts (Haes Alhelou et al., 2019; Sforna and
Delfanti, 2006; U.S.-Canada Power System Outage Task Force, 2004).
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Vegetation is, by nature, both a simple and challenging hazard. It is simple in the sense that
the few scenarios involving vegetation are well-known. Vegetation growth is also a relatively
slow process. However, vegetation management is also challenging because the vegetation can
grow in most areas where power grids have been installed around the globe. A complete risk
depiction regarding vegetation would therefore require a relatively frequent inspection of all
power lines where vegetation may grow. This can be particularly costly, increase safety-related
risk for the personnel in harsh and remote environments, and is therefore not feasible in practice
most of the time.

Partial preventive visual inspections are thus executed to cope with such challenges. Such
inspections enable to estimate where future clear-cutting operations will be required. The most
common way to handle visual inspections is by sending technicians flying over the lines or
walking along them (Matikainen et al., 2016; Nguyen et al., 2018). Alternatively, and/or in
parallel, point clouds are also utilized to make more precise distance measurements.

However, the calendar-based approach usually used to plan the power line inspections is
known to be sub-optimal. Indeed, it may result in missing the identification of an area where
vegetation growth was faster than expected. Additionally, it may result in a sub-optimal use of
resources by sending teams to areas with low vegetation growth rates. There is thus a need to
improve the way information is managed (i.e., captured, transmitted for analysis, pre-
processed, processed, transmitted for reporting to the end-user) with regards to power grid-
related risk analysis focusing on vegetation.
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3. Challenges Reporting & related Research Questions

This thesis is centered around two main topics:

- Dynamic Risk Analysis,
- Power grid management.

The previous sections introduced those topics and reported different research gaps. The
identified research challenges are more precisely characterized in the following sub-sections.
This characterization is organized within two blocks. The first of these blocks is dedicated to
DRA, while the second is more relative to power grid management.

3.1.Block 1: DRA-related challenges and research questions

3.1.1. Data sourcing

The lack of data is a common challenge for Quantitative Risk Analysis (QRA) (Aven, 2008;
Nordgérd, 2010) and has logically also been reported as problematic for risk analyses in power
grids (Bell et al., 2012; Ciapessoni et al., 2016; Perkin, 2018). There is thus a need to investigate
new ways of integrating data into risk models. The research of alternative data sources is also
a way to go beyond the consideration of outdated data used for frequency evaluation, which
remains a recurrent problem in risk analysis (Creedy, 2011). The digitalization of our society
offers new opportunities to address those issues. However, different types of data sources
provide different information levels, and each newly considered type of data source's
informative potential needs to be investigated in practice.

A first main research question for block 1 can thus be formulated as follows:

Research question 1.1: How can we increase access to data to facilitate the application of
QRAs in practice?

This research question can be further divided into two sub-questions:

Research question 1.1.1: Which additional data sources can be considered helpful in risk

analysis?

Research question 1.1.2: To which extent does the problem formalization impact the

pertinence of data source selection in a risk analysis process?

3.1.2. Conventional risk assessment framework augmentation

The development of a standard is a time and energy-demanding process due to the
procedures to be followed and the need for deepened evaluations. Although this provides
guarantees regarding the pertinence of the delivered recommendations, it is also a synonym of
inertia and reduces the reactivity regarding the acknowledgment of configuration changes. This
can also be observed with conventional risk assessment frameworks, which have usually been
developed with a mindset of data scarcity and the use of handbook data. Additionally, multiple
constraints requiring adaptations of the solution developed in the design phase are only
acknowledgeable in operation. Consequently, there is nowadays no efficient solution able to
handle multiple heterogeneous datasets dynamically in a real-case big data configuration.
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A second main research question for block 1 can thus be formulated as follows:

Research question 1.2: Which improvements shall be provided to conventional risk
assessment frameworks to enable dynamic heterogeneous dataset integration in a real-case big
data configuration?

This research question can be further divided into two sub-questions:

Research question 1.2.1: Which elements of conventional risk assessment frameworks do
require reconsideration or reinforcement in a real-case big data configuration?

Research question 1.2.2: How can the benefits of machine learning be exploited to support

better risk analysis?

3.2.Block 2: Power grid-related challenges and research questions

3.2.1. Power grid-dedicated risk-focused solutions

The regular emergence of new data capture solutions provides new opportunities for power
grid operators to be better informed of the status of their grid. However, grid operators might
have difficulties in understanding the implications of each data capture process on their
capacities to optimally manage the grid (Nordgérd, 2010). In addition, the issues identified in
the field of risk analysis (i.e., lack of methods enabling to capture interactions and dynamic
aspects of risk variations (Yang and Haugen, 2015)) also impacts the development of solutions
in the field of power grid management (Perkin, 2018). Finally, real-world constraints directly
affect the feasibility of solution development. For instance, the success of the creation of a
solution is strongly dependent on aspects such as

- the intensity of the demand in the market,

- the available analytical capacities of the involved stakeholders,

- the available software development capacities used to build the product,
- a strong business plan ensuring that the solution is financially viable,

- etc.

Thus, there is a continuous need to develop further and improve risk-based tools usable in
practice to optimize the decision-making processes in large-scale power grid management. The
solutions to be developed need to ensure that the operator needs are properly addressed,
offering different alternatives and highlighting remaining challenges.

A first main research question for block 2 can thus be formulated as follows:

Research question 2.1: How should solutions be designed to enable meaningful comparison

and combination of heterogeneous datasets for risk analysis applied in the field of power grid
management?
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This research question can be further divided into three sub-questions:

Research question 2.1.1: What are the development possibilities and requirements for

developing solutions enabling optimized risk analysis in power grids considering heterogenous
data sources?

Research question 2.1.2: What are the main challenges for merging various datasets for the

purpose of risk analysis?

Research question 2.1.3: Which additional non-analytical constraints shall be considered in

the development of a technical solution?

3.2.2. Historical and future data-use optimization

Data management challenges directly impact power operators' capacity to extract all the
value of the historical data they have. Additionally, the challenges of understanding the
implications of each data capture process might lead to sub-optimal decision-making regarding
future data acquisitions. There is thus a need to provide power grid operators with further
insights enabling them to unlock the value of their database.

A second main research question for block 2 can thus be formulated as follows:

Research question 2.2: How can we support power grid operators in optimizing the
exploitation of their database in the context of risk analysis?

3.2.3. Vegetation management improvement

Inadequate vegetation management along power lines can result in large economical and
societal costs. Examples of such impacts are large-scale wildfires (Doostan et al., 2019;
Kumagai et al., 2004) and blackouts (Haes Alhelou et al., 2019; Sforna and Delfanti, 2006;
U.S.-Canada Power System Outage Task Force, 2004) — among others. Thus, it is necessary to
provide power grid operators with solutions enabling them to reduce the risk of vegetation-
related outages.

A third main research question for block 2 can thus be formulated as follows:

Research question 2.3: How can new technologies facilitate vegetation management along

power lines?
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4. Research Objectives

4.1.Definition of objectives

The present thesis's objective is to contribute to both the fields of Dynamic Risk Analysis

and power grid management. The following research objectives are therefore defined based on

the research question reported in section 3.

4.1.1. Block1

Research Objective 1.1: Explore, understand & prepare extra data integration possibilities for

risk analysis.

Sub-objective 1.1.1: Identify alternative data sources, as well as multiple data
capture and processing technics & tools.

Sub-objective 1.1.2: Assess the impact of data resolution variation on the risk
analysis performances.

Research Objective 1.2: Define a strategy to augment the data integration capacities of
conventional risk assessment frameworks in a real-case big data configuration.

Sub-objective 1.2.1: Identify the adaptation requirements of existing frameworks
in a real-case big data configuration.

Sub-objective 1.2.2: Explore the unlocking potential of machine learning for the
field of risk analysis.

4.1.2. Block?2

Research Objective 2.1: Support the development of power grid-dedicated risk-focused

solutions.

Sub-objective 2.1.1: Assess various construction logics and related data integration
policies for risk-focused solutions to be used in the field of power grid management.
Sub-objective 2.1.2: Identify potential stumbling blocks of data integration in the
context of risk analysis.

Sub-objective 2.1.3: Appraise real-world non-analytical constraint implications.

Research Objective 2.2: Support value generation from existing data and support decision-

making regarding future data captures in the context of power grid management.

Research Objective 2.3: Enable vegetation management improvement.

19



4.2.0verview of articles and link to research objectives

Figure 4-1 graphically illustrates the linking between the research objectives addressed in
the present Ph.D. and reported in sub-section 4.1. Note that the different objectives presented
in this thesis were continuously addressed within a cyclic process. As such, most of the steps
towards the final results have enabled to address multiple objectives simultaneously. For the
sake of simplicity, we distinguish between the content of the two blocks but recall the tight
bounds existing between them, as is illustrated via multiple arrows visible in Figure 4-1. Figure
4-1 also details which articles reported in the Declaration of Contributions and present in Part
IT of the thesis contain response elements for each of the addressed objectives, as is further
described below.

The articles II, 111, IV, VII, X provide background information enabling understanding the
state-of-the-art in risk analysis and support identifying research gaps in that field.

The articles I, 11, 111, TV, VI, VII, VIII, IX, X provide background information enabling to
obtain an adequate business understanding in the field of power grid management and support
the identification of stumbling-block hindering the application of risk-related solutions in that
field.

Article I addresses the problem of crack formation in Norwegian power grid wooden poles.
It suggests investigating the combination of (1) databases reporting automatically identified
cracks on assets, with (2) datasets reporting meteorological conditions. It addresses failures on
microscopic level.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1-1.1.2;2.1.2; 2.2.

Article II focuses on the challenges of processing heterogeneous data for risk assessment
in a smart grid configuration. For this, it comes back on the role of IT and provides a list of
challenges that have been identified in smart-grid configurations. It then uses a bow-tie diagram
to illustrate the concept of risk applied to vegetation along power lines. Finally, it provides an
extensive list of relevant data sources and suggests combinations possibilities as research
avenues.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1;2.1.2 - 2.1.3; 2.2; 2.3.

Article ITI suggests supporting the application of Dynamic Risk Analysis to power grids
in real-world situations by using Systems Engineering. It investigates the creation of a dynamic
risk analysis pipeline showing how different technologies providing different levels of insights
can be combined to address the problem of vegetation along power lines.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1-1.1.2;1.2.2;2.1.1-2.1.2;2.2; 2.3.

Article IV focuses on the optimization of technology-based decision-support for managing
power girds exposed to the vegetation hazard. It describes this problem using a bow-tie
diagram. It then suggests a data-driven approach to define the arrangement of the analytical
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steps in the processing flow. The considered approach is based on needs expressed by the end-
users (i.e., grid operators) and initially ignores any construction constraints by assuming large
access to data.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1;2.1.1 - 2.1.2; 2.2; 2.3.

Article V focuses on lessons from past hazardous events and explores the possibilities of
using machine learning for severity prediction by analyzing the Major Hazardous Incident Data
Service (MHIDAS) database.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1; 1.2.2; 2.2.

Article VI focuses on automated power line vegetation monitoring using high-resolution
satellite imagery in an industrial context. It first explores how information from LiDAR point
clouds can be combined with satellite imagery when addressing the risk induced by vegetation
along the lines. It then shows how machine learning can be used to automatically process
satellite imagery.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1-1.1.2;1.2.2;2.1.1 -2.1.2;2.2; 2.3.

Article VII focuses on developing a method enabling automatic dataset selection for
dynamic risk analyses in real-world configurations. The approach starts by reporting
reinforcement actions required to adapt existing conventional risk assessment frameworks. A
metadata-based method is then suggested to manage datasets originating from heterogenous
data sources. Finally, the article uses a case-study with simulated datasets focusing on
vegetation along the lines to illustrate its applicability.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1-1.1.2;1.2.1-1.2.2;2.1.1-2.1.2-2.1.3; 2.2; 2.3.

Article VIII is an application to a real-world case-study of the method proposed in article
VII. 17 datasets identified as potentially informative for a vegetation-focused power grid risk
assessment are considered in the study. The selection of those 17 datasets results from a
preliminary analysis enabling to define which type of data sources may provide information
usable in a vegetation-focused power grid risk assessment.

= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1 - 1.1.2; 1.2.1 - 1.2.2; 2.1.3; 2.2; 2.3.

Article IX focuses on developing a platform enabling the merging of heterogencous
datasets in the context of power grid management. The article integrates the analysis of multiple
types of data sources for 2 different hazards (wind and vegetation). It uses outcomes from the
study reported in Article VI and includes them in an analytical pipeline enabling improved risk
analysis in a real-world context.

21



= As such, this article is relevant for addressing the following objectives and sub-
objectives: 1.1.1; 1.2.2; 2.1.1 - 2.1.3; 2.2; 2.3.

Article X addresses the importance of data veracity during data acquisition for risk
assessment processes. It suggests building on existing definitions of risk and includes a veracity
indicator in the definition to quantify the level of (dis)agreement between different datasets
used for the analysis of a specific scene. The indicator is used in a small case-study focusing
on datasets informing about the proximity of vegetation in the surrounding of power lines.

= As such, this article is relevant for addressing the following objectives and sub-

objectives: 1.1.1; 1.2.1; 2.1.2; 2.2; 2.3.
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4.3.Research scope

This thesis mainly focuses on supporting the development and implementation of dynamic
risk analysis in an industrial context by optimizing information management upfront such
analyses. It does so in the field of power grid management by maximizing the benefits of new
non-conventionally used data sources. It also uses both advanced and integrated techniques
while simultaneously acknowledging the importance and impact of real-world constraints.
Although most of the results may easily be extended to other configurations and used for other
risk analyses, it is essential to mention that the initial studies considered the following scope
boundaries:

- The work is achieved in a Norwegian environment.

- Only data sources that were relevant for risk analysis in power grid operations were
investigated.

- The main type of elements of the grid analyzed were overhead power lines. Although
the management of substations has been explored, it didn’t consist of the main part of
the work. This also implies that power production sites and power consumption nodes
fall outside the scope of this research.

- We mainly focused on the hazard “vegetation”. Although alternative hazards have been
addressed, those weren’t the central part of the work.

- Although we indicate how the risk analysis may be implemented in various pipelines,
we don’t provide specific risk analysis results. This also explains why we limited the
investigations relative to risk analysis to the probability of trees falling on power lines
when developing solutions. This implies that the consequence dimension of the risk
definition is not part of the main research scope.
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5. Research Context & Working Configuration

5.1. Research context

This thesis was prepared within the context of the industrial Ph.D. project named “Dynamic
risk management for Smart Grids in large-scale interconnected power systems.”. Industrial
Ph.D. projects consist of close collaborations between a company and a degree-conferring
institution. They aim to boost relations between research organizations and the industry. They
especially enable increasing the value obtained from academic research by facilitating
knowledge transfers to the society and the business sector. They also permit long-term
competence-building for the Norwegian industry by recruiting doctoral candidates. For an
industrial company, the industrial Ph.D. scheme enables it to reinforce its analytical teams and
facilitates its R&D activities. It also allows the acknowledgment of state-of-the-art methods
and standards that have been prepared within research and standardization institutions. It is
also beneficial for academia, as it facilitates real-world feedback and competence sharing with
researchers spending a substantial part of their time in a university environment.

The industrial Ph.D. scheme promotes and enables closer cooperation between all the
stakeholders relevant to the project. It allows creating a direct link between the end-users, the
researchers responsible for the conception of the solution and the engineers responsible for the
development of the product. This ensures a better acknowledgment of real-world constraints,
which de facto maximizes the chances of obtaining a final product adequately addressing the
user needs originally expressed. Finally, the industrial Ph.D. scheme meets the same academic
requirements as the general doctoral degree education and has the same high scientific quality
and standard level. It must follow the same regulations for doctoral degree education
concerning admissions, implementation, and evaluation as other doctoral projects undertaken
at the degree-conferring institution.

The present thesis was funded by eSmart Systems and the Norwegian Research Council
(NeeringsPh.D. program - Project No.: 276404). The degree-conferring institution ensuring that
the doctoral project maintained an adequately high scientific standard is the Norwegian
University of Science and Technology (NTNU - Norway). The supervision of the thesis on the
side of NTNU was ensured by Nicola Paltrinieri and Pierluigi Salvo Rossi. Nicola Paltrinieri
is a full professor of risk analysis at NTNU and an adjunct professor in offshore HSE
management at the University of Bologna (Italy). He has earned a Ph.D. in Environmental,
Safety and Chemical Engineering from the University of Bologna. Pierluigi Salvo Rossi is
currently a full professor of statistical machine learning with the Department of Electronic
Systems at NTNU. He received the Dr.Eng. degree in telecommunications engineering and the
Ph.D. degree in computer engineering from the University of Naples " 'Federico 11" (Italy). The
supervision of the thesis was also ensured by Davide Roverso, Chief Analytics Officer at
eSmart Systems. Davide Roverso holds a Ph.D. degree in Computing Science. He has over 30
years of experience in the field of Machine Learning and Big Data Analytics, with applications
in diagnostics, prognostics, condition monitoring, and early fault detection in complex
processes, in sectors ranging from energy to medicine and environmental monitoring.
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5.2. Activities

All the academic activities required for the preparation and validation of a doctoral project
taking place at NTNU were fulfilled during this thesis. This implies:

- validation of Ph.D. courses,

- literature reviews for acknowledgment of the required information in the different
relevant fields,

- preparation of multiple publications (journal articles and conference articles)
anonymously reviewed by relevant experts,

- participation in multiple international conferences.

In addition to this academic basis, the research achieved during this Ph.D. also strongly
relies on an involvement in multiple projects. Their ambition and my implication in those
projects are shortly described in the following. The chronology of all the activities is illustrated
in Figure 5-1.

5.2.1. Project 1 — The SAIRA Challenge

France operates the largest power distribution network in Europe (almost 1.4 million
kilometres of power lines, around 800 000 transformers, and 37 million customers) (Enedis,

2020, 2017). Enedis represents one of the main actors in this context. It manages 95% of
continental France’s electricity distribution network and is responsible for development,
operation, asset maintenance, and continuous public electricity service. In order to accelerate
defect identification, increase detection accuracy, reduce costs and verify the usability of
Unmanned Aerial Vehicles (UAVs) as a platform for collecting inspection data, Enedis
launched in April 2018 an “Automated Image Analysis System” challenge (or SAIRA
Challenge, for “Systéme d’analyse d’images réseau automatis¢”). eSmart Systems was one of
four leading companies with core expertise in the field and in computer vision, chosen to
participate in the challenge. The project took place from January 2019 to June 2019. eSmart’s
solution ranked as the #1 performing system for defect detection, both in terms of accuracy and
speed.

Involvement:

I handled the application for eSmart Systems, as well as the contract negotiations before
starting the project. I then managed the project and facilitated the technical and administrative
communication between the different stakeholders. Finally, I also executed a quality
assessment on the results that we provided and handled the delivery to Enedis. The project
especially enabled me to understand Enedis’ needs and to acquire more experience in the field
of computer vision applied to power grids.

5.2.2. Project 2 — Astrum

Astrum was an R&D project lead by eSmart Systems and executed in collaboration with 5
Norwegian DSOs. The main objective was to create an intelligent decision support tool to
facilitate access to relevant information in the context of power grid management. That way,
grid operators can better plan, develop and maintain the network. The final ambition was to
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optimize the management of the grid operations and facilitate meaningful reinvestments in an
aging infrastructure. The project was successfully closed at the beginning of January 2020.

Involvement:

I participated in multiple workshops with the different DSOs. Those exchanges first
enabled me to better grasp the nature of the user-needs. They also enabled me to share insights
on how power grid operators could generate new data and better use the data they had.
Eventually, I proposed a prototype of a solution that could be used to prioritize the visits of
substations for maintenance operations.

5.2.3. Project 3 — GridEyeS

The objective of GridEyeS is to support power grid operators with the control, maintenance

and planning of tasks relative to the infrastructure they manage. It aims to do so by combining
satellite images, weather information and Al and integrating those in tools enabling grid
operators to take decisions. This project aims to enable automatic, cheaper and more accurate
detection of risky areas. Based on those insights, grid operators can move from calendar-based
maintenance planning to risk-based planning, enabling them to optimize their resources and
the performances of their grid. GridEyeS started as a Feasibility Study controlled by the
European Space Agency (ESA). The application for the project was initiated in early 2019 and
the project was kicked-off in September 2019. The feasibility study was successfully closed in
September 2020. We are currently preparing an application enabling to convert the feasibility
study into a demonstration project. A demonstration project consists in a 2-year project with
the goal of developing a final commercial product. The current plan — subject to validation by
the European Space Agency — is to initiate this new phase by the end of 2022. Note that multiple
preliminary activities relative to satellite data information were executed within 2018. Such
activities mainly consisted in identifying relevant data sources and tools and getting more
familiar with satellite image analysis.

Involvement:

I handled the application for eSmart Systems. I then managed the project on the side of
eSmart Systems and handled the communication with the power grid company involved in the
project. I took part in all the discussions with the European Space Agency. I strongly
contributed to both the conception of the platform hosting the analytics, as well as the analytics
themselves. Finally, I executed a quality assessment of our results and co-handled the delivery
of the deliverables required by ESA.

5.2.4. Project 4 — Connected Drone 2 & Project 5 — SkogRiskAl
Connected Drone 2 (CD2) is an R&D project lead by eSmart Systems and executed in
collaboration with 22 DSOs. It comes as a direct follow-up to the first Connected Drone project,
also lead by eSmart Systems. CD2 was kicked-off at the end of 2018 (the same day CD1 was
closed) and was closed at the end of 2021. CD1 was mainly focused on developing an

innovative product that automatically detects and displays assets and component defects on
aerial power line inspection images. CD2 went several steps further. First, it aimed at
reinforcing the product developed so far. Second, it also aimed at providing several additional
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intelligent features. For instance, autonomous flights and use of simulated environments are
two of the main research avenues for CD2.

SkogRiskAl is an R&D project lead by eSmart Systems and executed in collaboration with
NIBIO (the Norwegian Institute of Bioeconomy Research) and 5 Norwegian DSOs. The main
objective of the SkogRiskAl project is to develop an operational solution for better risk-
informed decision-making concerning vegetation along the power lines. This is influenced by
various parameters, such as local vegetation properties, data collection method, etc. The
purpose of the solution to be developed is in particular to facilitate the prioritizing of clear-
cutting operations as well as to be better prepared in case of emergencies. The project brings
together computer science experts, risk analysts, forestry experts and grid operators. It explores
different sensing technologies to obtain an optimal cost-benefit ratio depending on the size of
the grid operator. Costs and benefits can, for instance, be assessed concerning data acquisition
time, data capture price, data processing time, precision and accuracy of the results — among
others.

Involvement:

I acquired experience with 3D point clouds in the first half of 2018 (preliminary activities).
This experience mainly consisted in identifying tools and technics to generate and analyse point
clouds (LiDAR-based and photogrammetry-based). | shared my experience regarding 3D point
clouds for the project CD2, especially because of its relevance for a digital representation of
an infrastructure. Similar types of insights have been provided for the SkogRiskAl project. In
that last case, I also advised and shared knowledge regarding vegetation management, data
analysis, risk analysis and data transformation technics.

2022

Ph.D. Courses
Academia < Literature Review
Publications

SAIRA Challenge

Astrum

Industry <
GridEyeS

------------- Journal Paper @
Conference Paper O
Project - Secondary Role

Figure 5-1: Distribution of the academical and industrial activities executed during the doctoral project.
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6. Research Approach

6.1. Fundamental characterization of the research process

The industrial Ph.D. scheme only supports projects that can be classified as “industrial
research” and/or “fundamental research” (Research Council of Norway, 2021), as is defined
by the European Commission (European Commission, 2014b). Both definitions are provided
in (European Commission, 2014c) and reported as following:

Definition Industrial Research: “Industrial Research means the planned research or critical
investigation aimed at the acquisition of new knowledge and skills for developing new
products, processes or services or for bringing about a significant improvement in
existing products, processes or services. It comprises the creation of components parts of
complex systems, and may include the construction of prototypes in a laboratory environment

or in an environment with simulated interfaces to existing systems as well as of pilot lines,
when necessary for the industrial research and notably for generic technology validation”.

Definition Fundamental Research: “Fundamental Research means experimental or

theoretical work undertaken primarily to acquire new knowledge of the underlying
foundations of phenomena and observable facts, without any direct commercial application
or use in view”

The research objectives I address in this thesis (sub-section 4.1) as well as the research
configuration of this project confirm that the present Ph.D. can be classified as Industrial
research. Indeed,

- The definition, coherence, and systematic execution of the research plan of the
current doctoral project was ensured by eSmart Systems, the Norwegian University of
Science and Technology and the Norwegian Research Council. The work can also be
considered as a critical investigation considering the number and the variety of experts
involved at each project step. The multiple publications of this work were also peer-
reviewed by external experts and finally validated by the end-users (i.c., grid
operators), who can be considered as the final reviewer of the results as subject-matter
experts.

- We are addressing the research questions reported in section 3. Those are based on
previously identified knowledge gaps and limitations currently faced in practice.
We address those research questions by considering both new technologies and latest
advances in multiple research fields.

- The willingness for eSmart Systems to reinforce and construct new products is
obvious as a commercial company. The company needs to continuously invest in
research and innovation to improve how user-needs are addressed nowadays. The
present thesis contributes to that ambition in multiple ways as is reported in section 7.

The current work also meets additional criteria required to characterize a work as an R&D
project (OECD, 2015):
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Creativity: the project mainly builds on a Systems Engineering mindset to break silos
and combines multiple fields of expertise in a meaningful and innovative way.

Uncertainty: the final outcome of the project was uncertain, especially because we used
to be unsure how multiple heterogeneous datasets could be combined in a systematic
way.

Transferability and/or reproducibility: the generic aspect (application-field agnostic) of
the objectives reported for block 1 in sub-section 4.1 shows how this Ph.D. also
contributes to more Fundamental Research, facilitating that way a transferability of
the results. Additionally, special attention has been given to reporting all the
assumptions we made, the tools we considered, and the data sources we used in the
present work. This facilitates the reproducibility of the work.

The quality of the research executed in this thesis was ensured via different mechanisms.

In particular, all publications reported in the present thesis are:

based on objectively identifiable references and standards; they are also referring to the
work of multiple recognized institutions;

co-written by authors with internationally recognized expertise;

anonymously peer-reviewed by experts in the relevant fields through the different
journal and conference reviewing systems;

prepared in close collaboration with multiple subject-matter experts (Power grid
operators, risk analysts, satellite image analysts, vegetation-related researchers, etc.),
enabling thus to benefit from both direct inputs and feedback;

using real-world or real-world-like data usable within solutions to be developed.

Finally, the experience and the expertise of the supervisors of this thesis enabled a constant
guidance and verification of the work achieved during the Ph.D.. This enabled to keep track of
each step completed, ensured consistency of the work, as well as a critical review to assure the

significance of the provided results.

6.2.Research strategy

A system can be defined as a set of interconnected elements, which aggregation is
engineered to meaningfully realize or achieve a specific function or objective (Meadows,
2009). Systems Engineering (SE) can be defined as the interdisciplinary approach aiming at
successfully developing a system (INCOSE, 2021a). It strongly advocates for three main
principles:

Adequately understanding, considering and documenting the customer needs all along
the system's life cycle, starting early in the development phase.
Enabling circularity in the thinking/acting process.
Providing both:
o a detailed picture of the system’s elements to understand their individual
functioning, and
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o providing a full picture of the system to understand the interactions between its
elements.
SE enables to systematically and adequately structure the research. Its cyclic aspect enables
to dynamically acknowledge any adaptation requirement throughout the life cycle of a system
and maximizes the probability of encompassing all relevant stakeholders’ points of view.

Systems engineering performance strongly depends on the acknowledgement of existing
tools, techniques, methods, experience, standards, principles, and concepts (INCOSE, 2021b).
The larger this background knowledge, the higher the chances of finding initial solutions and
potential alternatives to problems reported by the different stakeholders. The final performance
evaluation enables to characterize how well the developed systems support the decision-
making of the end-user, that way defining the level of satisfaction of the customers (Haskins,

2008).

Therefore, the present thesis relies on using a SE mindset to address the different objectives
reported in sub-section 4.1.

Additional task-specific methods have also been used for the realization of the present
thesis. Those can be grouped in the following clusters:

- Literature review & business understanding.
The fields that were explored can be listed as following: risk analysis, machine learning,
metadata analysis, meta-learning, data quality analysis, power grid functioning, power
grid management.

- Technological and technical benchmark for data acquisition and processing
possibilities.
The main data sources that were explored can be listed as following: satellite images,
aerial orthophotos, aerial inspection images, photogrammetry point clouds, LiDAR
point clouds, weather records, multiple GIS mapping systems. An extensive list of
sources for which data is publicly available has been reported in appendix B of Article
VIII. The tools used during this Ph.D. to analyse such datasets are available in Table A
of Appendix A.

- Knowledge sharing.
Most of the contributions provided in the present thesis came as a result of diverse
collaborations. Those consisted of workshops, group discussions, brainstorming
activities and communications with experts in various fields. Such close and regular
contacts with the different industrial partners and other relevant stakeholders was
particularly facilitated in the industrial Ph.D. configuration.
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6.3.Research methods

A part of the relevant research background referring to the fields and methods mentioned
in the research strategy has been provided in section 2. The present subsection succinctly
reports additional details relative to the most relevant and potentially less trivial methods not
yet described. Those methods were used as tools to identify and process the various datasets
relevant to the thesis. The reader is directed to the articles in Part II of the thesis for further
details on their application.

6.3.1. Bow-tie analysis (Articles: I, IV)

The bow-tie analysis is a well-established method (Paltrinieri and Khan, 2016). It highlights
the relations between a critical event (CE), the scenarios that can lead to the CE (causes), the
scenarios that can result from the CE (consequences) and the barriers enabling either to prevent
the causes or mitigate the consequences of the critical event (Delvosalle et al., 2006). As such,
the bow-tie diagram can be seen as the combination of both a fault tree (FT) and an Event Tree
(ET). An FT follows a top-down logic and enables to report the link between the CE and single
basic events (e.g., component failures, environmental conditions, human errors, and normal
events). On the other hand, an ET follows a forward logic. It enables to map the different paths
that can be followed after the occurrence of a CE. Both the Fault Tree and the Event Tree can
be used as a qualitative and/or quantitative. Therefore, the bow-tie diagram can also be used as
in a qualitative or quantitative way (Raussand, 2011).

A bow-tie diagram (see Figure 6-1 as an illustration) is thus an easily understandable tool
that can particularly facilitate the reporting of risks. Note that multiple critical events can result
from a unique hazard and that one bow-tie diagram should be prepared for each of the critical
events.
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Figure 6-1: General representation of a bow-tie diagram.

32



Research Approach

6.3.2. Machine learning (Articles: III; V-IX)

Machine learning is a broad and well-known field, which aims to teach computers how to
learn from experience (Samuel, 1959). Machine learning-based solutions enable to automate
redundant processes, therefore providing numerous opportunities to save resources. They make
use of recognizable patterns to facilitate the decision-making of the end-user. Methods used in
the early ages of machine learning were mainly statistic-based. For instance, the multiple linear
regression (MLR) is one of the simplest statistical technics. It uses a vector of inputs (i.e., the
explanatory variables) to predict the value of a response variable (Andrews, 1974). An input
vector XT = (X1,X5,...,X,) and the output Y can thus be linked by using equation (Eq. 6-1)
(Hastie et al., 2009):

p
Y =P+ ijﬁj (Eq. 6-1)
j=1

where B, is the defined as the bias and the coefficients ﬁj represent the model weights. The
coefficients are estimated using a training set and the model is eventually used to generate
outcome predictions for a new unseen input vector.

Although machine learning is not a new field, it has regained more attention in the last
decade for 3 main reasons:

- Data generation and storing capacities.
More and more data are made available by the digitalization of our society.
Additionally, storing costs have drastically decreased. A white paper from the
International Data Corporation (IDC) predicted in 2018 that the global datasphere
would reach up to 175 Zettabytes by 2025 (Reinsel et al., 2018). This number can
nowadays be expected to be revised upwards due to the COVID-19 pandemic and the
extensive use of remote working.

- Deep Neural Networks (DNNs).

DNNs correspond to Artificial Neural Networks (ANN) with a multitude of hidden
layers between the input layer and the output layer. The concept of ANNs (i.e., having
a computer program trying to mimic the brain functioning (Goodfellow et al., 2016)) is
a relatively ancient concept as well (Rosenblatt, 1958). However, DNNs models are
able to integrate multiple levels of abstraction. They do so by dividing a complex
representation (e.g., a car) into a combination of simpler elements (e.g., wheels, doors,
windows, etc.). Those can then be further divided in even simpler concepts, such as
contours, corners, etc. — and so on down to pixel level (Nguyen, 2019). DNNs have
proven to be particularly helpful in multiple fields (Computer vision, speech
recognition, fraud detection, etc.) but are also particularly resource demanding.

33



- Graphics Processing Units (GPUs).
The rise of DNNs is directly linked to the possibility of using GPU-accelerated
computing (Mittal and Vaishay, 2019). GPUs correspond to specialized processors
initially used for memory-intensive graphical computation, such as texture mapping
and rendering polygons. This capacity to handle memory-intensive tasks has revealed
to be particularly helpful in the development of DNNs and GPUs have enabled to
drastically reduce the training and testing times (Mittal and Vaishay, 2019).

Machine learning models can be particularly powerful once fully trained. They have been
applied in a diversity of cases (object recognition, self-driving cars, etc.) and have even
outperformed humans on tasks such as medical diagnostics, gaming or fraud detection
(Brynjolfsson and Mitchell, 2017; Buetti-Dinh et al., 2019; Froomkin et al., 2019). However,
most of those models are only performant for a specific type of tasks and can hardly be
transferrable to other duties.

Meta-learning comes as a potential facilitator when facing such a problem. It aims to “learn
how to learn” by considering both positive and negative experiences during the execution of
different machine-learning algorithm (Giraud-carrier, 2008). This experience is then taken into
consideration to inform meta-features, which are used to characterize performance differences
between the considered algorithms (Vanschoren, 2018). Correspondences between a
previously considered task and a newly considered task can then be used to select the models
that would most likely provide the best results in the new configuration (Pimentel and de
Carvalho, 2020).

6.3.3. Pre-processing actions and use of newly generated features (Articles: I, III,
VI-X)

Multiple pre-processing actions were executed after the technological benchmark and the

acquisition of the datasets considered for the present thesis. Examples of such pre-processing
steps are:

- photogrammetry point cloud generation,

- photogrammetry and LiDAR point cloud filtering and classification,

- various types of distance measurement in the point clouds between pre-selected clusters
(e.g., vegetation-power line),

- various projections and mappings,

- aggregation of satellite images,

- satellite images analysis and classification,

- etc.

Exploring the selected datasets and applying those pre-processing steps enabled to identify
the parameters that could be informed by the datasets originating from data sources identified
as relevant for a risk analysis. This came in addition to the knowledge acquired through
discussions with the relevant stakeholders and through the literature reviews.
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The globally cumulated knowledge enabled to propose an amelioration of existing risk
assessment frameworks. This improvement is first based on reinforcement actions able to (1)
adequately characterize the type of information one is looking for in a risk analysis and (2)
correctly identify where this information may be obtained. In addition, the improvement is
based on the development a metadata-based method (called the Three-Phases Method)
enabling to reduce uncertainties relative to information acquisition. This method identifies the
informative potential of heterogeneous data sources and dynamically ranks the datasets
originating from those sources to select the most informative dataset for a risk analysis. A
shortened overview of the method is provided as a main contribution of this Ph.D. in sub-
section 7.2, while a full description of the method is provided in Article VIL
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7. Contributions

The present section reports the main research findings of this doctoral project by briefly
summarizing the principal contributions of the articles present in Part II. The contributions in
sub-sections 7.1 and 7.2 are mainly focused on the development and implementation of
Dynamic Risk Analysis (DRA) & DRA-focused technical solutions in practice, while the
contributions in sub-sections 7.3, 7.4 and 7.5 are principally focused on supporting power grid
operations in real-world circumstances.

7.1.Contribution I: Increasing data acquisition opportunities for QRAs.

- This contribution aligns with objective 1.1, including sub-objectives 1.1.1 and 1.1.2.

- The following articles contributed to address sub-objective 1.1.1: L, 1L, III, IV, V, VI,
VII, VIII, IX, X.

- The following articles contributed to address sub-objective 1.1.2: I, I1I, VI, VII, VIIL

The known data scarcity in the field of risk analysis calls for alternative, conventionally
and/or non-conventionally used data sources to better picture the status of industrial facilities.
Multiple research activities have been executed in that direction and enabled to identify various
data capture and processing technics & tools (sub-objective 1.1.1).

All the articles prepared during this doctoral project refer to data sources and datasets
providing valuable information for risk analysis in power grid management. The ones I mention
in the following enable to cover the complete list of data sources we have identified. Article I
looks into a database of automatically classified power poles and suggests a combination with
meteorological data to identify links between cracks in wooden poles and weather conditions.
Articles IT then addresses the problem from a more general perspective and reports a list of data
sources that can be used in predefined use-cases. Those use-cases highlight hazards, issues and
challenges that utilities can face while managing their power grids. The ways suggested to
exploit the reported data sources also represent as many research avenues addressable by the
grid operators based on the topics they consider being the most relevant. Article III suggests
considering additional data sources such as topographical wind exposure or human population
density to better characterize both the probability and consequences of power outages. Article
IV additionally proposes as an opening to investigate sources of information enabling to
characterize the impact of human factors. Indeed, both internal factors (e.g. distraction, fatigue)
and external and organizational factors (e.g. human-system interface quality, procedures,
workplace adequacy) influence the operator’s decision and need thus to be investigated to
reduce the impact of human errors in the decision making process. Article V focuses on the
Major Hazard Incident Database (MHIDAS) (AEA technology - Major hazards assessment
unit, 2003) to predict the severity of incidents based on historical data. This work indicates thus
how power grid operators may use the incident databases they can access but do not necessarily
use for quantitative risk analysis.

All articles except [ and V reported in Part II focus on a case-study addressing the problem
of vegetation along power lines. Article VIII provides the most detailed overview of the type
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of data sources that we have identified as relevant when assessing the probability of a tree fall
on a power line. This list can be reported as follows:

- Orthophotos based on satellite images,
- Orthophotos based on aerial images,

- Aecrial optical inspection images,

- Photogrammetry point clouds,

- Meshed photogrammetry point clouds,
- LiDAR point clouds,

- Forest surveys (Map),

- Pests/fungi surveys (Map),

- Soil surveys (Map),

- Topography (Map),

- Topographical wind exposure (Map),
- Weather historical data,

- Weather predictions,

- Clear-cutting operations history,

- Planned clear-cutting operations.

Both Article IT and VIII provide links to downloadable datasets, which facilitates access to
data to other stakeholders (researchers, grid operators, etc.) and favours reproducibility of the
results provided in this thesis.

Once identified and downloaded, knowledge and tools are required to explore the
informative potential of the datasets. Table A in Appendix A provides a summary of all the
tools that have been used for the realization of the present thesis.

Attempting to include new types of data sources in a risk analysis implies nevertheless to
understand how a heterogeneity in the dataset attributes can influence the process. It requires
specially to assess the impact of data resolution variation on the risk analysis performances
(sub-objective 1.1.2).

Articles I and VI properly illustrate the scale variability that can be encountered when
considering the analysis level of a research project. Article I considers an asset database
reporting the impact of a phenomenon starting on microscopic level (i.e., apparition of crack
in wooden poles due to the hygroscopic behavior of wood (i.e. tendency to absorb humidity)).
On the other hand, Article VI focuses on using satellite images to assess the status of vegetation
along the lines (macroscopic perspective). Such a scale variability plays an important role in
the feasibility of the analysis, both analytical performances and processing costs being directly
correlated. There is thus a need to adequately identify how the use of resources shall be
optimized when attempting to obtain both a local and global understanding of a large-scale
infrastructure.

The work in Article III highlights the acknowledgment of this reality. It proposes to
capitalize on the advantages of both levels of analysis. It merges a top-down analysis (macro)
with a bottom-up analysis (micro) to optimize resource exploitation in the management of
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vegetation along power lines. Such a requirement is formulated more generically in the
development of the approach and method proposed in Article VII and applied in Article VIII
(see contribution II).
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7.2.Contribution I11: Augmentation of conventional risk assessment frameworks enabling
dynamic data integration.

- This contribution aligns with objective 1.2, including sub-objectives 1.2.1 and 1.2.2.

- The following articles contributed to address sub-objective 1.2.1: VII, VIII, X.

- The following articles contributed to address sub-objective 1.2.2: III, V, VI, VII, VIII,
IX.

The possibility of considering new, different and more datasets supports the
implementation of dynamic risk analyses in real-case configurations. However, this also comes
at the costs of some structural changes in conventional risk assessment frameworks and
requires the implementation of multiple safeguards (sub-objective 1.2.1).

As a simple initial option, the work executed in Article X suggests looking, prior to the risk
analysis calculations, at the level of agreement between heterogeneous datasets informing
about the risk level in a specific situation. This cross-validation suggestion builds on an
extension of Kaplan & Garrick’s definition of risk previously provided by (Aven and Krohn,
2014). Aven and Krohn do indeed suggest including the knowledge dimension to the original
triplet scenario, probability, consequence. We propose further decomposing the knowledge
dimension into two indicators: (1) the number of sources available to inform a specific
observed parameter and (2) a veracity indicator, capturing the agreement level across the
considered data sources. Considering this type of indicators is a common approach for data
validation and reconciliation (Narasimhan and Jordache, 2000) to qualify the veracity of
information, which motived our suggestion for the field of risk analysis. Integrating this type
of quality controls increases the pertinence of results provided by risk analysts by reducing the
uncertainty level relative to the validity of the considered data. This becomes even more
relevant when potentially considering data sources with lower trust levels.

The work in Article VII provides a complementary, more holistic and more detailed
description of the modifications that can be suggested to favor the integration of heterogeneous
datasets in conventional risk assessment frameworks. In fact, the benefits and limitations
relative to the use of datasets with various resolution level (cf. contribution I) can first be used
to highlight the importance of adequately establishing the context prior to a risk analysis. Risk
analyses applied in real-world configurations will always be restricted by resource constraints
limiting the possibilities of capturing and transmitting information, therefore directly impacting
the analytical outcome possibilities. The simultaneous definition of both the objectives of the
risk analysis and the resource budget that will be allocated to that task thus directly determine
the best level of information that will be reachable for the project. This assessment of the best
available level of information (also called “level of convergence”) is a task that is suggested as
a first reinforcement action within the approach suggested in Article VIIL.

An item of interest on which a risk analysis will be applied needs to be selected once the
level of information is clarified. The first series of actions in the risk analysis consists then to:

- apply a hazard identification,
- report all the scenarios for each critical event relative to each identified hazard,
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- identify all the dimensions involved in reported scenarios (for both probabilities and
consequences),
- identify all the parameters playing a role in the reported dimensions.

The identified parameters are then characterized in terms of unit, resolution, and range.
This enables to determine reference values to be used to assess the informative potential of
datasets considered in the risk analysis. This characterization is also done from a
spatiotemporal perspective considering that risk analyses are time- and space-specific. As a
final step, all data sources able to inform the reported parameters to any extent possible are also
identified. This strategy is characterized as the second reinforcement action within the approach
suggested in Article VIIL.

Once the reinforcement actions are applied, we suggest further augmenting conventional
risk assessment frameworks by integrating a new action within the process with the purpose to
dynamically manage heterogeneous datasets. This management shall be done based on the
effective informative potential (or “potential of knowledge”) of the datasets, which can be
calculated using the Three-Phases Method proposed in Article VII. Figure 7-1 builds on Figure
2-2 and shows where both the reinforcement actions and the newly suggested actions are
applied. Reinforcement action 1 is further detailed in Figure 7-2 and reinforcement action 2 is
further detailed in Figure 7-3.
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Detailing Step 1 and placement of Reinforcement Action 1 (RA1):
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15) System boundaries & System basis (RA1) 15) Risk acceptance criteria
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Detailing Steps 2. 3 & 4. placement of Reinforcement Action 2 (RA2) and
intergation of new sub-steps for optimized dataset management:

Step 2
Hazard Identification (RA2)

Step 3

Sub-step 31: |dentification of initiating event causes (RA2)
Sub-step 3>: Dynamic ranking of informative datasets (Causes)
Sub-step 35 Assessment of initiating event frequencies

Step 4

Sub-step 4,: Identification of initiating event outcomes (RA2)
Sub-step 4,: Dynamic ranking of informative datasets (Outcomes)
Sub-step 43: Assessment of Event sequences, Performances of
satefy barriers & Magnitude/extent of the event

Figure 7-1: Augmented risk assessment framework Z-013 (NORSOK, 2010). The steps highlighted in
blue and red are the subject of augmentation (reinforcement actions 1 and 2), and the steps 3, and 4, in

green are additional steps related to the optimization of data source/dataset management (Pacevicius et
al., 2022).
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Reinforcement Action 1: Definition of Level of Analysis.
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Figure 7-2: Reinforcement Action 1 - Level of analysis of a risk assessment defined as tradeoff decision
between stakeholder expectations and analytical possibilities (Pacevicius et al., 2022).
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Figure 7-3: Reinforcement Action 2 - Identification of parameter characterization requirements and
data sources potentially exploitable for the risk analysis (Pacevicius et al., 2022).
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The management of various heterogeneous datasets considered for risk analyses has enabled
to learn 3 main lessons:

1) The best level of information a dataset can provide is directly determined by the
nature of the file (i.e., its type and format).

2) The informative potential of a dataset considered for a risk analysis is directly
impacted by discrepancies existing between the spatiotemporal characteristics of
the scene to analyse and the spatiotemporal characteristics of the considered dataset.

3) The informative potential of a dataset considered for a risk analysis is directly
impacted by the trust one can assign to the origin of the information.

Therefore, the Three-Phases Method aims at building on this knowledge to rank
heterogeneous datasets based on the effective potential of knowledge they are synonym of. It
capitalizes on the fact that metadata coming with most datasets usually contains information
usable to draw conclusions regarding this knowledge. The Three-Phases method, illustrated on
high-level in Figure 7-4, characterizes the final informative potential of a dataset by:

1) First, calculating the Default Maximum Potential of Knowledge of the dataset
(application of lesson 1).

2) Then, applying a first degradation factor characterizing spatiotemporal
discrepancies to obtain a first updated version of the dataset’s potential of
knowledge (application of lesson 2).

3) Finally, applying a second degradation factor characterizing the trust in the origin
of the data to obtain a second updated version of the dataset’s potential of
knowledge (application of lesson 3).

Dataset Potential of Knowledge: 3-Phases Method Description
Phase 1 - Default Maximum Phase 2 - Application of Phase 3 - Application of
Potential of Knowledge (DMPK) calculation first Degradation Factor (DF;) second Degradation Factor (DF;)
Informative Informative i Informative
Potential Potential . ! Potential
H Degradation of
Perfect : informative Degradation of
correspondence | 1 . potentialdueto | 4 informative
to reference [ (Max) | ] spatiotemporal : ] potential due to
values. discrepancies : P trust assessment
Default Maximum } i
Potential of : g
Updated Potential | > Updated Potential
speciicdmaset ofKnowedge | ok
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Figure 7-4: Three-Phases Method Description. The figure shows the progressive degradation in the
assessment of a dataset’s informative potential when compared to the originally required level of
information, as defined during the application of reinforcement action 2 (Pacevicius et al., 2022).

Eventually, the metadata-based approach developed in Article VII has multiple advantages.
First, it enables to better foresee which level of insights can be obtained based on the definition
of the previously reported convergence level. Second, it enables to objectively and
quantitatively determine the type of information that must ideally be sought. Third, it highlights
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when, for which reason and how old and new data sources shall be integrated in the risk analysis
process. Forth and foremost, the approach enables filtering large databases more efficiently,
optimizing thus the dataset selection process. It keeps only the dataset that minimizes the
uncertainties relative to data acquisition and contributes that way to a more accurate risk
depiction. As datasets are compared based on reference values relative to the parameters and
defined during ideal information quantification, it offers the possibility to assess the
informative value of a dataset on a parameter-by-parameter evaluation rather than as a whole,
which may otherwise lead to inappropriate discarding of usable datasets. It contributes thus
also to making the risk assessments even more dynamic by reducing the data processing time
and costs. Finally, the strong industrial context in which the method was developed also
maximizes the chance of applicability in real-world situations. This statement is also
strengthened within Article VIII, corresponding in an application of the proposed approach on
a case-study with real-world data.

The metadata-based approach illustrates how experience can be gained from the machine
learning field to support the application of dynamic risk analysis in practice. The essence of
dynamic risk analysis is indeed to automatically adapt the risk analysis based on context
modification. Context modification may include system structural changes, environment
context changes, modelling upgrades or changes in data delivery modes. Machine learning can
contribute to the automatic acknowledgment of such changes, favouring that way the
implementation of more dynamic risk analysis solution. However, there is nowadays still a
limited understanding on how this could be further applied in practice. The exploitation of
machine learning-techniques was thus also investigated in alternative ways in this thesis (sub-
objective 1.2.2).

A benchmark and analysis of existing applications in the field of machine learning enabled
to first conceptually assess how machine learning could support the development of analytical
pipeline focusing on risk analysis in power grids (Article III). Based on those conclusions, we
decided to develop a computer vision-based solution able to automatically classify vegetation
along power lines on satellite images (Article VI). Focusing on a Pléiades-1 satellite image, the
final solution enabled for instance to correctly detect areas with low outage probability by
98.2% and areas with high outage probability by 84.6%. Both the outcomes of Article III and
VI eventually inspired the GridEyeS platform developed and presented in Article IX.

Finally, machine learning was also used for preparing Article V, where we explored how
one could automatically learn from past experiences to improve future risk management. The
idea was to train a computer to predict the severity of future outages considering that large
amounts of information are continuously collected in the form of lessons from past events.
Multiple linear regression and deep neural networks were considered for developing and testing
models on the MHIDAS database. We eventually identified and discussed the inherent
limitations of the techniques.
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7.3.Contribution III: Supporting the development of power grid-dedicated risk-focused
solutions usable in practice.

- This contribution aligns with objective 2.1, including sub-objectives 2.1.1, 2.1.2 and
2.1.3.

- The following articles contributed to address sub-objective 2.1.1: IIL, IV, VI, VIL, IX.

- The following articles contributed to address sub-objective 2.1.2: I, II, VI, VII, IX, X.

- The following articles contributed to address sub-objective 2.1.3: 11, VII, VIII, IX.

The reported challenges regarding continuous and reliable data acquisition, as well as the
lack of methods enabling to dynamically manage the collected datasets have both hindered the
application of risk-based approaches in the field of power grid management. The experience
acquired during the doctoral project in those two fields enabled to suggest several ways to
support the development of new risk-focused tools for better power grid management (sub-
objective 2.1.1).

Several high-level challenges impacting a developed solution's performance need to be
acknowledged when considering constructing new tools. When considering the use of new
tools, power grid operators do indeed ideally wish to access solutions:

- better answering their needs with more precise results,
- with results provided in a timelier way,
- with results provided in a user-friendly way.

At the same time, power grid operators are also:

- limited in terms of available budget,

- particularly averse to uncertainties,

- requesting to limit the number of indicators in a solution to avoid overwhelming
operators during emergency situations (i.e., human factor impacts).

We considered those constraints and addressed the problem from different perspectives.

Article III addresses the development of solutions by mainly focusing on the need to
optimize the use of the resources.

It starts by suggesting using maps and large-scale remote sensing technologies such as
satellite imagery to obtain a global picture of the infrastructure under review (top-down
process). From there, it detects Regions of Interest (Rol) for which more detailed information
is assumed to be required. A detailed inspection can then be executed on-site (bottom-up
process) to confirm or reject conclusions made at the end of the top-down process. The acquired
data and the final conclusions are sent back to the database via a feedback loop. After the first
cycle, an implementation of a continuous data quality assessment (e.g., using the metadata-
based approach developed in Article VII) will enable to assess if sufficient data is available or
if further data needs to be acquired (cf. decision-making process described in Article IV).

The combination of the top-down and bottom-up processes is based on technological
possibilities. It illustrates how data processing may be organized in the analytical pipeline to
obtain both a global overview of the infrastructure and more local insights where required. This
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enables thus to improve mission prioritization and increase responsiveness while at the same
time avoiding the use of resources on unnecessary inspections.

Article IV addresses the development of solutions by particularly focusing on the end-
users’ expectations and highlights the implications of a higher access to data with this regard.

The starting point on which Article IV is built consists of stating that the user needs that
were addressed in the past when developing an analytical solution was defined by the
limitations coming with little data. However, the current digitalization of society offers
numerous new ways of acquiring data for an infrastructure under review. This calls thus for a
restructuring of the way solutions are developed so that more end users' needs are met.

Therefore, we suggest starting by reversing the pipeline construction process and suggest
thus the following steps:

- list the various possibilities available to an operator needing to make a decision,
- identify the type of information required for each possible decision,
- shape the solution in a way that enables to report that information.

Although the concept seems relatively simple, its implementation has been hindered by
former pre-conceptions of solutions and by the lack of possibilities enabling to adequately
retrieve the right information. The Three-Phases Method developed in Article VII may here
again be applied to support the process, enabling thus to increase the end-users’ satisfaction.

Article IX addresses the development of solutions by particularly focusing on the technical
aspects of the pipeline construction, showing step-by-step which analytical action needs to be
executed.

The structuring of this pipeline is based on the philosophy of both Article III and IV. It
considers the user needs and the different technological possibilities for data acquisition. It also
capitalizes on the result of Article VI, enabling to detect vegetation along the line. In addition,
it also integrates the possibility of combining information relative to different hazards (here
vegetation and wind). The analytical pipeline is then integrated into a platform, which aims to
evolve and integrate information relative to additional hazards in the future. This platform
reports the connections and the information flows between (1) the databases, (2) the processing
unit, and (3) the different possibilities to report the information (Dashboard, APIs, etc.) on
demand. In its current status, the platform enables to display interactive maps reporting the
vegetation status along the power lines as well as likelihood of outage functions relative to
wind induced outages.

The developments of the proposed solutions do however also imply additional analytical
constraints that can strongly impact the pertinence of the provided results (sub-objective 2.1.2).
In particular, they show that one needs to:

- understand how datasets can be compared when addressing one specific hazard,

- understand which datasets can be combined when addressing one specific hazard,

- understand how to combine insights regarding different hazards simultaneously
considered within the scope of a risk analysis,
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The part of the work summarized in Contribution II suggests ways to compare data and to
deal with conflicting information when datasets are considered individually (Article VII and
Article X). However, one may also need to combine insights from multiple non-synchronised
datasets to extract a specific information. We faced for instance such a situation during the
preparation of the work reported in Article VI. In that particular case, LIDAR point clouds
captured in September 2019 were used as ground truth for detecting vegetation on satellite
images captured in both September 2017 and May 2018. We dealt with those temporal
discrepancies by filtering out young trees in the LiDAR point cloud and making additional
assumptions relative to the vegetation growth rate over two years. The topic of dataset
combination to study specific scenarios was also addressed within Articles I and II, but only
on a high-level. Article IX provides, on the other hand, more detailed indications of how 2
different hazards can be analysed in parallel so that a risk analysis can eventually be executed
by considering them simultaneously.

The development of a solution to be used by grid operators also requires the
acknowledgment of real-world constraints directly impacting the likelihood of having the
proposed solutions indeed used in by utilities in operation (sub-objective 2.1.3).

The application of the reinforcement action suggested in the metadata-based approach
(Article VII) needs first to be applied case by case. The budget available for a risk analysis
project might vary considerably from organization to organization. Smaller companies are for
instance more likely to face a lack of financial resources and knowledge in their teams than
bigger utilities. This directly impacts the reachable level of insights and shall thus be clarified
to make sure that the stakeholders’ expectations align with the project's context.

Real-world situations also imply that ideal conditions might not be met. For instance,
heterogeneous technologies used in the development of a system might lead to technological
hardware and/or software compatibility issues, as is highlighted in Article II. This problem is
also raised regarding the use of standards in Article VII and VIII. Different standards may be
chosen by different stakeholders, for instance in the way of reporting metadata. Lack of
compliance with any standard may also be faced, therefore directly amplifying the reported
problems. There is thus a need to emphasize the importance of coordinated application of
standards when reporting metadata, which is also supported by the present work.

Finally, the success of the creation of a solution is also strongly dependent on aspects such
as:

- the intensity of the demand in the market,

- the existence of potential competitors,

- the available analytical capacities of the involved stakeholders,

- the available software development capacities used to build the product,

- a strong business plan ensuring that the solution is financially viable,

- the capacity of regulatory authorities to acknowledge the possible technological
evolutions and adapt the regulation,

- etc.
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Such types of insights were acknowledged but not largely detailed in the development of
Article IX. However, they have been taken into consideration in the application of the
GridEyeS feasibility study (successfully concluded) and in the application of the GridEyeS
demonstration project (application under review).
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7.4.Contribution 1IV: Supporting value generation out of historical data and supporting
decision-making regarding future data captures.

- This contribution is in line with objective 2.2.
- The following articles contributed to address objective 2.2: I, II, III, IV, V, VI, VII,
VIIL, IX, X

All the articles prepared for the present thesis provided recommendations usable by power
grid operators to better generate value out of the data they have and/or better support decision-
making regarding future data capture.

In Article I, we suggested a data combination that could help operators to predict cracks in
power poles. In Article II, we paved the way for multiple research avenues by suggesting
combination of heterogeneous datasets in additional specific use-cases and indicated where
data relevant for a Norwegian environment could be accessed. The solutions developed and
presented via Articles III, IV, and IX provide recommendations on how and when the different
datasets could be integrated in the analytical pipelines to optimize the management of the grids.
The outcome of the analytical pipelines enables in particular to objectively decide how and
where future data acquisition should be planned and prioritized based on available resources,
existing data and previous risk analyses executed in specific areas. These solutions thus enable
data-driven and risk-based decision-making instead of calendar-based, enabling to increase the
grid's resilience.

Article V gave suggestions on how outage reports may be used to predict the severity of
future outages based on lessons learned with previous major accidents. Article VI indicated
how LiDAR data could be used to train models detecting vegetation along the lines using
additional satellite data, therefore being able to better predict the probability of tree-fall-related
outages. The article also suggests a way to display the results, which is later integrated into the
development of the platform proposed in Article IX.

The approach suggested in Article VII and applied in Article VIII gives the opportunity to
grid operators to assess the quality of, compare and rank any dataset they consider using for
risk analysis. This assessment can be executed by indicating how each dataset can inform the
parameters relevant in the risk analysis. Depending on the chosen decision rules, one may also
consider using the veracity indicator suggested in Article X, which enables to control the degree
of agreement among the sources when different sources are considered simultaneously.

Article VIII also reports all the types of data sources that have been identified as relevant
to estimating the probability of a tree fall. Similarly to Article II, Article VIII emphasizes the
need to facilitate access to data and provides complementary indications on where public data
could be found. It also reports a list of tools that could be used to work with the different
datasets, which is further reported in Table A of Appendix A.
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7.5.Contribution V: Enabling vegetation management improvement.

- This contribution is in line with objective 2.3.
- The following articles contributed to address objective 2.3: 11, 111, IV, VI, VII, VIII, IX,
X.

Vegetation-management represented the main case-study used to illustrate the applicability
and pertinence of the contributions made in the present thesis. A bow-tie analysis was used to
detail the scenario of a tree falling on a power line in Articles II and IV. Computer-vision was
used to automatically detect vegetation along the power grid using satellite images in Article
VI. The applicability of the metadata-based approach proposed in Article VII was first assessed
for vegetation characterization using simulated data in that same work, and then assessed on
an identical case-study using real-world data in Article VIII. As such, the different general
recommendations and comments made in the previous contributions also apply when focusing
on the specific case of vegetation management. The main implications for vegetation
management along the lines is thus only shortly summarized in the following, also
acknowledging that it partially overlaps with the previous sections.

The different solutions and methods presented in this work will enable grid operators to:

- diversify the data sources they used to consider to assess the status of vegetation along
the lines, therefore increasing their resilience to loss of information and reducing their
dependency on specific data providers,

- increase their understanding of the mechanisms behind vegetation-related outages, and
therefore,

- affine their understanding of scenarios considered in the risk analysis by adequately
identifying and characterizing relevant parameters,

- increase the frequency of risk estimations by increasing the use of remote-sensing
technologies,

- make case-specific risk estimations/improvements by gathering local data, avoiding use
of averaged values and reducing thus uncertainty around risk estimation,

- discover previously unconsidered risky areas,

The final results provided in Article VI and enabling to better predict the probability of
outage due to a tree fall on a power line is based a quantitative indicator called the Tree Density
Index. This indicator considers both the proximity and the density of the vegetation along the
power line, therefore optimally summarizing the vegetation status along the infrastructures.
Combining such insights with the possibility of increasing the number of data sources and
datasets will thus facilitate vegetation management mission prioritization and increase the
responsiveness of the utilities when dealing with this hazard.
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8. Discussion

8.1.Discussion of the 1°' Contribution: Implications of new data acquisition opportunities in
ORAs.

The research activities of the present doctoral project have been applied in the field of
power grid management. The most detailed analyses executed during the Ph.D. have focused
on the case of vegetation along power lines in a Norwegian environment. The type of data
sources reported for that work would very likely be valuable when focusing on other
environments and/or on different hazards. However, alternative data sources may also be
relevant for such new tasks and a new benchmark of available data sources would therefore be
required to complete the existing list. Such a recommendation is even more meaningful when
considering the execution of risk analysis applied on other types of infrastructures. This
comment is also applicable regarding the links provided for publicly available datasets, as they
may be less relevant for analyses applied in a non-Norwegian environment.

One may also discuss the pertinence of considering the variety of data sources that have
been suggested. Indeed, the limited value that may sometimes be provided by the processing
of new types of datasets may not compensate for the processing costs. Therefore, investigating
the potential value of a new dataset needs to be based on the experience of the dataset analysts
and the power grid operators involved in the project. More experience at the beginning of the
doctoral project could for instance have helped to understand that looking for the prediction of
cracks in power poles (Article I) may be a secondary topic considering the low numbers of
disturbances related to pole cracks.

Multiple reasons can lead to similarly inadequate choices in a more industrial context, such
as:

- the lack of human resources,

- the lack of financial resources,

- the lack of technological resources,

- the lack of familiarization with the types of data sources (gap in analytical knowledge).

Understanding where the bottleneck is before starting a risk analysis project enables thus
to optimize the decision-making process. This could, for instance, enable to decide that
investing in operator competency development may be more strategical than spending
resources on acquiring additional datasets. In fact, acquiring data with a higher resolution may
for instance not always be meaningful. The definition of the ideal resolution is indeed defined
during the parameter characterization, (2™ reinforcement action of the metadata-based
approach (Article VII)) and going beyond that resolution would simply result in a waste of
resources.
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8.2.Discussion of the 2" Contribution: Benefits and limitations of conventional risk
assessment frameworks augmentation.

The definition of the level of convergence suggested as a first reinforcement action in the
metadata-based approach eventually aims at maximizing the possibilities to reach the initial
objectives by using the best level of insights possible for the risk analysis considering the
available resources. There may, however, not be a single level of convergence when managing
a discretized large-scale infrastructure. Further work would then be required to assess how the
choice of multiple levels of convergence relative to multiple items of interest should
simultaneously be handled in the management of such an infrastructure. The characterization
suggested in the second reinforcement action only makes sense if one knows how to generate
meaningful models based on the reported parameters. This is a labour-intensive task requiring
a diversity of competencies, which therefore strongly calls for implementing cross-disciplinary
teams. However, we believe that the suggested processing remains the best way of defining
reference values to be used for the later quality assessment of datasets considered for a risk
analysis.

The metadata-based method then uses this information to dynamically rank any dataset that
originates from data sources identified during the second reinforcement action. The application
of this method enables to provide more certain results for a risk analysis, potentially at a lower
cost. However, one should also be aware of the high efforts that may be required during the
implementation phase of the method. Furthermore, additional work in field-specific conditions
is required to ensure that case-specific constraints (definition of weights in the method,
adaptation to different standard choices, etc.) are adequately addressed for the analysis of the
infrastructures under review. This includes for instance the definition of decision rules (e.g.,
use of veracity indicator) to determine if and how multiple datasets should be considered
simultaneously within a risk analysis.

Both the metadata-based approach and the use of the veracity indicators enable to
characterize and/or reduce the uncertainty relative to data integration. By doing so, they allow
reducing the global level of uncertainty in the risk analysis. However, other sources of
uncertainties originating from the choice of the models selected for the quantitative risk
analysis still need to be addressed to increase the pertinence of the provided results.

The metadata-based approach, the computer-vision-based solutions exploited in this work
and the work focusing on outage severity prediction illustrate in various ways how the
machine-learning field can support more efficient risk analysis. However, one should
remember that the performances of machine learning-based solutions are directly impacted by
both the nature and quality of the data used to train the models and the way the models are
developed. The different studies reported in the present thesis highlight thus here again the
need of good practices in data management processes, as well as the need to diversify the panel
of experts involved in the solution development. Furthermore, the presented applications do
obviously only report a limited panel of ways machine learning techniques can be used to
support better risk analysis. Numerous alternative approaches may additionally be explored to
make new risk-focused solutions more accurate, more reactive and more dynamic.
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8.3.Discussion of the 3" Contribution: Benefits and limitations of solution development-
related recommendations

The insights obtained by addressing the objectives in block 1 have enabled the development
of different risk-focused solutions usable in the field of power grid management. Although
addressing the objective of solution development from different perspectives, the different
studies presented in this thesis do logically globally converge to the same direction. Indeed, the
developed solution:

- Are primarily centered around user-needs,

- Acknowledge technical and technological constraints,

- Acknowledge the existence of the main practical constraints faced by each stakeholder
involved in the solution development.

This thesis thus contributes to developing new tools enabling better risk analysis in power
grids.

One may be reminded that the proposed solutions assume an extended data access. The
presented results showed that such an assumption can be valid when addressing the problem
of vegetation along power lines. However, data may not be extensively available when focusing
on other hazards impacting the grid, therefore potentially limiting the extension possibilities of
the solutions we proposed.

Regular benchmarks of technologies and technics are thus continuously required to
maximize the solutions' applicability. Executing such benchmarks might in addition be useful
to explore new dataset combination possibilities. However, combination possibilities also
require further research enabling to understand which type of risk-related insights can be
obtained. Knowing which dataset combination may be valuable is a task requiring both
experience and creativity, calling thus once more for cross-disciplinary teams. It also requires
to further investigate the field of data fusion to implement even better information control
processes.

Further exploring the field of data fusion will enable to assess how additional decisions
rules may be integrated in the proposed solutions. This challenging task requires clarity and
flexibility to enable future adaptations potentially required due to context modifications.

The provided solutions also show multiple additional evolution opportunities. Indeed, the
present thesis mainly focused on vegetation; but numerous additional hazards must be
addressed to provide more comprehensive solutions. Additionally, and although the
management of substations has been explored during the Ph.D., the main type of elements of
the grid that was analysed is overhead power lines. Further elements such as power production
sites and power consumption nodes would also have to be integrated to increase the value of
the developed solutions. Finally, the work presented so far mainly focused on optimizing data
integration for better risk analysis, reducing that way the level of uncertainty when executing
the risk analysis. However, the risk quantification was yet left aside. Such a task is obviously
essential and will be part of future works.
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The proposed solutions were developed in an industrial context, considering real-world
constraints impacting the entire information pipeline (i.e., data capture, data transmission, data
pre-processing, information processing, results transmission). They were also developed in
close collaboration with the end-users and conceptually validated by them. However, they are
still only part of preliminary studies. Turning them into viable commercial products consists
of much larger projects requiring extensive market analysis and a complete software production
plan that needs to be defined on company-level.
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8.4.Discussion of the 4" Contribution: Extension opportunities for value generation based
on historical data and future data capture.

The work presented in this thesis provides multiple recommendations to grid operators on
how to generate value out of the historical data they can access (internal database, open-access
services, commercial data providers, etc.). It does so by reporting multiple use-cases in which
the reported datasets can be used, also reporting how the data may be processed.

The metadata-based approach especially enables utilities to simultaneously assess the value
from a risk analysis perspective of all the data they may access at a given point of time. On this
basis, grid operators can thus easily determine the parts of the network for which a new data
acquisition is the most urgent. In addition, the power grid operators have the possibility to
select the most meaningful data acquisition method by considering the informative potential of
each type of dataset together with their associated acquisition and processing costs.

However, the parametrization required for the method's application remains a complex task.
Utilities would still require specific expertise relative to each of the relevant hazards (e.g.,
forest experts for vegetation, meteorologists for weather) to implement and continuously
control the results of such a solution. This may imply hiring external consultants also coming
at some costs and complicating the solutions' implementation.

Finally, the solutions that have been provided with the present doctoral work have not yet
been implemented in software solutions usable by operators in operation. This remains a
stumbling block that needs to be removed to maximize the support to utilities provided by this
thesis.
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8.5.Discussion of the 5" Contribution: Effective optimization level of vegetation
management.

The different studies reported in this Ph.D. have enabled to obtain a comprehensive
overview of the mechanisms involved in the problem represented by vegetation existing along
power lines. They have also enabled to report the different options available to the operators
when having to deal with that hazard.

Both the capacity to exploit new types of technologies (e.g., satellite images) and the
possibility to objectively compare the informative potential of a dataset with its
acquisition/processing costs provide thus new opportunities to optimize vegetation
management along power lines.

However, the different studies have also shown that further work is required to increase the
performances and applicability of the methods proposed in the different articles. In addition,
vegetation-related quantitative risk modelling still needs to be developed in order to optimally
support utilities. Finally, the number of industrial-level software applications nowadays able to
handle vegetation analysis in a cost-efficient and time-efficient way remains particularly
limited. More work is thus also required in that direction. The existence of this gap has
motivated the preparation of the GridEyeS demonstration project application, currently under
review by the European Space Agency.
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Conclusions & Further Work

9. Conclusions & Further Work

9.1.Conclusion

The digitalization of our society supports the development of tools enabling to make more
dynamic and better risk-informed decisions. This is also true in the field of power grid
management, where the increase of data acquisition possibilities represents a strong
opportunity to reach higher operational performances. Indeed, new technologies and new data
processing technics support power grid operators by facilitating access to more, better and more
frequent infrastructure status data. This contrasts with the lack of data and the lack of adapted
methods that have previously hindered the development of efficient risk-based solutions.

However, the digitalization is also synonym of numerous challenges. For example,
information may originate from a multitude of heterogeneous data sources, therefore implying
heterogeneity in the informative potential of the datasets, as well as different processing
constraints and costs. Such challenges may, in turn, be problematic for the application of risk-
based decision-making. In fact, there is nowadays a lack of solutions enabling to deal with
heterogeneous datasets in the field of risk analysis in general, de facto limiting the number of
solutions in the particular case of power grid management.

This Ph.D. had two main ambitions based on the acknowledgment of the presented
situation:

(1) Supporting the development and implementation of Dynamic Risk Analysis in practice.
(2) Supporting power grid operations in real-world circumstances by enabling better risk-
informed decisions.

Those objectives were addressed by focusing on optimizing the data flow in the information
pipelines. To do so, it first took advantage of the Industrial Ph.D. scheme configuration to get
in close contact with multiple utilities and power grid operators. This enabled to adequately
identify their expectations, their working process and benefit from their field expertise. It
especially enabled to understand how data may commonly be captured during their daily
operations. The research activities that were then executed within multiple real-world industrial
projects then enabled to acquire knowledge and experience with various technologies and
technics for data capture and processing.

Combining this know-how with an academic background in the field of risk analysis and a
systems engineering mindset enabled this thesis to provide the following contributions:

(1) Alternative data sources.

We benchmarked and reported alternative data sources that could be considered for
integration to increase data access within quantitative risk analyses. This also consisted
of referencing multiple open access data sources & tools to favour reproducibility and
knowledge-sharing.
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(2) Augmentation of conventional risk assessment frameworks.

We first made several recommendations to reinforce conventional risk assessment
frameworks. Those mainly aimed at ensuring that all the elements required for an
efficient risk analysis are adequately identified. We then proposed several ways to
compare and/or combine multiple heterogeneous datasets to reduce uncertainties due
to data integration. We also investigated multiple ways of using the machine learning
field to support more automatic and dynamic risk analyses, both in theory and in
practice.

(3) Development of power grid-dedicated risk-focused solutions.
We provided multiple user-driven propositions of solution development to be used
for the construction of risk-focused tools usable by power grid operators in future
operations.

(4) Data use and acquisition optimization in power grid management.
We provided multiple recommendations enabling power grid operators to better
exploit the historical data they can already access. We also provided multiple
recommendations enabling them to plan future data acquisition more efficiently.

(5) Vegetation management improvement.

We facilitated access to alternative data sources, enabling diversification of
information origin in vegetation management. This makes the vegetation-related risk
analysis more complete and more resilient to data source loss. Additionally, we showed
how the different datasets may be integrated and combined to favor better vegetation-
related risk depiction in the context of power grid management.

Eventually, this thesis enabled to contribute to both the development and practical
implementation of dynamic risk analysis in real-world configurations by diversifying data
acquisition opportunities and reducing the inertia coming with data processing. It also enabled
to support the development and implementation of efficient risk-focused tools usable in the
context of power grid management by highlighting how data could be better combined,
compared and integrated into various information processing pipelines, especially focusing on
vegetation management.

9.2. Further Work

The different limitations that have been mentioned in the discussion sections of both the
articles presented in Part II and in the previous sections suggest various opportunities for
further work. We center our suggestions around the five main contributions provided in this
thesis.

(1) Alternative data sources.
There will be a need to look for alternative data capturing processes as long as

spatiotemporal resolution discrepancies will be observed between the reference values reported
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during the parameter characterization and the properties of the datasets used to analyse a scene.
Regular benchmarks of new technologies, tools and data processing technics are thus
continuously required in the future to ensure that the best data capture modes are known to the
various stakeholders involved in the development of software solutions. A process that may
furthermore be applied while waiting for that gap to be filled is -in line with our contributions-
to efficiently combine proactive data acquisition procedures (leading data capture — e.g.,
automatic satellite image analysis) with reactive data acquisition procedures (lagging data
capture — e.g., on-demand data capture in the field). “Efficiently” implies continuously and
dynamically finding the right trade-off between analytical performances (reactivity, accuracy,
precision, etc.) and available resources (time, money, people, material, etc.). This corresponds
to an optimization problem that needs to solved case by case, depending on organization and
infrastructure.

(2) Augmentation of conventional risk assessment frameworks.

The approach suggested for augmenting conventional risk assessment frameworks is
particularly dependent on the quality of data reporting. Therefore, it called for a better
compliance with standards when generating data. Our work could thus be used to illustrate to
the stakeholders involved in data registration how following guidelines is relevant for that task.
Further work should however focus on making the proposed approach more resilient to the
consideration of datasets not conforming with existing standards and protocols. In line with
that suggestion, further work may focus on making the suggested method less dependent to the
assumptions made during the approach development.

We also suggested using the metadata-based approach to take decisions regarding future
data acquisition. However, this suggestion is only based on the default maximum potential of
knowledge provided by the considered data sources. Further work should also look into the
data acquisition costs and frequencies relative to each data source to optimally select the data
sources to consider in the implementation of future inspection procedures.

Further work should obviously also focus on the risk calculations by effectively developing
the quantitative risk models that will enable to optimally exploit the data that has been made
available. With this in mind, future work will especially have to understand the implications of
the interactions between different grid elements on which a risk analysis will have been applied.
Such an investigation is particularly relevant in the case of cascading outages.

Finally, we also suggest investigating how machine learning methods may further support
the development and implementation of dynamic risk analysis. Such investigations may for
instance be particularly helpful to capture the interactions between multiple hazards, enabling
therefore to better link causes and consequences in the risk analyses.

(3) Development of power grid-dedicated risk-focused solutions.

The solutions we have suggested were mainly focusing on the topic of vegetation
management. As we know, multiple additional hazards also represent a risk to power grids.
Further work may thus investigate how the proposed solutions may be extended to other
hazards, looking in particular to the interactions existing between those. As we also pointed
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out in the thesis, the provided results are part of preliminary studies and the solutions have not
yet been coded to be usable in a real software. Further work is thus planned to use the suggested
solutions to develop commercial products.

Additional non-analytical tasks also need to be addressed to ensure the successful
implementation of the proposed solutions. Market analysis, competitor landscapes
investigation and business case reinforcements are for instance required to ensure that the
developed solution will financially be viable in the future. A pedagogical work is furthermore
required to adequately communicate the results to regulatory organizations to enable the
adaptation of existing regulations, which may sometimes hinder the implementation of
innovative processes.

(4) Data use and acquisition optimization in power grid management.

We obviously also suggest to further closely work with utilities to ensure that their needs
are always adequately addressed. This implies further investigating how to get additional value
out of the data they can access. For instance, further work may look into new dataset
combination possibilities to identify the parameters playing a role in the risk calculations.

(5) Vegetation management improvement.

Further work may simply extend the application of the metadata-based approach that
focused on vegetation management. This first implies further characterizing the parameters and
the informative potential of the reported data sources for the two other dimensions influencing
the probability of a tree fall (intrinsic tree stability and external forces). This also implies
investigating the consequence dimension for such a critical event. Finally, this also implies
investigating the second important scenario, focusing on the problem of vegetation growth
under the power lines.

The industrial context in which this thesis has been executed has favoured the outcome of
the provided contributions. It is therefore a strong reminder of the importance of braking
barriers - between industry and academia, as well as between heterogeneous fields of expertise
— to successfully close a project.
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Enabled analysis and
conversion of 3D point
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mesh processing clouds and meshes 8
software
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7 LASTools of point clouds using the
toolbox . s
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application maps
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ABSTRACT: Predicting the occurrence of failures in power grids through specific outage risk predictors is a
primary concern for utilities nowadays. Wooden poles represent core items to focus on in this process. Millions
of them are used worldwide and they are all subject to the risk of crack formation. Analyzing the evolution of
pole cracks is particularly relevant in reliability analyses of power grids for two main reasons. First: the cracks
might highlight previously unconsidered or changing factors, such as unusual local weather conditions (e.g.
overload of ice and/or wind). Second: as cracks provide an access for external threats (e.g. humidity, fungi,
insects) to potentially non-treated internal parts of the poles, they might in turn accelerate the occurrence of
further failures. Evaluating the role of crack formation is thus essential for estimating the risk of outages in
power grids. As climatic variations are known to be among the most influencing factors in the initiation and
propagation of cracks in wooden poles, we address this topic by suggesting a method combining open-access
weather-data sources with information provided by new technologies, such as drones. We first highlight the
influence of climatic factors on the reliability of wooden poles by reviewing studies describing the physical
properties of wood. We then focus our research on a Norwegian case study and show how we can combine up
to 60 years of meteorological information with the information provided by 17,352 geo-localized aerial pictures
of cracked and non-cracked wooden utility poles. We finally discuss the way an indicator constructed on this
combination can be used to predict the formation of cracks and optimize the allocation of decision-maker re-
sources for inspection procedures.

1 INTRODUCTION

The modernization of the society has led to a global
increase of power consumption over the last 50 years
(Refsnzaes, Rolfseng, Solvang, & Heggset, 2006; Shiu
& Lam, 2004; Yoo & Kwak, 2010). As numerous
businesses, public infrastructures and private house-
holds rely on the provision of power for their daily
tasks, there is a need for companies in charge of the
power supply to maximize their capacity and reliabil-
ity in delivering power.

Predicting outage risks and avoiding downtime is
crucial to ensure customer satisfaction. Moreover, an-
ticipating unwanted events directly enables power
utilities to significantly reduce losses and costs. Fi-
nally, it also enables them to optimize resource allo-
cations for the inspection of their infrastructures after

natural disasters (e.g. storms, flooding) or during
scheduled maintenance procedures.

Ensuring this quality of service requires utilities to
use reliable components, from the power source,
through the transmission lines and to the consumption
nodes. Wooden poles are widely used for the distri-
bution part of the power grid (from regional substa-
tions to local substations and from local substations
to end-users) (Eurelectric, 2010).

Identifying the principal factors responsible for the
apparition of cracks in wooden poles represents thus
a main objective for predicting their failures. For this
purpose, we suggest a method enabling to evaluate
the effects of potential predictors. The contribution
identifies the way forward for this research topic and
presents preliminary findings, representing the basis
for future research.
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Figure 1. Outline of the transmission and distribution of power in a power grid, going from the production sites to the consumption
nodes. Adapted from (U.S.-Canada Power System Outage Task Force, 2004).

The rest of the paper is constructed as follows. Sec-
tion 2 provides an overview on wooden poles charac-
teristics and failures. Section 3 mentions various stud-
ies summarizing the main properties of wood on
microscopic level. On this basis, it highlights the in-
fluence climatic variations can have on the physical
structure of wooden poles. It furthermore shows how
the variations can affect the reliability of the pole and
thus of the transmission line. Section 4 describes the
strategy applied to provide values of a crack-appari-
tion likelihood using a Norwegian case study. It ex-
plains the choices made in the selection of the differ-
ent datasets and the methods used to acquire them.
Section 5 discusses the pros and the cons of the
method used and shortly describes plans for future re-
search. The last section finally concludes our work by
summarizing and suggesting additional research pos-
sibilities.

2 WOODEN POLES CHARACTERISTICS
AND FAILURES

Figure 1 shows schematically how power is delivered
from a generating station, through transmission and
distribution lines (respectively maintained by Trans-
mission System Operators (TSO) and Distribution
System Operators (DSO)), to different categories of
end customers. Wooden utility poles used in the
power grid exist in different shapes and configura-
tions, depending on the physical requirements of the
power lines, on the geographical conformation of
their location, and on their position in the transmis-
sion or distribution line (see figures 2-4 as illustra-
tions).

Figure 3. Second example of the shape of a wooden tility pole
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Figure 4. Third example of the shape of a wooden utility pole

Despite the variety of the existing shapes and con-
figurations, the number of elements basically com-
posing an electrical pole is relatively limited. A
wooden utility pole is generally composed of one or
more wooden poles, one or more cross-arms and mul-
tiple insulators responsible for the junction between
the electrical cables and the pole. Figure 5 schema-
tizes this assembling.

Figure 5. Basic components of a wooden utility pole: poles
(brown), cross-arm (grey) and insulators (green) (Refsnes,
2008)

Using wooden utility poles has multiple ad-
vantages in comparison to concrete or steel utility
poles (Bolin & Smith, 2011; SEMCO, 1992; Stewart,
1996)

- They are lighter and easier to transport on

mountainous fields.

- They do not require earthing, which makes

them interesting when lightning occur.

- They are easy to produce in wooded areas (e.g.

Canada, Norway).

- They generally have a reduced environmental

impact.

- They have interesting lifetimes, possibly going

up to 75 years in favorable conditions.

Identifying the main threats for wooden utility
poles enables to look for root causes of failures. This
gives the possibility to estimate their effective re-
maining lifetime and optimize their replacement be-
fore any outage.

In their review on power line inspection proce-
dures, Nguyen et al. (Nguyen, Jenssen, & Roverso,
2018) summarize some of the main common faults of
power line components. They identify the apparition
of cracks in the wooden poles as being one of the
main failure to identify during visual inspection pro-
cedures. An additional review of the literature shows
that there is need for inspection protocols enabling to
recognize and assess cracks in timber structures in
general (Dubois, Chazal, & Petit, 2002; Riahi,
Moutou Pitti, Dubois, & Chateauneuf, 2016) and in
wooden poles in particular (Morrell, 2012) .

Identifying cracks is fundamental for two main
reasons:

- First, as “stresses perpendicular to grain induce
cracks which propagate longitudinally”
(Coureau & Morel, 2005), we can consider
multiple apparitions of significant cracks as be-
ing indicators of the presence of stress factors.
This can for example suggest the existence of a
localized area subject to harsher weather condi-
tions (e.g. overload of ice and/or wind) (Wong
& Miller, 2010) and prompt deepened analysis
of the concerned region.

- Second, as cracks provide an access for external
threats (e.g. fungi, insects, humidity) to poten-
tially non-treated internal parts of the poles,
their existence might accelerate the apparition
of decay (Morrell, 2012; Refsnzes et al., 2006;
SEMCO, 1992). This permanently alters the
structural resistance of the pole and considera-
bly increases its probability of failure.

3 WOOD PROPERTIES AND POTENTIAL
INFLUENCE OF CLIMATIC VARIATIONS
ON CRACK APPARITION

The theory of fracture mechanics has mainly been de-
veloped since the first half of the 20 century. Initi-
ated by A. A. Griffith in 1920 (Griffith, 1921), it has
then been popularized by G.R. Irwin in 1958 (Irwin,
1958) and is since being widely used to analyze the
origins and consequences of crack apparition in phys-
ical objects. Focusing on the microscopic level, it en-
ables to provide models describing the “mechanical
behavior of cracked materials subjected to applied
load” (Perez, 2017) .

Multiple studies use this theory as a basis for the
evaluation of crack growth in wooden structures
(Barrett, Haigh, & Lovegrove, 1981; Coureau &
Morel, 2005; Dubois et al., 2002; Riahi et al., 2016).
A characterization of the structure is initially made on
microscopic level to understand how wood behaves



when it is subject to a modification of its external en-
vironment (load variation, climatic variation, etc.).
Figure 6 shows the structure on microscopic level of
a typical softwood. It highlights the anisotropic char-
acteristic of wood and intuitively shows that cracks
are more probable to occur parallel to the direction of
growth of a three (longitudinal direction).

Figure 6. Typical softwood structure showing orientation of lon-

gitudinal (1), radial (r) and tangential (t) directions (Barrett et al.,
1981).

Wood being furthermore a viscoelastic material,
its physical properties (e.g. modulus of elasticity, vol-
ume) are directly influenced by their environment.
This is due to the hygroscopic behavior of wood (i.e.
tendency to absorb humidity) and implies that physi-
cal properties of wood are highly sensitive to the me-
teorological properties of its surrounding (especially
temperature and humidity) (Chaplain & Valentin,
2010; Hamdi, Moutou Pitti, & Saifouni, 2017; Lamy,
2016; Morrell, 2012; Refsnzs et al., 2006; Saifouni,
2014; Thybring, Lindegaard, & Morsing, 2009).

Because of the former functionalities of their cells
during their living period and because of the varia-
tions in their environment during their growth, me-
chanical properties of timber-based structures can
furthermore be locally modified. This includes struc-
ture modifications due to natural defects such as
knots, rotten knots holes or cracks due to freezing
lifeblood. Combined with the application of external
loads (e.g. wind, ice on the wires in the case of
wooden poles) and the modification of its internal
structure due to temperature and humidity variations,
there is a fertile ground for the apparition of cracks.

! eSmart Systems: www.esmartsystems.com
2 NVE: www.nve.no

3 seNorge: www.senorge.no

4 DATA ACQUISITION AND PREDICTION
METHODS

Utility companies in Norway use over 3.5 million
wooden poles in their power grids to support over
25,400 km of electrical overhead lines (Eurelectric,
2010; Refsnzs et al., 2006). The Norwegian IT com-
pany eSmart Systems' is specialized in digital intelli-
gence and uses artificial intelligence to support Stat-
nett, Norway’s TSO, as well as some of the main
Norwegian DSOs (e.g., Lyse Elnett, Ringeriks-Kraft
Nett, Troms Kraft Nett, Hafslund Nett). In particular,
the algorithms used by eSmart Systems automatically
identify specific objects and recognize pre-defined
faults, such as cracks on wooden poles (see figure 7
as an illustration). This enabled us to access a data-
base of 17,352 geo-localized aerial pictures of
wooden utility poles, from which 5383 are classified
as cracked.

N & :;/
Figure 7. Wooden pole where a crack has been localized on the
mast (see rectangle).

In most of the cases, two to three pictures of a
unique utility pole were taken from different angles.
This was done to ensure having accurate information
for each of the observed poles without suffering from
hidden information. We merged this information with
the exact geographical coordinates of the electric
poles, made available by the Norwegian Water Re-
sources and Energy Directorate (NVE)?. We could
thus analyze a dataset of 7653 geo-localized wooden
utility poles, either classified as cracked or not.

In parallel, seNorge® (created in collaboration be-
tween the NVE, the Norwegian Meteorological Insti-
tute* and the Norwegian Mapping Authority®) enables
us to access daily observed (or interpolated) records
of the climatic conditions in Norway. Especially, it
enables us to access temperature and precipitation
measures going as far back as 1957.

4 Norwegian Meteorological Institute: www.met.no
3 Norwegian Mapping Authority: www.kartverket.no
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Figure 8. From left to right: main axes of the Norwegian electrical grid®; map of the precipitation in Norway on the 1% of August
20177; map of the temperatures in Norway on the 1* of August 20177.

Figure 8 illustrates the type of information made
available by NVE and seNorge. Using a scroll
up/down feature of the websites, it is possible to move
from a global and national overview up to a specific
geo-localized point (in our case, the localization of
the wooden utility poles).

Different approaches are considered in our work.
The purpose is to create an indicator for the likelihood
of crack apparition on wooden poles.

In order to benefit from the high granularity of-
fered by the webservices used, we plan to use daily
records of temperature and precipitation as potential
predictors for a binary classification problem (label-
ing as cracked or not-cracked). Predictive features
can be designed, that summarize at different granular-
ities the daily weather data and extract relevant indi-
cators that correlate with crack appearance. Consider-
ing an extreme reduction, we can for example
summarize the intensity of the meteorological varia-
tion on a localized point into, e.g. a temperature coef-
ficient and a precipitation coefficient. This would
lead to a method using only two predictors when fo-
cusing on this classification problem.

Equation (1) provides an example of the type of
coefficient c that can be used when focusing on a spe-
cific pole.

c= Zn 1Xi — Xi—al (1)
i=2 Xmax—Xmin

Where 7 is the number of daily records since the
installation of the wooden pole observed; i the enu-
meration index; X; the value of the meteorological
phenomenon observed on the specified location on
day i (here in millimeters or in degrees Celsius); Xi-;
the record of the same phenomenon on the same lo-

® https:/temakart.nve.no/link/?link=nettanlegg

7 http://www.senorge.no/index.html?p=senorgeny&st=weather

cation on the previous day; Xmax (resp. Xmin) the max-
imum (resp. minimum) value of the observed phe-
nomenon that has been recorded over the entire
timestamp of observation on the specified location.

Alternatively, predictive features can be automati-
cally learned from the raw temperature and precipita-
tion time series using deep learning techniques. Such
techniques, belonging to the class of artificial intelli-
gence methods (and more especially, to the class of
machine learning methods) are based on recursive
analyses of data over time and/or over space, from
which they identify and highlight step by step the
most relevant characteristics.

High temperatures favor the proliferation of fun-
gus, which weakens the structure of the wood. Fur-
thermore, high humidity levels on extended periods
might soften the wood and make it more sensitive to
sudden external loads (e.g. wind or ice rain). Finally,
the intrinsic properties of wood lead it to easily accept
slow variation of external loads and environmental
conditions but make it particularly sensitive to sudden
variations. These approaches will thus enable us to
identify meteorological patterns favoring the appari-
tion of cracks, as well as located regions where the
likelihood of crack apparition will be higher.

An increase in the period of exposition to external
factors leads to a rise of the probability of crack ap-
parition. This implies that the age of the poles plays a
big role in the suggested methods. However, part of
this information might be missing. In such a case, we
could consider a generic day of installation depending
on the period of installation of the power line in the
observed region.



5 DISCUSSION

The suggested methods enable to evaluate the role
that temperature variations and precipitations have on
the formation of cracks on wooden poles. These
methods have the advantage to be flexible and easily
integrated when accessing additional data sources,
such as daily records of wind intensity and direction,
humidity variations, clouds presence, etc. They are
nevertheless highly dependent on two main facts:

- First, the initial classification of the poles as
cracked or not. This is an important topic as the
size of the cracks directly affects its detection
by the algorithm used to classify the poles.
There is thus a need for utility companies to de-
fine what should be considered as a problematic
crack or not.

- Second, the information initially available on
the poles themselves (e.g. age, maintenance
tasks carried out). This information might be
difficult to access because not necessarily well
reported in the first phases of the grid installa-
tion.

Despite using relatively simple techniques and be-
ing highly dependent on initial parameters, the pro-
posed methods represent a first approach in the anal-
ysis and handling of cracks in wooden poles. This
information may in turn be useful for decision makers
in the prioritization of additional inspection proce-
dures and future maintenance tasks.

It is to mention that our paper only highlights pre-
liminary results of an ongoing research, as the de-
scribed methods have not yet been fully applied. Fur-
ther work will thus focus on the extensive application
and validation of these approaches and provide an in-
depth analysis of the phenomenon of crack apparition
on wooden poles by using additional real data from
the Norwegian network.

6 CONCLUSION

Our paper highlighted the importance for utilities of
early detection and analysis of cracks on wooden
poles. We summarized how environmental conditions
can directly affect the physical properties of wood
and thus favor or limit the apparition of cracks on
wooden poles. In order to better understand and pre-
dict their occurrence, we then suggested two ap-
proaches using pre-classified and geo-localized aerial
pictures of cracked and non-cracked poles in combi-
nation with up to 60 years of meteorological measure-
ments. Further, we saw that, despite being highly de-
pendent on initial information, our approach might
provide useful information for the generation of
maintenance policies. This approach might finally be
a good starting point for researchers wanting to com-
bine fields of expertise such as structural study of

wood on microscopic level and crack detection meth-
ods using image analysis.
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Abstract: Recent advances in IT-related fields are opening up a broad range of novel applications.
This is especially true in the energy sector, where Smart Grid solutions are offering new opportunities
for the monitoring of power transmission and distribution in electrical grids. However, optimal use of
potentially accessible data sources is challenging, and most of the current Smart Grid projects continue
to exhibit suboptimal utilization of heterogeneous information. This situation is also faced when it
comes to the assessment of risks associated to operation of electricity transmission and distribution
networks. As a consequence, current management systems fail to provide accurate estimations of risk
levels in real-world situations. Our paper addresses this issue and contributes to the identification of
possible solutions. The paper identifies a number of heterogeneous data sources which could be
relevant for risk assessment, but which are currently not fully exploited. Furthermore, the paper points
to valuable relations existing across these data sources, that promote a better understanding of real-
world situations and empower a more accurate analysis of well-known or newly identified risks within
the framework of Smart Grids.

Keywords: Risk assessment, Smart Grids, Heterogeneous Datasets, Data Acquisition, Link
Identification.

1. INTRODUCTION

Digitalization offers numerous advantages thanks to the progress made in the IT field (e.g., increase of
memory capacities, increase of processing capacities, development of cross-technologies collaboration
platforms). For instance, it enables to interconnect devices, to access them through multiple
communication networks in real time, and to handle the large quantity of data they generate and
transmit. “Smart Grids”, which represent an example of this idea application in the energy sector, offer
interesting perspectives for the management of power grids.

There may be several benefits of Smart Grids, such as: higher demand response with minimized costs,
reduction of the environmental impact and integration of renewable energy resources, and resilience to
disturbances as well as electrical stability in the grid.

Smart Grids may also enable system operators to reduce outage risks by getting access to previously
unconsidered data, ranging from weather forecasts to social network data. Combining outage reports
with weather reports could for example improve risk monitoring in regions with harsh climatic
conditions. This approach has been previously explored in some projects [1], [2], whose focus has
especially been set on the impact of climatic conditions. Unfortunately, current researches do rarely
fully exploit the real precision degree offered by todays IT solutions and services, and many projects
still use averaged data and meta-data for their analyses. Similarly, the full range of various data
sources, from which numerous datasets are made accessible thanks to open-access policies (e.g.,
Opendire, ENTSO-E Transparency Platform, U.S. Open Data platform), is far from being optimally
exploited, especially when it comes to risk assessment.

* michael.pacevicius(@esmartsystems.com
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This challenge is demonstrated by three main arguments:

1. The available frameworks and standards from industrial risk management (e.g., CSA 0850-97, ISO
31000:2009, NORSOK Z-013) are generally overlooked when it comes to the study of Smart Grids.
Furthermore, only a few studies propose effective solutions enabling, based on internal as well as
external factors, dynamic updates of a risk management framework [3]. This reduces the advantages
that can be derived from actual digitalization and hinders the exploitation of the real-time feature
offered by Smart Grids.

2. Although Probabilistic Safety Assessment (PSA) approaches advocate for the constitution of cross-
disciplinary expert teams (which may include systems analysts, PSA specialists, operators and
operational analysts, data scientists and human factor analysts [4]), risk analysis is mainly based on
collections of operating and maintenance data, without taking advantage of additional accessible data.
In fact, enlarging the horizon of the observations, in association with new data sources, could allow
controllers to detect, observe and potentially predict slow, long-term and non-trivial phenomena (e.g.,
mechanical fatigue, corrosion, dust accumulation) increasing the failure probabilities.

3. The lack of cross-disciplines experts hinders decision makers from identifying relevant links
between data sources, compromising the recognition of efficient combinations of data sources.

There is thus need for new methods enabling continuous and effective integration of heterogeneous
data for accurate risk assessment predictions. For this reason, this paper focuses on the first phases of
Smart Grid dynamic risk management: collection and combination of relevant datasets. It is
constructed as follows. Following the present introduction, the second section reviews the main
concepts defining the Smart Grid technology. It describes Smart Grids, mentions the role of the mains
organizations, committees and work groups focusing on the topic, and lists the main challenges faced.
The third section focuses on the risk dimension in the context of Smart Grids. It shows how the
utilization of Smart Grid technologies affects the risk level in the context of power grid management.
It continues by pointing out the role the treatment of heterogeneous datasets can have in this context
and underscores the importance of the Common Information Model (CIM). 1t finally brings forward
work initiated by different research groups on the use of heterogeneous data for risk assessment in
power grids. Section 4 describes the investigation procedure. It reminds the main objectives of our
work and shortly describes the principles followed to reach our goal. Section 5 describes the results of
this paper. It reports a list of diverse data sources newly identified as being relevant for the
enhancement of risk assessment, and provides knowledge for merging this information. Section 6
(discussion) highlights the way forward for risk reduction in Smart Grids, but also provides
understanding on what remains to be done in the field. The last section (conclusion) shortly reviews
the paper and finally concludes our work.

2. OVERVIEW OF SMART GRIDS

The emergence of the first automatic meters and the broadening of SCADA (Supervisory Control And
Data Acquisition) technologies in power grids represent the first examples of Smart Grid concepts.
Since the creation of the European Smart Grids Technology Platform by the European Commission
[5], Smart Grids have gained increasing attention and represent nowadays a well-known topic.

Different definitions are given to Smart Grids by scientific literature and industry [6]-[9]. However,
they can be summarized as follows:

The basic concept of a Smart Grid is to optimize the production, transmission and consumption of
power and information between the different elements (devices & actors) involved in it. For this
purpose, it makes use of the progresses made in the information and communication technology (ICT)
sector, as well as those made in the industry of electronic components. Thanks to these advances, it is
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possible to integrate modern technologies (e.g., photovoltaic panels, batteries, smart meters and other
types of devices made accessible through the use of connected sensors) into an existing power grid.
This eases and automates management for a number of tasks, such as production coordination, energy
distribution and power consumption.

A broadening range of communication channels (internet, satellite, etc.) enable real-time access to the
large amount of generated data. The high-resolution picture of interconnected devices that is given
empowers improved analyses, finer forecasts of future consumption trends and better predictions of
potential outages.

The utilization of low-carbon alternatives for power production (solar panels, wind turbines, water
turbines, etc.) and the expanded utilization of batteries have led to a shift from a centralized to a
distributed repartition of the production sites. The gained autonomy has, in combination with the
intelligence integrated in the power grid, boosted the emergence of micro-grids, which are capable to
be islanded and reconnected (“split & merge”) to external parts of the network without major
disturbances.

Micro-grids present multiple advantages: (1) they provide flexibility in case of outages and enable to
maintain power supply during programmed maintenance tasks; (2) the technologies utilized can
rapidly be implemented and assimilated; (3) these same technologies can be used for shaving peaks
under normal circumstances by compensating the needs of one another. In the same idea, Smart Grids
have also the capacity to expand and assimilate new items without hardly impacting the general
stability of the grid (“integrate as you grow”). This is enabled by the flexibility acquired, which has
led to a dynamization and a decentralization of the decision making. As a consequence, end-users are
more involved and share henceforth management responsibilities with power companies, to which
they are now capable to smartly and easily provide positive and negatives feedbacks. End-users do not
anymore only represent passive consumption nodes, but they become active actors and turn
themselves into deciding prosumers (producer-consumer). This completely disrupts the flow
management, especially because old infrastructures and protection systems — which were originally
conceived to be unidirectional — have now to handle reverse flows of energy. In addition to the
challenging multi-directional aspect of power management, multiple other stumbling blocks can also
be enumerated when it comes to Smart Grids. A list of the most obvious ones is given in table 1.
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Table 1: Most Important Challenges in Smart Grids

N° | Stumbling Blocks

1 The collaboration between the main stakeholders and the interconnection of multiple
platforms/technologies can be hindered for compatibility reasons or because of conflicts of interest.
2 Although the integration of new technologies enables to compensate some of the fluctuations formerly

existing in the power grid, such technologies can also themselves be responsible for new type of peaks.
High spontaneous variations of power flows (e.g. because of clouds passing over a solar panel or sudden
reduction of the wind intensity in a windfarm) might lead to failures in an aging infrastructure not
conceived for such drastic fluctuations.

3 The data made accessible to the customer might lead them to change their habits into unknown ways,
which can imply unexpected variation and calls for new profiling analyses.

4 New types of variations might reduce the efficacity of older fault detection methods, localization methods
and temporary proxy methods, which are based on assumptions of more stable behaviors in the grid.

5 Smart Grids projects encounter classical big data challenges [10] and considerable analytical efforts need

to be done in order to transform data into information. The lack of adapted tools often leads to the
ignoring of data because no proper method could enable them to be integrated [11].

6 Real-time or near-real-time access and analysis of data still concerns only a restricted number of
information sources. Much information remains post-transmitted and post-processed with more or less
high latency (from hours [e.g. with nightly updates of servers] to years [e.g. with the inspection for
maintenance of distant power lines]).

7 Optimization techniques for the management of Smart Grids still need to be improved, especially because
it is challenging to handle the exponentially growing number of assets integrated in the grid. Finding an
optimum between production, transportation, storage and consumption of power in a distributed network
is known to be a complicated task.

8 The concept of Smart Grids is closely related to the concept of smart cities, where the management and
optimization of water grids, gas pipelines and heating/cooling networks is similarly challenging. This
might reinforce every one of the previously highlighted challenges.

To address these numerous challenges, different work groups and committees have been constituted
all over the world. Those can exist on global level (North America!, European Union?, Asia-Pacific
Economic Cooperation® or even on larger level*®), but many countries (Korea, Japan, Norway, France,
Germany, etc.) do also have national energy regulation committees and Smart Grids associations
supporting research in the field. These different organizations contribute to the spreading of
knowledge around the topic of Smart Grids, by providing technical reports, protocols, knowledge
about standards and by favoring open access demarches and cross-vendor-compatible solutions. The
Smart Electric Power Alliance (SEPA) provides for example an interesting and regularly updated
Catalog of Standards (CoS) on their webpage®, which enables one to rapidly be aware of the most
relevant standards in the field of Smart Grids. The listed standards emanate from standardization
organizations and research institutions (e.g., the FElectric Power Research Institute (EPRI), the
National Institute of Standards and Technology (NIST), the International Electrotechnical
Commission (IEC), the European Committee for Standardization (CEN), the European Committee for
Electrotechnical Standardization (CENELEC), the Furopean Tele-communications Standards
Institute (ETSI)), which permanently provide updates for old and new standards.

! North American Electric Reliability corporation (NERC) Smart Grid Task Force
2 EU Smart Grids Task Force

3 Energy Smart Communities Initiative (ESCI)

4 International Smart Grid Action Network (ISGAN)

3 Global Smart Grid Federation (GSGF)

¢ https://sepapower.org/knowledge/catalog-of-standards
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3. RELEVANT RISKS & RELATED INFORMATION
3.1. Risks in the Power Sector

Kaplan and Garrick [12] define the general notion of risk by characterizing the outcome of a specific
action. More especially, they consider risk as a triplet of (1) a potential unwanted event, (2) its
likelihood of occurrence and (3) the consequences of this event happening.

The veracity of the three dimensions depicting risk is dependent on the level of knowledge of a
specific situation one may have at a specific moment. This defines the notion of uncertainty, which
highlights the incapacity to perfectly characterize a scenario (some events are not anticipated; some
probabilities are inadequately trusted; and some consequences are not foreseen). The process of risk
assessment aims to reduce this uncertainty by periodically reviewing risky situations and suggesting
barriers. Therefore, it uses tools such as the bow-tie diagram [13], which allow for identification and
characterization of possible scenarios associated to a hazard [3]. Figure 1 schematically represents the
principle of such a diagram. It shows how the hazard loss of control — also referred to as a critical
event — can be prevented or mitigated by appropriate countermeasures. For this, it focuses on the risk
lead by vegetation growing in the neighborhood of power lines, lists potential threats and
consequences, and enumerates existing barriers.!

Figure 1: Simplified Illustration of a Bow-tie Diagram
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Multiple standards (e.g. CS4 0850-97, ISO 31000:2009, NORSOK Z-013)? support the process of risk
assessment by providing frameworks and guidelines depicting the best practices in this field. These
represent a solid basis for companies that aim to reduce the impact of unwanted and uncontrolled
factors on their business.

Depending on what is at stake, power industry risk is expressed in different and often partial ways. For
instance, potential socio-economical costs for stakeholders in the case of adverse event provide inputs
for decision makers [14]. However, they only address the consequence factor from a financial
perspective. Similarly, other methodologies focus on field-oriented indicators by evaluating the
physical consequences of an event on the different assets present in the grid [2].

! The number of threats, barriers and consequences has been limited for consistency.
2 An extended list is available at www.ntnu.edu/ross/info/standards

Probabilistic Safety Assessment and Management PSAM 14, September 2018, Los Angeles, CA



Different types of management systems (e.g., energy management systems, asset management
systems, outage management systems) have been set up to minimize the occurrence and consequences
of negative outcomes, as well as to ensure an optimal demand/supply-storage balance. These tools are
related and affect each other’s performance. Data management systems reflect the infrastructure life-
cycle and are the core information sources to consider in risk monitoring [3]. They allow creating
proxies to assess the performance of such countermeasures.

3.2. Shift to Smart Grids

Guidelines and practices underscore the importance of business knowledge, identification of
environmental factors affecting the integrity of facilities, context knowledge of occurred events,
information communication, continuous update, and, most importantly, risk reduction. In that sense,
Smart Grids represent a great opportunity. Improved information transmission and automatized
recovery processes aim to reduce frequency and duration of outages.

Smart Grids imply potential integration of new barriers as well as proxies. Nevertheless, in the current
situation, grid companies face compatibility problems and monitoring challenges. Especially, it is
difficult to integrate different systems, processes and datasets.

Moreover, Smart Grids may represent further vulnerabilities, which lead to the risk of new unwanted
scenarios, such as hacking — key-names in the history of energy-related hacking are Stuxnet (Worm),
BlackEnergy (Trojan), Industroyer (malware framework), DragonFly (Hacking group). As the privacy
of customers represent a main concern due to the increase of hacking probability, a lot of attention has
been given to cyber-security and cyber-attacks when it comes to risk management of Smart Grids.

3.3. The Common Information Model (CIM)

The Common Information Model (CIM) addresses the topic of intersystem communication. It was
developed by EPRI in the 90’s and aims to enable exchanges of information between the different
systems involved in a power grid. It is an object-oriented standard — based on Unified Modelling
Language (UML) — which aims to represent the different objects of interest, as well as their relations
in terms of electric generation, distribution, transmission [15]. The development of this model is
ensured by the /IEC Technical Committee 57, especially through the development of the standards /EC
61970: Common Information Model (CIM)/Energy Management, and IEC 61968: Common
Information Model (CIM)/Distribution Management which are also closely related to the standard /EC
61850: Power Utility Automation, focusing on the communication networks and systems in
substations and power utility systems. The book of Uslar et al. “The Common Information Model
CIM” [6] as well as the website of IEC! and the one of the CIM User Group? provide an interesting
basis for anyone looking for additional documentation on the topic.

The broadening of CIM among stakeholders in the power industry has been facilitated in 2009, as the
European Networks Transmission Operators — Electricity (ENTSO-E) approved CIM as a standard
exchange format. As a broadly accepted model in the field of energy management, the CIM became an
important element for the digital connection between datasets. However, acquiring the knowledge
enabling to obtain information out of the data lake created remains a challenging task. Moreover,
modelling, integration of information, model implementation and result interpretation still require
important research progress to be effective.

I www.iec.ch/smartgrid/standards
2 http://cimug.ucaiug.org
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3.4. Related Work

Most of the methods currently used for risk assessment are based on the N-1 criterion [1], [2], [14],
[16]-[19]. To paraphrase the sources referenced, this means that the companies in charge of the power
transmission or distribution have to be able to ensure full power delivery, even if a main element of
their network came to fail. The main downside of such deterministic methods is the lack of flexibility.
Fine variations of uncertainty may be disregarded, while binary behavior may be represented by
considering all events as equally likely.

Condition based risk assessment and other probabilistic methods represent interesting alternatives. As
these methods base their efficiency on the amount of input data, they have logically suffered from
poor computing performances of past IT technologies. Recent ICT evolutions led to new relevant
projects [2].

Several EU projects (e.g. AFTER, iTesla, Umbrella, HyRiM) have focused on the topic of risk in
electrical grids. GARPUR, one of the most recently completed project (November 2017), focused on
asset management policies and outage scheduling assessment. Table 2 lists the main recommendations
and calls for new research reported in the different deliverables of the project!.

Table 2: Main Recommendations/Calls for Research of the GARPUR Project

N° | Recommendations/Calls for Research

1 Collect more asset-related and outage-related data (failure rates, degradation rates, estimation of
expected life time, outage data, context dependent outage data, costs, consequences, impact of pre/post-
event maintenance tasks, restoration rates, failures of corrective controls/actions) to improve currently

applied models.

2 Add new types of data if the ratio (complexity added/information gained) is interesting; evaluate how
these can be clustered with existing datasets.

3 Diversify imagined scenarios; better anticipate future challenging situation; consider large scale as well as
more located scenarios (relevant in the context of micro-grids).

4 Increase the knowledge on smart technologies newly integrated into the grid; analyze the new features
they enable; examine the way they interact with other devices; evaluate the way they should be modelled.

5 Consider environment-affected variable failure rates to better model the effects of slowly evolving

conditions (e.g. pollution, dust, corrosion, vegetation).

6 Improve the quality and the availability of the data to gather.

7 Improve the coordination between Transmission System Operators (TSOs); Improve the coordination
between Distribution System Operators (DSOs); Improve the coordination between TSOs and DSOs.
8 Sustain the definition of standards; improve the knowledge-sharing of standards.

9 Determine the value of potentially unreliable data (in the context of reliability metrics) by applying
sensitivity analyses.

10 | Define frameworks and guidelines for collecting, maintaining, and sharing data and models

11 | Deepen the research for the automatization of processes related to risks by using machine learning
techniques.

12 | Sustain a gradual development, implementation and testing of methods relevant to the definition of a
framework, rather than to wait for a final holistic solution to be proposed.

13 | Develop new tools and sustain the formation of cross-disciplinary experts capable of providing risk-
oriented analyses of heterogeneous datasets.

One of the initial and core topics to address is the access to data. As it is also further stated in the
literature [10], [16], [17], [20] there is need for research on what type of datasets to gather, as well as a
need for clarification on the way to intelligently combine data sources for the improvement of existing
models in the field of risk assessment. Nevertheless, no clear guidelines have been found on the way
to merge a large number of heterogeneous sources of information for improved risk assessment in the
context of power grids - and more especially in the context of Smart Grids.

! www.sintef.no/projectweb/garpur/deliverables
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The lack of maturity of methods focusing on degradation processes over long time periods and
focusing on impact evaluation (positive-negative) of maintenance activities on components life-time
highlight furthermore the need for more research in the field of probabilistic methods [1]. In order to
provide such knowledge, research needs to focus on the nature of the relations existing between
various phenomena and components’ behavior to better consider obvious links (e.g. effects of storms
on power lines) as well as slighter links (e.g., effects of dust, rust, and pollution on insulating
properties) [10] in risk assessment and monitoring.

4. INVESTIGATION PROCEDURE

Considering the situation described and the challenges faced, we aim, with this work, to reduce the
gap existing regarding risk assessment in Smart Grids. For this reason, we identify and report a list of
data sources that can be used to better characterize risks. Moreover, we intend to highlight the links
existing between the different sources in order to understand how the data should later be aggregated.

A deepened review of storm and outage reports, as well as an intensive research among the existing
literature and among online websites of power management stakeholders has allowed identifying main
elements and factors involved in the emergence of risks, outages and accidents in power grids. This
research has enabled to identify main categories of directly related data sources, as well as tools that
are used to reduce the severity of such outcomes.

An additional analysis has ultimately consisted in identifying the data sources that could have
increased the knowledge level in one of the negative situations encountered, by providing identical,
improved or complementary information, compared to the data initially considered.

5. RESULTS

Data and services initially defined for a specific purpose may lead to additional interesting features
[10]. For instance, correlations among datasets enable creation of proxies and finer situation
understanding. Table 3 provides a non-exhaustive list of data sources that could be used for more
effective risk assessment. It illustrates the benefits of such information when combined with asset
management and daily monitoring data from the grid, such as:

- grid topology & asset information (age, location, failure rates, initial life-time models, etc.),
- inspection and maintenance reports (preventive/corrective approaches),

- outage reports (context dependent outage data, consequences, costs),

- customer feedback and crew management decisions,

- power-flow forecasts & real-time power flow measurements in the grid,

- past, present and future design documents of the power grid.

The two first columns of table 3 identify the field of information considered; the third column

highlights a relevant use case and proposes an access to data; and the last column suggests additional
datasets to use for supporting the use case highlighted.
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Table 3: Useful Sources of Information for Improved Risk Assessment

N° | Topic Use Case Add. Dataset

A Vegetation Anticipate risk induced by trees along power lines using growth B,C,E,F, I,
models, health analysis and clearcutting reports. Data access: J,Q
https://kilden.nibio.no

B Meteorological | Historical data: Identify risky areas (wind, ice-rain, etc.) for the A,C-F,M, N,

data, planification of power grids - Real-time data/forecasts: Team P
lightnings management & material supply before and after events (snow, storms,
etc.). Data access: www.yr.no, https://api.met.no, www.senorge.no
C Satellite Enable real-time & post-event situation analysis; identify potential A,B,D,F, M,
images location of outages. Data access: https://open.nasa.gov, N
https://scihub.copernicus.eu
D Region Evaluate risk level due to landslides, avalanches, floods, earthquakes, A-C,E, F
dependent hurricanes, etc., for the planification of power grids. Data access:
disaster data https://atlas.nve.no

E Climate Anticipate snow melting for dams’ reserves; Anticipate pests B,C,F,ILM,
change migrations. Data access: https://climate.copernicus.cu/seasonal- N, Q
forecasts forecasts

F Terrain model, | Anticipate evolution of streams and random water flows during floods; | A-E,J, N, P,

mineral prevent short-circuits due to salinity. Data access: Q
composition https://hoydedata.no/

G Forest fires Historical data: Identify risky areas for the planification of power A-C,E,F, H,
grids - Real-time data/forecasts: Team management & material IL,M,N,Q
supply during and after events. Data access:
http://gwis.jrc.ec.europa.cu/

H Pollution, dust, | Evaluate short-circuit probabilities and degradation due to aggressive B,C,M,N, P,

smoke chemicals [18], [21]. Data access: www.environment.no Q,S
I Animals, Predict species migrations to estimate and respond to risk induced by A-C,E,H, M,
insects & animals coming in contact with electrical components (e.g. birds, N,P,Q, S
fungi squirrels) [22] or by pests deteriorating the infrastructures. Data
access: https://gd.eppo.int/

J Laws & Anticipate security requirements. Data access: List of standards, B,D,E H, K,

standards national/international regulations L,0,Q-S

K Union trade Anticipate strikes. Data access: Internal data J,L,M, O, R,

contest S
L Security and Protection against potential espionage/sabotage/terrorism [16], [21]. C,K,M-R
surveillance Data access: Internal data, external audit reports, national security
reports
M Social Anticipate risks due to social contest (organization of protest-events), J-L, N, Q-S
networks detect/locate outages with clusters of dissatisfaction-hashtags, manage
emergency-related outages (live messages, pictures and videos). Data
access: Public feed API (Facebook), PowerTrack API (Twitter)

N Collaborative | Increase risk-related knowledge thanks to voluntary contribution of B-D, M, Q

platforms anonym public. Data access: www.regobs.no

(6] Market, Anticipate partners/customers behaviour due to market price B, G, J-M, R,

finance fluctuations. Data access: Internal/partner/customer data S

P Simulated Improve risk models thanks to simulated environments and simulated B,D,F,Q

environment data. Data access: Internal/partner/customer data

Q Open-access Improve company’s knowledge thanks to open-data politics of /

data sources governments and external companies. Data access: https://open-
power-system-data.org, https://rte-opendata.opendatasoft.com,
https://transparency.entsoe.cu, www.data.gov

R Geo-political Anticipate variations of power costs and consumption due to geo- J,LLM

information political conflicts (e.g., Europe and its dependency to Russian gas).
Data access: Various newspapers & other media
S Other energy Anticipate variation of power costs and consumption due to B-G, J-0, Q,
related data outages/problems in other energy utilities (e.g., explosion on a gas R

pipeline during the winter which leads to a pic of power consumption
[21]). Data access: Internal/partner data, media
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6. DISCUSSION

The results highlight the plurality of data sources that can actually be relevant for risk assessment.
Doing so, they enable to imagine the diversity of existing possibilities for the creation of proxies;
which is a main asset for the increase of resilience in a power grid. The sample of suggested scenarios
also highlights the plurality of the applications a data source can be useful for. Future work will need
to focus on additional scenarios and need to look for more links across the datasets. This implies cross-
disciplinary teams and the possibility to access and exchange datasets among the principal
stakeholders.

It should be mentioned that the order in the table does not reflect the importance level of the data
sources for the estimation of risk level, which is a matter of geographical localization and contextual
configuration. Moreover, for the purpose of this work, a focus has been set on data relevant for a
Norwegian power company. Some of the datasets suggested are thus not directly relevant for
companies located outside of Norway and additional sources of information would have to be found in
such circumstances. Finally, it is known to the authors that there is already room for optimization in
the manipulation of the data used for asset management and daily monitoring. As, in such a case, the
focus has to be set on the model and not on the access of data — which goes beyond the scope of this
paper — this task has not been further deepened here.

Even if some online sources of information are known to be relatively less reliable (especially social
networks and collaborative platforms) we stress that such sources should not be ignored for risk
assessment, but rather integrated with precautionary methods enabling to estimate the value of the
information before adding it into the models.

The manual combination of datasets described in this work is a pre-step for automated merging, which
is relevant in the context of machine learning. However, further work still needs to be addressed
before accessing to this automatization phase. A focus has especially to be set on aggregation models,
which will enable to provide the first outputs directly utilizable by decision makers for the
management of the power grids. This implies nevertheless to overcome many remaining challenges
(variety of temporal resolutions/boundaries, variety of spatial resolutions/boundaries, restriction
policies for data access, etc.) and calls for further research regarding data management solutions in
Smart Grids.

7. CONCLUSION

Smart Grids have shown to be particularly promising. They come nevertheless with numerous
challenges, from which we listed the most important ones. In this paper, we mentioned multiple
relevant projects and publications focusing on risk assessment in modern power grids. We also
brought forward a wide range of types of data sources that should be considered in this context and
suggested different scenarios utilizing such sources of information to reduce the global level of risks in
electrical grids. We finally highlighted which data sources could be combined to obtain more accurate
estimations of actual risk levels existing in a real-world situation in the framework of Smart Grids.

With our work, we provide pieces/elements for the construction of a framework supporting better
decision making in the management of risk in modern power grids. In order to provide actionable
intelligence, there is nevertheless a need for better sharing of best practices and for better sharing of
data. This will enable the principal stakeholders to get a more accurate overview of their
infrastructures and so to better make decisions when it comes to risk management in their power grids.
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Abstract

Dynamic Risk Analysis (DRA) approaches are virtuous processes enabling the improvement of state-of-the-
art techniques for risk calculation in industrial infrastructures. However, they require the existence of an
appropriate architecture enabling end-to-end processing of information, which has not yet been defined in
practice. This paper aims at discussing the possibilities and the advantages of combining DRA with Systems
Engineering (SE) approaches to reach this objective. For that, we define a framework based on SE principles,
apply it for the assessment of the role of vegetation on the global risk for power grids and discuss the benefits
it provides.

Keywords: Dynamic Risk Analysis; Systems Engineering; Internet-of-things; Power Grids; Vegetation; Critical Infrastructures

1. Introduction

System managers aim, among other objectives, to reduce uncertainties related to process monitoring and to
maximize the control efficiency. Those dimensions are, for the most part, defined by the capacity of the
stakeholders involved to properly analyze, evaluate and reduce the risk levels characterizing the system under
review. Numerous guidelines and standards have been developed to support these activities. However, the way
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such guidelines are used and the way they affect the quality of monitoring activities show a considerable
heterogeneity across fields of application. In addition, the nature and the specificities of the supporting tools
also influence the performance level of risk analyses.

Although most risk assessment methods advocate for feedback loops and cyclic processes, the quality of
the outputs of these procedures tends to deteriorate over time. This is especially due to the inability for
currently implemented tools to integrate in a continuous, reliable, and thus dynamic, way information related
to the system under review. Researchers aiming to tackle this dilemma have suggested frameworks and
approaches leading to more cyclically effective, and thus dynamic, risk analyses and evaluations (Villa et al.,
2016). The application of such approaches is still in an embryonic phase in real world scenarios. This is
mainly due to the relative recency of the proposed tools, which still require recommendations for applicability.
On the other hand, although such techniques advocate for a better and more intense use of information, they
do not describe technical solutions able to properly integrate all the data that is theoretically available and that
is suggested to be analyzed in the recommended approaches. In fact, the applicability of such approaches is
highly dependent on the existence of an architecture to support this integration in a timely manner. This is
especially challenging, considering the general complexity of the systems under review and thus the plurality
of influencing factors and data sources to consider.

Systems Engineering (SE) in general offers interesting perspectives for addressing this challenge. By fully
considering local specificities while keeping a global understanding of the needs for which a system is
developed and the constraints it is and will be subject to, SE offers development perspectives enabling
designers to properly attack the resolution of the problem. The present paper discusses the advantages systems
engineering can provide to support the application of Dynamic Risk Analysis (DRA). These advantages are
demonstrated by an application in risk analysis done for power grids.

2. Risk Analysis: Original Concepts and Requirements for Dynamic Evolutions

Risk is a variable concept across domains due to the different ways people and industries value situations
and the consequences of events. The way risk is defined and integrated into models/tools depends on the type
of business (Aven, 2012), which has led multiple standards to be developed within the diverse fields of
application where risk understanding and control is required (ISO - International standardization organization,
2007, 2016, 2018; NORSOK, 2010).

Generally, the first step for risk analyses consists in properly defining the context for the entire life cycle of
the system under review. This includes qualitatively and quantitatively defining the measures of effectiveness
relative to risk acceptance, as well as the way performance measures will be verified/validated all along and at
the end of the process. This step aims to eventually obtain a risk picture that accurately depicts the true
exposure level of the system to specified threats. The risk picture is characterized by the contribution of all
scenarios leading to an unwanted event or situation, the likelihood for these scenarios to occur and the severity
of the negative consequences resulting from these scenarios (Kaplan and Garrick, 1981).

The tools used for risk analysis in industrial facilities have been observed to have the following limitations:
e Recurrent use of outdated data for frequency evaluation, despite the acquisition of new knowledge based

on experiences (Creedy, 2011),

e No capture of interactions and dynamic aspect of risk variations (Yang and Haugen, 2015),
¢ Inappropriate consideration of uncertainties related to risk (Aven, 2012; Villa et al., 2016).

Furthermore, despite the theoretical inclusion of a cyclic feature in most risk assessment approaches,
experience shows that the proper reassessment of establishing the context suffers from some latency as the
number of cycles increases. This initial step is often done once for all at the beginning of the study; which
means that further steps of the analyses are not able to react correctly as internal or environmental conditions



of the system evolve over time. In addition, accurately characterizing the evolution of the hazards that can
impact the system becomes challenging. Thus, although the awareness of requirements for flexibility and
adaptability is generally present in the conception phase, the implementations usually suffer from an inability
to update and integrate new information. Consequently, the estimated level of risk may, over time, diverge
from the true level of risk, which in turns may lead to new potential accidents or catastrophes.

The appropriate processing of correct information — and more especially the capability to consider new
variables or be resilient to disturbances (e.g., loss of data source) — represents an area that needs more
research. Acknowledging this situation, more dynamic methods have been developed (Villa et al., 2016). In
general, these methods require:

o real-time acknowledgment of information updates for initially considered variables,
o the capacity to integrate (or discard) variables and thus restructure the method when new (or old)
information is considered relevant (or irrelevant) for the estimation of the current risk image.

Thus, dynamic methods require the consideration and integration of data-driven updates rather than only
considering long-term calendar-based protocols, which is a common practice across industries today. This
means that optimal data management is at the heart of dynamic risk analysis. However, in order to make
existing tools structurally updatable and adaptable, there is a need to offer a standardized approach that
technically enables automatic integration or suppression of relevant data, thereby enabling evolution from
isolated data sources towards informed risk depiction.

3. Key Dimensions of System Engineering and Contributing Potential to DRA

Properly controlling and monitoring a system over time requires an appropriate understanding of the
composition of the system and the existence of an appropriate user interface. Furthermore, the behavior of the
system needs to be understandable from both a local and a global perspective, in order to identify and assess
interactions between sub-systems and their respective characterizing variables; thus allowing systems
engineers not only to understand the sum but also the product of the sub-systems’ respective behaviors.
Pooling a team of specialists from a diversity of areas supports such actions, as it provides the analysis of
multiple dimensions of the system and breaks barriers between fields presenting synergies.

SE advocates for cyclically reviewing and adapting, if necessary, the different phases of the process in
order to show evidences that the system fulfils its functions as expected by the customers and stakeholders.
Periodically carrying out context evaluation ensures a good understanding, over time, of the system’s
properties and interactions between its subsystems and helps to avoid the probability of misunderstood or
wrongly quantified hazard effects.

The understanding of interrelations between variables and the cyclic requirement in the development of a
system represent key dimensions for both efficient SE approaches and DRA tools. Table 1 details further the
numerous correspondences which exist between DRA requirements and SE specificities.

Table 1. Correspondences between DRA requirements and SE specificities.

Requirements for efficient DRA tools Specificities of Systems Engineering

(1) The structure and the architecture of the tools enabling optimal (1) SE approaches support the construction of complex

data management in complex environments need to be defined. systems in an efficient and durable way.

(2) DRA tools need to be updatable in terms of architecture. (2) Proper system design enables flexibility in the architecture
of the system and ability to consider new variables as required.

(3) DRA tools need to be resilient to degradation or loss of data (3) Proper system design enables to make efficient use of

sources (quality & quantity of data). correlations between variables and thus provides “as good as

knowable” analyses.



Requirements for efficient DRA tools Specificities of Systems Engineering

(4) Cyclic assessments and reconsiderations of context are (4) Integration of a cyclic dimension is a pillar of SE which
required to maintain process understanding and thus to keep a reduces the non-detections of emerging hazards or the
realistic risk picture over time. apparition of black boxes within the process.

(5) Interactions between factors need to be captured to show (5) Implementation of interdisciplinary approaches is a pillar
accurate risk pictures. of SE.

(6) Frequently updated data need to be considered to show (6) The cyclic dimension of SE supports the frequent updating
accurate risk pictures. of information.

(7) Use of case-/plant-specific data. (7) Correctly designed systems integrating appropriate data

sources enable “as good as knowable” analyses.

4. Approach Description

The approach suggested in the present paper is based on the steps of regular data mining flow processes
(Chapman et al., 2000) and is structured using a Systems Engineering mindset in order to provide an efficient
analysis of risk over time. It is developed as following:

(1) Identification of information requirements (Business Understanding):

Within the context, the different needs of the system stakeholders are gathered. This enables understanding
which type of information needs to be available to provide an appropriate solution, as well as to direct the first
steps of the research.

(2) Identification of potentially accessible data sources (Data Understanding):

Based on the requirements formulated by the stakeholders, establish a benchmark of the existing data
sources (or of data sources that can be created to reach the defined objectives). The type of data sources
corresponds to data sources that, somehow, by their nature, enable a better understanding of the analyzed
items. Only those datasets that are accessible for the project are retained.

(3) Filtering of data sources (Data Understanding, Data preparation):

The informative potential of the retained information sources is initially assessed and used to create a
maximum number of scenarios to consider in terms of risk. Discussions between the heterogeneous panel of
experts involved enables understanding the importance of the physics for each observed variable, but also —
and maybe more importantly — the interrelations and dependencies that can exist between considered
variables/phenomena. Data sources providing quantitatively usable information (e.g., databases with
numerical values) or convertible (e.g., by some weighting conversion process), are then selected. The
informative potential of each of the related retained variables is then assessed in terms of contribution to the
calculation of the targeted risk dimension. More especially, each of the variables is evaluated to assess if they
provide information relative to the frequency or the consequences of the identified scenarios. Based on the
importance of the identified scenarios, requirements for the data acquisition of the related variables is
estimated and reported for future performance evaluation of the defined system.

(4) Clustering of data sources (Data preparation):

The data sources that are considered are then clustered, based on their resolution and on the reported
physical interrelations existing between the observed variables.

(5) Choice of potential environments, frameworks, and algorithms (Modelling):

The choice of the environment to work in, as well as the frameworks and algorithms is based on both the
objectives to achieve and the characteristics of the retained data sources.

(6) Structuring of the pipeline (Modelling)

The clusters suggested in phase (4) are integrated into layers in which analyses will be done. Layers with
lowest resolution are placed in an initial position of the pipeline for optimization of the workload



management. The selected frameworks and algorithms are adapted for each layer, depending on the fixed
objectives.

(7) Progressive use of outputs and assessment of pipeline final results (Evaluation, Deployment)

Once the pipeline is prepared, each layer is successively run through in order to eventually reach the final
risk picture. Estimations originating from the output of the successive layers is also sent via feedback loops in
order to improve the algorithms exploited via approval or rejection of the first results.

A critical requirement of the approach suggested is a good understanding of the techniques used. This will
be the only way to properly convert the information they provide into usable inputs for the improved
calculation of risk levels.

5. Application: Pipeline Construction for Improved Risk Analyses in Power Grid Management — Focus
on Vegetation

5.1. Situation overview

The power grids used daily are exposed to a plurality of hazards (e.g., hurricanes, earthquakes, ice storms,
floods), which occurrences can have heavy consequences (DeCorla-Souza, 2013; Kenward and Raja, 2014). In
addition, dimensions such as the size of the grid, the accidental terrain it can be installed in and the slow, local
and complicated processes used to gather information for inspections and maintenance mean that exercises
related to risk analyses often are executed in a sub-optimal way. By suggesting a Systems Engineering-based
approach, we aim to show how the general level of risk in power grids can be reduced in a continuous way,
giving thus evidence that more dynamic approaches can be implemented. For this purpose, we focus here on
the impact of vegetation on the power grid. Vegetation was the number one cause of outage in Norway in
2018 (Eggum, 2019) and is a main contributing factor for outages in power grids in general (Hansen, 2018,
2017, 2016). The most common way for vegetation to affect the power grid is generally by a branch or an
entire tree falling directly on a power line. Alternatively, vegetation can also generate outages by simply
growing under a line until it makes contact and creates an outage. In the best-case scenario, consequences of
such events can be relatively low, with only a few power customers affected. However, such events can also
lead to wildfires (Kumagai et al., 2004) or contribute to large blackouts (Alhelou et al., 2019).

Multiple parameters are involved in the occurrence of an outage generated by a tree falling on a power line.
The first, obvious ones, are the size of the trees and their physical proximity to the power line. Additional
factors are wind or precipitations, variations in temperature, the topography, the species, health and shape of
the trees - to name just a few.

Grid operators require the following information for decision-making concerning vegetation management:
e Locations of areas that are more likely to face outages involving vegetation to send teams clear-cutting the

region before there is a problem;

e Level of consequences of such an outage when it happens (particularly in terms of impacted customers);
e Location of areas that are more likely to face outages involving vegetation to know where to look first
when those occur, and thereby shorten reaction time and eventual power restoration.

5.2. Proposed architecture

The architecture proposed to tackle the problem of vegetation is divided into two main phases, as described
in figure 1.
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Fig. 1. Architecture for vegetation-focused Dynamic Risk Analyses in Norwegian power grids

In a first phase, the first layer, essentially a top-down approach, is initially a “remote-based” information
capture. It integrates diverse sources of information, such as optical satellite images, wind exposure, global
vegetation characteristics [i.e., dominant species presence, canopy height], human population density, grid
topology, temperatures, precipitations, and topography. Information relative to each data source is first
collected and stored in a database in such a way that it can be used for calculations. Machine-learning based
methods enable the combination of the different variables to assess and report the contributing factor of each
variable into the first layer risk calculation. This first layer risk calculation aims to provide, by combining
both the probability and the consequences of a potential disturbance, estimations of regions where the levels
of vegetation-based risk estimation is the highest (Regions of Interest — Rol).

Although calculations are case-specific, results of risk estimation remain characterized by a medium
degree of uncertainty because of the resolution of the information used. In order to accept or reject the first
level estimation and thus reduce the level of uncertainty around the risk estimations, a second layer (which
represents a bottom-up approach) is introduced in a second phase. This “in-field-based” information capture is
here again the fruit of several fields of expertise and enables specific assessment of assets and detection of
faulty components using computer vision; centimeter-level distance estimation from trees to power grid
components using lidar-based or photogrammetry-based point clouds; and tree specific characteristics
estimation [i.e., species, height, health conditions] using computer vision. Computer-vision based asset
information suggests if the probability of outage might be increased by the types and condition of the asset
present in the specified Rol. Point clouds enable case-specific high-resolution distance measurements from
vegetation to the power line. And computer-vision based tree characterization enables assessment of how the
originally estimated level of risk may be affected by the properties of the trees present in the area. These three
additional data sources contribute by providing case-specific local information, offering an improvement of
both the consequence estimations and the probability estimations of an outage in the Rol, thus enabling a
refinement of the final risk image.

The output of the second layer is feedback to the first layer as the re-assessment cycles unfold and helps
improve the quality of some first estimations of the local area (e.g. trees height and species), which enables
the inclusion of high-resolution time-series into the calculations and improved estimations provided by the
retrained algorithms.



5.3. Results

The described architecture enables the operator to:

e Discover previously unconsidered risky areas and thus better quantify the consequences of disturbances
caused by potential outages;

e Multiply the number of scenarios leading to an unwanted event by highlighting relevant interactions
between relevant variables;

e Refine existing scenarios and risk contribution levels of specific variables by enabling a higher resolution
situation understanding;

e Refine estimation of the contribution level of each factor to the global risk picture;

o Increase resilience to loss of information by increasing the number of data sources. This increases the
probability of correlation detections among used data sources, which can thus be used as proxies when
one/some of them fail or would be removed,;

e Make case-specific risk estimations/improvements by gathering local data, avoiding use of averaged values
and reducing thus uncertainty around risk estimation;

o Increase the frequency of risk estimations by benefiting from regular updates (e.g. weather) of the data
sources used for the risk estimation.

Based on this dynamic risk estimation, power grid companies can improve the assignments of woodcutting
teams by efficiently prioritizing missions based on potential risk, thereby reducing the occurrence of
vegetation-influenced outages. Furthermore, they can reduce the time to repair if an outage happens since a
product of this architecture increases the probability of spotting the correct areas causing the outage.

The key dimension of the described architecture is to make “as-good-as-knowable” estimations, optimizing
the contributing potential of the accessible data sources, increasing the probability of detection of early signals
and reducing the probability of occurrence of events that can be avoided with timely use of information.

6. Discussion and Conclusion

Although the demand and justifications for the development of DRA tools is obvious across industries, it
remains a challenging task and a relatively new research area. A theoretical broad access to a large number of
data sources and an easy access to powerful IT infrastructures suggest that the main entities that could support
the development of DRA tools are already available in practices that support the emerging Internet-of-Things.
Structuring the combination of those different entities and transforming this combination into a useful risk
image for an infrastructure under review remains a challenging task requiring competences in a multitude of
disciplines, a local understanding of the interrelations, as well as a holistic overview of the constructed
system, considered within a specific environment. SE is a particularly supportive field with this regard, as it
provides the right framework to develop white-box-based systems for which understanding and control can be
kept over time.

We illustrated the benefits that can be provided by SE for the development of DRA tools by focusing on
the assessment of the impact of vegetation on the true risk level existing in power grids. For that, we showed
how relevant data sources should be combined in such a way that decision makers can optimize their
judgements and the management of their resources, as well implement a pre-event resilience plan, and
effective post-event restorations. How the risk reduction actions are executed and the way the resulting
information is integrated into the new cycle of risk assessment is an additional dimension that needs to be
carefully considered to ensure optimal risk management of the infrastructure.



The expected convergence between requirements for efficient DRA tools and solutions provided by the
intrinsic properties of Systems Engineering is confirmed in the proposed approach and described in the case-
study. By enabling the creation of systems that favor cyclic approaches, SE enables a flexible process and
offers possibilities for both optimized information management and more resilience. This makes the process
more reliable, sustainable and thus suitable in the long run for the application of Dynamic Risk Analysis.

This work is part of an ongoing project “Dynamic risk management for Smart Grids in large-scale
interconnected power systems” funded by eSmart Systems and the Norwegian Research Council. Future steps
include the final choice of the best algorithms for the machine-learning processes capturing those variation
rates of the related data sources. Those elements will be the basis for complementary performance metrics (cf.
phase (3) of the suggested approach) and will enable quantification of the level of uncertainty of the
calculated risk level.

The generic dimension of the proposed approach offers already a flexibility that enables it to be used for
other industries, under the condition that informative data sources are properly identified and accessible. The
approach also requires the validation and verification to be continuously ensured by close collaboration with
the customer, a condition that has been respected in the present study. Continuously exchanges with the main
stakeholders enables appropriate feedback with regards to the performance, the process design and the context
evolution. In this way, the best trade-off options can be continuously chosen and divergence between the
suggested risk representation and the real risk level over time can be reduced.
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Technological developments allow for gathering and processing an increasing amount of data in real time. The
integration of these tools into risk assessment allows for the development of dynamic risk assessment and data-
driven decision support. The latter is of special interest for systems that are remotely monitored and controlled by
operator, such as power grids. Generally, grid operators have little access to environmental information to support
decisions on interventions and preventive maintenance. Recent initiatives aim at integrating machine learning and
other techniques into dynamic risk assessment of power grids. The performances of these initiatives depend on the
quantity and quality of data one can gather and process, the available technology, and the cost-benefit ratio of
which these initiatives are synonym. In addition, the development of these solutions must be completed by the list
of decisions to which the operators may be subject, as well as the information required in order to make the correct
decisions for the system’s needs. This paper presents a framework for optimizing decision-support of power grids
operators using data-driven solutions, focusing on risks associated to vegetation. We analyse the possible scenarios
concerning power grids under risk by surrounding vegetation, and the deriving decisions the operators can make
under those scenarios. We further analyse and discuss the information required by the operators for decision
making. This information is finally integrated into a data-collection and processing framework.

Keywords: Dynamic Risk Analysis, Decision Support, Power Grid Management, Vegetation Hazard, Preventive
Maintenance

of the grid at all times. Yet, the power grids are

1. Introduction

The advent of machine learning, big data, internet
of things and other technological solutions,
enabled by the increasing access to powerful
machines, allows for gathering and processing
data in real time. The integration of these tools
into risk assessment, in turn, allows for the
development of dynamic risk assessment and
data-driven decision support. The latter is of
special interest for a diversity of applications.
Indeed, systems that are remotely monitored and
controlled by operators can highly benefit from
technological solutions for increasing operators’
situation awareness and keeping them in the loop.
As such, data-driven and risk-based decision
support can thus be particularly beneficial for
management of power grids.

Risk management is a main concern for decision
makers in power grid related companies. To
provide end-users with a reliable and continuous
energy flow, they need to ensure the functioning

exposed to a plurality of hazards such as
hurricane, earthquakes, ice storms, floods, etc.
Those hazards can have severe consequences
(DeCorla-Souza, 2013; Kenward and Raja, 2014).
In addition, the vulnerability to these hazards can
increase depending on the terrain on which the
power poles are installed, the remoteness of the
power grid and its size, among other factors.

One of the main hazards related to power grids
operations is vegetation. Vegetation can affect a
power grid in case a branch or an entire tree falls
directly on a power line, or in case it grows under
a line, making contact and creating an outage. In
some cases, the consequences of these events can
be relatively low, with only a few power
customers affected. However, consequences can
also be particularly severe, such as wildfires
(Kumagai et al., 2004) or large blackouts
(Alhelou et al., 2019, Sforna and Delfanti, 2006).
Vegetation was the number one cause of outage in
Norway in 2018 (Eggum, 2019) and is a main
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contributing factor for outages in power grids in
general (Hansen, 2018, 2017, 2016).

Vegetation management is typically performed
through growth assessments and clear-cutting
operations. This can be a costly and challenging
task. For instance, internal information reported
by an European power grid company shows that a
simple visual inspection made by an operator in a
helicopter can already have an approximate cost
of 40€ per kilometre. The locations and frequency
of clear-cutting operations are, in addition,
decided based on limited data. Yet, several data
sources are available and can be leveraged for
risk-informed decisions, such as satellite images,
generalized use of point clouds, open-access
vegetation-related databases, etc.

The use of these data sources in power grid
management is suggested in (Pacevicius et al.,
2018). In order to develop an effective decision-
support, the data use and technology development
can be shaped considering the type and format of
the data that is required by the operators for risk-
informed decisions.

This paper presents a framework for a risk-based
decision-support for operators managing power
grids under vegetation hazard. The decision-
support is data-based, and benefits from current
technological developments. The framework
includes the assessment of vulnerable areas and
the possible consequences in case of vegetation
hazards. The combination of vulnerability and
consequence levels results in a risk-ranking of
areas that should be visited for clear-cutting.
Further development and application of the
framework can result in cost-effective and
efficient preventive maintenance, reducing
outages and other consequences.

This paper is structured as follows: Section 2
presents an overview on power grids operations,
followed by a discussion on data driven solutions
for power grids management in Section 3. Section
4 presents the framework for decision-support.
Finally, concluding thoughts are presented in
Section 5.

2. Power grids operation

Power grids are managed by either Transmission
System Operators (TSO) or Distribution System
Operators (DSO). These are the operational and
regulatory bodies that share the responsibility of
properly installing, managing and maintaining the
power grids. Despite the long experience these
operators have in the field, they continue to face
major disturbances all over the world, with
sometimes particularly damageable consequences
(Alhelou et al., 2019). This is particularly true
with exceptional meteorological events. For
instance, hurricanes Irene (2011) and Sandy
(2012) resulted in 6,69 million and 8,66 million
people without power respectively (United States
Department of Energy, 2013). More recently,
over 6 million people lost power in 2017 due to
hurricane Irma (NERC, 2018).

The challenges concerning power grid
management are not restricted to abovementioned
large impact hazards. Power grids’ intrinsic
characteristics also pose daily challenges. For
instance, the network dimension implies a
challenging configuration of large and complex
systems leading to dynamics hardly forecastable.
This favours the occurrence of unpredictable
cascading events, which can have large
consequences if occurring on a favourable terrain.
In addition, the broad geographical distribution of
the power grid mathematically increases the
exposure of the infrastructures to external threats.
This can make the surveillance, control and
management of the grid particularly complicated,
especially in remote areas.

Power grids’ intrinsic features impose notable
difficulties concerning execution of management
related tasks, such as maintenance operations and
resource optimization. For example, the size of
the power grid directly impacts the way
inspection and maintenance tasks are scheduled
and executed. Those can be time consuming
(some inspections tasks are planned on a 10-year
basis calendar) and risky, especially in
mountainous regions such as in Norway.

The importance of power grids and the nature of
the threats to which they are exposed call thus for
continuous application and improvement of
proper risk management methods. State-of-the-art
methods suggest the use of Dynamic Risk
Analyses (DRA) for fulfilling this task, which
enable a better exploitation of information over
time for an improved understanding of the true
risk level (Villa et al., 2016).

The potential benefits of using DRA for power
grids management are strengthened given the
increasing  technology for collecting and
processing environmental and meteorological
data, as well as information concerning users,
grids’ physical conditions, and others. Next
section provides an overview of the available data
and its potential use, as well as the related
challenges.

3. Overview of potential data driven solutions
for power grid management

Data-driven dynamic risk management methods
enable to consider changes in key variables as
new information is made available. Static
approaches, on the other hand, make use of pre-
defined plans for scheduling inspection and
maintenance tasks. DRA approaches are data
driven methods relying on a capacity to consider
both (1) real-time data updates for variables
already at scope and (2) real-time variable
updating, as previously identified hazards may
change 1n terms of potential impact and/or new
hazards may emerge. Variable updating implies
both integrating new variables if those have been
proven to contribute to the risk depiction and/or
1ignore variables which have become irrelevant for
the analysis in process. Proper data management



(selection, collection, process and update) is thus
a cornerstone for the existence of DRA. The
implementation of DRA methods is strongly
empowered by the general proliferation of
interconnected [T-based technologies, commonly
referred to as the “internet of things”.

In the field of power grids, the broader use of
interconnected devices and the capacity to access
more data sources has led to the emergence and
extension of “smart grid” configurations,
principally over the two last decades.
Furthermore, power grids have gained in
connectivity since the implementation of the first
SCADA (Supervisory Control And Data
Acquisition) systems, and management of large-
scale infrastructures has been improved over the
years thanks to the integration of new
technologies.

3.1 Possible data sources

The first cluster of data sources to consider for the
evaluation of vegetation-related outages in the
power grids is common to all type of outages and
composed of the systems enabling to observe the
power flow variations. Based on sudden
interruptions in the power delivery, operators will
be informed of the occurrence of an outage and
start to investigate its causes, consequences and
location. Depending on those results, they are able
to look for an alternative solution in order to
return as quickly as possible to initial service
levels via rerouting of the power delivery.
SCADA systems support those type of operations
and are integrated into the management of power
grids since multiple decades already. The
granularity level of the data that is nowadays
accessible has however strongly increased since
the implementation of the first SCADA devices,
moving from on overview on region level,
towards the possibility of obtaining an
understanding of local substation and finally the
ability to observe power variations on individual
building level thanks to the generalized
implementation of Advanced Metering Systems
(AMS), also called “Smart Meters”.

Operators also use different methods to acquire
information regarding vegetation. The most
common approaches consist in visual inspection
such as foot patrols, helicopters, and drones
(Nguyen et al, 2018). Maintenance reports
summarize the main conclusions of these
inspections. Additionally, Light Detection And
Ranging (LiDAR)-based point clouds are
frequently used to get precise distance
measurement between power grid infrastructures
and foreign objects such as vegetation. This
technique 1s however relatively costly, limiting its
use in practice.

A benchmark of the technologies and existing
solutions for supporting vegetation-related risk
analysis was explored by (Pacevicius et al., 2018).
The most relevant results for this paper can be
summarized as follows:
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- Satellite images: the multiplication of image
providers has considerably increased over the last
years, leading to both a strong increase of
performances (higher resolution images for
different bands can be obtained more frequently)
and a strong decrease in costs (down to a few
dozens of euros/square kilometre, depending on
technology and resolution).

- Weather: meteorological models have gained
in accuracy over the last decades, enabling to
make local estimations of the wind exposition,
exposition to precipitations and temperature
variations.

- Topography: Digital Terrain Models (DTM),
more and more accessible, enable to obtain a
description of the raw surface on which power
grids are installed, enabling to estimate the role of
the terrain orientation (i.e., slope) in the stability
of trees.

- Referencing of species: some national
registries report the mostly present species per
area, enabling to better estimate the average
stability of that part of the forest in the area.
Combining the different data sources mentioned,
with the grid topology, the database of supplied
customers and related levels of importance (e.g.,
individual housing, hospital, data centre,
aluminium factory, etc.), there is here a strong
potential to affine the estimation of both the
probability and the consequences of a outages
caused by vegetation.

3.2 Related challenges

In spite of recent improvements, the
implementation of smart grid technologies and
infrastructures  still face many remaining
challenges (Pacevicius et al., 2018). These can be
illustrated by data gathering: several advances
have been done on the hardware side, while
merging and processing data from different data
sources is still challenging. Indeed, many sensors
have been developed and installed into the
infrastructure, leading to the possibility to acquire
a large quantity of data. Intra-disciplinary and
highly specialized research studies have also
enabled progresses in a plurality of fields (e.g.,
weather forecasts, physics of electricity, computer
vision, satellite data analysis). Yet, those
advances have mostly been done in silos. The
added value of merging inter-disciplinary
knowledge remains difficult to be acquired
because of a lack of method and
recommendations enabling these combinations.
This is partially explained due to the challenges of
processing heterogeneous data sets (Pacevicius et
al.,, 2018) and due to the complexity resulting
from the combination of fields of expertise.

An additional challenge for effective use of data,
results from the methods used for its collection.
For example, the processing of the information
gathered during inspections remains often slow,
local and complicated. This is mainly due to the
use of outdated and paper-based methods in the
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treatment of maintenance reports. In cases more
advanced methods for data collection are used,
such as using tablets for filling maintenance
reports, a lack of proper procedure hinders the use
of the data in an automatic and efficient way.
Once saved, digital maintenance reports remain
usually exploited by other operators in a manual
way, similarly to paper-based reports.
Transmission of the information may thus, n the
best-case scenario, be facilitated from one device
to another (e.g., one tablet to another), but its
exploitation remains mostly manual and rarely
efticiently automated. This illustrates the gap
between the ever-increasing data availability and
the techniques enabling to exploit them.
Making a proper use of the generated data in order
to be aware of real-time of situation evolution
(and hence, make risk informed decisions) is thus
a challenging task. Automating transmission and
processing of data to provide high quality
information to decision makers requires:

- a good business/ scenario understanding in

?rder to know which information is looked

or,

- the implementation of hardware enabling the

acquisition of good quality and relevant

quantities of data,

- the existence of field-specific expertise to

pre-process acquired data,

- the understanding of inter-disciplinary

dependencies,

- the knowledge to

information, and

- the capacity to know which type of decision

can be taken in the different identified

scenarios.

merge resulting

Those elements correspond to the building
blocks of a system architecture enabling the
sustainable development of DRA methods.
Recent study by (Pacevicius et al., 2020) stresses
the need of the development of feedback loops
methods for enabling the consideration and
integration of new observations made by the
systems and/or the operators. Above all, the
architecture must be developed in such a way that
efficient information use can be made possible by
power-grid operators for improved decision
making. It must thus be profitably integrated in
their daily tasks, considering their expectations
and the challenges they face.

4. Integrating data driven solutions for
optimized power grids decision support

Power grids operators make decisions on
preventive and corrective maintenance on a daily
basis. Today, these decisions are based on limited
information. This is especially true because of the
latency sometimes resulting from slowly
transmitted information in current day-to-day
operations, where some asset-related databases
are only manually updated after several years
(Pacevicius et al., 2018).

When more detailed information is necessary,
such as the state of vegetation close to a power
line, in-loco data must be acquired. These
operations can be highly costly and error prone.
The use of the data and technology described in
the previous section can improve the efficiency of
decisions on preventive maintenance. The level of
vulnerability of a power line and the possible
consequences in case of an outage generated by
vegetation hazard can provide the operators with
priority areas for observation and clear-cutting.
Those, in turn, can highly improve resource
allocation while avoiding outages and more
severe consequences.

This section presents a framework for data-driven
decision-support for power grids operators. The
scope of the framework is on vegetation hazard
and preventive maintenance. The framework can
be expanded for other hazards types. The problem
statement is described in Section 4.1, followed by
an analysis of the operators’ decisions in Section
4.2. These are integrated with data-driven
technologies in Section 4.3 for the decision-
support framework.

4.1 Scenario description: vegetation hazard

Outages due to vegetation are mostly due to
branches/trees falling on the infrastructures or due
to vegetation growing under/on/in  the
installations, generally leading to short circuits
and/or damaging of infrastructures. Vegetation-
related outages represent a cost to the grid
operator, in terms on non-delivered power to its
different customers. Financially, it also implies
having to send teams on the ground to clean the
affected area and replace the parts of the power
lines that have been damaged during the event.
Sending teams solving such situations in not
without significance and does sometimes lead to
tragical consequences (Line, 2016). In addition,
disturbances may lead to reputation loss. Above
all, vegetation hazard can lead to wildfires. In case
the location and environmental conditions are
favourable, these can quickly spread and have
severe outcomes.

Several variables can indicate the vulnerability of
a power line to vegetation hazard. Some are
related to the trees, such as their size, species,
health and shape, and their proximity to the power
line. Additionally, external parameters such as
wind exposition, exposition to precipitations,
temperature variations, and topography, are
known to affect the stability of trees and should as
such be studied for a proper vegetation-related
risk analysis.

4.2 Power grids’ operation and vegetation
hazard

Power grid operators can be sectorized in
different groups, depending on their role in the
management of the network. Although operators’
roles and responsibilities can be changing among



different organizations, a common distinction can
be described as following:

(1)  Control-room operators: those operators
oversee real-time management of the power grid
and focus on a short-term horizon. They are
responsible for restoring the initial service levels
as fast as possible after an outage has occurred,
among other tasks.

(2) Maintenance operators: They are
responsible for the management of inspections &
maintenance operations in order to avoid the
occurrence of outages and potentially reduce their
consequences if those would occur. As such, they
work on a short- to middle-term horizon.

(3)  Planning operators: They are responsible
for future extensions or rerouting of the power
lines when new customers integrate the network
or when alternatives for existing routes are
required.

Although the distinction above may not be the
same among all organizations, this paper adopts it
for increasing clarity and comprehension in this
case study.

Current operations relative to vegetation
management are characterized by two main
limiting factors:

- Maintenance operator schedule
inspections and preventive vegetation cleaning
operations on a calendar basis rather than on real
needs;

- Control-room operators are aware of an
incident only after it has happened.

A risk-based decision support can give grid
operators the possibility to optimize the currently
applied decision-making. With an indication of
vulnerable areas and their risk levels, operators
can prioritize crucial operations and send teams
for clear-cutting the area where required before
any damage is reported, postponing in parallel
non-urgent inspection missions. In addition, they
will be able to spot areas more likely to be
affected by vegetation-related outages when
disturbances are observed, increasing thus the
probability to gain precious minutes in the power
grid restauration.

The use of data and related technology for
decision-support is generally performed as in
Figure 1. The available data-driven solutions are
assessed based on the possible information they
can generate. This information, in turn, is assessed
based on its capacity to support operators’
possible decisions. Yet, the development of the
decision-support can follow a different path, as
we suggest here and as is illustrated in Figure 2.
The operators’ possible decisions are initially
defined in view of the system’s needs (i.e.,
vegetation management in the present use-case).
The information required for the possible
decisions is then further identified. The necessary
information for decision making is finally used to
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shape the development and exploitation of data-
driven solutions. Note that the present process is
a high-level approach brought forward to
illustrate the need of shaping data driven solutions
by firstly considering operators’ needs.
Development of data-driven solutions are
however also known to be shaped by hardware
and software limitations, as well as by the
possibilities to access relevant databases.

1. Available data- . 3.Operators’ possible
driven solutions  provides supports decisions

Figure 1: Use of data and related technology for decision-
support

v

1. Operators’ possible
decisions

Identify

3. Available data-
driven solutions

«

Shape
Figure 2: Approach for development of data-driven decision
support shaped by operators’ needs

The first step into developing an -effective
decision support is thus to evaluate the operators’
possible decisions when managing vegetation
hazard. Three possible decisions are considered:

(1) Send a team for observation

In case the information provided by the system
has a high level of uncertainty, operators can send
observation teams to assess vegetation level and
reduce the uncertainty. The system should be
designed to accommodate the output of this
operation and use it to update the level of
vulnerability of the grid.

(2) Send a team to clear-cut the area

The operators should receive enough
information to decide when it is necessary to send
a team to clear-cut the area, i.e., perform
preventive maintenance. This decision can be
made considering the risk level provided by the
system.

(3) Redirect flow/shut down grid sections
This decision is to be made in extreme situations,
in which the operator believes required
maintenance may not be done in time and the
potential consequences resulting from the
reported top events may be too severe.

A next step is to evaluate the necessary
information for the operators to make the correct
decisions. The decision of sending a team for
observation operations is based on the reported
exposition level of the grid to the vegetation-
related hazards, as well as on the uncertainty
degree of this estimation.
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A decision to sending a team for clear-cutting the
area can moreover be taken when consequences
of potential outages are furthermore added to the
present analysis. This is particularly important for
resources allocation and actions prioritizing,
especially in case two or more vulnerable spots
are reported. Finally, the more extreme decision
of redirecting power flows and/or shutting down
power, relies on the previously mentioned sources
of information, plus the overview on the available
and missing resources in terms of personnel,
material, power budget, time, etc.

A partial bowtie diagram addressing the main
causes & consequences relative to the vegetation-
related hazard is available in figure 3. It is based
on (Pacevicius et al., 2018) and focuses on the
most relevant dimensions in the present study. It
is however to be mentioned that additional
elements (i.e., barriers, threats and consequences)
may be added, depending on the case study. The
present diagram - as well as the data sources used
to exploit it - can furthermore be used to shape the
development of technology and data-driven
solutions, as further explored in the following
section.
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4.3 Decision support framework
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Risk can be defined in multiple ways, depending
on the fields to which it is applied, the methods 1t
is integrated in or the authors it is used by (Aven,
2012). We adopt one of the most common
" definition, provided by Kaplan and Garrick
(Kaplan and Garrick, 1981), in which risk is as a
triplet of a scenario (s) happening, as well as the
probability (P) and the consequences (C) of this
scenario occurring. Furthermore, due to its
relevance to the present work, we add the variable
of uncertainty. The risk level to be used by the
oggerators for decision support is thus a function
of:

R=f(s,P,C,u)
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In the scenario of vegetation hazard, the
probability refers to the probability that the
vegetation under or around the power line affects
the grid. The probability will indicate the
vulnerability level of the line. This probability is
a function of the vegetation specificities, its
proximity to the power lines, the environmental
conditions and the local shape of the terrain:
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The consequence of the event refers to the
possible outcomes in case vegetation affects the
line, as described in figure 3. The consequences
are estimated based on the impact the realization
of the different scenarios have on the involved
assets. By converting big/important costumers
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terms of importance (e.g. 1 hospital 500
individual households), one can quantify the
impact relative to non-delivered power in terms of
“non-supplied end-users”. Focusing on wildfire,
we can Integrate a binary variable characterizing
each Are in the direct surrounding of the lines as
being prone to wildfire (1) or not (0). Finally, one
should also integrate infrastructure costs related to
corrective maintenance. In the present case, the
consequences can thus be expressed as:

C=h(}. [non-supplied end-users], y, [Are prone
to wildfires], infrastructure costs)

The uncertainty, in turn, refers to the uncertainty
associated to the generated probabilities and
consequences.

The way the different data sources can be
combined to obtain the mentioned risk metrics
and eventually support power grid operators in the
decision they take is illustrated in Figure 4. A
relevant use-case based on ongoing work' can
illustrate the framework as following:

Probability of outage:

o Using Satellite images and point clouds,
one can automatically detect the presence, size
and proximity of trees in the surrounding of power
lines.

o Adding  topographical data  and
vegetation categorization, one can assess the
importance of relatively static influencing factors.

o Completing the analyses with weather-
related and power flow-related time-series, one

ESREL 2020 PSAM 15 7

can obtain a dynamic estimation of the probability
of an outage happening.

Consequence of Outage:

o Equivalent number of non-supplied end-
users,

o Quantity of energy not provided,

o Values of infrastructures,

o Number of Ares prone to wildfires,
Uncertainty:

o Based on the uncertainty related to the

data sources and the process chosen to combine
their output, one can eventually estimate the
uncertainty level related to both the probability of
outage estimation and the consequence of outage
estimation

5. Discussion and Concluding Thoughts

The present paper illustrates the added value of
integrating data-driven solutions into decision-
support for management of infrastructures under
risk. For that it takes the example of power grid
management and focuses more especially on the
evaluation of the threat originating from the
presence of vegetation close to power grid
mfrastructures. It illustrates how relevant data
sources should be manipulated in such a way that
decision makers can optimize their judgements
and the management of their resources, as well in
a pre-event resilience perspective as from a post-
event restauration point of view. How the risk
reduction actions are executed and the way the
resulting information is integrated into the new
cycle of risk assessment is however an additional

Data Processing
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Figure 4: Framework for data-driven decision support for power grid operators for management of vegetation
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dimension that needs to be correctly executed in
order to ensure optimal risk management of the
infrastructure over time. While continuing the
development of the presented framework and
reinforcing the steps already suggested, there is
thus a need for further studies in order to assess
and quantify the role of human factors on the final
true risk level, and evaluate how to reinforce the
feedbacks of the operators in the developed
system.

A data-driven and efficient decision-support as
suggested by the framework can lead to correct
decisions by the operators regarding maintenance
scheduling and prioritizing. Yet, operators’
decision is also influenced by internal factors (e.g.

distraction,  fatigue) and external and
organizational factors (e.g. human-system
interface  quality, procedures, workplace

adequacy). Those must also be considered when
developing a system that aims to reduce human
error.

With the description done in the present work, we
focused on the risk generated by vegetation in
power grids. Although vegetation 1s often the final
element in the causal chain, the causes of events
including vegetation are often plural and include,
for example, wind or snow. Those factors taken
independently can also be at the origin of outages,
making them similarly items to assess in order to
quantify their influence on the final holistic risk
image. As such, further work will also need to
deepen and highlight the interactions between
variables in order to properly quantity the
influence of each dimension on the true risk value.
This  paper highlights the benefits of
interconnected IT-based technologies for the
management of infrastructures under risk,
supporting that way the generalization of data-
driven methods for risk analyses and calling thus
also for a generalization of the use of dynamic risk
analyses. The extended access to a large number
of data sources can however also come with
additional complications and lead to potential
sources of inefficiency. As such, this paper is also
an occasion to recall the need for risk assessment
methods to be both model-based and data-driven.
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An increasing amount of information is collected by the monitoring systems within the process industry,
especially concerning safety management. For instance, the Seveso III regulation on the control of major-accident
hazards involving dangerous substances is the first version that refers to the collection of safety indicators for
monitoring the performance of safety management systems. This leads to a call for improvement in learning past
lessons and definition of techniques to process relevant data, in order to deal with unexpected events and provide
the right support to safety management. Through this work, we suggest a data analytics approach for severity
prediction of future hazardous events. The approach is twofold and is based on the use and comparison of multiple
linear regression (MLR) and deep neural network (DNN) models. These models are developed and tested on the
Major Hazardous Incident Data Service (MHIDAS) database. A set of simulations has been carried out not only to
evaluate the models, but also to identify their limitations. The results show the capability of these models to
manage heterogeneous data from past accident records and extract important information to support safety-related
decision making. It must also be mentioned that intrinsic model limitations should be considered, and appropriate
model selection and customization should be carefully carried out to deliver the needed support.

Keywords: learning from lessons, data analytics, multiple linear regression, deep neural network, safety
management.

1. Introduction

Hazardous events may manifest under various
forms in industry, but they mostly known as
events involving the loss of containment of
hazardous materials in the process industry
(Pasman, 2015). In Europe, the handling of
hazardous materials by process industry is
regulated by the so-called the Seveso III
regulation on the control of major-accident
hazards  involving  dangerous  substances
(European Parliament and Council, 2012). As
stated by Pasman, the loss of control of such
substances has the potential to cause high-impact
low-probability accidents (Pasman, 2015). High
impact indicates catastrophic losses, but, due to
their low probability, these accidents may even
not happen during a lifetime.

Paltrinieri et al. (Paltrinieri et al., 2013, 2011)
address another aspect of major accidents, as, in
some cases, they are the results of scenarios that
are "not captured by hazard identification
methodologies because deviating from normal
expectations of unwanted events or worst case
reference scenarios." These may occur when
hazard identification does not produce a
complete overview of system hazards (Paltrinieri
etal., 2010).

Another term used to define rare catastrophic
events that have never been encountered before
was coined by Taleb (Taleb, 2007), who used the
metaphor of the Black Swans. These events can
be explained only in the aftermath and cannot be
anticipated, such as the black swan was believed
to be impossible before its discovery in the 17"
century (Taleb, 2007). However, the concept
may be misused as it may represent a reason for
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ignoring the potential for major accidents and
avoiding the implementation of long-term safety
measures (Paté-Cornell, 2012).

The concept of Dragon-Kings (Sornette,
2009), may indicate a responsible approach to
deal with major accidents. Dragon-Kings are
defined as events that are extreme and outliers
(in analogy with the kings’ wealth), but unlike
anything else, such as dragons. These major
accidents are intended as the result of some
degrees of organization and coordination of
relatively smaller unwanted events and features,
which could serve to amplify the final
consequences.

Extreme accidents are the result of a
combination of such details, some of which may
be considered as deviations from normal/optimal
conditions.

These deviations can be defined as early
warnings (Paltrinieri et al., 2015a) or associated
with the concept of “Small Things” (Paltrinieri
and Khan, 2016). Small things might be
recurring old issues in a plant or organization,
which do not need imaginative definitions to be
prevented, but perhaps only the compliance with
already present procedures. Acting on Small
Things would allow breaking the chain of events
and lower the probability for major unpredictable
accidents.

In the last decade, increasing attention has
been dedicated to evaluation and monitoring of
early deviations through appropriate indicators,
to assess and control risk. Indicators can be
represented by a series of factors: physical
conditions of a plant (equipment pressure and
temperature); number failures of an equipment
piece; maintenance backlog; number of
emergency preparedness exercises; amount of
overtime worked; etc. Several indicator
typologies have been theorized and used, but we
often address risk indicators if (@ien, 2001): they
provide numerical values (such as a number or a
ratio); they are updated at regular intervals; they
only cover some selected determinants of overall
risk, in order to have a manageable set of them.

The latter feature has quickly become
outdated due to the extensive collection that is
being carried out in industry and the attempts
made to process and elaborate larger numbers of
them. For instance, for the first time since the
first Seveso directive was issued in 1982, Seveso
Il mentions specific procedures for safety
performance indicators and/or other relevant
indicators, to use for monitoring the performance
of safety management systems [3].

Table 1 reports how such suggestion has been
received in some of the EU member and
associated countries. Past hazardous events are
collected by all the countries considered in Table
1. United Kingdom and France use specific

databases to collect them. On the other hand, the
use of safety performance indicators is not as
common across Europe, but where it is not
present, it is suggested by relevant research
institutes.

Table 1. Seveso Ill-based monitoring approaches

in the

EU member and associated countries
(Paltrinieri and Reniers, 2017).

Indicators

Past events

Safety performance
indicators

United
Kingdom

Hazardous events reported
to the competent
authorities and regulated
by RIDDOR (Reporting
of Injuries, Diseases and
Dangerous Occurrences).

The British competent
authorities require
hazard establishments to
collect safety
performance indicators
(PSPIs).

Hazardous events are
collected in the database
ARIA (Analysis, Research

The French national
competence centre for
industrial safety and

]

2  and Information on environmental

E Accidents). These events protection (INERIS)
are also used as Key suggests the use of a
Performance Indicators. Safety Performance

Indicator System.

Hazardous events are The regulation states

‘—: reported to the competent  that safety performance

= authority. monitoring should be

based on indicators.

Hazardous events are The regulation requires

-§ reported to and collected companies handling

= by the competent hazardous substances to

= .

E authority. collect safety

% performance indicators.
The competent authority Other indicators are also

~ uses hazardous events to used to assess the

5 assess the performance of ~ performance of safety

E safety management management systems.

= systems.
The competent authority The Norwegian research
collects hazardous events institute SINTEF

% according to the Seveso suggests monitoring the

; regulations. safety trend of Seveso

z. establishments with

safety performance
indicators.

This leads to a call for improvement in

learning past lessons and definition of techniques
to process relevant data, in order to deal with
unexpected events and provide the right support
to safety management. However, industrial risk
analysis is unevenly progressing within this topic
(Paltrinieri et al., 2019). At the same time, the
use of machine learning has possibly become
more attractive, given the progressive refinement
of its models and the exponential increase in
available computing power (Goodfellow et al.,
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2016). For this reason, we suggest a data
analytics approach to predict the severity of
potential hazardous events based on lessons
learned from past hazardous events.

2. Method

The approach is twofold and is based on the use
and comparison of multiple linear regression
(MLR) and deep neural network (DNN) models.
MLR and DNN may be considered as techniques
belonging to the field of machine learning, which
refers to techniques aiming to program
computers to learn from experience (Samuel,
1959). While MLR is a statistical technique that
uses several explanatory variables to predict the
outcome of a response variable (Andrews, 1974),
DNN aims to simulate (to a certain extent) the
learning model of the human brain (Goodfellow
et al., 2016). It is loosely based on information
processing and communication patterns in a
neural system. It allows computational models
that are composed of multiple processing layers
to learn representations of data with multiple
levels of abstraction.

A computer may be trained to assess risk or
some of its components for safety-critical
industries such as Seveso-regulated sites through
machine learning techniques. This would allow
processing the large amount of information
currently collected in the form of lessons from
past events or safety performance indicators.
Moreover, although risk level cannot be
evaluated with certainty, machine learning can
allow for expert supervision through supervised
learning (Goodfellow et al., 2016).

2.1 Multiple linear regression

A linear model, given a vector of inputs X =
(x1, %2, ..., %p), predicts the output y (in this case
an index for the risk R) via the following
equation (Hastie et al., 2009):
y = by + 27]‘.’=1ij]- ~R (1)
where by is the so-called bias and wy
represents the model weights. This model needs
then to be trained with a training set data in order
to learn the weights of every provided input.
Once the weights are known, the model can be
used for prediction of y based on new inputs X.

2.2 Deep neural network

The deep learning model considered in this work
is a feed-forward neural network, wherein
connections between the units do not form a
cycle (Svozil et al., 1997). A linear model, such
as MLR, would be restricted to linear functions,
while a DNN model describes the target as a
nonlinear function of the input features
(Goodfellow et al., 2016). The DNN model can

be described as a series of functional
transformations associated to the model layers
(Figure 1).
Indicators Hidden
(input) layer

Risk Index
(output)

Fig. 1. DNN layers.

The overall length of the chain gives the
depth of the model. Specifically, the first

network layer performs the following
computation of the inputs X = (x, x5,...,%p):

a; = bi + 2?=1 iji,j (2)
with i=1, ..., m.

Where a;, b; and w; are respectively defined
as activation, bias and model weight.

The activations are transformed by the activation
function g within the hidden layer:
z; = g(a;) 3)

Where z; is defined as hidden unit. The most
used activation function is the sigmoid
(Goodfellow et al., 2016). Figure 1 shows only
one hidden layer for the sake of simplicity, but
there can be several.

The hidden units are combined to give the
activations a, of the output layer:

a, = b, + Z}n=1ZjWo,j “4)

Where a,, b, and w, are activation, bias and
model weight. Figure 1 shows only one output
for the sake of simplicity, but there can be
several.

Finally, the activation function % is used to
obtain the output y, which is an index for the risk
R:

y = h(a,)~R o ®

Given a dataset of X and associated y, the
model can be trained to minimize the final loss
function in a supervised way, in order to predict
v based on new inputs X.
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3. Application

The described approach was applied to a
database of past accidents with the purpose to
simulate its application on the national databases
managed by the Seveso-competent authorities.
The dataset used is the Major hazard incident
database (MHIDAS) (AEA technology - Major
hazards assessment unit, 2003) launched by the
UK Health and Safety Executive in 1986 and
developed by AEA Technology until mid 1990's.
The events included are based on public domain
information sources and their characteristics are
registered using keywords.

MHIDAS collects about 8972 hazardous
events from 1916 to 1992, recorded by means of
the set of items listed in Table 2. Some items use
a taxonomy to systematically categorize the
event.

Table 2. Set of items used to record hazardous
events in MHIDAS (AEA technology - Major
hazards assessment unit, 2003). Specific keywords
are used to describe some of the items.

in Table 3 based on the considered inputs. Only
categorical data are used.

Table 3. Severity categories considered by the
study.

Severity categories

0 Event with no fatalities

1-10 Event with a number of fatalities between 1 and 10

10-100  Event with a number of fatalities between 10 and
100

Items Description Category
from
taxonomy

Date Date of the event

Location Location of event

Substance Substances involved in the event X

Event type  Typology of event X

Origin Area of the plant and type of X

equipment from which the event
started

Section Plant section in which the event X

occurred

Quantity Amount (ton) of released

substance

General General causes the led to the X

causes event

Specific Specific causes the led to the X

causes event

Evacuated  Number of people evacuated

Consequences

Damage Economic damage to the

property or production loss

Injured Number of people injured by the

event

Killed Number of people killed by the

event

The items listed in the upper part of Table 2
where considered as inputs X to the models, in
order to predict the consequences — lower part of
Table 2. The details of data pre-processing are
explained elsewhere (Solini, 2017). The study
focused on the number of people killed and
aimed to predict the occurrence of a hazardous
event within one of the severity categories listed

Two datasets were created from the overall
MHIDAS database:

1. A training dataset used to train the MLR
and the DNN models, with 2/3 of the x;
and associated y values, and

2. A test dataset used to test the models,
with about 1/3 of the x; and associated y
values.

A code in Python language was written for
training and  testing. The  classifiers
tf.contrib.learn.LinearClassifier and
tf.contrib.learn.DNNClassifier from the open-
source library TensorFlow (Google LLC, 2018)
were used for the models. The DNN model
structure (i.e. number of layers and nodes) was
inspired by Cheng et al. (2016), based on which
the hyper-parameters are defined.

4. Results

The results show whether the events from the
test dataset were predicted within the correct
severity category from Table 3. The models
produce a probability of belonging to a severity
category. The probability threshold based on
which the decision on whether an event belong
to a category is set at 0.5 by default. This affects
the following cases:

e true positive (4,,), as correct prediction

of event belonging to a severity
category;,
e false positive (f,), as incorrect

prediction of event belonging to a
severity category;

e true negative (#,), as correct prediction
of event not belonging to a severity
category; and

e false negative (f,), as incorrect
prediction of event not belonging to a
severity category.

In order to obtain an overall evaluation of
the MLR and DNN prediction capabilities, the
specific metrics listed in Table 4 were
considered. While accuracy, precision and recall
are defined based on the default threshold value,
the area under the precision/recall curve (PR
AUC) is calculated variating the threshold value
from O to 1.
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The results obtained generally show good
capability to predict a hazardous event without
fatalities in both the methods, as all the metrics
reach values at about 0.8 or more.

Table 4. Metrics describing the prediction
capabilities of the models.

Definition
Accuracy | gec = 2t
tp+tntfptin

Precision pr=_

totfp
Recall Re = —2

tptfn
PR AUC The area under the Precision/Recall curve.

However, the prediction capabilities sensibly
decrease in case of prediction of hazardous
events within the severity categories involving
fatalities. The only metric increasing for these
categories is the accuracy, which almost reaches
the unitary value for the category “10 to 100
fatalities”. Precision and recall show values
under 0.2 and next to O respectively for the
categories “from 1 to 10 fatalities” and “from 10
to 100 fatalities”. PR AUC maintains slightly
higher values in both the categories involving
fatalities.

5. Discussion

The results show the capability of two machine
learning models to manage heterogeneous data
from past accident records and extract important
information to support safety-related decision
making. In fact, the records of hazardous events
reported on MHIDAS include both items
described by a set of specific keywords and
numerical values.

These data were used to build two parallel
models predicting the severity of potential new
hazardous events. The metrics obtained from
testing the two models show good capabilities in
predicting hazardous events without fatalities.
However, it must be pointed out the presence of
class imbalance as the events without fatalities
represent the vast majority within the dataset
considered. This could be the reason of such a
variation in performance when we look at the
remaining severity categories.

Hazardous events that cause from 1 to 10
fatalities were predicted with an accuracy that is
over 0.8, while the category “from 10 to 100~
show even higher accuracies. However, it must
be considered that the accuracy metric represents
a partial evaluation of the model. In fact, if the
model is employed for the prediction of rare
events (such as the ones with fatalities),
predicting always their “non-occurrence” would
lead to high accuracy anyway as the metric
presents the term of “true negatives” at the

numerator. This is demonstrated by the other
metrics, in particular precision and recall, which
are equal to 0 in the last category reflecting the
absence of predicted “true positives”. For this
reason, the evaluation of the model capabilities
can be carried out only through the whole set of
metrics.
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Fig. 2. Test results for the multiple linear regression (MLR)
and deep neural network (DNN) models.
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PR AUC gives a more complete overview of
the model as it may indicate also the potential for
improvement. In fact, it indicates the possibility
to adjust the decision probability threshold to
improve precision or recall based on the purpose
of the analysis. For instance, tuning the threshold
to optimize the model precision would be
effective when predicting a rather frequent event
with relatively low criticality, such as a
hazardous event without fatalities. This would
allow obtaining a model that tends to avoid false
positives further increasing the number of alarms
with some false ones. On the other hand, when
predicting a rare event with relatively high
criticality (such as a high-impact low-probability
accidents (Pasman, 2015)), false alarms may be
tolerated in exchange of a better prediction of the
actual hazardous event, thus an improvement in
true positive. For this reason, the threshold may
be adjusted to optimize the recall.

A comparison between the two models shows
a relatively better performance in the predictions
obtained by MLR. However, if we compare the
precision values for the severity category without
fatalities, DNN turns to be more appropriate.
Analogously, comparing the recall values for the
severity category with fatalities between 10 and
100 shows a relatively better performance by
DNN.

This demonstrates that there are some
important differences among the specific
techniques. Linear models such as MLR are
widely used for prediction purposes. Interactions
of the event features can be easily memorized
through the provided datasets. However, a
relatively simple model may not be able to
capture the essential pattern in the data
(Christian and Griffiths, 2016). Generalization of
lessons learned for prediction under unknown
circumstances requires a higher level of
complexity, which linear functions may fail to
provide (Goodfellow et al., 2016). Deep neural
networks may be an option for such task
(Christian and Griffiths, 2016).

Major accidents are (fortunately) rare events
in industry, even considering evidence of fat-
tailed distributions (Taleb, 2007). For this
reason, appropriate models should be used to
deal with such unexpected events. To this end,
linear regression techniques are well-known for
their limitation to handle rare events data (King
and Zeng, 2001). Relatively simple models tend
to forecast the basic trend and may potentially
miss several exact points (Christian and
Griffiths, 2016). Sophisticated models such as
DNN are theoretically better suited to consider
rare events, due to their sensitivity to input data
and capability to generalize (Cheng et al., 2016).
However, a limitation of DNN is that the model
may have such a sensitivity to input data that the

solutions it produces are highly variable
(Christian and Griffiths, 2016). There can be
errors in how the data were collected or reported
on MHIDAS. For this reason, cross-validating
with a test dataset is essential. Moreover, DNN
results can be altered by its random initialization
of parameters before every training session. This
has the potential to affect the whole model

development and, in turn, lead to slight
alterations of prediction capabilities. Such
differences may be amplified in case of

relatively small datasets and few iterations to
minimize the final loss function during training.
Another limitation of the DNN model used in
this case study may be related to its setting based
on Cheng et al.’s (2016) work. In fact, the DNN
model used may still need appropriate
optimization for the case study.

An important aspect to consider is that the
DNN model is not tied to a rigid structure to
aggregate information from indicators (Landucci
and Paltrinieri, 2016), but it has the potential to
reshape its own structure based on new batches
of data. Such an approach has some similarity
with other methodologies in literature (Paltrinieri
et al., 2016, 2015b), who developed a technique
to update logic trees describing accident
scenarios dynamically, in order to account for
new evidence and prevent emergence of atypical
events.

An option for improving the DNN model is
the application of progressive learning
techniques, which may be independent of the
number of indicator categories and to learn new
indicators once relevant information emerges,
while retaining the knowledge of previous ones
(Venkatesan and Er, 2016).

6. Conclusions

Through this work, we have suggested a data
analytics approach for severity prediction of
future hazardous events. The approach was
based on the use of two well-known machine
learning techniques: MLR and DNN. These
models were developed and tested on the Major
Hazardous Incident Data Service (MHIDAS)
database. Part of the available data were used to
build the actual models while the remaining data
were used to test the models. This allowed also
identifying and discussing the inherent
limitations of the techniques.

For instance, DNN high model sensitivity
does not tolerate inaccurate inputs. For this
reason, selection and customization of a
prediction model for an intended purpose should
be carefully carried out using appropriate
metrics, tolerance, and criteria. If these
precautions are considered, the odds to deliver
appropriate support for safety-related decision-
making will be boosted. In this way, it will be
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possible to extract important information from
heterogeneous data and effectively support
safety-related decision making.

Acknowledgement

We thank Riccardo Solini for his work on this
topic, which  ultimately inspired  this
contribution.

References

AEA technology - Major hazards assessment unit,
2003. MHIDAS — Major Hazard Incident Data
Service. UK.

Andrews, D.F., 1974. A Robust Method for Multiple
Linear Regression. Technometrics 16, 523-531.
https://doi.org/10.1080/00401706.1974.104892
33

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T.,
Chandra, T., Aradhye, H., Anderson, G.,
Corrado, G., Chai, W., Ispir, M., 2016. Wide &
deep learning for recommender systems, in:
Proceedings of the 1st Workshop on Deep
Learning for Recommender Systems. ACM, pp.
7-10.

Christian, B., Griffiths, T., 2016. Algorithms to live
by: the computer science of human decisions.
Macmillan.

European Parliament and Council, 2012. Directive
2012/18/EU of 4 July 2012 on the control of
major-accident hazards involving dangerous
substances, amending and subsequently
repealing Council Directive 96/82/EC - Seveso
MII. Off. J. Eur. Union 1-37.

Goodfellow, I.J., Bengio, Y., Courville, A., 2016.
Deep learning, The MIT Press. Citeseer,
Cambridge, Massachusetts, US.

Google LLC, 2018. Tensorflow [WWW Document].
Tensorflow TM. URL www.tensorflow.org

Hastie, T., Tibshirani, R., Friedman, J., 2009.
Unsupervised learning, in: The Elements of
Statistical Learning. Springer, pp. 485-585.

King, G., Zeng, L., 2001. Logistic regression in rare
events data. Polit. Anal. 9, 137-163.

Landucci, G., Paltrinieri, N., 2016. Dynamic
evaluation of risk: From safety indicators to
proactive techniques. Chem. Eng. Trans. 53.
https://doi.org/10.3303/CET 1653029

Qien, K., 2001. A framework for the establishment of
organizational risk indicators. Reliab. Eng.
Syst. Saf. 74, 147-167.
https://doi.org/10.1016/S0951-8320(01)00068-

0

Paltrinieri, N., Comfort, L., Reniers, G., 2019.
Learning about risk: Machine learning for risk
assessment. Saf. Sci. 118, 475-486.
https://doi.org/https://doi.org/10.1016/j.ssci.201
9.06.001

Paltrinieri, N., Cozzani, V., Wardman, M., Dechy, N.,
Salzano, E., 2010. Atypical major hazard
scenarios and their inclusion in risk analysis
and safety assessments, in: Reliability, Risk and
Safety: Back to the Future. pp. 588-595.

Paltrinieri, N., Khan, F., 2016. New Definitions of Old
Issues and Need for Continuous Improvement,
in: Dynamic Risk Analysis in the Chemical and
Petroleum Industry: Evolution and Interaction
with Parallel Disciplines in the Perspective of
Industrial Application.
https://doi.org/10.1016/B978-0-12-803765-
2.00002-0

Paltrinieri, N., Khan, F., Cozzani, V., 2015a. Coupling
of advanced techniques for dynamic risk
management. J. Risk Res. 18, 910-930.
https://doi.org/10.1080/13669877.2014.919515

Paltrinieri, N., Qien, K., Tugnoli, A., Cozzani, V.,
2013. Atypical accident scenarios: From
identification to prevention of underlying
causes, Chemical Engineering Transactions.
https://doi.org/10.3303/CET1331091

Paltrinieri, N., Reniers, G., 2017. Dynamic risk
analysis for Seveso sites. J. Loss Prev. Process
Ind. 49.
https://doi.org/10.1016/j.j1p.2017.03.023

Paltrinieri, N., Tugnoli, A., Bonvicini, S., Cozzani, V.,
2011. Atypical scenarios identification by the
DyPASI procedure: Application to LNG.
Chem. Eng. Trans. 24, 1171-1176.
https://doi.org/10.3303/CET1124196

Paltrinieri, N., Tugnoli, A., Cozzani, V., 2016.
Dynamic Hazard Identification: Tutorial and
Examples, in: Dynamic Risk Analysis in the
Chemical and Petroleum Industry: Evolution
and Interaction with Parallel Disciplines in the
Perspective of Industrial Application.
https://doi.org/10.1016/B978-0-12-803765-
2.00004-4

Paltrinieri, N., Tugnoli, A., Cozzani, V., 2015b.
Hazard identification for innovative LNG
regasification technologies. Reliab. Eng. Syst.
Saf. 137.
https://doi.org/10.1016/j.ress.2014.12.006



Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

Pasman, H.J., 2015. Risk Analysis and Control for
Industrial Processes - Gas, Oil and Chemicals:
A System Perspective for Assessing and
Avoiding Low-Probability, High-Consequence
Events. Elsevier Science.

Paté-Cornell, E., 2012. On “Black Swans” and
“Perfect Storms”: Risk Analysis and
Management When Statistics Are Not Enough.
Risk Anal. 32, 1823-1833.
https://doi.org/10.1111/j.1539-
6924.2011.01787.x

Samuel, A.L., 1959. Some Studies in Machine
Learning Using the Game of Checkers. IBM J.
Res. Dev. 3, 210-229.
https://doi.org/10.1147/rd.33.0210

Solini, R., 2017. Data analytics for chemical process
risk assessment: learning lessons from past
events towards accident prediction. Bologna,
Italy.

Sornette, D., 2009. Dragon-Kings, Black Swans and
the Prediction of Crises. ETH Zurich, Chair of
Systems Design.

Svozil, D., Kvasnicka, V., Pospichal, J., 1997.
Introduction to multi-layer feed-forward neural
networks. Chemom. Intell. Lab. Syst. 39, 43—
62. https://doi.org/10.1016/S0169-
7439(97)00061-0

Taleb, N., 2007. The black swan : the impact of the
highly improbable. Random House, New York.

Venkatesan, R., Er, M.J., 2016. A novel progressive
learning technique for multi-class classification.
Neurocomputing 207, 310-321.



Articles

124



Articles

Article VI - Automated Power Lines Vegetation Monitoring using High-

Resolution Satellite Imagery

Gazzea, M., Pacevicius, M., Dammann, D.O., Sapronova, A., Lunde, T.M., Arghandeh, R.,
2021. Automated Power Lines Vegetation Monitoring using High-Resolution
Satellite Imagery. Trans. Power Deliv. 1-9.

This paper is not included in NTNU Open due to copyright restrictions
available in IEEE Transactions on Power Delivery 2021; Volum 37.(1) s. 308-316
https://doi.org/10.1109/TPWRD.2021.3059307

125



Articles

136



Articles

Article VII - Managing Heterogeneous Datasets for Dynamic Risk Analysis of

Large-Scale Infrastructures

Pacevicius, M., Ramos, M., Roverso, D., Thun Eriksen, C., Paltrinieri, N., 2022a. Managing
Heterogeneous Datasets for Dynamic Risk Analysis of Large-Scale Infrastructures.
Energies. p. 40.

137



energies

Article

Managing Heterogeneous Datasets for Dynamic Risk Analysis
of Large-Scale Infrastructures

Michael Felix Pacevicius
and Nicola Paltrinieri 1*

check for
updates

Citation: Pacevicius, M.E;; Ramos, M.;
Roverso, D.; Eriksen, C.T.; Paltrinieri, N.
Managing Heterogeneous Datasets
for Dynamic Risk Analysis of
Large-Scale Infrastructures. Energies
2022, 15,3161. https://doi.org/
10.3390/en15093161

Academic Editor: Petar Sarajcev

Received: 22 February 2022
Accepted: 13 April 2022
Published: 26 April 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
40/).

1,2

, Marilia Ramos 3, Davide Roverso 2, Christian Thun Eriksen %

1 Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology NTNU,
Richard Birkelands vei 2B, 7034 Trondheim, Norway; michael.pacevicius@esmartsystems.com

Analytics Department, eSmart Systems, Hakon Melbergs vei 16, 1783 Halden, Norway;
davide.roverso@esmartsystems.com

3 The B. John Garrick Institute for the Risk Sciences, University of California, Los Angeles (UCLA),

Los Angeles, CA 90095, USA; marilia.ramos@ucla.edu

Architecture Development Department, eSmart Systems, Hikon Melbergs vei 16, 1783 Halden, Norway;
christian.t.eriksen@esmartsystems.com

*  Correspondence: nicola.paltrinieri@ntnu.no

Abstract: Risk assessment and management are some of the major tasks of urban power-grid manage-
ment. The growing amount of data from, e.g., prediction systems, sensors, and satellites has enabled
access to numerous datasets originating from a diversity of heterogeneous data sources. While these
advancements are of great importance for more accurate and trustable risk analyses, there is no guid-
ance on selecting the best information available for power-grid risk analysis. This paper addresses
this gap on the basis of existing standards in risk assessment. The key contributions of this research
are twofold. First, it proposes a method for reinforcing data-related risk analysis steps. The use of
this method ensures that risk analysts will methodically identify and assess the available data for
informing the risk analysis key parameters. Second, it develops a method (named the three-phases
method) based on metrology for selecting the best datasets according to their informative potential.
The method, thus, formalizes, in a traceable and reproducible manner, the process for choosing
one dataset to inform a parameter in detriment of another, which can lead to more accurate risk
analyses. The method is applied to a case study of vegetation-related risk analysis in power grids,
a common challenge faced by power-grid operators. The application demonstrates that a dataset
originating from an initially less valued data source may be preferred to a dataset originating from a
higher-ranked data source, the content of which is outdated or of too low quality. The results confirm
that the method enables a dynamic optimization of dataset selection upfront of any risk analysis,
supporting the application of dynamic risk analyses in real-case scenarios.

Keywords: heterogeneous datasets; metadata; dynamic risk analysis; potential of knowledge;
power grids

1. Introduction

Electric energy plays a crucial role in today’s society, and it is involved in almost
all aspects of society’s daily routine [1]. The continuous development of the economy
increases the need for energy, leading to larger-scale power systems and increasingly
complex structures [2]. Furthermore, the scale and complexity of power grids are expected
to increase with the growing use of renewable energy sources [3], as well as the development
and implementation of smart grids [4]. As numerous businesses, public infrastructures,
and private households rely on the provision of power for their daily tasks, companies
in charge of the power supply need to provide energy management in a more reliable,
effective, and secure way [1,5].
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Power grids are exposed to a plurality of hazards such as hurricanes, earthquakes,
ice storms, and floods, which can have severe consequences. The increasing frequency
of extreme weather events increases the damage potential of these hazards, further high-
lighting the vulnerability of power systems [6]. Indeed, large-scale power outages have
frequently occurred in recent years and have caused substantial economic losses [2].

Risk assessment and management have received significant attention as a tool to ensure
the operational safety and reliability of power systems, becoming one of the major tasks for
urban power-grid management [2]. Risk assessment of power grids generally makes use
of traditional risk approaches such as reliability block diagram (RBD), fault tree analysis
FTA [7], or failure mode and effect analysis [1]. Yet, the complexity of the power grids and
the growing amount of data coming, e.g., from prediction systems favor the development
and use of more advanced probabilistic risk-based approaches [6]. Applications of data-
based approaches to power grids and energy systems range from energy management for
smart buildings [8] to online fault diagnosis [9], among others (e.g., [10,11]). Risk analysis
of power grids susceptible to vegetation-related hazards can adopt diverse data sources,
ranging from satellite-based orthophotos to drone-based aerial images, including plane-
based orthophotos or LiDAR 3D point clouds. Connected devices and access to more
computing power provide additional opportunities for data-based, dynamically updated
risk analyses. However, an updated and accurate risk analysis is highly dependent on
the data used to inform the different parameters for calculating risk, e.g., the frequency of
an event, the probability of failure, and the potential consequences of this event. Indeed,
the use of different datasets for failure frequencies is an important source of uncertainty in
risk analysis results [12].

In addition to better informing conventional risk analysis, multiple data sources
present an opportunity for dynamic risk analysis (DRA). DRA is a concept that has mostly
emerged over the last decade [13,14]. It aims to build on data availability to provide
more frequent and performant risk pictures of infrastructures [15]. While DRA can ben-
efit from the growing data source variability to diversify the possibilities of information
acquisition relative to a particular parameter [4,16,17], numerous data sources may also
increase data collection and processing complexity [4,18]. First, the data to process are
intrinsically heterogeneous, requiring a large panel of competencies to manipulate and
extract relevant information from the datasets. Second, a larger number of data sources
requires selection rules for decision-making optimization, given the potential variability in
the data quality. This variability can be due to, for instance, the type of considered datasets,
the spatiotemporal resolution of the data, or the acquisition conditions of the datasets.

The International Standard Organization states that risk assessment should use the “best
information available” and the implementation of “dynamic” approaches [19]. However,
there is no guidance for applying those principles when multiple data sources are available.
The present paper is a step toward closing this gap. We propose an approach for the
dynamic optimization of dataset management to reduce uncertainties relative to data
selection upfront of any risk calculation. The proposed method (called the three-phases
method) is based on metrology concepts and metadata for characterizing the parameter-
related information needed for a quantitative risk analysis (QRA).

The method focuses on three main features of the datasets impacting the quality and
usability of the data for a QRA: the nature of a dataset, the discrepancies observed between
the spatiotemporal attributes of the dataset and the spatiotemporal requirements for the
risk analysis, and the agents and factors involved in the data management. The method
integrates these three factors in a scoring system using meta-features, relying solely on
metadata. The result is a ranking of the datasets, based on their informative potential
relative to a baseline of “perfect information”. The method also predicts the informative
potential of any new dataset originating from a list of preselected data sources using only
the information available in the metadata, thus without factually analyzing the content
of the datasets. Hence, the method’s application allows a continuous selection of the best
candidate across all available datasets. While the implementation of the method is labor-
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intensive in the first iterations of the process, it can significantly increase data management
efficiency in future assessments in the long term, avoiding suboptimal repetition of tasks.

The application of the method is demonstrated through a case study focusing on
risk management in power grids. We focus on the role of vegetation along power lines,
which represents a common source of outages in power grids, either via trees falling on the
power lines or by growing under the infrastructure until grounding one phase [4,5,20-22].

The remainder of this paper is organized as follows: Section 2 describes the methods
and concepts on which the three-phases method is founded: metadata and risk analy-
sis/dynamic risk analysis. Section 3 presents the result, i.e., the method developed for
dataset management on risk analysis. It describes the preliminary actions required for the
application of the three-phases method, which is then fully detailed in the rest of the section
as the main contribution of this work. Section 4 presents an application of the method
to the case study. Section 5 discusses the case study results, as well as the benefits and
limitations of the method, followed by conclusions in Section 6.

2. Materials and Methods—Metadata and Risk Analysis

Metadata can be defined as “data that provide information about other data” [23].
Metadata can provide structured information about a dataset without analyzing the dataset
content. As highlighted by Wierling et al. [24], credible and traceable documentation
of knowledge about the energy system is not possible without metadata. Despite its
potential benefits for energy systems and data management optimization, the assessment of
datasets through their metadata is not extensively explored in risk analysis. Indeed, there is
no uniform definition of metadata to standardize the entire process of data production,
processing, analysis, and use for prediction in the field of safety [25].

Data source management using its metadata in the context of risk analysis requires,
at first, a clear definition of the level of analysis. In addition, it requires having a complete
picture of all the datasets usable to inform the risk analysis parameters (i.e., an exhaustive
description of the risk analysis parameters and a list of all the data sources usable to inform
those parameters). While these two actions are common steps in risk analysis, they generally
lack details that would enable an optimal dataset management. A reinforcement of those
steps (“reinforcement actions”) is, thus, needed, as introduced in Section 2.2 and further
detailed in Section 3.

This section presents an overview of concepts related to metadata and risk analysis.
These do not constitute an exhaustive review and are limited to the description of the
concepts applied in this paper.

2.1. Metadata Concepts

Metadata (i.e., “data that define and describe other data” [26]) report information
concerning the structure and the content of a dataset or a service [27,28]. Metadata can be
used for three main purposes: (1) content description (author, subject, etc.), (2) structural
characterization (e.g., link between various parts of a resource), and (3) administrative
management (access rights, file version, etc.) [29]. In addition to these features, metadata can
be classified on the basis of a piece of information’s intrinsic vs. extrinsic property [30,31].
Although intrinsic properties may be assimilated to (1) content description and extrinsic
properties cover, (2) structural characterization, and (3) administrative management, there is
no broad consensus on the topic [32,33]. The classification and the metadata quality
assessment depend, thus, on the task at hand [34], leading to new classifications if required.

Different metadata standards have been developed over the years, depending on
the fields of application and the metadata’s purposes. The Metadata Standards Directory
Working Group [35], a working group from the Research Data Alliance [36], has reported
a community-maintained “open directory of metadata standards applicable to scientific
data” [37]. An extract of this work is presented in Appendix A. This directory also reports
the Dublin Core (DC), which is a generic standard developed on Semantic Web principles
(or a “web of linked data”) [38,39] and managed by the Dublin Core™ Metadata Initia-
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tive, or DCMI. DCMI aims at developing and sharing best practices in the design and
management of metadata. It is an open, collaborative, international, cross-disciplinary,
technology-neutral, and business model-/purpose-neutral organization dedicated to sup-
porting metadata management since the 1990s [40,41]. Dublin Core is a widely used
standard, also published as an ISO standard and NISO standard [42—44]. It contains
15 core terms and several properties, classes, datatypes, and vocabulary encoding schemes
maintained by DCMI (DC terms) [45].

The adoption of the DC standard data management for risk analysis presents several
advantages, such as the following;:

e many of the data sources not conventionally considered may be made available online,

e  cross-disciplinary standards are critical to the comparison of heterogeneous data sources,

e the importance taken over the years and continuous increase in cloud-based technolo-
gies and web-based applications,

e the importance of facilitating the sharing of data and knowledge, the collaboration,
the research and development, and the innovation adoption to third parties both in
the risk community and across industries.

Furthermore, using the DC standard allows using DC-related crosswalks, facilitated
by the international long-term recognition of the DC metadata standard. Crosswalks enable
highlighting the nature of the overlap and gaps between different metadata standards
through a table or a figure. In addition, they allow pinpointing the existence or the absence
of relationships between terms existing in the respective standards [46]. Multiple examples
of crosswalks linking recognized schemata can be found online, such as the one provided
by the Getty Research Institute [47], the one provided by the Metadata Working Group
of the Emory University [48], or the one provided by the UBC Faculty Research and
Publications [49]. Non-standardized crosswalks (e.g., internal) may also be considered
when discrepancies are observed between the format followed for metadata reporting in
a selected file and the existing standards (e.g., due to explicit choices related to specific
metadata needs, or due to a simple lack of competencies). Hence, the content from other
schemas can always be linked to the Dublin Core schema.

2.2. Conventional Risk Analysis and Dynamic Risk Analysis

The concept of risk is generally related to three principal elements, as displayed in
Equation (1) [50].
Risk = (s, p, c), 1

where s corresponds to a specific scenario, p corresponds to the probability of occurrence of
this specific scenario, and c corresponds to the resulting consequences.

Various standards adopt this definition for defining the steps of risk assessment [19,51,52].
Figure 1 presents the different steps to be followed within a risk assessment [51]. The figure
also presents the placement of the proposed reinforcement actions to be described in
Section 3.1, in blue and in red. Note that additional steps are identified in green in the
figure: the management of datasets for informing the risk assessment. These steps consist
of the method proposed in this paper, as described in Sections 3.2 and 3.3.

Different sources of uncertainties may arise during a risk assessment, one of them
being data processing [53]. The “level of knowledge” to represent some of these sources
was added to Kaplan and Garrick’s definition (Equation (2)) by Aven and Krohn [54].

Risk = f(s, p, ¢, k), 2

where the variable k corresponds to the level of knowledge and is added to the variables s, p,
and c corresponding to scenario, probability of occurrence, and consequence, respectively.
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Figure 1. Augmented risk assessment framework Z-013 [51]. The steps highlighted in blue and red
are the subject of augmentation (reinforcement actions 1 and 2), and the steps 3; and 4; in green are
additional steps related to the optimization of data source/dataset management.
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The assessment of the level of knowledge requires a proper characterization of the
information pipeline, starting with the data acquisition [16,19]. The concept of “best level of
information” selection, associated with the concept of “dynamicity”, can help in ensuring
more efficient risk assessment and having a clear picture of the related uncertainties.

The notion of dynamicity was recently added to the principles of risk management
presented within ISO 31000. Dynamic risk management approaches aim not only to update
the data to consider, but also to adapt and reconsider, if necessary and on the basis of
new risk evidence [55], the assumptions and models retained in previous cycles of the
assessment [15,56-58]. As such, those techniques avoid lock-ins from initially considered
conditions and process inertia by integrating, by design, the possibility to appropriately
reshape the risk assessment process while minimizing the required efforts [59].

Despite the increasing number of publications and recognition of its relevance in
ISO 31000:2018, DRA remains in an embryonic phase [15,60,61]. Limited research in the
field hinders its implementation and the possibilities of improvements of DRA techniques.
The lack of a systematic approach for identifying available data, as well as characterizing
and managing data sources, also poses a challenge for the adoption of DRA, as it is a data-
driven method. The method proposed in this paper intends to address this gap through
the reinforcement actions detailed in Section 3.1 and the addition of two steps, presented in
Sections 3.2 and 3.3.

3. Results—Dataset Management Method for Dynamic Risk Analysis of Large-Scale
Infrastructures

This section presents the resulting method developed for dataset management. It starts by
describing the reinforcement steps required to apply the three-phases method. In Section 3.1,
the main building blocks of the method are presented in Section 3.2, followed by the
detailed description of the method elements in Section 3.3.

3.1. Risk Analysis Framework Reinforcement: Level of Analysis and Dataset Characterization

This subsection first details to which extent information should be characterized to
enable a standard risk assessment. It then presents two reinforcement actions (RA1 and
RA2) applied to existing steps of a standard risk assessment (Figure 1), namely, establishing
the context (sub-steps 11, 1, 15) (RA1) and hazard identification (step 2), analysis of
potential initiating event (sub-step 31), and analysis of potential consequences (sub-step 4;)
(RA2). The reinforcement of these steps is necessary for applying the proposed method for
dataset selection (Sections 3.2 and 3.3).

3.1.1. Information Characterization Requirements

Considering that the numerical values used within a QRA are all directly or indi-
rectly based on measurements, best practices applied in metrology (i.e., the “science of
measurement and its application” [62]) can be adopted as a reference. The measurement
process in metrology is defined as “a set of operations to determine the value of a quan-
tity” [63]. Its design represents a critical phase and consists, from a high-level point of view,
in answering the following questions to execute a measurement adequately:

Which quantity shall be measured?

What are the required quality indicators (e.g., accuracy, precision, (see Figure 2))?
Which measurement methods shall be used?

Which equipment shall be used?

Which software shall be used?

Who is going to execute the measurement?

What are the ambient conditions and influencing quantities affecting the measure-
ment process?
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Figure 2. Accuracy—precision distinction. Illustration of the distinction between the concepts of
accuracy (closeness of agreement between a measured value and a sought out true value) and
precision (closeness of agreement between measured values obtained by replicate measurements on
the same or similar objects under specified conditions) [62].

Providing the described level of detail is critical for the validity of a measurement
result, and to improve the traceability of a measurement. This is particularly relevant for
risk assessment and recalls the paramount importance of a proper context characterization.
Indeed, answering the question “Which quantity shall be measured?” requires first an
adequate identification of the information that is sought out. This action should be executed
within step (1) of the risk assessment (Figure 1) (“establishing the context”), as part of the
global definition of the problem to address.

Three main points among those reported in the context establishment of the NORSOK
Z-013 standard [51] need to be defined to adequately characterize the information one
should look for:

e  The objectives (defining the objective functions and indicating which type of informa-
tion should be chosen),

e  The scope (characterizing to which extent this information needs to be researched),

e  The system boundaries (characterizing under which considerations and within which
system delimitations the data need to be sought out).

3.1.2. Reinforcement Actions: Level of Analysis and Available Data Sources

The implementation of risk analyses is, in practice, strongly constrained by the avail-
ability of needed resources [64,65]. Hence, the adequate level of analysis is a tradeoff
decision between stakeholder expectations and analytical possibilities [66,67]. Figure 3
illustrates the nature of the tradeoff to be found when defining the optimal level of analysis.
The optimal analysis level can be considered as the level of convergence between a top-
down and a bottom-up process. The top-down process consists of the progressive detailing
of a global ambition associated with a resource budget allocation. The bottom-up process
consists of progressively aggregating and restoring required information most efficiently
while reducing information loss [68]. The dotted line in Figure 3 can be read as the level
of convergence; it can be scrolled up or down depending on objectives and conditions.
Note that no budget would enable a microscopic analysis of a large and complex system,
and some level of abstraction is inevitable. On the other hand, no analysis can be limited to
a high-level identification of risk-related objectives, and some level of details will always
be required for meaningful decision making.
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Figure 3. Level of analysis of a risk assessment defined as tradeoff decision between stakeholder

expectations and analytical possibilities.

The definition of the optimal level of analysis is related to steps 11, 15, and 15 of the risk
assessment method, namely, definition of objectives, definition of the scope, and definition
of system boundaries and systems basis (Figure 1). Defining the level of convergence (rein-
forcement action 1) supports identifying the most relevant system, subsystem, assembly,
subassembly, or component on which a risk assessment shall be executed. Following this
identification, the next phase consists of building on the following steps commonly applied
in risk assessment [69], augmented with reinforcement action 2, as presented in Figure 4:

e Task (I): applying a hazard identification (HAZID), i.e., identifying all relevant hazards

and hazardous events,
Task (II): describing the relevant accident scenarios,

Task (III): reporting all dimensions to be considered for the hazardous events addressed

in each scenario, from both a probability and a consequence perspective,

Task (IV): identifying and characterizing all relevant parameters per reported dimension,
Task (V): identifying all the data sources providing, to any extent, information to those

parameters on the basis of experience, expertise, and further benchmarks.

Reinforcement action 2 consists, thus, of preselecting a list of data sources to inform
different parameters which, in turn, inform different dimensions needed for quantifying
the probability of occurrence and the consequences of a specific scenario. The list of
preselected data sources should be completed by looking at all the accessible data sources
and determining if those can provide (to any extent possible) knowledge about the needed
parameters. For traceability, the preprocessing tasks enabling one to link a data source to a

parameter shall also be reported.

The characterization of the parameters (Task IV) is a crucial step. It starts by reporting
attributes relevant in any measurement process, i.e., the unit, the optimal resolution,

and the range.

At this stage, considering that suboptimal resolution may often be faced, it is also
strategical to define acceptable subcategories of information as second-best options to

enable a semiquantitative evaluation when no other possibilities exist.
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Reinforcement Actions 2 - Parameter Characterization and Data Source Identification.

Augmentation of Risk Assessment Steps 2, 3;, and 4;

______________________________ -
Task V. Task IV. Task IIl. Task II. Task I. |
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| Data Sc. 1 |
| Data Sc. 2 |
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Figure 4. Identification of parameter characterization requirements and data sources potentially
exploitable for the risk analysis.

Risk analysis should ideally be site-specific [13,58] and performed in real time to avoid
the possibility of building on outdated data and outdated considerations [70]. Therefore,
risk analyses are time- and location-sensitive, and any spatiotemporal divergence between
the site to be analyzed and the data that are considered will impact the results. Thus,
the following questions should also be answered for characterizing the risk parameters:

e  How location-sensitive is the parameter under review?

e  What is the spatial extrapolation potential, i.e., the capacity, given data provided for
a particular parameter in a delimited geographical area, to estimate values for that
specific parameter in the surrounding of the initially considered area?

e  How quickly does the parameter under review usually change over time?

e  What is the relevant time changing rate?

e How long would it take before the dataset considered for the parameter under review
to be outdated?

Depending on the scope of the risk assessment being performed, an applicable spatial
scale may be the following (in square meters): “not applicable (NA), individual or <10°”,

s

“<101”, “<10%”, “<10%”, “>103". Similarly, a timescale could be reported as “hours”, “days”,
“weeks”, “months”, “years”, “decades”, or “constant” (i.e., no change over the lifetime of
the site).

In summary, a parameter pa can be characterized through the vector

Rspa
SLIW
Rapa ’
SEPW
TSpa

pa
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where, within a pre-defined scope, Rsy, corresponds to the optimal resolution of the
parameter pa based on the chosen unit, SLIy, corresponds to the sublevel of information of
the parameter pa acceptable for semiquantitative evaluations, Ray, corresponds to the range
of values taken by the parameter pa, SEPy, corresponds to the spatial extrapolation potential
of the parameter pa, and TSy, corresponds to the temporal sensitivity of the parameter pa.

Thus, the implementation of the actions reported up to step 3; in Figure 1, reinforced
with the reinforcement actions 1 and 2, allows obtaining a preselection of all potentially
relevant data sources. Additionally, it enables one to precisely list the attributes usable for a
quality assessment of the information provided by a dataset in terms of risk quantification.

3.2. Dataset Management: Three-Phases Method Overview

Data quality assessment has a long research history [71] and is usually executed
by comparing the value of specified data quality indicators to preliminary defined refer-
ence values. The quality of the information can be assessed using various dimensions,
such as accuracy, precision, coverage, completeness, timeliness, reliability, trustworthiness,
traceability, comparability, costs, and metadata [72-79]. Section 3.2.1 discusses the most
relevant dimensions for risk analysis and shows how those can be characterized using the
terms defined in the Dublin Core standard. This is then used as the foundation for the
proposed data management method, described in Section 3.2.2.

3.2.1. Dataset Characterization for Risk Analysis

Efficient dataset management for risk analysis relies on the characterization of three
main features, as described below: nature of the dataset, site/time specifications of the
dataset, and agents and factors influencing data management.

(i)  Nature of the dataset
The technologies used to capture data determine which type of file will be gener-
ated. This directly impacts the obtainable performance in terms of resolution, range
coverage percentage (how much of the predefined range can be covered), precision,
and accuracy. For instance, the best spatial resolution available via commercial satel-
lite images is much lower than that provided by LiDAR point clouds (30 cm vs. a few
millimeters) [80-82]. Furthermore, satellite images are mainly used to provide 2D
information, while LiDAR point clouds are usually used to obtain 3D insights.

(i)  Spatiotemporal characterization of data
Figure 5 illustrates information provided for a unique and generic parameter, at three
different resolutions, at three points in time (t — 2, t — 1, and t), for a specific area of
interest (Aol). While the most recent dataset with the highest resolution would be ideal,
datasets are most often incomplete. Therefore, one may face situations where the high-
est spatial resolution is only available within an older dataset (e.g., t — 2 here), making
datasets with coarser spatial resolution the only up-to-date option [83]. Additionally,
one may also face a total absence of information in some regions (represented by the
black region).
The management of incomplete datasets is an important task to be performed for
most of the parameters involved in a risk analysis. This highlights the importance
of adequately addressing the spatiotemporal characterization of the information
provided by a dataset, and including it as a comparison and evaluation criterion.

(iii) Agents and factors influencing data management
The value of information available in a dataset strongly depends on the competencies
of the actors involved in the various steps of the data management (i.e., data capture,
data transmission, data storage, data pre-processing, information processing, results
transmission) [16,71]. The trust to be given to the information provided by a dataset
is, thus, strongly influenced by, e.g., the standards and protocols followed when
managing the data, the authority, and legitimacy of the actors involved [39,84].
Identifying the “trust” level, the spatiotemporal features and the nature of the dataset
are, thus, essential for the characterization of the datasets to be used for risk as-
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sessment. These three features are the foundation for the data management in the
three-phases method. Note that the implementation of reinforcement actions 1 and 2
as previously described is required to apply the method (Figure 6).

Time t-2 | Time t-1 | Time t
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resolution

e | ||
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Merging

Partially —
Complete P
Datasets —
Practice Mlasng =
captured
att-2, t-1 .
and t) et

Figure 5. Differences between theory and practice in the spatiotemporal characterization of a generic
parameter in a predefined area of interest (Aol). Incomplete datasets encountered in practice lead
to the dilemma of sometimes having to choose between resolution and timeliness to inform the
chosen parameter. Additionally, some regions may show total absence of information (black region
in merged 2D view of the Aol at the bottom right of the image), which is particularly problematic for
a risk assessment to be executed in that area.



Energies 2022, 15, 3161

Application of Reinforcement
Actions for Risk Assessment

(Section 3)

Reinforcement Action 1 -
Level of Analysis
Identification

Reinforcement Action 2 -

Output:

Application of Dataset

Characterization of (Section 4)
parameters ——( Ranking of best candidate
Potential of Knowledge dataset
Listing of pre-selected imation & Optimal Dataset
data sources Selection

Parameter

Characterization & Data
Source Identification

Figure 6. Logic of steps for applying the data management method. The reinforcement actions
applied on common risk assessment frameworks provide the parameter characteristics required for a
QRA, as well as a list of data sources that can be used to inform those.

3.2.2. Three-Phases Method—Logic Description

The Dublin Core standard presented in Section 2.1 is used as a foundation to exploit
the metadata in the three-phases method. We start by only selecting the terms that are
relevant for risk assessment purposes, i.e., those related to the three features defined
in Section 3.2.1. We then regroup the terms into three classes by following a similar
logic: (1) file (nature of the dataset), (2) scene (site-/time-specifications of the dataset),
and (3) objectives/author/circumstances (agents and factors influencing data management).
Tables A2-A4 in Appendix B detail this recategorization, together with the respective
definition of each of the selected terms [45].

The terms categorized in the first class ((1) file) report the nature of the file. They are
used to characterize the default maximum potential of knowledge (DMPK) that a specific
data source can provide, based on the technological possibilities of the technique used to
generate the dataset (e.g., satellite-based orthophoto, LiIDAR-based point cloud).

The terms categorized in the second class ((2) scene) report the spatiotemporal prop-
erties of the file. This class can be divided into two subclasses: (2a) spatial and (2b) tem-
poral. The use of information provided in class (2) scene enables one to calculate a first
degradation factor (DF;, composed of DFy, and DFjy,, relative to spatial and temporal
information, respectively) on the basis of the difference in nature between the spatiotem-
poral requirements of the site to be analyzed and the spatiotemporal properties of the
considered dataset.

The terms categorized in the third class ((3) objectives/author/circumstances) report contextual
information. They enable calculating a second degradation factor (DF;), characterizing the level
of trust one assigns to the analyzed dataset. In opposition to the first degradation factor, the
second degradation factor calculation can be considered as a more dynamic and subjective
task, as the trust level is strongly influenced by the stakeholders supervising the risk
analysis [85]. For instance, understanding a problem and the knowledge of the mentioned
actors/standards could be very different between two distinct teams [86], a standard may
become outdated and withdrawn after some time, etc.

Figure 7 illustrates the sequencing of the phases required to calculate an assessed
dataset’s informative potential (i.e., potential of knowledge).

The notions of “degradation factors” have been chosen because divergences ob-
servable via the analysis of properties relative to terms in class (2) scene and (3) objec-
tives/author/circumstances can only neutrally or negatively impact the maximum perfor-
mances of the knowledge acquired via the analysis of properties relative to terms in
class (1) file.

The analytical order of the phases aims to optimize future data processing: the spatial
overlap is assessed before analyzing the temporal properties to automatically discard
non-overlapping datasets. Furthermore, one may still decide to valorize the analysis
of properties relative to terms present in classes (1) file and (2) scene, despite a lack of
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qualifications leading to an absence of trust-related quality check. Including trust-related
quality checks in the final calculation may, thus, have to be appreciated on a case-by-case
study of the problems, justifying a final position for this task in the method.

Table 1 presents the assumptions considered during the development of the method,
followed by a detailed description of each of the phases in the next subsection.

Dataset ial of Ki 3-Ph: Method Di
Phase 1 - Default Maximum Phase 2 - Application of Phase 3 - Application of
Potential of Knowledge (DMPK) calculation first Degradation Factor (DF1) second Degradation Factor (DF3)
Informative i Informative Informative
Potential Potential § H Potential
\ Degradation of : \
Perfect informative ! Degradation of
correspondence 1 1 potential due to ! 1 informative
to reference | (Max) | : = spatiotemporal : 7 potential due to
values. : discrepancies : P trust assessment
Default Maximum ; } :
Potential of : : /
Updated Potential | } Updated Potential
Knowledge (DMPK) of of Knowledge : e
a specific dataset : (PKor) of the ! K Yof the
H o H \DF 1 DF:
:Ess‘:‘"g onthedata dataset after : dataset after
No informative™ o [ application of DFy | application of DF,
potential /(i) H !
Phase 1 : Phase 2 : Phase 3

Figure 7. Three-phases method description. The figure shows the progressive degradation in the
assessment of a dataset’s informative potential when compared to the originally required level
of information.

Table 1. List of assumptions made for the development of the presented method.

N° Assumptions

We place ourselves in a situation where we can apply all steps previously discussed (i.e., optimization of analysis level,
HAZID on selected item, scenario identification, probability, and consequence characterization (i.e., identification of all
involved dimensions, parameters and usable data sources), characterization of the required information for each
parameter, and ability to report the metadata of the selected datasets following the DC standard).

A consensus is assumed among all the stakeholders involved in each method development step.

All datasets are initially considered external to the stakeholders involved in the risk analysis, thus needing to go
through the method similarly.

All analyzed datasets are considered independent.

TGl W | N

All datasets are considered to be analyzed independently and not leveraging on one another.

The quality of the datasets analyzed in earlier risk analyses is assumed to be optimized regarding acquisition conditions
6 and state-of-the-art possibilities in the field (resolution, scale calibration, etc.), and the data are considered to be
acquired by an expert.

The metadata of all datasets are convertible in DC terms.

8 No advanced natural language processing is used to extract information from text in this first version of the method.

9 A data source can uniquely be identified on the basis of the format and the type of a resource.

The number of most obvious invalid records can be indicated using dataset quality indicators. Although not originally

10 reported in the DC standard, such information can easily be added to existing metadata.

1 The number of miss.ing Valut.es can be in.dicated using data.se.t quality indicators. Although not originally reported in the
DC standard, such information can easily be added to existing metadata.

12 Missing values can be characterized in time and/or space (when relevant).

13 Trust-related properties are dataset-specific and generalizable to all parameters informed.

14 All datapoints of the same dataset are acquired using a unique acquisition process.

15 The reported spatiotemporal information of datasets is assumed to be accurate (no mismatch).
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3.3. Quantitative Elements of the Three-Phases Method

The three-phases method identifies and characterizes multiple data source/dataset
properties through a number of classes and respective boundaries. The characterization of
these classes is based on the authors’ experience with data management for risk analysis.
Those choices are valid from a generic perspective to the best of our knowledge. However,
the method offers the flexibility for this information to be adapted to the context in which
the method will be applied. The values shall, thus, be seen as an indication instead of
a static and rigid formalization. The implications of those choices are further discussed
in Section 5.

3.3.1. Phase 1: Default Maximum Potential of Knowledge (DMPK)—Calculation

The evaluation approach of class (1) file consists of the calculation of the DMPK,
which is assessed per data source sr and per parameter pa (i.e., DMPKg; ). The DMPKsy g is
a function of four properties identified on the basis of common data quality assessment cri-
teria [71] to estimate how well preselected data sources can inform a parameter. The DMPK
can be calculated through a normalized weighted sum as in Equation (3).

p’sr,pu

Lolsy, RaCs, Acsy,
DMPK.. .. — Lol 32 4 XRac —5 B+ xpr =5+ Xpe 3
o XLol + XRaC + Xpr + X Ac ’

where the variables are defined as follows:

e  DMPKpp,: default maximum potential of knowledge per data source sr and per
parameter pa,

Lols;pa: the level of information for source sr and parameter pa,

RaCgypa: the range coverage for source sr and parameter pa,

Prs;pa: the precision for source sr and parameter pa,

Acs;pa: the accuracy for source sr and parameter pa,

XLol, XRaCs XPr, XAc: Weights given by stakeholders to the level of information, the range
coverage, the precision, and the accuracy of the data, respectively.

The weights give stakeholders the possibility to manage the importance given to
meta-parameters as wished. For simplicity, a naive approach setting those weights to 1 is
applied for the rest of the present paper [87].

The use of the DMPK enables a first ranking of data sources based on their capacity
to inform a specific parameter. Thereby, any new dataset ds originating from one of the
reported data sources will automatically be given a DMPK score enabling an estimation of
its a priori value for risk analysis.

Calculating the DMPK allows the stakeholders to identify the parameter characteri-
zation benefiting the most from data coming from a specific data source by assessing the
DMPK scores for a unique source, and identify which dataset shall be used to inform a
particular parameter depending on the origin of the different sets.

The four properties used for the DMPK calculation are described below.

Property 1.1. Category of Obtainable Level of Information.

The obtainable level of information (Lols;p,) required per parameter is based on the reach-
able resolution provided by the data source (Table 2), adapted from the classification of [62].

e  Precise measurement, enabling to reach the expected resolution and, therefore, unlocking
a potential full quantification,

e  Acceptable sublevel of information, enabling a semiquantitative evaluation,

e  Qualitative information (e.g., yes/no; +/—; shift of tendancy (e.g., mean)),

e None.
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Table 2. Lols;y,—obtainable level of information.

Question: “Which Level of Information Can Be Obtained?”

Classes Score
None 0
Qualitative information 1
Acceptable sublevel of information 2
Precise measurement 3

Property 1.2. Range Coverage Potential.

The range coverage potential (RaCsyp,) concerns the completeness of a data source
(i.e., the capacity for a data source to cover “all required parts of an entity’s descrip-
tion” [88]). It can be used for characterizing a candidate dataset by answering the question
“How much of the predefined range can be covered?” (Table 3).

Table 3. RaCs;,—range coverage potential.

Question: “How much of the predefined range can be covered?”

Classes Score
None 0
0% to 10% 1
10% to 90% 2
90% to 100% 3

Property 1.3. Precision Estimation.

The precision meta-feature (Prs,,) indicates the precision of a data source, character-
ized through expert knowledge. The purpose is to evaluate, on the basis of experience,
if the data source enables to systematically come to identical conclusions when assessing
datasets acquired under repeatability conditions. This assessment is made by answering the
question “Would an expert always come to the same conclusion when assessing datasets
acquired under repeatability conditions?” (Table 4).

Table 4. Prsy,—precision.

Question: “Would an expert always come to the same conclusion when assessing datasets
acquired under repeatability conditions?”

Classes Score
No 0
Probably to some extent 1
Yes, a priori 2

Property 1.4. Accuracy Estimation.

The accuracy of a data source (Acs;pq) is estimated through a classification built on
expert knowledge. The purpose is to assess, on the basis of experience, the potential
for the acquisition method to provide measurements centered around the true value.
This assessment is, thus, made by answering the question “Does the method usually enable
to provide conclusions centered around the true value?” (Table 5).
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Table 5. Acsyp,—accuracy.

Question: Does the method usually enable to provide conclusions centered around the
true value?”

Classes Score
No 0
Probably to some extent 1
Yes, a priori 2

3.3.2. Phase 2: First Degradation Factor (DF;)—Calculation and Application

The evaluation approach of class (2) scene is performed by calculating the first degra-
dation factor DF;. To calculate DF;, we start by applying a subcategorization of the terms
reported in Table A3, Appendix B. At this stage, one mainly looks for four types of infor-
mation relative to the parameters pa evaluated in each considered dataset ds:

e Where the data were acquired (acquisition area (AAg; ),

e With which spatial resolution the data were acquired (spatial resolution (SRe;s ;).

e When the recording of the data was initiated (Datey;,qgs,pq) and, in case several record-
ings of them area are available, when the recording of the data was stopped (Dateyq. s, pa)

(i-e., temporal range (TRags pq)),

e With which temporal resolution the data were acquired (temporal resolution (TRegs y4))-

Therefore, assuming adequately registered metadata, one can decide to only focus
on the terms 2.2a “spatial” and 2.2-b “temporal” in Table A3, Appendix B, for which
detailing via subcategories (acquisition area, spatial resolution, temporal range, temporal
resolution) can be used to report the required information. The rest of the terms in Table A3,
Appendix B are considered redundant and potentially suboptimal for a spatiotemporal
characterization relevant to risk analysis.

For simplicity, we further assume that no missing information is reported regarding
the terms “spatial” and “temporal”. In addition, inspired by [79] and as further detailed
where required in the following, we also suggest using additional dataset quality indi-
cators. Although those are not initially reported in the DC standard, this information
can automatically be added to existing metadata. In particular, we suggest inferring new
spatiotemporal related terms using additional generic data quality measures, such as the
number of missing values, non-expected records, or invalid records. This choice is further
discussed in Section 5.

The global DF; can be calculated for any dataset ds and related parameter pa as

DFl,ds,pﬂ = (l - ”DFlu,ds,ptzH> X (1 - ”DFlb,ds,pﬂ”>r (4)

where the variables are defined as follows:

o DFy 4 p,: first degradation factor calculated per candidate dataset ds and per parameter pa,

e DFyy s, first degradation factor due to spatial properties, calculated per candidate
dataset ds and per parameter pa,

®  DFypgsp,: first degradation factor due to temporal properties, calculated per candidate
dataset ds and per parameter pa.

The calculation detailing of DFy, sy, is presented in Section 3.3.2.1, and that of
DF1p,4s pa is presented in Section 3.3.2.2.

An updated score can be given to the potential of knowledge (PK) for any dataset ds
and related parameter pa as in Equation (5).

PKDFl,dS,pﬂ = DMPKsy/pa X DFl,ds,pa/ (5)

where the variables are defined as follows:
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®  PKpridspa: updated potential of knowledge of the dataset ds and related parameter pa
after applying the first degradation factor,

e DMPKspq: default maximum potential of knowledge per data source sr and per
parameter pa,

o DFy 4 p,: first degradation factor calculated per candidate dataset ds and per parameter pa.

The calculation of the updated potential of knowledge (PKpr1 45 s) enables reconsideration
and potentially reorganizing the ranking originally provided at the end of phase 1.

3.3.2.1. DFy,—First Degradation Factor Due to Spatial Properties

DF,, the first element to be determined for setting up the global DF, is calculated
per candidate dataset ds and per parameter pa (i.e., DF1445 0)- We consider five properties,
which are further detailed below, to estimate the quality of a dataset with regard to its
spatial characteristics. Those are used to determine the form of DFy, through a normalized
weighted sum as
Xsc % + Xsre SRE;S'W + Xspe SDE;S'W + xspi SDigs pa + XsN %

DFyg,4s,pa = , (6)
b XsC + XSRe + XSpe + XsDi + XsN

where the variables are defined as follows:

®  DFyyp,: first degradation factor due to spatial properties, calculated per candidate
dataset ds and per parameter pa,

SCys pa: spatial coverage of candidate dataset ds per parameter pa,

SRegs g spatial resolution of candidate dataset ds per parameter pa,

SDeys e spatial density of candidate dataset ds per parameter pa,

SDigg pg: spatial distribution of candidate dataset ds per parameter pa,

SNys pa: spatial noise of candidate dataset ds per parameter pa,

XSC, XSRes XSDes XsDis XsN: Weights given by stakeholders to the spatial coverage, spatial
resolution, spatial density, spatial distribution, and spatial noise of the data, respectively.

The weights give stakeholders the possibility to manage the importance given to
meta-parameters as wished. For simplicity, a naive approach setting those weights to 1 is
applied for the rest of the present paper [87].

Given a list of predefined thresholds and the score obtained for DFy, 4 ,, one can
automatically assess whether further processing a dataset under review is meaningful;
further analysis of the dataset can be postponed and only reconsidered in the absence of
other relevant datasets.

Property 2.1. Spatial Coverage SCys ;-

The spatial coverage indicates how much of the area of the selected item of inter-
est (area of interest—Aol) is covered by the selected dataset (Acquisition area—AA).
Mathematically, the percentage of spatial coverage scysp, of a dataset ds and for a pa-
rameter pa, with the Aol including the item under review in the risk analysis, can be
expressed as in Equation (7).

Part of Aol spatially covered by AAgs pq

= 7
S¢dspa Total Aol ! @)

where the variables are defined as follows:
® 545 Spatial coverage of candidate dataset ds per parameter pa,
e Aol area of interest,
e AAysy, acquisition area of candidate dataset ds and per parameter pa.
Table 6 presents the classes we propose to categorize scysp, for assessing the meta-
feature SCps pg-
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Table 6. SCy; ,,—spatial coverage.

Classes Score
Low (s¢s,pq < 50%) -3
Medium (50% < scgs pg < 80%) -2
High (80% < scgs pa < 95%) -1
Very high (scs y; > 95%) 0

Property 2.2. Spatial Resolution SRegs p,.

This property is used to assess if the dataset provides the minimum required level
of information in terms of spatial resolution for a specific parameter. We suggest, for a
dataset ds and a parameter pa, a relative classification based on the classes reported for the
estimation of the spatial extrapolation potential SEP), in the parameter characterization
(i.e., NA, individual, or <10, <101, <102, <103, 2103). Table 7 presents the second meta-
feature of learning phase 2a.

Table 7. SRey; ,,—spatial resolution.

Classes Score
Distant (2 classes below or more) -2
Close (1 class below) -1
Sufficient (similar class or above) 0

Property 2.3. Spatial Density SDegs ;.

This property is used to provide a statistical data quality check on the basis of the
number of relevant missing values (spatially speaking). Mathematically, the spatial density
sdegs p, of a dataset ds and for a parameter pa can be expressed as in Equation (8).

Number of missing valuesgs p,

sdegs,pg = 1 ()

" Total number of expected recordsdslpu'

where sdey; ,, is the spatial density of candidate dataset ds per parameter pa.

The classes we propose to categorize sdeys ,, defining a third meta-feature of learning
phase 2a, called SDeys , (spatial density for dataset ds and parameter pa), are reported
in Table 8.

Table 8. SDey; ,,—spatial density.

Classes Score
Low (sdegs p, < 50%) -3
Medium (50% < sdegs p, < 80%) -2
High (80% < sdegs g < 95%) -1
Very high (sdeys y, > 95%) 0

Property 2.4. Spatial Distribution SDigs p,.

This property is used to provide a statistical data quality check on the basis of the
spatial distribution of missing values (spatially speaking). Mathematically, the spatial
density sdigs , of a dataset ds and for a parameter pa can be expressed as in Equation (9).

Average distance bewteen missing values s p,

Sdids,pu =

©)

Maximum distance between 2 expected records s p,”



Energies 2022, 15, 3161

19 of 40

DPlb, ds, pa =

TPds, pa

where sdigs ,, is the spatial distribution of candidate dataset ds per parameter pa.

The classes we propose to categorize sdigsp,, defining the fourth meta-feature of
learning phase 2a, called SDig; p, (spatial distribution for dataset ds and parameter pa),
are presented in Table 9.

Table 9. SDiy; ,,—spatial distribution.

Classes Score

Heterogeneous distribution (0 < sdigs 5, < 30%) -1

Homogeneous distribution (sdigs p; > 30% or
sdigs pa = 0)

Property 2.5. Spatial Noise SN p

This property is used to provide a statistical data quality check on the basis of the
proportion of noise (spatially speaking). Mathematically, the spatial noise sny; , of a dataset
ds and for a parameter pa can be expressed as in Equation (10).

Number of invalid values s p,

SNds,pa = (10)

Total number of recordsgs p ’

where SMgs pa 18 the spatial noise of candidate dataset ds per parameter pa.
A fifth meta-feature of learning phase 2a, called SNys,, (spatial noise for dataset ds and
parameter pa), can be used for characterizing a candidate dataset according to s, (Table 10).

Table 10. SNy ,,—spatial noise.

Classes Score
Low (st1gs pa < 10%), -3
Medium (10% < sngs p, < 20%) -2
High (20% < s pq < 50%) -1
Very high (s145 p, > 50%) 0

3.3.2.2. DFy,—TFirst Degradation Factor Due to Temporal Properties

DFyy, the second element to be determined for setting up the global DF;, is calcu-
lated per candidate dataset ds and per parameter pa (i.e., DF1p,45,). We consider six
properties-which are further detailed below-to estimate the quality of a dataset with regard
to its temporal characteristics. Those are used to determine the form of DFy;, through a
normalized weighted sum as:

TReg, TDey, , TN,
>+ xrou TOUgs, pg + XTRe —5 2% + XTDe —3 2 + XTDi TDigs pg + XTN —3 2

1)

XTp + XTOU + XTRe + XTDe + XTDi + XTN
where the variables are defined as follows:
®  DFypgsp,: first degradation factor due to temporal properties, calculated per candidate
dataset ds and per parameter pa,
TPys pq: temporal pertinence of candidate dataset ds per parameter pa,
TOUys y,: temporal overlap utility of candidate dataset ds per parameter pa,
TRegs p,: temporal resolution of candidate dataset ds per parameter pa,
TDigs p,: temporal distribution of candidate dataset ds per parameter pa,
TNs po: temporal noise of candidate dataset ds per parameter pa,

XTP, XTOU, XTRes XTDe,» XTDi, XTN: Weights given by stakeholders to the temporal perti-
nence, temporal overlap utility, temporal resolution, temporal distribution, and tem-
poral noise of the data, respectively.
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The weights give stakeholders the possibility to manage the importance given to
meta-parameters as wished. For simplicity, a naive approach setting those weights to 1 is
applied for the rest of the present paper [87].

Note that the calculations of the temporal resolution TReg; p,, the temporal density
TDegs pa, the temporal distribution TDiy; ., and the temporal noise TNy; ,, are meaningless
for datasets considered as punctual in the calculation of the temporal overlap utility
TOUs p, (see details below). Therefore, those terms are not considered in the calculation of
DF; in such a situation.

Property 2.6. Temporal Pertinence TP s pa-

This property is used to assess how meaningful the exploitation of a dataset ds is
for the analysis of a parameter pa in view of the age of the dataset at a given date d and
the temporal sensitivity TSpa reported in the parameter characterization (i.e., hours, days,
weeks, months, years, decades, or “constant”).

Mathematically, the temporal pertinence tp; , of a dataset ds and for a parameter pa
at a given date d can be expressed as in Equation (12).

Date of analysis d — Dateyqy 45,
tPas,pa = 5 max,ds na, (12)

where the variables are defined as follows:

® P4 p,: temporal pertinence of candidate dataset ds per parameter pa,
e TSy, temporal sensitivity of parameter pa,

o Dateygy s po: date when the recording of the data was stopped.

The classes we propose to categorize tpys p,, defining a first meta-feature of learning
phase 2b, called TPy, (temporal pertinence for dataset ds and parameter pa), are reported
in Table 11.

Table 11. TP, ,,—temporal pertinence.

Classes Score
Distant (2 classes below or more) -2
Close (1 class below) -1
Sufficient (similar class or above) 0

Property 2.7. Temporal Overlap Utility TOU s p,.

This property enables one to qualify the utility of the temporal overlap of dataset ds for
a parameter pa considering the temporal sensitivity TS, reported in the parameter charac-
terization (i.e., hours, days, weeks, months, years, decades, or “constant”). Mathematically,
the temporal overlap utility tous ,, of dataset ds for a parameter pa can be expressed as in
Equation (13).
Datemax,ds,p/z - Dutemin,ds,pa
TSpa ’

toUgs pa = (13)

where the variables are defined as follows:

tougs pe: temporal overlap utility of candidate dataset ds per parameter pa,
TSyq: temporal sensitivity of parameter pa,

Dateyygy,gs,pa: date when the recording of the data was stopped,
Dateyyin, s pa date when the recording of the data was initiated.

The classes we propose to categorize tous p,, defining a second meta-feature of learn-
ing phase 2b, called TOUy;, (temporal overlap utility for dataset ds and parameter pa),
are reported in Table 12.
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Table 12. TOUy; ,,—temporal overlap utility.

Classes Score
Timeseries (fougs p, > 1) -1
Punctual (ot p, < 1) 0

Property 2.8. Temporal Resolution TRegs ;-

This property is used to assess if the dataset enables providing the minimum required
level of information in terms of temporal resolution for a specific parameter. We suggest,
for a dataset ds and a parameter pa, a relative classification based on the classes reported
for the estimation of the temporal sensitivity TSy, reported in the parameter characteriza-
tion (i.e., hours, days, weeks, months, years, decades, or “constant”). Therefore, a third
meta-feature of learning phase 2b, called TReys , (temporal resolution for dataset ds and
parameter pa), can be used for characterizing a candidate dataset (Table 13).

Table 13. TRey; ,,—temporal resolution.

Classes Score
Distant (2 classes below or more) -2
Close (1 class below) -1
Sufficient (similar class or above) 0

Property 2.9. Temporal Density TDegs p,.

This property is used to provide a statistical data quality check on the basis of the
number of relevant missing values (temporally speaking). Mathematically, the temporal
density tdey ,, of a dataset ds and for a parameter pa can be expressed as in Equation (14).

Number of missing valuesgs p, (14)

tde =1- ,
ds.pa Total number of expected records s p,

where tdeds,pa is the temporal density of candidate dataset ds per parameter pa.
Table 14 presents the classes we propose to categorize tdeys ,, defining a fourth meta-feature
of learning phase 2b, called TDe;; , (temporal density for dataset ds and parameter pa).

Table 14. TDey; ,,—temporal density.

Classes Score
Low (tdegs pg < 50%) -3
Medium (50% < tdegs p < 80%) -2
High (80% < tdeg g < 95%) -1
Very high (tdeys p, > 95%) 0

Property 2.10. Temporal Distribution TDigs ;.

This property is used to provide a statistical data quality check on the basis of the temporal
distribution of missing values (temporally speaking). Mathematically, the temporal distribution
tdigs p, of a dataset ds and for a parameter pa can be expressed as in Equation (15).

Average time bewteen missing values sy,

(15)

tdi = - - ,
458 = Maximum time between 2 expected records g g

where tdids,pu is the temporal distribution of candidate dataset ds per parameter pa.
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Table 15 presents the classes we propose to categorize tdigs p,, defining a fifth meta-
feature of learning phase 2b, called TDigs ), (temporal distribution for dataset ds and
parameter pa).

Table 15. TDigs p,—temporal distribution.

Classes Score
Heterogeneous distribution (0 < fdigs 5, < 30%) -1
Homogeneous distribution (tdigs , > 30% or tdigs p, = 0) 0

Property 2.11. Temporal Noise TNys ;.-

This property is used to provide a statistical data quality check on the basis of the
proportion of noise (temporally speaking). Mathematically, the temporal noise tn; , of a
dataset ds and for a parameter pa can be expressed as in Equation (16).

Number of invalid valuess p, (16)

tn =
ds,pa Total number of recordsgs p,

where tn , is the temporal noise of candidate dataset ds per parameter pa.
Table 16 presents the classes we propose for defining a sixth meta-feature of learning
phase 2b, called TNy, (temporal noise for dataset ds and parameter pa).

Table 16. TN ,,—temporal noise.

Classes Score
Very high (tn4sp, > 50%) -3
High (20% < tngp, < 50%) -2
Medium (10% < tngs p, < 20%) -1
Low (t15 p, < 10%) 0

3.3.3. Phase 3: Second Degradation Factor (DF,)—Calculation and Application

The evaluation approach of class (3) objectives/author/circumstances consists of calculat-
ing the second degradation factor DF;. To calculate DF,, we also suggest a recategorization
of the terms reported in Table A4 in Appendix B on the basis of two motivations:

e  We do not apply advanced natural language processing techniques in this first version
of the method,

e  The terms 2.9-b “modified” and 2.10-b “valid” in Table A3, Appendix B may also be
used for trust assessment of a dataset.

Table 17 presents the retained terms and their associated meta-features. The manage-
ment of trust-related properties consists of defining the value given to the meta-features
on the basis of lists of actors, standards, references, etc. associated with predefined classes
and identified over time [39]. Those meta-features are only dataset-specific and affect all
parameters informed by the dataset identically.

As a result, we determine the form of the DF, for any dataset ds through a normalized
weighted sum as in Equation (17).

CTd COd Crd ELd

25+xC0 25+xCr 2S+XEL 35
Prys Pu Ref, Sr,
+ xpMys + Xpy% + Xp“Tds + XREdeS + XRep Repy, +X5r% + XVVds> /(xa + xpc 17)

HYV, IRefB,
st + XiRefB g % 4 XiRepp IRepB

% 4 xor +xpv

+XCcT + XCo + XCr + XEL + XHV + X[RefB t XIRepB T X[vO + XM + XPr + Xpy + XRef + XRep t+ X5 + xv),
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where Ay, BCys, CTys, Cogs, Crys, ELgs, HV g5, IRefBys, IRepBys, IVOys, Mys, Pras, Pugs, Ref s,
Repds, and Srds are defined in Table 17, and XA, XBC, XCT, XCos XCr, XEL, XHV, leefB/ xIRepB/
XIVO, XM, XPr, XPu, XRefs XRep, Xsr, and xy are weights given by stakeholders to the properties

defined in Table 17.

Table 17. Description and categorization of trust-related meta-features.

Term

Meta-Feature

Pre-Defined Classes and Respective Values

Audience

Ags

Regulatory authorities (0)
Field specialists (—1)
Targeted non-specialists (—2)
Open access (—3)

Not valued (—4)

BibliographicCitation

BCys

Official (regulations, standards, recognized journals, etc.) (0)
Valued (—1)
Not valued (—2)

ConformsTo

CTys

Actual (0)
Depreciated (—1)
Unrecognized (—2)

Contributor

Cods

Official /authorities (0)
Valued (—1)
Not valued (—2)

Creator

Cras

Official/authorities (0)
Valued (—1)
Not valued (—2)

EducationLevel

ELys

Senior (0)
Junior (—1)
Trainee (—2)
Not related (—3)

HasVersion

HV s

Latest version (0)
Not first/not last version (—1)
First version (—2)

IsReferencedBy

IRefB s

Official (regulations, standards, recognized journals, etc.) (0)
Valued (—1)
Not valued (—2)

IsReplacedBy

IRepBy;s

Nothing (0)
Something (—1)

IsVersionOf

VO

Latest version (0)
Not first/not last version (—1)
First version (—2)

Modified

Mys

Original file (0)
Not original file (—1)

Provenance

Pl’ds

Official (regulations, standards, recognized journals, etc.) (0)
Valued (—1)
Not valued (—2)

Publisher

Puys

Official (regulations, standards, recognized journals, etc.) (0)
Valued (—1)
Not valued (—2)

References

Refgs

Official (regulations, standards, recognized journals, etc.) (0)
Valued (—1)
Not valued (—2)

Replaces

Repys

Something (0)
Nothing (—1)

Source

Syds

Official (regulations, standards, recognized journals, etc.) (0)
Valued (—1)
Not valued (—2)

Valid

Vis

Valid (0)
Not Valid (—1)

The weights give stakeholders the possibility to manage the importance given to
meta-parameters as wished. For simplicity, a naive approach setting those weights to 1 is
applied for the rest of the present paper [87].
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Following the determination of DF,, we can update the score given to the PK for any
dataset ds and related parameter pa as in Equation (18).

PKpr1,0F2,4s,pa = PKprids,pa X (1= [IDFpsll), (18)

where the variables are defined as follows:

®  PKpr1,pr2spe: updated potential of knowledge of the dataset ds and related parameter
pa after applying the first and the second degradation factors,

®  PKpridspa: updated potential of knowledge of the dataset ds and related parameter pa
after applying the first degradation factor,

e  DF, 4: second degradation factor calculated per candidate dataset ds.

The calculation of the updated potential of knowledge (PKpr1,pF2 s pa) €nables a final
reconsideration and potential reorganization of the dataset ranking as an output of phase
2. The result is a ranking of data sources optimized for the potential of knowledge for
each of the parameters that the available datasets can inform. The application of the
presently described method ensures that the data used to estimate both probabilities and
consequences required for the risk analysis correspond to the best level of information
available to the stakeholders, as expected by ISO 31000 [19].

4. Case Study—Power-Grid Risk Analysis

This section illustrates the method described in Section 3 through a simplified ap-
plication to vegetation management of power grids. It describes the context, the hazard
identification, and the application of reinforcement actions 1 and 2 (Sections 4.1 and 4.2).
The three-phases method is applied in Section 4.3. The assessment is based on the evalu-
ation of six experts specialized in risk analysis, data analytics, power-grid management,
and vegetation analysis. The case study aims to illustrate the applicability and pertinence of
the proposed method, rather than a full analysis covering all aspects required for executing
a complete quantitative analysis. The scope is, thus, limited to large-scale power grids in
Norway. Additionally, we consider only a sub-selection of parameters and a sub-selection
of data sources/datasets relative to one specific dimension involved in the probability of
outages due to tree fall on power lines, as detailed below.

Power grids are pillars for the good functioning of our modern and digitalized so-
ciety. An important part of those networks consists of overhead power lines used for
both transportation and distribution of power in regional, national, and international
configurations [89]. Several hazards may compromise the integrity of those power lines.
For instance, large-impact events can destroy overhead power lines, such as hurricanes,
ice storms, and landslides [22]. They can also be damaged due to more local hazards,
such as vegetation [5,83]. Indeed, vegetation represents a primary source of outages and
has been identified as one of the root causes of some major blackouts in history [90].

Vegetation can lead to outages either via trees falling on the power lines (scenario 1) or
by growing under the infrastructure until grounding one phase (scenario 2). Power-grid op-
erators, thus, need to periodically inspect their entire network and trim vegetation in areas
showing a higher probability of dangerous tree falls to avoid scenario 1. However, the way
such operations are executed today (e.g., helicopter-based, foot patrols) is time-consuming,
expensive, and challenging in remote and potentially hazardous areas. A risk-based ap-
proach can, thus, optimize the prioritization of actions to execute, and the decision making
can be enhanced if supported by the maximum available existing data.

4.1. Reinforcement Action 1—Level of Analysis

The level of analysis for risk assessment of large-scale power grids can range from
macroscopic perspectives (e.g., satellite-based inspections [20,22,91]) to a microscopic
perspective (e.g., asset structural analysis [89]). Considering the nature of the infrastructure,
the hazard, and resource constraints that power-grid operators usually face, we define
the optimal level of analysis for risk assessment in power grids as the size of individual
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items (substations, power poles, etc.). We additionally break down power lines to obtain
more localized items due to the extended nature of those assets. Figure 8 illustrates such a
subdivision via an aerial perspective.

Item 16

Item 15

Item10  ltem1l Item 12 \

Item 14

Item 13

Additional Sub-divisions Additional Sub-divisions

Substation

e  Power pole _ Power line

Figure 8. Section subdivision of a schematic power grid. The items of interest consist here of the
substations, the power poles, and the power line subsections (Aerial 2D view).

Figure 9 shows the item of interest chosen for the risk analysis. It furthermore illus-
trates the presence of trees along the power lines.

:: Power Line subsection
E Selected Power Line subsection

Tree

Figure 9. Selection of a power-line subsection as an item of interest for a risk analysis. The existence
of the vegetation hazard is indicated by the presence of trees in the surrounding of the power line
(Aerial 2D view).

4.2. Reinforcement Action 2—Parameter Characterization and Data Source Identification

Three different dimensions can be reported when estimating the probability of outage
due to a tree falling on a power line.:
e  The physical configuration,
e  The stability of the trees surrounding the power lines,
External factors, such as strong winds.

The following parameters play a role in the definition of the physical configuration:

Vegetation density /number of trees (*),

Forest social configuration (i.e., distance characterization between trees),
Height of tree (*),

Structure of tree crown (depth),
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Structure of tree crown (width, diameter) (¥),
Terrain exposure to wind,

X-Y direction from a tree to the power line,
X-Y distance from a tree to the power line (*),
Z-delta (intensity of altitude variation).

Table 18 reports the characterization we propose for the four parameters we selected
in this case study designated by (*) in the preceding list.

Table 18. Characterization of a subselection of parameters.

Number of High, medium, low

(e.g., percentage of tree 0-30 <102 Years

trees/100 m? &/ P &
coverage/100 m?)

Meters (cm) Large, medium, small 1-50 NA,Ou:cill\gg ual, Months
Meters (cm) Large, medium, small 0-30 NA/oTiil‘gg ual, Weeks

High, medium, low, very

low, e.g., high (x > 30), TN

Meters (cm) medium (10 < x < 30), 0-50 N4, individual, Weeks

0
low (1 <x <10), very or <10

low (x<1m)

Identification of data sources able to provide information for the four retained parame-
ters is then executed. LiDAR point clouds, orthophotos based on aerial images, and satellite-
based orthophotos correspond to some of the relevant data sources. The complete list of
preselected sources is reported in Appendix C. Appendix C also reports suggestions of
preprocessing methods usable to link each data source to the selected parameters.

4.3. Three-Phases Method Application

The geolocation of the Aol integrating the item of interest is given in the ETRS89/UTM32N
coordinate system as follows:
e  Minimum easting (X): 610,205,
e  Minimum northing (Y): 6,561,098,
e Maximum easting (X): 610,253,
e  Maximum northing (Y): 6,561,122.

The risk analysis is assumed to be made on 1 December 2021.

We consider a selection of three datasets to evaluate the probability of outage due to
tree falls on power lines: a LIDAR point cloud, an orthophoto based on aerial images, and a
satellite-based orthophoto.

The chosen files correspond to simulated realistic datasets generated for the present
study. We assume having used crosswalks where required, and we report, for each dataset,
the equivalent of original DC terms necessary for the analysis in Table 19. Note that
the nature of the considered files and the nature of the evaluated parameters lead the
spatiotemporal characteristics (acquisition area, spatial resolution, etc.) considered in the
present case study to similarly impact all addressed parameters. The outcome of each phase
(i.e., the ranking of the datasets based on their estimated informative potential after the
application of each phase) is summarized in a unique table (Table 25) at the end of Section 4.
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Table 19. DC-like terms for the three simulated datasets.

N° Term Dataset (a) Dataset (b) Dataset (c)
File-Related terms
1-1 Format LASF TIFF JPEG2000
1-2 Type LiDAR point cloud Orthophoticr)nlzlagseesd on aerial Satellite-based orthophoto
Spatiotemporal-related terms
2.2-a
Min. easting (X): 609,600 Min. easting (X): 609,731 Min. easting (X): 599,395
) Acquisition area Min. northi.ng (Y): 6,561,000 Min. north%ng (Y): 6,560,621 Min. northi'ng (Y): 6,514,003
Spatial Max. easting (X): 610,399 Max. easting (X): 610,639 Max. easting (X): 638,139
Max. northing (Y): 6,561,599 Max. northing (Y): 6,561,425 Max. northing (Y): 6,601,208
Resolution (5 points p:rlsgluare meter) 0.2m 10 m
2.3-b
Temporal Datemin 25 April 2012 9 June 1989 14 June 2021
Datemax / / /
Resolution / / /
Objective/author/circumstance-related terms
&l Audience Open access Brief standard expertise
3.4 BibliographicCitation
3.5 ConformsTo
3.6 Contributor
3.7 Creator Terratec AS I\}]ersrlfnlluéfitggoAgg ESA
39 EducationLevel Not related
3.11 HasVersion 0.0.2
3.12 IsReferencedBy Norge i bilder
3.13 IsReplacedBy NDH Ostfold 5pkt 2015
3.14 IsVersionOf
3.15 Provenance Kartverket Oslo Geovekst ESA
3.16 Publisher Rambell Norge AS
‘LAStools (c) by rapidlasso
3.17 References GmbH’; “lasheight (141117)
commercial’
3.18 Replaces None
BNIO) Source
2.9-b Modified 10 July 2018
2.10-b Valid

4.3.1. Default Maximum Potential of Knowledge (DMPK)

The knowledge acquired during learning phase 1 enabling one to report the DMPK is
detailed per data source and per parameter in Table 20.
The scores obtained via the calculation of the DMPK for each data source and each
parameter enable generating an initial ranking per parameter of the considered datasets,
as described in Table 25.

4.3.2. First Degradation Factor (DF;)

Table 21 reports the results of calculations required for the quality assessment of (1)
spatial inferred scene-related terms and (2) temporal inferred scene-related terms.

We characterize the contribution of the spatial information to the first degradation
factor for each parameter informed by each of the retained dataset as reported in Table 22.
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Table 20. Meta-features phase 1—DMPK calculation per data source per parameter.

LiDAR point cloud

Precise measurement (3)  90% to 100% (3) Yes, a priori (2) Yes,apriori2) &/ 32’;23)//1 * 21/ 2+
Precise measurement (3) 90% to 100% (3) Yes, a priori (2) Yes, a priori (2) (3/32723)//1 Z 21/2 +
Precise measurement (3) 90% to 100% (3) Yes, a priori (2) Yes, a priori (2) (3/32723;//2 : 21/2 *
Precise measurement (3)  90% to 100% (3) Yes, a prior (2) Yes,apriori@) &/ 32j23)//i * 21/ 2+

Orthophoto based on aerial images

. o o - Probably to some 3/3+3/3+2/2+
Precise measurement (3) 90% to 100% (3) Yes, a priori (2) extent (1) 1/2)/4=0.875
Acceptable sublevel of 10% to 90% (2) Probably to some Probably to some (2/3+2/3+1/2+

information (2) ° ° extent (1) extent (1) 1/2)/4 =0.5825
Precise measurement (3)  90% to 100% (3) Yes, a priori (2) Yes,apriori2) 32’;23)//1 * 21/ 2+
Precise measurement (3)  90% to 100% (3) Probably tosome .o\ o) (B/3%3/3+1/2+

extent (1) 2/2)/4 =0.875

Satellite-based orthophoto

Acceptable sublevel of 90% to 100% (3) Probably to some Probably to some (2/3+3/3+1/2+
information (2) ° ° extent (1) extent (1) 1/2)/4 =0.665
Acceptable sublevel of o o Probably to some (2/3+2/3+0/2+
information (2) 10% to 90% (2) No (0) extent (1) 1/2)/4 = 04575
Acceptable sublevel of 10% to 90% (2) Probably to some Probably to some 2/3+2/3+1/2+
information (2) ° ° extent (1) extent (1) 1/2)/4 = 05825
Acceptable sublevel of o o Probably to some Probably to some (2/3+3/3+1/2+
information (2) 90% to 100% (3) extent (1) extent (1) 1/2)/4 =0.665

Table 21. Inferred scene-related DC terms.

Dataset (c)—Satellite-Based

Dataset (b)—Orthophoto Based

Dataset (a)—LiDAR Point Cloud o Al ey Orthophoto
Spatial inferred terms
100% 100% 100%
Comparison per parameter of the spatial resolution SRegs 5, with the spatial extrapolation potential SEPyq
0.738 1 1
15% 0 0
18% 0 0

Temporal inferred terms

Calculation per parameter of the ratio ((date of analysis d — Dateyay,as pa) / temporal sensitivity TSpa)

0 0 0
Not applicable (NA) Not applicable (NA) Not applicable (NA)
Not applicable (NA) Not applicable (NA) Not applicable (NA)
Not applicable (NA) Not applicable (NA) Not applicable (NA)
Not applicable (NA) Not applicable (NA) Not applicable (NA)

The spatial overlap’s nature justifies further proceeding with a temporal analysis of

the degradation factor DF;.

We characterize the contribution of the temporal information to the first degradation
factor for each parameter informed by each of the retained dataset as reported in Table 23.
Note that the detailing of the temporal resolution TReys y,, the temporal density TDey; 5,
the temporal distribution TDigsp,, and the temporal noise TNy, is not reported here
because they were identified as not applicable on the basis of the calculation of temporal

overlap utility TOUs pg.
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Table 22. Meta-features phase 2—spatial contribution to DF; per data source per parameter.

LiDAR point cloud

Heterogeneous (0/3+0/2+
Very high () Sufficient (0) Medium (=2) distribu(tgion (-1 Medium (-1) ((*?}/ :;1/+ =1+
-1)/3)/5=—-04
Heterogeneous (0/3+(=1)/2+
Very high (0) Close (1) Medium (-2) distribu%ion 1) Medium (—1) ((7?//?; -1+
-1)/3)/5=-0.5
Heterogeneous (0/3+(=1)/2+
Very high (0) Close (—1) Medium (—2) distribu%ion 1) Medium (—1) ((73)/ /33/4.5 (,1)0+5
Heterogeneous (0/3+(=1)/2+
Very high (0) Close (—1) Medium (—2) 8 Medium (~1) (C2)/3+ (1) +

distribution (—1) (-1)/3)/5=-05

Orthophoto based on aerial images

. - . H 0/3+0/2+0/3+
Very high (0) Sufficient (0) Very high (0) digg};’gﬁi‘;ﬁf&; Low (0) ( (/) o /é) /5 :/ 0
Very high (0) Sufficient (0) Very high (0) g;’:ﬁgﬁ;ﬁi"éﬁ) Low (0) (0(/)3++0%)2 pe o o
Very high (0) Sufficient (0) Very high (0) gf;’t‘zgg‘;‘fn%’; Low (0) (0(/)3;;)%)2 /g 2/ g’ +
Very high (0) Sufficient (0) Very high (0) ;{I‘S’:ﬁgﬁz‘;‘;"a Low (0) (0(/)3:0%)2 pe v 03 *
Satellite-based orthophoto
Very high (0) Sufficient (0) Very high (0) gg’:ﬁgﬁ?“)‘;‘ﬁ; Low (0) (0(/)?0%)2 pe v g *
. ) H 0/3+(1)/2+0/3
Very high (0) Close (~1) Very high (0) di;’t‘ﬁgﬁ;r;‘;%s) Low (0) i 0/ N 0/(3) }{5 . _0{ .
) ) H 0/3+(-1)/2+0/3
Very high (0) Close (1) Very high (0) di;’t’r‘;gg‘;‘;‘;%s) Low (0) i O/ 3 3 /(3) }{5 + 0/ 3
. ) H 0/3+(-1)/2+0/3
Very high (0) Close (—1) Very high (0) di::ggﬁfir;?%s) Low (0) j_ 0/ . 3/(3))/{5 =+7 0/ 1

Table 23. Meta-features phase 2—temporal contribution to DF; per dataset per parameter.

LiDAR point cloud
Sufficient (0) Punctual (—1) 0/2+(=1))/2=-05

Close (—1) Punctual (—1) ((-1)/2+(-1))/2=-0.75
Distant (—2) Punctual (—1) (=2)/2+(-1))/2=-1
Distant (—2) Punctual (—1) (=2)/2+(-1)/2=-1
Orthophoto based on aerial images

Close (—1) Punctual (—1) ((=1)/2+(-1))/2=—-0.75
Distant (—2) Punctual (—1) ((=2)/2 +(=1))/2=-1
Distant (—2) Punctual (—1) (=2)/2+(-1))/2=-1
Distant (—2) Punctual (—1) (=2)/2+(-1)/2=-1

Satellite-based orthophoto
Sufficient (0) Punctual (—1) 0/2+(=1))/2=-05
Sufficient (0) Punctual (—1) 0/2+(-=1))/2=-05
Close (—1) Punctual (—1) (=1)/2+(-1))/2=-0.75
Close (—1) Punctual (—1) ((-1)/2+(-1))/2=-0.75

We combine DFy, and DFyj, to calculate the total degradation factor DF;. This enables
calculating the updated potential of knowledge (PKpr1,4ss) per dataset and per parameter,
as described in Table 25.
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4.3.3. Second Degradation Factor (DF;)

Metadata relative to the objectives, the authors, and the circumstances of the data
acquisition enable calculating the value of the second degradation factor for each of the

datasets, as detailed in Table 24.

Table 24. Meta-features phase 3—DF; per dataset.

Dataset (a)—LiDAR

Dataset (b)—Orthophoto

Dataset (c)—Satellite-Based

o DLctaleatue Point Cloud Based on Aerial Images Orthophoto

Audience Ags Open access (—3) - Field specialists (—1)
BibliographicCitation BCys - - -
ConformsTo CTys - - -
Contributor Coygs - - -

Creator Crys Valued (—1) Valued (—1) Official/authorities (0)
EducationLevel ELg4s Not related (—3) - -
HasVersion HV First version (—2) - -

Official (regulations,
IsReferencedBy IRefBys - standards, recognized -
journals) (0)

IsReplacedBy IRepBs Something (—1) - -
IsVersionOf IVOys - - -

Official (regulations, Official (regulations, Official (regulations,

Provenance Prys standards, recognized standards, recognized standards, recognized

journals) (0) journals) (0) journals) (0)

Publisher Puys - Valued (—1) -
References Refys Valued (—1) - -
Replaces Repgs Nothing (—1) - -
Source St - - -
Modified My Not original file (—1) - -
Valid Vi - - -

Dh = (4 B0+ oy S S iy
- IRefBas 4 [RepBy, + YV0u 4 P
+ 25t 4 Ris 4 Repys + >4 + My,

+Vds>/17

HVys
2

((=3)/4+(0)/2+(0)/2 +
0)/2+(~1)/2 + (=3)/3 +
(=2)/2+(0)/2+ (1) +
0)/2+(0)/2 + (0)/2 +
(=1)/2+(=1) +(0)/2 +
(=1) +(0))/17
=-0.397

((0)/4+(0)/2+(0)/2 +
0)/2+(=1)/2+(0)/3 +
0)/2+(0)/2 +(0) + (0)/2
+(0)/2+(-1)/2+(0)/2 +
0) + (0)/2 + (0) + (—0))/17
=—0.059

(=1)/4+(0)/2+(0)/2 +
0)/2+(0)/2+(0)/3 +
(0)/2+(0)/2 + (0) + (0)/2

+(0)/2+(0)/2+(0)/2 + (0)

+(0)/2+(0) + (0))/17
=—-0.015

Note: Note that an optimistic approach was applied in the absence of metadata, leading all the meta-features to be
set to 0 in the absence of information. An alternative pessimistic approach penalizing the absence of information
could also have been applied, putting all the scores to the most degraded level. This choice and the effects of this
choice on the results are further discussed in Section 5.

By applying the degradation factor DF, and updating the calculation of the potential
of knowledge (PKpr1,pra,ds,pa) Per dataset and per parameter, we obtain a final ranking of
the best candidate dataset for each of the considered parameter, as described in Table 25.

Table 25 details the evolution of the ranking of the best candidate for each parameter
based on the application of the 3 phases mentioned in our method.

The coloring (green, yellow, orange) of the scores within each phase as detailed in
Table 25 reports the first, second, and third best candidate datasets for the characterization
of each parameter. Table 25 indicates that LIDAR-based point clouds initially constitute the
most interesting type of dataset for the present case study. Therefore, they should be pre-
ferred by default, in the absence of any other type of information relative to file properties.

However, the application of the degradation factors DF; and DF; leads to a new rank-
ing of the best candidate datasets for each considered parameter. In particular, the satellite-
based orthophoto obtains the first position in the ranking for all parameters after the
application of DF; and keeps this position after application of DF,. The LiDAR point cloud
obtains the second position for informing the parameter “height of tree” after the applica-
tion of DF; and keeps this position after application of DF;. The orthophoto based on aerial
images obtains the third position for the characterization of the parameter “density /number
of trees” after the application of DFj, but is reranked second after application of DF,.
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Table 25. Spatiotemporal- and trust-influenced informative potential assessment per datasets
per parameter.

Phase 1 Phase 2 Phase 3

|
.

0.3 0.3 0.6029 0.1809

0.6029

0

Orthophoto based on aerial images

0.875 0.25 0.2188 0.941

0.5825 0 0 0.941 0
1 0 0 0.941 0

0.875 0 0 0.941

Satellite-based orthophoto
0.665

0

ol
5

0.985

0.4575 0.45 0.985
0.5825 0.225 0.985

0.665 0.225 0.985

i
:

5. Discussion

5.1. Method Benefits and Contribution for Risk Assessment

The accessibility to many data sources for risk assessment is a recent phenomenon
for many application areas. While this consists of a great opportunity for data-driven
assessments and DRA, the process for choosing one dataset to inform a parameter in
detriment of another was not yet formalized. The method proposed in this paper formalizes
this process. One of the main advantages of the method is the use of metadata; the method
provides the ranking of the best datasets according to their informative potential without
the need for the analyst to open the file and assess its content. In addition to identifying the
best dataset for each parameter, the proposed approach also identifies the best parameters
per source. Such information can be used as an additional indicator for strategical decision
making when deciding about investments related to future data acquisitions.

The results of the method application are, to the best of our knowledge, representative
of the reality that power-grid operators can face. The impact of the degradation factors
highlights that a dataset originating from a less valued data source may be preferred to
a dataset originating from an initially higher-ranked data source, the content of which is
outdated or of too low quality. The results also show that, while getting degraded and
losing its leading position to inform a specific parameter, a dataset may still remain the best
choice for another parameter. This indicates the importance of assessing the informative
potential of a dataset on a parameter level rather than as one block.

Moreover, the method provides flexibility for the analyst to achieve the following:

e  Tune the meta-features used to calculate DMPK in phase 1, if expertise/follow-up
gain of knowledge shows that the initial estimation was not adequate, the initial
estimation needed to be updated, or if the evolution in technologies/competencies of
stakeholders enables improving the initially obtainable quality of information;

e  Adequately maintain elements required for the calculation of the trust-related meta-features
by adding, confirming, or removing entities in the lists used for the calculation of the second
degradation factor (e.g., new standard or withdraw of a previous standard);

e  Have the process iterated over time (even without new datasets) and readapt the
ranking of the considered sources if required;

e  Modify the weights given to any of the meta-features proposed in phases 1, 2, and 3
on the basis of what one decides to be important or if new risk evidence implies that
changes are required;
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e  Assess the potential of new types of data sources not yet known and integrate the
related datasets into the risk analysis by running them through the three phases.

This approach, thus, supports the development and implementation of DRAs by
ensuring proper and dynamic dataset selection in an environment with ever-increasing
access to more information. It should be noted that the main benefits of the method are to
be gained in a long-term application, i.e., when used after the first time, the analyst needs
to update it only in case new data sources are considered.

5.2. Limitations and Further Requirements
5.2.1. Reliance on Metadata Format

The proposed method is particularly sensitive to metadata existence and quality.
Yet, experience shows that metadata can be in the wrong format (i.e., not respecting
existing standards), inexistent, or incomplete, as illustrated by the absence of some objec-
tive/author/circumstance-related terms in the case study. Metadata may also be corrupted
and contain inaccurate information, due to human actions or inadequate automatic pro-
cessing. Metadata in the wrong format may lead to more challenging and time-consuming
conversions into DC terms, as one would have to work with/generate nonconventional
crosswalks. As a partial solution, and assuming that the number of metadata terms is
expected to remain limited, one may create lists of “standard-like” terms to convert non-
standardized metadata into information usable for the method. In line with this concept,
one could also generate further quality indicators of the observed datasets by implementing
and counting alarms used to highlight missing metadata. Additionally, it might be strategic
to enable one to assign some “privileges” to specific datasets to avoid naively degrading
the value attributed to datasets due to absence of trust information in the metadata (for
instance, for data originating from reference entities such as governmental-based institu-
tions). Such approaches may also be considered when acknowledging that some datasets
initially lack metadata but are known to have been generated internally and can, thus,
be considered as more “trustable”.

Lastly, two additional approaches—optimistic or pessimistic—may be chosen to face
incomplete metadata reporting, as applied in the presented case study. For the former,
stakeholders can apply the minimum degradation and generate alerts for manual veri-
fication of the final ranking when missing information has been detected. Alternatively,
stakeholders may be more conservative and apply the maximum degradation to mini-
mize the possibilities of building on uncertainties. An optimistic approach was chosen for
the calculation of the second degradation factor in our work. The pessimistic approach
would have led to the same ranking in the present case study because of the metadata
we decided to report for those simulated datasets. However, this may usually not be the
case. The choice of the strategy to follow is a more subjective task that, thus, needs to be
addressed on a case-by-case analysis and is hardly generalizable in the generic description
of our approach.

5.2.2. Three-Phases Method Elements

The characterization of the properties in phases 1, 2, and 3 of the method mainly
consists of the definition of classes and class boundaries relative to each property, according
to the authors” experience. Yet, the method provides sufficient flexibility for the bound-
aries to be adapted if needed, especially in a context other than power-grid management.
The choices made in the definition of the three-phases method may, thus, be seen as an
illustration of a general guideline that can be adapted to the context in which it is applied
rather than as a rigid formulation.

The weights associated with the meta-features of each phase are likely to be different
from application to application or from organization to organization. Although the ap-
proach is already implementable as is for any project where the requirements related to the
learning phases are fulfilled, another implementation would require first defining the value
of the reported weights. Different approaches may be considered for this purpose, and one



Energies 2022, 15, 3161

33 of 40

may, for instance, tackle this problem as a meta-learning task. Alternatively, one could
use more straightforward solutions such as the application of Zip’s law, as applied in
other work [92].

We chose a normalized weighted sum to summarize the results of all the properties
used for the definition of the DMPK and DFs. This choice is considered robust, well-known,
and straightforward [93,94], and it was adopted for a first formulation of the proposed
methodology. Multicriteria decision-making methods could also be considered, for instance,
if further dependencies between properties were to be considered in future applications of
the method. Furthermore, the approach considers, right now, all datasets to be independent
and analyzed independently and not leveraging one another. Future extensions should
address the existence of links between datasets.

The implementation of the method is more labor-intensive in the first iterations of
the process, especially when the knowledge of the involved stakeholders needs to be
converted into information exploitable for the use of the presented method. Verifications
required after detecting new terms in the lists used to calculate the second degradation
factor may be particularly time-consuming. However, this workload and the general need
for manual verifications are expected to diminish over time as the number of processed
datasets increases, facilitating future automatic processing.

6. Conclusions

Despite being synonymous with considerable advantages, increasing data availability
related to energy systems also implies numerous challenges from a data management
perspective. In the present work, we suggest an approach enabling to tackle such challenges
in the risk analysis field by analyzing features that may degrade the information potential
of a dataset compared to a baseline (default maximum potential of knowledge (DMPK)).
The key contributions of this research are twofold. First, it proposes a method for reinforcing
data-related risk analysis steps. The use of this method ensures that risk analysts can
methodically identify and assess the available data for informing the risk analysis key
parameters. Second, it develops a method for selecting the best datasets according to
their informative potential. The method, thus, formalizes, in a traceable and reproducible
manner, the process for choosing one dataset to inform a parameter in detriment of another,
which can lead to more accurate risk analyses.

The application of the method to vegetation-related risk assessment in power grids
shows that the approach enables dynamically selecting the best information possible.
It also demonstrates that a dataset originating from an initially less valued data source
(the satellite-based orthophoto) may be preferred to a dataset originating from a higher-
ranked data source, the content of which is outdated or of too low quality (LiDAR-based
point clouds).

The proposed method reduces approximations and uncertainties in risk analysis by
improving tracing of information and measurement characterization, thereby supporting
the optimization of dataset preparation and integration for more efficient risk assessments.
The generic aspect of the approach opens up further applications, such as management
of safety barriers or risk management applied in other areas such as finance or insurance,
which can also access large data lakes. The method is particularly valuable for the risk
assessment of large-scale “open” systems, subject to environmental changes and presenting
increasing opportunities for data capture. Such systems include not only power grids,
but also transportation systems and gas pipelines. In addition to pressure, temperature,
and flow sensors that might identify a failure after a leak is already established, external
pipelines can benefit from data captured by autonomous systems (drones) or satellites for
identifying a growing crack that can potentially result in a leak.

Lastly, although the exploitation of natural language processing techniques may in the
future further support the application of the method (i.e., via advanced text-based quality
assessment of metadata), there is an undiscussable need for proper and better metadata
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registration and maintenance. The community should encourage good practices in this
direction, and our work can be used to illustrate the potential benefits of doing so.
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Appendix A

Table Al reports an extract of the “open directory of metadata standards applicable
to scientific data” [35], provided by the Metadata Standards Directory Working Group [33],
a working group from the Research Data Alliance [34]. The directory is community-maintained.

Table A1. Extract of commonly used metadata standards [35].

Name Original Field of Application Description Link to Resource

MARC (machine-readable cataloging) is a http:/ /www.loc.gov/marc/ (accessed on

MARC Arts and humanities standard mostly' orlgl.nallly used' for reporting 15 February 2022)
and exchanging bibliographic records.
. . . A body of standards used for reporting and http:/ /rs.tdwg.org/dwc/index.htm
D Core Life sciences exchanging biology-related information. (accessed on 15 February 2022)

EML (ecological metadata language) is a https:/ /nceas.github.io/eml/ (accessed on

EML Life sciences metadata sPec1f1cat10n used for. reportmg and 15 February 2022)
exchanging ecology-related information
) ) 15O 19115 (geographic information—metadata) https:/ /www.iso.org/standard /26020.html
Physical sciences and . - . (accessed on 15 February 2022)
ISO 19115 . is schema used for the description of geographic . NS )
mathematics information and services https:/ /www.iso.org/standard /53798.html
’ (accessed on 15 February 2022)
Authoritative specification of all metadata terms
. maintained by the Dublin Core™ Metadata . . e
Dublin General research data Initiative (DCMI). These terms are intended to http://dublincore.org (accessed on
Core . - . 15 February 2022)
be used in combination with metadata terms
from other, compatible vocabularies.
Appendix B

Tables A2-A4 detail the recategorization of the DC terms relevant for a risk analysis
into three classes: (1) file (nature of the dataset), (2) scene (site-/time-specifications of
the dataset), and (3) objectives/author/circumstances (agents and factors influencing data
management). The tables also report the respective definition of each of the selected
terms [83] (The reader is directed to the home page of the Dublin Core™ Metadata Initiative
for a complete description of the terms not used in the present paper.).

Table A2. File-related DC terms.

N° Term Definition

1-1 Format The file format, physical medium, or dimensions of the resource.

1-2 Type The nature or genre of the resource.
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Table A3. Scene-related DC terms.

N° Term Definition
21 Coverage The spatial or terr}pgral. tqpic of the resource, spatial apPIicability of the resource, or
jurisdiction under which the resource is relevant.
2.2-a Spatial Spatial characteristics of the resource (sub-property of coverage).
2.3-b Temporal Temporal characteristics of the resource (sub-property of coverage).
2.4-b Date A point or period of time associated with an event in the lifecycle of the resource.
2.5-b Created Date of creation of the resource (sub-property of date).
2.6-b Issued Date of formal issuance of the resource (sub-property of date).
2.7-b AccrualPeriodicity The frequency with which items are added to a collection.
2.8-b Available Date that the resource became or will become available (sub-property of date).
2.9-b Modified Date on which the resource was changed (sub-property of date).
2.10-b Valid Date (often a range) of validity of a resource (sub-property of date).
2.11-b DateCopyrighted Date of copyright of the resource (sub-property of date).
2.12-b DateSubmitted Date of submission of the resource (sub-property of date).
2.13-b DateAccepted Date of acceptance of the resource (sub-property of date).
Table A4. Objective/author/circumstance-related DC-terms.
N° Term Definition
3.1 Audience A class of agents for whom the resource is intended or useful.
3.2 Abstract A summary of the resource.
3.3 AccrualMethod The method by which items are added to a collection.
3.4 BibliographicCitation A bibliographic reference for the resource.
3.5 ConformsTo An established standard to which the described resource conforms.
3.6 Contributor An entity responsible for making contributions to the resource.
3.7 Creator An entity responsible for making the resource.
3.8 Description An account of the resource.
59 Euatoniev s ognt dfnadin s of proresion g el orviing
3.10 Extent The size or duration of the resource.
3.11 HasVersion A related resource that is a version, edition, or adaptation of the described resource.
3.12 IsReferencedBy A related resource that references, cites, or otherwise points to the described resource.
3.13 IsReplacedBy A related resource that supplants, displaces, or supersedes the described resource.
3.14 IsVersionOf A related resource of which the described resource is a version, edition, or adaptation.
315 Provenance A statement of any .cha.r}ges in ownership ar.u?l Cu.stody.of the resource sin.ce its creation
that are significant for its authenticity, integrity, and interpretation.
3.16 Publisher An entity responsible for making the resource available.
317 References A related resource that is referenced, cited, or otherwise pointed to by the described
resource.
318 Replaces A related resource that is supplantefésiﬁfclzsed, or superseded by the described
3.19 Source A related resource from which the described resource is derived.
3.20 Subject A topic of the resource.
3.21 Title A name given to the resource.
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Appendix C

Table A5 lists all data sources identified as able to provide information for the four
parameters retained in the case study. The table also reports suggestions of preprocessing
methods usable to link each data source to the selected parameters.

Identical cells in the table are merged where possible for consistency purposes. The value
of the information that can be provided by each of the retained sources is detailed in the
application of the method presented in Section 4.

Table A5. Suggestions of preprocessing methods usable to link the data sources to the selected parameters.

Data Source

X-Y Distance from a Tree
to the Power Line

Structure of Tree Crown

Height of Tree (Width, Diameter)

Density/Number of Trees

Aerial optical
inspection images

Visual estimation, counting Visual estimation, classification

Forest survey (map)

Average value reported over a pixel

Cloud segmentation and
Cloud segmentation and measurement

LiDAR point clouds counting or point cloud
density calculation
Meshed Evaluation of number, depth,

photogrammetry-based
point clouds

and relative proportion Mesh segmentation and measurement

of valleys

Orthophotos
(aerial images)

Visual estimation,
extrapolated from
crown width

Distance measurement

Crown size measurement R
tree-power line

Counting, counting per area

Orthophotos
(satellite images)

Visual estimation,
extrapolated from
crown width

Distance estimation tree,

Crown size estimation .
power line

Counting, counting per area

Pests/fungi survey (map)

Probabilistic estimation based on pests/fungi-related damages over time

Photogrammetry
point clouds

Cloud segmentation and
counting or point cloud
density calculation

Cloud segmentation and measurement

Soil survey (map)

Probabilistic estimation of having a tree and
estimation of growth potential for trees depending
on soil type

Probabilistic estimation of
having a tree based on soil

type

TOPEX (topographical
wind exposure) (map)

Probabilistic estimation of
having a tree and
estimation of growth
potential for trees
depending on altitude +
probable wind impact
over time + Z-delta
measurement for
difference due to
terrain variations

Probabilistic estimation of having a tree and estimation of growth potential for trees
depending on altitude + probable wind impact over time

Topography (map)

Probabilistic estimation of
having a tree and
estimation of growth
potential for trees
depending on altitude +
Z-delta measurement for
difference due to
terrain variations

Probabilistic estimation of having a tree and estimation of growth potential for trees
depending on altitude

Weather historical data

Probabilistic estimation of having a tree and estimation of growth potential for trees B
depending on weather conditions
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SUMMARY & CONCLUSIONS

Vegetation-related and wind-induced outages are two
primary causes for disruption in electricity transmission and
distribution networks. Wind can either be a direct cause of
disruption, e.g. by over-constraining infrastructures, leading to
cracks and ruptures, or indirectly, e.g. when leading to trees
falling on power lines. The ability to efficiently address such
hazards remains limited, despite the considerable increase in
relevant data over recent years to help mitigate risk. Moreover,
to our knowledge, no platform exists that addresses wind and
vegetation hazards in combination for power-grid management.
The development of such a solution is a timely exercise, as
recent and predicted climate change can lead to more extreme
weather events and difficulties to forecasting them.

In this paper, we develop and present a platform to elevate
situation awareness in the context of vegetation- and wind-
induced risk near power lines, which can improve power
network resilience and reduce cost of electricity outages. In this
process, we demonstrate how heterogeneous data sources with
variable temporal and spatial scales (e.g. satellite imagery,
ground surveys, outage reports, and weather data) can be
exploited to generate end-user-oriented applications.

We apply the developed strategy to a case study in western
Norway, where we develop a support product to assist grid
operators. The final product can enhance reliable vegetation
status awareness and predictions of weather-related outages to
enable effective resource allocation and ensure safety of ground
crews.

1 INTRODUCTION

Transmission System Operators (TSOs) and Distribution
System Operators (DSOs) face a multitude of challenges when
attempting to maximize the uptime of power grids and meet
increasing power demand on an aging infrastructure. Among
those challenges are outages induced by vegetation and wind
[1], which are primary causes for outages throughout the word
[2,3]. Furthermore, climate change is expected to increase both
the intensity and the frequency of extreme weather events [4],
which will likely increase the number of outages.

Adequately addressing such challenges is difficult due to
the large spatial scales of power grids, regional differences, and
temporal timespan of observations. Any approach to address
those challenges thus rests on effective use of data that can
resolve the relevant spatiotemporal scale. Wind data is for
example relevant on a timescale ranging from hours to days and
km-scale spatial resolution. Vegetation on the other hand,
changes less rapidly than weather and is relevant on a timescale
ranging from months to years. However, the spatial variability
in vegetation is on the meter- to sub-meter scale as opposed to
wind. The relevance of scale for parameters impacting
decision-making by grid operators is illustrated in Figure 1.
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Figure I — Relevance of spatial and temporal scale for
information support to power system operators

Responsive solutions enabling TSOs and DSOs to obtain a
real-time awareness over large-scale infrastructures distributed
across regions and countries are critical. Yet, current inspection
approaches are often infective, reducing that way the number of
inspections possible. Additionally, the management of the
acquired data is usually suboptimal, partly due to the difficulty
in gathering and technically combining relevant information
from heterogenous data sources within a suitable environment
[5]. As a consequence, the analysis of such data can result in a
partial or inadequate risk picture.



Replacing conventional risk assessment methods with
more automatized and data-driven approaches is needed to
enable efficient support for maintenance operations. Remote
sensing represents a powerful tool for that purpose, enabling
large-scale cost-effective surveys. This has opened up for a
range of new vegetation monitoring solutions [6—8]. The use of
state-of-the-art weather modelling has furthermore also been
used for reliability assessment of power grids [9—11]. Here, we
present an effort to combine remote sensing-based vegetation
assessment with wind-based risk analyses. To our knowledge,
this has not previously been attempted. However, we argue that
this is a necessary approach based on the strong link between
wind and vegetation in outage events. Additionally, we also
argue that automatization strategies for adaptive data
integration need to be defined in order to enable dynamic risk
analyses [12].

We first describe the strategy chosen to develop the
architecture of the platform and the data that was considered for
addressing (1) the presence of vegetation along power lines and
(2) the impact of wind-related outage prediction within the
context of power-grid management (Section 2).  The
application of the strategy is then demonstrated in Section 3.
Finally, we discuss the developed approach in the context of
current solutions, user needs, and future development (Section
4).

2 IDENTIFYING USER AND DATA NEEDS
2.1 Identifying user needs

This work was carried out in close collaboration with Sogn
og Fjordane Energi (SFE) - a Norwegian power grid company,
which supported the research team by providing data,
recommendation, and feedback through all parts of the project.
A critical component of the collaboration with SFE was the
ability to determine key user needs within the main objective -
to maximize operational uptime for large-scale power grids in
potentially critical environmental conditions.

We started, based on [13], by developing a framework to
help guide the process of translating user-specific needs into a
monitoring system that incorporates (1) identification of user
needs, (2) data acquisition, and (3) method development (Cf.
Table 1).

First, we identified the principal user-needs (step la in
Table 1) as:

(1) cost effectively identify locations of trees encroaching
on power line corridors to aid vegetation management
planning and identification of grid vulnerabilities; and
predict local outages based on forecasted weather
conditions to assess short-term vulnerability and help
distribute manpower and/or redirect power in the
network.

Second, we identified the most relevant parameters for the
identified needs (step 1b in Table 1) to be (1) vegetation above
4.5 meters that exist within 6 meters from the power line and
(2) wind speed and direction. These conclusions were based on
both thresholds defined by regulations [14] and close exchanges
with experienced personnel in the industry.

@

Third, we explored the spatiotemporal scale of the major
relevant parameters for operational and strategic support to
power system operators (Figure 1) (step 1c in Table 1).

Forth, we explored and evaluated relevant data in light of
user needs and spatial and temporal scales, including internal
SFE data specific to the power grid’s infrastructures (e.g.
component data, historical outage data, ground survey data),
external local information (e.g. topography, grid data), and
globally available data (e.g. satellite and model data outlined in
Section 2.2) (steps 2a, 2b, 2¢ of Table 1).

Table 1 — Step-by-step Actions for Platform Development

I. Defining User Needs

L.a) Determine specific user needs in terms of monitoring
and prediction for operational and strategic decision
support.

I.b) Determine intrinsic variables and environmental
parameters relevant for the specified need, user, and area.
L.c) Determine appropriate spatiotemporal scales and
required accuracy for the chosen approach based on user
needs.

II. Data Evaluation & Acquisition

Il.a) Acquire internal user data based on needs and
availability (e.g., power grid data, field surveys).

I1.b) Acquire external local data based on needs (e.g., maps
of vegetation species and power-infrastructure).

Il.c) Acquire global data (e.g., atmospheric model and
satellite data) & models/methods relevant for the desired
approach and scale.

III. Method Development & Integration

II1.a) Develop and adapt models and methods for tracking
and support of task-specific needs.

IIL.b) Combine task-specific results for addressing zero™
order user needs.

IIl.c) Assess and validate results and make adjustments
according to end-user feedback.

2.2 Data

To assess vegetation height, we utilized airborne LiDAR
data acquired during power line inspections and provided by
SFE (Figure 2a). Vegetation height information was extracted
from relevant classes in the point clouds (3 dimensions) and
projected on a 2-dimensional raster (Figure 2b, 2¢, 2d). For
large km-scale vegetation assessment we utilized optical and
infrared satellite data from WorldView-2 and Pleiades-1. These
two systems were chosen as they enable global coverage with
0.5-meter resolution - high enough to resolve individual trees.
The 2-dimensional raster extracted from the LiIDAR data was
then superimposed on the satellite images, as is illustrated in
Figure 2e.

Wind data was acquired from the European Center for
Medium-range Weather Forecast (ECMWF) ERAS reanalysis
[15]. This data includes hourly wind speed and direction on a
30 km grid.



Figure 2 (a to e) — Combination of LiDAR data and
satellite images. High vegetation is isolated in the point cloud
and projected on satellite images to be used as ground-truth
for machine learning tasks.

3 THE GRIDEYES PLATFORM

In response to the third step in the proposed framework, we
developed an Analytical pipeline (step 3a in Table 1) describing
the analytical steps of the GridEyeS platform (Table 2 and
Figure 3). This pipeline illustrates two initially separate paths
to develop monitoring capabilities in respect to vegetation (Path
1) and wind (Path 2) in response to the two primarily identified
user needs. Steps 1-4 in both Path 1 and 2 (Table 2) were
carried out individually, resulting in information that can
directly aid in prediction of wind and vegetation related outages
respectively. We combined the two assessments in a final
fusion (step 3b in Table 1; step 6 in Table 2 and Figure 3).

As an answer to the need for automatization strategies
enabling adaptive data integration, we furthermore suggest that
the outlined pipeline can be integrated into a general system
hosting the analytics and enabling an automatic processing of
the information (i.e., the GridEyeS platform). The system can
be divided into three main blocks: (1) data acquisition, (2) data
processing, (3) distribution of results (Figure 4). The ownership
of the data used in the platform can be split into two categories:
external (i.e., acquired via third parties) and internal (i.e.,
provided by stakeholders involved in the platform
development). Once the process for data acquisition has been
clarified and the relevant Data Sources belonging to these two
categories are connected to the developed solution, their content
is transmitted to the Processing Unit. The Processing Unit is
itself a combination of three modules: the Analysis & Decision
module (consisting in the Analytical pipeline previously
detailed), the Retrain, Adapt & Update module (principally
covering the evolutionary process of updating the Analytical
pipeline based on needs and further data acquisitions) and the
Archiving module (ensuring that results are stored and
evolutions of the solutions or detected patterns tracked over
time for future analysis work or data exploitation). The output
of the Processing Unit can thereafter be forwarded to the
Communication block, ensuring that the right information is
forwarded in time, to the right person or device and in the right
format.

Further links between the main blocks can also be
identified, such as a direct connection between the Data
Sources and the Dashboard present in the Communication
block. The link between the Processing Unit and the Data
Sources additionally shows the possibility for modules of the
Processing Unit to directly feed existing databases. A feedback
loop originating from the Dashboard finally gives the
possibility for the user to send information requests to both the
Data Sources and the Processing Unit directly and on-demand.
An illustration of the global platform architecture is given in
Figure 4.



Table 2 — Elements of the Analytical Pipeline

First Step: (0) Survey request for specific region.

Path 1 - Threatening Tree Detection

(1.1a) Acquire optical satellite imagery.

(1.1b) Acquire aerial imagery and classified LIDAR
point-clouds.

(2.1a) Pre-process satellite-image (vegetation
index generation, texture classification, etc.)
(2.1b) Subsection data by defining Aol (Areas
of Interest — here, power-line corridors).

(3.1) Generate satellite-based tree classification.
(Achieved by using 2D projection of the “high
vegetation” class in the LiDAR point-cloud and
using it as ground truth for vegetation detection
on the satellite images. [16,17])

(4.1.a) Pinpoint sections of the grid with trees
too close to the power lines.
[(4.1.b) Estimate total number of trees].

[(5.1) Tree-related likelihood-of-outage estimation
based on distance to trees, density, types and
surrounding terrain].

Path 2 - Weather-related Threat level Forecasting (Initial Focus on wind

speed & direction)

(1.2.a) Acquire historical wind data (ERAS reanalysis).
(1.2.b) Acquire wind predictions from ECMWF global forecast model.
(1.2.c) Acquire historical outage data reported for the power grid.
(2.2a) Extract relevant variables from model data for Aol.
(2.2b) Link historical locations and
transformers.
(3.2a) Establish distribution of wind speed and direction throughout
study area based on historical data.
(3.2b) Determine specific wind conditions during historical outages.
(3.2¢) Establish a likelihood-of-outage function based on the correlation
between outages and wind conditions.
(4.2.a) Forecast wind-based likelihood-of-outage based on locally
derived likelihood-of-outage function and current weather forecast.
[(4.2.b) Determine likelihood-of-outage variability in different
regions based on historical weather data].
[(5.2) Estimate weather-related likelihood-of-outage based on
additional weather parameters including precipitation, temperature, and
lightning].

outages to specific

Final Step: (6) Merge vegetation analysis and weather-related information for final combined likelihood-of-outage estimation.

Outputs:

Output 1: Output for costs estimations of general clear-cutting operations.

Output 2: Output for resource managers and grid operators in control rooms in prevision of storm.

Output 3: Output for likelihood-of-outage mapping per region supporting resource prioritization, upgrading of
infrastructure and preparation for extreme scenarios.
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Figure 3 — Elements Assembling in the Analytical Pipeline.
Note: Doted arrows represent links to steps soon to be used for reinforcements of results provided in step 6.




Call for Information

‘ Communication

L» Dashboard

Third-parties platforms Consortium Software

| Weather data

Open Data (e.g., i

Infrastructure Mapping &
Asset Inventory

Processing Unit i
Notifications,
workorders

vegetation survey) | P —

Outages Reports ‘

Cq

Analysis
&
Decision

=
| Point clouds ‘ ‘ P"w"'ﬂ';:r:?te" (i ‘ Updpa\te “ Reporting
: o Systems
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e
Figure 4 — High-level computational architecture of the GridEyeS product
[ a
4 DISCUSSION | ® k
@ ) M\ &
4.1 Results and applications % ‘ A M\ IRYa R %
Through this work, we demonstrate how an information % ‘ ~ \ ERAVANA \/ \ o
platform can be tailored to deliver key services to end-users £ ‘ e - N . ) 5
while considering both technological advances and important ‘ : ®
constraints related to heterogeneous data sources. The : § =
GridEyeS platform suggested here in the context of power-grid (b)
management can be used to obtain a better awareness of the grid £ 5
status with regards to vegetation-related risk near power lines. 3 ?
The platform also provides insights into wind-related risk by & o
assessing the wind conditions during past outage events and = g
projecting this onto a weather forecast. . A @

Preliminary promising results were presented to SFE and
include heatmaps highlighting areas which are likely to face
disturbances due to vegetation encroachment in proximity of
power lines. Figure 5 reports an example of such results for the
area shown in figure 2e, using a Tree Density Index (ranging
from 0 to 1) that is based on both the proximity and the density
of vegetation in the surrounding of the power lines.
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Figure 5 — Heatmap using a Tree Density Index to indicate
high and low exposition of power lines to trees.

In addition, results also include areas prone to wind-related
disturbances, using a likelihood-of-outage function directly
derived from wind predictions, as shown in figure 6. More
details relative to the quantitative achievements of the platform
can be found in [16] and [17].

Figure 6 — 10-days wind forecast January 5-15 (red) during
the storm “Nina” hitting the west coast of Norway in 2015 for
two locations: Askrova (a), and Osstrupen-Steindal (b). The
blue curves represent a likelihood-of-outage function derived
from correlations between outages and wind-speed in the area
under review in the period 1999-2019.

The results from this work may be used to identify sections
of high-risk areas and limit the number of weak points in the
grid (e.g., section of exposed unstable trees or old
infrastructure) and/or to take adequate preventive actions (e.g.,
schedule larger operation crew in exposed areas based on a
storm forecast or redirecting power in the network). By
natively including a Retrain, Adapt & Update module in the
Processing Unit of the solution, we furthermore support the use
of dynamic risk analysis approaches, able to cope with situation
modifications and appropriately restructuring the risk
calculation process when facing circumstance changes [18].
This enables a realistic risk depiction, optimal decision making,
and better responsive actions to minimise number of outages in
power grids and their impacts.

4.2 Improvement and future development

The GridEyeS platform is under development as a
collaboration project between two companies - eSmart Systems




and StormGeo, funded by the European Space Agency (ESA).
The planned completed platform will include (1) an additional
5" step which considers additional parameters and analyses for
the reinforcement of results provided in step 6 and (2) expand
the 4" step with steps 4.1b and 4.2b, incorporating more
detailed analyses to support further resource management tasks
for which grid operators are responsible (Table 2 and Figure 3).

Other possible improvements include incorporating
additional data and processing methods to increase the
pertinence of the provided predictions. Such sources can be -
but are not limited to-: asset information (transformer age,
substation type, etc.), synthetic aperture radar imagery, forest
classification maps, topographic data, power flow time series,
and demographic data. This will especially enable addressing
dimensions not considered in the platform development so far,
but addressed in other monitoring solutions, such as tree height,
species categorization and growth estimation, forest fire risks,
etc., which are as many relevant parameters also known to
influence the risk levels in power grids.

5 CONCLUSIVE REMARKS

Traditional risk management approaches have the potential
to strongly benefit from an increased access to new types of data
sources. This is especially favoured by the global trends
enabling data acquisition with increased quality, higher
spatiotemporal resolution and at lower costs. At the same time,
this leads to further challenges in terms of heterogeneous data
merging and requires both cross-disciplinary expert
collaboration and the existence of an environment enabling to
host the analytics to be made. The present paper addresses this
problematic and describes the preparation of a platform
supporting these operations. More especially, we showed how
we could merge data from heterogeneous data sources in the
context of power-grid management and deliver insights relative
to multiple hazards simultaneously into one tool. Our solution
indicates in this manner how new types of data sources
(especially remote sensing-based data) can be used by operators
in a more efficient and dynamic way, enabling a better risk
management of power grids. Finally, the described application
is also a good illustration of the usefulness of the suggested
frameworks in operational projects in general.
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SUMMARY & CONCLUSIONS

The veracity of information (i.e., its quality of being and
remaining true, accurate, and complete) is a pillar of efficient
risk management. The informative capacity of the data on
which the risk management process relies needs to be fully kept
across the entire information pipeline in order to ensure that risk
can be properly understood and managed. Unfortunately,
research shows that the informative capacity of data may -
partially or entirely - be lost between the generation and the
final use of a piece of information. This problem starts with the
capture of information, where inconsistencies may already be
observed between the reality of a phenomenon and the data
supposedly reporting its measurement. As a consequence, this
can lead to inadequate decision making when answering a risky
event and, thus to a critical escalation of the situation. Such
circumstances have been reported as contributing factors in
several well-known large-impact accidents (e.g., Three Mile
Island, 1979; BP Texas City Refinery, 2005; Deepwater
Horizon, 2010) and continue to be faced in high-risk
infrastructures nowadays.

The multiplication of information sources made available
through advances in the Internet of Things (IoT) and digital
fields offers an opportunity to address this issue, as more and
more data sources can be used to confirm a single fact. That
way, decision-makers can better detect inconsistencies in the
data used for risk analyses and apply appropriate corrective
actions. However, this comes with several challenges. Firstly,
conventional risk management approaches need to be rethought
and restructured to enabling a dynamic updating of the risk
picture as new information is made available. Secondly, they
need to enable a characterization of the information quality by
providing details on the level of uncertainties related to the
generated risk picture. Thirdly, the data capture process needs
to be properly understood in order to ensure that possible data
corruption modes are correctly identified.

This paper discusses the points above by focusing on the
veracity of information during the capture of data for risk
assessment purposes. We discuss how multiple data sources
may be managed to reduce uncertainties in this phase. A case

study on the presence of vegetation close to power lines
illustrates the related implications.

1 INTRODUCTION

Common risk assessments remain mostly focused on the
processes themselves, assuming the existence of a reliable
supporting infrastructure [1]. However, the information
pipeline responsible for transmitting a piece of data from
phenomenon observation to decision making (data capture, data
transmission, data pre-processing, information processing,
results transmission) represents a complex system of systems,
which all can be a source of data corruption eventually leading
to an inadequate decision making. Corruption is here
understood as the possibility for a piece of information to lose
its veracity, i.e., its quality of being and remaining true,
accurate, and complete. Different major accidents can be used
to illustrate the important consequences of a degraded
information management process. In the Three Mile Island
accident (1979), decision-makers have built their reasoning and
took action in an emergency situation based on inaccurate
information, being informed that automatic safety procedure
had been successfully executed, while they were not [2].
Misreading of pressure information and ignoring of warnings
about cement weaknesses were also some of the root causes
responsible for the Deepwater Horizon catastrophe (2010), the
biggest offshore oil spill in US history [3]. Additional events
happening in between the Three Mile Island accident and the
Deepwater Horizon catastrophe (e.g., the BP Texas City
Refinery accident in 2005 [4]) are other illustrations of
accidents showing that a piece of information may:

e not have been generated (e.g., sensors not working), and/or

e have been generated in an inappropriate way (e.g., sensors
generating false information), and/or

e have been wrongly transported and distributed (i.e.,
telecommunication network failure), and/or

e have been treated by inappropriate analysis methods (e.g.,
outdated algorithm utilization), and/or

e have been wrongly interpreted by operators (e.g., human
errors: making wrong decisions despite receiving the
correct information in the right format).



There is thus a need to increase attention on the gathering,
transmission, and processing of information to ensure higher
reliability of risk management processes. This topic becomes
even more relevant in today’s era of big data, where more and
more digital information is made available and considered for
risk management. Although the veracity of data is discussed in
the literature for different applications, implications from the
perspective of risk assessment have not yet been thoroughly
examined. The present paper addresses thus this topic during
the first step of the information chain used for risk assessment
- data acquisition - through:

(1) the understanding of the implications and adaptation
requirements for conventional risk approaches to
fully integrate the veracity dimension in the risk
assessment process; and

(2) discussing a framework for enabling the management
of existing data sources so that a more reliable risk
assessment can be executed.

This paper first revisits risk fundamentals in Section 2,
clarifying the concept of Dynamic Risk Management (DRM),
and highlighting the importance of reliable data acquisition for
this purpose. It then builds on approaches typically used for data
validation to integrate the veracity of information into
conventional risk assessment approaches in Section 3. Finally,
Section 4 presents a case study on vegetation management for
power grids risk assessment. The presence of vegetation in the
surrounding of power lines significantly impacts the probability
of outage in power grids, and power grid outages can have on
serious impact on modern societies.

2 FUNDAMENTALS
2.1 Risk Definition

One of the most renowned definitions of risk was given by
Kaplan and Garrick [5]. It states that risk (R) can be expressed
by what can go wrong (scenario s), what likelihood it will have
(probability p), and how severe consequences will be
(consequence c):

R=f(sp0) ()
On the other hand, several review articles [6—8] collect
parallel risk definitions from the scientific literature to
demonstrate the multiplicity of perspectives on the
understanding of the concept of risk. In [9], the risk is defined
as an uncertain consequence of an event or an activity with
respect to something that humans value. For [10], Risk equals
the expected loss. And for [11], the risk is the potential for
realization of unwanted, negative consequences of an event.
There is thus not one single approach, but several paths
leading to relatively different results, which may be all
beneficial but intrinsically incomplete. This is demonstrated by
the occurrence of major accidents whose scenarios were
disregarded by safety reports because being deemed improbable
[12]. As an attempt to provide a more comprehensive risk
definition, Aven and Krohn (2014) suggest including
knowledge (k) as a new dimension in the original definition (1):

R=f(s,p,c. k) @

Here, this definition is retained due to the strong overlap
existing between the concepts of knowledge and veracity. Its
use is further detailed in Section (3).

2.2 Risk Management

Several examples of frameworks addressing risk
management or governance may be found in standards and
related contributions in literature [14]: i) “Risk management:
guideline for decision makers” by the Canadian Standard
Association (standard CSA Q850-97) [15]; 1) “Risk
management: principles and guidelines” by the International
Organization for Standardization (standard ISO 31000:2018)
[16]; iii) “Risk governance framework” by the International
Risk Governance Council [9]; and “Risk and emergency
preparedness assessment” by the Norwegian petroleum
industry (standard NORSOK Z-013) [17].

The mentioned risk management frameworks unanimously
address the following steps: pre-assessment, risk assessment,
tolerability/ acceptability judgment, risk management, and risk
communication. Treatment of uncertainties is also emphasized,
and different related practices are suggested. ISO 31000
defines risk as uncertainty to achieve an objective [16]. The
IRGC framework [9] distinguishes between uncertainty and
ambiguity. Uncertainty refers to a lack of clarity over the
scientific or technical basis for decision making, whereas
ambiguity gives rise to several meaningful and legitimate
interpretations of accepted risk assessment results. Ambiguity
may refer to potential different values leading to a variety of
interpretations.

Uncertainties can arise at different levels and moments of
the risk management process, and they may be related to data,
models, or the decision-making phase. Most of the risk
management frameworks invite to consider and acknowledge
all forms of uncertainties, not only technical but also social.
Decision making under uncertainty usually relies on the
consideration and comparison of multiple scenarios, therefore
requiring continuous improvement to maximize the likelihood
of appropriate judgments. For instance, in the presence of
emerging risks, differences among actual and expected results
are likely, due to limits in experience and knowledge. The
introduction of continuous improvement is thus fundamental in
order to proceed towards effective and efficient risk
management.

Constant monitoring supports continuous improvement,
which is already a recurrent step in the risk management
frameworks presented. However, there are very few references
on what and how to monitor or measure. The monitoring
process is often related to the level of achievement of objectives
or to the adequacy of assumptions with observed consequences.
While on the contrary, the IRGC framework insists on the
monitoring of [9]: equity in the repartition of risks and benefits
among different categories of populations; and transparency
and availability of information for various stakeholders.

2.3 Dynamic Risk Management

DRM has an evident focus on the concept of risk.
However, one should not be misled into thinking that this



domain aims at managing “dynamic risk.” Analogously to
dynamic risk analysis [18], it refers to the management process
that is designed to dynamically handle the risk of a system. One
important role of DRM is the conversion of the traditionally
static process of risk analysis into a dynamic technique with the
capacity to be regularly updated. This should include a
common understanding of tolerability and acceptability of risk
levels and a clear operational scope [19]. Despite its relevance,
the frequency of updates of the process falls outside the purely
methodological scope of this research [18]. DRM refers to the
risk management frameworks (DRMF) designed to be dynamic,
which optimally enables restructuration, updates, and iterations
when needed. Whether a DRMF updates instantaneously,
yearly, or every decade, it will always keep its dynamic
characteristic as it is independent of the actual use. On the
contrary, non-DRM still has the possibility to be updated but
with considerable inertia leading it to require substantial efforts,
time, and energy by appointed teams of experts and managers.

An illustrative example can be made by means of computer
software coding. When a software code is meant to be updated
based on the inputs provided while running, its structure and
characteristics should be defined and designed accordingly.
One can say that this software code is dynamic. When, instead,
a software code does not accept any input for the sake of
updates while running, the only option is modifying the lines of
code that we want to be changed. We can define the latter code
as static. Its update is still possible, but it requires increased
effort and knowledge as it was not designed for it.

Thus, if we need to understand whether risk management
can be considered dynamic, we should ask ourselves whether it
was intended and designed to be dynamic, as this characteristic
must be taken into account in the scope definition, i.e., the very
first phases of its development.

2.4 Role of data acquisition in Dynamic Risk Management

Modern data acquisition refers to the process of sampling
measurements of a physical phenomenon and converting this
into a digital value exploitable by a software. This is usually
done using sensors, converters, transmitters, and/or other
transmission devices, forwarding the data to an analytical or
archiving unit for post-acquisition data processing and/or
storing. Manual reporting of information and information
extraction from existing databases are usually not considered to
be part of the data acquisition process. However, this is
generally done in the field of risk management, considering the
limited amount of information that can be met when dealing
with rare events, as well as the importance of human operators
in the management of high-risk infrastructures.

Here, the process of data acquisition can thus be defined as
requiring:

e The acknowledgment of the parameter to analyze,
e The identification of the data sources to be considered

(measuring device, database, personnel, etc.),

e The capture of the raw data and the initialization of the
information transmission.

Although data acquisition may have been considered as part of

the risk influencing factor (RIF) “design” in the ORIM [20] or

“System feedback” in the BORA [21], it is, to the best of the

authors’ knowledge, never considered individually as a RIF,

and thus never addressed in detail. This is particularly
problematic, as the data acquisition process can be failing in
different ways. For example:

e data may not be generated (e.g., inactive hardware or
hardware failure),

e data may be corrupted (e.g., sensors with false indications),

e considered databases may be outdated,

e data may be available, but not correctly transmitted (e.g.,
data directed to the wrong endpoint, lack of authority
hindering communication in the control team),

e data may be available, but face compatibility issues
between devices (e.g., different protocols, language,
hardware).

Detecting and acknowledging the occurrence of such issues in
real-time is critical to maximizing the probability of good
decision making in risk management. Traditional risk
management approaches need thus also to be reshaped
regarding the possibility of data corruption in order to integrate
detection and acknowledgment by design, which is another
dimension aimed to be covered by DRM.

3 CONFIRMATION FACTOR FOR VERACITY
ASSESSMENT

Expressing the level of knowledge (k) used for risk
assessment, as suggested in Formula (2), is an intrinsic feature
of the calculated value of risk. We can tolerate having relatively
little knowledge of scenarios with both low probability and low
consequence. On the other hand, knowledge is critical when
the probability and consequences of an event have their highest
values. Formula (2) gives important insight into how we should
manage risk while continuously improving. As mentioned by
several risk management frameworks [14], it should be
acknowledged that uncertainty is always a companion [22].
Calibration and correction based on new evidence will possibly
allow for decreasing this uncertainty and accounting for
evolving system conditions.

Current trends in the IoT and digital fields allow for the
assumption that the average number of data sources per
parameter observed is likely to increase in the future. Three
generic situations may then be encountered when assessing how
much the data sources agree on the forwarded information:

1) Absence of alternatives: only one data source is

available to inform about a specific parameter. In such
a situation, there is no better option than to fully rely
on the only existing data source.

2) Confirmation of information: all data sources agree on
the information to forward, and the value of the
knowledge is increased as the number of data sources
increases.

3) Conflicting answers: at least two data sources provide
conflicting information. In that situation, further
recommendations need to be provided to decide how
to handle available information in the risk analysis.

As a consequence, we thus suggest to further characterizing the
“strength of knowledge” as reported by Aven and Krohn by



splitting the knowledge dimension into two indicators (Formula
(3)) to qualify the veracity of information. The first one simply
indicates the number (N) of sources available to inform a
specific observed parameter. The second indicator corresponds
to a veracity indicator (v), capturing the agreement level across
the considered data sources, a common approach for data
validation and reconciliation [23].

k=gN,v) 3

The number of data sources (V) is reported, as a higher
value of (N) would generally imply a higher likelihood that the
real status of the observed phenomenon can be captured,
especially in the case where the information originates from
independent data sources of different nature. The nature of the
veracity indicator (v) is based on the nature of the objective
function (i.e., categorical, discrete, continuous, etc.), which
needs to be clarified in the first phases of the risk analysis. One
needs then to define the trust level to assign to each data source,
based on a priori knowledge indicating the reliability level of
the source. In the absence of relevant side information, an
identical trust level will be given by default to the different data
Finally, a combination rule needs to be chosen to
calculate the value of the veracity indicator.

A simple illustration can be the use of (N) binary data
sources (a;), characterizing the same specific situation (e.g.,
presence or absence of a hazard in a specified area). Assuming
the similar level of trust for all data sources and independence
across their acquisition modes (i.e., no common source of
corruption), one may choose a simple averaged value to define
how likely reported information is to be true:

N
2aa% €04} )

In this situation, the class maximizing the value of (v) may
logically be chosen to report the status of the observed
phenomenon [24]. Additionally, the value of (v) will enable to
better characterize the level of uncertainty existing around the
probability dimension reported in Formula (2). However, other
situations may be more complex [25] and require a different
decision rule, such as counting rules (where at least (M) out of
(N) sources need to agree) or linear combinations of the
individual data sources, useable when additional information on
the reliability of the sources is available. Linear combinations
of individual data sources usually outperform simple rules (like
the counting rule), while simple rules do not require anything
more than monitored information. Finally, discrete scenarios
with more than 2 choices and/or fuzzy scenarios where situation
evolution may be continuous instead of discrete would also
impact the final choice for the decision rule. This decision
needs thus to be appreciated on a case-by-case reasoning in the
first steps of any risk analysis.

4 CASE-STUDY: VEGETATION MANAGEMENT IN
POWER GRIDS

sources.

v =

4.1 Context & Data

Overhead power lines are broadly used to transport power
from production sites (e.g., dams, nuclear power plants or coal
power plants) to consumers (e.g., industrial, commercial, and

residential customers). Vegetation represents a main source of
hazards worldwide in the management of those power lines
[26]. Two principal unwanted scenarios (s) can indeed be
identified with this regard: either (1) tree/branch falls on power
lines, or (2) vegetation growth under the infrastructures. In
both cases, the probability (p) of outages escalates when the
distance from vegetation to the power lines decreases, as
shortcuts due to connections between different phases are more
likely. The consequences (c) can then be particularly important,
as this can lead to wildfires and even large blackouts [27].
Distribution System Operators (DSOs) and Transmission
System Operators (TSOs) — in charge of the power grid
management — require, therefore, to be informed about the
presence of vegetation in the surrounding of their grids in order
to take adequate maintenance decisions.

Information relative to the assessment of vegetation
presence close to power lines is traditionally obtained during
visual inspections, which can be executed via foot patrols,
helicopters, and the use of drones. Light Detection And
Ranging (LiDAR)-based point clouds are also commonly used
to obtain 3D insights, allowing for precise distance
measurements between power lines and other elements, such as
trees. Furthermore, photogrammetry-based point clouds are
getting more and more attention in recent years as a more
economical alternative to LIDAR point clouds. Finally, the use
of orthophotos (geometrically corrected satellite images or
large scale aerial images) for efficient large-scale inspections is
currently intensively explored [28], mostly pushed by the
progress made in computer vision and the continuously
increasing availability of satellite imaging technologies with
higher resolution and more frequent coverage [29].

These sources of information can all be used to assess the
threatening level of vegetation in the surrounding of power
grids. Figure 1 (ato d) illustrates how the presence of four small
trees growing under a power line can be seen on a drone image
(a), in a LiDAR point cloud (b), in a photogrammetry point
cloud (c), and on an orthophoto (d).

4.2 Application

The current application principally focuses on the
probability dimension of the risk definition. We consider the
binary case of presence/absence of threatening vegetation
between subsections of the power grid (here, a section between
2 consecutive power poles) as a simplified version of the
original objective function focusing on exact distance
measurement between trees and the infrastructure. In the
present situation, the different data sources agree on the
presence of four trees growing under the lines, leading the
veracity indicator (v) to equal 1. Furthermore, considering the
number (4) and the nature of data sources involved, we can
confidently assume the information to be accurate. The
suggested formulation of the knowledge dimension enables thus
to dynamically assess the pertinence of the provided probability
that threatening trees are present under the lines. It also enables
to evaluate the impact of adding/removing data sources in the
risk calculation by increasing/decreasing confidence in the
provided results depending on the forwarded information.



Figure 1 (a to d) - Detection of four small trees (marked via
red points) growing under a power line and reported via a
drone image (a), a LiDAR point cloud (b), a photogrammetry
point cloud (c), and on an orthophoto (d).

5 DISCUSSION

The choice and management of data sources to be considered
for risk management remain challenging activities. First,
because the pertinence of a choice of data sources may change
over time, e.g., due to a variation of the situation circumstances
or to a variation in the quality of the acquired data. Second,
because the merging of heterogeneous data sources remains a
complicated task [30]. For instance, source-specific
weaknesses imply that not all data sources can be used for the
same purposes. The clarification of the objective function is
thus critical to ensure that the chosen data sources properly

support the resolution of the problem under review.
Furthermore, regular revisions are required to ensure that the
choice of data sources is continuously justified. This is,
however, hindered by the fact that the definition of the data
acquisition process (and more generally, the entire information
pipeline construction) is usually seen as a “once and for all”
process. This leads it to be often excluded from any serious
system improvement plan, even though it has been recognized
as a main contributing factor in major accidents. Tracking the
variations of the veracity indicator (v) can thus also be used in
that sense as a lagging alerting indicator. Once sources of
disagreement have been identified, it can potentially reveal the
need for removing initially chosen data sources that became
irrelevant over time.

The concept of independence across data sources also
requires proper attention. Data acquired from independent data
sources but in a short period of time may all be outdated when
considered in risk analysis, thus all confirming inaccurate
information, potentially leading to inadequate decision making.
This highlights the critical need for a proper definition of the
reliability criteria of the data sources, for which levels need to
be tracked over time. Some factors influencing the reliability
level of the sources (and thus the pertinence of the executed risk
analysis) are, in addition to the choice of the sources, the
environmental conditions during data capture, the data
collection modes, the choices of technologies, the
maintainability of the physical equipment, the exposition of the
physical equipment to environmental hazards, the maintenance
of the physical equipment and the communication network
design. Finally, the choice of the decision rule defining which
values will eventually be reported in the risk analyses is a
critical task that needs to be adequately executed by a panel of
experts in the first phases of the studies and regularly reassessed
to ensure its pertinence over time.

6 CONCLUSIVE REMARKS

Ensuring the veracity of information during the entire
lifetime of risk management processes is of critical importance
to guarantee the pertinence of the reported results.
Conventional risk management approaches suffer from a lack
of tools ensuring and controlling that data veracity can be kept
over time. DRM provides solutions to fill this gap by enabling
the establishment of continuity in the risk management
processes, facilitating their updates and reiterations when
required. This is supported by the rapid development of newly
accessible data sources, made, for example, available via
numerous loT-based development strategies. In the present
paper, we suggested an approach to formalize the benefit that
increased access to a plurality of diverse data sources can
provide. For this, we suggested extending the knowledge
dimension of a relatively recent risk formulation, based on the
number of data sources available and on veracity, indicator
capturing the level of agreement across those sources. We
applied this approach in a case-study focusing on vegetation
close to power lines, which is a common source of outages in
power grid management. We concluded that the approach was
useful to confirm the presence of potentially problematic



vegetation in the analyzed case, but also pointed out that it is,
in general, strongly dependent on both the formalization of the
problem in initial phases and the quality of the data sources
management over the entire life-cycle of the risk management
processes.
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