
SJSON: A Succinct Representation for JSON
Documents

Abstract

The massive amounts of data processed in modern computational systems are

becoming a problem of increasing importance. This data is commonly stored

directly or indirectly through the use of data exchange languages, such as JSON

(JavaScript Object Notation) and XML (eXtensible Markup Language), for

human-readable platform-agnostic access.

This paper focuses on exploring a set of succinct representations for JSON

documents, which we call SJSON, achieving both reduced RAM and disk us-

age while supporting efficient queries on the documents. The representations we

propose are mainly based on the idea that JSON documents can be decomposed

into structural part and raw data part. In our method, we emulate the structure

of the JSON document as a rooted ordered tree and represent it using succinct

data structures, as opposed to the usual pointer-based implementation. Fur-

thermore, the remaining raw data is reorganized into arrays of attributes and

values. This deconstruction between structure and data allows for a straight-

forward connection between a node in the succinct tree and its corresponding

name-value pair, dispensing pointers altogether.

The proposed scheme is implemented as the SJSON library in C++, and

evaluated with respect to a number of metrics, comparing its performance with

popular alternative JSON parsers. Empirical results show that the library is

able to represent JSON files succinctly while efficiently supporting traversal

queries.

Keywords: JSON, succinct data structure, semi-structured document

representation, heterogeneous array indexing.

Preprint submitted to Information Systems September 29, 2022

1. Introduction1

Every minute 300 hours of video data is uploaded to Youtube; 4,000 unique2

visitors access the Amazon website; App Store users download 31,000 applica-3

tions; and Facebook users like over 4,000,000 posts [1]. Content creation grows4

at such an explosive rate that currently over 90% of the world’s data has been5

generated in the last two years [2]. Tremendous amounts of information are pro-6

duced every day, and the storage needed to save this is increasing significantly.7

Given the limitations of available storage, it is more and more imperative for8

data to be compressed as much as possible. On the other hand, modern sys-9

tems are still expected to execute operations and data analysis efficiently, even10

on large amounts of data. This requires functional compression approaches to11

be adopted, thereby allowing data to be compactly stored while permitting the12

efficient execution of operations.13

In the real world, data is rarely a large sequence of random numbers; real-14

world string data tend to exhibit foreseeable characteristics, structural regular-15

ities, and often subject to domain constraints. This predictability enables com-16

pression schemes to represent the same information in a space-efficient manner,17

while still permitting the original data to be retrieved in full [3].18

Succinct Data Structures. In succinct data structures [4], we strive to solve al-19

gorithmic problems by designing data structures that use amounts of space close20

to the information-theoretic lower bound, while still supporting the operations21

efficiently. Succinct data structures for a wide range of fundamental problems22

have been designed in the past couple of decades. Examples of problems whose23

solutions with succinct data structures have been extensively studied and doc-24

umented in the literature include, among others, trees [5, 6], range minimum25

queries [7], and text indexing [8].26

Data Exchange Formats. A common method for storage and exchange of the27

data in modern systems is through data exchange languages. These languages28

tend to be formats designed to describe data in ways that permit it to be read,29

2

parsed, and understood by the most diverse set of languages and platforms,30

decoupling data from particularities of its processing environment.31

Over the course of the years, several data exchange formats were suggested,32

including XML (eXtensible Markup Language) [9] and JSON (JavaScript Object33

Notation) [10]. Although XML was the prevalent format for over a decade, due34

to its inherent high verbosity and low readability, the use of XML has declined35

over time in favor of the more compact and better-structured JSON. Many36

modern systems such as CouchDB [11] and MongoDB [12] have reported using37

JSON or BSON (Binary JSON) [13] as their native format for data storage and38

in-memory representation; while web service APIs – Twitter [14], Facebook,39

Google [15] – commonly adopt JSON as their data interchange language for40

transferring information between servers and clients.41

There is another scheme to represent JSON documents, known as BSON.42

The main objective of this representation is to efficiently support schema-less43

lightweight network communication through fast encoding and decoding. By44

adding extra information, the document is able to be traversed easily. Unfortu-45

nately, this representation does not exploit the repetition of elements to achieve46

better compression. In addition, BSON only handles integers as 32-bit or 64-bit47

values regardless of their actual size. Therefore, although one of its design goals48

is to be efficient in space, BSON is not an ideal option for compact storage.49

Ottaviano and Grossi [16] proposed a scheme that supports random access to50

the JSON document stored on the disk, more efficiently, using a semi-index. The51

semi-index enables us to navigate the file by encoding the document structure52

succinctly. The semi-index is basically a bit vector in which bits are set for53

specific locations that separate the elements. This scheme is feasible since a54

different separator is employed for each possible type. At the cost of a space55

overhead for storing a succinct representation of the document tree structure,56

their semi-index allows for random access of specific values without having to57

load the JSON file entirely into the main memory. Furthermore, the semi-index58

includes pointers that indicate the position of the corresponding element in the59

JSON file stored on disk. In contrast to our work, their representation neither60

3

actually compresses the document, nor strives to represent the JSON content61

succinctly in memory, but rather offers a layer of indirection for accessing the62

underlying stored data. In this respect, the total amount of disk space required63

by their approach is strictly higher, though not by much, than the original64

document, as it additionally requires the storage of the semi-index.65

Nevertheless, to the best of our knowledge, there are no other schemes in the66

literature specifically suggested for efficient compression or efficient in-memory67

representation of JSON documents [17]. Libraries like JSONC [18], written in68

Javascript, focus on the compression of documents transferred between clients69

and web service APIs by employing traditional text compression methods such70

as gzip (DEFLATE, a combination of LZ77 and Huffman encoding) [19]. It71

could be possible to achieve both lower verbosity and higher utility in JSON72

representations by applying the fundamentals of notable XML compression al-73

gorithms to JSON.74

In this paper, we suggest a memory-efficient JSON representation and com-75

pression library named SJSON, engineered by leveraging ideas of succinct data76

structures. Our scheme saves memory in three aspects of JSON documents.77

First, we model the document structure as an ordinal tree and encode it through78

succinct tree representations [20, 6]. Second, redundancies in attributes are re-79

moved and the remaining unique strings are stored in a simple contiguous array,80

which can be compressed using succinct data structures for strings, including81

compressed suffix arrays. Lastly, values of the JSON document are encoded82

compactly and stored in a heterogeneous structure named as bit string indexed83

array. Users can store this set of representations, either on RAM or on the disk.84

For the RAM and disk representations we allow users to query general informa-85

tion of a JSON document, without retaining the original JSON document.86

The rest of this paper is organized as follows. Preliminary information on87

succinct data structures – such as tree representations and string representations88

– and data exchange languages – such as XML and JSON – will be introduced in89

Section 2. In Section 3, we elaborate on the theoretical and technical details of90

our JSON representation and compression scheme. Experiments and empirical91

4

results along with their analyses are given in Section 4. Finally, conclusions and92

future work will be discussed in Section 5.93

2. Preliminaries94

In this section, we introduce preliminary work upon which this paper is95

based. We start with an overview of the XML and JSON data exchange lan-96

guages, stating characteristics, common usages, and the syntax of the format97

(Section 2.1). Next, we give a brief introduction to succinct data structures98

(Section 2.2), and describe succinct representations for ordinal trees that we use99

subsequently (Section 2.3). Finally, we introduce well-known general-purpose100

compression schemes and string-optimized compression algorithms (Section 2.4).101

2.1. Data Exchange Formats102

Data exchange (also called data interchange) is the process of taking data103

structured under a source schema and transforming it into data structured un-104

der a target schema, in a systematic way such that the target data is an accurate105

representation of the source data [21]. A data exchange language, or format,106

is a language that is domain-independent and can be used for diverse types of107

data. Its semantic expression, capabilities, and qualities are largely determined108

in comparison with the capabilities of natural languages. A common charac-109

teristic of such formats is that they can be parsed and correctly interpreted110

independently of programming language, running environment, and platform.111

The following sections discuss two specific data interchange languages – XML112

and JSON – in more detail.113

2.1.1. XML (eXtensible Markup Language)114

XML (eXtensible Markup Language) is a text-based data exchange language115

derived from SGML (Standard Generalized Markup Language), being a simpler116

alternative that is both human-readable and machine-readable [9]. While its117

original goal is to meet the challenges of large-scale electronic publishing, XML118

also plays a major role in the data exchange and storage of a wide variety of119

5

systems and web services. This position was attained primarily due to its higher120

level of application-independence compared to other data interchange formats121

of its time.122

An XML document is a string of Unicode characters. These are then divided123

into markups and contents. Markups are strings that begin with a less-than sign124

(<) and end with a greater-than sign (>). A component in the document is called125

an element, which has a start tag in the front and an end tag in the end. Inside126

the start tag, name-value pairs called attributes can exist.127

Figure 1 depicts an example XML document.128

<Books >

<Book ISBN ="055321419" >

<title >Sherlock Holmes: Complete Novels </title >

<author >Sir Arthur Conan Doyle </author >

</Book >

<Book ISBN ="0743273567" >

<title >The Great Gatsby </title >

<author >F. Scott Fitzgerald </author >

</Book >

<Book ISBN ="0684826976" >

<title >Undaunted Courage </title >

<author >Stephen E. Ambrose </author >

</Book >

<Book ISBN ="0743203178" >

<title >Nothing Like It In the World </title >

<author >Stephen E. Ambrose </author >

</Book >

</Books >

Figure 1: Example XML document [22].

One of the advantages of the XML format is that it is possible to check the129

validity of a document with respect to a given schema. More than one XML130

documents can be associated with a single DTD (Document Type Definition).131

DTD is a schema language that contains a set of markup declarations defining132

6

elements and attributes, which in turn can be tested against XML documents133

for validity. Based on the schema, the structure of an XML document could134

be modeled into a tree of components, namely elements, attributes, and textual135

data. Due to this characteristic, XML is also known as a semi-structured data136

interchange format.137

Furthermore, there are two major query languages for working with XML138

endorsed by the W3C. XPath is a query language for selecting nodes from an139

XML document using location paths that resemble tree navigation [23]. XQuery140

is a more functional language that is designed to query and transform collections141

of data in XML documents [24].142

Although advantages exist, the XML data exchange format is utterly ver-143

bose, cluttering the resulting file with nonessential structural information and144

metadata, which hinders the efficiency of the language in terms of usability,145

readability, and compactness. In an attempt to mitigate this size overhead,146

several algorithms implementing XML compression have been suggested in the147

literature, including XMill [25], TREECHOP [26], XQueC [27] and XBZipIn-148

dex [28]. These compressors are commonly classified with respect to whether149

or not the resulting compressed file support queries as it is; and whether struc-150

ture and data content are stored alongside or separately. An XML compression151

method is called non-queryable if it necessitates the entire XML document to152

be decompressed before querying can take place. Homomorphic compressors153

encode both the structure and content of a document in a single container,154

while permutation-based compressors try to improve the compression ratio by155

differentiating the structural and content sections of a document.156

For parsing XML documents, some libraries such as pugixml [29] provide157

DOM (Document Object Model)-like interface to manipulate the original docu-158

ment, though for pugixml it only supports documents that could be fit in main159

memory and it does not reduce the size of the processed representation. The160

SiXDOM library suggested by Delpratt et al. [30] utilizes succinct data struc-161

tures while constructing the DOM structure in RAM, which supports some nav-162

igational queries. However, this library does not consider storing components163

7

other than the tree structure.164

2.1.2. JSON (JavaScript Object Notation)165

JSON is an open standard document format that uses human-readable struc-166

tured text to represent data objects [10]. Designed as an alternative to XML,167

JSON is originally based on a subset of the JavaScript programming language.168

Even though its name includes a specific language, JSON is a programming169

language-independent format widely used nowadays to exchange data on the170

web and to represent structured information.171

The JSON interchange format is designed around two types of entities –172

objects and arrays. An object is an unordered list of name-value pairs, i.e.,173

an associative array. Names are strings, and values are one of the possible174

JSON value types. Objects are wrapped around curly brackets (“{” and “}”),175

and successive name-value pairs are separated with commas (“,”). Though the176

specification states that pairs inside an object are, in fact, unordered, JSON177

parsers commonly assume some implicit ordering. There could be pairs with178

identical names inside an object, and in our representation we explicitly allow179

it. An array is an ordered list of values. It is enclosed in square brackets (“[”180

and “]”) and subsequent values are separated by comma. Values in an array181

do not have associated names.182

Core types of JSON values, beside the two s discussed above, include number183

(integer and real), string, boolean and null. Figure 2 shows an example of a small184

but complete JSON document, and Figure 3 illustrates a basic automata that185

generates documents in JSON document format.186

Similar to XPath for XML, there are some standards for JSON querying.187

Google devised a functional query language Jaql [31] which is based on a flexible188

data model inspired by JSON, supporting manipulation of arrays and user-189

provided functions. A statement consists of a source, a sink, and pairs of an190

operator and a parameter. Some of the operators this language supports are191

FILTER, GROUP and JOIN. JSONiq [32] is another functional query language192

which can also process unstructured documents. This language has two different193

8

{

"id": 35420,

"name": "Toaster",

"tags": [" Kitchen", "Appliances "],

"price": 32.99 ,

"on_sale ": true ,

"stock": {

"warehouse ": 300,

"store": 20

}

}

Figure 2: Example JSON document.

Figure 3: JSON automata.

behaviors: its independent syntax and XQuery-like grammar. Since JSONiq194

is highly influenced by XQuery, its data model and list of supported queries195

resemble those in XQuery.196

As opposed to XML, there are no well-known compression schemes to both197

encode and query JSON documents. Additionally, existing JSON libraries, such198

as JSONC [18], naively apply well-known generic text compression methods199

(e.g, gzip [3]) in a JSON document, so that the entire document needs to be de-200

compressed for querying. Another approach commonly used when transferring201

JSON files is stripping unnecessary whitespaces in a process called JSON mini-202

fication. This, however, does not constitute an actual compression technique.203

BSON [13] derived from MongoDB aims high processing speed by encoding204

documents in binary format and including additional information for traversals.205

9

Nevertheless, although this may reduce size of a JSON document, no actual206

compression is performed during the conversion. Thus, this representation also207

does not compose a compression scheme.208

The most popular arguments in favor of XML are around the benefits of209

its interoperability and openness. However, none of these are inherent to XML210

itself. JSON offers the same qualities while improving in a number of aspects,211

especially with respect to conciseness, human-readability and ease of parsing212

and processing by a machine. JSON represents data as collections of arrays213

and records, which is what data actually is. XML represents data based on214

elements, attributes, content text, entities, and other metadata. Furthermore,215

XML is document-oriented, while JSON is data-oriented. Data-oriented formats216

can be more easily mapped to object-oriented systems.217

2.2. Succinct Data Structures218

Succinct data structures as a field started with Jacobson’s 1988 Doctoral219

Dissertation [4]. In this variation of data structures, we design algorithmic220

solutions that use an amount of space close to the information-theoretic lower221

bound of the problem in hand, while still allowing for the execution of efficient222

operations. One can think of succinct data structures as an extension of data223

compression, in which space is close to the information-theoretic lower bound224

and queries are efficient.225

One of the fundamental structures employed when devising a new succinct226

data structure solution is the bit string. A bit string is a string over the alphabet227

Σ = {0, 1}. A bit string by itself has limited use. Although its compactness228

provides us a framework upon which information can be concisely represented,229

few useful operations can be efficiently performed on raw bit strings. To enhance230

its usability, bit strings can be extended in terms of functionality with auxiliary231

structures for rank and select operations.232

Given a string S of length n over the alphabet Σ, the rank and select233

operations are defined as follows:234

10

• rankα(S, i): the number of occurrences of α in the first i positions of S,235

for any α ∈ Σ.236

• selectα(S, i): the position of the i-th α in S, for any α ∈ Σ.237

In the case that S is a bit string and, thus, Σ = {0, 1}, we have the238

operations rank0, rank1, select0 and select1. For instance, if S = 110101,239

then rank0(S, 4) = 2 and select1(S, 2) = 1. Extensive research has been240

conducted on succinct implementations of rank and select structures over bit241

strings [33, 34, 4, 5]. One can support both operations in O(1) time while using242

o(n) additional bits of space.243

On the same vein, a second auxiliary structure built around bit strings is244

the balanced parentheses. This data structure conceptually interprets set bits245

(i.e., 1s) and unset bits (i.e., 0s) of a bit string as open and close parentheses,246

respectively. When this resulting sequence of opening and closing parentheses247

is balanced, it is considered as a balanced parentheses structure.248

Just as it was the case with rank and select, the core operations in bal-249

anced parentheses over an n length bit string can be performed in constant250

time with additional o(n) bits [5]. For convenience we can define rank and251

select operations over balanced parentheses bit strings as rankopen(S, i) ≡252

rank1(S, i), rankclose(S, i) ≡ rank0(S, i), selectopen(S, i) ≡ select1(S, i), and253

selectclose(S, i) ≡ select0(S, i).254

2.3. Succinct Ordinal Tree Representations255

Succinct data structures are fundamentally based on representing elements256

of a given set in a compact form, in such a way that operations on its domain257

can still be executed efficiently [4]. In general, succinct data structures aim for258

representing instances of a set using space as close as possible to the information-259

theoretic lower bound, while still supporting operations efficiently.260

We outline two space-efficient ordinal tree representations – Balanced Paren-261

theses (BP) and Depth-First Unary Degree Sequence (DFUDS). Both achieve262

the optimal space of 2n bits for representing ordinal trees (since there are263

11

Tree Operation Description

pre rank(x) preorder rank of node x

pre select(p) the node with preorder p

isleaf(x) whether node x is a leaf

ancestor(x, y) whether node x is an ancestor of y

depth(x) depth of node x

parent(x) parent of node x

first child(x) first child of node x

next sibling(x) next sibling of node x

subtree size(x) number of nodes in the subtree of node x

degree(x) number of children of node x

child(x, i) i-th child of node x

child rank(x) number of siblings to the left of node x

Table 1: Operations on ordinal trees [35].

Cn = 1
n+1

(
2n
n

)
ordinal trees on n nodes, we need at least 2n − O(log n) bits264

to encode an arbitrary ordinal tree on n nodes), and are able to perform a num-265

ber of tree operations efficiently with the aid of rank and select, and balanced266

parentheses auxiliary structures in total 2n+ o(n) bits of space. A summary of267

some of the most significant tree operations is given in Table 1 [35].268

The BP tree representation is first proposed by Jacobson [20] and later269

improved by Munro and Raman [5]. In this method, a balanced parentheses270

bit sequence is constructed from a depth-first traversal of the tree, by writing271

an opening parenthesis when first arriving at a node, and a closing parenthesis272

after visiting all of its children, namely all nodes in its subtree. In this way273

every node has exactly two parentheses associated with it: an open parenthesis274

“(” and a close parenthesis “)”. Thus, this encoding represents a tree with a275

bit string composed of 2n balanced parentheses. This representation uses space276

that is within lower-order terms of the information-theoretic lower bound (of277

2n−O(log n) bits) for encoding trees.278

12

To support operations in this tree representation we then need to make use of279

the auxiliary structures equipped with rank, select, and balanced parentheses,280

discussed in Section 2.2. Notice that in this encoding nodes of a subtree are281

stored contiguously in the designated bit string. Therefore, the subtree size can282

be computed by simply taking half the distance between the opening and closing283

parentheses that correspond to a node.284

From the core operations provided by the rank, select, and balanced paren-285

theses structures we can derive several tree operations efficiently. In fact, it is286

known that all of the core tree navigational operations presented in Table 1 can287

be performed in O(1) time utilizing this encoding.288

The DFUDS tree representation [6, 36] is an alternate approach to LOUDS289

(Level-Order Unary Degree Sequence) [20] and BP. To combine the virtues of290

these two representations, DFUDS writes a unary degree sequence of each node291

in a depth-first traversal of the tree. That is, whenever we arrive at a node292

during a depth-first traversal, we append d open parentheses and one closing293

parenthesis, where d is the number of children of the node being visited. A node294

is represented by the position of its first open parenthesis.295

With the addition of one artificial open parenthesis prepended at the be-296

ginning of the bit string, the resulting encoding is also a balanced parentheses297

bit sequence. As a result, each node has exactly two bits corresponding to it.298

A 1 bit (open parenthesis) is written in the bit string when visiting its parent,299

and one 0 bit (close parenthesis) is written in the bit string when visiting the300

node itself. This generates a 2n length bit string, which is again within lower-301

order terms of the information-theoretic lower bound for representing a tree on302

n nodes.303

Tree operations can then be supported with an additional o(n) bits of space304

through auxiliary structures, as discussed in Section 2.2. As it was the case305

with the BP representation, nodes of a subtree are stored contiguously in the306

bit string generated through the DFUDS representation. Thus, the subtree size307

can be computed by simply taking half the distance between the opening and308

closing parentheses that correspond to a node.309

13

Tree Operation BP DFUDS

pre rank(x) rankopen(x) rankclose(x− 1) + 1

pre select(p) selectopen(p) selectclose(p− 1) + 1

isleaf(x) S[x+ 1] =′)′ S[x] =′)′

ancestor(x, y) x ≤ y ≤ findc(x) x ≤ y ≤ findc(enclose(x))

depth(x) excess(x) –

parent(x) enclose(x) prevclose(findo(x− 1)) + 1

first child(x) x+ 1 child(x, 1)

next sibling(x) findc(x) + 1 findc(findo(x− 1)− 1) + 1

subtree size(x) (findc(x)− x+ 1)/2 (findc(enclose(x))− x)/2 + 1

degree(x) – nextclose(x)− x

child(x, i) – findc(nextclose(x)− i) + 1

child rank(x) – nextclose(y)− y; y = findo(x− 1)

Table 2: Operation details of tree operations in BP and DFUDS representations [35]. A dash

is used to indicate operations that require additional auxiliary structures.

From the core operations on parantheses, we can derive several tree op-310

erations efficiently. In fact, all the tree operations presented in Table 1 can311

be performed in O(1) time, using this set of succinct ordinal tree representa-312

tions along with auxiliary data structures. Arroyuelo et al. [35] provide emu-313

lation of navigational queries to preliminary operations supported in auxiliary314

data structures. Table 2 summarizes those operations. findc and findo op-315

erations find the position of matching close and open parenthesis of a paren-316

thesis, respectively. excess operation finds the difference between the num-317

ber of open and closing parenthesis before a position. enclose operation in318

an open parenthesis returns the position of the open parenthesis corresponding319

to the closest matching parenthesis pair enclosing the input open parenthe-320

sis. For the DFUDS representation, prevclose(x) ≡ selectclose(rankclose(x)) and321

nextclose(x) ≡ selectclose(rankclose(x) + 1).322

Figure 4 shows an example ordinal tree, along with its BP and DFUDS323

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

((() (())) () (() (() ()) ()))BP
{

(((() (()) ())) ((()) (())))DFUDS
{

Figure 4: An ordinal tree with the succinct representations.

represented tree structure.324

2.4. String Compression Schemes325

General-purpose lossless compressors such as LZ77 [3], LZ78 [37], and LZW [38]326

perform dictionary-based encoding to support compression. These algorithms327

substitute contiguous length of text into the location of entry inside the dic-328

tionary. Although dictionary-based compression algorithms may provide high329

compression ratio, if one needs to randomly access and manipulate the encoded330

content, the whole sequence of it should be decompressed again, which can be331

a significant computation overhead.332

To alleviate this handicap, a plethora of algorithms have been suggested.333

In the early ages, indexable data structures such as suffix trees [39] and suffix334

arrays [40] are widely used to deal with string compression. Suffix trees are335

compressed tries containing all the suffixes of the given text as their keys and336

positions in the text as their values. The given text is terminated with a special337

character $, which is considered the lexicographically smallest. Construction of338

a suffix tree takes O(n) time, where n is the length of the given text. Each339

15

constructed suffix tree occupies O(n) space. When a suffix tree is constructed,340

string search and finding the longest substring queries can be done in either341

Θ(m) or Θ(n) time, where m is the length of a substring.342

Suffix arrays are sorted arrays of all suffixes of a given string. When the343

length of a string is n, construction time and space usage are both O(n), similar344

to suffix trees. Note that suffix arrays can be constructed by performing a depth-345

first traversal of the relevant suffix tree. Locating every occurrence of a substring346

pattern in the string using suffix arrays takes O(m log n) time, where m is the347

length of the pattern. Constructing compressed suffix arrays [41] also takes348

O(n) time, and when compressed space usage becomes O(nHk(T)) + o(n). The349

operation to query a pattern in the compressed array takes O(m) or O(m+log n)350

time.351

Ferragina and Manzini proposed an alternative text indexing scheme known352

as the FM-index [42]. This index relies on BWT (Burrows-Wheeler Trans-353

form) [43]. BWT is a reversible transformation for strings for the preparation354

of efficient compression. While the transformation itself does not reduce the355

size of the string, it is able to convert the string to runs of repeated charac-356

ters, feasible to be compressed using run-length encoding schemes. FM-index357

supports counting and locating operations in O(p) and O(p + occ logε u) time,358

respectively, where p is length of a pattern, u is length of a text, occ is number359

of the pattern occurrence and 0 < ε < 1 is an arbitrary parameter.360

Wavelet trees [44] and wavelet matrices [45] are also used as text indexing361

schemes. Wavelet tree is a succinct data structure for strings, and it supports362

access as well as rank and select operations for an alphabet in O(log σ) time,363

where σ is size of the alphabet. A string S occupies nH0(S) + o(|S| log σ) bits.364

Later version of the FM-index [46] also utilizes wavelet trees to reduce space for365

large alphabets.366

16

3. SJSON : Succinct Representations of JSON Documents367

This section further explores details of the JSON representations and related368

data structures implemented in our library SJSON. The goal of this section is369

to suggest a compact representation for JSON documents exploiting bit strings370

and succinct ordinal tree data structures.371

3.1. Bit String Indexed Array372

In contiguous homogeneous arrays all entries are of a single type, and hence373

have the same fixed size in bytes. In such arrays, indexing is easily computed374

from the array’s starting position and the length of each array element. In375

heterogeneous arrays, however, auxiliary structures are required for efficient376

indexing, as the size of entries is variable. A common technique used in modern377

programming languages to provide the illusion of heterogeneous arrays is to use378

a homogeneous array of pointers to elements. Each element pointed to may be379

of a different type, but the array is still homogeneous. This approach has the380

downside of requiring additional pointers, which, in modern 64-bit computers,381

correspond to 8 extra bytes per array entry.382

We propose an indexing scheme based on bit strings along with the select383

auxiliary structure, which we denote as bit string indexed array. Consider a384

contiguous heterogeneous array A with n elements and a total size of m bytes.385

We generate a bit string S of length m bits such that the i-th bit is set if and386

only if the i-th byte of A corresponds to the beginning of one of its elements.387

Notice the bit string S as generated above has exactly n set bits, and occupies388

0 1 2 3 4 5 6 7 8 9 10

1 0 1 0 0 0 1 1 0 0 0S
{

2189 3.141592 T 322000A
{

Figure 5: A bit string index built on top of the example heterogeneous array A =

{2189, 3.141592, true, 322000}. Notice how each and every set bit in S corresponds to the

starting position of an element in A.

17

a total m/8 bytes. Now the problem of indexing the i-th entry of a bit string389

indexed array is reduced to a call to select1(S, i), that is, the position of the390

i-th 1 in S.391

Figure 5 depicts how the bit string indexed array is structured on a sample392

heterogeneous array. In this example booleans occupy 1 byte, numbers take393

either 1, 2, 4 or 8 bytes based on their capacities.394

The overall space overhead incurred by this scheme is m bits for the bit395

string S and extra o(m) bits for the auxiliary select structure. More precisely396

the bit string index requires m+ o(m) extra bits in addition to the input array.397

If more compression is needed, one can encode the index using sdarray [47].398

Since we can assume the bit vector is sparse (i.e., number of set bits are ex-399

tremely smaller than unset bits), sdarray structure efficiently encodes the index400

in n(2 + log m
n) bits, while supporting select queries in O(1) time.401

3.2. Main SJSON Representation402

One of the main points in which SJSON improves memory usage compared to403

other libraries lies in the fact that we devise a compact variable-length encoding404

for JSON values. In order to store a series of variable length encodings, we405

design a memory-efficient heterogeneous array discussed in Section 3.1. This406

array is in turn used to compose the underlying data structures used in SJSON.407

In order to represent a given JSON document in a memory-efficient manner,408

we deconstruct the document tree structure portion from its content data. The409

JSON Type Encoding Size (bytes)

null {type} 1

object {type} 1

array {type} 1

boolean {type} 1

string {type, index} 9+

number {type, value} 2, 3, 5, 9

Table 3: Encodings of JSON types and respective sizes.

18

two subdivisions are in turn separately encoded. This, in turn, allows us to410

leverage the characteristics and patterns particular to each specific data type,411

to achieve better memory usage.412

We model the document structure using ordinal trees and implement encod-413

ings through the DFUDS succinct tree representation discussed in Section 2.3.414

Improvements in memory usage here derive from the fact that traditional JSON415

libraries represent the tree structure through pointer-based implementations, in-416

curring overhead of about 8 bytes per pointer in the JSON document in 64-bit417

systems. Succinct trees allow us to reduce this overhead to 2 + o(1) bits in our418

scheme. A preliminary version of the paper [48] used the BP representation to419

represent the document tree, however this representation lacks efficient support420

for child and degree operations needed for querying the document, as denoted421

in Table 2. Therefore, we use the DFUDS ordinal tree representation to store422

the document tree in the library.423

Given that the structure is dissociated from the document content, the raw424

data that remains is a series of names and values. These two components are425

also represented separately. According to the JSON specification, names are426

exclusively strings which are repeatable among objects. Thus, names container427

may constitute lots of redundant entries. It is common for JSON documents428

with millions of nodes to have no more than a few dozen unique names. In429

our scheme, we strip redundancies in names and store the unique strings in a430

contiguous memory array. Values that have a name associated should encode431

with itself the index of its corresponding name.432

Finally, a value can be any of the JSON types outlined in Section 2.1.2, and433

may or may not have a name associated with it. We encode a specific JSON434

value according to its type as described in Table 3. All encodings start with a435

byte identifying its JSON type, and whether the value has a name associated436

with it. If a JSON value has an attribute associated, its encoding includes an437

extra 8-byte index that identifies the corresponding entry in the attributes array.438

String values require special treatment as their lengths are highly variable. We439

store all strings in an array, and the JSON encoding only stores the index of its440

19

corresponding entry in an array stringValues. Number type encodings occupy441

9 bytes for 64-bit numbers and 5 bytes for 32-bit numbers. Smaller values may442

use 16-bit numbers instead, for total encoding sizes of 3 bytes. Decimal numbers443

also follow this notation, depending on their precision.444

Initial version of the SJSON library [48] maintains strings in the stringValue445

array as-is. This allows easy extraction of relevant value in a pair. Neverthe-446

less, since maintaining the original array does not actually involve compacting447

storage, we give an option to apply additional compression to this array. When448

space compaction needs to be considered in high priority, we provide apply ad-449

ditional compression utilizing concepts of compressed suffix arrays discussed in450

Section 2.4.451

The list of value encodings is then stored in a bit string indexed array as452

outlined in Section 3.1 without further memory overhead. Each JSON value is453

indexed by order of discovery in the depth-first traversal step performed when454

creating the succinct tree representation, as noted in Section 2.3. That is, the455

i-th node in the succinct tree corresponds to the i-th element in the values456

array. This characteristic provides us with a lightweight and straightforward457

correspondence between tree nodes and associated data, based merely on array458

indexes.459

Figures 6 and 8 depict example document tree of a JSON file (top and460

Figure 7, respectively) and contain an illustration of the data structure gener-461

ated by SJSON to represent that document (bottom). tree and index are bit462

strings, while values, names, and stringValues are regular arrays. Entries in463

the values array start with a byte representing type of an element, where O,464

NA, NC, Ns, NI, NF, NS, and NT stand for Object, Named Array, Named Char,465

Named Short, Named Integer, Named Float, Named String, and Named True,466

respectively. Notice how named types include an additional 8-byte index to its467

associated entry in the attributes array. Note that the stringValues array is468

not converted to the compressed suffix array in these figures.469

20

id: 32450 name: “Toaster” tags

“Kitchen” “Appliances”

price: 32.99 on sale: true stock

warehouse: 300 store: 20

(a) Document tree structure corresponding to the sample JSON shown in Figure 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0tree
{

0 1 14 31 40 49

1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0index front
{

O N
I

0 32650 N
S 1 0 N
A 2 S 1 S 2values front

{
0 13 22 31 42

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0index rear
{

N
F 3 32.99 N
T 4 N
O 5 N
s

6 300 N
s

7 20values rear
{

0 8 16 24 32 40 48

id name price tags on sale stock warehouse storenames
{

Toaster Kitchen AppliancesstringValues
{

(b) In-memory representation of the sample JSON from Figure 2 as encoded by SJSON.

Figure 6: In-memory representation of the sample JSON from Figure 2 as encoded by SJSON.

3.3. Supporting Queries470

From the two query languages dealt in Section 2.1.2, it could be understood471

that it is indispensable for JSON libraries to support efficient traversals of the472

DOM tree as well as retrieval of the relevant name-value pairs. By utilizing473

the succinct tree structure as well as bit indexed arrays, our space-efficient474

representation suits those two core query objectives.475

We support the following query operations in the SJSON library.476

• listObjectNames(o): Given an JSON object o, return its list of names.477

• getObjectValue(o,n): Given an JSON object o, return value of an entity478

with name n. If multiple entities with identical names exist, return a list479

of values.480

• countArrayElements(a): Given an JSON array a, return its size.481

• getArrayValue(a,i): Given an JSON array a, return value of its i-th482

element.483

21

{

"navigations ": [{

"disp_order ": 1,

"nodes": [{

"disp_order ": 2,

"type": "DOC"

}],

"type": "MENU"

}, {

"disp_order ": 20,

"nodes": [{

"disp_order ": 1,

"type": "DOC"

}, {

"disp_order ": 10,

"nodes": [{

"disp_order ": 999,

"type": "DOC"

}],

"type": "MENU"

}],

"type": "MENU"

},

]}

Figure 7: Example nested JSON document.

22

navigations

disp order: 1 nodes

disp order: 2 type: “DOC”

type: “MENU” disp order: 20 nodes

disp order: 1 type: “DOC” disp order: 10 nodes

disp order: 999 type: “MENU”

type: “MENU”

type: “MENU”

(a) Document tree structure corresponding to the sample JSON shown in Figure 7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

1 0 1 1 0 1 1 1 0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 1 0 0 0 0tree
{

0 1 10 11 21 30 31 41 58 75 76 86

1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0index front
{

O N
A 0 O N
C 1 1 N
A 2 O N
C 1 2 N
S 3 0 N
S 3 1 O N
C 1 20 N
A 2values front

{
0 1 11 28 29 39 48 59 76

1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0index rear
{

O N
C 1 1 N
S 3 0 O N
C 1 10 N
A 2 N
s

1 999 N
S 3 1 N
S 3 1values rear

{
0 8 16 24 32

navigations disp order nodes typenames
{

DOC MENUstringValues
{

(b) In-memory representation of the sample JSON from Figure 7 as encoded by SJSON.

Figure 8: In-memory representation of the JSON document from Figure 7 as encoded by

SJSON.

23

For example, on the document in Figure 6, the answers to some of the queries484

are shown below:485

• listObjectNames(0): id, name, tags, price, on sale, stock486

• getObjectValue(8,‘‘store’’): 20487

• countArrayElements(3): 2488

• getArrayValue(3, 2): “Appliances”489

These queries first perform navigation of the succinct tree, using child or490

parent operations. Once the relevant node is located, the queries extract the491

desired information by either inquiring the bit indexed arrays or calling addi-492

tional degree tree operation. Locating the exact place for answering queries493

in the bit indexed array takes theoretically constant time, by running select494

operation in the index array. Additionally, as mentioned in Section 2.3, the495

DFUDS representation supports all of the aforementioned operations in the-496

oretically constant time. Therefore, a combination of those libraries enables497

efficient JSON query processing.498

Note that if users choose to compress the string values in a compressed499

suffix array, then extracting dedicated characters for answering queries takes500

O(v) time instead of constant, where v is the length of the value.501

4. Experimental Results502

The library has been implemented in the C++ programming language and503

compiled with g++ 10.1.0. The environment in which the tests were executed504

features an Intel Core i7-6700K 4.20GHz CPU, 64GB DDR4 RAM, and 512GB505

NVMe drive. The machine runs Linux kernel version 5.8. RAM usage readings506

are done with valgrind, and elapsed time values for construction and querying507

are measured with the C++ STL library chrono.508

The library borrows core concepts of the popular JSON processing library509

RapidJSON [49] while parsing a JSON document. We make use of the SDSL [50]510

24

library to aid our implementation with bit strings and auxiliary structures,511

employing the rank structure as proposed by Vigna [51], select structure by512

Clark [33], balanced parentheses structure by Navarro and Sadakane [52] and513

compressed suffix arrays structure. Balanced parentheses structure is mainly514

used to query the succinct tree stored in bit strings.515

We evaluate our scheme against three popular JSON libraries – JsonCpp [53],516

JSON for Modern C++ [54], and RapidJSON by measuring RAM usage and517

elapsed time during construction. If the libraries support querying function-518

alities, we compare their relevant performance to our SJSON library. With519

respect to compression, we compare our scheme against the original file size,520

blank-eliminated JSON file using JSONC [18], and gzip-applied [3] result. For521

evaluating querying performance, we also consider semi-indexing suggested by522

Ottaviano and Grossi [16].523

The source code for SJSON is available at https://github.com/wombatkik5/sjson524

for reproduction.525

4.1. Datasets526

The experiments were performed on a collection of datasets of both synthetic527

and real world corpora. We generate synthetic datasets of single possible types528

in JSON (array, bool, double, int, null, object and string) with number of529

nodes from 2,000,000 to 100,000,000. With these datasets we intend to illustrate530

the performance behavior of the libraries on different value types. More details531

of the real world corpora are described in Table 4.532

• Twitter: A list of 20,000 tweets and metadata collected in 2015.533

• SNLI [55]: The Stanford Natural Language Inference corpus is a collection534

of human-written English sentences coupled with semantic metadata.535

• Citylots [56]: This dataset is a JSON converted document of the City-536

Lots spatial data layer, a representation of the City and County of San537

Francisco’s Subdivision parcels.538

25

Corpus Nodes Size (MB)

Twitter 3,249,499 90

SNLI 6,757,124 465

Citylots 13,805,883 181

DBLP 64,714,826 1,741

150JS-evaluation 420,358,521 4,910

150JS-training 878,277,103 10,247

Table 4: Overview of the real world datasets used in our experiments.

• DBLP [57]: This dataset offers bibliography entries recorded in DBLP [58]539

until October 2014.540

• 150JS [59]: For 150,000 JavaScript files, their corresponding parsed AST541

(Abstract Syntax Tree)s are collected as two JSON documents: training542

(100,000) and evaluation (50,000).543

4.2. Construction Time544

Figures 9 and 10 represent construction time of the libraries mentioned545

above. For all libraries, construction time includes reading a JSON file from546

disk and constructing auxiliary data structures based on that file in RAM.547

By examining the tendency of construction time on synthetic documents de-548

scribed in Figure 9b, it is clear that the time is proportional to the number of549

nodes. As our JSON parsing scheme is derived from that of RapidJSON, we can550

observe that data structure construction takes most of the construction time.551

Establishing tree structure is concurrently done while traversing the document.552

Therefore, it is evident that preparing a succinct data structure for balanced553

parentheses needs to be further optimized for construction. Although construc-554

tion time is an important factor to process a JSON document, once the library555

supporting serialization (other than the original JSON document) parses the556

document it need not reconstruct the whole representation. As mentioned later557

in Section 4.4, SJSON supports serialization and deserialization of the repre-558

26

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

array bool double int null object string

C
on

st
ru

ct
io

n
T

im
e

(s
)

Type of Data

RapidJSON
JsonCpp

ModernJSON
Semiindex

SJSON

(a) n = 10, 000, 000.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 20 40 60 80 100

C
on

st
ru

ct
io

n
T

im
e

(s
)

Number of Nodes (million)

RapidJSON
JsonCpp

ModernJSON
Semiindex

SJSON

(b) Varying n.

Figure 9: Construction time of SJSON compared to different libraries, for synthetic data.

27

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Twitter SNLI CityLots DBLP 150JSe 150JSt

C
on

st
ru

ct
io

n
T

im
e

/ C
or

pu
s

D
is

k
S

iz
e

Corpus

RapidJSON
JsonCpp

ModernJSON
Semiindex

SJSON

Figure 10: Relative construction time (with respect to corpus disk size) of SJSON compared

to different libraries, for real world corpora.

sentation which significantly takes lesser time than construction shown above.559

Therefore, we consider that serializing the encoded representation to disk will560

mitigate demerits of slower construction time.561

The experimental environment could not handle 150JS corpora using third-562

party parsers because of insufficient RAM. Also, all the external libraries except563

RapidJSON could not run on the DBLP corpus, whereas our library is able to564

handle those documents as well. Since this is one of the merits of processing565

big data, we claim that our library has a strong point, suitable to handle larger566

JSON documents, even when the amount of RAM available is small. It is worth567

mentioning that semi-index could also handle those documents since this library568

mainly focuses on constructing the tree structure while retaining the original569

document on disk, not actually constructing the parsed representation.570

28

 0

 200

 400

 600

 800

 1000

 1200

 1400

array bool double int null object string

R
A

M
 U

sa
ge

 (
M

B
)

Type of Data

Original
RapidJSON

JsonCpp
ModernJSON

Semiindex
SJSON

(a) n = 10, 000, 000.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

R
A

M
 U

sa
ge

 (
M

B
)

Number of Nodes (million)

RapidJSON
JsonCpp

ModernJSON
Semiindex

SJSON

(b) Varying n.

Figure 11: Memory usage of SJSON compared to different libraries, for synthetic data.

29

 0

 1

 2

 3

 4

 5

 6

 7

 8

Twitter SNLI CityLots DBLP 150JSe 150JSt

R
A

M
 U

sa
ge

 /
C

or
pu

s
D

is
k

S
iz

e

Corpus

RapidJSON
JsonCpp

ModernJSON
Semiindex

SJSON

Figure 12: Relative memory usage of SJSON (with respect to corpus disk size) compared to

different libraries, for real world corpora.

4.3. RAM Usage during Construction571

Figures 11 and 12 show the main memory usage of SJSON compared to572

JsonCpp, JSON for Modern C++ and RapidJSON. For visual comparison pur-573

poses, Figure 11 also includes the original file size on disk, while Figure 12 shows574

the relative ratio of the RAM usage compared to the original disk size.575

It is evident from the experiments that RapidJSON performs best among576

the third-party libraries evaluated, and JsonCpp is the worst. Our library,577

mostly represents the input datasets in strictly less RAM than RapidJSON by578

up to 91% on synthetic data and 66% on real-world corpora, while outper-579

forming JsonCpp by up to 98% and 84% on synthetic and real-world corpora,580

respectively. For corpora with pairs containing large string values, our library581

representation uses more space than RapidJSON, when compression is not ap-582

plied.583

Our scheme offers a significant improvement in memory efficiency by encod-584

ing JSON values according to its type and data in a compact manner, using total585

30

memory proportional to the amount of information contained in a JSON file.586

On the other hand, common JSON libraries use fixed-length representations for587

all JSON values, leading to memory usage proportional to the total number of588

nodes. RapidJSON, for example, allocates 48 bytes for most values, regardless589

of type. Array entries are the exception, taking 24 bytes of memory. This ex-590

plains why RapidJSON uses the same amount of memory for most synthetic591

datasets, except for array. JSON for Modern C++ and JsonCpp show similar592

behavior. Similar to construction time, RAM usage between the two succinct593

tree representations does not differ, reflecting the identical theoretic bound.594

Compared to the conference version of this work [48], the new representation595

uses about 30% more RAM in some of the synthetic corpora. This is we allocate596

8 bytes instead of 4 for recording the IDs of the names and string values, to597

support representing JSON documents with more than 232 different possible598

strings. Nevertheless, by maintaining the string values efficiently in memory,599

representations of most of the corpora with strings use less RAM than the600

conference version.601

As mentioned in the previous section, all other libraries except ours could602

not process larger corpora.603

4.4. Disk Usage and Serialization Time604

In Figures 13 and 14 we illustrate the disk usage of SJSON compared to the605

original file size and to gzip. Our scheme is able to compress a JSON document606

by up to 61% in synthetic files, and up to 28% in real-world corpora. From607

the figure, we can observe that disk usage is also proportional to the number608

of elements in the document. SJSON effectively reduces file size especially for609

array and object.610

Although our compression is not as good as gzip with sizes about 2 to 9611

times larger, it is easier to reload the compressed file generated by SJSON back612

to memory than to decompress and parse the gzipped file. Note that once613

deserialized in RAM, we do not need to maintain the content stored on disk for614

future use. We also provide gzipped result of the SJSON serialization, which615

31

 0

 20

 40

 60

 80

 100

 120

 140

 160

array bool double int null object string

D
is

k
U

sa
ge

 (
M

B
)

Type of Data

Original
gzip

BSON
Semiindex

SJSON
SJSON+gzip

(a) n = 10, 000, 000.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

D
is

k
U

sa
ge

 (
M

B
)

Number of Nodes (million)

Original
gzip

BSON
Semiindex

SJSON
SJSON+gzip

(b) Varying n.

Figure 13: Disk usage of SJSON compared to the original file size and to gzip, for synthetic

data.

32

 0

 2000

 4000

 6000

 8000

 10000

 12000

Twitter SNLI CityLots DBLP 150JSe 150JSt

D
is

k
U

sa
ge

 (
M

B
)

Corpus

Original
gzip

BSON
Semiindex

SJSON
SJSON+gzip

Figure 14: Disk usage of SJSON compared to the original file size and to gzip, for real world

corpora.

further reduces the disk usage without penalizing the performance.616

It is shown in the figure that BSON decreases disk usage by up to 33%.617

Unfortunately, the BSON library provided by MongoDB was not able to convert618

most of the real-world datasets, since it only supports UTF-8 characters.619

Corpus Time (s)

array 0.148

bool 0.204

double 0.255

int 0.238

null 0.214

object 0.211

string 0.338

Corpus Time (s)

Twitter 0.168

SNLI 1.345

Citylots 0.472

DBLP 3.168

150JS-evaluation 11.17

150JS-training 52.76

Table 5: Serialization time of SJSON.

Table 5 summarizes serialization time of SJSON processed result. We can620

33

see that time needed to serialize corpora is proportional to their size.621

4.5. Query Time622

In Section 3.3 several types of queries are discussed, and SJSON implements623

most of those emulated as tree operations supported in the SDSL library.624

Corpus listObjNames getObjValue cntArrElems getArrValue

string (n = 10, 000, 000) 209 17.2 - -

Twitter 89.3 16.8 9.8 19.8

SNLI 106 17.2 10.3 20.7

CityLots 135 16.7 9.8 20.6

DBLP 131 16.8 10.2 19.7

150JS-evaluation 92.6 17.1 9.9 20.9

150JS-training 94.4 17.3 10.1 20.8

Table 6: Query time of SJSON. Units are in microseconds.

Table 6 exhibits the query time experimental results of SJSON. Queries are625

invoked in various document locations, and their average time is calculated. For626

some corpora where arrays do not exist, only the object queries are run in the627

experiments. The time is mostly the same regardless of the location each query628

handles, because tree-navigational queries take constant time. Additionally,629

pointing the exact location in the bit indexed array takes constant time as well,630

by the constant-time implementation rank and select operations. For the631

listObjNames queries, the actual experimental time is highly affected by the632

degree of each element accessed.633

We have also emulated the relevant queries as the native operations sup-634

ported by the other libraries – JsonCpp, JSON for Modern C++, and RapidJ-635

SON. Figure 15 shows comparison of query time in the Twitter corpus among636

the four libraries. Since the succinct tree representation are slower in supporting637

the tree navigational operations compared to the pointer-based representations,638

our representation mostly gives the worse performance in query time. Nonethe-639

less, the SJSON library allows querying through a large document which other640

34

 1

 10

 100

 1000

listObjNames getObjValue cntArrElems getArrValue

Q
ue

ry
 T

im
e

(m
ic

ro
se

co
nd

s)

Query Type

RapidJSON
JsonCpp

ModernJSON
SJSON

Figure 15: Query time of SJSON in the Twitter corpus, compared to different libraries.

frameworks fail to process, with almost identical processing time regardless of641

the size of the document.642

Semi-index supports retrieval of values in an arbitrary location when a name643

is given. This is done by traversing the whole tree with the assistance of the644

constructed index. Although our library does not explicitly support the whole645

traversal as of now, it is remarkable that emulation of traversal would guarantee646

similar query time to that of semi-index.647

4.6. Splitting the Document into a Collection of Chunks648

Even though maintaining large size documents is one of the merits of our649

representation, to improve the RAM usage further, we also experimented by650

splitting a large JSON document into a collection of smaller chunks. More651

specifically, we performed several experiments based on chunk division, where a652

single JSON document acting as a corpus is divided into multiple smaller chunks.653

Each chunk has its own concrete representation of a tree and arrays, while all654

the chunks are connected as children of a virtual root node. (In all our datasets,655

35

id: 32450 name: “Toaster” tags

“Kitchen” “Appliances”

price: 32.99 on sale: true stock

warehouse: 300 store: 20

Figure 16: Document tree structure corresponding to the sample JSON document shown in

Figure 2 divided into 2 chunks.

Corpus Time (s) Ratio

string (n = 10, 000, 000) 5.29 1.11

SNLI 7.78 1.13

DBLP 43.8 1.26

Table 7: Construction time of SJSON with chunk division enabled.

the tree structure is fairly shallow, with small depth, and hence this simple656

modification is enough to split the large document into several smaller chunks.)657

This enables efficient RAM usage and large-scale document processing because658

we do not need to maintain and store all the intermediate representations to659

make queries work. Nevertheless, this may increase the disk size, given that660

representations of chunks do not share pre-constructed names and stringValues661

arrays. By adding a virtual root node to the entire tree structure, each part of662

a document is considered as a child tree with its own suite of arrays. Figure 16663

exhibits a document tree structure consisting of two JSON chunks.664

We tested the effect of chunk division using both synthetic and real-world665

corpora. For synthetic dataset, we divided the string corpus (n = 10, 000, 000,666

disk size 111MB) into 10 chunks. For real-world corpora, we chose SNLI and667

DBLP, each divided into 50 and 100 chunks, respectively.668

Since no intermediate procedure other than the serialization is needed, the669

construction time is almost identical to that of the original version, as in Table 7.670

36

Corpus RAM Usage (MB) Ratio

string (n = 10, 000, 000) 29 0.18

SNLI 29 0.06

DBLP 62 0.03

Table 8: Memory usage of SJSON with chunk division enabled.

Corpus Disk Usage (MB) Ratio

string (n = 10, 000, 000) 144 1.23

SNLI 496 1.09

DBLP 1,877 1.03

Table 9: Disk usage of SJSON with chunk division enabled.

From Table 8 it is clear that chunk division allows only a portion of RAM is671

needed to process the whole document. This intermediate representation is672

flushed to disk, so only a small amount of RAM is required even for a big673

JSON document. Note that these ratios are not inversely proportional to the674

number of chunks, since duplicate values among two individual chunks are not675

considered identical in the representation.676

We have noticed negligible serialization and query time difference from the677

original representation since only one extra tree operation needs to be done.678

For queries, we assume that the entire data structure is already loaded into the679

RAM so that no extra de-serialization is needed during query processing. But680

as one can imagine, if the representation is not in the RAM, then the chunk681

division approach will support the queries significantly faster as it only needs to682

load a small portion of the data structure into the RAM to answer the query.683

4.7. String Compression684

We also integrated compressed suffix array data structure to the SJSON685

library, so that string values could be compressed efficiently while naive query686

support is guaranteed. In this subsection, we illustrate the details when the687

string compression is enabled, by comparing the experimental result to the688

37

Corpus Time (s) Ratio

string (n = 10, 000, 000) 11.2 2.35

Twitter 13.3 5.99

SNLI 135 18.3

CityLots 17.7 1.61

Table 10: Construction time of SJSON with string compression enabled.

original representation.689

Table 10 denotes construction time when string compression is applied to690

some of the corpora. Following the tendency of the theoretic time bounds sug-691

gested in Section 2.4, when a JSON document contains a large portion of strings,692

constructing its compressed suffix array takes most of the construction time.693

One alternative way to compress the stringValues array is to apply general-694

purpose compression schemes, however, the core penalty of this method is that695

the compressed form does not support random access without explicit decom-696

pression, which is significant overhead while querying.697

Corpus Disk Usage (MB) Ratio

string (n = 10, 000, 000) 133 1.14

Twitter 49 0.72

SNLI 240 0.53

CityLots 106 0.95

Table 11: Disk usage of SJSON with string compression enabled.

Additional string compression using compressed suffix arrays drastically de-698

creases the overall disk size – even competitive to gzipped compression – if the699

original corpus contains a high portion of strings, summarized in Table 11. We700

claim that most JSON documents contain a large number of strings so that701

applying string compression to those guarantees less disk usage.702

If no string compression is applied, extracting an arbitrary string value from703

the stringValues array does not rely on the length of the value. Nevertheless,704

38

Corpus listObjNames getObjValue cntArrElems getArrValue

string (n = 10, 000, 000) 216 152 - -

Twitter 92 158 10.6 143

SNLI 108 195 10.7 215

CityLots 137 144 11.1 189

Table 12: Query time of SJSON with string compression enabled. Units are in microseconds.

as dealt in Section 2.4, extracting a string from the compressed suffix array705

takes linear time proportional to the desired length of the string. This affects706

query time, which is illustrated in Table 12. Answers to the queries had 6 to 8707

characters in average.708

5. Conclusion and Future Work709

JSON is the de facto prevalent data interchange document format for data710

transmission on web service APIs, besides being used to store or represent struc-711

tured data in many modern software systems. However, no well-known queriable712

compression scheme tailored for JSON exists yet. In this paper, we have en-713

gineered and implemented SJSON, a succinct representation and compression714

scheme for parsing and storing JSON documents in a memory-efficient manner.715

Our library is able to consistently represent JSON documents across a range716

of synthetic and real-world datasets in up to 91% less RAM compared to popular717

libraries, most often using less space than the original file size. Furthermore,718

the empirical analysis shows that SJSON generated compressed files occupy up719

to 41% smaller space than the original document. In addition to the merits720

above, by using succinct tree structures, this suggested representation supports721

traversal and retrieval queries efficiently.722

There still are details that could be improved in the library to further en-723

hance its performance in time efficiency and conciseness.724

Supporting Other Formats. Moreover, it would be feasible to support other725

semi-structured document formats in the library, such as XML described before.726

39

For instance, XMill [25], TREECHOP [26], XQueC [27] and XBZipIndex [28]727

point out compression and querying in XML documents.728

Dynamic and Online Modification. The second point of interest for future work729

would be to enrich the functionality to process JSON documents online and730

dynamic. Since data corpus grows in the era of big data, there are needs to add,731

remove, or alter elements of a JSON document occasionally. A naive method to732

support dynamic document processing is to rewrite the original JSON document733

and reconstruct the whole representation once per relevant modification, which734

is a significantly burdensome action from both memory and disk perspectives.735

For the succinct tree representation, utilizing dynamic representation could be736

an option to consider [52]. Manipulating the bit string indexed array needs737

several subprocedures. A core reason is that in most cases size of the modified738

value may differ from its original one, so re-indexing of the array is required.739

Solving these future works would improve preprocessing time and make the740

library more appealing from a user standpoint.741

References742

[1] J. James, Data never sleeps 3.0, https://www.domo.com/blog/2015/08/data-743

never-sleeps-3-0/ (2015).744

[2] P. B. Brandtzæg, Big data, for better or worse:745

90% of world’s data generated over last two years,746

https://www.sciencedaily.com/releases/2013/05/130522085217.htm747

(2013).748

[3] J. Ziv, A. Lempel, A universal algorithm for sequential data compression,749

IEEE Transactions on Information Theory 23 (3) (1977) 337–343.750

[4] G. J. Jacobson, Succinct static data structures, Ph.D. thesis, Carnegie751

Mellon University, Pittsburgh, PA, USA, aAI8918056 (1988).752

40

[5] J. I. Munro, V. Raman, Succinct representation of balanced parentheses753

and static trees, SIAM Journal on Computing 31 (3) (2001) 762–776.754

[6] D. Benoit, E. D. Demaine, J. I. Munro, R. Raman, V. Raman, S. S. Rao,755

Representing trees of higher degree, Algorithmica 43 (4) (2005) 275–292.756

[7] J. Fischer, V. Heun, A new succinct representation of rmq-information and757

improvements in the enhanced suffix array, in: International Symposium758

on Combinatorics, Algorithms, Probabilistic and Experimental Methodolo-759

gies, Springer, 2007, pp. 459–470.760

[8] V. Mäkinen, G. Navarro, Succinct suffix arrays based on run-length encod-761

ing, in: Annual Symposium on Combinatorial Pattern Matching, Springer,762

2005, pp. 45–56.763

[9] T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F. Yergeau, Extensible764

markup language (xml) 1.0., World Wide Web Consortium.765

[10] T. Bray, The javascript object notation (json) data interchange format,766

RFC 7159, RFC Editor (March 2014).767

URL https://www.rfc-editor.org/rfc/rfc7159.txt768

[11] J. C. Anderson, J. Lehnardt, N. Slater, CouchDB: The Definitive Guide769

Time to Relax, 1st Edition, O’Reilly Media, Inc., 2010.770

[12] K. Chodorow, M. Dirolf, MongoDB: The Definitive Guide, 1st Edition,771

O’Reilly Media, Inc., 2010.772

[13] Bson (binary json): Specification.773

URL http://bsonspec.org/spec.html774

[14] T. Inc., Twitter developers documentation on rest apis,775

https://dev.twitter.com/rest/public (2016).776

[15] I. Google, Using json in the google data protocol,777

https://developers.google.com/gdata/docs/json (2014).778

41

https://www.rfc-editor.org/rfc/rfc7159.txt
https://www.rfc-editor.org/rfc/rfc7159.txt
http://bsonspec.org/spec.html
http://bsonspec.org/spec.html

[16] G. Ottaviano, R. Grossi, Semi-indexing semi-structured data in tiny space,779

in: Proceedings of the 20th ACM International Conference on Information780

and Knowledge Management, ACM, 2011, pp. 1485–1494.781

[17] T. Rincy, R. Rajesh, Space efficient structures for json documents, Inter-782

national Journal of Computer Engineering and Technology 5 (12) (2014)783

148–153.784

[18] T. C. Casas, Jsonc-json compressor and decompressor,785

https://github.com/tcorral/jsonc (2015).786

[19] L. P. Deutsch, Deflate compressed data format specification version 1.3.787

[20] G. Jacobson, Space-efficient static trees and graphs, in: 30th Annual Sym-788

posium on Foundations of Computer Science, IEEE, 1989, pp. 549–554.789

[21] A. Doan, A. Halevy, Z. Ives, Principles of Data Integration, 1st Edition,790

Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2012.791

[22] F. Maddix, Books, http://www.cems.uwe.ac.uk/ fj-maddix/Books.xml.792

[23] J. Clark, S. DeRose, et al., Xml path language (xpath) version 1.0., World793

Wide Web Consortium.794

[24] D. Draper, P. Fankhauser, M. Fernández, A. Malhotra, K. Rose, M. Rys,795

J. Siméon, P. Wadler, Xquery 1.0 and xpath 2.0 formal semantics, World796

Wide Web Consortium.797

[25] H. Liefke, D. Suciu, Xmill: an efficient compressor for xml data, in: ACM798

Sigmod Record, Vol. 29, ACM, 2000, pp. 153–164.799

[26] G. Leighton, T. Müldner, J. Diamond, Treechop: a tree-based query-able800

compressor for xml, in: Proceedings of the Ninth Canadian Workshop on801

Information Theory (CWIT 2005), Citeseer, 2005, pp. 115–118.802

[27] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, A. Pugliese,803

Xquec: Pushing queries to compressed xml data, in: Proceedings of the804

42

29th International Conference on Very large Data Bases, VLDB Endow-805

ment, 2003, pp. 1065–1068.806

[28] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Compressing and807

searching xml data via two zips, in: Proceedings of the 15th International808

Conference on World Wide Web, ACM, 2006, pp. 751–760.809

[29] A. Kapoulkine, pugixml, https://pugixml.org (2006).810

[30] O. Delpratt, S. Joannou, N. Rahman, R. Raman, The sixml project: Six-811

dom 1.2.812

[31] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Eltabakh, C.-C.813

Kanne, F. Ozcan, E. J. Shekita, Jaql: A scripting language for large scale814

semistructured data analysis, in: Proceedings of VLDB Conference, 2011.815

[32] D. Florescu, G. Fourny, Jsoniq: The history of a query language,816

IEEE Internet Computing 17 (5) (2013) 86–90. doi:http://doi.817

ieeecomputersociety.org/10.1109/MIC.2013.97.818

[33] D. Clark, Compact pat trees.819

[34] J. I. Munro, Tables, in: International Conference on Foundations of Soft-820

ware Technology and Theoretical Computer Science, Springer, 1996, pp.821

37–42.822

[35] D. Arroyuelo, R. Cánovas, G. Navarro, K. Sadakane, Succinct trees in823

practice, in: Proceedings of the Meeting on Algorithm Engineering & Ex-824

permiments, Society for Industrial and Applied Mathematics, 2010, pp.825

84–97.826

[36] J. Jansson, K. Sadakane, W.-K. Sung, Ultra-succinct representation of or-827

dered trees with applications, Journal of Computer and System Sciences828

78 (2) (2012) 619–631.829

[37] J. Ziv, A. Lempel, Compression of individual sequences via variable-rate830

coding, IEEE transactions on Information Theory 24 (5) (1978) 530–536.831

43

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIC.2013.97
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIC.2013.97
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MIC.2013.97

[38] T. A. Welch, A technique for high-performance data compression, Com-832

puter 17 (6) (1984) 8–19.833

[39] P. Weiner, Linear pattern matching algorithms, in: 14th Annual Sympo-834

sium on Switching and Automata Theory, IEEE, 1973, pp. 1–11.835

[40] U. Manber, G. Myers, Suffix arrays: a new method for on-line string836

searches, SIAM Journal on Computing 22 (5) (1993) 935–948.837

[41] R. Grossi, J. S. Vitter, Compressed suffix arrays and suffix trees with appli-838

cations to text indexing and string matching, SIAM Journal on Computing839

35 (2) (2005) 378–407.840

[42] P. Ferragina, G. Manzini, Indexing compressed text, Journal of the ACM841

(JACM) 52 (4) (2005) 552–581.842

[43] M. Burrows, D. J. Wheeler, A block-sorting lossless data compression al-843

gorithm.844

[44] R. Grossi, A. Gupta, J. S. Vitter, High-order entropy-compressed text in-845

dexes, in: Proceedings of the Fourteenth Annual ACM-SIAM Symposium846

on Discrete algorithms, Society for Industrial and Applied Mathematics,847

2003, pp. 841–850.848

[45] F. Claude, G. Navarro, A. Ordónez, The wavelet matrix: An efficient849

wavelet tree for large alphabets, Information Systems 47 (2015) 15–32.850

[46] P. Ferragina, G. Manzini, V. Mäkinen, G. Navarro, Compressed representa-851

tions of sequences and full-text indexes, ACM Transactions on Algorithms852

(TALG) 3 (2) (2007) 20.853

[47] D. Okanohara, K. Sadakane, Practical entropy-compressed rank/select dic-854

tionary, in: Proceedings of the Meeting on Algorithm Engineering & Ex-855

permiments, Society for Industrial and Applied Mathematics, 2007, pp.856

60–70.857

44

[48] E. Anjos, J. Lee, S. R. Satti, Sjson: A succinct representation for javascript858

object notation documents, in: 2016 Eleventh International Conference on859

Digital Information Management (ICDIM), IEEE, 2016, pp. 173–178.860

[49] Tencent, Rapidjson, https://github.com/miloyip/rapidjson (2015).861

[50] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: Plug and862

play with succinct data structures, in: 13th International Symposium on863

Experimental Algorithms (SEA 2014), 2014, pp. 326–337.864

[51] S. Vigna, Broadword implementation of rank/select queries, in: Interna-865

tional Workshop on Experimental and Efficient Algorithms, Springer, 2008,866

pp. 154–168.867

[52] G. Navarro, K. Sadakane, Fully functional static and dynamic succinct868

trees, ACM Transactions on Algorithms (TALG) 10 (3) (2014) 16.869

[53] B. Lepilleur, JsonCpp, https://github.com/open-source-parsers/jsoncpp870

(2016).871

[54] N. Lohmann, JSON for Modern C++, https://github.com/nlohmann/json872

(2016).873

[55] S. R. Bowman, G. Angeli, C. Potts, C. D. Manning, A large an-874

notated corpus for learning natural language inference, arXiv preprint875

arXiv:1508.05326.876

[56] M. Zeiss, City lots san francisco, https://github.com/zeMirco/sf-city-lots-877

json (2012).878

[57] E. Demaine, M. Hajiaghayi, Bigdnd: Big dynamic network data,879

http://projects.csail.mit.edu/dnd/DBLP/ (2014).880

[58] M. Ley, The dblp computer science bibliography: Evolution, research is-881

sues, perspectives, in: International Symposium on String Processing and882

Information Retrieval, Springer, 2002, pp. 1–10.883

45

[59] V. Raychev, P. Bielik, M. Vechev, A. Krause, Learning programs from noisy884

data, in: ACM SIGPLAN Notices, Vol. 51, ACM, 2016, pp. 761–774.885

46

	Introduction
	Preliminaries
	Data Exchange Formats
	XML (eXtensible Markup Language)
	JSON (JavaScript Object Notation)

	Succinct Data Structures
	Succinct Ordinal Tree Representations
	String Compression Schemes

	SJSON: Succinct Representations of JSON Documents
	Bit String Indexed Array
	Main SJSON Representation
	Supporting Queries

	Experimental Results
	Datasets
	Construction Time
	RAM Usage during Construction
	Disk Usage and Serialization Time
	Query Time
	Splitting the Document into a Collection of Chunks
	String Compression

	Conclusion and Future Work

