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Abstract—We investigate the problem of speaker independent
acoustic-to-articulatory inversion (AAI) in noisy conditions within
the deep neural network (DNN) framework. In contrast with recent
results in the literature, we argue that a DNN vector-to-vector
regression front-end for speech enhancement (DNN-SE) can play a
key role in AAI when used to enhance spectral features prior to AAI
back-end processing. We experimented with single- and multi-task
training strategies for the DNN-SE block finding the latter to be
beneficial to AAI. Furthermore, we show that coupling DNN-SE
producing enhanced speech features with an AAI trained on clean
speech outperforms a multi-condition AAI (AAI-MC) when tested
on noisy speech. We observe a 15% relative improvement in the
Pearson’s correlation coefficient (PCC) between our system and
AAI-MC at 0 dB signal-to-noise ratio on the Haskins corpus. Our
approach also compares favourably against using a conventional
DSP approach to speech enhancement (MMSE with IMCRA) in
the front-end. Finally, we demonstrate the utility of articulatory
inversion in a downstream speech application. We report significant
WER improvements on an automatic speech recognition task in
mismatched conditions based on the Wall Street Journal corpus
(WSJ) when leveraging articulatory information estimated by AAI-
MC system over spectral-alone speech features.

Index Terms—Deep neural network, acoustic-to-articulatory
inversion, speech enhancement, multi-task training, speaker
independent models.

I. INTRODUCTION

THE human speech production system contains several or-
gans, namely, lungs; trachea; larynx; throat; oral and nasal

cavities. The oral cavity comprises several anatomical elements,
such as velum, tongue, teeth, jaw and lips. Those elements
are considered as the articulators. Articulator movements result
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in the production of various speech sounds. The problem of
estimating the articulators’ movements from the acoustic speech
signal is referred to as acoustic-to-articulatory inversion (AAI).
In recent years, AAI has attracted increasing attention because
of its potential applications in speech processing. Examples
include low bit rate coding [1], automatic speech recognition
(ASR) [2]–[4], speech synthesis [5], [6], computer aided pro-
nunciation training (CAPT) [7], [8], depression detection from
speech [9], [10], and speech therapy [11], [12]. The articula-
tors’ movements can be measured and parameterized through
various techniques, for instance real-time magnetic resonance
imaging (rt-MRI) [13], X-ray microbeam [14], electromagnetic
articulography (EMA) [15], and ultrasound [16]. Nevertheless,
obtaining articulatory measurements is not practical in real
world applications since it requires instrumentation not available
outside laboratories, and imposes heavy burdens on the subjects.
As a consequence, estimation of these parameters from the avail-
able source of information, which is the speech signal, must be
achieved through an AAI system. Unfortunately, this inversion
problem is highly non-linear and non-unique [3], [17], which
means that different articulator configurations can produce the
same sound. Moreover, coarticulation [18], i.e., the impact of ad-
jacent phonemes on the articulators’ movement, makes the AAI
problem even harder. In addition, articulatory measurements are
only available for a limited number of speakers. This limitation
introduces an additional complexity to the AAI problem and
urges building up speaker independent AAI systems (SI-AAI)
that can be utilized for speech databases with no articulatory
recordings.

The majority of available AAI works mainly focused on two
different aspects: (i) the acoustic feature representation, and
(ii) the solution to the AAI regression problem with different
techniques. Different acoustic representations, such as Line
Spectral Frequencies (LSFs) [19], Perceptual Linear Predictive
coding (PLP) [20] and Mel-Frequency Cepstral Coefficients
(MFCCs) [21] have been widely used for the AAI task. Filter-
Bank Energies (FBEs) from STRAIGHT spectra [22] have also
been employed as the input of the AAI system [23]. Among
these features, MFCCs are reported to perform better compared
to other features for SI-AAI [24], [25].

In the literature, various techniques are applied to the AAI
problem, e.g. search-based algorithms in the joint codebook
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of the acoustic-articulatory space [26], [27], non-parametric
and parametric statistical methods, such as support vector
regression (SVR) [28], local regression approach based on
K-nearest neighbour [29], joint acoustic-articulatory distribu-
tion by utilizing Gaussian mixture models (GMMs) [30], hid-
den Markov models (HMMs) [7], mixture density networks
(MDNs) [31], deep neural networks (DNNs) [4], [32], and
recurrent neural networks (RNNs) [23], [33]–[39]. Among those
methods, the neural network based models outperform the rest
by having the ability of dealing well with large context size and
better modelling of acoustic and articulatory spaces.

It is also important to remark that most of the available
AAI research is accomplished using clean data, with the goal
of improving the AAI accuracy either for speaker dependent,
or speaker independent cases. Real world speech applications,
however, suffer from the presence of environmental noise in the
recordings, which in turn leads to a performance degradation
of the AAI system. There are few works available for AAI
in noisy conditions. Most of these works are in the field of
robust ASR [4], [40], and use synthetically generated speech
data obtained with an articulatory synthesizer and the Task
Dynamics and Applications (TADA) system [41]. To the best
of the authors’ knowledge, there is only one work dealing with
real articulatory measurements in noisy conditions [42], where
the authors compared the accuracy of two AAI systems. One
system was trained on clean data (AAI-C); the other system was
built using multi-condition speech data (AAI-MC), including
clean data. For the AAI-C system the noisy test data were
optionally enhanced by minimum mean square error (MMSE)
based speech enhancement (SE) [43]. The outcome of the study
was twofold. First, AAI-MC seemed to be the best solution
for dealing with noisy data. Second, MMSE-based SE on the
noisy data led to a drop in the AAI-C performance on noisy
data compared to both AAI-MC and to AAI-C with unprocessed
speech. Such an outcome contrasts with the naïve expectation
that enhanced speech should yield an improved performance.
A possible explanation of the unexpected outcome could be
that distortions and artifacts introduced by the MMSE-based
method may have reduced the quality of the enhanced speech
with respect to the AAI task.

Although SE based on the MMSE approach did not seem
useful in AAI applications in noisy conditions, we observe
that deep neural network (DNN) based approaches to SE have
recently been shown to better overcome musical noise issues and
introduce less distortion than traditional digital signal processing
(DSP) methods [44]–[46]. Therefore, we argue that DNN-SE
can play a key role in AAI too if used at a pre-processing stage
before the downstream speech applications, as demonstrated for
other tasks in [47]–[49], for instance. Our goal is therefore to
clean up the input signal before sending it to the off-the-shelf
AAI-C, avoiding the need to build an AAI-MC system leverag-
ing multi-condition data. In addition, for speech recognition in
noisy conditions which is more applicable in the daily usage, it
would be helpful to apply enhancement as a pre-processor, and
estimate the articulatory trajectories and subsequently utilize
them in the recognition task.

We design our SE system using deep neural networks vector-
to-vector regression with the goal to enhance the speech features.
The deep model used for the AAI task is stacked on top of the SE
model, allowing for joint optimization of the full model for fur-
ther improved performance. In this way the overall neural model
learns to enhance the noisy speech in a helpful way for the AAI
goal. To better appreciate our experimental evidence, we com-
pare and contrast our proposed approach with the MMSE-based
speech enhancement with an improved noise estimation method,
namely minima controlled recursive averaging (IMCRA) [50].
The IMCRA algorithm produces less distortion in the enhanced
speech compared to the original MMSE based approaches,
e.g. [43]. We will refer to IMCRA based system as DSP-SE.
Moreover, we assessed the role that articulatory information,
extracted with the proposed solution, could play in a down-
stream speech application using an ASR task in noisy condition,
namely a hand-crafted noisy version of the Wall Street Journal
(WSJ) task [51]. Experimental evidence clearly demonstrates
the beneficial effect of combining articulatory information with
standard spectral-based speech features when decoding noisy
speech data using a character-based encoder-decoder end-to-end
ASR system leveraging both a hybrid connectionist temporal
classification (CTC) loss function, and the attention mechanism.

The rest of the paper is organized as follows. In section II
different neural architectures are described. Section III introduce
the corpora which are utilized in this research work, and in
Section IV, different experiments are conducted and the results
are discussed. Section V concludes our work and suggests future
work.

II. AAI SYSTEMS

In this section, three different systems are described. The first
system performs acoustic-to-articulatory inversion (AAI) di-
rectly on (noisy) speech using a deep model; the second systems
consists of a feed-forward deep neural network based speech
enhancement module (DNN-SE) and an AAI module based
on a deep architecture; finally, the third system combines the
DNN-SE and DNN-AAI module into a single deep architecture
and joint training is used to fine-tune the overall AAI system. In
the following, those three systems are discussed in detail.

A. DNN for Acoustic-to-Articulatory Inversion (DNN-AAI)

A speaker-independent (SI) design is used to deploy the
DNN-AAI system, so that test speakers are removed from the
developing material during the training phase. The input features
are the standard MFCCs. These features have been shown to
attain better performance than other speech features for the SI
task [24] when higher order cepstral coefficients are removed.
The smooth nature of articulatory trajectories and co-articulation
effect suggest that the input temporal context should be long
enough to capture the needed information with respect to to the
output trajectories [3]. We select every other frame in a 2×Maai

window preceding and succeeding the current frame to construct
the following extended input vector:

Xaai[n] =
[
X[n− 2×Maai]

T , . . . , X[n− 2]T , X[n]T ,
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Fig. 1. DNN based AAI system with 340 ms input context of MFCCs, and
tract variables (TV) as the output.

X[n+ 2]T , . . . , X[n+ 2×Maai]
T
]T

, (1)

where Xaai is the contextualized MFCC vector for the AAI
system and [.]T indicates the transpose operator. Employing
every other frame gives us the benefit of longer temporal context
with less parameters in the AAI model with no performance
degradation.1 Fig. 1 shows the structure of input data for a DNN-
AAI system, where the output features are tract variables (TVs),
which are described later in Section IV. The input features and
output targets of the DNN-AAI system are mean and variance
normalized at an utterance level. DNN-AAI systems trained on
clean and multi-condition noisy speech data will in the following
be denoted AAI-C and AAI-MC, respectively.

B. DNN-SE for AAI

In this solution, a DNN is first built to map noisy speech
features into estimated clean features using a regression frame-
work [46]. The AAI-C system is then used to estimate the
articulatory trajectories. The DNN-SE system is based on a
feed-forward layered structure of non-linear hidden layers and a
linear output layer. The non-linear blocks allow the network
to better handle the complex interactions between degraded
noisy signal and its clean counterpart, as argued in [46]. The
input features for the DNN-SE are globally mean and variance
normalized Log Power Spectra (LPSs). LPSs have been obtained
by taking the log of the squared magnitude of the signal’s
short-time Fourier transform (STFT). The DNN-SE enhances
only the magnitude spectrum; therefore, the noisy phase is used
in the reconstruction step (synthesis). In this work, we synthesise
the enhanced speech waveform from enhanced magnitude and
noisy phase spectrum using the the overlap-add method [52],
which was also used in [46], to be able to assess the quality of
the enhanced speech. To take into account context information,
Mse previous and future frames around the current frame are
used at the DNN-SE input:

Sse[n] =
[
S[n−Mse]

T , . . . , S[n]T , . . . , S[n+Mse]
T
]
, (2)

1Experiments with different decimation factors, D, showed no PCC degra-
dation for D = 2 and a moderate degradation for D = 3 and 4.

Fig. 2. DNN based SE system with 120 ms context of noisy LPSs, and clean
LPSs and MFCCs as the output.

where the Sse is the contextualized LPS of the noisy signal as
the input vector.

It should be noted that Mse is shorter than Maai, that is, less
context is taken into account in the SE step. That is coherent
with the non-stationary property of noises, which enables the
network to have a better estimation of short-time noise spectrum
to be suppressed. At a target level, there are several possible
choices, namely, only clean LPS can be used in a single-task
learning procedure, or both MFCC and LPS can be employed in
a multi-task scenario. In the multi-task case, the back propagated
loss from the MFCC output layer acts as a regularizer and would
prevent the model to over-fit to the training data. Moreover, the
MFCC-related output layer can be directly used as an input of
the AAI-C system. Fig. 2 shows a sketch of DNN-SE system
with multiple output tasks.

Although MFCCs can be derived from LPS through a trans-
formation, joint estimation of enhanced LPS and MFCCs may
impose additional constraints unavailable in the direct prediction
of clean LPS. As discussed in [53], Mel-filtering is applied
to make the acoustic features consistent with human auditory
perception. However there is so far no prior auditory knowledge
adopted in the LPS domain except for the log-compression,
and clean LPS features could therefore be better predicted with
a MFCC constraint imposed at the output layer. Furthermore,
the correlation information among different channels can be
incorporated in each MFCC coefficient due to the discrete cosine
transformation (DCT) [54] operation. Therefore, we expect that
correlated and consistent distortion across different frequency
bins can be learned when predicting the clean LPS. Differently
from [53] the DCT block in our pipeline also performs dimen-
sionality reduction, since we use MFCCs for the AAI block.

C. Joint DNN-SE and DNN-AAI

In Sections II-A and II-B, we described the two independent
DNN-based systems for AAI and SE task respectively, where
the DNN-SE module could be employed in a pre-processing
step before the target AAI task to be accomplished with the
DNN-AAI system. Since the two independent systems are built
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Fig. 3. Network structure of joint training of SE and AAI systems (Mse = 5,Maai = 8).

within the connectionist framework, we can stack them back-
to-front and obtain a single overall AAI system. The overall
system can be further fine-tuned using the same loss employed
to build the DNN-AAI system. However, the fusion of those two
systems into a single one is challenging, because of the different
temporal contexts used to build the two systems independently.
As mentioned in Section II-B, the DNN-SE input context size
(Mse) is smaller than AAI-C one (Maai). The required frames
for building the AAI input need to be provided at the input
layer of the DNN-SE module. To this end, a sequence Sjoint

of contextualized speech vectors is presented at the input of the
joint system, where the sequence is built as follows:

Sjoint[n] =
[
Sse[n− 2×Maai]

T , . . . , Sse[n− 2]T , Sse[n]
T ,

Sse[n+ 2]T , . . . , Sse[n+ 2×Maai]
T
]
, (3)

The DNN-SE module thus generates all needed input frames
for the AAI module, Xaai[n]. In the training stage, back propa-
gated error for the enhancement part is limited to that referring
to the middle contextualized vector in the input sequence. The
proposed architecture is illustrated in Fig. 3 where the LPS and
MFCC tasks are considered for the current time n. In this way
the network parameters are trained on the current time n, while
being able to deal with the different time-varying nature of the
events to be handled in the two modules. For the AAI module, the
output concerned with the MFCC task for each input sequence
of contextualized LPSs is reshaped to build the AAI input vector.
The overall system loss function based on mean squared error
(MSE) is formulated as follows:

Ljoint =
1

N

N∑
i=1

||yLPS
i − ŷLPS

i ||2 + ||yMFCC
i − ŷMFCC

i ||2

+ ||yTV
i − ŷTV

i ||2, (4)

where, yi
(... )s are the reference output vectors, ŷi

(... )s are the
estimated vectors for each output andN is the number of training
samples.

III. CORPORA AND DATA REPRESENTATION

There are three tasks in this work, the main one is the AAI,
the second one is speech enhancement, and the third task is

automatic speech recognition. For the first task, two corpora are
employed, the “Haskins Production Rate Comparison”database
(HPRC) [55], which contains both acoustic and articulatory
measurements, and the AURORA2 database [56] which contains
eight noise types. For the second task, we additionally employ
two datasets: TIMIT [57] with spoken American English; and
Nonspeech [58] which contains 100 various noise types. For
the third task, we use the WSJ dataset. In the following, the
mentioned corpora are described in details. Furthermore, the
representation of the acoustic and articulatory data is described.

A. Corpora

1) HPRC: The Haskins Production Rate Comparison
(HPRC) database is selected as the main database for the AAI
experiments. It contains recordings of eight native American
English speakers, four female (F01-F04) and four male (M01-
M04) speakers. There are 720 spoken utterances available in the
dataset with both normal and fast speaking rate. For some of
the normal speaking rate utterances, there are a few repetitions
available. Speech waveforms are sampled at the rate of 44.1 kHz,
and synchronous EMA recordings are available at a sampling
rate of 100 Hz. EMA recordings are obtained from eight sensors,
which record tongue rear or dorsum (TR), tongue blade (TB),
tongue tip (TT), upper and lower lip (UL and LL), mouth left
(ML), jaw or lower incisors (JAW) and jaw left (JAWL). The
articulatory measurements are aligned to the occlusal plane in X,
Y and Z directions, corresponding to movements from posterior
to anterior, right to left and inferior to superior, respectively. The
movements along the Y axis carry limited information. In this
work, we employed only the X and Z directions of TR, TB,
TT, UL, LL and JAW. Furthermore, we used 80% of data for
training, 10% for validation, and the remaining 10% for test.

2) TIMIT: TIMIT [57], [59] is a speech corpus consisting of
6300 sentences spoken by 630 speakers, covering 8 major dialect
regions of the United States. The dataset includes two dialect
sentences (SA), 1890 phonetically diverse sentences (SI), and
450 phonetically compact sentences (SX). The training set is
predefined and consists of all the SX and SI sentences from 462
speakers with a total of 3696 sentences. The sentences from the
remaining 168 speakers constitute the full test set. We use the
core test set [59], covering speech material from 24 speakers, for
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testing purposes. A validation set spoken by 50 speakers is used
to prevent over-fitting and performance tuning with respect to
the validation data. The core test set consists of 192 utterances,
and the development set consists of 400 utterances.

3) Wall Street Journal - WSJ: The WSJ [51] corpus is in
two distinct parts: WSJ0 and WSJ1. The SI-84 training material
from the WSJ0 covers 7,193 utterances (15 hours). The SI-284
(80 hours) data is formed by combining training data from both
the WSJ0 and WSJ1 (26,515 utterances). For development and
evaluation, 503 utterances (1.1 h), and 333 utterances (0.7 h) are
used, respectively. Clean waveforms, sampled at 16 kHz, and
corresponding transcripts are provided for both WSJ0 and WSJ1.
Waveforms were down-sampled to 8 kHz to carry out our down-
stream ASR experiments. Moreover, testing waveforms were
corrupted with noise in order to create mismatched conditions
between training (clean) and testing (noisy) and better assess the
effect of introducing articulatory information into an end-to-end
ASR system. More details are given in Section IV-G.

4) AURORA 2: AURORA 2 [60] is a corpus of noisy speech
created by adding noise of various types and levels to clean
speech recordings. In this work we only employ the noise
recordings consisting of eight different noise types that are
recorded in different places, namely, airport, crowd of people
(babble), car, exhibition hall, restaurant, street, subway, and train
station. The recordings contain stationary and non-stationary
noise segments, and are sampled at a rate of 8 kHz.

5) Nonspeech: The Nonspeech dataset [58], which contains
100 different environmental noises, is recorded with a 20 kHz
sampling rate and was downsampled to 8 kHz for our experi-
ments. The noise types available in the dataset are as follows,
N1-N17: Crowd noise, N18-N29: Machine noise, N30-N43:
Alarm and siren, N44-N46: Traffic and car noise, N47-N55: Ani-
mal sound, N56-N69: Water sound, N70-N78: Wind, N79-N82:
Bell, N83-N85: Cough, N86: Clap, N87: Snore, N88: Click,
N88-N90: Laugh, N91-N92: Yawn, N93: Cry, N94: Shower,
N95: Tooth brushing, N96-N97: Footsteps, N98: Door moving,
N99-N100: Phone dialing.

6) Simulated Multi-Condition Dataset: Multi-condition
waveforms are synthetically generated by randomly adding
noise from AURORA2 and Nonspeech to the HPRC and TIMIT
speech samples at different signal-to-noise ratios (SNR). The
multi-condition data set also includes clean data. To match
the 8 kHz sampling rate of the AURORA2 database the audio
material from the other datasets is downsampled to 8 kHz.
Another constraint is imposed by the 100 Hz sampling rate of
the articulatory measurements, which leads to a frame shift of
10 ms to match the 100 Hz sampling rate.

B. Articulatory Data Representation

As reported in [61], geometrical transformations can be ap-
plied to the EMA measurements in order to transform those
measurements into tract variables (TVs). TVs have the property
of being more speaker independent than the original measure-
ments, because they are relative measures and suffer less from
non-uniqueness [62]. We use nine TVs, including Lip Aperture

(LA), Lip Protrusion (LP), Jaw Angle (JA), Tongue Rear Con-
striction Degree (TRCD), Tongue Rear Constriction Location
(TRCL). For TB and TT, we also calculate TBCD, TBCL, TTCD
and TTCL, as explained below. The aforementioned geometrical
transformations are defined as follows:

LA[n] =

√
(LLx[n]−ULx[n])

2 + (LLz[n]−ULz[n])
2,

(5)

LP[n] = LLx[n]− median
m∈all utterances

LLx[m]. (6)

LA represents the Euclidean distance between LL and UL
sensors. LP is defined as the movement of LL from its median
position in the X direction,

JA[n] =

√
(JAWx[n]−ULx[n])

2 + (JAWz[n]−ULz[n])
2,

(7)

is defined as the Euclidean distance between the JAW and UL
sensors.

For each of the tongue sensors TR, TB and TT, two TVs
are defined. Those TV features represent constriction locations,
which are the deviations from median of the corresponding
sensor along theX axis, and the constriction degree, which is the
minimum distance between the corresponding tongue sensors
position and the palate trace. TRCL and TRCD are defined as
follows

TRCL[n] = median
m∈all utterances

TRx[m]− TRx[n], (8)

TRCD[n]

= min

{√
(TRx[n]− xpal)

2 + (TRz[n]− zpal)
2

}
, (9)

where xpal and zpal are the palate coordinates on the occlusal
plane.

The remaining four variables TBCL, TBCD, TTCL and
TTCD can be obtained in a similar way:

TBCL[n] = median
m∈all utterances

TBx[m]− TBx[n], (10)

TBCD[n]

= min

{√
(TBx[n]− xpal)

2 + (TBz[n]− zpal)
2

}
, (11)

TTCL[n] = median
m∈allutterances

TTx[m]− TTx[n], (12)

TTCD[n]

= min

{√
(TTx[n]− xpal)

2 + (TTz[n]− zpal)
2

}
. (13)

C. Acoustic Feature Representations

As discussed in the previous sections, we study three tasks.
The first task is the AAI, which is the main task in the present
work; the SE is the second task. Both tasks are addressed
under the DNN framework. AAI models are trained over MFCC
feature vectors, which are extracted using a 20 ms windowed
signal with a frame shift of 10 ms. 13-dimensional MFCC feature



140 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

vectors are extracted from 23 Mel-scaled filter banks. For the
AAI system we set Maai = 8. This moderately long temporal
span covers 340 ms of the input acoustic data. As already
mentioned, the temporal context improves the AAI performance
due to the smooth varying nature of the articulator trajectories.
For the SE system, the log power spectra (LPS) (256 coefficients)
are calculated for 20 ms windowed signal with 10 ms frame shift.
The temporal context withMse = 5 spans past and future frames
around the target frame at time n, that is equivalent to 120 ms
of speech.

IV. EXPERIMENTS AND RESULTS

The key experiments reported in this section are concerned
with AAI, and the effect of speech enhancement on AAI. Speech
enhancement quality is also reported for all of the DSP- and
DNN-based systems investigated in this work. Finally, the role
of AAI system in a downstream speech application is assessed
using an ASR task in noisy condition.

Moreover, several experiments have been carried out to val-
idate the proposed approach and fine tune all models. With
respect to the optimization of network parameters, the AAI sys-
tems investigated in the present work have been built leveraging
clean and multi-condition data, resulting in AAI-C and AAI-MC
systems, respectively. The AAI-MC system is considered in
the present study, because it was recently reported as the best
AAI solution in noisy conditions [42]. For the evaluation of
the optimized networks, clean, multi-condition and enhanced
multi-condition data are used. Moreover, all of the AAI experi-
ments are carried out in mismatched speaker conditions using the
leave-one-speaker-out (LOSO) cross-validation scheme during
the training phase. For speech enhancement, we compare and
contrast the IMCRA-based DSP approach (DSP-SE), and the
feature-based vector-to-vector regression with deep models for
speech enhancement approach (DNN-SE) discussed in [46]. The
DNN-SE is deployed using a deep feed-forward neural network
with three hidden non-linear layers, each having 1024 nodes.
ReLU activation functions [63] were employed in both AAI and
SE neural modules; whereas, a linear activation function was
used at the output layer. The PCC criterion was used to select the
best performing network on the validation data. Moreover, early
stopping prevents over-fitting to the training data, and training is
halted either when the PCC on validation data does not improve
for 10 consecutive epochs, or a total number of epochs equal to
100 has been reached. The ADAM optimizer [64] was employed
to minimize the MSE between the ground-truth and estimated
tract variables. All neural models implemented in our work were
built using the Tensorflow library [65] with Keras API [66].
Drop-out [67] was used to contrast over-fitting, and a drop-out
rate of 10% was used in each hidden layer. Different DNN-SE
systems have been built using a different experimental setups,
namely:

1) matched speakers, noise types, and SNRs between training
and testing phases;

2) mismatched speakers but matched noise types and SNRs
between training and testing phases;

3) mismatched speakers, noise types and SNRs between
training and testing phases.

The purpose of latter experimental setup is to verify the
applicability of DNN-SE in real-world conditions, where having
similar speakers, noise types and SNRs is highly unlikely. In
our experiments, we consider SNR levels in the range between
−5 dB to 20 dB in incremental steps of 5 dB. In the following,
experiments and results are presented and discussed in more
detail, yet we first introduce the metrics used in this work to
assess all systems.

A. Test Data

Because we employ several corpora in this work, the data split
needs to be clarified. In all simulations, the test set is from the
HPRC database. In the case of multi-condition data, the test set
is distorted by additive noises from AURORA2.

B. Performance Metrics

The Pearson’s correlation coefficient (PCC) was used as a
measure of accuracy between the estimated and the reference
TVs in the AAI systems. The reason for choosing PCC is that the
PCC is a normalized measure and varies between −1 to 1, and it
is independent from the difference in articulatory measurement’s
ranges which is related to speakers’ anatomies. A higher value
of the PCC shows better performance of inversion system.

Perceptual evaluation of speech quality (PESQ) was used to
evaluate the quality of the enhanced speech [68]. For computing
the PESQ, enhanced speech waveforms were synthesized from
the enhanced LPS and the noisy phase spectra. The PESQ score
ranges from -0.5 to 4.5, and the higher the PESQ score, the closer
the enhanced speech is to the original clean speech. Indeed,
PESQ has been proven to provide a high correlation to the quality
scores rated by humans [69].

C. DNN-AAI Results

Using LOSO cross-validation during training, each of the
eight speakers, in turn, becomes a test speaker while the re-
maining seven speakers are used in the training phase. Reported
results are thus averaged across all test speakers. Several experi-
ments varying the number of hidden layers and nodes in the DNN
were carried out. PCC is used to select the best AAI system using
the validation data. In particular, the following configurations
were investigated: [100, 300, 500, 1000] nodes, and [2, 3, 4, 5]
hidden layers. The PCC value is reported in the upper panel in
Figure 4 when clean data are used; PCC curves show that the best
performing AAI system has 5 hidden layers with 100 nodes per
layer. As the amount of available data is limited, it is reasonable
that increasing the number of parameters would not lead to a
performance improvement. The same set of experiments was
executed using multi-condition data, and results are reported in
the lower panel of Figure 4. We can see that either 4 or 5 hidden
layers with 300 nodes can lead to the best PCC score. For our
following experiments we have chosen the configuration with 4
hidden layers to save computational resources.
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Fig. 4. Average PCC performance vs AAI DNN parameters with matched
training and test data: clean data (top panel) and multi-condition data (bottom
panel).

Fig. 5. Average PCC for multi-condition data with respect to different SNR
levels. The box plots represent the minimum, first quartile, median, third quartile,
and the maximum of average PCC values.

After tuning the neural parameters, the average PCC on the
test set is calculated and reported with respect to two different
aspects, namely:

1) SNR level, and
2) noise type.
Experimental results for different SNRs are shown in Fig. 5

for both AAI-C and AAI-MC systems. It can be observed that
AAI-MC attains almost similar PCC on clean data and noisy data
at SNRs ≥ 15 dB. It can be concluded that the required speech
information for the inversion are obtainable at these SNRs. The
high standard deviation in the PCC distribution in Fig. 5 is
due to several factors, e.g., different test speakers performance,
different variation range for each of the TVs and the effect of
various noise types.

The effect of different noise types on the performance of
AAI-C and AAI-MC systems is shown in Fig. 6 that shows
the average PCC over different speakers and SNRs. It can be
observed that ‘exhibition’ and ‘subway’ noises have the greatest
negative effects on AAI accuracy and cause a significant perfor-
mance drop; in contrast, ‘car’ and ‘train’ noises have a minor
negative effects on the final AAI accuracy. Inspecting the long
term averaged power spectrum of different noise types in Fig. 7,
we can observe that a common feature of the noise types that

Fig. 6. Average PCC for multi-condition data on AAI-C and AAI-MC models,
with respect to different noise types.

Fig. 7. Long-term average spectrum of different noise types in Aurora 2
database.

cause the most severe degradation of the AAI performance is
that they have considerable energy in frequency bands between
1 kHz and 3 kHz. For clean data, AAI-MC performs slightly
better than the AAI-C, which can be explained thinking of the
larger amount of training data used to build the system, i.e., a
consequence of the data-augmentation effect, especially data at
an SNR equal to 20 dB.

D. DNN-SE Results

The DNN-SE system has been trained in three different
scenarios. We briefly describe each scenario along with the
corresponding training procedure in the following.

DNN-SE1 - Matched Speakers, Noise Types, and SNRs: The
HPRC dataset is used for the speech material, and the AURORA
2 noises are added to it in order to synthetically simulate noisy
speech. All of the eight possible noises are added to the speech
waveforms at different SNR levels. The same speakers, noise
types and SNR levels are employed for creating training, val-
idation, and test data. Furthermore, these settings are used in
both the single and multi-task approaches (see Section II-B).
SNR levels are [0, 5, 10, 15, and 20] dB.

DNN-SE2 - Mismatched Speakers, Matched Noise Types and
SNRs: The speech material and noises are the same as those
employed in the first experimental scenario. Mismatch between
training and testing condition was inserted at a speaker level.
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TABLE I
PESQ PERFORMANCE COMPARISON OF SINGLE-TASK (ST) AND MULTI-TASK

(MT) SPEECH ENHANCEMENT SYSTEMS BASED ON DNN FOR THREE

DIFFERENT SCENARIOS

For each speaker, a stand-alone network is built using the other
seven speakers in the training phase, which is applied to speech
from the given speaker in the testing phase. In doing so, the
deep model is more realistic and better simulates real world
applications compared to the previous scenario, which may be
useful for a feasibility assessment. SNR levels are again [0, 5,
10, 15, and 20] dB.

DNN-SE3 - Mismatched speakers, noise types, and SNRs: In
this third experimental scenario, the 8 kHz version of the TIMIT
corpus is used for the speech material, and the challenging
Nonspeech database is used for the noises. The validation set
also comes from TIMIT and Nonspeech. The test set consists
of material taken from the HPRC speakers and degraded by
AURORA 2 noises. The SNR levels in training are [0, 5, 10,
and 20] dB. Different SNRs, namely [-5, 0, 5, 10, 15, and 20]
dB, are used in the test phase. These experimental conditions
are closer to what one can expect in real production; moreover,
our DNN-SE module is trained on independent data and noises
with respect to the testing conditions, so it functions a general
purpose SE tool.

Table I shows the average PESQ for models trained and tested
as discussed above. A visual inspection of Table I shows that
DSP-SE improves the average PESQ by 0.1 for 0 dB, 0.2 for
5 dB, 0.4 for 10 dB, 15 dB, and 20 dB. A main issue with the
DSP-SE method is its poor performance at low SNRs, yet its
strength is the inherent nature of the DSP solution that does not
require training data and makes it a general SE tool for real-world
applications. The best results are expected for DNN-SE1, which
is trained in matched conditions for speakers, noise types, and
SNR levels. Both single-task (DNN-SE1-ST) and multi-task
(DNN-SE1-MT) configurations are evaluated. DNN-SE1-MT
achieves a better performance than DNN-SE1-ST, as it can be
observed comparing columns four and five in Table I. This
confirms our intuition about the regularization effect of the
multi-task configuration. Indeed, DNN-SE1-MT attains better
PESQ compared to DSP-SE and DNN-SE1-ST in all tested
SNRs.

Experiments in matched condition demonstrated the feasi-
bility of our idea, and the positive effect of a multi-task con-
figuration for a SE task. DNN-SE2 is built using a different
training configuration, which takes into account a mild level
of mismatch between training and testing phases. Therefore,
a small drop in the SE performance is expected, and results
reported in the sixth and seventh column in Table I confirm our
expectation. Moreover, DNN-SE2-MT attains a performance
comparable to DNN-SE1-ST in spite of the more challenging

TABLE II
PERFORMANCE OF SI-AAI SYSTEMS TRAINED ON CLEAN AND

MULTI-CONDITION DATA AND TESTED ON CLEAN, MULTI-CONDITION AND

ENHANCED DATA

SE scenario. Given that multi-task is a viable way to boost
SE performance in mismatched conditions, only DNN-SE3-MT
is built in the third experimental scenario, the most realistic
and challenging one. Since DNN-SE3-MT is trained as general
purpose SE module, it is not a surprise that it shows PESQ
values superior to those attained with DNN-SE2-MT. The key
strength of DNN-SE3-MT compared to the DNN-SE2-MT is the
larger number of speakers, and thereby speech material, used
in the training phase along with the more challenging noises
that the model had to deal with. In mismatched SNRs, very
promising results are obtained; for example, at an SNR of 15 dB,
DNN-SE3-MT slightly outperforms DNN-SE2-MT in terms of
PESQ. For -5 dB the PESQ value is 2.359 which it is ≈0.2 less
than 0 dB, and the PESQ value is 2.580 at 0 dB is ≈0.2 less than
the PESQ value at 5 dB.

In general DNN-SE models have higher performance than
DSP-SE at low SNR levels.

E. AAI on SE Data

We investigated the effect of enhancing the speech data prior
to AAI. Because it is unlikely that clean data are available in
real production, SE modules are employed prior to the AAI-C
system, as a pre-processing step. In doing so, we can use an
off-the-shelf AAI-C model without exploiting MC training. We
compare and contrast the effect of both DSP-SE and DNN-SE
on AAI, and the AAI-MC performance is reported to ease the
comparison.

First, we notice from Table II that AAI-C tested on data
enhanced by DNN-SE performs better than AAI-MC tested on
multi-condition data without enhancement. On the one hand, it
can be argued that the improvement comes from an increase of
the neural parameters obtained by coupling two deep models.
On the other hand, it should be noted that the DNN-SE and
the AAI-C deep model were independently trained on different
data, and our solution allows us to use an off-the-shelf AAI-C
system avoiding training a new system from scratch. This aspect
should not be underestimated in a production pipeline of a real
complex system. It should also be recalled that [42] reported
DSP-SE to cause a drop in the AAI performance. We therefore
further compare DSP-SE and DNN-SE effects on AAI-C. In
Table II, we see that DSP-SE coupled with AAI-C indeed causes
0.11 drop in the PCC compared with our DNN-SE-MT3 coupled
with AAI-C. Most importantly, for AAI-C, applying DSP-SE to
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Fig. 8. PCC of the AAI-C on enhanced speech data, AAI-MC and joint systems
on multi-condition data, at different SNRs.

the noisy data reduces the PCC by 4.5% relative compared to
using the noisy data directly. That result is in line with [42], and
it could be explained by the signal distortions usually introduced
by DSP-SE, such as musical noise [70]. In contrast, our DNN-SE
method does not cause any drop in the AAI performance, and
our findings open up a new path for DNN-based front-end
approaches in speech applications. In Table II, we see that
the DNN-SE system has a significant improvement over the
DSP-SE, an increase of 0.11 in terms of average PCC, and a rel-
ative improvement of 19.36% is achieved using DNN-SE3-MT
system over DSP-SE. For the sake of completeness, we report
experimental results with multi-task (MT) and single-task (ST)
training strategies in Table II, both in matched and mismatched
speaker scenarios. The multi-task DNN-SE methods outperform
single-task counterparts; whereas, a drop in PCC is observed
when moving from matched to mismatched speakers. However,
speech enhancement is performed to avoid building an AAI-MC
system, we provided results using AAI-MC on clean, noisy and
enhanced data for completeness. Interestingly, enhancing the
noisy speech with the DNN-SE based systems improves the
AAI-MC model’s performance, in contrast with what is observed
for DSP-SE. It should be noted the better performance of sepa-
rate DNN-SE1-MT model with AAI-MC model in comparison
with the joint model performance is due to the matched speaker
condition of SE module. A detailed comparison in terms of
SNR values of the AAI-C on DSP-SE and DNN-SE systems, is
shown in Fig. 8. Enhancement with DNN-SE2-MT always gives
a better PCC in low SNR conditions. Moreover, DNN-SE2 and
DSP-SE lead to similar PCC only in very high SNR. At 0 db,
from Figs. 6 and 8, we see that AAI-MC attains a PCC of 0.579,
and AAI-C on DNN-SE enhanced data attains a PCC of 0.67,
which accounts for a 15% relative improvement in favor of the
proposed DNN-SE based AAI-C approach.

The DNN-SE methods cause degradation for the clean data
performance compared to the performance of clean data on
the AAI-C. The performance degradation of AAI-C, for en-
hanced clean data by DNN-SE system, can be explained by
over-smoothing of enhanced speech compared to the natural
ones or enhanced by DSP-SE method.

F. Joint AAI and SE Based on DNN

So far we have investigated the AAI system either using
stand alone AAI systems or decoupled SE and AAI system.
We now address both the SE and AAI tasks under a unified

TABLE III
JOINT SPEECH ENHANCEMENT AND ARTICULATORY INVERSION PERFORMANCE

IN TERMS OF PESQ AND PCC

DNN framework, by coupling the two deep architectures into
a single network and leveraging the availability of the MFCC
output in the SE module. Then, the overall network can be jointly
fine-tuned with the goal of accomplishing AAI. Training the
joint model is challenging because back-propagation of differ-
ent tasks affect each other and make the convergence slower
compared to learning different models designed to accomplish
different tasks. To improve convergence, there are two alterna-
tive procedures available:

1) First, the speech enhancement module is trained while
keeping AAI parameters frozen, so that the gradient flows
back through the network layers until the enhancement
module converges. Next, the speech enhancement module
weights are kept frozen, and the AAI parameters are up-
dated till convergence. In this way, the training scheme will
be similar to AAI training with enhanced multi-condition
data.

2) Initializing each the connectionist parameters with the pre-
trained DNN-SE3 and AAI-C weights, and then fine-tune
the whole system with the goal of accomplishing AAI.
In this way both modules start from a better initialization
starting point.

We decided to use the second approach to carry out joint
training of the SE and AAI blocks. The LOSO cross-validation
approach is utilized for training of the joint model. The multi-
condition data is kept the same as in the previous experiments,
to have comparable results. Table III reports results with joint
training. It is interesting to see that we can improve both SE and
AAI tasks in terms of PESQ and PCC, respectively. It should be
recalled that the DNN-SE has a primary task which corresponds
to enhancing the LPS speech vector. By comparing PESQ values
in Tables I and III, we can observe that the SE module in the joint
model attains results close to the DNN-SE1-MT model which is
the best performing enhancement model presented in this work.
The AAI performance for different SNR levels are the same
to the third decimal place. The AAI performance of the joint
model on multi-condition data is PCC=0.697, and the AAI-C
model performance on clean data is PCC=0.705. The joint
model performance is closer to the AAI-C system on clean
data than the performance of either the AAI-MC system on
multi-condition data (PCC=0.665), or the AAI-C system on
DNN-SE3-MT data (PCC=0.678). This performance is ex-
pected considering that the AAI part is tuned for the enhanced
data in the joint training of the enhancement and inversion
systems. In addition, from Fig. 8, it can be observed AAI-MC
system performs better than the AAI-C system with enhanced
data by DNN-SE modules at SNR≥10 dB. The joint model
decrease this under performing.
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Fig. 9. Spectrogram of the utterance “Dill pickles are sour but taste fine,” corrupted by Exhibition noise at SNR=5 dB. (a) noisy speech with (PESQ=1.768), (b)
enhanced by DSP-SE (PESQ=1.815), (c) single-task DNN based model (PESQ=2.204), (d) multi-task DNN based model (PESQ=2.55), multi-task DNN based
model jointly with the articulatory inversion (PESQ=2.89), and (f) the clean speech signal. Black arrows indicate the high energy whistle sound.

Fig. 10. TTCD and JA trajectories for utterance “Dill pickles are sour but taste
fine,” distorted by exhibition noise at SNR=5 dB.

Fig. 9 shows spectrograms for a testing utterance corrupted by
exhibition noise at an SNR equal to 5 dB, clean, and enhanced
with different SE methods. The DSP-SE method clearly intro-
duces some distortions in the form of musical noise. Moreover,
it could not remove high energy whistle sound (indicated by
black arrows) starting at ∼1.93s. The DNN based methods
are instead able to suppress different noise characteristics in
the noisy signal but the over-smoothing affects the higher fre-
quency components. However, the unwanted whistle sound is
completely suppressed by all of DNN-SE methods.

TTCD and JA trajectories for the same selected utterance are
depicted in Fig. 10. The ”Noisy‘’one is estimated using AAI-MC
model, and the other trajectories are enhanced and predicted by
AAI-C model. From those trajectories in Fig. 10, we can argue
that the enhanced speech by DNN-SE methods allows to obtain
AAI accuracy like those obtained on the clean speech signal.
The estimated trajectories by the AAI-MC with the noisy data
as the input are very different with the estimated trajectories by
the AAI-C model, e.g. the estimated JA at ∼ 2s which is due to
the whistle distortion.

G. AAI for ASR

We now turn our attention on assessing the role of articu-
latory information on downstream speech tasks. To this end,

a continuous word recognition task is considered, namely the
WSJ0 [51], and several end-to-end automatic speech recognition
(ASR) systems are built and contrasted to demonstrate the effect
of TV information on the ASR performance in both clean, and
noisy conditions. The word error rate (WER) is selected as the
metric to compare the accuracy of all systems deployed in this
section.

Clean data is already available with the WSJ0 corpus, and
noisy data are synthetically generated by adding two noise types,
namely exhibition, and subway. In the previous sections, the
most adverse effects on AAI accuracy were caused by these noise
types. Two SNR levels are used for training and testing, namely
0 dB and 10 dB. WSJ waveforms are downsampled from 16 kHz
to 8 kHz. 60-dimensional log Mel filter bank energy (FBE)
features were extracted using a 512-point short-time Fourier
transform to compute the spectra of each overlapping windowed
frame. A 32-ms Hamming window and a 16-ms window shift
were adopted. The end-to-end ASR systems are all based on the
end-to-end ESPnet recognizer [71], which is a character-based
encoder-decoder model leveraging both a hybrid connectionist
temporal classification (CTC) loss function, and an attention
mechanism [72]. The encoder part contains 12 layers of BLSTM
with 2048 cells, six layers of LSTM for the decoder with 2048
cells, and a location-aware attention mechanism with 10 convo-
lution filters of length 100. The CTC loss and the attention loss
were weighted by 0.2 and 0.8 respectively. Words are obtained
from characters using an RNN language model, utilizing one
LSTM layer with 1000 cells, which is trained on 65000 words
from the WSJ1 corpus. In our experiments, the “dev93” part of
WSJ0 corpus is used for parameter tuning. The actual evaluation
is carried out on the for the “eval92” part.

We built two ASR systems using different data conditions,
namely clean or noisy (0 dB and 10 dB), and different input
speech features, namely FBEs, or FBEs and TVs. The first
system is trained on clean data and used FBE features; we refer
to this system as System 1, and it sets a WER lower-bound when
testing on clean data, and an upper-bound in noisy conditions.
The second system, System 2 is trained on clean data and lever-
ages both FBE and TV features. System 2 allows us to assess the
effect of articulatory information on the downstream ASR task.
Table IV shows all results gathered in our experiments. System
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TABLE IV
WER FOR THE “EVAL92” PART OF WSJ DATABASE FOR THE TWO MENTIONED

ASR SYSTEMS

1 is evaluated on three different conditions, namely clean, noisy,
and enhanced FBE features obtained with DNN-SE3-MT. Sys-
tem 2 leverages TV features, which are obtained with the AAI-C
model described in Section IV-C in the training phase. In the
testing phase, however, TV features are obtained either using
the AAI-MC model in Section IV-C, the DNN-SE3-MT+AAI-C
model discussed in Section IV-E, or the joint model discussed
in Section IV-F. A visual inspection of Table IV reveals that
System 1 attains the best results on clean FBE features with a
WER equal to 5.3%, and attains the worst WER (6.13%) when
tested in clean condition on enhanced data, as expected. The use
of TV features along with clean FBE does not cause a significant
increase of the WER. In noisy conditions, namely testing on FBE
extracted on waveforms at 10 dB and 0 dB SNRs, we can see that
System 1 attains the worst WERs as expected.Interestingly, the
injection of TV features in System 2 boosts the ASR recognition
performance significantly. Given that System 2 is also trained
on clean FBE features as System 1, the latter results allow us to
argue that articulatory information plays a key role in the selected
downstream speech tasks. Moreover, the estimated TVs from the
joint model have the most effect on the System 2 performance
in terms of WER.

V. CONCLUSION

We have investigated into the speaker-independent AAI prob-
lem in noisy speech conditions. We have shown that DNN-based
speech enhancement for input noisy signals can boost the per-
formance of the AAI-C system trained on clean data. A good
improvement was also observed for the AAI-MC system trained
on multi-condition data. In the mismatched-speaker scenarios,
enhancing multi-condition data with DNN-SE combined with
the AAI-C model performed better than the straight AAI-MC
system, which clearly demonstrates the effectiveness of the
proposed speech enhancement pre-processing with deep models.
Although the AAI-C system with speech enhanced by DNN-SE
systems performs better than the AAI-MC system for noisy data,

the performance at high SNR levels is degraded. To cope with
this degradation, a joint model was proposed to perform both
speech enhancement and articulatory inversion, which demon-
strated its benefit over separate systems for each task. The joint
system performance is close to the performance of clean data
in AAI-C system. The key strength of applying DNN based
enhancement methods prior to the AAI-C model, compared to
the AAI-MC method are their better performance at low SNRs
which is beneficial for ASR systems in presence of noise. Our
experimental results also sheds new light on the AAI problem by
contrasting what reported in the recent literature, namely speech
enhancement does not bring any improvement when used in a
pre-processing prior to AAI with noisy data [42]. Finally, we
show that articulatory information can be useful in downstream
speech applications, namely end-to-end ASR.
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