
Inger Anne Tøndel
D

octoral theses at N
TN

U
, 2022:285

ISBN 978-82-326-6159-6 (printed ver.)
ISBN 978-82-326-5334-8 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

D
oc

to
ra

l t
he

si
s Doctoral theses at NTNU, 2022:285

Inger Anne Tøndel

Prioritisation of security in agile
software development projects

N
TN
U

N
or

w
eg

ia
n

U
ni

ve
rs

ity
 o

f
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

Th
es

is
 fo

r
th

e
de

gr
ee

 o
f

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

an

d
El

ec
tr

ic
al

 E
ng

in
ee

ri
ng

D

ep
ar

tm
en

t o
f C

om
pu

te
r

Sc
ie

nc
e

Prioritisation of security in agile
software development projects

Thesis for the degree of Philosophiae Doctor

Trondheim, October 2022

Norwegian University of Science and Technology
Faculty of Information Technology
and Electrical Engineering
Department of Computer Science

Inger Anne Tøndel

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology
and Electrical Engineering
Department of Computer Science

© Inger Anne Tøndel

ISBN 978-82-326-6159-6 (printed ver.)
ISBN 978-82-326-5334-8 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (electronic ver.)

Doctoral theses at NTNU, 2022:285

Printed by Skipnes Kommunikasjon AS

NO - 1598

You are a masterpiece
fighting to be a silly selfie
with a hideous filter

Propaganda,
It’s complicated

i

“Do not fly too high,” said Aslan.
“Do not try to go over the tops of the
great ice-mountains. Look out for
the valleys, the green places, and fly
through them. There will always be
a way through. And now, be gone
with my blessing."

C. S. Lewis,
The Chronicles of Narnia

iii

Abstract

Agile software development is driven by business value, and strives towards visible progress
through features. Consequently, the somewhat invisible and overarching aspect of software
security is at the risk of being neglected.

A key assumption of this thesis is that to achieve adequate security within acceptable costs
(“good enough” security), software development projects need to be able to make priorities on
what security is needed throughout development. The thesis addresses the following overall
research problem: How can regular security prioritisation be integrated into agile software
development so that software products end up with a level of security that is “good enough”?
To this end, the thesis investigates 1) what influences the security prioritisation throughout an
agile software development project, and 2) how security roles and activities can support an agile
software development project in reaching a “good enough” prioritisation of security.

The research follows a design science approach, studying and designing process support for
companies wanting to improve their software security prioritisation. The investigation is centred
on small and medium sized companies developing “normal” software, i.e., software that is not
security critical nor has security as a key feature of the product. The need for trade-offs and
prioritisations between security and other software aspects is likely to be more pressing when
security is not a main development goal, and smaller companies have been identified as having a
higher potential for improvement in their software security compared to larger companies.

The thesis suggests that to improve prioritisation of security in agile software development,
companies can apply regular security prioritisation meetings, and security experts in the company
can be empowered with knowledge on how to influence the security priority. The foundation for
this suggestion is documented in a collection of papers. The thesis offers the following main
contributions that are aimed towards both practitioners and researchers: 1) A conceptual model
of the influences on security priority in agile software development, 2) Identified and evaluated
strategies that security experts can take in influencing the security priority of agile software
development projects, 3) A new and evaluated meeting approach for continuous software security
in agile software development, and 4) Rich descriptions of practical experiences with improving
software security prioritisation, bridging the gap between science and practice.

v

Preface

This thesis is submitted to the Norwegian University of Science and Technology (NTNU) for the
partial fulfilment of the requirements for the degree of Philosophiae Doctor (PhD).

This doctoral work has been conducted at the Department of Computer Science (IDI),
NTNU, Trondheim. In the early stages of the work, the work was done under the supervision of
Professor Pekka Abrahamsson. Later, Professor Guttorm Sindre took over as main supervisor.
Professor Daniela Soares Cruzes, Senior Research Scientist Martin Gilje Jaatun, Professor
Jingyue Li, and Professor Colin Boyd were co-supervisors.

The work was financed by the Research Council of Norway through the project SoS-Agile:
Science of Security in Agile Software Development, grant number 247678.

vii

Acknowledgement

In this thesis, I have been lucky to have two skilful professors as main supervisors. Thanks to
Professor Pekka Abrahamson for getting me started in a good direction, for challenging me in
the definition of research questions, and for directing me towards useful and interesting courses.
Thanks to Professor Guttorm Sindre for continuing the supervision and helping me finalise
the work. Thanks for your positivity, for making time for meetings and discussions, and for
providing useful comments on the many pages of manuscripts that I have sent your way.

I would like to offer my special thanks to my co-supervisor Professor Daniela Soares Cruzes,
who encouraged me to take on this thesis work and has been a tremendous support throughout.
You have helped me identify ways to improve the work and move forward in a good direction. I
appreciate both your strong professional competence and your friendship. Furthermore, I would
like to express my sincere gratitude to my co-supervisor, Senior Research Scientist Martin Gilje
Jaatun, for collaboration and for your strong support in this thesis. During my 18 years as your
colleague at SINTEF Digital, I have appreciated the many opportunities for joint work, and the
way you always welcome discussions and questions, despite a busy schedule. I have learned a
lot from you. Thanks also to my co-supervisors Professor Jingyue Li and Professor Colin Boyd.

Of immense importance to this work, are the many practitioners that have spent their time
participating in interviews and retrospectives, and that have allowed me access to their meetings.
This work would not have been possible without you, and I am honoured and deeply grateful for
being allowed to study you and your companies. Thanks for your positivity and your investment
in this work.

Throughout my time as a PhD candidate at IDI, NTNU, I was lucky to be part of Forsker-
fabrikken, where I enjoyed fruitful discussions on papers in progress and on research methods.
Thanks for broadening my views, and thanks for the insightful comments and suggestions
received on draft versions of several of the publications that became part of this thesis. My
thanks also go to those being co-authors of the publications contributing to this thesis. I have
enjoyed working with all of you, and appreciate what I have learned from our collaboration.

I would like to thank my colleagues at SINTEF for supporting me in this PhD work, offering
a good working environment, and respecting my need to balance the demands within the research

ix

projects with the need to focus on this PhD work. Thanks to Senior Research Scientist Per
Håkon Meland for letting me use the latex files you used for your thesis. Thanks to Senior
Research Scientist Gunnar Brataas for joint exploration of the relation between scalability and
security in software development.

Of tremendous importance to this thesis is the support from family and friends. First and
foremost, I would like to thank my husband, Magnus, for being there by my side, supporting me,
tolerating me. I am grateful for the life we share together. Thanks also to my kids, Mia and
Henrik, for enriching my life and being the awesome persons you are. Thanks to my friends and
the extended family for all the support over the last years - I appreciate you and what you bring
to my life.

I have been given a tremendous gift - this life, these circumstances, these opportunities. I
am fully aware that I am privileged to be able to do the work I do and live the life I live. Thus,
borrowing words from Gungor and their song "Crags and Clay", I thank The Giver of it all:

"All praises to the one who made it all and finds it beautiful.
Fearfully and wonderfully and beautifully made."

Inger Anne Tøndel,
Trondheim, June 20, 2022

x

Contents

1 Introduction 1
1.1 Problem outline . 1
1.2 Research objective and design . 3
1.3 Research context . 5
1.4 Main contributions . 6
1.5 Overview of papers . 7
1.6 Structure of the thesis . 9

2 Background 11
2.1 Risk management, security requirements, and security prioritisation 11
2.2 Prioritisation in agile software development 14
2.3 Security experts and their role in adoption of software security practices 17

3 Research approach 19
3.1 The design cycle . 19
3.2 The design science approach as applied in this work 21
3.3 Use of case studies and technical action research within a design science approach 23

4 Contributions 27
4.1 C1 - A conceptual model of the influences on security priority in agile software

development . 27
4.2 C2 - Identified and evaluated strategies that security experts can take in influen-

cing the security priority of agile software development projects 30
4.3 C3 - A new and evaluated meeting approach for continuous software security in

agile software development . 32
4.4 C4 - Rich descriptions of practical experiences with improving software security

prioritisation, bridging the gap between science and practice 34

5 Discussion 37
5.1 Research objective revisited . 37
5.2 Threats to validity . 42
5.3 Recommendations for future work . 45

6 Conclusion 47

References 49

A Primary papers 59

xi

A: ‘Risk Centric Activities in Secure Software Development in Public Organisations’ 61
B: ‘IT Security Is From Mars, Software Security Is From Venus’ 93
C: ‘Collaborative security risk estimation in agile software development’ 105
D: ‘Towards a Conceptual Framework for Security Requirements Work in Agile

Software Development’ . 135
E: ‘The Security Intention Meeting Series as a way to increase visibility of software

security decisions in agile development projects’ 167
F: ‘Achieving “Good Enough” Software Security: The Role of Objectivity’ 177
G: ‘Influencing the security prioritisation of an agile software development project’ . 185
H: ‘Continuous software security through security prioritisation meetings’ 207

B Secondary papers 239

xii

List of Figures

1.1 Overview of the knowledge questions . 5

2.1 Overview of the areas covered by BSIMM and OWASP SAMM 12

3.1 The design cycle (adapted from Wieringa [14]) 20
3.2 The design cycle iterations of this thesis. Note that for practical purposes, to

distinguish the iterations in the figure, I have used two colours and the arrows
representing the cycles go in different directions. This does not have any significance
when it comes to the method - each arrow represents one design cycle iteration. . . 24

3.3 The relation between the knowledge questions, the research questions in the papers,
and the design cycle iterations. Some papers have contributions to more than one
knowledge question. 25

4.1 Illustration of the relation between the knowledge questions, the contributions, and
the papers . 28

4.2 The progress towards contribution C1 . 29
4.3 The progress towards contribution C2 . 31
4.4 The progress towards contribution C3 . 33

5.1 Overview of the contribution using the visual abstract template for design science
research [80, 81] . 38

xiii

List of Tables

3.1 Overview of studies (CS = case study; AR = action research; LR = literature review,
I = interviews) . 26

4.1 Overview of paper contributions . 36

5.1 Overview of the discussed validity threats and their relevance to the main contribu-
tions (a ‘V’ indicating relevance) . 42

xv

C
ha

pt
er 1

Introduction

In today’s digitalised and interconnected world, most, if not all, software development projects
need to consider security. Still, security is usually a secondary goal which can add to development
time and cost. In agile software development, the emphasis on business value and visible
progress through features has been found to increase the risk that security is not addressed from
the beginning [1] and ends up being neglected [2–5]. However, there are limits to how much
priority security should be given. Most software development projects would not need to opt for
the best security possible. Furthermore, it is not always the case that the more time and money
you spend on security, the better your security will be. It is quite possible to spend money and
effort on the wrong things. Thus, prioritising security is not only prioritising to do security, but
prioritising among all the potential things to do.

This section introduces the problem of security prioritisation within an agile software
development context. It explains the research objective guiding the research of this thesis, and it
describes the overall research design and context. Then it highlights the main contributions of
this thesis, and provides an overview of the papers which contain these contributions.

1.1 Problem outline

This thesis is concerned with how agile software development projects can achieve adequate
security within acceptable costs – termed “good enough” security in this thesis. How much
security would be “good enough” will vary between projects and may even vary with time as

1

2 Chapter 1. Introduction

development progresses and requirements are negotiated. It may even change after development,
due to new security breaches, new usage scenarios, or product updates.

A basic assumption in this thesis is that to achieve good enough security it is important
to make good decisions on the security that is needed. Software development projects are
unlikely to get to good enough security without the ability to make priorities on what security is
needed throughout the project. This furthermore requires that security is given a certain level of
priority in the development project overall. When security decisions are called for, the need for
such decisions should be realised and decisions made with sufficient quality, recognising that
spending time on prioritisation is also a prioritisation issue. As prevention of software security
vulnerabilities is more efficient than detection and response [6], such security prioritisation
should happen early on. Still, security prioritisation is not something that can be done once and
for all. Rather, it needs to be a continuous endeavour spanning a software product’s lifecycle.

Making good priorities on software security requires an ability to navigate the complex
landscape of security and software development. It is necessary to understand the various
security threats and select mitigation strategies that match the security needs. There is also a
need to consider a variety of project limitations such as resources, budget, and time restrictions,
as well as potential costs related to qualities such as usability and performance.

In agile software development, software development teams are expected to be self-managed,
capable for the job, and motivated, and thus should be trusted to “get the job done” [7]. This has
implications for prioritisation of software security. According to the agile principles, software
development teams should be trusted also with security, leaving no clear role for a security
expert wanting to ensure security is given proper priority throughout. However, literature has
documented an overwhelming number of challenges to software security and other quality
aspects in agile software development documented in the literature [2–5, 8, 9]. This indicates
that simply trusting developers to fix security is not a good option.

This thesis considers security experts in the organisation as one type of actor that can be
capable and willing to improve security prioritisation in agile software development projects.
Although the agile principles encourage self-managed teams, the principles also point to the
importance of giving the development teams a proper environment and support [7], something
which is a potential role for a security expert. Even though literature documents many challenges
in the relationship between security experts and development projects [10, 11], there is also
evidence that, when successful, security experts can increase developers’ sense of responsibility
for security [12]. Moreover, they can act as triggers for security when time pressure poses
challenges for security and its prioritisation [13]. It is therefore important to enable security
experts to be successful influencers for software security. An important prerequisite is to have
knowledge on what influences an agile software team to prioritise security, as well as what

1.2. Research objective and design 3

hinders security in being prioritised. Furthermore, security experts can benefit from evaluated
strategies to apply to strengthen the security prioritisation.

Consequently, this thesis is concerned with the larger problem of ongoing security prioritisa-
tion in agile software development, considering and studying a broad set of influences on the
security priority. However, it has an emphasis on knowledge and techniques that are relevant for
security experts who want to influence this priority.

1.2 Research objective and design

The objective of this thesis is to support agile development projects in making efficient and
effective decisions on the software security they need, in terms of both security requirements
and practices. Thus, the thesis addresses the following overall problem:

Overall research problem:
How can regular security prioritisation be integrated into agile software development so that
software products end up with a level of security that is “good enough”?

This overall problem calls for design of solutions, e.g., in form of methods, process support,
guidelines, or checklists. Thus, this thesis takes a design science approach [14]. Design
science aims for improvements in a context, where the context also needs to be understood. It
iterates between two problem-solving activities: designing artifacts to bring about improvements,
and answering knowledge questions about the context and the artifact in the context. This
means that design science involves design problems as well as knowledge questions. This thesis
has the following design problem, structured according to the recommendations of Wieringa [14]:

Design problem:
• Improve software security prioritisation
• by developing process support for making and following up on software security priorities

and decisions
• that satisfies the needs of agile development projects
• in order to support projects in achieving “good enough” security.

This design problem is supported by the following knowledge questions (RQs)a:

aIn this thesis, the term knowledge question is used, as this is the term used by Wieringa [14]. However, in the
community it is more common to use the term research question, abbreviated RQ. Thus, to make it easier for readers,
the abbreviation RQ is used throughout when refering to these knowledge questions.

4 Chapter 1. Introduction

Knowledge questions (RQs):
RQ1 What influences the security prioritisation throughout an agile software development

project?
RQ2 How can security roles and activities support an agile software development project in

reaching a “good enough” prioritisation of security?

Knowledge from RQ1 is important to understand which influences to look out for and which to
strengthen when seeking to improve software security prioritisation. RQ2 gives knowledge on
two concrete types of interventions (roles and activities) that software companies may utilise,
and thus gives direct input to the design problem. RQ2 is however quite broad, as there are many
potential security activities that can support companies in security prioritisation (including
training, risk analysis, testing, etc.) and varied ways security roles can be involved (e.g., at the
management level (as a CISO), or in the team (as a security champion)). To focus the research,
RQ2 was divided into a set of sub-questions:

RQ2.1 How does the concept of “good enough” security relate to software security
strategies?

RQ2.2 How can agile software development projects work with software security in
a risk-centric way?

RQ2.3 How can security experts increase the attention given to security by key
decision makers in an agile software development project?

RQ2.4 How can security meetings be organised to improve software security priorit-
isation?

RQ2.5 How can adoption of security prioritisation activities be supported?

Figure 1.1 provides an illustration of the knowledge questions and their relation to each other
and the goal of good enough security. As can be seen from this figure, the goal is to achieve
good enough security, and in this thesis it is assumed that good enough security is related to
good enough security prioritisation. Throughout a project, the security prioritisation can be
influenced by a variety of aspects, and understanding these is the focus of RQ1. However, it is
also possible to take active action to influence the security prioritisation, as is considered in RQ2.
The figure also illustrates that the actions taken (RQ2) can result in changes to influences (RQ1)
and that the security prioritisation and the security achieved can feed back to the influences
and to the actions. Regarding the sub-questions to RQ2, RQ2.1 is concerned with identifying
characteristics of strategies that are likely to support teams in achieving good enough security,
while RQ2.2-2.4 are digging deeper on certain strategies that could lead to good enough security.
When starting the work on the thesis, one assumption was that risk-centric approaches should be
considered (RQ2.2), as these are commonly recommended for information security [15–17] and

1.3. Research context 5

Influences on
security priority:

RQ1 What influences the
security prioritisation
throughout an agile
software development
project?

Desired outcome:Roles and activities to support
the desired outcome:

RQ2 How can security roles and activities
support an agile software development
project in reaching a “good enough”
prioritisation of security?

RQ2.1 How does the concept of “good enough”
security relate to software security strategies?

RQ2.2 How can agile software development projects
work with software security in a risk-centric way?

RQ2.3 How can security experts increase the
attention given to security by key decision makers in
an agile software development project?

RQ2.4 How can security meetings be organised to
improve software security prioritisation?

RQ2.5 How can adoption of security
prioritisation activities be supported?

"Good
enough"
security

prioritisation

"Good
enough"
security

Figure 1.1: Overview of the knowledge questions

software security [18, 19]. Later on, findings pointed towards the important role of meetings
(RQ2.4) and the importance of involving a broad set of a actors, including decision makers
(RQ2.3). RQ2.5 is concerned with the potential for adoption of the studied strategies.

1.3 Research context

Design science puts a strong emphasis on understanding the context and the artefact in the context.
Thus, this thesis relies on empirical qualitative studies in software development organisations.

The problem of security prioritisation is assumed to be relevant for a broad set of companies.
There is evidence in literature that security requirements and other quality aspects are commonly
neglected when using agile software development approaches [2–5]. This points towards security
prioritisation being a general problem in agile software development projects. Still, this thesis
mainly studies small and medium sized companies. Research points to small and medium sized
companies as having a larger potential for improvement in their software security than larger
companies [20, 21]. Smaller companies are less likely to have a strong security department
and a software security program, something that is necessary in order to be considered mature
in relation to software security, e.g., according to the Building Security In Maturity Model
(BSIMM) [22]. This does not take away their need for good enough security; a lot of our
software is developed by smaller companies. However, smaller companies might need other
ways to structure and think about software security initiatives than larger enterprises. Thus, it is
important to increase knowledge on how small and medium sized development companies could

6 Chapter 1. Introduction

be supported in reaching good enough software security.
As already claimed, software security is now important for software in general, not only

software considered security critical. The challenge of determining what is good enough is
likely to be even more pressing for “normal” software products where security is one of several
qualities, and not a key feature of the product. Thus, this work studies security prioritisation in
software development projects that do not have security as its main goal.

1.4 Main contributions

Four main contributions have been identified from this thesis. In the following we provide a
brief overview of each contribution. Contribution C1 responds to knowledge question RQ1,
contributions C2-3 contributes to knowledge question RQ2, while C4 contributes to both
knowledge questions. The main contributions are explained in more detail in Section 4.

C1 A conceptual model of the influences on security priority in agile software development

The priority given to security is influenced by the presence of a driving force for security, the
visibility of security, the motivation, the room to manoeuvre, and the process match. These
influence categories are based on a longitudinal case study in one company. They are also
prominent in the literature and were found useful for understanding the effect of meetings on the
priority given to security in studies that are part of this thesis.

C2 Identified and evaluated strategies that security experts can take in influencing the security
priority of agile software development projects

For each of the influence categories from C1, recommendations are provided for security experts
on what actions to consider and what challenges to beware of in order to support security
prioritisation. These recommendations are based on a study of the initiative of one security
expert in one company. Further, based on theory on objectivity from philosophy and qualitative
research methods, the following strategies were identified as important for moving towards
good enough security: including a variety of perspectives, building interactional expertise, and
supporting confirmability.

C3 A new and evaluated meeting approach for continuous software security in agile software
development

This thesis proposes a meeting approach named the Security Intention Meeting Series. With
this meeting approach, regular security meetings are arranged where 1) meeting participants

1.5. Overview of papers 7

are not primarily security experts but rather include key decision makers in the project, 2) the
primary task is to identify and assess security needs, and make prioritisations and decisions on
the next steps, and 3) the meeting approach itself is flexible and can be adjusted to the needs of
the company when it comes to meeting scheduling and organisation. This meeting approach
was instantiated and studied in three companies. This resulted in 19 points of practical advice
for agile software development companies wanting to apply this meeting type.

C4 Rich descriptions of practical experiences with improving software security prioritisation,
bridging the gap between science and practice

This thesis provides rich descriptions of practices applied in companies to improve software
security prioritisation. This includes a description of a security requirements initiative by one
security expert, as well as descriptions of experiences with performing regular security meetings
aimed towards making prioritisations and decisions related to security. Such rich descriptions of
practical experiences are an important contribution to future research. Within this field, there is
a call for more empirical studies with companies [9, 23–26]. To further support future research,
the published study results include descriptions of implications for research. To illustrate, nine
implications for research are highlighted from the study of the Security Intention Meeting Series
with three companies, offering direction for further studies within this topic.

1.5 Overview of papers

The contributions are documented in the following research papers. Note that these are numbered
according to the chronology of the work rather than the chronology of their publication. All
papers are published. The papers are included in their complete form in Appendix A. Section 4
explains how these papers constitute the contributions C1-4.

A I. A. Tøndel, M. G. Jaatun, D. S. Cruzes and N. B. Moe, ‘Risk Centric Activities in Secure
Software Development in Public Organisations,’ International Journal of Secure Software
Engineering (ĲSSE), vol. 8, no. 4, pp. 1–30, 2017. doi: 10.4018/IJSSE.2017100101

B I. A. Tondel, M. G. Jaatun and D. S. Cruzes, ‘IT Security Is From Mars, Software
Security Is From Venus,’ IEEE Security & Privacy, vol. 18, no. 4, pp. 48–54, 2020. doi:
10.1109/MSEC.2020.2969064

C I. A. Tøndel, M. G. Jaatun, D. S. Cruzes and L. Williams, ‘Collaborative security risk
estimation in agile software development,’ Information and Computer Security, vol. 27,
pp. 508–535, 4 2019. doi: 10.1108/ICS-12-2018-0138

8 Chapter 1. Introduction

D I. A. Tøndel and M. G. Jaatun, ‘Towards a Conceptual Framework for Security Re-
quirements Work in Agile Software Development,’ International Journal of Systems
and Software Security and Protection (ĲSSSP), vol. 11, no. 1, pp. 33–62, 2020. doi:
10.4018/IJSSSP.2020010103

E I. A. Tøndel, D. S. Cruzes, M. G. Jaatun and K. Rindell, ‘The Security Intention Meeting
Series as a way to increase visibility of software security decisions in agile development
projects,’ in Proceedings of the 14th International Conference on Availability, Reliability
and Security, 2019, pp. 1–8. doi: 10.1145/3339252.3340337

F I. A. Tøndel, D. S. Cruzes and M. G. Jaatun, ‘Achieving “Good Enough” Software
Security: The Role of Objectivity,’ in Proceedings of the Evaluation and Assessment in
Software Engineering, 2020, pp. 360–365. doi: 10.1145/3383219.3383267

G I. A. Tøndel, D. S. Cruzes, M. G. Jaatun and G. Sindre, ‘Influencing the security
prioritisation of an agile software development project,’ Computers & Security, vol. 118,
2022, issn: 0167-4048. doi: 10.1016/j.cose.2022.102744

H I. A. Tøndel and D. S. Cruzes, ‘Continuous software security through security prioritisation
meetings,’ Journal of Systems and Software, vol. 194, 2022. doi: https://doi.org/10.1
016/j.jss.2022.111477

In addition to these primary papers that are part of this thesis, there are a number of papers
that bear relevance to the work in this thesis. These are listed below, and their relation to the
thesis is briefly described in Appendix B.

I I. A. Tøndel, M. G. Jaatun, D. Cruzes and T. D. Oyetoyan, ‘Understanding Challenges
to Adoption of the Protection Poker Software Security Game,’ in Computer Security.
SECPRE CyberICPS 2018, S. K. Katsikas, F. Cuppens, N. Cuppens, C. Lambrinoudakis,
A. Antón, S. Gritzalis, J. Mylopoulos and C. Kalloniatis, Eds., 2019, pp. 153–172. doi:
978-3-030-12786-2_100

J I. A. Tøndel, T. D. Oyetoyan, M. G. Jaatun and D. Cruzes, ‘Understanding Challenges to
Adoption of the Microsoft Elevation of Privilege Game,’ in Proceedings of the 5th Annual
Symposium and Bootcamp on Hot Topics in the Science of Security (HoTSoS ’18), 2018.
doi: 10.1145/3190619.3190633

K D. S. Cruzes, M. G. Jaatun, K. Bernsmed and I. A. Tøndel, ‘Challenges and Experiences
with Applying Microsoft Threat Modeling in Agile Development Projects,’ in 2018
25th Australasian Software Engineering Conference (ASWEC), 2018, pp. 111–120. doi:
10.1109/ASWEC.2018.00023

L I. A. Tøndel, D. S. Cruzes and M. G. Jaatun, ‘Using Situational and Narrative Analysis
for Investigating the Messiness of Software Security,’ in Proceedings of the 14th ACM /

1.6. Structure of the thesis 9

IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM’20), 2020. doi: 10.1145/3382494.3422162

M G. Brataas, I. A. Tøndel, E. Okstad, O. Løkberg, M. G. Jaatun, G. K. Hanssen and
T. Myklebust, ‘The Quality Triage Method: Quickly Identifying User Stories with Quality
Risks,’ in 2020 2nd International Conference on Societal Automation (SA), 2021, pp. 1–7.
doi: 10.1109/SA51175.2021.9507110

N I. A. Tøndel and G. Brataas, ‘SecureScale: Exploring Synergies between Security and
Scalability in Software Development and Operation,’ in Proceedings of the European
Interdisciplinary Cybersecurity Conference (EICC ’22), 2022, pp. 36–41. doi: 10.1145
/3528580.3528587

1.6 Structure of the thesis

This thesis is structured as follows. Chapter 2 introduces the state of knowledge on strategic
prioritisation of software security in agile software development, and thus provides a foundation
for understanding the motivation for and contribution from this thesis. Chapter 3 describes the
design science approach as used in this thesis. Chapter 4 describes the main contributions of this
thesis, and how the papers constitute these contributions. Chapter 5 discusses the contribution of
this thesis, as well as its limitations, and points to further research avenues. Chapter 6 concludes
the thesis. All papers that constitute this thesis are included in their complete form in Appendix
A. Secondary papers are summarised in Appendix B.

C
ha

pt
er 2

Background

This chapter introduces the state of knowledge on strategic prioritisation of software security
in agile software development, and shows how current literature motivates an emphasis on
producing empirical knowledge on practices and experiences in industry. Further, it explains the
need for an improved understanding of how security experts can be successful influencers on the
priority given to software security in agile development projects, and how this relates to a need
for better knowledge on influences on security prioritisation in agile projects. The chapter also
explains the importance of meetings in agile practices, something that points to meetings as a
potential intervention also for software security.

The chapter starts with introducing the role of risk management and security requirements in
relation to security prioritisation practices, all central concepts of this thesis. This is followed by
an introduction to prioritisation in agile software development, showing how literature supports
that agile practices can be challenging for the prioritisation of security. Then it moves on to
introducing knowledge on adoption of software security practices, including adoption of security
prioritisation, and the potential role of the security expert in supporting adoption.

2.1 Risk management, security requirements, and security
prioritisation

Software security is a broad concept, and working with software security can involve varied
activities. Software security can be defined as “the practice of building software to be secure

11

12 Chapter 2. Background

and to function properly under malicious attack" [19]. This practice cannot be confined to a set
of features. Rather software security is a quality of a system [41], and it includes the addition of
security features as well as building features that are secure.

As security is an overarching concern, it can be hard to grasp and identify in a system and
in development practices. It can also involve a broad set of actors [42]. When working with
software security there are many potential activities to adopt, from technical features in the code
to management practices ensuring or supporting software security is properly addressed. The
complexity and totality of the potential activities are illustrated in current maturity models for
software security; the Building Security In Maturity Model (BSIMM) [22] and the OWASP
Software Assurance Maturity Model (SAMM) [43]. Figure 2.1 gives an overview of the areas
covered by these maturity models and illustrate the broadness of the software security work.

OWASP SAMM

BSIMM

Governance Design Implementation Verification Operations

Strategy and
Metrics

Policy and
Compliance

Education and
Guidance

Threat Assessment

Security
Requirements

Security
Architecture

Secure Build

Secure Deployment

Defect Management

Architecture
Assessment

Requirements-
driven Testing

Security Testing

Incident
Management

Environment
Management

Operational
Management

Governance Intelligence SDL touchpoints Deployment

Strategy & Metrics

Compliance & Policy

Training

Attack Models

Security Features & Design

Standards & Requirements

Architecture Analysis

Code Review

Security Testing

Penetration Testing

Software Environment

Configuration Management
& Vulnerability
Management

Figure 2.1: Overview of the areas covered by BSIMM and OWASP SAMM

With the abundance of techniques available for software security (to illustrate, BSIMM12
consists of 112 activities [22]), software security can become quite costly if these are adopted
without considering the needs of the projects. Within the field of information security, risk
management is considered central in ensuring that security activities are aligned with the
objectives of the organisation [15]. Within software security, similar arguments are used for
risk management activities, e.g., to be more effective in identifying and addressing security
vulnerabilities [18] and make better trade-off decisions [19, 44]. There are many approaches
and standards related to risk management for information security, including OCTAVE Allegro

2.1. Risk management, security requirements, and security prioritisation 13

[15], ISO/IEC 27005 [16], and the NIST Risk Management Framework [17]. These share
many similarities, and based on their content, Paper A identified four key activities involved
in risk management: risk analysis, risk treatment decisions, risk treatment follow-up, and risk
communication. These types of activities are found also in BSIMM, OWASP SAMM, and other
software security initiatives (as outlined in Paper A - see Table 1 in that paper). Many of these
activities are however difficult to relate to agile software development in their current form, as
there are limited descritpions of how to do this in practice (more on this in Paper C - see Table 1
in that paper)).

A related topic is that of security requirements. Literature shows that security requirements
are often implicit in agile software development projects [23, 45, 46]. Customers may not have
the competence to elicit and follow up on security requirements [45]. However, when security
becomes an implicit requirement, this can imply that developers are expected to deliver security
without it being clear what this means, and without this being given recognition and being
followed up by management [46]. Working with security requirements includes identifying
security needs and risks, and documenting what needs to be done regarding security. This
should be done in a way that makes security requirements being explicitly communicated to and
integrated into the development project. Thus it overlaps substantially with risk managements as
explained above. Security requirement initiatives can however run into challenges, as security
neither fits neatly into a feature nor a quality view [1, 46]. Further, it is dependent on three
distinct aspects: the goals of the stakeholders, the design of the system, and the threats one needs
to defend against [41]. Thus, the security requirements cannot be elicited by stakeholders alone,
but also need to involve technical resources and people with expertise on security risks [1, 41].

Security prioritisation in this thesis, overlaps with both risk management and security
requirements work. The concept of security prioritisation includes:

• prioritisation among security requirements and activities
• prioritisation of security vs. other aspects such as functionality, and
• the priority and attention given to security in the day-to-day work.

This makes security prioritisation a broad topic that can encompass many different activities
and involve a broad set of roles. Literature documents many challenges to prioritising security
and other qualities in agile software development [2–5, 8, 9]. Many of these challenges are
not specific for agile development, but are present in more traditional development approaches
as well [47]. Challenges include a reliance on individual initiative [9, 23, 48, 49], unclear
ownership and responsibility for security [23, 42], and an unclear business case for security [9,
23] (see Paper E for more details on these three challenges).

There is a general call for more empirical studies on software security in agile software
development. [9, 23–26]. When it comes to security prioritisation in agile software development,

14 Chapter 2. Background

I am not aware of any studies that examines the priority given to security throughout a
development project. Furthermore, the influence of the context is not properly understood,
although its importance is well documented; recent studies have shown that challenges can vary
considerably between projects [50, 51].

This thesis is a response to the need for more empirical knowledge on the practices and
experiences related to security prioritisation in agile development projects. This includes
building knowledge on what influences the security prioritisation (RQ1). It also includes
knowledge on how security experts can act and how activities can be used to influence the
security prioritisation (RQ2). Among other things, there is a need for more knowledge on
how projects can effectively and efficiently work risk-centric with software security in an
agile software development context (RQ2.2)).

2.2 Prioritisation in agile software development

Security is one of many risks that have to be managed in software development projects.
Agile development projects have been said to treat risk implicitly [52–54], e.g., as part of task
prioritisation, and guidance has been characterised as “very general” [55]. Agile software
development is based on a set of values and principles outlined in the Agile manifesto [7]. These
values and principles can however be practised in different ways, as illustrated by the many
agile software development approaches available. Two of the popular ones are Scrum [56] and
Kanban [57], and in the following these are used as examples to show how prioritisation is
built into these approaches, but in a way that is not necessarily supportive of security getting
prioritised.

Scrum is a management framework centred around roles, interactions, and artefacts [1].
The product owner represents the customer interests and is responsible for setting the direction
and priorities regarding what should be worked on, based on the expected business value. The
development team is responsible for the technical aspects and the development work, while the
Scrum process itself is facilitated and supported by a Scrum master. Thus, there is a division of
responsibilities among these roles, at the same time as their interaction is supported by a set of
meetings [1, 56]. A key artefact is the product backlog which holds a prioritised set of work
items. Two tasks that are strongly linked to prioritisation are the product backlog refinement that
is concerned with prioritising the items in the product backlog and refining (or detailing) the
highest priority items to make them clear for implementation by the development team, and the
sprint backlog creation that is concerned with deciding upon the objectives of the next iteration
(or sprint). According to Scrum, the product owner is responsible for prioritising the items in the
backlog, while refinement as well as sprint backlog creation should be done collaboratively by

2.2. Prioritisation in agile software development 15

the team, the scrum master, and the product owner - although in practice it may be done by the
product owner or another individual [58]. Sprint backlog creation happens in the sprint planning
meeting. Then there are daily stand-up meetings that ensure follow up on tasks. After each
sprint, a sprint review meeting is held that includes the client, and there is a sprint retrospective
[56, 58].

Kanban is concerned with managing workflow and improve performance [57, 59]. It is
centred on a Kanban board that visualises the workflow [57, 60]. Key practices are to limit work
in progress, visualise the flow of work items, and measure the flow [57]. Compared to Scrum,
Kanban is less prescriptive [57] and it does not specify special roles and meetings, although
meetings certainly have a place [57, 59, 60].

Looking at both Scrum and Kanban, one can see that prioritisation is built in, and that
it involves the team and the product owner (and possibly other actors), and is often done in
meetings. However, security or other quality issues have no clear and visible place, and there is
no built-in mechanism to ensure security is considered and that security experts are consulted if
needed. This is illustrated in the following quote on the relation between software security and
Scrum:

There are “subtle mismatches between Scrum’s strengths and the peculiarities of
security as a class of requirements. For example, development teams cannot silently
take care of security without product management or other stakeholders explicitly
motivating and requiring it, but security may remain invisible and intangible for
those.” [1]

When it comes to prioritisation within agile software development [61], the most important
prioritisation criterion has been found to be business value. Size, effort, and cost estimations are
also important inputs, together with project constraints like release dates, budget, and available
resources [61]. The business value of security is however often unclear [23], as it is concerned
with preventing future damage that may or may not occur [1].

Agile software development values “Responding to change over following a plan” [7].
When comparing with more traditional waterfall development approaches, agile’s approach
to requirements have been characterised as “far more temporal, interactive, and just in time”
[62]. Requirements are no longer fixed but can be dropped or changed based on new needs or
to meet cost and schedule constraints [62]. Within such an approach, traditional ways to deal
with security can be troublesome, as illustrated by challenges identified in a review by Oueslati
et al. [3]: “Refactoring practice breaks security constraints”, “Changes of requirements and
design breaks system security requirements”, “Continuous code changes makes completing the
assurance activities difficult”, and “Requirement changes makes the trace of the requirements to
security objectives difficult” [3]. At the same time, agile development’s support for change could

16 Chapter 2. Background

be beneficial in addressing changing security threats. Since the review by Oueslati was performed
in 2015, there has been a growing understanding of the possibility to successfully merge security
with agile practices, e.g., declaring the incompatibility of security and agile development to
be a myth [63]. Still, literature identifies numerous challenges to software security and other
quality aspects in agile software development [2–5, 8, 9], and documents a common neglect of
security in agile development projects [2–5]. Going back to the maturity models of BSIMM
[22] and OWASP SAMM [43], there seems to be a mismatch between the kind of strategic and
comprehensive software security approaches preached in these frameworks and the challenges
to software security in agile software development documented in literature. This is the case
despite BSIMM being descriptive and based on practices identified in software companies
[22]. This leads to the assumptions that many agile software development organisations have
challenges in working strategically with software security, and would not be considered mature
according to BSIMM and OWASP SAMM.

Software security has seen a shift from prescriptive approaches, with prescribed changes to
the development lifecycle, towards more flexible approaches (e.g., maturity models) that allow
for practices emerging from and being adjusted to the needs of the companies [20]. This is more
in line with the agile principles encouraging self-organising teams and trust in their ability to
“get the job done” [7]. However, the Agile manifesto also hints at the importance of the context
and the support it offers to the teams:

“Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.” [7]

Going back to security prioritisation, trust in the team is built into the agile principles, but such
trust is not necessarily blind and should not be viewed as giving the team the full responsibility.
Current literature does, however, not give any clear direction as to what is “the environment and
support” needed to make security happen in an agile software development setting. Thus, there
is a need to understand how to support emerging practices and self-management for security.
Furthermore, there is a need to understand how to balance team autonomy with the need to
ensure security is included also in cases where the team does not have individuals with a strong
awareness of security, to address the limited visibility of security in prioritisation processes in
agile development projects.

There are a few techniques available that are targeted towards supporting agile software
development in their security prioritisation. An example is Protection Poker [64, 65], which
is a collaborative risk estimation game that involves the full team in security prioritisation.
Another is a framework that, based on a manual risk assessment, offers automated support for
prioritising security requirements that can be added to the product backlog [66]. Further, a study

2.3. Security experts and their role in adoption of software security practices 17

of incremental and distributed risk management in agile software development has reported
promising results [67]. Literature also points to strategies such as stakeholder involvement [1,
42, 68], security reflection [1], co-creation and situated learning [1, 69, 70], and documentation
[1](see Paper H for more details).

This thesis is a response to the need for strategies to improve software security
prioritisation in agile software development (the design goal). To get to such strategies,
there is a need to better understand how projects can know that their security prioritisation
is good, and likely to lead to good enough security (RQ2.1). Meetings already play a
central role in prioritisation within agile software development approaches. They should
be considered also for software security prioritisation (RQ2.4). Furthermore, getting key
decision makers, such as the product owners, onboard, is likely to be important (RQ2.3).

2.3 Security experts and their role in adoption of software security
practices

Security prioritisation is also about adoption; adoption of security prioritisation, and adoption
of security practices. The literature provides some insight into what is important for adoption
of software security practices. Kanniah and Mahrin [48] performed a literature review to
identify commonly cited factors impacting the successful implementation of secure software
development practices. The broad set of factors identified include the institutional context, the
people involved and their actions, the project content, and the system development process.
In a follow-up study with eight experts [49], the following factors were identified as the ten
most important ones: 1) security experts, 2) security documentation, 3) project management, 4)
developers, 5) project team, 6) security audit team, 7) team collaboration, 8) development time,
9) policy enforcement, and 10) top management. Many of these factors are concerned with
the individuals and roles involved and their relations. The importance of the relation between
security experts and developers for adoption of security practices are supported in other studies.
An example is the study by Xiao et al. [12] on the adoption of secure development tools, that
identified that “if companies structure their security processes so that security teams and other
developers often interact, developers are more likely to feel personally responsible for security”
[12].

Commonly reported reasons for not adopting a secure software development lifecycle have
been found to be concerns about it being time-consuming and requiring too many resources [71].
This is the case not only for development projects using an agile development approach. However,
agile development’s emphasis on delivering “working software frequently” [7] represents a push
towards visible features that can be a reason for time pressure in agile projects, impacting the

18 Chapter 2. Background

adoption of software security practices. Research on time pressure shows the importance of
security roles to counteract the effect of time pressure. Chowdhury et al. [13] suggested that all
organisational units should have a strong relationship with the security department as a way of
dealing with the implications of time pressure on security.

The evidence for the importance of the interplay between security experts and developers has
been strengthened in the literature throughout the course of the work on this thesis, with a recent
publication based on statistics on BSIMM finding a strong correlation between the number
of activities adopted and the number of security specialists involved [72]. This points to the
security expert as a possible change agent for security, despite many challenges in establishing
good relations between security experts and development projects [10, 11]; communication
between security experts and developers can be challenging [10, 11] and there can be unclear
responsibilities between these groups when it comes to security [11, 42]. It has even been
stated that it is better to teach developers about security than to turn IT security engineers into
software security people [22]. To support practitioners in navigating these challenges, there is
a need for a better understanding of the effect of potential strategies that security experts can
utilise to strengthen security prioritisation in agile software development projects. Empirical
knowledge on what makes security initiatives from security experts be successful (or not) in an
agile development setting, can provide a basis for practical advice for security experts wanting
to act as a change agent for security in an agile development setting.

This thesis studies initiatives by security experts within an agile software development
context, to arrive at recommendations directed towards security experts wanting to influence
the security prioritisation in agile software development projects (RQ2). Furthermore,
this thesis builds knowledge on adoption of the studied security prioritisation strategies
(RQ2.5).

C
ha

pt
er 3

Research approach

As already explained in the introduction, this thesis utilises design science as its main research
approach. Wieringa defines design science in the following way:

“Design science is the design and investigation of artifacts in context. The artifacts
we study are designed to interact with a problem context in order to improve
something in that context.” [14]

Within software engineering and information systems, there are several design science approaches
available. Prominent examples are Hevner et al. [73, 74] and Wieringa [14]. This chapter first
gives a brief introduction to the design cycle as described by Wieringa [14] and explains the
choice to build on his approach. Then it explains how the design science methodology was
applied in the work with this thesis.

3.1 The design cycle

Within design science [14], an artefact is a broad concept including anything that can be designed
by a researcher, e.g., a software system, a business process, a method, or a technique. The
context, on the other hand, is given to the researcher and needs to be investigated and understood
by the researcher, but not changed. For the design science researcher both are essential:

“(...) the artifact itself does not solve any problem. It is the interaction between the
artifact and a problem context that contributes to solving a problem. An artifact
may interact differently with different problem contexts and hence solve different
problems in different contexts. It may even contribute to stakeholder goals in one

19

20 Chapter 3. Research approach

context but create obstacles to goal achievements in another context. The design
researcher should therefore study the interaction between artifacts and contexts
rather than artifacts alone or contexts alone.” [14]

Thus, design science is about both design and investigation; it seeks to address both design
problems and knowledge questions. In the design cycle, the tasks of design and investigation are
iterated over. The design cycle is illustrated in Figure 3.1. Its main steps are:

• Problem investigation: Happens before the design of an artefact. The goal is to “identify,
describe, explain and evaluate the problem to be treated” [14].

• Implementation evaluation: Here the research goal is to evaluate an implementation of a
treatment that has been applied in a problem context. The goal does not have to be to
prepare for further improvement. It can also be to “describe, explain and evaluate the
effects of a past improvement” [14].

• Treatment design: Concerns specification of requirements for the treatment and designing
the treatment.

• Treatment validation: Implies studying “the interaction between an artifact and its context
by studying a model of it” [14]. The goal is to develop a design theory that “allows us to
predict what would happen if the artifact were transferred to its intended problem context”
[14]. Note that ‘model’ here can take various forms, including using action research to
investigate the effect of one instance of the treatment in a real-world case, and then use
this case as a model for other real-world cases.

Note that this design cycle is part of a bigger engineering cycle with an added step, treatment
implementation, after treatment validation. This step is concerned with “the application of the
treatment to the original problem context” [14], e.g., transferring the product to the market. This
is however outside of the scope of a design science research project [14].

Implementation
evaluation /

Problem
investigation

Treatment
design

Treatment
validation

Figure 3.1: The design cycle (adapted from Wieringa [14])

3.2. The design science approach as applied in this work 21

Comparing the design science approach as described by Wieringa [14] to that of Hevner et
al. [73, 74], there are many similarities: both are about creating artefacts to solve real world
problems, both iterate over designing and validating the artefact in a design cycle, both emphasise
the importance of understanding the problem context, and both calls for new knowledge in
relation to the existing knowledge base. Hevner operates with three research cycles: the relevance
cycle, the design cycle, and the rigor cycle. The design cycle iterates over activities concerning
designing/building artefacts and evaluate them. The relevance cycle considers the relevance of
the artefact to the environment, e.g., through identifying requirements and doing field testing.
The rigor cycle connects the research with the scientific knowledge base. The choice to base the
research approach of this thesis on Wieringa was pragmatic; the design science approaches of
Wieringa and Hevner both had their merits and was in line with the goals and needs of the thesis,
but I found that the design cycle as described by Wieringa matched well with the approach we
wanted to take in this work as it included problem investigation activities into the design cycle.

3.2 The design science approach as applied in this work

Through the work in this thesis, I wanted to be able to offer process support (the artefact)
to improve software security prioritisation in agile software development projects. Thus, it
was important to understand the context of agile software development projects as well as the
potential of process support to improve software security prioritisation. To achieve this, I iterated
over the design cycle. Initially the goal was to build understanding, and thus broadness was
emphasised over depth. Then the work narrowed down on one company and one way to help this
company with a regular security meeting approach. Finally, similar meetings were studied in
two more companies to get a broader understanding of how this treatment could be relevant also
for other companies. Figure 3.2 outlines the iterations over the design cycle. There the approach
is roughly divided into five iterations, where not all steps were addressed in each iteration.

The approach started with an empirical investigation of the problem and the context. This
was done through studying the practices and challenges of public companies related to software
security, and through studying one prominent technique from literature, the Protection Poker
software security game [64, 65], with students. At this stage, the context models studied (public
companies and students) were selected based on convenience, as the goal was to get started
in understanding the context, its challenges, and experiment with potential treatments. This
initial empirical investigation gave a better understanding of the challenges this work needed
to address, both in the context and with techniques. This improved understanding was used to
guide the work in the second cycle, where I identified and structured relevant empirical findings
documented in literature, and developed an initial treatment design (the Security Intention

22 Chapter 3. Research approach

Meeting Series). Both these outputs were important in sharpening the research focus in the
remaining cycles.

After having established this broad view of the problem, I now dug deep into the specifics
of security prioritisation in one company, investigating the influences on security priority in
two projects in this company. I also investigated more thoroughly the concept of “good enough”
security, using my experiences from this company together with theory on objectivity and
experiences from co-authors. Both these activities were useful to come to a deeper understanding
of what would be required from a treatment, and how to evaluate a treatment. Then, a revised
treatment design was brought to this company, based on the Security Intention Meeting Series
approach outlined in a previous iteration. After evaluating this treatment in the company,
two other companies were brought into the study, allowing for studying the same or a similar
treatment in different contexts. Finally, the results of the studies of instantiations of the Security
Intention Meeting Series were made into recommendations for research and practice on using
regular security prioritisation meetings. Note that although the approach taken was that of
design science, and the initial goal was to design and validate a treatment, it became evident
along the way that prescriptive approaches were likely to not reach broad adoption. Thus, the
output of this thesis in terms of treatment, is in form of recommendations and not a prescribed
technique to apply.

As outlined in the Introduction, I explored two main knowledge questions in this work.
These were relatively stable throughout the work with the thesis, while the sub-questions to the
second knowledge questions varied throughout. Figure 3.3 places the papers and their research
questions in relation to the overall knowledge questions and the design cycle iterations. For RQ1,
the trajectory of the investigation moves from more general studies to a longitudinal case study,
all culminating in a conceptual model of influences on security priority. For RQ2, the initial
emphasis was on understanding how to work risk-centric (RQ2.2) with software security, either
generally or through meetings (using the technique Protection Poker [64, 65]), and why this
was not much adopted among the studied public organisations (RQ2.5). The results from this
investigating prompted an exploration of the role of security experts (RQ2.3), a topic that was
followed up in later studies as well. The concept of good enough security (RQ2.1), a concept
central to this thesis, was explored. Then the emphasis moved towards the role of meetings
(RQ2.4), identifying a potential meeting concept (the Security Intention Meeting Series) and
studying meetings in companies (including their adoption (RQ2.5)).

3.3. Use of case studies and technical action research within a design science approach 23

3.3 Use of case studies and technical action research within a
design science approach

The design science approach can encompass a variation of research methods. Wieringa
[14] outlines the following example research methods that can be used with design science:
observational case studies, single-case mechanism experiments, technical action research,
statistical difference-making experiments, and survey research. The problem that this thesis
investigates (i.e., security prioritisation in agile software development projects) was considered
difficult to move to the laboratory, as it represents a complex social phenomenon where the
boundaries between the phenomenon and the context was blurred [75]. Further, there was not a
strong theoretical basis to build on for survey research. Thus, we opted for the alternatives that
were closest to the field: observational case studies and technical action research.

Wieringa describes observational case studies as “a study of a real-world case without
performing an intervention” and technical action research as “the use of an experimental artifact
to help a client and to learn about its effects in practice” [14]. In this thesis, both were necessary.
Case studies were used to understand the context and treatments already implemented, while
action research was used when introducing treatments in the context to help the companies
and evaluate the treatment. Table 3.1 gives an overview of the use of case studies and action
research in this thesis. Note that in the initial studies (as reported on in Paper A, B, and C), other
research methods were utilised as well, and thus there are aspects of those studies that would not
be consider neither case study research nor action research. Furthermore, a literature review was
performed to synthesise findings from related empirical studies. For all the studies, the research
methods and the rationale for selecting these objects of study are described in the papers.

24 Chapter 3. Research approach

Initial empirical
exploration.

Investigate relevant
literature.

Suggest treatment
concept.

Build a stronger
understanding of key

concepts.

Validate treatment
concept in one

company.

Extend investigation
and validation of the
treatment concept.

Extract
recommendations.

Problem investigation:
• Empirical study of current

challenges and practices (Paper
A and B).

Treatment design and validation:
• Experiment with Protection

Poker (Paper C)

Problem investigation:
• Build a stronger understanding of

the problem through surveying
literature for relevant empirical
results (Paper D)

Treatment design:
• Suggest a treatment concept: The

Security Intention Meeting Series
(Paper E) Problem investigation /

implementation evaluation:
• Explore the concept of “good

enough” security (Paper F)
• Study influences on security

prioritisation and the effects of a
security initiative in one
company (Paper G)

Treatment design and validation:
• Revise and concretise the

treatment concept for validation
in one company (Paper H)

Problem investigation:
• Study a similar treatment in a

second company (Paper H)
Treatment design and validation:
• Revise treatment and validate in

a third company (Paper H)

Treatment design:
• Recommendations for practice

and research related to the
treatment concept (Paper H)

Figure 3.2: The design cycle iterations of this thesis. Note that for practical purposes,
to distinguish the iterations in the figure, I have used two colours and the arrows
representing the cycles go in different directions. This does not have any significance
when it comes to the method - each arrow represents one design cycle iteration.

3.3. Use of case studies and technical action research within a design science approach 25

w

RQ1 What
influences the
security
prioritisation
throughout an agile
software
development
project?

RQ2 How can
security roles and
activities support an
agile software
development
project in reaching a
“good enough”
prioritisation of
security?

Initial
empirical

exploration.

Paper C
"To what extent is

Protection Poker accepted
by the players, both in the

short term and in the
longer term?"

"What lessons learned and
improvements to

Protection Poker are
identified by the players?"

Output: improvement
suggestions

Investigate relevant
literature.

Suggest treatment
concept.

Paper D
"What factors are found in
current empirical research

to influence and/or
characterize security

requirements work in agile
projects in an industry

setting?"
"How do these factors

impact the security
requirements work and its

effect?"
Output: conceptual

framework of security
requirements work

Paper E

Output: the concept of
the Security Intention

Meeting Series

Paper G
"What influences the
security prioritisation
throughout an [Agile

Software Development]
project?"

"How can security
professionals increase the

attention key decision
makers give to security in

an ASD project?"
Output: conceptual model

of influences;
recommendations for

security experts

Build a stronger
understanding of key

concepts.
Validate treatment concept

in one company.

Paper F
Discuss "objectivity in

relation to security,
exploring what it would

mean to have an
“objectively correct” level

of security, and which
security analysis

approaches can support
objective judgements
about “good enough

security”."
Output: strategies

Paper H
How can regular security meetings centred on making
security prioritisations and decisions be organised to
maximise their positive effect on the priority given to

security?
What effects are seen by adopting this type of meeting?

What facilitates or hinders the adoption of such meetings?
Output: recommendations for practice and research

Extend investigation
and validation of the
treatment concept.

Extract
recommendations.

Paper A + B
"How can current software

organisations work with
software security in a risk-

centric way?"
Output: triggers and
barriers for software

security; areas to improve;
potential strategies

bridging the gap between
software security and
information security

1 32

5

4

RQ2.1 Paper F

RQ2.2 Paper A

RQ2.3 Paper B Paper G

RQ2.4 Paper C Paper E Paper H Paper H

RQ2.5 Paper C Paper H Paper H

RQ2.1 How does the concept of “good enough” security relate to software security
strategies?
RQ2.2 How can agile software development projects work with software security in
a risk-centric way?
RQ2.3 How can security experts increase the attention given to security by key
decision makers in an agile software development project?
RQ2.4 How can security meetings be organised to improve software security
prioritisation?
RQ2.5 How can adoption of security prioritisation activities be supported?

Figure 3.3: The relation between the knowledge questions, the research questions in
the papers, and the design cycle iterations. Some papers have contributions to more
than one knowledge question.

26 Chapter 3. Research approach

Table 3.1: Overview of studies (CS = case study; AR = action research; LR = literature
review, I = interviews)

Study Paper Method Treatment Context Rationale

S1: Risk-
based prac-
tices in pub-
lic compan-
ies

A, B,
F

CS, I NA Public com-
panies

Used data collected in previ-
ous studies to understand the
problem context

S2: Cap-
stone study

C AR Protection
Poker

Students Experiment with one prom-
ising technique from literat-
ure. Easy access to many
cases to study.

S3: Literat-
ure review

D LR NA Published
empirical
studies in
companies

Synthesise findings from re-
lated studies to understand
the current state of know-
ledge and identify research
needs.

S4: In-
fluences
and the
security re-
quirements
initiative

F, G CS Security
requirements
initiative

One
medium-
sized
company

Deeper understanding of
what influences the priority
given to security, including
the role of the security ex-
pert.

S5: Security
meetings

H AR Security Inten-
tion Meeting
Series instanti-
ation

Two com-
panies (one
medium-
sized, one
small)

Instantiation of the security
intention meeting approach
in two companies, to help
them and evaluate the ap-
proach.

S6: Security
group

H CS Security inten-
tion meeting
instantiation

One
medium-
sized
company

Company already running
meetings with similar goals
as the security intention meet-
ing approach.

C
ha

pt
er 4

Contributions

This chapter gives an overview of the main contributions of this thesis. For each main
contribution, a short summary of the contribution is provided. Then the trajectory towards the
contribution is described, including how it relates to the individual papers, and an argument is
provided as to why this constitutes a contribution to the current body of knowledge. More details
about the contributions and how they advance state of the art can be found in the papers. Figure
4.1 shows the relations between the papers, the contributions, and the knowledge questions.
Table 4.1 summarises the contributions of the papers.

4.1 C1 - A conceptual model of the influences on security priority
in agile software development

Main contribution: A conceptual model of influences on security priority. The model consists
of the following influence areas: driving force, visibility, motivation, room to manoeuvre, and
process match.
Main foundation: A longitudinal case study of influences on the priority given to security in
two software development projects.
Purpose: Identify areas to focus on for practitioners that want to influence the priority given
to security. Provide a foundation for researchers wanting to investigate how companies can be
supported in organising their software security work to support security being given priority by
self-managed teams.

27

28 Chapter 4. Contributions

RQ1

RQ2

RQ2.1

RQ2.2

RQ2.3

RQ2.4

RQ2.5

C1

C2

C3

C4

A

B

C

D

E

F

G

H

Knowledge questions Contributions Papers

Figure 4.1: Illustration of the relation between the knowledge questions, the contribu-
tions, and the papers

Understanding “what influences the security prioritisation throughout an agile software
development project” (RQ1) implies understanding how security is given priority (or not) in
agile software development, how it changes throughout a project, and what leads to this change.
This is a very broad topic, as prioritisation in agile software development happens throughout
and many stakeholders and aspects has been known to be influence or be actively involved or
considered in this prioritisation [41, 61]. In addressing this knowledge question, this thesis
thus sought to gain a broad overview, while at the same time dig deep into one case to ensure a
thorough understanding of what influences can play out in a project. This led to the following
main contribution: a conceptual model of influences on security prioritisation, mainly based on
a deep-dive into two projects in one company. Figure 4.2 gives an overview of the trajectory
towards this contribution.

The conceptual model of influences on security priority is mainly based on Paper G, but
also bears relations to Paper A and Paper D:

• Paper A contribution: The trajectory towards this contribution started in Paper A, where a
study of public companies revealed that the companies we studied did not seem to follow a
risk-based approach to software security to any large extent. Rather, other aspects seemed
to have a stronger impact on the priority software security was given. Based on the study,
we identified triggers and barriers for software security activity.

• Paper D contribution: In Paper D, we used published empirical studies to create a

4.1. C1 - A conceptual model of the influences on security priority in agile software
development 29

St
u

d
y

1 Triggers and
barriers for
software
security

(Paper A)

St
u

d
y

3 Conceptual
framework of
security
requirements
work

(Paper D)

St
u

d
y

4 Conceptual
models of
influences on
security
priority

(Paper G)

Figure 4.2: The progress towards contribution C1

conceptual framework for security requirements work in agile software engineering.
The motivation was to build an understanding of the key concepts that impact and/or
characterise security requirement work, which is central to software security prioritisation.
This paper builds a foundation for research within the area of security requirements work,
by structuring the empirical knowledge and identifying knowledge gaps. In this thesis,
this paper became a basis for the work presented in Paper G, providing research direction
and an initial coding structure.

• Paper G contribution: In Paper G we studied one company and their initiative to improve
software security. We followed two projects, and identified influences on the priority given
to security. These influences were organised into a conceptual model. Paper G defined the
influence categories of the conceptual model, described how the influences from the case
study were grouped into influence categories, and showed how these influence categories
are well supported in literature. As part of this, Paper G, mapped these influence categories
back to the triggers and barriers identified in Paper A, showing that these triggers could fit
within the conceptual model.

The conceptual model of influences on security priority represents a contribution to the
knowledge in the field for the following reasons. Although the literature documents numerous
challenges to software security and other qualities in agile software development [2–5, 8, 9]
and points to the risk of software security being neglected in agile development projects [2–5],
there is to my knowledge no studies going in depth on one project to understand what influences
security priority throughout a project. Thus, this represents new knowledge despite the influence
areas being well documented in related studies.

The usefulness of the conceptual model for research is demonstrated by its usefulness in the
analysis performed in Paper H, where these influence areas were used to build understanding of
the effects of security meetings in that study. Furthermore, the broad support for the influence

30 Chapter 4. Contributions

categories in literature supports the assumption that this conceptual model can be useful for a
broader set of projects, although being based on findings from one company. We expect that for
security experts that want to support self-managed development teams in their software security
prioritisation, knowledge of these influence categories can help them assess the situation, identify
areas of improvement, and provide more targeted support for the software security prioritisation
in the teams. This, however, needs to be evaluated in future studies.

4.2 C2 - Identified and evaluated strategies that security experts
can take in influencing the security priority of agile software
development projects

Main contribution: Recommendations for security experts on how to support prioritisation
of security in form of: 1) strategies that are important for moving towards good enough
security (including a variety of perspectives, building interactional expertise, and supporting
confirmability), and 2) recommendations for what to consider doing and what to beware of
doing in order to support security being prioritised by a project.
Main foundation: 1) Theory on objectivity from philosophy and qualitative research methods,
and 2) a longitudinal case study of a security requirements initiative led by one security expert
in a company.
Purpose: Provide recommendations for practitioners that want to increase the priority given to
security in agile software development projects. Extend knowledge on the security expert role
in relation to agile software development teams.

To understand how security experts can support an agile software development project in
reaching a good enough prioritisation of security (RQ2), it is necessary to understand both what
can make this interaction challenging and what are potential effects of certain strategies that a
security expert might take. In this thesis, the initial emphasis was on identifying challenges
to this interaction and exploring reasons why the relation between information security and
software security could be challenging. Then the work moved towards exploring potential
strategies, either from a theoretical or a practical perspective. Figure 4.2 gives an overview of
the trajectory towards this contribution.

The strategies for security experts are mainly based on Paper F and G, but also bear relations
to Paper A and B:

• Paper A and B contribution: Study S1 revealed challenges related to responsibilities
and stakeholder collaboration that included a disconnect between those responsible for
information security and those involved in software development. These challenges

4.2. C2 - Identified and evaluated strategies that security experts can take in influencing the
security priority of agile software development projects 31

St
u

d
y

1 Exploration of
the relation
between
information
security and
software
security

(Paper A and B)

St
u

d
y

1
 a

n
d

 4 Identification
of strategies
that can lead to
good enough
security, based
on theory on
objectivity

(Paper D)

St
u

d
y

4 Recommen-
dations based
on a study of a
security
requirements
initiative

(Paper F)

Figure 4.3: The progress towards contribution C2

were identified and discussed in Paper A. Paper B then extended the discussion of this
relation, based on previous work identifying and discussing similar challenges [76], thus
contributing to a better understanding of why this relation can turn out to be difficult.
Potential strategies that were suggested, included to have Security Champions in the teams
and engage the team in risk-centred activities.

• Paper F contribution: A central concept in this thesis is that of “good enough” security.
Paper F explored this concept using theory on objectivity from philosophy and qualitative
research methods literature. It used this literature together with experiences from Studies
S1 and S4, as well as previous experiences from the authors, to explore the concept of
good enough security and arrive at three strategies likely to be important in supporting
good enough security, namely including a variety of perspectives, building interactional
expertise, and supporting confirmability.

• Paper G contribution: Paper G reported on a longitudinal case study that followed a
security requirements initiative led by a security expert in a company. Based on the
security expert’s experiences and the conceptual model of influences on security priority
(C1), the paper provided recommendations for what security experts should consider
doing and what challenges they should beware of, to support security gaining priority in
an agile software development project.

The recommendations made in terms of strategies for security experts, represent a contribution
to the knowledge in the field for the following reasons. Although challenges in the relation
between information security and software security is well documented in literature [10, 11, 76],
there are not many studies focusing on this relation. Thus, the reported experiences in this thesis,
especially in Paper G that report on one initiative in detail, contributes to improved understanding
of the experiences of security experts. I am not aware of other studies that follow a similar
security initiative to provide recommendations for security experts in strengthening security
prioritisation in agile development projects. The concept of good enough security is present in

32 Chapter 4. Contributions

literature [77–79]. Still, using theory on objectivity with the aim to explore this concept and
arrive at potential strategies, represents a new approach to understanding this important concept.

This contribution is mainly directed towards practitioners. The recommendations are
rooted in practical experiences in companies. Still, more research is needed to know if these
recommendations are relevant for a broader set of contexts than what was studied in this thesis.
For researchers, this contribution contributes to a better understanding of the security expert role
in software development, thus being a foundation for developing improved support for security
experts wanting to interact with development projects to improve the software security.

4.3 C3 - A new and evaluated meeting approach for continuous
software security in agile software development

Main contribution: The description of a meeting concept, the Security Intention Meeting Series
and an evaluation of three instantiations of this meeting concept, resulting in 19 implications for
practice.
Main foundation: Case study research and action research with companies.
Purpose: Provide practical advice for agile software development companies wanting to use
meetings to improve their security prioritisation. Build knowledge on the potential effect of
security meetings on security prioritisation.

Several activities could have the potential to support an agile software development project
in reaching good enough prioritisation of security (RQ2). Examples of activities that could
support this includes security testing, risk analysis, and software maturity assessments using,
e.g., BSIMM (as discussed in Paper F). The emphasis on security meetings in this thesis builds
on results from Study S1 (Paper A and B). Study S1 pointed towards the need to: 1) address
challenges related to responsibilities and stakeholder cooperation, 2) build risk perception and
competence, and 3) develop practical ways of doing risk analysis that matches with the needs of
agile development projects. Protection Poker [64, 65] was identified as a potential technique to
adopt to achieve this as it: 1) was able to gather a broad set of stakeholders, 2) had already been
found to be able to raise awareness and knowledge on security, and 3) offered a practical risk
estimation technique specifically suited for agile development. Thus, it was decided to study
the adoption and effect on this technique (Study S2). Findings from the study of Protection
Poker led to the development of a new meeting concept, the Security Intention Meeting Series,
that was instantiated and evaluated in three companies (Study S5 and S6). This led to 19
recommendations for practitioners wanting to use security decision meetings to improve security
prioritisation. The trajectory towards this contribution is illustrated in Figure 4.4.

4.3. C3 - A new and evaluated meeting approach for continuous software security in agile
software development 33

St
u

d
y

2 Lessons learned
and
improvements
from studying
Protection
Poker

(Paper C)

The concept of
the Security
Intention
Meeting Series

(Paper E)

St
u

d
y

5
 a

n
d

 6 Implications for
practitioners
from studying
regular security
prioritisation
meetings in
three
companies

(Paper H)

Figure 4.4: The progress towards contribution C3

The recommendations for practitioners on how to use security decision meetings are mainly
based on Paper E and H, but also bear relations to Paper C:

• Paper C contribution: Protection Poker was studied with students and with industry
practitioners. This led to the identification of eight benefits and 17 challenges with the
technique. Many of the challenges experienced with Protection Poker had, however, also
been identified for other security activities, implying that they are general challenges not
related to this particular technique. The study identified four issues that needed to be
improved for Protection Poker: making the time needed to play Protection Poker more
acceptable for the teams; ensuring impact from playing Protection Poker on the security
of the end-product; better integrate Protection Poker with project planning activities, and;
clarify the scenarios for better adoption of Protection Poker in a project. Suggestions were
made for how to improve upon all these concerns.

• Paper E contribution: Paper E proposed a new meeting concept called the Security
Intention Meeting Series. This meeting concept was developed in response to evidence
from literature that security is often dealt with in an “accidental” way in agile software
development projects, being neglected or left to the interests of individuals involved in the
project [2, 3, 23]. The meeting concept was also a response to one of the main challenges
identified for Protection Poker, namely finding the time to play Protection Poker in every
iteration. This proposed security meeting concept is flexible in how it is organised,
including its timing, and is intended to involve key decision makers as participants.

• Paper H contribution: The Security Intention Meeting Series proposed in Paper E, was
instantiated in two companies in Study S5. Furthermore, a similar meeting approach was
studied in another company already running a regular security group meeting (Study S6).
Paper H reports the results from studying these three meeting instantiations, describes
several positive effects on security prioritisation, and highlights 19 implications for practice.
Furthermore, the paper relates the findings to literature that has reported experiences from

34 Chapter 4. Contributions

related techniques, including to findings from the study of Protection Poker (Paper C).
These recommendations for practitioners represent a contribution for the following reasons.

Although meetings are common within agile software development, there is limited research
on their effectiveness when it comes to software security. There are a few studies available on
relatable meeting types (see Paper H for an overview) but these have main differences with the
Security Intention Meeting Series approach. The suggestions for this meeting approach fills a
gap, and provides practitioners with another approach to consider for their projects. Furthermore,
the insight provided into the effect of this meeting type, as well as the improved understanding
of strategies that can support this effect, largely represent new knowledge.

When it comes to usefulness, the emphasis on interactions and face-to-face discussions
found within agile software development [7] supports the use of meetings. Thus, there is
reason to assume that security meetings are relatively easy to integrate into agile development
practices. The studies of security meetings that are part of this thesis (Study S2, S5, and S6)
have demonstrated the potential usefulness of such meetings, while showing that adoption still
can be challenging. This contribution can help companies apply a meeting approach that is more
likely to be applied and be effective, as they can build on the experiences in the studies that are
part of this thesis. For researchers, knowledge on effects of such meetings, as well as insight
into what brings about this effect, is useful to understand the role of meetings in supporting
security prioritisation in agile software development projects. Such knowledge can be built upon
in future research, to get to a more complete understanding and better advice to practitioners.

4.4 C4 - Rich descriptions of practical experiences with improving
software security prioritisation, bridging the gap between
science and practice

Main contribution: Rich descriptions of practices and experiences from companies, and
identification of their research implications.
Main foundation: Case study research and action research with companies
Purpose: Support further research on this topic, giving insight into the practical challenges
experienced in companies and identifying important research needs moving forward.

The case studies and action research studies in companies were aimed to arrive at process
support for companies, and thereby improve their software security prioritisation. However,
these studies also provide an important contribution to research in that it provides a deep insight
into the practical experiences and challenges of companies in doing security prioritisation and
in applying meetings to improve their security prioritisation.

4.4. C4 - Rich descriptions of practical experiences with improving software security
prioritisation, bridging the gap between science and practice 35

The knowledge transfer to research is mainly based on Paper G and H:
• Paper G contribution: The study of the security requirements initiative initiated by the

security officer of the studied company gave insight into the practicalities of doing security
prioritisation, and of trying to influence security prioritisation. Furthermore, it described
how a varied set of influences on the security priority played out during the course of the
studied projects. Research needs were identified based on this study.

• Paper H contribution: This paper provided a rich description of the experiences of the
companies that applied the meetings, and identified nine implications for research.

This represents a contribution to research for the following reason. There is a call for more
empirical research within this topic, as few detailed descriptions of experiences and practices of
companies exists in the research literature [9, 23–26]. These papers report on empirical studies,
and do so with rich descriptions of experiences.

This contribution is mainly aimed towards researchers, and useful to support future
research. It is intended to build a stronger understanding of the practical challenges experienced
by companies, as input to theorisation and to guide development of new approaches and
recommendations aimed towards practitioners. Still, practitioners can also find it useful get
access to rich descriptions of experiences in other companies to learn from these.

36 Chapter 4. Contributions

Table 4.1: Overview of paper contributions

Paper Relevance to the thesis My contribution

A Found that companies generally did not work
risk based with software security, but there
were other triggers and barriers for software
security (C1). Identified challenges related
to responsibilities and stakeholder collabor-
ation, including a disconnect between those
responsible for information security and those
involved in software development (C2).

I was the lead author and wrote
about 90% of the manuscript. I was
strongly involved in data collection
in one of the three sub-studies, and re-
sponsible for analysing the combined
data from all the three sub-studies.

B Extended upon the discussion of the relation
between information security and software
security, started in Paper A, and identified
potential strategies moving forward (C2)

I was the lead author and wrote
about 80% of the manuscript. I was
strongly involved in data collection
in one of the three sub-studies, and re-
sponsible for analysing the combined
data from all the three sub-studies.

C Studied one meeting technique, Protection
Poker, identifying benefits, challenges, and
improvements (C3).

I was the lead author and wrote about
90% of the manuscript. I was re-
sponsible for organising the capstone
study. I performed all data analysis.

D Developed a conceptual framework for se-
curity requirements work in agile software
engineering based on published empirical
studies (C1).

I was the lead author and wrote close
to 100 % of the manuscript. I iden-
tified and analysed the primary and
secondary studies, and synthesised
them into a conceptual framework.

E Conceptualised a meeting technique, the Se-
curity Intention Meeting Series, intended to
involve key decision makers in regular secur-
ity prioritisation (C3).

I was the lead author and wrote close
to 100% of the paper. I had the idea
for this meeting, which was refined
in discussions with the co-authors.

F Explored the concept of “good enough” secur-
ity based on theory on objectivity, resulting
in identification of three strategies (C2).

I was the lead author and wrote about
80 % of the paper, based on collect-
ive experiences by the authors. I
provided the theoretical lens of ob-
jectivity from philosophy.

G Developed a conceptual model of influences
on security priority based on a longitudinal
study in one company (C1). Provided recom-
mendations for what security experts could
consider doing and what they should beware
of in order to improve security prioritisation
(C2). Provided a rich description of the ex-
periences and the context (C4).

I was the lead author and wrote close
to 100% of the manuscript. I did all
the data collection and analysis.

H Presented experiences with meetings that are
in line with the idea of the Security Intention
Meeting Series, identifying implications for
practice (C3) and for research (C4).

I was the lead author and wrote close
to 100% of the manuscript. I did all
the data collection and analysis.

C
ha

pt
er 5

Discussion

The main goal of this thesis was to understand the following: How can regular security
prioritisation be integrated into agile software development so that software products end up
with a level of security that is “good enough”? This led to the identification of a design goal and
knowledge questions. In Chapter 4 we described the main contributions of this thesis in relation
to the knowledge questions. In this section we discuss the contribution towards the overall goal
of the thesis and the design goal.

5.1 Research objective revisited

This thesis aims to tackle the design problem to improve software security prioritisation by
developing process support for making and following up on software security priorities and
decisions that satisfies the needs of agile development projects in order to support projects in
achieving “good enough” security. The term process support can mean many things. In this
thesis this has taken the form of:

• Identified and evaluated strategies that security experts can take in influencing the security
priority of agile software development projects (C2), and

• A new and evaluated meeting approach for continuous software security in agile software
development (C3).

Figure 5.1 visualises the design science contribution of this thesis, using a template for a visual
abstract for design science [80, 81]. The visual abstract starts with stating a technological rule
that is aimed at capturing the main theoretical contribution of the work using one phrase. Then

37

38 Chapter 5. Discussion

the visual abstract provides an overview of the research scope and process through describing
the problem instance, the solution, and the approach taken to understand the problem and design
and evaluate a solution. This is followed by a design knowledge assessment using the criteria of
relevance, rigor, and novelty. In the following we discuss in more detail the relevance, rigor, and
novelty of this work as outlined in the visual abstract.

To improve prioritisation of security in agile software development apply
regular security prioritisation meetings and empower security experts

with knowledge on how to influence the security priority.

Problem
Software security has a tendency to
be neglected in agile software
development projects. A broad set
of influences impacts the priority
given to security in an agile software
development project, and many of
these have the potential to reduce
the priority of software security
below what is needed (C1). Security
experts in the development
company have a potential role in
increasing the priority given to
security, but many challenges have
been identified when it comes to
the relation between security
experts and development.

Solution
a) The conceptualisation of an
approach for regular security
prioritisation meetings in agile
software development, and
recommendations for practitioners
on how this meeting approach can
be applied in their context (C3), and;
b) recommendations for security
experts on what to consider doing
and what to beware of when it
comes to influencing the priority
given to security in agile software
development projects (C2).

Problem
understanding:
Review of
literature
(including a
review of
empirical studies
of security
requirements
work). Interviews
and studies with
companies.

Validation
approach:

Evaluate the
meeting

approach (C3)
in three

companies.
Use the

conceptual
model of

influences (C1)
as an analytical

framework.

Relevance:
The solution is aimed towards companies wanting to improve their software security prioritisation. Literature extensively documents
challenges with security getting the necessary priority in agile software development projects. The recommendations are mainly targeted
towards small- and medium-sized development companies as they build on studies in such companies. For researchers, the practical
experiences documented in this thesis and the identified implications for research (C4) can support relevance of future research.

Rigor:
Three instantiations of the meeting approach have been studied, leading to the recommendations for how to organise such meetings.
Recommendations for security experts on how to influence security prioritisations are based on a longitudinal case study in one company,
and is backed by findings reported in the literature. The recommendations are based on a conceptual model of influences (C1) identified
through this case study. The same conceptual model was useful as a basis for analysing the findings in the study of the meetings and their
effects, something that strengthens the confidence in this underlying framework.

Novelty:
No other studies that I am aware of have gone this deep into the reasons why security gains or does not gain priority in an agile software
development context, in order to give advice to security experts on how to influence the priority given to security. Furthermore, although
meetings are prominent in agile software development there exists little guidance on how to use meetings to improve the security
prioritisation in agile software development. Thus, this thesis represents new knowledge significantly extending the guidance given to
practitioners that want to influence the security prioritisation in an agile software development context.

Solution design
approach:
Experimentation
with Protection
Poker, leading to
the development
of a new meeting
approach that
was iterated over
in an action
research study.
Case study of
influences on the
security priority
and the practices
of a security
expert.

Figure 5.1: Overview of the contribution using the visual abstract template for design
science research [80, 81]

5.1. Research objective revisited 39

5.1.1 Relevance

Relevance is concerned with the relevance of the technological rule for a class of problems
and solutions, and for stakeholders [80, 81]. This thesis addresses the problem of security
prioritisation in agile software development, a problem that is extensively documented in
literature. To illustrate, several systematic literature reviews highlight the problem of neglection
of software security and other qualities in agile software development [2–5]. On the other
hand, recent empirical studies have challenged this former evidence of quality requirements
neglection. In their study, Jarzkębovic and Weichbroth [82] found that quality aspects, and
in particular security, were considered important by all interviewees and that, contrary to
expectations, quality requirements were not neglected. Though requiring effort, working with
quality requirements were not considered problematic and interviewees talked about their
attempts to identify non-functional requirements in the early phases of their projects. Similarly,
Karhapää et al. [50] found less challenges than they expected in their interview-based multiple
case study, and concluded that this may imply that companies doing agile software development
have become more quality-aware and have found ways to handle quality requirements. Still,
the studies performed in this thesis (e.g., Paper G) points to a risk of neglect despite increasing
awareness of the importance of software security. Thus, there is reason for assuming that
supporting security prioritisation is important for many companies now and moving forward.

The solution, in this case the recommendations for conducting meetings (C3) and the
direction offered to security experts (C2), are based on case studies and action research studies
in small- and medium-sized companies. These types of studies offer the possibility for analytical
generalisation [75] where one may make a theoretical claim on how the findings can be applied
to situations beyond the studied case, e.g., based on similarity of concepts or principles [75].
Although I do not claim that the recommendations made would be relevant for all agile software
development projects, I find it likely that they can be useful for small- and medium-sized
development companies that have some security expert role and are in need of improving their
software security maturity. The solutions proposed are relatively simple to apply and can
be adapted to the needs of the company. Such adaption is even recommended, as emerging
processes was found to be more easily adopted than highly prescriptive approaches (Paper H).
The solution offered is mainly targeted towards practitioners. Still, all contributions (C1-4)
expand current knowledge and can help enhance the relevance of future research (C1, C4).

5.1.2 Rigor

Rigor is concerned with the maturity of the technological rule. This includes whether it is based
on a valid understanding of the problem, whether the intervention is a valid solution to the

40 Chapter 5. Discussion

problem, and the validation of the design choices [80, 81]. These three aspects of rigor are
discussed below. Rigor is also related to threats to validity, that are discussed in Subseciton 5.2.

Software security is a complex topic in itself, with many risk factors and many potential
practices to adopt. Software development can be complex in terms of the software that
is developed and the situation in which the development occurs. The problem of security
prioritisation in agile software development is also complex, as demonstrated by the large
number of influences on security prioritisation identified in Paper G. Previous studies within
agile development have found that there can be considerable variations among companies in
their experiences with managing quality requirements [50, 51]. Consequently, this thesis puts a
strong emphasis on understanding the problem context, both broadly (Study S1 and S3) and in
specific instances (Study S4). The context has been considered in the design and analysis of the
studies, and the thesis contributes to an improved understanding of what aspects of a project and
its context influences the security prioritisation (C1).

The solution proposed in form of recommendations for meetings (C3) and for security
experts (C2) is based on studies in companies. The grounding of this solution in empirical
studies of real-life practices gives confidence in its relevance as a valid solution to the problem,
or at least a step towards a valid solution. The resulting recommendations have however not been
validated in other companies. Thus, it is not possible to conclude whether the developed solution
is valid in a broader set of contexts. Still, being a valid solution for a given company does not
mean that it is a valid solution to the overall objective that this thesis set out to contribute to.
The technological rule depicted in the visual abstract in Figure 5.1 can be directly mapped to the
overall objective of integrating regular security prioritisation into agile software development
projects. However, the objective was also to do this so that the level of security in the product
is good enough. A basic assumption of this thesis is that to reach good enough security as a
strategy - and not by chance - security prioritisation is a prerequisite. However, as good enough
security is hard to measure (Paper F), it is challenging to provide any hard data on whether the
treatment developed in this thesis (recommendations for meetings (C3) and for security experts
(C2)) leads agile software development projects towards good enough security. This thesis
does not make any attempts to verify the assumption that strengthening security prioritisation
is the way to go to achieve good enough security. Paper F that explored the concept of good
enough security pointed to the following practices as important supporters of good enough
security: including a variety of perspectives, building interactional expertise, and supporting
confirmability. The meeting concept proposed in Paper E supports all these practices, indicating
a potential for this meeting type to support good enough security. However, in practice, not all
meeting instantiations studied (Paper H) were successful in including such a broad variety of
roles. Despite an emphasis in the studies on understanding effects and adoption of the techniques

5.1. Research objective revisited 41

studied, it is hard to make conclusions on these aspects. This is however not a challenge only in
this work but has been identified as a challenge also with previous empirical studies within this
area (Paper D).

The design choices to develop recommendations for security meetings and security expert
interventions were grounded in literature and in experiences made in the early phases of the
work on this thesis. Regarding meetings, the meeting concept of Protection Poker [64, 65] was
early on identified as a promising solution (Paper A and B), and was studied further in this thesis
(Paper C). Meetings were already important in agile software development and prominent in
agile methods such as Scrum [1, 56]. Regarding security experts, this role had been identified as
having a potential to influence software security prioritisation [12, 49, 72]. At the same time, it
had been identified that security experts often would have challenges in their interaction with
software development projects due to a divide between security and development [10, 11, 76].
These findings from literature were confirmed and extended upon in this thesis. Experiences
with Protection Poker led to a new meeting concept (Paper E), that then was evaluated and
resulted in a set of recommendations for practitioners (Paper H). Challenges identified in the
relation between security experts and development (Paper B) were further explored in a study of
a security initiative led by a security expert (Paper G), in order to get to recommendations for
experts wanting to influence the security prioritisation of agile software development projects.
There are however other possible interventions that could have been studied and developed.
This could be in form of other types of interventions (e.g., security testing), different meeting
concepts, or interventions by other stakeholders than security experts.

The solution (artefact) designed ended up being less concrete than envisioned at the beginning
of the work on this thesis. This happened as a response to findings - both in literature and in
the studies - that emerging practices were more promising than prescribed approaches. Thus,
the thesis does not propose a prescriptive practice that companies should apply but rather offer
guidance and new knowledge that can support companies in building and improving upon their
own practices related to security prioritisation.

5.1.3 Novelty

Novelty is concerned with positioning the technological rule related to previous knowledge.
Novelty can take the form of improved problem insights, novel solutions, or mapping of existing
solutions to a known problem [80]. The knowledge provided by this thesis on influences on
security prioritisation (C1) represents improved problem insight into the challenge of getting
software security prioritised in practice in self-managed agile projects. Furthermore, the rich
descriptions provided of the practices studied in Study S4 and S5, contribute with increased
understanding of the practical challenges of software security prioritisations, as well as the

42 Chapter 5. Discussion

practicalities experienced by a security expert when applying a security prioritisation meeting
approach (C4). The solution proposed, in form of recommendations for meetings (C2) and for
security experts (C3), is novel in that I am not aware of the presence of such recommendations
in existing literature. Furthermore, limited existing studies exist that can provide the basis
for such advice. However, the basic idea of running meetings and involving security experts
are not novel, but rather well-known practices that are applied by many companies to some
extent without considering this to be a specific technique or approach. This way, the thesis both
provides a mapping of well-known practices to a known problem and offers recommendations
not previously available.

5.2 Threats to validity

Limitations to the design science contribution of this thesis were to some extent discussed
above, related to the concept of rigor (Subsection 5.1.2). In the following, this discussion on
limitations is continued by considering threats to validity of the overall research approach of
this thesis. More discussions of limitations and threats to validity of the individual studies are
provided in each paper. Validity in design science can be discussed based on criteria relevant
for the empirical methods used [83]. Thus, the following discussion on threats to validity use
validity criteria that are relevant for case study research in software engineering [84], adding
the criteria of instantiation validity suggested for design science [85]. Table 5.1 provides a
high-level overview of the discussed validity threats, and shows which of the main contributions
they are most related to.

Table 5.1: Overview of the discussed validity threats and their relevance to the main
contributions (a ‘V’ indicating relevance)

Threat to validity C1 C2 C3 C4

Construct validity and instantiation validity:
Broad and unclear concept security prioritisation V V V -
Broad and unclear concept good enough security V V V -
Many potential instantiations (of context and approach) - V V -

Internal validity:
Measure effects on security priority and good enough security V V V V
Missing perspectives V V V V

External validity:
Analytic generalisation from one or a few cases V V V V

Reliability:
Dependence on the researcher V V V V

5.2. Threats to validity 43

5.2.1 Construct validity and instantiation validity

Construct validity can be defined as “to what extent the operational measures that are studied
really represent what the researcher has in mind and what is investigated according to the research
questions” [84]. For design science, a related validity category of instantiation validity has been
suggested, that refer to “the validity of IT artifacts as instantiations of theoretical constructs”
[85].

A central construct related to this thesis is that of security prioritisation, a rather broad
concept encompassing many potential activities and aspects. Thus, a large part of the work of
this thesis has been to increase understanding of the concept of security prioritisation, including
what influences the security prioritisation (C1). As security prioritisation in agile software
development was not well understood in the literature, and because of the broadness of the
concept, this thesis is deliberately broad in its approach. This is reflected in the initial phase
of the thesis in Study S1 and S3, and in the approach to identifying influences on security
prioritisation in Study S4. Such a broad concept is however difficult to define and measure. The
same goes for another central construct in this thesis, that of good enough security. As discussed
in Paper F and above (Subsection 5.1.2), this construct is hard to define and hard to point to
and measure. We approached this concept through theory on objectivity together with practical
experiences from research with companies, building a stronger understanding of the concept.
However, as good enough security is a fleeting concept that may change throughout the lifecycle
of a software product, it is challenging to make any clear statement that the concept of good
enough security has been properly grasped or even studied.

This thesis has studied several instantiations of the problem domain and of treatments. The
treatments studied (the Protection Poker, the Security Intention Meeting Series, and security
expert initiatives) are all examples of possible interventions that could have been studied, and
the instantiations of these treatments represent one possible way of using them in the studied
context. It is quite possible that if the instantiation had happened differently this would have
somewhat altered the findings. To better understand the impact of the instantiation in a context,
the studies in the companies (Study S4-6) pay strong attention to the context, both in data
collection and analysis. Still, there are many more contexts that could have been investigated
and many other treatments and instantiations that could have been studied. The findings even
emphasise that emerging techniques that are adapted to the needs of the companies should be
pursued, emphasising the importance of understanding a variety of instantiations. Runeson et al.
point out that to “validate a technological rule it must be instantiated, preferably in multiple
cases of problem-solution pairs that instantiate the rule where each case adds to the validity
strength of the rule” [83]. A strength of this work is that it studies several such problem-solution

44 Chapter 5. Discussion

pairs. Still, this work encourages more research into related techniques in other contexts to better
understand which approaches work where and why.

5.2.2 Internal validity

Internal validity is concerned with causal relations and the risk that the effects observed may have
been caused by factors not considered in the study [84]. This thesis grapples with understanding
the effects of various interventions, such as Protection Poker (Study S2), the Security Intention
Meeting Series (Study S4-S6), or other security expert initiatives (S4). For information on how
the individual studies deal with concerns related to internal validity, see the papers. There is
however a general challenge present in all the studies related to understanding and measuring
effects. As also discussed above, both the concepts of good enough security and of security
prioritisation are broad and hard to measure, and studying effects related to these concepts is
challenging. This, however, does not imply that it should not be attempted. Although a concept
is difficult to make clear and definite, this does not mean that it should not be scientifically
studied but rather that this should be considered in study design and analysis [86].

To study effects of security initiatives and understand how these effects come about I opted
for in-depth studies of selected cases, providing rich descriptions. However, no attempts were
made to measure the effect of initiatives in terms of improved software security, e.g., through
security testing. Thus, the evidence that any of the studied treatments gave better software
security in the code is weak or non-existent. However, even if I had attempted to measure
such effects through security testing, it would be very difficult to know whether any change
in security level identified this way (between projects or over time) would be because of the
treatment, and not because of other aspects of the context or challenges with the testing approach.
Thus, the value of such testing would be limited. Thus, this work relies on informants reporting
on what they experience as effects. Furthermore, the triangulation involved in data collection
(observations, interviews, and documentation) strengthens the internal validity.

Although the emphasis has been on in-depth studies of cases, there are aspects of the cases
that could have been studied more thoroughly. Case studies commonly cope with situations
where there are many variables and where the boundary between the phenomenon and the
context is blurred [75]. In this thesis, the emphasis on the security expert role has come at the
cost of understanding perspectives of, e.g., developers. Thus, there may be aspects of the studied
cases that are not properly grasped and perspectives that are not fully accounted for.

5.3. Recommendations for future work 45

5.2.3 External validity

External validity “is concerned with to what extent it is possible to generalize the findings,
and to what extent the findings are of interest to other people outside the investigated case”
[84]. In the case of this thesis, what is aimed for is analytical generalisation where we make
projections about the transferability of findings from individual cases. This thesis has studied
several problem-solution pairs. It uses differences and similarities between these cases to make
a theoretical contribution that is assumed to be relevant also for related problem-solution pairs.
To support readers in evaluating whether the findings from a study is relevant for the context
they have in mind, I have provided a rich description of the cases studied. This however had to
be balanced with the wish for anonymity of the studied companies.

5.2.4 Reliability

Reliability “is concerned with to what extent the data and the analysis are dependent on the
specific researchers” [84]. Although most of the work on this thesis has been done by one
individual, all studies have involved other researchers. This was important to increase reliability
of findings, by having more people involved in studying most of the cases and having discussions
on findings from the analysis.

In the work on this thesis, care has been taken in research design to utilise my strengths to
advance the research, while limiting negative effects of areas where my skills are less developed.
To illustrate, although the emphasis on the security expert is grounded in a need for more
research on this role, it is also based on the fact that my main background is within information
security. This background made me better positioned to relate to and understand the role of the
security expert than that of a developer, tester, or product owner. Thus, my ability to perform
good quality research was assumed to be better when taking the perspective of the security
expert. Note, however, that according to Collins [87], it is not necessary with contributory
expertise (in this case, the skills to contribute to development) to be able to understand and study
a phenomenon (in this case, software development). Rather, there is a need for interactional
expertise (in this case, the skills to engage developers, product owners, etc., in talk).

5.3 Recommendations for future work

The papers provide recommendations for future work based on the individual studies. In addition
to what is stated in the papers, I would however like to point towards a few more general avenues
for further research based on the overall contribution of this thesis.

46 Chapter 5. Discussion

This thesis has considered security prioritisation in agile software development, but security
is only one of several quality aspects that can be relevant for a software development project.
Literature shows that quality aspects (including security) share many challenges in relation to
agile software development, e.g., that they are “fuzzy” [50], that there can be a lack of recognition
by stakeholders [4, 5], and that they can be neglected [4, 5, 9]. Thus, there is a potential to join
forces, and strengthen the quality perspective more generally, not only considering security. This
also has the benefit of avoiding a potential pitfall, where there is the need for a separate role or
meeting or approach for every quality aspect, something that will end up in a challenging overall
process even if all the individual approaches are easy to apply [9]. Furthermore, there is the
issue of different quality aspects interacting and having dependencies [88]. Thus, an interesting
avenue of further research is to understand better how agile development projects can work with
different qualities in a way that is supportive of each other. Two of the secondary papers (Paper
M and N) represent a step in this direction.

This thesis set out to develop process support for making and following up on software
security priorities and decisions in an agile software development project. The end-result goes in
this direction, providing a meeting approach and recommendations for security experts. However,
the research also points to the benefit of emerging practices, as results indicate that these are
more easily adopted longer term than practices that are prescribed. This illustrates a conflict that
is present in the thesis, and that is described in Paper G as a choice between an emerging vs. a
prescribed approach to software security. Others have discussed similar challenges using the
term ambidextrous security [89]. There is a need for some top-down approach to security, as
those responsible for security in an organisation need some assurance that security is adequately
taken care of. Still, there are benefits of giving development teams freedom to work with
security in a way that matches the needs of the team and of the software they are developing. A
related challenge is that of combining emerging software security practices and self-management
principles with maturity models and the need to demonstrate to customers and users that the
company can be trusted with security. This challenge represents an interesting topic for further
inquiry, considering the needs of various types of companies.

C
ha

pt
er 6

Conclusion

The objective of this thesis was to find how regular security prioritisation can be integrated
into agile software development so that software products end up with a level of security that
is “good enough”. To achieve this objective, the thesis consists of studies that identify what
influences the security prioritisation throughout and agile software development projects, and
how security roles and activities can support an agile software development project in reaching
a “good enough” prioritisation of security. An underlying assumption is that good security
prioritisation is necessary for achieving adequate security within acceptable costs.

Security prioritisation is a practical problem in need of practical solutions, but there is also
a need for knowledge that can contribute to a better understanding of the mechanisms behind
security gaining or losing priority in a software development project. Through a design science
approach, this thesis has explored security prioritisation in agile software development to get to
both knowledge and practical advice. This has resulted in four main contributions:

• A conceptual model of the influences on security priority in agile software development
• Identified and evaluated strategies that security experts can take in influencing the security

priority of agile software development projects
• A new and evaluated meeting approach for continuous software security in agile software

development
• Rich descriptions of practical experiences with improving software security prioritisation,

bridging the gap between science and practice
These represent contributions to practice and to research.

47

48 Chapter 6. Conclusion

Knowledge on the influences on security prioritisation is structured into an influence model
consisting of the following influence areas: driving force, visibility, motivation, room to
manoeuvre, and process match. For practitioners, this influence model can be used as a basis
for security experts to understand the current state of support for security being prioritised
in projects, and improve upon this support. Strategies for security experts take the form of
advice related to the influence model on what to consider and beware of when it comes to the
influence areas of the model. Furthermore, this thesis proposes strategies for moving towards
good enough security based on theory on objectivity. Promising strategies are including a
variety of perspectives, building interactional expertise, and supporting confirmability. This
further motivates the design of the meeting concept, the Security Intention Meeting Series, as a
potential approach to achieving this. Based on studying instantiations of this meeting concept
in three companies, this thesis is able to provide recommendations to companies for arranging
such meetings in a manner that increases the effect of the meetings on security prioritisation and
supports longer-term adoption.

For researchers, this thesis provides a model of security influences that can be used for
designing further research studies in this area. The relevance of this influence model is
strengthened by its strong support in literature, and represents new knowledge on security
prioritisation within an agile software development context. The knowledge developed through
studying the practices of security experts and the instantiations of security meetings are important
for research to better understand the practical challenges and experiences faced by practitioners.
Thus, a main emphasis has been made on providing rich descriptions from the studies in
the companies. Literature has identified a need for more empirical studies in this area and
has identified a gap between software security practices and needs in many projects today.
Improved knowledge of the practical experiences of companies can help researchers improve
upon existing support provided to agile development projects in terms of available practices and
recommendations.

References

[1] S. Türpe and A. Poller, ‘Managing Security Work in Scrum: Tensions and Challenges,’
in Proceedings of the International Workshop on Secure Software Engineering in
DevOps and Agile Development (SecSE 2017), 2017, pp. 34–49. [Online]. Available:
http://ceur-ws.org/Vol-1977/paper4.pdf.

[2] I. Inayat, S. S. Salim, S. Marczak, M. Daneva and S. Shamshirband, ‘A systematic
literature review on agile requirements engineering practices and challenges,’ Computers
in Human Behavior, vol. 51, pp. 915–929, 2015. doi: 10.1016/j.chb.2014.10.046.

[3] H. Oueslati, M. M. Rahman and L. b. Othmane, ‘Literature Review of the Challenges
of Developing Secure Software Using the Agile Approach,’ in 2015 10th International
Conference on Availability, Reliability and Security, 2015, pp. 540–547. doi: 10.1109/A
RES.2015.69.

[4] W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martínez-Fernández, A. M. Vollmer,
P. Rodríguez, X. Franch and M. Oivo, ‘Management of quality requirements in agile and
rapid software development: A systematic mapping study,’ Information and Software
Technology, vol. 123, 2020. doi: 10.1016/j.infsof.2019.106225.

[5] A. Jarzębowicz and P. Weichbroth, ‘A systematic literature review on implementing non-
functional requirements in agile software development: Issues and facilitating practices,’
in International Conference on Lean and Agile Software Development, Springer, 2021,
pp. 91–110. doi: 10.1007/978-3-030-67084-9_6.

[6] L. Williams, G. McGraw and S. Migues, ‘Engineering Security Vulnerability Prevention,
Detection, and Response,’ IEEE Software, vol. 35, no. 5, pp. 76–80, 2018. doi:
10.1109/MS.2018.290110854.

[7] K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries et al., ‘Manifesto for agile software
development,’ 2001. [Online]. Available: https://agilemanifesto.org/.

49

50 References

[8] R. Khaim, S. Naz, F. Abbas, N. Iqbal, M. Hamayun and R. Pakistan, ‘A review of security
integration technique in agile software development,’ International Journal of Software
Engineering & Applications, vol. 7, no. 3, pp. 49–68, 2016. doi: 10.5121/ijsea.2016.7
304.

[9] W. Alsaqaf, M. Daneva and R. Wieringa, ‘Quality requirements in large-scale distributed
agile projects – a systematic literature review,’ in Requirements Engineering: Foundation
for Software Quality, P. Grünbacher and A. Perini, Eds., Springer International Publishing,
2017, pp. 219–234. doi: 10.1007/978-3-319-54045-0_17.

[10] D. Ashenden and D. Lawrence, ‘Security dialogues: Building better relationships between
security and business,’ IEEE Security & Privacy, vol. 14, no. 3, pp. 82–87, 2016. doi:
10.1109/MSP.2016.57.

[11] T. W. Thomas, M. Tabassum, B. Chu and H. Lipford, ‘Security during application
development: An application security expert perspective,’ in Proceedings of the 2018
CHI Conference on Human Factors in Computing Systems, 2018, pp. 1–12. doi:
10.1145/3173574.3173836.

[12] S. Xiao, J. Witschey and E. Murphy-Hill, ‘Social influences on secure development tool
adoption: Why security tools spread,’ in Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing, 2014, pp. 1095–1106. doi:
10.1145/2531602.2531722.

[13] N. H. Chowdhury, M. T. Adam and G. Skinner, ‘The impact of time pressure on
cybersecurity behaviour: A systematic literature review,’ Behaviour & Information
Technology, vol. 38, no. 12, pp. 1290–1308, 2019. doi: 10.1080/0144929X.2019.158376
90.

[14] R. J. Wieringa, Design science methodology for information systems and software
engineering. Springer, 2014.

[15] R. A. Caralli, J. F. Stevens, L. R. Young and W. R. Wilson, ‘Introducing octave allegro:
Improving the information security risk assessment process,’ Carnegie-Mellon Univ
Pittsburgh PA Software Engineering Inst, Tech. Rep., 2007. [Online]. Available:
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2007_005_001_14

885.pdf.

[16] ‘ISO/IEC 27005:2011 Information technology - Security techniques - Information security
risk management,’ International Organization for Standardization, Tech. Rep., 2011.

[17] R. S. Ross, L. A. Johnson et al., ‘Guide for Applying the Risk Management Framework
to Federal Information Systems: A Security Life Cycle Approach,’ 2010.

References 51

[18] M. Howard and S. Lipner, The Security Development Lifecycle. Microsoft Press, 2006.

[19] G. McGraw, Software Security: Building Security In. Addison-Wesley, 2006.

[20] C. Weir, I. Becker, J. Noble, L. Blair, M. A. Sasse and A. Rashid, ‘Interventions for
long-term software security: Creating a lightweight program of assurance techniques for
developers,’ Software: Practice and Experience, vol. 50, no. 3, pp. 275–298, 2020. doi:
10.1002/spe.2774.

[21] C. Weir, I. Becker and L. Blair, ‘A Passion for Security: Intervening to Help Software
Developers,’ in 2021 IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP), 2021, pp. 21–30. doi: 10.1109/ICSE-SE
IP52600.2021.00011.

[22] S. Migues, E. Erlikhman, J. Ewers and K. Nassery, ‘BSIMM 12 2021 Foundations
Report,’ Tech. Rep., 2021. [Online]. Available: https://www.bsimm.com/content/dam
/bsimm/reports/bsimm12-foundations.pdf.

[23] E. Terpstra, M. Daneva and C. Wang, ‘Agile Practitioners’ Understanding of Security
Requirements: Insights from a Grounded Theory Analysis,’ in 2017 IEEE 25th Interna-
tional Requirements Engineering Conference Workshops (REW), 2017, pp. 439–442.
doi: 10.1109/REW.2017.54.

[24] D. Bishop and P. Rowland, ‘Agile and secure software development: An unfinished story,’
Issues in Information Systems, vol. 20, 1 2019.

[25] L. R. Saldanha and A. Zorzo, ‘Security requirements in agile software development: A
systematic mapping study,’ Pontifical Catholic University of Rio Grande Do Sul, Tech. Rep.
087, 2019. [Online]. Available: https://www.pucrs.br/politecnica/wp-content/upl
oads/sites/166/2019/07/Technical_Report_087-Leandro_Ripoll_Saldanha.pdf.

[26] H. Villamizar, M. Kalinowski, M. Viana and D. M. Fernández, ‘A Systematic Mapping
Study on Security in Agile Requirements Engineering,’ in 2018 44th Euromicro conference
on software engineering and advanced applications (SEAA), IEEE, 2018, pp. 454–461.
doi: 10.1109/SEAA.2018.00080.

[27] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes and N. B. Moe, ‘Risk Centric Activities in Secure
Software Development in Public Organisations,’ International Journal of Secure Software
Engineering (ĲSSE), vol. 8, no. 4, pp. 1–30, 2017. doi: 10.4018/IJSSE.2017100101.

[28] I. A. Tondel, M. G. Jaatun and D. S. Cruzes, ‘IT Security Is From Mars, Software
Security Is From Venus,’ IEEE Security & Privacy, vol. 18, no. 4, pp. 48–54, 2020. doi:
10.1109/MSEC.2020.2969064.

52 References

[29] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes and L. Williams, ‘Collaborative security risk
estimation in agile software development,’ Information and Computer Security, vol. 27,
pp. 508–535, 4 2019. doi: 10.1108/ICS-12-2018-0138.

[30] I. A. Tøndel and M. G. Jaatun, ‘Towards a Conceptual Framework for Security Re-
quirements Work in Agile Software Development,’ International Journal of Systems
and Software Security and Protection (ĲSSSP), vol. 11, no. 1, pp. 33–62, 2020. doi:
10.4018/IJSSSP.2020010103.

[31] I. A. Tøndel, D. S. Cruzes, M. G. Jaatun and K. Rindell, ‘The Security Intention Meeting
Series as a way to increase visibility of software security decisions in agile development
projects,’ in Proceedings of the 14th International Conference on Availability, Reliability
and Security, 2019, pp. 1–8. doi: 10.1145/3339252.3340337.

[32] I. A. Tøndel, D. S. Cruzes and M. G. Jaatun, ‘Achieving “Good Enough” Software
Security: The Role of Objectivity,’ in Proceedings of the Evaluation and Assessment in
Software Engineering, 2020, pp. 360–365. doi: 10.1145/3383219.3383267.

[33] I. A. Tøndel, D. S. Cruzes, M. G. Jaatun and G. Sindre, ‘Influencing the security
prioritisation of an agile software development project,’ Computers & Security, vol. 118,
2022, issn: 0167-4048. doi: 10.1016/j.cose.2022.102744.

[34] I. A. Tøndel and D. S. Cruzes, ‘Continuous software security through security prioritisation
meetings,’ Journal of Systems and Software, vol. 194, 2022. doi: https://doi.org/10
.1016/j.jss.2022.111477.

[35] I. A. Tøndel, M. G. Jaatun, D. Cruzes and T. D. Oyetoyan, ‘Understanding Challenges
to Adoption of the Protection Poker Software Security Game,’ in Computer Security.
SECPRE CyberICPS 2018, S. K. Katsikas, F. Cuppens, N. Cuppens, C. Lambrinoudakis,
A. Antón, S. Gritzalis, J. Mylopoulos and C. Kalloniatis, Eds., 2019, pp. 153–172. doi:
978-3-030-12786-2_100.

[36] I. A. Tøndel, T. D. Oyetoyan, M. G. Jaatun and D. Cruzes, ‘Understanding Challenges
to Adoption of the Microsoft Elevation of Privilege Game,’ in Proceedings of the 5th
Annual Symposium and Bootcamp on Hot Topics in the Science of Security (HoTSoS ’18),
2018. doi: 10.1145/3190619.3190633.

[37] D. S. Cruzes, M. G. Jaatun, K. Bernsmed and I. A. Tøndel, ‘Challenges and Experiences
with Applying Microsoft Threat Modeling in Agile Development Projects,’ in 2018 25th
Australasian Software Engineering Conference (ASWEC), 2018, pp. 111–120. doi:
10.1109/ASWEC.2018.00023.

References 53

[38] I. A. Tøndel, D. S. Cruzes and M. G. Jaatun, ‘Using Situational and Narrative Analysis
for Investigating the Messiness of Software Security,’ in Proceedings of the 14th ACM /
IEEE International Symposium on Empirical Software Engineering and Measurement
(ESEM’20), 2020. doi: 10.1145/3382494.3422162.

[39] G. Brataas, I. A. Tøndel, E. Okstad, O. Løkberg, M. G. Jaatun, G. K. Hanssen and
T. Myklebust, ‘The Quality Triage Method: Quickly Identifying User Stories with Quality
Risks,’ in 2020 2nd International Conference on Societal Automation (SA), 2021, pp. 1–7.
doi: 10.1109/SA51175.2021.9507110.

[40] I. A. Tøndel and G. Brataas, ‘SecureScale: Exploring Synergies between Security and
Scalability in Software Development and Operation,’ in Proceedings of the European
Interdisciplinary Cybersecurity Conference (EICC ’22), 2022, pp. 36–41. doi: 10.1145
/3528580.3528587.

[41] S. Türpe, ‘The trouble with security requirements,’ in 2017 IEEE 25th International
Requirements Engineering Conference (RE), 2017, pp. 122–133. doi: 10.1109/RE.2017
.13.

[42] L. Kocksch, M. Korn, A. Poller and S. Wagenknecht, ‘Caring for IT Security: Accountab-
ilities, Moralities, and Oscillations in IT Security Practices,’ Proc. ACM Hum.-Comput.
Interact., vol. 2, 2018. doi: 10.1145/3274361.

[43] S. Deleersnyder, B. De Win et al., ‘Presenting OWASP SAMM, OWASP SAMM v2.0 -
Core Model Document,’ The Open Web Application Security Project (OWASP), Tech.
Rep. [Online]. Available: https://drive.google.com/file/d/1ZWMk4dpS3zpXjE28wi4
cf5Lq6TUjeA5x/view.

[44] P. Chandra et al., Software assurance maturity model, A guide to building security into
software development v1.0, OWASP Project, 2008.

[45] S. Bartsch, ‘Practitioners’ perspectives on security in agile development,’ in 2011 Sixth
International Conference on Availability, Reliability and Security, 2011, pp. 479–484.
doi: 10.1109/ARES.2011.82.

[46] A. Poller, L. Kocksch, S. Türpe, F. A. Epp and K. Kinder-Kurlanda, ‘Can security
become a routine? a study of organizational change in an agile software development
group,’ in Proceedings of the 2017 ACM Conference on Computer Supported Cooperative
Work and Social Computing (CSCW ’17), Association for Computing Machinery, 2017,
pp. 2489–2503. doi: 10.1145/2998181.2998191.

54 References

[47] J. D. Blaine and J. Cleland-Huang, ‘Software Quality Requirements: How to Balance
Competing Priorities,’ IEEE Software, vol. 25, no. 2, pp. 22–24, 2008. doi: 10.1109/MS
.2008.46.

[48] S. L. Kanniah and M. N. Mahrin, ‘A review on factors influencing implementation of
secure software development practices,’ International Journal of Computer and Systems
Engineering, vol. 10, no. 8, pp. 3032–3039, 2016. doi: 10.5281/zenodo.1127256.

[49] S. L. Kanniah and M. N. Mahrin, ‘Secure software development practice adoption model:
A delphi study,’ Journal of Telecommunication, Electronic and Computer Engineering
(JTEC), vol. 10, no. 2-8, pp. 71–75, 2018.

[50] P. Karhapää, W. Behutiye, P. Rodrıguez, M. Oivo, D. Costal, X. Franch, S. Aaramaa,
M. Choraś, J. Partanen and A. Abherve, ‘Strategies to manage quality requirements in
agile software development: A multiple case study,’ Empirical Software Engineering,
vol. 26, no. 2, pp. 1–59, 2021. doi: 10.1007/s10664-020-09903-x.

[51] T. Olsson, K. Wnuk and S. Jansen, ‘A validated model for the scoping process of quality
requirements: A multi-case study,’ Empirical Software Engineering, vol. 26, no. 2,
pp. 1–29, 2021. doi: 10.1007/s10664-020-09896-7.

[52] C. R. Nelson, G. Taran and L. d. Lascurain Hinojosa, ‘Explicit risk management in
agile processes,’ in Agile Processes in Software Engineering and Extreme Programming,
P. Abrahamsson, R. Baskerville, K. Conboy, B. Fitzgerald, L. Morgan and X. Wang, Eds.,
Springer, 2008, pp. 190–201. doi: 10.1007/978-3-540-68255-4_20.

[53] B. G. Tavares, C. E. S. da Silva and A. D. de Souza, ‘Risk management analysis in Scrum
software projects,’ International Transactions in Operational Research, vol. 26, no. 5,
pp. 1884–1905, 2019. doi: 10.1111/itor.12401.

[54] B. G. Tavares, C. E. S. da Silva and A. D. de Souza, ‘Practices to improve risk management
in agile projects,’ International Journal of Software Engineering and Knowledge
Engineering, vol. 29, no. 03, pp. 381–399, 2019. doi: 10.1142/S0218194019500165.

[55] J. Nyfjord and M. Kajko-Mattsson, ‘Integrating risk management with software de-
velopment: State of practice,’ in Proceedings of the International MultiConference of
Engineers and Computer Scientists, Citeseer, vol. 2008, 2008.

[56] K. Schwaber, Agile project management with Scrum. Microsoft press, 2004.

[57] O. Al-Baik and J. Miller, ‘The kanban approach, between agility and leanness: A
systematic review,’ Empirical Software Engineering, vol. 20, no. 6, pp. 1861–1897, 2015.
doi: 10.1007/s10664-014-9340-xc.

References 55

[58] Z. Masood, R. Hoda and K. Blincoe, ‘Real World Scrum A Grounded Theory of Variations
in Practice,’ IEEE Transactions on Software Engineering, vol. 48, no. 5, pp. 1579–1591,
2022. doi: 10.1109/TSE.2020.3025317.

[59] M. O. Ahmad, J. Markkula and M. Oivo, ‘Kanban in software development: A systematic
literature review,’ in 39th Euromicro conference on software engineering and advanced
applications, IEEE, 2013, pp. 9–16. doi: 10.1109/SEAA.2013.28..

[60] E. Corona and F. E. Pani, ‘A review of lean-kanban approaches in the software devel-
opment,’ WSEAS transactions on information science and applications, vol. 10, no. 1,
pp. 1–13, 2013.

[61] Z. Bakalova, M. Daneva, A. Herrmann and R. Wieringa, ‘Agile requirements prioritization:
What happens in practice and what is described in literature,’ in International Working
Conference on Requirements Engineering: Foundation for Software Quality, Springer,
2011, pp. 181–195. doi: 978-3-642-19858-8_18.

[62] D. Leffingwell, Agile software requirements: lean requirements practices for teams,
programs, and the enterprise. Addison-Wesley Professional, 2010.

[63] K. Rindell, S. Hyrynsalmi and V. Leppänen, ‘Busting a Myth: Review of Agile Security
Engineering Methods,’ in Proceedings of the 12th International Conference on Availability,
Reliability and Security (ARES ’17), Association for Computing Machinery, 2017. doi:
10.1145/3098954.3103170.

[64] L. Williams, M. Gegick and A. Meneely, ‘Protection Poker: Structuring Software Security
Risk Assessment and Knowledge Transfer,’ in Engineering Secure Software and Systems,
F. Massacci, S. T. Redwine and N. Zannone, Eds., Springer, 2009, pp. 122–134. doi:
978-3-642-00199-4_11.

[65] L. Williams, A. Meneely and G. Shipley, ‘Protection Poker: The New Software Security
"Game",’ IEEE Security & Privacy, vol. 8, no. 3, pp. 14–20, 2010. doi: 10.1109/MSP.20
10.58.

[66] D. Ionita, C. van der Velden, H.-J. K. Ikkink, E. Neven, M. Daneva and M. Kuipers,
‘Towards risk-driven security requirements management in agile software development,’
in Information Systems Engineering in Responsible Information Systems, C. Cappiello
and M. Ruiz, Eds., Springer International Publishing, 2019, pp. 133–144. doi: 10.1007
/978-3-030-21297-1_12.

56 References

[67] D. Baca, M. Boldt, B. Carlsson and A. Jacobsson, ‘A Novel Security-Enhanced Agile
Software Development Process Applied in an Industrial Setting,’ in 2015 10th International
Conference on Availability, Reliability and Security, 2015, pp. 11–19. doi: 10.1109/ARE
S.2015.45.

[68] C. Weir, A. Rashid and J. Noble, ‘Challenging software developers: Dialectic as a
foundation for security assurance techniques,’ Journal of Cybersecurity, vol. 6, no. 1,
2020. doi: 10.1093/cybsec/tyaa0070.

[69] H. Palombo, A. Z. Tabari, D. Lende, J. Ligatti and X. Ou, ‘An Ethnographic Understanding
of Software ({In) Security} and a {Co-Creation} Model to Improve Secure Software
Development,’ in Sixteenth Symposium on Usable Privacy and Security (SOUPS 2020),
2020, pp. 205–220.

[70] A. Tuladhar, D. Lende, J. Ligatti and X. Ou, ‘An Analysis of the Role of Situated Learning
in Starting a Security Culture in a Software Company,’ in Seventeenth Symposium on
Usable Privacy and Security (SOUPS 2021), 2021, pp. 617–632.

[71] D. Geer, ‘Are companies actually using secure development life cycles?’ Computer,
vol. 43, no. 6, pp. 12–16, 2010. doi: 10.1109/MC.2010.159.

[72] C. Weir, S. Migues and L. A. Williams, ‘Exploring the shift in security responsibility,’
IEEE Security & Privacy, pp. 2–11, 2022. doi: 10.1109/MSEC.2022.3150238.

[73] A. R. Hevner, S. T. March, J. Park and S. Ram, ‘Design science in information systems
research,’ MIS Quarterly, vol. 28, no. 1, pp. 75–105, 2004. doi: 10.2307/25148625.

[74] A. Hevner and S. Chatterjee, ‘Design science research in information systems,’ in Design
Research in Information Systems: Theory and Practice. Springer US, 2010, pp. 9–22.
doi: 10.1007/978-1-4419-5653-8_2.

[75] R. K. Yin, Case study research and applications, 6th ed. Sage, 2018.

[76] K. R. van Wyk and G. McGraw, ‘Bridging the gap between software development and
information security,’ IEEE Security & Privacy, vol. 3, no. 5, pp. 75–79, 2005. doi:
10.1109/MSP.2005.118.

[77] R. Sandhu, ‘Good-enough security,’ IEEE Internet Computing, vol. 7, no. 1, pp. 66–68,
2003. doi: 10.1109/MIC.2003.1167341.

[78] K. Beznosov, ‘Extreme security engineering: On employing XP practices to achieve’good
enough security’without defining it,’ in First ACM Workshop on Business Driven Security
Engineering (BizSec), Fairfax, VA, vol. 31, 2003.

References 57

[79] G. Hurlburt, ‘“Good Enough" Security: The Best We’ll Ever Have,’ Computer, vol. 49,
no. 7, pp. 98–101, 2016. doi: 10.1109/MC.2016.212.

[80] M.-A. Storey, E. Engstrom, M. Höst, P. Runeson and E. Bjarnason, ‘Using a Visual
Abstract as a Lens for Communicating and Promoting Design Science Research in
Software Engineering,’ in 2017 ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2017, pp. 181–186. doi: 10.1109/ESE
M.2017.28.

[81] E. Engström, M.-A. Storey, P. Runeson, M. Höst and M. T. Baldassarre, ‘How soft-
ware engineering research aligns with design science: A review,’ Empirical Software
Engineering, vol. 25, no. 4, pp. 2630–2660, 2020. doi: 10.1007/s10664-020-09818-7.

[82] A. Jarzębowicz and P. Weichbroth, ‘A Qualitative Study on Non-Functional Requirements
in Agile Software Development,’ IEEE Access, vol. 9, pp. 40 458–40 475, 2021. doi:
10.1109/ACCESS.2021.3064424.

[83] P. Runeson, E. Engström and M.-A. Storey, ‘The design science paradigm as a frame
for empirical software engineering,’ in Contemporary Empirical Methods in Software
Engineering, M. Felderer and G. H. Travassos, Eds. Cham: Springer International
Publishing, 2020, pp. 127–147. doi: 10.1007/978-3-030-32489-6_5.

[84] P. Runeson and M. Höst, ‘Guidelines for conducting and reporting case study research in
software engineering,’ Empirical software engineering, vol. 14, no. 2, pp. 131–164, 2009.
doi: 10.1007/s10664-008-9102-8.

[85] R. Lukyanenko, J. Evermann and J. Parsons, ‘Instantiation validity in IS design research,’
in Advancing the Impact of Design Science: Moving from Theory to Practice, M. C.
Tremblay, D. VanderMeer, M. Rothenberger, A. Gupta and V. Yoon, Eds., Springer, 2014,
pp. 321–328. doi: 10.1007/978-3-319-06701-8_22.

[86] J. Law, After method: Mess in social science research. Routledge, 2004.

[87] H. Collins, Forms of life: The method and meaning of sociology. MIT Press, 2019.

[88] W. Alsaqaf, M. Daneva and R. Wieringa, ‘Quality requirements challenges in the context
of large-scale distributed agile: An empirical study,’ Information and software technology,
vol. 110, pp. 39–55, 2019. doi: 10.1016/j.infsof.2019.01.009.

[89] D. S. Cruzes and E. A. Johansen, ‘Building an ambidextrous software security initiative,’
in Balancing Agile and Disciplined Engineering and Management Approaches for IT
Services and Software Products, IGI Global, 2021, pp. 167–188. doi: 10.4018/978-1-7
998-4165-4.ch009.

A
pp

en
di

x A
Primary papers

59

A
61

Paper A: ‘Risk Centric Activities in Secure Software Development in
Public Organisations’

A written permission to include this material in its published form [27] has been obtained from
IGI Global.

A

DOI: 10.4018/IJSSE.2017100101

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

﻿
Copyright © 2017, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

Risk Centric Activities in Secure Software
Development in Public Organisations
Inger Anne Tøndel, Department of Computer Science, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway & SINTEF Digital, Trondheim, Norway

Martin Gilje Jaatun, SINTEF Digital, Trondheim, Norway

Daniela Soares Cruzes, SINTEF Digital, Trondheim, Norway

Nils Brede Moe, SINTEF Digital, Trondheim, Norway

ABSTRACT

When working with software security in a risk-centric way, development projects become equipped
to make decisions on how much security to include and what type of security pays off. This article
presents the results of a study made among 23 public organisations, mapping their risk-centric activities
and practices, and challenges for implementing them. The authors found that their software security
practices were not based on an assessment of software security risks, but rather driven by compliance.
Additionally, their practices could in many cases be characterised as arbitrary, late and error driven,
with limited follow up on any security issues throughout their software development projects. Based
on the results of the study, the authors identified the need for improvements in three main areas:
responsibilities and stakeholder cooperation; risk perception and competence; and, practical ways of
doing risk analysis in agile projects.

Keywords
Agile Development, Empirical Study, Public Organisations, Risk Analysis, Risk Centric Activities, Risk
Communication, Risk Management, Software Security

1. INTRODUCTION

Today, nearly all sectors of society depend on software systems to operate efficiently. As the
dependency on software has grown, so have the threats towards these systems and the potential
consequences of incidents. Though network security measures (such as firewalls and anti-virus
software) can improve the security of the software systems, these only address the symptoms of the
real problem: software that is crippled with vulnerabilities (McGraw, 2006).

Building security into the software, through adopting software security activities and measures in
the development process, is a direct and effective way of dealing with cyber threats towards software
systems. This, however, adds to the development time and cost, and this addition needs to be justified.
Working towards 100% secure systems is not feasible, thus it is necessary to identify which part of the
software is more critical regarding security and which activities will be most efficient and effective in

1

A

63

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

2

securing the software product. Taking a risk centric approach to software security means to identify
what are the major risks of the particular software that is developed, and use this knowledge of risk
to guide decisions regarding software security. This is commonly recommended by current secure
Software Development Lifecycles (SDLs), frameworks and maturity models (Chandra, 2008; Howard
& Lipner, 2006; McGraw, 2006; McGraw et al., 2016).

In many ways, security can be considered to be in conflict with the current trend of “continuous
development” (Fitzgerald & Stol, 2017), reducing efficiency by delaying delivery of new features
(at least in the shorter term, though costs may be saved through having to provide fewer fixes later).
Agile software development uses an iterative approach to software construction, aimed at reducing
development time, and prioritising value, while improving software quality and inherently reducing
risk (Cockburn and Highsmith 2001). It is clear that people issues are the most critical in agile projects
and that these must be addressed if agile is to be implemented successfully (Cockburn and Highsmith
2001). Even though agile methods claim to be risk driven (Beck, 2000; Eclipse, 2016), some authors
have observed that risk management has been neglected in project management of agile projects
(Hijazi et al., 2012; Ibbs & Kwak, 2000; Junior et al., 2012; Raz et al., 2002). It may be more difficult
to establish a working process for software security activities in agile development compared to
waterfall-based development, where you could more easily have mandatory or recommended security
activities for the different software development phases (ben Othmane et al., 2014; Jaatun et al., 2015;
Microsoft, 2009). Oyetoyan et al. (2017) provide a brief overview of secure SDLs and conclude that
traditional approaches to software security do not necessarily work well with agile development
processes. Additionally, security is largely a systemic property, and with agile development it can be
more of a challenge to have a complete view of the final system (ben Othmane et al., 2014). At the
same time, agile development may come with some opportunities regarding security, e.g. to adapt to
new security threats and to have ongoing interaction with customers about security.

Risk centric software security is very much related to the way developers address security in the
projects. Still, other roles in an organisation (e.g. procurers, legal experts and information security
experts) can have major influences on a development project’s approach to security and can have
important parts to play when it comes to identifying and understanding risk, and in making risk-
based decisions in the projects. About ten years ago, van Wyk and McGraw (2005) pointed out the
important role of security experts in influencing and supporting the work on security in development
projects. There has however not been much research on the interaction between security experts and
development projects in agile development since then.

In this article, we address the following research question: How can current software organisations
work with software security in a risk centric way? As implied by this research question, we study
software security within development practices that are in major adoption today, meaning our context
is agile development. However, whereas agile methods are centred on the activities of teams, we take a
more holistic approach, including the perspectives of organisations and projects. To answer the research
question, we make a mapping of the risk centric activities, practices and challenges for implementing
them among 23 public organisations in Norway. This sector has been chosen for study for three reasons.
First, this sector has experienced a strong security push from the authorities, causing them to prioritise
security management in the organisations. As a consequence, the importance of having someone
being responsible for security has been emphasised, something that makes this sector an interesting
case to study when it comes to organisational influences on risk centric software security. Second,
this sector’s access to legal experts makes them aware of legal requirements on security, something
that increases the likelihood that software security is given some attention in software development.
Third, we had easy access to this sector through cooperation with the Norwegian Agency for Public
Management and eGovernment (Difi). The organisations studied have adopted agile practices for
software development for some time. In the organisations, we have talked mainly with information
security people, as these are in general given broad responsibility for all issues regarding IT security,

A

64

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

3

including software. To ensure that the development project perspective is included, two projects have
been studied in more detail from the viewpoint of the software architects.

The article is structured as follows. Section 2 gives an overview of current research on risk
management in agile development. Section 3 describes the research method used in the study. Section
4 presents the results of the study, whereas the implications of these results are discussed in Section
5, with an emphasis on making recommendations for research and practice. The threats to validity
are also discussed. Section 6 concludes the paper.

2. CURRENT STATE OF THE ART ON RISK CENTRIC SOFTWARE SECURITY

In this section, we start with explaining what type of activities we would expect to see in software
development if a risk management approach is taken to the software security work. Then we move
on to present current experiences on how risk management fits with the agile approach to software
development.
2.1. Software Security Risk Management
Software projects come with many uncertainties, including time-to market, stakeholder expectations
and budget (Islam et al., 2014). Such uncertainties lead to project risks. Software risk management
is a tool that can be used to manage and reason about these risks in a structured manner. Islam et
al. points out that despite the existence of several risk management methods particularly suited for
software projects, current research on software risk management shows that these are not well applied.
Practitioners’ concern is the tangible development cost that lead to project deliverables and thus
direct benefits. The impact of applying an overall risk management method on a software project is
unclear (Bannerman, 2008).

Security risks are one type of risk that software products face today. Within the area of cyber
security, there exist many standards, guidelines and research papers that suggest different ways of
managing risk and performing risk assessments. Some of the major ones are ISO/IEC 27005 (ISO/
IEC, 2011), OCTAVE Allegro (Caralli et al., 2007), and the NIST Risk Management Framework
(RMF) (NIST, 2010). ISO/IEC 27005 and OCTAVE Allegro are concerned with information security
risk management and take an organisational approach. RMF specifies a process for integrating
organisational risk management activities into system development. These documents claim that a
systematic approach to information security risk management is necessary for ensuring that security
activities are aligned with the organisational goals and objective, and that organisational needs for
security are identified and addressed in an effective and timely manner.

If looking more closely at the type of activities recommended in ISO/IEC 27005, OCTAVE
Allegro and RMF, one can identify common activities that one could expect to see when working
risk centric in an organisational context. The most obvious activity is that of performing a risk
analysis, including setting the scope of the analysis. Recommendations for how to do risk analysis
constitute a large part of these documents (e.g. as in OCTAVE Allegro where steps 1-7 of 8 could
be categorised as being part of the risk analysis activity). A risk analysis process naturally supports
another activity found in all these three documents, namely making decisions on how to treat the
risk. These two risk management activities (analysing risk and making decisions on what to do with
the risk) can be identified in ISO/IEC 27005, OCTAVE Allegro and RMF by looking at the steps
they recommend. By closer reading, one can however identify two other main activities: follow up
of risk, and communication of risk. ISO/IEC 27005 contains process steps for “risk monitoring and
review” and for “risk communication and consultation”. Though not specific steps in the methodology,
OCTAVE Allegro includes senior management sponsorship and training as important preparatory
activities. RMF, which is concerned with integration of risk management and development, moves
beyond just analysing the risk, by describing implementing, assessing and monitoring controls.

A

65

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

4

Communicating essential risk information to senior management is emphasised in RMF. To sum up,
key activities of risk management are:

•	 Risk Analysis (RA): Including characterising the system and the risk appetite, identifying threats
towards the system and assess the associated risk;

•	 Risk Treatment Decisions (RTD): Leading to requirements on controls and/or security activities needed;
•	 Risk Treatment Follow Up (RTFU): Intended to assess whether the treatments are implemented

and work as intended, and to monitor changes in risks;
•	 Risk Communication (RC): Towards senior managers, but also to make sure information

relevant for risk understanding (e.g. legal requirements, changes in threats) are shared between
projects and between organisational units.

Risk analysis activities in software security are motivated by similar arguments as in ISO/
IEC 27005, Octave Allegro and RMF; to more effectively and less expensively identify security
vulnerabilities and risks and establish mitigations (Howard & Lipner, 2006), and to make better
trade-off-decisions and prioritise development efforts based on risk (Chandra, 2008; McGraw, 2006).
In addition, the awareness raising among project teams (Chandra, 2008) is considered important,
especially when it comes to improved understanding of what factors may lead to negative outcomes
(Chandra, 2008) and the ability to think like an attacker (McGraw et al., 2016). Threat modelling is
even stated to be “The Cornerstone of the [Security Development Lifecycle], and the threat model “the
major [Security Development Lifecycle] artefact” that “must be used as a baseline for the product”
(Microsoft, 2009). As such, major software security frameworks, maturity models and secure SDLs
include activities very much related to risk management. Table 1 shows how the Building Security In
Maturity Model (BSIMM) (McGraw et al., 2016), the OWASP Software Assurance Maturity Model
(OpenSAMM) (Deleersnyder et al., 2017), the seven touchpoints for software security (McGraw,
2004) and Microsoft’s secure SDL (Howard & Lipner, 2006) all contain activities that are related to
the four key risk management activities described above.

Understanding and assessing security risk is known to be a complex challenge. A risk-based
approach usually implies having an overview of the criticality of the various software assets,
understanding potential threats and vulnerabilities (also from an attacker perspective) and being able to
provide estimates on likelihood and consequences of the different types of incidents that can harm the
software and impact the service the software delivers to its users. It is also necessary to understand how
the various risks can be mitigated effectively. Risk analysis, and especially quantitative risk analysis,
has been characterised by some as “a modern fairytale” in the domain of information security, as
there is no overview of all threats and not sufficient data to estimate probability and consequences.
To compound the challenge, there is typically not adequate method support (Oppliger, 2015). If this
is the case for information security, it is likely also the case (and maybe even more so) for software
security. There is limited empirical data available on what makes risk management difficult, both
for information security and software security. A review of risk analysis methods for IT systems
(Sulaman et al., 2013) identified a lack of evaluation of risk analysis methods. Despite the mantra
that all security work should be risk based, a study among information security professionals (Jourdan
et al., 2010) unveiled that as many as 25% stated that risk analysis was never or rarely performed for
their department or organisation. A main challenge that has been identified regarding information
security risk assessments is the estimation of likelihood and cost of information security risks, due
in part to limited historical data available and constantly changing risk factors (Cybenko, 2006; Fenz
& Ekelhart, 2010; Gerber & Von Solms, 2005; Rhee et al., 2012; Tøndel et al., 2015). Information
is an intangible asset where it is “extremely difficult if not impossible to determine precise value”
(Gerber & Von Solms, 2005), and many losses are never discovered and reported (Rhee et al., 2012).

A

66

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

5

2.2. Software Security Risk Management in Agile Development
Risk management can be said to be treated implicitly in agile development projects (Odzaly et al.,
2017; Tavares et al., 2017). As explained by Nelson et al. (2008), one such implicit risk management
technique is to prioritise tasks in the beginning of the iteration. As such, high-risk tasks can be
prioritised, something that can reduce overall project risk. But as Nelson et al. point out, risk
management is broader than prioritising high-risk tasks. There is a need to follow up on the risk and
take additional actions if necessary.

As the guidance provided by agile methods when it comes to risk management can be said to
be “very general” (Nyfjord & Kajko-Mattsson, 2008), research has aimed to tailor risk management
to agile development projects, with several approaches being suggested (Odzaly et al., 2017). Few
studies have however covered integration of risk management with agile software, considering the
organisational level (Nyfjord & Kajko-Mattsson, 2008; Odzaly et al., 2017).

On security risk management for agile projects, the research papers are even fewer. There are few
studies on practices, and few risk analysis methods specifically tailored towards agile development.
One of the more relevant studies available is an action research study at Ericsson, (Baca et al., 2015)
of the effects of implementing a security enhanced agile software development process (SEAP). This
process included several software security activities (e.g. code review, penetration testing), however
the study focuses solely on two key aspects of SEAP: Adding more security resources in the project
and the development teams, and performing incremental risk analysis. The introduction of SEAP

Table 1. Overview of how the key risk management activities are included in key software security frameworks, maturity
models and secure SDLs

BSIMM OpenSAMM Touchpoints Microsoft SSDL

Risk analysis
-Attack Models (Intelligence)﻿
-Architecture Analysis (SSDL
Touchpoints)

-Threat Assessment
(Construction)

-Abuse cases﻿
-Risk analysis

-Perform Security
and Privacy Risk
Assessments
(requirements)﻿
-Perform Attack
Surface Analysis/
Reduction (design)﻿
-Use Threat Modeling
(design)

Risk treatment
decisions

-Standards and Requirements
(Intelligence)

-Security
Requirements
(Construction)﻿
-Secure
Architecture
(Construction)

-Establish security and
privacy requirements
(requirements)﻿
-Establish design
requirements (design)

Risk treatment
follow up

-Strategy and Metrics
(Governance)﻿
-Code Review (SSDL
Touchpoints)﻿
-Security Testing (SSDL
Touchpoints)﻿
-Penetration Testing
(Deployment)

-Strategy
& Metrics
(Governance)﻿
-Design Review
(Verification)﻿
-Code Review
(Verification)﻿
-Security Testing
(Verification)

-Risk based
security tests﻿
-Static analysis
(tools)﻿
-Penetration
testing﻿
-External analysis

-Perform static analysis
(implementation)﻿
-Perform dynamic
analysis (verification)﻿
-Perform Fuzz Testing
(verification)﻿
-Conduct Attack
Surface Review
(verification)﻿
-Conduct final security
review (release)

Risk
communication -Training (Governance)

-Education
and Guidance
(Governance)

-Core security training
(training)

A

67

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

6

was found to improve identification and handling of risk, and because of this, the risk-management is
found to be more cost-efficient than with the approach previously used by Ericsson. This is claimed
to be due to security issues now being dealt with in a more distributed fashion, and thus more issues
are solved directly by the team. The details of how risk analysis and risk management was with SEAP
is not available, apart from describing that frequency of risk analysis was being increased, the scope
for each analysis was being reduced, and the approach was becoming more distributed.

The most notable risk analysis method available that is specifically tailored to agile development
is Protection Poker (Williams et al., 2010), a game for risk assessment to be used by agile teams.
Evaluations of adoption of Protection Poker in real development projects is however sparse. There is
one study available where Protection Poker was used by one team at RedHat (Williams et al., 2010),
but this study focused more on awareness and knowledge raising through using the techniques, and
not on adoption. And despite positive evaluation results, the team studied stopped using Protection
Poker sometime after the study was ended.

We are not aware of any studies or specific methods that aim to understand or solve software
security risk management in agile development, taking an organisational approach. Such research is
however much needed, as effects of security interventions in agile development have been found to
be dependent on organisational factors (Poller et al., 2017).

3. RESEARCH METHOD

This section gives an overview of the research method used for the study. It starts with describing the
study goal and study design, explaining how the study consists of three separate sub-studies. Then
it moves on to explaining the sub-studies in more detail, before describing the approach to analysis.
3.1. Research Questions and Study Design
This study is a combination of three individual studies (sub-studies) that have been performed over the
span of two years and that address a common theme. Overall, the study is motivated by the vital role a
risk centric approach is considered to have in the literature when it comes to achieving cost effective
software security and it tackles the research question “How can current software organisations work
with software security in a risk centric way?” Figure 1 shows how the three individual sub-studies

Figure 1. Overview of the individual sub-studies

A

68

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

7

together address this research question from three different angles. The first sub-study studied software
security as part of the overall information security management practices in the organisations, from
the viewpoint of people working on information security. By having this as the first sub-study we
were able to get a high-level view of the overall challenges and status on an organisational level.
However, this sub-study deliberately ignored the developer viewpoint, and thus missed a central
perspective on the topic studied. Thus, in the second sub-study we studied two high-profile public
development projects in more detail, aiming to get an understanding of how security was handled in
the projects. Together, sub-study one and sub-study two gave an overview of practices and challenges
related to software security from both the viewpoint of security people and software architects in
the development projects but lacked a more structured overview of the software security activities
adopted in the organisations. As such, sub-study three aimed to get such an overview by mapping their
software security activities to those described in the BSIMM framework (McGraw et al., 2016). The
three sub-studies together made us able to identify and map risk centric activities and practices in the
organisations and understand challenges of implementing a risk centric approach to software security.

As explained in the introduction, the decision to study development in the Norwegian public
sector was made based on three factors: a security push in this sector had forced them to prioritise
security management in the organisations, legal expertise in the organisations made them aware
of any compliance requirements on security, and we had easy access to study participants. The
Agency for Public Management and eGovernment (Difi) was our partner in two of the sub-studies
(sub-study 1 and 3), contributing with financing as well as helping in participant recruitment. This
made it possible to get access to a high number of organisations within a sector where security was
receiving growing attention.

Table 2 gives an overview of key facts about the sub-studies. As can be seen the full study has
been performed over a period of two years. As some organisations participated in more than one sub-
study, the total number of public organisations studied is 23, in addition to two software companies
(consultants/contractors) that had a central role in public software development projects.

Table 2. Key facts about the sub-studies

Information Security Needs and
Practices
(IS n&p)

Architecture and
Security in Large

Agile Projects
(DPA, DPB)

Software Security
Maturity

(swsec Maturity)

When 2013 2013 2015
Public organisations 13 1 20

Software companies
(consultants/contractors) - 2

For some
organisations,
consultant
developers gave
input to the
questionnaire

Data collection method Focus group interviews Group interviews
and documentation

Questionnaire
with follow up
interview

Study participants Information security/network security Architects
Some information
security, some
development

Level of focus Organisation Project Activities

A

69

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

8

3.2. Sub-Study 1: Information Security Needs and Practices (IS n&p)
In the first sub-study, the aim of the study was to identify public organisations’ needs for support
regarding information security, and the study covered several topics of which software security was
one. The study was performed using the focus group technique (Stewart & Shamdasani, 2014). A
focus group can be understood as a semi-structured group interview, and the technique is well suited to
identify areas of improvement based on the experience of the participants. By bringing the participants
together, rather than performing individual interviews, the participants relate to the opinions of the
others in a conversation, something that brings out more information.

Invitations to participate in the study were sent to 26 public organisations, out of which 13 agreed to
participate. The invitations to participate were sent by Difi, who also selected which organisations to invite.
The main criterion used in the selection was that the participating organisations should include a mixture of
organisations regarding both size and security maturity. In addition, a few organisations that were known
to have received critical remarks from the Office of the Auditor General of Norway (Riksrevisjonen)
regarding information security were invited to participate. The invitations requested the participation of
personnel that had some degree of responsibility for information security in their organisations.

In total, three focus group interviews related to software security were performed, and each focus
group interview lasted in total three hours. One group consisted of organisations that were believed
to be mature in their information security work. The other two groups were more mixed in terms
of participants. Few of the participants knew each other from before, and we used brainstorming
techniques in the start of each focus group to build trust among the participants, as a successful focus
group is dependent on participants that are willing to share experiences.

All groups followed the same process and interview guide. After a short introduction to the study,
we performed a short brainstorming where participants addressed the following question: What works
well and what is challenging in the work with information security in your organisation? Then we
started on the group interview, covering the following topics: 1) security culture and management buy-
in 2) information security management systems and risk management, and 3) software development. In
the software development part, the participants were asked about when in the process (requirements,
development, deployment) information security people and activities were involved, and challenges
were discussed. In addition to the questions from the interviews, the later focus groups were presented
with important findings from previous groups and asked to comment on those findings.

Two researchers facilitated all the focus groups. One of these was responsible for taking detailed
notes from the discussion. In addition, all conversations were recorded. After each focus group,
the researchers reflected about how the groups functioned; whether everybody participated in the
discussion, if they agreed a lot or disagreed. Observations regarding group dynamics have been
taken into account in the analysis of the results, in addition to other context information regarding
background and experiences of participants and maturity of their organisations. After each focus
group, a summary was made and sent to the participants for comments. The summary included a
recapitulation of the most interesting points of the discussion, as well as unstructured and anonymised
notes from the discussion.
3.3. Sub-Study 2: Architecture and Security in Large
Agile Development Projects (DP A and DP B)
In the second sub-study, one very large agile project was selected as the primary case to study. In the
following we call this project “Development project A”. This project ran for four years and consumed
roughly 800 000 man-hours and was among the largest agile software projects in Norway at that time.
In total three organisations were involved in the development, this was the public organisation itself
and two contractor organisations. For more details on this case and the study design see (Dingsøyr
et al., 2017).

In this sub-study, we performed interviews on how architecture and security was handled in
the project. We organised three group interviews, one for each organisation. The reason for having

A

70

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

9

only one organisation in each interview was that we wanted to capture potential differences between
the organisations. Participants to the group interviews were recruited to the study by asking the
involved organisations to invite the most relevant people for the topic. For the group interviews on
software architecture and security only one of the contractors was able to participate with personnel
that had worked on the Development project A, resulting in two group interviews on this topic. In
total six persons from the project participated in these two interviews; three persons from the public
organisation and three from one of the contractors. All these had served in software architect roles
at some time during the project, ranging from team architect to chief architect. The interviews were
performed by two researchers, recorded and transcribed.

The contractor that could not participate with personnel from Development project A, instead
participated in the study with one experienced software architect that was responsible for another
high-profile public development project. In the following we call this project “Development project
B”. This agile project was considerably smaller than Development project A, with only two teams
and one contractor, and one year of development. However, this project had a considerably higher
focus on security issues, due to the sensitivity of the data handled.
3.4. Sub-Study 3: Software Security Maturity (swsec Maturity)
The third sub-study was performed about one and a half years after the other two sub-studies, and was
aimed at measuring the software security maturity among Norwegian public organisations (Jaatun
et al., 2015). The study instrument consisted of a questionnaire based on the Building Security In
Maturity Model (BSIMM) as documented in the BSIMM V report (McGraw et al., 2013). The main
function of BSIMM is to serve as a yardstick to determine where an organisation stands compared
with other organisations. The questionnaire tells us what activities the organisation has in plac and
based on how well they cover the various practices, we can determine the maturity level of each
organisation. The questionnaire was followed up by an interview, in order to verify the answers and
clarify potential misunderstandings in filling out the questionnaire. In most cases, minor updates to
the questionnaire was made based on the interviews. Each interview was performed by one researcher,
they were conducted online, and were recorded. Three researchers cooperated on performing the
interviews, and these researchers discussed any ambiguities in the questionnaire beforehand to ensure
that their assessments of activities were as similar as possible.

The questionnaire was distributed via email to 32 Norwegian public organisations which we had
reason to believe had ongoing software development activities. 20 of these organisations returned
fully filled-out questionnaires. For seven of the responses, the questionnaire had been filled out in
cooperation by representatives involved in software development and in general IT security work. In
the other cases, the response was made either by people working on information security or on IT in
general (six responses), by people working on software development (five responses), or the main
responsibility of the respondent was unclear based on the job title (two responses). In most cases, at
least one of the respondents had a managing role in the organisation, e.g., information security manager,
IT manager, group leader or architect. The resulting questionnaire responses were analysed to find
the maturity, and the results from the analysis of the questionnaire is documented elsewhere (Jaatun
et al., 2015). In this paper, we have also analysed the notes from the follow-up interviews, and use
these to shed more light on the questionnaire responses and the software security practices reported.
3.5. Analysis
The three studies were aimed at identifying existing practices and challenges when it comes to
software security in these organisations. To understand these practices and challenges, we coded the
data based on the assumption that risk management is a key to making decisions regarding software
security, as depicted in Figure 1. The overall process of analysis is illustrated in Figure 2. For the
analysis, we used Mind Manager, with one separate mind map for each study. To ease comparison of
data from the different studies, the overall structure of each mind map was the same: risk assessment,

A

71

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

10

risk treatment decisions, risk monitoring, risk communication. Then the data within each of these
overall topics was organised into categories based on the coding. After coding and creating a mind
map for each sub-study, key findings from each of the categories and for each study were identified,
and these were again used to organise the data into a mind map that included the key findings and
data from all the studies, and analyse these together.

4. RESULTS

In this section, we give an overview of practices and experiences from the organisations and projects
studied when it comes to risk analysis, risk treatment decisions, risk treatment follow up and risk
communication. Then we provide an overview of triggers and barriers not directly related to risk
management that seem to be important for software security in the studied organisations.
4.1. Practice Adoption
Table 3 gives an overview of the main findings on adoption of risk centric practices in the studied
organisations. The state of adoption is summarised in the findings-column with a number. The meaning
of this number differs between the sub-studies. For sub-study 2 (DP A and DP B) the adoption is
related to an individual project, and shows if the project adopts the practice throughout the project
(2), adopts the practice to some extent (e.g. does it in an ad-hoc manner or partially) (1) or does not
adopt the practice (0). For sub-study 1 (IS n&p) and sub-study 3 (swsec mat) the practice adoption
relates to organisations, not projects, and the number assigned depends on the practices of the studied
organisations overall. Thus, a practice is said to be adopted (2) if most of the organisations (80% or

Figure 2. Overview of process for analysing the data

A

72

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

11

Table 3. Overview of adoption of risk management activities

Main
Findings Activity

Practice
(2 = Adopted; 1 = Sometimes/to
Some Extent; 0 = Not Done; ‘-’

= Unclear/No Data) Notes on Adoption

IS
n&p

DP
A DP B Swsec

mat

Risk
Analysis

Risk analysis
practices vary
greatly among
organisations
(RA1)﻿
Legal requirements
are a driver for
performing risk
analysis (RA2)﻿
Risk analyses are
often not centred
on software
security issues
(RA3)

Characterize
system - 1 2 1

No clear process for this.
Guided by risk perception
where confidentiality has the
main priority (less focus on
integrity and availability).

Identify
threats/ threat
modeling

- 0 - 1
Some organisations are
starting to do this more, but
not common practice yet.

Analyse risk 1 0 2 1
Often not relevant (high
level, not specific on security
risk). Determination of
security needs is more driven
by compliance than risk.

Risk
treatment
decisions

Arbitrary, late
and error driven
(RTD1)﻿
No one fights for
software security
(RTD2)﻿
Legal requirements
dictate specific
security measures
– creates tension
(RTD3)

Security
require-ments 1 1 2 1

In many cases, security
requirements are considered
rather late in the process.

Secure
design and
architecture

- 0 2 1

Risk
treatment
follow-up

Most trust the
vendors and the
developers to
follow up security
(RTFU1)﻿
Limited security
testing or review
(RTFU2)﻿
Time pressure
results in security
requirements being
postponed (or even
dropped) (RTFU 3)

Code review - 0 1 1
When code review is done,
its focus is not security, but
other code quality aspects.

Design review - 0 - 1
Security
testing 1 0 2 1 Most testing is done on

general functionality.
Metrics - 0 - 0

Monitor
changes in risk - 0 - 1

Organisations monitor
changes in network security
risks. Monitoring of changes
in risks related to sw
development is dependent on
developer interest.

Risk
communi-
cation

Lack of training in
software security
risks (RC1)﻿
Silo structure
prevents spread of
knowledge (RC2)

Training in sw
security 0 - 0 1

Sharing of risk
information
within
organisation

1 - - 1
Legal expertise and security
expertise in the organization
do not necessarily benefit
development projects.

Security
people
involved in sw
projects

1 - 2 1
Some involvement, but in
most cases this involvement
is very limited in terms of
effort.

A

73

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

12

more) in the sub-study have adopted the practice, and it is partially adopted (1) if more than two of the
organisations have adopted the practice. Note that in sub-study 1 we did not ask the organisations about
their practices individually, thus practice adoption is based on our impressions from the discussions
in the group interviews. Mind maps that show the basis for the findings summarised in the table can
be found in Appendix A. In Table 3 we describe the findings in more detail.

Practices and routines for risk analysis varied greatly among the studied organisations (RA1).
The risk analysis practices were most thoroughly covered by the swsec maturity sub-study (sub-study
3) where we specifically asked each organisation about their practices. In this sub-study, risk analysis
was by no means an uncommon practice related to the projects. Only one organisation was clear
that they never do such an analysis related to security. However, at the same time only three of the
interviewed organisations stated that they always (or most of the time) do risk assessments related to
software security in all development projects. In most organisations in this sub-study, security risk
analysis was done only for some of the projects, and the organisations did not seem to have any clear
strategy for deciding when a risk analysis was needed - the process seemed to be ad hoc and dependent
on key people (such as software architects) and their interest in and awareness about security. A few
informants claimed that security is more likely to be handled when they procure systems (instead
of developing the systems in-house) and for new systems (as opposed to improvement of existing
systems), but this appeared to be an observation of own practices rather than an intentional strategy.
The IS n&P sub-study (sub-study 1) supports the impression that software architects and legal experts
are key to having security needs considered in the projects.

In the swsec maturity sub-study we found that although the organisations self-reported that they
do perform risk analysis related to development, such risk analysis did not necessarily cover software
security risk in the projects (RA3). Risk analysis performed related to the specific development projects
could be centred on other types of project risk, ignoring security risks. Risk analysis performed related
to security risks could have been performed on an organisational level but were not considered relevant
on the project level. Thus, current risk analysis practices do not necessarily improve software security.

In the organisations studied, the strongest driver we found for performing risk analysis related
to security is legal requirements (RA2). In the swsec maturity study (sub-study 3), three of the
organisations referred to legal requirements when they talked about their risk assessment practices,
and one clearly stated that an audit was the trigger for performing risk assessments. Other motivations
are not expressed to the same extent by the interviewees in this sub-study. In the development projects
studied (sub-study 2) this effect of legal requirements is shown in practice. Development project B is
the only one of the two with clear legal requirements on security, and the only one where risk analysis
was done regularly throughout the project. Although development project A was high profile, security
risks were not systematically analysed in the project, and the software architects we talked to did not
seem to be particularly concerned about, nor updated on, the security of the system.

Risk treatment decisions are often not made based on a process that ensures a thorough
understanding of risk. In the organisations studied it seems a bit arbitrary whether or not security
is considered for the projects (RTD1). Although some security issues may be considered early on,
important security issues may still be left out. Security is in many cases included a bit late and inclusion
is error-driven. In the development projects studied this is especially the case in development project
A, where security issues that were accidentally discovered was a main reason for the security efforts
that the interviewees told us about. Some “surprises” are however hard to avoid, and this was also
the case in development project B (where security was considered throughout the project) where the
interviewee stated that “…we took some measures towards the end, where it did just strike us ‘oh,
we just have to secure this.’” In this project, however, most security measures were initiated in a more
planned and proactive way. All sub-studies agree that software architects have a potentially important
role when it comes to security in the projects, but this is dependent on their personal initiative and
interest in security. In practice, few software architects seem to have security as a main interest, and
their explicit responsibilities when it comes to security are limited. Security people are sometimes

A

74

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

13

involved, but seem to be passive, either waiting to be invited or participating in the beginning and
then leaving the project to fend for itself. Some state that they trust vendors to take care of security,
including identifying how much and what type of security is needed.

The responsibility for identifying and deciding on security requirements for the development
projects seems fragmented (RTD2). In the swsec maturity study, the interviewee from one organisation
pointed to a hired consultant as the one having an interest in software security. An interviewee from
a different organisation stated that it is difficult to identify who in the organisation is responsible for
software security, and the interviewee considered each developer to be responsible for their part of
the code. In the IS n&p substudy, participants pointed out that security is often considered a technical
thing that is assumed to be covered since technical people are involved. In the same sub-study, they
however explain that they are seeing an improvement in the way security is handled. This is related
to people from the business side beginning to get more concerned about security. As they provide
input to requirements, they have a potential role in bringing security requirements to the projects,
although their competence on security is low. In general, it seems unclear in most organisations where
the responsibility of information security people ends and the responsibility of the development part
of the organisation starts when it comes to software security.

Legal requirements are an important source for security requirements in the development projects
in the organisations studied (RCT3). Though legislation clearly motivates security efforts, there are
two main problems with this. First, the legal requirements may have unintended effects when it comes
to security. The architect from development project B explained that requirements to physically delete
data (not only mark it as deleted) increased the risk that data is lost. Additionally, legal requirements
were resulting in more complex solutions, something that is not necessarily beneficial for security.
Second, there is a need to balance security and other issues. The architect from development project
B stated: “Getting the legal people on board was perceived as one of the greatest challenges…” The
same architect characterised security people as extreme, wanting to remove network connections etc.
Making compromises is challenging when dealing with legal requirements. However, the architect
explained that they sometimes had to go to the legal experts to challenge legal requirements and
postpone such requirements to later iterations.

Risk treatment follow up is not done in any structured manner in most of the studied organisations.
Activities such as testing and code review are common, but they are rarely considering security aspects
(RTFU2). Developers and vendors are trusted to take care of security, without this being followed
up by most organisations (RTFU1). Interviewees in the swsec maturity sub-study offer statements
such as (paraphrased) I am sure our vendor has routines in place and I have raised this issue with the
developers, but I am not sure what developers do about it. In many of the organisations in this sub-
study, external vendors do most of the development, something that is mentioned as one hindrance
for involvement and follow up by security people. However, one of the more mature organisations
in the swsec maturity sub-study was aware that security needs to be followed up on more closely, as
expressed by one interviewee (paraphrased): Contract terms state that the vendors should follow the
security rules. But it is the daily practice that matters. That is why it is essential to have a process to
follow up quality requirements regarding security.

Time pressure and agile development is considered a challenge when it comes to following up
on security throughout the development projects (RTFU3). In the IS n&p sub-study, participants
explained that “…it was easier when projects were run using the waterfall development model, because
then all requirements were there before the project started, and the vendors had to deliver everything
in the requirements. Today important decisions that involve information security are made in sprint
meetings…” (paraphrased from focus group discussion). Security people do not seem to be present
in these meetings, and thus their influence on these decisions is very limited. The swsec maturity
sub-study confirmed that existing regimes on software security do not work as well as before due to
agile development, further hampering ability to follow up on risk treatment in these projects.

A

75

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

14

Risk communication is in general not addressed in a structured manner in the studied organisations.
The training activities were most thoroughly identified in the swsec maturity sub-study. There it was
found that none of the studied organisations have a structured approach to software security training
(RC1). They may have general security training for employees, but this does not cover software
security. In the swsec maturity sub-study one of the interviewees stated (paraphrased): New employees
have to receive a mandatory security introduction and sign the security policy, but there is nothing
about software security there. And since the developers are hired consultants none of them has to
go through this process. In some organisations, employees have been sent to courses or conferences
where software security has been a topic. A few are also aware of training activities at the vendors,
but in most cases any software security training is ad hoc and dependent on developer interest.

As has been pointed out above, legislation is an important source for security requirements. Of
all the organisations in the swsec maturity sub-study, 85% self-report that they have an overview of
regulations. However, in the follow up interviews it becomes clear that although the organisation may
have a legal department with a clear overview of legislative requirements, this does not necessarily
benefit the development projects. In the same way, security policies may be present at an organisational
level, without this affecting the development, and security expertise and follow up on new threats
that is done on an organisational level does not necessarily lead to this knowledge being available to
development projects (RC2). To illustrate, we paraphrase the following statements from the swsec
maturity interviews: We have a forum to discuss cyber-attacks in operation, but not sure if things
from this forum get to developers. I hope so. And, our organisation has many policies that ensure we
are compliant, but I am not sure how much this impacts the coding.
4.2. Triggers and Barriers for Software Security
As can be observed from the results described in the above subsection, the results from this study
downplay the importance of risk analysis in current software security practices in many of these
organisations. It is suggested that any risk analysis performed is often not relevant, and that the
motivation is mainly legal compliance and not improved security per se. Additionally, risk analysis
is not put forward as an important basis for making decisions about what security measures and
activities are needed in the projects. Follow-up of any such decisions is also not risk-based, and
very few have any clear processes to review and test for security issues and ensure that any security
requirements are adequately dealt with in the final software. As can be seen in Table 3, adoption of
typical risk management activities (as described in section 2.1) is low, except in development project
B. Although the software security approach of these organisations does not seem to be risk centric,
they do report that they perform a number of security activities, as can be seen in Figure 3 that gives
an overview of the questionnaire responses in the swsec maturity sub-study (for more details on these
responses, see (Jaatun et al., 2015).

As risk management does not seem to be the most important starting point for software security
in the studied organisations, we have identified from the data other activities or factors that are stated
as possible triggers or barriers for software security by the interviewees (see Table 4). These have
been identified by going through the coded data looking for what interviewees describe as causes
for or hindrances for software security in their organisations and projects.

As described in the previous sub-section, external requirements clearly represent a trigger for
performing risk analysis, and they impact the security requirements of projects as well as the effort
put into security. Development project B had quite strict legal requirements related to the data the
product was to handle, and this is likely the major reason why this project had a relatively strong
focus on security. Additionally, the information security people we talked to in the IS n&p sub-study
(sub-study 1) also saw closer interaction with the legal department as a possible way to push more
security to the projects.

As also mentioned in the previous sub-section, detection of security-related errors made in code
clearly triggers a burst in security attention in order to fix discovered issues. Hearing about security

A

76

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

15

problems in previous projects can also increase general attention about security. However, when it
comes to issues related to risk perception and attitude and competence on security, awareness seems
to be low in the majority of the projects in these organisations. One of the reasons stated for this
is that many of the systems they develop are meant only for internal use and will not be directly
accessible from the internet. And they state that in cases where they develop open systems, these
often only present data that is considered open as well, thus security is not considered important. The
exception to this among the projects we have studied is development project B (sub-study 2), where
the resulting project was to be accessible from the internet and contained sensitive data, and in this
case, security was made a priority. In the study, we have not made any efforts to identify security
risks to the software the organisations develop, in order to verify such claims. However, it is worth
noting that the security experts in the IS n&p sub-study stated that awareness about the confidentiality
aspects of security is much higher than awareness about integrity and availability aspects. The same
information security people additionally experienced that knowledge of security was low among
many of the developers and procurers, who consider security to mainly be a technical issue that will
automatically be covered. Still, the overall study also gives indications that knowledge about security
is improving among developers, as some of the people we talked with in the swsec maturity study
(sub-study 3) perceived developers as knowledgeable about security. Furthermore, although it seems
that interest in security among software architects and developers may be a bit low based on the data
we have, it also shows that security can be perceived as something that makes a project interesting
and challenging from a technical viewpoint.

In the organisations we have studied, the responsibility for software security seems unclear and
fragmented. Few can really claim to have a software security group (SSG), i.e., a group that includes
roles such as security architect or security tester. In many organisations, the responsibility for software
security is considered part of the responsibility for information security, but in that case, it runs the
risk of getting deprecated. Some of the informants were clear that in their organisation other security

Figure 3. Self-reported adoption of BSIMM activities in swsec maturity sub-study (questionnaire responses)

A

77

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

16

activities and goals had been prioritised, and consequently software security had not been given
attention. Architects are seen as potential allies in a security push, but as of now they seldom have
explicit responsibility for security. By and large, it is currently not possible to clearly hold anyone
accountable for software security.

When changes need to be made throughout the project, security is not necessarily considered.
More often than not, time pressure in the projects results in security requirements being deprecated
in order to reach other project goals. This is considered a bigger problem with agile development
than in more traditional waterfall-based development models.

5. DISCUSSION

Based on the results of these studies we have identified three main areas that is important to consider
in order to improve current practice and to guide further research. These are: responsibilities and
stakeholder cooperation; risk perception and competence, and; practical ways of doing risk analysis.

Table 4. Triggers (↑) and barriers (↓) for software security activity in the projects

Factor IS n&p DP A DP B swsec Maturity

External
requirements

↑ Legal requirements
and Interaction with
legal department

↑ Legal requirements
↑ Legal
requirements
trigger risk
analysis

Errors made ↑ Security mishaps, also
from previous projects

↑ Security mishaps
detected

↑ Security mishaps
detected

Risk perception

↓ Systems not directly
connected to the internet

↓ Systems not
directly connected to
the internet

↑ Project with
obvious security
needs

↓ ↓
↓ Systems not
used by externals﻿
↓ Open data

Responsibility
↓ Unclear
responsibilities for sw
security

↑ Security included as
user stories﻿
↑ Budget for security

↓ Unclear
responsibilities for
sw security﻿
↓ Rely on
contractors to deal
with security –
limited follow up

Architects
↓ Architects do not
take responsibility for
security

↓ Architects not that
interested in security

↓ Few architects
with security
interest

Changes ↓ Time pressure﻿
↓ Agile development

↓ Need for progress to
fulfil contract﻿
↓ Balancing security
with other needs

↓ CISOs do not
have resources to
follow up on sw
security

Attitude and
competence

↓ Lack of security
knowledge among
developers﻿
↓ Procurers lack
awareness about security﻿
↓ Security is considered
mainly a technical issue

↓ Lack of awareness
of security
implications

↑ Security was
considered part of
what made the project
technically interesting
and challenging

↓ No/little training
in sw security

Other issues ↑ New products

A

78

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

17

In the following subsections, these areas are discussed and some recommendations are made. Towards
the end of the section we provide a discussion of the validity of the results
5.1. Responsibilities and Stakeholder Cooperation
The empirical basis for the discussion of responsibilities and stakeholder cooperation can be found in
Table 5. This table shows the most relevant results from the four risk management areas identified in
Section 2, including findings from Table 3 (main findings, practice adoption) and Table 4 (triggers,
barriers). In this, and the following, tables, a ‘-’ in one row indicates that there is no relevant finding
for this topic. In some cases, rows are merged, and in that case that means that a finding is relevant
for more than one risk management area.

One major obstacle for software security in the studied organisations is the unclear responsibilities
for software security. Responsibility could be put either on the security experts or on the development
projects, but we recommend that responsibility is given to the projects or someone close to
development. The reason for this recommendation is twofold. First, when software security is seen
as part of information security, it risks being deprecated. This happened in the studied organisations.
Due to a push from the government on implementing an Information Security Management System
(ISMS), i.e. ISO/IEC 27001, employees having the role of Chief Information Security Officer (CISO)
or similar were under pressure to improve their ISMS and relevant practices, while the pressure to
improve software security were not as strong. Thus, it is not a big surprise that software security
was not given priority by CISOs. As pointed out by van Wyk and McGraw (2005), the alignment of
information security and development would require a large effort from information security people.
In the organisations we studied, CISOs and other information security employees were already
struggling with limited resources and thus unable to properly address all important security tasks.
Second, the competence needed to work with information security at an organisational level does
not necessarily match the competence needed to work with security in development projects. The
BSIMM is clear in its recommendation that the ones responsible for software security should have a
development background, stating “Starting with network security people and attempting to teach them
about software, compilers, SDLCs, bug tracking, and everything else in the software universe usually
fails to produce the desired results. Unfortunately, no amount of traditional security knowledge can
overcome a lack of experience building software.” (McGraw et al., 2016) Training in security may
however be needed for the people that is given this role.

Assigning clear responsibilities for software security does not however remove the need to
improve cooperation among a variety of stakeholders related to software security in a project. As can
be seen from Table 5, communication and cooperation between the participants in the development
project, security people and legal experts is seen as a challenge. This is challenging in two ways:
Getting these different roles to interact to have the competence of the legal experts and security
experts benefit the development projects, and having these roles understand each other’s perspectives
so that good trade-offs can be made. This seems to be even more challenging when development is
done by vendors/contractors, limiting the interaction. It is important that organisations are aware of
both the benefits and challenges of having these roles involved in development projects and make
arrangements to support cooperation.

It’s been more than ten years since van Wyk and McGraw (van Wyk & McGraw, 2005) called
out for aligning information security and software development. They pointed out that the disconnect
between security and development led to software development without any understanding of technical
security risk, and thus software with security weaknesses that should have been avoided. In their
article, van Wyk and McGraw discussed the role of information security in the software security
touchpoints and provided recommendations to information security people that wanted to play a
part in improving software security. The role of security teams for adoption of secure development
tools was further studied by Xiao et al. (2014) as part of interviews with 42 professional software
developers. They found that the relationship between the security team and the developers can act

A

79

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

18

as a driver for security tool adoption, as well as a hindrance, depending on the circumstances. Only
six of 17 security teams interacted often with developers. The other security teams focused more on
operational security and was often found to be not helpful in development. When the security team
interacted with developers, this caused more security activities to be performed by the developers
due to social pressure, and in turn developers felt more responsible for the security of their code.
The opposite effect was found in a company where only certain individuals were given training in
use of security tools.

Involvement can be done and supported in many ways, e.g. through routines and by creating
meeting places. In any case, it is important to ensure the voices of legal experts, security experts,
and potentially other types of stakeholders related to security, is heard at key decision points in the
projects to ensure that also their concerns are taken into account in the decisions on what risk should
be accepted. Trade-offs will have to be made, but these trade-offs should be made based on awareness
of the potential consequences of the choices available to the project.
5.2. Risk Perception and Competence
In the organisations studied, it seems clear that confidentiality is what is mainly considered when
thinking about the needs for security in the projects. We found little awareness in the data that security
is also about integrity and availability. As can be seen from Table 6, many of the obstacles when it
comes to software security in the organisations is related to risk awareness; stakeholders have the
opinion that security is not needed because the systems are only to be used internally or only contain
open data. These are clearly factors that reduce the risk. However, it should not automatically lead to
the conclusion that there is no need to consider security for such systems. Some security breaches are
performed by insiders (Jang-Jaccard & Nepal, 2014). Some systems that start out as internal, are later
wrapped to have a web interface etc. Open data may have requirements when it comes to integrity and
availability. In addition, systems that only process open or otherwise insensitive data might still be

Table 5. Empirical basis for discussion and recommendations on responsibilities and stakeholder cooperation

Area Main Finding Relevant Triggers Relevant Obstacles Notes on Adoption

Risk analysis - - - Lack of clear processes

Risk treatment
decisions

No one fights for software
security (RTD2) -

Unclear responsibilities for sw
security.﻿
Architects lack interest in security
and do not take responsibility for
security.

-

Legal requirements dictate
specific security measures -
creates tension (RTD3)

Legal requirements and
interaction with legal
department

Balancing security with other
needs. -

Risk treatment
follow up

Most trust the vendors and
the developers (RTFU1) -

Rely on contractors to deal with
security – limited follow up.﻿
CISOs do not have resources to
follow up on sw security.

Monitoring of changes in risk
related to sw development
is dependent on developer
interest.

Time pressure results in
security requirements being
postponed (or even dropped)
(RTFU3)

-
Need for progress to fulfil contract﻿
Time pressure﻿
Agile development

-

Risk
communication Silo structure (RC2) - -

Legal expertise and security
expertise in the organisations
does not necessarily benefit
development projects.﻿
Limited involvement by
security people in the
projects.

A

80

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

19

used as a step in an attack, which eventually gains access to other systems in the company. Thus, the
organisations need to consider a broader set of security properties in their evaluations of security needs.

To improve security awareness, there is a need to do something about the current lack of training
in software security among all stakeholders that are somehow involved in development, it being
developers, software architects or procurers. This does not necessarily mean that all developers must
attend a software security course (though this will surely have its benefits). Participation in risk
analysis is an excellent way of increasing both security knowledge and awareness (Wheeler, 2011).
Evaluations of Protection Poker (Williams et al., 2010) show that using a collaborative technique
for discussing software security risks in the whole team raises awareness on security and spreads
knowledge on security within the team. This corresponds to the experiences reported by Kongsli
(Kongsli, 2006) on using misuse stories and automatic testing of security in the development of web
applications. Effects experienced included increased security awareness in the team, raised collective
ownership of security issues, and moving security activities such as system hardening and penetration
testing to earlier iterations. However, to effectively raise awareness while also achieving a risk analysis
with good quality, there is a need to include at least one person that is knowledgeable about software
security. People with such competence thus need to be made available to the development projects
to be used as a resource in security activities throughout the project. This may involve the need to
train persons to fulfil this role, if such competence is not already available in the organisations. As
also stated above, it is important to note that information security professionals do not automatically
fit this role, as they may not have the necessary competence to understand the specifics of software
development (van Wyk & McGraw, 2005).
5.3. Practical Ways of Doing Risk Analysis
In the organisations and projects studied, the work on software security does not seem to be risk centric,
with a few exceptions (development project B (sub-study 2) and possibly a few of the organisations
in the swsec maturity sub-study (sub-study 3)). Instead, organisations take a more compliance-based
approach to security, with legal requirements as a main driver for security requirements and risk
assessments. A compliance-based approach comes with its benefits, as was also discussed in the IS
n&p sub-study (sub-study 1) in the context of organisational security work (not software security).
In general, the participants in the focus groups did not agree on what would be most beneficial; a risk

Table 6. Empirical basis for discussion and recommendations on risk perception and competence

Area Main Finding Relevant Triggers Relevant Obstacles Notes on
Adoption

Risk analysis

-
Security considered
part of what made the
project technically
interesting and
challenging.

Systems not directly connected to
the internet.﻿
Systems not used by externals.﻿
Open data.﻿
Lack of security knowledge among
developers﻿
Procurers lack awareness about
security.﻿
Security is mainly considered a
technical issue.﻿
Lack of awareness of security
implications.

-

Risk treatment
decisions

Risk treatment
follow up

Risk
communication

Lack of training
in software
security risks
(RC1)

- No/little training in sw security
Training in
sw security is
almost non-
existent in the
organisations.

A

81

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

20

based or a compliance-based approach to information security. It was pointed out that a risk-based
approach requires more competence in order to be confident that major risks are taken care of. In
cases where such competence is lacking, a checklist-based approach or an approach that mainly is
based on legal requirements may result in better security. Legal requirements can then be considered
a specification of a minimum security level that all organisations have to comply with.

Although a compliance-based approach is easier to apply, a large amount of literature and
standards recommend the risk centric approach (Caralli et al., 2007; Chandra, 2008; Howard &
Lipner, 2006; ISO/IEC, 2011; McGraw, 2006; McGraw et al., 2016; NIST, 2010; Wheeler, 2011).
We would like to point out three main disadvantages with a compliance-based approach to security
(based on Wheeler (2011)). First, there is no one-size-fits-all when it comes to security. Different
organisations and software have different needs for security. If the security work is solely based on
recommendations from checklists, one will likely improve security, but not in the most cost-effective
way. In addition, one is not confident that the most important measures for this particular software
is addressed sufficiently. Second, security threats are changing fast, thus checklists can be quickly
outdated. In order to adequately react to changing threats, there is a need for competence and awareness
beyond what you get from checklists. Third, with checklists, those responsible for addressing risks
as well as other stakeholders are not trained in considering business needs and the role of security in
fulfilling those. Participating in risk analysis is a great way to increase competence and awareness
about security. Awareness of business needs is essential to make good decisions on what security
measures to take and to ensure security is considered important by managers.

Based on literature and based on the findings from this study we thus recommend moving towards
a more risk centric approach to software security. But in doing this the organisations and projects
need improved ways to assess risk in the development projects.

Table 7 gives an overview of the main results from the study that we base these recommendations
on. The studied organisations’ current approaches to software security do not seem to give adequate
confidence that software security is addressed sufficiently, as current software security efforts seem
largely to be arbitrary, late and error driven (RTD1). Taking into account the limited testing and
security review practiced (RTFU2), it is likely that many security issues go undetected with today’s

Table 7. Empirical basis for discussion and recommendations on practical ways of doing risk analysis

Area Main Finding Relevant Triggers Relevant
Obstacles Notes on Adoption

Risk analysis

Risk analysis practices vary
greatly among organisations
(RA1) Legal requirements﻿

New products﻿
Project with
obvious security
needs

-
For risk analysis, see
RA1-3.﻿
Very low adoption of
threat modeling.﻿
-

Legal requirements are a
driver for performing risk
analysis (RA2)
Risk analyses are often not
centred on software security
issues (RA3)

Risk treatment
decisions

Arbitrary, late and error
driven (RTD1)

Detection of errors
made -

Some security
requirements are
made, but may come
late in the process.

Risk treatment
follow up

Limited security testing or
review (RTFU2) - - -

Risk
communication - - - -

A

82

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

21

practice. Though errors were a trigger for security activities also in development project B where
security was followed up in a more continuous and structured manner throughout the project, the
effect of errors as a trigger for security activities seem to have been stronger in development project
A where security was not given as much attention. Legal requirements were an important trigger
in development project B, but in project B this led to a more risk centric approach to security with
adoption of activities that could be considered part of risk management (see Table 3).

Current approaches to risk analysis in the studied organisations seem however to be inadequate
for software security (RA1-3). First, it is not clear when risk analysis should be performed. Second,
the analyses that are done seem not to be that useful for software security work. Based on this, it
seems that the organisations could benefit from lightweight processes for determining the need for
security in a project, to determine what level of risk analysis is needed as well as other security
activities. Such a lightweight process need to take into account the full security properties, not only
confidentiality and legal requirements. Additionally, there is a need for risk analysis methods that
fit software projects and that can be done in a more continuous manner throughout the project and
at a level useful for development. Protection Poker (Williams et al., 2010) is one example of a risk
assessment technique tailored to agile development and that would potentially fit the needs of these
organisations, and that has positive evaluation results in a real development setting. However, there
are not many other such techniques to choose from. Instead companies are left with adapting more
general risk assessment techniques to fit the needs of their agile development projects. More research
is needed in how risk assessment can be done efficiently and effectively in agile projects.
5.4. Threats to Validity
The discussion of threats to validity of this study is based on the recommendations of Cruzes and ben
Othmane regarding threats to validity in empirical software security research (Cruzes & ben Othmane,
2017). It is important to highlight that qualitative studies such as the one that we performed rarely
attempt to make universal generalisations. Instead, they are more concerned with characterising,
explaining, and understanding the phenomena in the contexts under study. Cruzes and ben Othmane
base their recommendations on Lincoln and Guba (1985), that substituted reliability and validity with
the parallel concept of trustworthiness. Trustworthiness again consists of four aspects: credibility,
transferability, dependability, and confirmability, with credibility as an analogy to internal validity,
and transferability as an analogy to external validity.

Credibility refers to “the quality of being convincing or believable, worthy of trust” (Cruzes & ben
Othmane, 2017), and dependability refers to “stability and reliability of data over time and conditions”
(Cruzes & ben Othmane, 2017). The credibility and dependability of this study are closely related, and
highly linked to study design decisions, in particular decisions regarding scope and depth of the study.
In the following we discuss three main design decisions made and their impact on validity, namely
the decision to study several organisations at a high level instead of one or a few organisations at a
more detailed level, the decision to gather the perspectives of roles outside the development teams,
and the decision to have the study organised as three sub-studies spanning two years.

In this study, we have studied 23 organisations, but these have not been studied in detail. We
rely on self-reporting of practices, and thus on the people we talk with adequately reporting both
practices and challenges. In the focus groups as well as in the interviews we got the impression
that the people we talked to were honest about their practices, also telling about challenges they
faced. However, we have not aimed to check that what they told us was in fact true using additional
empirical sources. Usually, only one person from each organisation was interviewed, thus we only
got one individual’s perspective on their software security work. We could have chosen to go more
in depth in the organisations, including more peoples’ perspectives, but this would have come at the
cost of the number of organisations we would have the capacity to study. Studying as many as 23
organisations from the same sector makes us able to understand the practices and challenges of this
sector as a whole, not only that of individual organisations.

A

83

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

22

In the IS n&p sub-study (sub-study 1) and in the swsec maturity sub-study (sub-study 3), most
of the people we talked to were not deeply involved in development, but rather had roles related
to network security or information security in the organisation. One reason for this study design
decision is our research question, where we take a more holistic approach to understanding risk
centric practices to software security, including also the organisational aspect. This emphasis on the
opinions of security people outside of the development projects is however a limitation, as we may
risk to not adequately understand the actual practices of the development projects. By studying two
development projects in more detail, we overcome some of this limitation. However, it is important
to note that by collecting the viewpoints of security people, also outside development, is important
because it corresponds to the way software security is currently handled in these organisations. When
in the swsec maturity sub-study we asked to talk with those responsible for software security, we were
directed to information security people in many cases. If we had decided to only study the projects,
we would have missed the important perspective of the security people and their interaction with the
projects when it comes to software security.

The study performed in order to do this mapping consists of three sub-studies performed over two
years. The study does not aim to identify changes that may have happened during this time. However,
we are not aware of any major external factors that would impact the software security work during
these two years. The focus in the three sub-studies are not the same but differ in what is studied and
who is used as informants. This is a strength in the way that the software security practices in the sector
is studied from different angles. However, none of the studies study risk centric activities exclusively.
Rather, the overall practices and challenges are aimed captured. As we did not bring with us a list
of risk centric activities to look for in the companies, we may have missed some of their risk centric
activities. However, studying the organisations strictly through the lens of such a list of risk centric
activities could result in overlooking practices that we had not included in the list beforehand, thus
obscuring the organisations’ practices and approach to software security.

Transferability of study results refers to “the degree to which the results of the qualitative research
can be generalized or transferred to other contexts or settings. It depends on the degree of similarity
between sending and receiving contexts” (Cruzes & ben Othmane, 2017). In this case, it should
not be done without taking into account the particular context of this study; public organisations in
Norway. Public organisations may behave differently than private software companies in some respects.
Although private companies act as contractors to the studied public organisations, the organisations
themselves have different goals than what is common for private companies. The high emphasis on
legal compliance found in this study is an example of a factor that can be stronger because of the
sector and the type of systems developed. However, with the upcoming enforcement of the General
Data Protection Regulation (GDPR) legal compliance will most likely become more important for
software companies in general.

Confirmability refers to “neutrality; that is, findings must reflect the participants’ voice and
conditions of the inquiry, and NOT the researcher’s bias, perspective, or motivations” (Cruzes & ben
Othmane, 2017). In the three sub-studies, several researchers have been involved in data collection,
and no one researcher has taken part in all data collection. This is both a strength and a weakness. By
having several researchers involved, any preconceptions of one individual researcher have less impact
on the data collection. However, with several researchers involved there is the challenge of coordinating
these researchers to ensure the data collection is consistent among the different companies. This was
especially important in the swsec maturity sub-study, where phone interviews were done by several
researchers individually, and in this sub-study we took measures to ensure the involved researchers
had a similar understanding of key concepts used in the interview guide and of the goal of the study.
In the other two sub-studies, data collection was done by the same researchers throughout the whole
sub-study. Richness of data has been ensured through recording of interviews in sub-studies 1 and 2. In
sub-study 2, the data analysed was the transcribed interviews, while in sub-study 2 the recording was
used to enrich notes taken during the focus group sessions. These notes, including initial conclusions

A

84

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

23

from the focus group, was sent to the focus group members for comments a short time after the focus
group. In sub-study 3, richness of data was ensured by having questionnaires that was followed up
by an interview. Besides, we have created mind-maps of the data for abstraction of the results, where
all results can be traced back to the original source of information.

6. CONCLUSION

This study of software security practices in public organisations, with a mapping of their risk centric
activities, has revealed that software security practices were not mainly based on an assessment of
software security risks, but rather driven by compliance. Their practices could also in many cases
be characterised as arbitrary, late and error driven, with limited follow up on any security issues
throughout the development projects. We have identified a need for: more practical ways of doing
risk analysis; improved risk perception and competence; and clearer responsibilities and improved
stakeholder cooperation.

We recommend that organisations move towards a more risk centric approach to software
security, as the current compliance-based approach does not give adequate confidence that important
security issues are addressed sufficiently. In doing this, organisations would benefit from lightweight
processes for determining the need for security in a project, making sure the full security properties
are considered. Additionally, there is a need for risk analysis methods that fit agile software projects,
and that can be done in a more continuous manner. Key stakeholders in the development project
should be involved in risk analysis, to increase awareness of security. Responsibility for software
security in a project should be clearly assigned, and should preferably be given to someone close
to the development. However, in addition to assigning responsibility, there is a need to arrange for
legal and security experts to have understanding of and interaction with development projects. When
decisions are made that impact risk acceptance, there should be routines in place to make sure experts
on legal and security issues have a chance to share their perspectives on the issue.

ACKNOWLEDGMENT

This work has been supported in part by the SoS-Agile: Science of Security in Agile Software
Development project, funded by the Research Council of Norway (grant number 247678). Two of the
sub-studies (sub-study 1 and 3) have been funded by the Norwegian Agency for Public Management
and eGovernment (Difi). We would like to thank all the company and project representatives that
participated in the study. We would also like to thank Tor Erlend Fægri and Svein Hallsteinsen who
performed the interviews in the second sub-study, and Karin Bernsmed who performed some of the
interviews in the third sub-study. Thanks to Prof. Guttorm Sindre for input on the contents of the paper.

A

85

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

24

REFERENCES

Baca, D., Boldt, M., Carlsson, B., & Jacobsson, A. (2015, August 24-27). A Novel Security-Enhanced Agile
Software Development Process Applied in an Industrial Setting. Paper presented at the 2015 10th International
Conference on Availability, Reliability and Security.
Bannerman, P. L. (2008). Risk and risk management in software projects: A reassessment. Journal of Systems
and Software, 81(12), 2118–2133. doi:10.1016/j.jss.2008.03.059
Beck, K. (2000). Extreme programming explained: embrace change. Addison-Wesley Longman Publishing
Co., Inc.
ben Othmane, L., Angin, P., Weffers, H., & Bhargava, B. (2014). Extending the Agile Development Process to
Develop Acceptably Secure Software. IEEE Transactions on Dependable and Secure Computing, 11(6), 497-
509. doi:10.1109/tdsc.2014.2298011
Caralli, R. A., Stevens, J. F., Young, L. R., & Wilson, W. R. (2007). OCTAVE Allegro: Improving the Information
Security Risk Assessment Process (CMU/SEI-2007-TR-012 ESC-TR-2007-012). Software Engineering Institute
at Carnegie Mellon University.
Chandra, P. (2008). Software assurance maturity model. Retrieved from Cruzes, D. S., & ben Othmane, L.
(2017). Threats to Validity in Empirical Software Security Research. In L. ben Othmane, M. G. Jaatun, & E.
Weippl (Eds.), Empirical Research for Software Security: Foundations and Experience (pp. 277-302). CRC Press.
Cockburn, A., & Highsmith, J. (2001). Agile software development, the people factor. Computer, 34(11), 131–133.
Cybenko, G. (2006). Why Johnny Can’t Evaluate Security Risk. IEEE Security and Privacy, 4(1), 5. doi:10.1109/
MSP.2006.30
Deleersnyder, S., Win, B. D., & Glas, B. (2017). Software Assurance Maturity Model - How To Guide - A Guide
to Building Security Into Software Development. Retrieved from https://github.com/OWASP/samm/blob/master/
v1.5/Final/SAMM_How_To_V1-5_FINAL.pdf
Dingsøyr, T., Moe, N. B., Fægri, T. E., & Seim, E. A. (2017). Exploring software development at the very large-
scale: A revelatory case study and research agenda for agile method adaptation. Empirical Software Engineering.
doi:10.1007/s10664-017-9524-2
Eclipse. (2016). Eclipse Process Framework (EPF). Retrieved from http://www.eclipse.org/epf/
Fenz, S., & Ekelhart, A. (2010). Verification, validation, and evaluation in information security risk management.
IEEE Security and Privacy, (2): 58–65.
Fitzgerald, B., & Stol, K.-J. (2017). Continuous software engineering: A roadmap and agenda. Journal of Systems
and Software, 123(Suppl. C), 176–189. doi:10.1016/j.jss.2015.06.063
Gerber, M., & Von Solms, R. (2005). Management of risk in the information age. Computers & Security, 24(1),
16–30. doi:10.1016/j.cose.2004.11.002
Hijazi, H., Khdour, T., & Alarabeyyat, A. (2012). A Review of Risk Management in Different Software
Development Methodologies. International Journal of Computers and Applications, 45(7), 8–12.
Howard, M., & Lipner, S. (2006). The Security Development Lifecycle: A Process for Developing Demonstrably
More Secure Software (Vol. 2016). Microsoft Press.
Ibbs, C. W., & Kwak, Y.-H. (2000). Assessing project management maturity. Project Management Journal,
31(1), 32–43.
Islam, S., Mouratidis, H., & Weippl, E. R. (2014). An empirical study on the implementation and evaluation
of a goal-driven software development risk management model. Information and Software Technology, 56(2),
117–133. doi:10.1016/j.infsof.2013.06.003
ISO/IEC. (2011). ISO/IEC 27005: 2011Information technology–Security techniques–Information security risk
management.

A

86

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

25

Jaatun, M. G., Cruzes, D. S., Bernsmed, K., Tøndel, I. A., & Røstad, L. (2015). Software Security Maturity in
Public Organisations. In Information Security (pp. 120–138). Springer.
Jang-Jaccard, J., & Nepal, S. (2014). A survey of emerging threats in cybersecurity. Journal of Computer and
System Sciences, 80(5), 973–993. doi:10.1016/j.jcss.2014.02.005
Jourdan, Z., Rainer, R. K., Marshall, T. E., & Ford, F. N. (2010). An Investigation Of Organizational Information
Security Risk Analysis. Journal of Service Science, 3(2), 10.
Junior, I. H. F., Azevedo, R. R. d., Moura, H. P. d., & Silva, D. S. M. d. (2012, August 27-30). Elicitation of
Communication Inherent Risks in Distributed Software Development. Paper presented at the 2012 IEEE Seventh
International Conference on Global Software Engineering Workshops. doi:10.1109/ICGSEW.2012.18
Kongsli, V. (2006). Towards agile security in web applications. Paper presented at the Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems, languages, and applications.
Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic inquiry (Vol. 75). Sage.
McGraw, G. (2004). Software security. IEEE Security and Privacy, 2(2), 80–83. doi:10.1109/MSECP.2004.1281254
McGraw, G. (2006). Software security: building security in (Vol. 1). Addison-Wesley Professional.
McGraw, G., Migues, S., & West, J. (2013). Building Security In Maturity Model (BSIMM-V). Retrieved from
http://bsimm.com
McGraw, G., Migues, S., & West, J. (2016). Building Security In Maturity Model (BSIMM7). Retrieved from
http://bsimm.com
Microsoft. (2009). Security Development Lifecycle for Agile Development. Retrieved from http://www.microsoft.
com/en-us/SDL/Discover/sdlagile.aspx
Nelson, C. R., Taran, G., & de Lascurain Hinojosa, L. (2008). Explicit Risk Management in Agile Processes.
In P. Abrahamsson, R. Baskerville, K. Conboy, B. Fitzgerald, L. Morgan, & X. Wang (Eds.), Agile Processes in
Software Engineering and Extreme Programming: 9th International Conference, XP 2008, Limerick, Ireland,
June 10-14 (pp. 190-201). Berlin: Springer.
NIST. (2010). Guide for Applying the Risk Management Framework to Federal Information Systems - A
Security Life Cycle Approach (Special Publication 800-37). Retrieved from http://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-37r1.pdf
Nyfjord, J., & Kajko-Mattsson, M. (2008). Integrating Risk Management with Software Development: State of
Practice. Paper presented at the International MultiConference of Engineers and Computer Scientists, Hong
Kong. Retrieved from http://www.iaeng.org/publication/IMECS2008/IMECS2008_pp878-884.pdf
Odzaly, E. E., Greer, D., & Stewart, D. (2017). Agile risk management using software agents. Journal of Ambient
Intelligence and Humanized Computing. doi:10.1007/s12652-017-0488-2
Oppliger, R. (2015). Quantitative Risk Analysis in Information Security Management: A Modern Fairy Tale.
IEEE Security and Privacy, 13(6), 18–21. doi:10.1109/MSP.2015.118
Oyetoyan, T. D., Jaatun, M. G., & Cruzes, D. S. (2017). A Lightweight Measurement of Software Security
Skills, Usage and Training Needs in Agile Teams. International Journal of Secure Software Engineering, 8(1),
27. doi:10.4018/IJSSE.2017010101
Poller, A., Kocksch, L., Türpe, S., Epp, F. A., & Kinder-Kurlanda, K. (2017). Can Security Become a
Routine?: A Study of Organizational Change in an Agile Software Development Group. Paper presented at
the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, Portland, OR.
doi:10.1145/2998181.2998191
Raz, T., Shenhar, A. J., & Dvir, D. (2002). Risk management, project success, and technological uncertainty. R
& D Management, 32(2), 101–109. doi:10.1111/1467-9310.00243
Rhee, H.-S., Ryu, Y. U., & Kim, C.-T. (2012). Unrealistic optimism on information security management.
Computers & Security, 31(2), 221–232. doi:10.1016/j.cose.2011.12.001
Stewart, D. W., & Shamdasani, P. N. (2014). Focus groups [): Sage Publications.]. Theory into Practice, 20.

A

87

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

26

Sulaman, S. M., Weyns, K., & Höst, M. (2013). A review of research on risk analysis methods for IT systems.
Paper presented at the 17th International Conference on Evaluation and Assessment in Software Engineering.
doi:10.1145/2460999.2461013
Tavares, B. G., da Silva, C. E. S., & de Souza, A. D. (2017). Risk management analysis in Scrum software
projects. International Transactions in Operational Research. doi:10.1111/itor.12401
Tøndel, I. A., Line, M. B., & Johansen, G. (2015). Assessing information security risks of AMI: What makes it
so difficult? Paper presented at the 1st International Conference on Information Systems Security and Privacy
2015, Angers, France.
van Wyk, K. R., & McGraw, G. (2005). Bridging the gap between software development and information security.
Security & Privacy, IEEE, 3(5), 75–79. doi:10.1109/MSP.2005.118
Wheeler, E. (2011). Security Risk Management (1st ed.). Boston: Syngress.
Williams, L., Meneely, A., & Shipley, G. (2010). Protection Poker: The New Software Security “Game”. IEEE
Security and Privacy, 8(3), 14–20. doi:10.1109/MSP.2010.58
Xiao, S., Witschey, J., & Murphy-Hill, E. (2014). Social influences on secure development tool adoption: why
security tools spread. Paper presented at the Proceedings of the 17th ACM conference on Computer supported
cooperative work & social computing, Baltimore, MD. doi:10.1145/2531602.2531722

A

88

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

27

APPENDIX

Mind Maps of Findings
Figures 4-7 provide an overview of the main findings from the study, as well as which sub-studies
the findings come from.

Figure 4. Overview of key findings on risk analysis

A

89

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

28

Figure 5. Overview of key results on risk treatment decisions

A

90

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

29

Figure 6. Overview of key results on risk treatment follow up

Figure 7. Overview of key results on risk communication

A

91

International Journal of Secure Software Engineering
Volume 8 • Issue 4 • October-December 2017

30

Inger Anne Tøndel is a PhD candidate at the Department of Computer Science at the Norwegian University
of Science and Technology (NTNU) and a Research Scientist at SINTEF Digital. She got her master’s degree
in Telematics from NTNU in 2004. Her research interests include software security, information security risk
management, cyber insurance and cyber security in smart grids.

Martin Gilje Jaatun is a Senior Scientist at SINTEF Digital and an Adjunct Professor at the University of Stavanger.
He graduated from the Norwegian Institute of Technology (NTH) in 1992 and received the Dr.Philos. degree from
the University of Stavanger in 2015. Previous positions include scientist at the Norwegian Defence Research
Establishment (FFI), and Senior Lecturer in information security at the Bodø Graduate School of Business. His
research interests include software security, security in cloud computing, and security of critical information
infrastructures. He is vice chairman of the Cloud Computing Association (cloudcom.org), vice chair of IEEE
TCCLD, and a Senior Member of the IEEE. He is also an IEEE Cybersecurity ambassador, and Editor-in-Chief of
the International Journal of Secure Software Engineering.

Daniela Cruzes is a researcher scientist at SINTEF. Previously, she was adjunct associate professor at the
Norwegian University of Science and Technology (NTNU). She worked as a researcher fellow at the University of
Maryland and Fraunhofer Center for Experimental Software Engineering-Maryland. Dr. Daniela Cruzes received
her PhD in experimental software engineering from the University of Campinas - UNICAMP in Brazil in 2007. Her
research interests are empirical software engineering, research methods and theory development, synthesis of
SE studies, software security, software testing and agile and DevOps.

Nils Brede Moe works with software process improvement, intellectual capital, and agile and global software
development as a senior scientist at SINTEF. His research interests are related to organizational, socio-technical,
and global/distributed aspects. His publications include several longitudinal studies on self-management, decision
making, innovation, and teamwork. He has co-edited the books Agile Software Development: Current Research
and Future Directions and Agility Across Time and Space: Implementing Agile Methods in Global Software
Projects. His thesis was, From Improving Processes to Improving Practice - Software Process Improvement in
Transition from Plan-driven to Change-driven Development. He holds an adjunct position at the Blekinge Institute
of Technology in Sweden.

A

92

B

93

Paper B: ‘IT Security Is From Mars, Software Security Is From
Venus’

©2020 IEEE. Reprinted, with permission, from Inger Anne Tøndel, Martin Gilje Jaatun, and
Daniela Soares Cruzes, IT Security Is From Mars, Software Security Is From Venus, IEEE
Security & Privacy, July/August 2020.

Included here is the version of the article that was accepted by IEEE for publication. The
final and published version is the reviewed and accepted article, with copy-editing, proofreading
and formatting added by IEEE. That is the version that appears in IEEE Xplore and can be found
following the reference [28].

B

1

IT security is from Mars, software security
is from Venus
Inger Anne Tøndel, Martin Gilje Jaatun, Daniela Soares Cruzes

Abstract: In smaller software companies, the divide between IT security and software security can
result in software security not being prioritized. A formal security champion role in the
development team and collaborative risk-based security activities are potential ways to reduce this
divide and bring a more proactive approach to software security.

More than ten years ago, van Wyk and McGraw [1] called out for aligning information security and
software development. At that time, there was a disconnect between security and development that
led to software being developed without any understanding of technical security risk, and thus
software with security weaknesses that should have been avoided. Even though the software
security landscape has changed a lot in the past ten years, with increasing exposure of software and
growing attention to security issues, this disconnect is still present in software companies (Table 1).

We have studied software security practices and challenges in 23 public organizations in Norway [2]
through interviews with employees having various roles related to security in these organizations.
This includes CISOs or other personnel with IT security or network security roles in the organizations,
as well as software architects. The organizations we studied vary in size, but most can be considered
small or medium sized companies (SMEs). The public organizations additionally varied in how much
software was internally developed and what role the organization itself had in the development;
whether they did development in-house, hired external developers, acquired bespoke software from
vendors, or a combination of the above. The majority had their own software developers, who often
worked together with hired external developers.

In the study we identified various ways in which the disconnect between security and development is
still prominent in these smaller organizations, as well as reasons why this is so. In the following we
explain these reasons further, and provide some suggestions for how to move forward from here.
We found that to the extent that IT security professionals are involved in the development, this
involvement is not strategic, and the man-hours put into this interaction is very limited. Additionally,
a lot of the good work that is done on IT security and network security in the organization, does not
seem to influence software development – it rather is seen as irrelevant for the development. This
goes for business-level information security risk analysis as well as for penetration testing.

B

95

2

Table 1. To what extent do the organizations and projects follow the recommendations of van Wyk and McGraw on
information security professionals' involvement in software development projects?

Recommendation van Wyk and
McGraw

IT security professionals'
practice

Software development
professionals' practice

Abuse cases:
Security professionals have
knowledge of attacks, and should
participate together with
developers in creating abuse cases

In general, IT security
practitioners are not
involved in creating abuse
cases, but they may have
conversations with
developers about threats
and security requirements.

Only very few create abuse
cases.

Business risk analysis:
Information security professionals
know security impacts first hand for
similar business applications, and
can thus provide answers to
questions on incident costs.

Perform overall risk analysis
for the whole organization,
but these are often
considered by developers to
not be relevant for the
development projects.

Several organizations do risk
analysis related to
development projects, but
these do not necessarily
cover security risks. Only a
few have clear routines to
do software security risk
analysis related to the
development projects.

Architectural risk analysis:
A security analyst that is also a
technology expert (covering
application, underlying platform,
frameworks, languages, etc.) can
provide important perspectives on
risks, weaknesses and mitigation
strategies.

- When security architects are
involved in the projects,
these may evaluate risk
related to architectural
decisions and follow up on
security principles. This is
however seldom done
unless security is a clear
priority.

Test planning:
Risk based testing scenarios would
benefit from experiences of incident
handlers. Security professionals are
good at "thinking like an attacker".

- Testing mainly covers
functionality.

Code review:
This step is best left in the hands of
the development organization.

- Code review is commonly
performed, but related to
code quality in general (no
specific focus on security).

Penetration testing:
This is usually the domain of
information security and incident
handling organizations, but for
software development a more
inside -> out approach should be
taken

Several organizations do
penetration testing, but not
necessarily directed at the
software they develop.
Initiatives for penetration
testing often come from
outside the development
organization.

A few do penetration testing
at main release, or if they
suspect major security
issues.

B

96

3

Recommendation van Wyk and
McGraw

IT security professionals'
practice

Software development
professionals' practice

Deployment and operations:
Information security expertise can
help safely setting up the
application in a secure operational
environment; access controls, event
logging and monitoring, etc.

Security is in general a much
higher priority and concern
in operation (network
security). This part of the
organization usually has
routines to stay updated on
attacks and security risk.

Different culture among
developers and operations
when it comes to security.
This may lead to frictions;
e.g. developers believe
operations put up too many
hindrances.

So, where does it go wrong? The evidence we have collected points to three main reasons why
software security is not given priority, as summarized in Table 2. These reasons concern both the IT
security and development tribes. In the following we go into each of these reasons, explain the
challenges we identified and provide suggestions for moving forward.

Table 2: Key reasons why software security is not given priority, both among IT security professionals and in the
development organization

Unclear responsibilities and
expectations on software
security

Risk perception Lack of approaches that fit
the software development
daily activities

• No one is given explicit
responsibility for software
security

• Optimistic assumptions on
competence and interest
of developers and
contractors on security

• Software security not
important for internal
systems

• Security is about
confidentiality

• Contractors and
developers can be trusted

• Approaches to security
that worked for waterfall-
based development do not
work as well with agile

• IT security people not
involved in sprint meetings
or other key decision
making points

Unclear responsibilities: Where does IT security stop and software
security begin?
Commonly, information security is defined as safeguarding the confidentiality, integrity and
availability of information, and IT security is broadly defined as information security in IT systems. In
today's businesses, this information is in large part processed by software systems, thus software
security is essential for information security. Information security management standards, such as
ISO/IEC 27001, include controls on system acquisition, development and maintenance. It is therefore
not a surprise that in the organizations, IT security personnel are often given some responsibility for
software security.

McGraw defines software security as "the idea of engineering software so that it continues to
function correctly under malicious attack" [3]. Table 3 provides an overall comparison between the
information security and software security fields. The fields are clearly related. Still, there are major
differences in the formal requirements to, and the organization of, the work. van Wyk and McGraw
recommended that a fruitful cooperation between information security people and developers could
help developers understand what they're up against and potential impacts on the business. To
achieve such a fruitful cooperation, they recommended that information security professionals

B

97

4

should be involved in some of the software security touchpoints (Table 1). But van Wyk and McGraw
were very clear that this required skills and initiative from the IT security side. Gaining the necessary
understanding of software development in order to contribute with security in a meaningful way,
and in a way that is respected by the developers, is non-trivial. This included understanding the craft
of developing software, as well as what are the goals driving the development and its race towards
faster time to market.

Table 3. IT security and software security compared

 ITSEC SWSEC
FORMAL RESPONSIBILITIES Place in the hierarchy; a formal

role with responsibilities.
No formal position.
Autonomous teams

MATURITY Standards are adopted.
Mature tools.

Standards not often used.
Less mature tools.

DRIVERS Risks; incidents; standards and
legislation.

Requirements (legislative and
customer demands); software
vulnerabilities.

RESTRICTIONS Costs-effectiveness;
management buy-in.

Time to market.

GENERAL MINDSET Sceptic and risk averse. Optimistic – build things.
SPEED Two paces:

i) race against attackers (patch,
update signatures, etc.)
ii) ISMS – plan, do, check, act –
longer cycles (e.g. risk analysis
once a year)

Agile, DevOps, continuous
delivery -> need to keep up
with this pace.

Software security rely on individual initiative
Most organizations in our study point to IT security people as the ones having responsibility also for
software security. However, IT security people seem not to be highly involved in software
development, and for them, their responsibility for software security is unclear. As a result, the
responsibility is fragmented, and it is not possible to clearly hold anyone accountable for software
security. Some IT security professionals stated that, in the end, the developers are responsible for
their own part of the system, and that in their organization, other security activities and goals had
been given priority. Consequently, software security had not been given attention. Many
organizations seem to rely quite heavily on their contractors to take care of software security, and do
not really follow up on them regarding security issues. They rely on contractors to identify security
requirements, and assume that they have an overview of security risk and perform the right activities
to address this risk.

IT security professionals may occasionally discuss security issues with developers, but they do not
follow up on how this is dealt with in the development. IT security professionals view architects as
important and potential allies in the software security work. However, in practice the architects
seldom take on this role as a security ally. The architects often come from external contractors, and
are thus mainly concerned with getting the job done, and following the product owner's orders.
Interviewees talk about situations where the architect does not take responsibility for security, and
instead points to the CISO or similar role. Since architects are considered to be a primary influencer
on whether there is, e.g., performed design or architecture review related to security, software
security currently relies on individual initiative and interest of security among the architects. On the
plus side, since architects typically are seasoned developers with significant experience, it is likely

B

98

5

that they will have more software security knowledge than the average developer, as our studies
indicate that software security knowledge is correlated with years of experience [4]. This means that
architects should be well placed to fill a role in software security, but this responsibility needs to be
assigned explicitly by management.

The CISO as a change agent for software security?
For software security to gain momentum, someone needs to ask for more software security to drive
change in practices. If assuming that the disconnect between IT security personnel and developers is
the main reason why software security is not happening, one could say that the initiative for
software security should come from the IT security side. This is also very much what van Wyk and
McGraw build on in their article, providing recommendations for information security experts on
how to become more involved in development. However, we don't see evidence that this is
happening.

So, if neither the security nor the developer side is pushing for more software security, who should?
As a general rule, management is key in driving change in organizations [5]. They are in a position to
push security in the organization, either information security or software security. In the
organizations studied there is a big difference in the awareness and push from managers on
information security compared to software security. At the time of the first part of the study (2013),
all the public organizations were required to implement an information security management system
(ISMS). At the same time, large public development projects could run without software security
being a main consideration, and without anyone being given clear responsibility for software
security.

Though information security practitioners and developers often have a common technical
background, the former rarely have strong development expertise. Thus, it is generally
recommended that responsibility for software security should be assigned to someone from the
development side. Based on data from the BSIMM study [6], the first step in a software security
initiative should be the formation of a software security group (SSG), responsible for carrying out and
facilitating software security in the organization. This group should ideally consist of software
security people, alternatively developers that can be taught about security. The SSG should have
people with deep coding skills as well as architects, and people with good communication skills. It
has been stated that network security people usually fail in this type of role [6].

If looking at organization charts, CISOs (and other information security or network security people)
are usually not located anywhere near the development organization. It has previously been shown
how the silo structure of organizations can limit communication about and learning from cyber
incidents [7]. Similarly, organizations may find that the brilliant information security competence
they have in-house does not benefit the development at all. In the organizations studied, developers
are not included in security forums that, e.g., discuss attacker trends and risks, and IT security people
are only occasionally in interaction with the development organizations. In the organizations that rely
quite heavily on external contractors for development, the linkage and proximity of the IT security
and development people are an even bigger challenge.

Security Champions can be the bridge between IT security and Software Security
Just telling software developers and IT security people that they need to play together has not been
working – a decade's worth of empirical evidence tells us this. Another change agent is necessary,
and we propose that this role can be filled by software security champions [8, 9]. As mentioned
before, establishing a security champion program also needs to be management-driven. Developers
with an above-average interest in software security need to be identified or hired, and care must be

B

99

6

taken that every team has at least one security champion. This will require management support and
funding. However, this person must NOT be an external IT security expert – it is instrumental that the
security champion is a developer, contributing to the development process and the quest toward
"done". The BSIMM [6] also highlights the important role of the security champions, but uses the
term "satellite" instead, suggesting that they are somewhat secondary to the SSG. We believe that
for SMEs, it will be more beneficial to start with the software security champions, and possibly
migrate to creating an SSG if and when the organization reaches the requisite size.

Once the security champions are in place, they can serve as the bridge between the CISO and the
developers – their security knowledge should let them understand the "security-speak" of the CISO,
and their developer chops and positive contributions to the fight against the windmills represented
by the backlog should ensure a sympathetic ear among their fellow developers. For organizations
that have an SSG, this just adds another layer to the organization chart, as shown in Figure 1. It is
important that the security champions organizationally are placed in the same hierarchy as other
developers, ultimately reporting to the Vice President of Development or similar role. We believe the
same holds true for the SSG – even though it should have clear lines to the CISO, it is still part of the
development organization

Figure 1: Shoehorning security into the organization chart

Risk perception
Despite the common mantra in literature and in security circles that all security work should be risk
based, we did not find much evidence that software security follows a risk-based approach in the
organizations we studied. Instead the approach can be characterized as compliance-based or
accidental.

B

100

7

The organizations in our study were up to date on legal requirements, network security and new risks
in IT. This however does not mean that the software development initiated by these organizations
benefited from that competence. Though the studied organizations often have forums and similar to
follow up on the latest cyber security threats, none seem to have clear routines to inform developers
about new or evolving threats. Only a few organizations have identified what their most important
product is, or which kinds of attacks they are most afraid of related to their software.

When the systems under development are not to be open for external users, and thus not directly
available on the Internet, security is not considered to be particularly important. This is the case for
many of the systems developed by or for these organizations, and in general, security does not seem
to be prioritised. Instead, efficiency (i.e., getting the job done) is considered the main priority both
from those procuring and those developing the software. Additionally, the organizations seem to
have significant trust in the software developers, including contractors, that they all have good
intentions. Thus, they do not feel the need to have mechanisms in place to check for rogue code, and
do external security tests, etc.

IT security personnel are not necessarily involved in making decisions on what level of security is
needed for the project. Software security is more likely to be considered for development of new
products, than for improvements of existing products, and if the need for security is rather obvious
(e.g. health information), as this can spur the involvement of security experts in the project. If the
need is not obvious, security may not be considered – unless something triggers a sudden jump in
security attention.

The main trigger for security activities in the development projects are accidentally detected security
vulnerabilities and legal requirements. In the one project we studied that had security as a high
priority, this was solely because of strict legal requirements to the type of data the software should
handle. Because of these legal requirements, security was given priority in the budget and security
architects were included in the development teams. Legal requirements are additionally stated as a
reason for doing risk analysis. In some cases, risk analysis is first performed after receiving audit
remarks that this is lacking. For projects without a clear approach to security, security activities come
a bit incidental and late (if at all).

Risk centred activities as an antidote
As development organizations increasingly become aware of the need to address security during
development efficiently and effectively, without hampering their agile approach to development,
they need to make assessments on what type of security activities to include, i.e., what security
activities pay off. We advocate that companies would benefit from taking a risk-based approach in
their selection of software security activities, to ensure they are conscious about how much security
and what type of security is most needed in their specific project. Making such decisions is
challenging and requires security competence. However, there are many activities that development
projects can adopt that make such decisions more available to the team, also in cases where they
lack deep security knowledge.

The most often mentioned activity is Threat analysis/Threat modeling. In such activities the
development teams can be supported by checklists or mnemonics such as STRIDE, or they can even
utilize game-based approaches such as OWASP Cornucopia [10] and Microsoft EoP [11].
Alternatively, including developers in risk analysis activities can make these analyses more relevant
to the team and increase the security awareness of those that participate. Protection Poker [12], a
game-based approach to risk estimation, offers a way to easily integrate security risk analysis into
agile development practices. These activities require little preparation, require relatively low effort to

B

101

8

perform, and contribute to building security awareness in the whole team. Essentially, they are
structured ways to talk about security risk, and may be the little push that is required to spend more
time on software security activities. Including IT security personnel in the activities can further
improve the quality of the security discussions they foster, and increase awareness and
understanding on both sides; making the development teams more knowledgeable and aware of
security issues, and increase IT security personnel's understanding of the challenges in development.

Security in Software Development Practices: Speed, Data, Ecosystems
It is clear that many IT security professionals and developers have conflicting goals. While the IT
security people in general express a concern that software security may not be adequately handled
in their organization, both groups explain that the main priority during development is functionality.
Additionally, in cases where security requirements are identified early on, time pressure in the
projects can cause security requirements to be postponed, even past deployment. With traditional
waterfall development methods, all requirements were in the contract and had to be fulfilled. Now,
important security decisions are made in short sprint meetings, localized in the scope of the sprint,
and the impression is that whenever there is a conflict over time and budget in a sprint, security is
sacrificed in order to realize functionalities. Most organizations we have studied are struggling to
integrate security into the agile way of working. One participant explained that information security
is not included until the end of the project, as information security personnel is not invited to
participate before then, but at that point developers do not like it when she introduces new security
requirements.

According to an article by Bosch [13], there are three key factors driving the future of software
engineering:

• speed: continued success depends on the organization's ability to respond quickly to
customer requests, changing market priorities, new competitors, etc.

• data: data collection is now cheap and easy, and organizations that are able to make smart
and timely decisions based on collected data will benefit

• ecosystems: as a result of increased speed and data, companies will more frequently change
their role and position in their ecosystem, thus organizations need to intentionally,
proactively and effectively manage changing relationships

These drivers impact the whole organization, not only the development teams. For software
development, there has long been a drive towards less documentation and faster delivery of working
code, through agile development, DevOps, and continuous delivery. Where traditional organizations
relied on functional organizational hierarchies, businesses now move towards cross-functional teams
and self-management. CISOs and similar organizational roles need to find their way in an
organization structure more centered on autonomous teams, where speed of decisions is key to
maintain competitiveness. We find that this aligns well with the suggestion that the CISO exerts
influence on a distributed band of security champions, possibly via the SSG, without removing their
organizational ties to the development organization.

Agile is all about value and functionality; what you can show to the customer in the next sprint.
Security tends to be considered a non-functional requirement, and with the main emphasis on
functionality, such non-functional requirements are easily sacrificed on the altar of progress when
backlog priorities are set. In case of security incidents, there is a need for rapid response, but the
overall challenges are more towards getting management approval of needed, longer-term security
investments. However, we expect that as organizations move toward DevOps and continuous

B

102

9

deployment, IT security will automatically need to be tighter integrated with development, and their
horizons will shift accordingly.

It can be argued that Ops are in general more security aware, since they have to deal with daily
intrusion attempts and manage firewalls, antivirus tools and intrusion detection systems. The
DevOps mantra is "you build it – you run it", which implies that the developers will be much closer to
the sharp end, also when an incident should happen. This also means that developers need to be
involved in incident response drills, ultimately resulting in better response and quicker fixing of
security bugs and flaws.

Along with the drive towards value and functionality fast, there is a growing attention to the fact
that software needs to be developed with security in mind. Cyber incidents are visible in media, and
this increases awareness among managers as well as customers. It is thus likely that in the future also
non-security-critical software will need to consider security as an important quality attribute, and
that customers will pose security requirements to the software they acquire. This in itself can
increase the drive for security in the development organization without IT security people needing to
take the role of a change agent for software security.

Acknowledgements
This work was supported by the Science of Security in Agile Software Development project (SoS-
Agile), funded by the Research Council of Norway (grant number 247678).

References

[1] K. R. van Wyk and G. McGraw, "Bridging the gap between software development and
information security," Security & Privacy, IEEE, vol. 3, pp. 75-79, 2005.

[2] I. A. Tøndel, M. G. Jaatun, D. S. Cruzes, and N. B. Moe, "Risk Centric Activities in Secure
Software Development in Public Organisations," International Journal of Secure Software
Engineering (IJSSE), vol. 8, pp. 1-30, 2017.

[3] G. McGraw, "Software security," IEEE Security & Privacy, vol. 2, pp. 80-83, 2004.
[4] T. D. Oyetoyan, M. G. Jaatun, and D. S. Cruzes, "A Lightweight Measurement of Software

Security Skills, Usage and Training Needs in Agile Teams," International Journal of Secure
Software Engineering, vol. 8, p. 27, January 2017.

[5] H. Assal and S. Chiasson, "Security in the software development lifecycle," presented at the
Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018), 2018.

[6] G. McGraw, S. Migues, and J. West, "Building Security In Maturity Model (BSIMM9),"
Synopsys October 2018.

[7] A. Ahmad, J. Hadgkiss, and A. B. Ruighaver, "Incident response teams–Challenges in
supporting the organisational security function," Computers & Security, vol. 31, pp. 643-652,
2012.

[8] V. Asthana, K. Beckers, M. Ifland, J. Martin, N. Ozmore, I. Tarandach, et al., "Software:
Security Takes a Champion," http://safecode.org/wp-content/uploads/2019/02/Security-
Champions-2019-.pdf 2019.

[9] A. Antukh. (2017). Security Champions Playbook. Available:
https://www.owasp.org/index.php/Security_Champions_Playbook

B

103

10

[10] M. Thompson and H. Takabi, "EFFECTIVENESS OF USING CARD GAMES TO TEACH THREAT
MODELING FOR SECURE WEB APPLICATION DEVELOPMENTS," Issues in Information Systems,
vol. 17, 2016.

[11] A. Shostack, "Elevation of privilege: Drawing developers into threat modeling," in 2014
{USENIX} Summit on Gaming, Games, and Gamification in Security Education (3GSE 14),
2014.

[12] L. Williams, M. Gegick, and A. Meneely, "Protection poker: Structuring software security risk
assessment and knowledge transfer," in International Symposium on Engineering Secure
Software and Systems, 2009, pp. 122-134.

[13] J. Bosch, "Speed, Data, and Ecosystems: The Future of Software Engineering," Software, IEEE,
vol. 33, pp. 82-88, 2016.

B

104

C

105

Paper C: ‘Collaborative security risk estimation in agile software
development’

A written permission to include this material in its published form [29] has been obtained from
Emerald Publishing Limited.

I. A. Tøndel, M. G. Jaatun, D. S. Cruzes and L. Williams, ‘Collaborative security risk
estimation in agile software development,’ Information and Computer Security, vol. 27, pp. 508–
535, 4 2019. doi: 10.1108/ICS- 12- 2018- 0138 ©Emerald Publishing Limited all rights
reserved.

C

Collaborative security risk
estimation in agile

software development
Inger Anne Tøndel

Department of Computer Science, Norges Teknisk-Naturvitenskapelige Universitet,
Trondheim, Norway and Stiftelsen for Industriell og Teknisk Forskning,

Trondheim, Norway

Martin Gilje Jaatun and Daniela Soares Cruzes
Stiftelsen for Industriell og Teknisk Forskning, Trondheim, Norway, and

Laurie Williams
North Carolina State University, Raleigh, USA

Abstract
Purpose – Today, agile software development teams in general do not adopt security risk-assessment
practices in an ongoing manner to prioritize security work. Protection Poker is a collaborative and lightweight
software security risk-estimation technique that is particularly suited for agile teams. Motivated by a desire to
understand why security risk assessments have not yet gained widespread adoption in agile development,
this study aims to assess to what extent the Protection Poker game would be accepted by agile teams and how
it can be successfully integrated into the agile practices.
Design/methodology/approach – Protection Poker was studied in capstone projects, in teams doing a
graduate software security course and in sessions with industry representatives. Data were collected via
questionnaires, observations and group interviews.
Findings – Results show that Protection Poker has the potential to be adopted by agile teams. Key
benefits include good discussions on security and the development project, along with increased
knowledge and awareness. Challenges include ensuring efficient use of time and gaining impact on the
end product.
Research limitations/implications – Using students allowed easy access to subjects and an ability
to collect rich data over time, but at the cost of generalizability to professional settings. Results from
interactions with professionals supplement the data from students, showing similarities and differences in
their opinions on Protection Poker.
Originality/value – The paper proposes ways to tackle the main obstacles to the adoption of the
Protection Poker technique, as identified in this study.

Keywords Case study, Risk assessments, Agile development, Protection Poker,
Secure software engineering, Software security

Paper type Research paper

This work was supported by the SoS-Agile – Science of Security in Agile Software Development
project, funded by the Research Council of Norway (grant number 247678). Thanks to the course
organizers of TDT4290 (Prof Jon Atle Gulla and Prof John Krogstie) and the participating students at
NTNU and North Carolina State University. Thanks to Tosin Daniel Oyetoyan for contribution to the
capstone study. Thanks to Prof Pekka Abrahamsson for input on the capstone study design. Thanks
also to the companies that participated in the events and to those helping with facilitation at the
security conference (Per Håkon Meland and Marie Moe).

ICS
27,4

508

Received 7 December 2018
Revised 18 February 2019
Accepted 27 February 2019

Information & Computer Security
Vol. 27 No. 4, 2019
pp. 508-535
© EmeraldPublishingLimited
2056-4961
DOI 10.1108/ICS-12-2018-0138

The current issue and full text archive of this journal is available on Emerald Insight at:
www.emeraldinsight.com/2056-4961.htm

C

107

1. Introduction
Agile development methods have gained widespread adoption in the software industry, and
agile methods are now used for all types of software development and for various types of
systems, including large development projects (Dingsøyr et al., 2018). Current evidence
shows that security work is often neglected in agile projects (Oueslati et al., 2015; Terpstra
et al., 2017; Khaim et al., 2016; Tøndel et al., 2017), and that teams generally do not estimate
security risks in an ongoing manner to inform the security requirements work (Tøndel et al.,
2017). Risk management is important for making decisions on security activities in agile
development, as full security analysis in every sprint is not possible (Oueslati et al., 2015).

Risk-management activities, both within cyber security and software security, are
motivated by similar goals: to ensure that security activities are in line with organizational
goals and objectives and to address the security needs in an effective and timely manner
(ISO/IEC, 2011, Caralli et al., 2007; NIST, 2010). For software security, risk management
involves effectively and cost-efficiently identifying security vulnerabilities and risks and
prioritizing mitigations (Oueslati et al., 2015) and using risk as a basis for prioritizing
development efforts and making trade-off decisions (McGraw, 2006; Chandra, 2008).
Additionally, through raising awareness, teams gain an improved understanding of what
factors may lead to negative outcomes (Chandra, 2008) and become more able to think like
an attacker (McGraw et al., 2016). Achieving these goals is, however, not a straight-forward
task. Understanding and assessing security risk is known to be a complex challenge,
requiring a large skill set (Tøndel et al., 2017).

Limited empirical data is available on what makes risk management difficult, both
within cyber security and software security. A review of risk analysis methods for IT
systems (Sulaman et al., 2013) identified a lack of evaluation of risk analysis methods. In
spite of the mantra that all security work should be risk based, a study among information
security professionals (Jourdan et al., 2010) unveiled that as many as 25 per cent stated that
risk analysis was never or rarely performed for their department or organization. A main
challenge is the estimation of likelihood and cost, in part because of limited availability of
historical data and constantly changing risk factors (Fenz and Ekelhart, 2010; Cybenko,
2006; Gerber and Von Solms, 2005; Rhee et al., 2012; Tøndel et al., 2015).

Few research papers report on risk-analysis methods specifically tailored towards agile
teams. Protection Poker (Williams et al., 2010) is a notable exception. Protection Poker is
based on the Planning Poker game (Grenning, 2002) that is used for effort estimation in agile
projects. Protection Poker is intended to be played as part of every iteration planning
meeting to rank the security risk of each feature to be implemented in that iteration and to
identify security mechanisms that should be implemented to maintain an acceptable risk
level. The full team together identifies assets related to the features and uses the Protection
Poker game to rank the features according to their security risk, assessing the value of their
assets and the ease of attack. Although proposed byWilliams et al. (2010) in 2010, Protection
Poker is still not widely used in the software industry.

Protection Poker is a promising technique to study further, given its potential to increase
security awareness and knowledge in the full development team (Williams et al., 2010).
Additionally, previous studies have identified security benefits that can be traced back to using
an incremental risk analysis approach (Baca et al., 2015a) and have identified the need for more
research on practical ways of doing risk analysis in an agile context, i.e. lightweight and
continuously throughout the project (Tøndel et al., 2017). By studying adoption of Protection
Poker and how Protection Poker can be successfully integrated into the practices of agile
development teams, our aim is to build knowledge on how to increase adoption of security risk
assessment practices by agile teams. As Protection Poker has not yet gained widespread

Agile software
development

509

C

108

adoption, understanding potential reasons why this is the case can additionally help improve
Protection Poker and other techniques with similar goals as Protection Poker.

This paper presents a family of studies of applying Protection Poker in three different
settings: by six capstone development project teams; by 16 teams in a graduate software
security course; and in sessions with industry practitioners. Our investigation was centred
on the following research questions:

RQ1. To what extent is Protection Poker accepted by the players, both in the short term
and in the longer term?

RQ2. What lessons learned and improvements to Protection Poker are identified by the
players?

This paper is an extended version of Tøndel et al.’s (2018), which presented the results of
using Protection Poker in the capstone development projects. Compared to the previous
paper, this paper adds results from sessions of applying Protection Poker with industry
representatives and in a graduate-level software security course. Additionally, this paper
provides a more thorough overview of literature on security risk assessment in agile
development and on challenges to adoption of security activities in agile development.
Furthermore, this paper offers more concrete advice on when and how to adopt Protection
Poker in agile development projects.

The remainder of this paper is organized as follows. Section 2 gives an overview of relevant
literature on adoption of risk-assessment practices in agile software development. Section 3 gives
a more thorough introduction to Protection Poker. Section 4 explains the research method used in
the study. Section 5 presents the results of the study, and Section 6 discusses the implications of
these results. Section 7 discusses threats to validity. Section 8 concludes the paper.

2. Adoption of security risk-assessment practices by agile teams
This section gives an overview of the current state of software security risk assessment in
agile software development and introduces literature on challenges and factors important
for adoption of security activities in agile development.

2.1 Approaches to security risk assessment in agile development
Software development projects need to deal with various types of risks, including security
risks. In agile development practices, risk management can be said to be treated implicitly
(Tavares et al., 2017; Odzaly et al., 2018), and the guidance provided by agile methods when
it comes to risk management is “very general” (Nyfjord and Kajko-Mattsson, 2008). Few
research papers provide concrete guidance on how to tackle security risk management for
agile projects (Tøndel et al., 2017). The most notable technique available is Protection Poker.
Additionally, the security-enhanced agile software development process (SEAP) studied at
Ericsson (Baca et al., 2015b) provides high-level suggestions for performing incremental risk
analysis, in addition to other practices such as adding more security resources to the teams
and performing security activities such as code review and penetration testing. The results
of a study of SEAP reported improved identification and handling of risk. Thus, risk
management was found to be more cost-efficient with SEAP than with the approach
previously used by Ericsson, because security issues were dealt with in a more distributed
fashion with more issues solved directly by the team. The details of how risk analysis and
risk management was conducted with SEAP is not available; however, the frequency of risk
analysis was increased, the scope for each analysis was reduced and the approach was more
distributed.

ICS
27,4

510

C

109

Within the area of cyber security, standards, guidelines and research papers suggest
different ways of managing risk and performing risk assessments. Some of the major ones are
ISO/IEC 27005 (ISO/IEC, 2011), OCTAVE Allegro (Caralli et al., 2007) and the NIST Risk
Management Framework (RMF) (NIST, 2010). These documents suggest practices that concern
assessing the risk, making decisions on how to treat the risk, following up on these decisions
and communicating information related to security risks in the organization (Tøndel et al., 2017).

Within software security, risk-assessment practices are commonly included in software
security frameworks, maturity models and security development lifecycles (SDLs). The
OWASP Software AssuranceMaturityModel (OpenSAMM) (Deleersnyder et al., 2017) includes
activities on performing threat assessments. The seven touchpoints for software security
(McGraw, 2004) include the touchpoints abuse cases and risk analysis. Microsoft SDL (Howard
and Lipner, 2006) includes activities to perform security and privacy risk assessments, attack
surface analysis/reduction and perform threat modelling. One of the main sources for
information about software security practices is the Building Security In Maturity Model
(BSIMM) (Williams et al., 2018), mainly giving an overview of practices of big companies.
Though BSIMM does not have an activity that is named “risk analysis”, it contains several
activities related to such an activity, e.g. “Use a risk questionnaire to rank applications”, which
has an adoption of 45 per cent in the 2017 version of BSIMM, and “Require security sign-off”
which concerns a process for risk acceptance and has an adoption of 30 per cent. Regarding
smaller companies, we are only aware of one study in this respect (Tøndel et al., 2017), finding
that risk-assessment practices in public development organizations were not based on risk
analysis, but rather driven by compliance. The organizations performed risk analysis on some
level, but the practices were by and large not integrated with and considered to be especially
relevant for development. Thus, more empirical studies are needed on what can be done to
increase adoption of security risk assessment by software development projects.

Table I provides an overview of the risk management approaches mentioned above and
their usefulness for agile development teams. Note that a complete overview of available
methods is outside the scope of this paper.

2.2 Challenges of security activities in agile development
Research in software security covers a varied range of approaches and processes that deal
with security during software development. Several approaches have been suggested to
incorporate security into the software development lifecycle (Oueslati et al., 2015). When
aiming to apply security practices in agile software development, it is essential to take into
consideration the agile principles of “Individuals and interactions over processes and tools”,
“Working software over comprehensive documentation”, “Customer collaboration over
contract negotiation” and “Responding to change over following a plan” (Beck et al., 2001).
Current studies have identified challenges when security work is expected to be guided by
these same principles (see Tables II and III for an overview of the cited studies).

Oueslati et al. (2015) identified a set of 14 challenges of developing secure software using the
agile development approach and methods reported in the literature. The challenges were
categorized as “Software development lifecycle challenges”, “Incremental development
challenges”, “Security assurance challenges” and “Awareness and collaboration challenges”.
Several of the challenges relate to the need to fit security activities into the short iteration times,
the need to deal with changing functional requirements that may break previous security
analysis and decisions and the reliance on documentation that is commonwithin security work.

In a case study in a development organization, Cruzes et al. (2018) identified challenges to
threat modeling in agile development. The principle of “Individuals and interactions over
processes and tools” was challenging, especially because it was hard to get effective

Agile software
development

511

C

110

meetings with clear and actionable outputs. The principle of “Working software over
comprehensive documentation” is many a time misunderstood by agile teams to be “no
documentation” and especially developers have lost the focus on documenting their work or
understanding the need for documentation. Security work is many a time based on the
documentation of the decisions, risks and assets. This study gives us motivation to
investigate further how to make the security discussion meetingsmore effective.

Türpe and Poller (2017) theorize about tensions between the characteristics of security
requirements and security work on the one hand and the way Scrum manages development
work on the other. The authors find three different ways of managing security work: as bug
fixing on demand, continuously as a quality requirement through the definition of “done” or
as prioritized and planned development work through the product backlog. All of them are
found inadequate. On-demand fixing rarely leads to substantial security improvement. As a
quality requirement, security has a complex relationship with development work and is
difficult to verify. Security features in the backlog would be a suitable approach to many
security concerns, but they compete with other requirements and may also need special
expertise to design and implement effectively.

Terpstra et al. (2017) conducted a study of how practitioners reason about and cope with
security requirements in agile development, based on postings on LinkedIn. They identified
21 challenges and 15 coping strategies, and used these to create a conceptual model.
Challenges pointed to in this model is a limited business case for security, unclear ownership
of security requirements, limited organisational effort to educate developers on security,

Table I.
A selection of
existing approaches
and their agile
usefulness

Approach and references Risk-management activities included Usefulness for agile teams

Agile methodologies concerning security risks
SEAP (Baca et al., 2015b) High-level suggestions for risk analysis Details are not available

Risk-analysis methodologies
ISO/IEC 27005 (ISO/IEC,
2011)

Information security risk management
Organizational approach

Not directly applicable to agile
software development

OCTAVE Allegro (Caralli
et al., 2007)

Information security risk management
Organizational approach

Not directly applicable to agile
software development

NIST Risk Management
Framework (RMF) (NIST,
2010)

Integration of risk management into
software development

Describes a continuous process, but
may be too comprehensive for many
agile projects

Software security maturity models
OpenSAMM
(Deleersnyder et al., 2017)

Contains activities for threat
assessment, security requirements and
more

Activities can be adopted by agile
teams
High-level descriptions

BSIMM [16](Williams
et al., 2018)

Based on studies of predominantly
large companies
Contains some risk-related activities,
e.g. attack models

Activities can be adopted by agile
teams
High-level descriptions

Secure software development lifecycles
Touchpoints for software
security (McGraw, 2004)

Includes abuse cases and risk analysis Activities can be adopted by agile
teams
High-level descriptions

Microsoft SDL (Howard
and Lipner, 2006)

Includes security and privacy risk
assessments, attack surface analysis/
reduction, threat modelling

Agile version of this SDL is available
(Microsoft, 2012) that explains how to
integrate these practices in agile
development

ICS
27,4

512

C

111

limited incentives to care about security and the varying perceptions of priority among
business representatives. The agile principle of “Individuals and interactions over processes
and tools” lead to the priorities of security work being highly reliant on the people involved
in the project. Both Alsaqaf et al. (2017) in a literature review of quality requirements work
in agile development, and Terpstra et al. (2017) identify the product owner as a hindrance for
quality requirements being properly addressed, as the product owner commonly have a
“heavy workload” and “insufficient availability”, in addition to a “lack of knowledge” on the

Table II.
Selected challenges

identified in the
literature

Author and
reference Topic Challenges

Oueslati et al.
(2015)

Software security in agile
development (literature
review)

“Software development life-cycle challenges” (security
activities not included; hard to integrate security in every
iteration because of short iteration times)
“Incremental development challenges” (dealing with
changes)
“Security assurance challenges” (documentation; testing;
unstable development process)
“Awareness and collaboration challenges” (security
requirements neglected; lack of experience and security
awareness; separate the developer and reviewer roles)
“Security management challenges” (giving priority to
security)

Cruzes et al.
(2018)

Threat modelling in agile
(case study)

“Asset Identification” (documentation)
“Data Flow Diagrams” (documentation; level of
abstraction; interfaces; link to code; maintainability)
“Modeling Meeting” (effective meetings; who should
participate; distributed settings; finding what is good
enough; expertise)
“STRIDE” (communication channel focus)
“Outputs from the Session” (make it actionable; follow
up; prioritizing security; false sense of security)

Türpe and Poller
(2017)

Security requirements in
SCRUM

Security as bug fixing on demand, continuously as a
quality requirement, or as prioritized and planned
development work through the backlog

Terpstra et al.
(2017)

Security requirements in
agile (study of practitioners’
posts on LinkedIn)

Unclear business case for security (hard to sell as
business value; costly)
Unclear ownership of security requirements (forget about
security; delivered late)
Perceptions of priority (differing priorities; not prioritized
by customers and product owners)
Understanding of security (low awareness among
developers; lack of training; dependent on individuals)
Organizational context (lack of involvement of security
experts; product owner becomes a limiting factor;
organizational structure can make or break modifications
to requirements)
Poorly defined security requirements

Alsaqaf et al.
(2017)

Quality requirements in
agile (literature review)

Technique (no widely accepted technique; inadequacy of
existing techniques; traceability)
Priorities (functionality is prioritized; ignore some types
of requirements; validated late; insufficient analysis)
Product owner (lack of knowledge; workload;
availability; dependence)

Agile software
development

513

C

112

quality aspects (Alsaqaf et al., 2017). Challenges on prioritizing time and money on security
are however not specific for agile development. Kanniah and Mahrin (2016) has previously
in a review of 44 primary studies identified “Adequate Development Time” and “Adequate
Budget/Cost” as commonly cited factors that impact the successful implementation of secure
software development practices. Additionally, Geer (2010) found in a survey that “Too time-
consuming” and “Requires too many resources” were the main self-reported reasons for not
adopting secure SDLs, together with not being aware of the methodologies.

3. Protection Poker
Protection Poker is a technique that is designed to engage the whole team in discussing
security problems, and does so in a way that is concrete and (hopefully) fun. Additionally,
Protection Poker is specifically designed to be applied for each development iteration,
ensuring that security is considered throughout. Protection Poker results in a ranking of
features based on their security risk. Protection Poker was originally proposed by Williams
et al. (Williams et al., 2010; Williams et al., 2009), and later modified by Jaatun and Tøndel
(2016). As can be seen from Table IV, these two variations of Protection Poker differ on two
aspects: the risk calculation and the card values used.

Protection Poker is designed to be played during an iteration planning meeting with the
participation of the full development team. One person should have the role as moderator,
and this person will be responsible for leading the team through the game and pointing the
discussions in a good direction. Ideally, a separate person should be tasked with taking
notes on important security solutions and ideas that emerge during play. Focus is on the
specific requirements the team will likely implement during the next iteration. A basic

Table IV.
Overview of the two
Protection Poker
variations

Aspect Original Protection Poker (Williams et al., 2010)
Modified Protection Poker (Jaatun
and Tøndel, 2016)

Risk calculation risk =
P

(asset values)� (ease of attack) risk =
P

(asset values)� (exposure)
Card values 1, 2, 3, 5, 8, 13, 20, 40, 100 < 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Used in study Graduate projects Capstone projects, industry events

Table III.
Selected factors
identified in
literature, influencing
adoption of software
security practices

Author and
reference Topic Factors

Kanniah and
Mahrin (2016)

Implementation of secure
software development
practices (literature review)

“Institutional Context” (change management; policy
enforcement; training; incentives; culture and organizational
objectives; security experts)
“People and Action” (developer and project manager attitude
and skills; management support)
“Project Content” (tool support; budget; security experts/
team; development time; development methodology)
“System Development Process” (methodology; security
requirements; security policies/standards/guidelines;
metrics/KPI)

Geer (2010) Adoption of secure SDLs
(online survey)

The three most popular responses were
“Too time-consuming”
“Not aware of methodologies”
“Requires too many resources”

ICS
27,4

514

C

113

overview of the steps involved in playing Protection Poker can be found in Figure 1. The
actual playing using the Protection Poker cards is done in steps 4 and 5. Players use the
cards to make votes on the risk involved in the requirement they are playing on, and
the votes are a basis for further discussions on the risk and eventually agreeing on a risk
value for the requirement. This agreement may require several rounds of voting by using
the Protection Poker cards. Below we explain two central concepts of the game, namely, risk
calculation and calibration.

Risk is always related to a requirement that is to be implemented in the next iteration,
which is often new, enhanced or corrected functionality. Exposure/ease of attack relates to
how hard or easy the added or changed functionality makes it to attack the system. For asset
value, one identifies the assets that are related to a requirement and considers their value for
various actor types. Assets are typically considered to be “data stored in database tables or
system processes that the new functionality controls” (Williams et al., 2010); however, in this
study we did not use a strict definition of the term asset. In previous work (Jaatun and
Tøndel, 2008), we have defined assets as “anything of value that needs to be protected”.

To be able to prioritize between requirements and to avoid that high-risk projects assign
every requirement a high risk value, the numbers assigned need be spread. Thus, the
highest card (100) should be used for asset values and exposures/ease of attack that are high
for this project, and similarly the lowest card (< 10 or 1)) should be given to asset values and
exposures/ease of attack that are low for this project. The goal is not to establish a “perfect”
and “universal” risk value but rather to rank the security risk of the requirements to be able
to better prioritize security effort. Therefore, a calibration is recommended in the beginning
of the playing Protection Poker to arrive at a common understanding of the end-points of the
scale, i.e. the team agrees what a ' < 10'/'1' or a “100” means for this product. When playing
about asset value and exposure/ease of attack, numbers should be assigned relative to these
endpoints, as well as relative to the values assigned for previously assessed assets and
features.

Figure 1.
Playing Protection

Poker (modified
version)

For each requirement:

discuss vote consensus

For each asset:

discuss vote consensus

Step 1: Common understanding of the requirements

Step 2: Ini�al discussion of security implica�ons

Step 3: Iden�fy assets

Step 4: Assign value to assets

Step 5: Evaluate exposure

Step 6: Calculate risk

Step 7: Compare risk related to other requirements

Step 8: Priori�ze security ac�vi�es

Source: Tøndel et al. (2018)

Agile software
development

515

C

114

4. Research methodology
This section gives an overview of the research method used for this study. The study was
performed in three parts:

(1) a case study of six capstone projects lasting about three months, all using the
modified Protection Poker version;

(2) single sessions of playing Protection Poker with industry practitioners, either at
company visits or at conferences, all using the modified Protection Poker version; and

(3) a case study of 16 project teams in a graduate-level software security class, using
the original Protection Poker version.

4.1 Capstone projects
The study was performed in the Customer Driven Project course (TDT4290) at the
Norwegian University for Science and Technology (NTNU), Autumn 2016. This course is
mandatory for fourth-year computer science students. In this course, the students are
divided into development teams (five-eight students per team). Every team is given a
development project from an external customer (i.e. private companies, public organizations
or research institutes). The students are expected to investigate the needs of the customer,
develop software, do some testing of this software and document everything in a report and
in a presentation given to the customer. In general, all student groups use agile
methodologies to some extent. Six groups, consisting of 34 students in total, were required to
use Protection Poker for their project. These groups developed various systems: an app for
pupils, a game, an algorithm, a Web-based system to register projects and an isolated
system for annotating safety arguments (Figure 2).

An overview of data-collection activities can be found in Figure 1. As most students had
received limited formal training on software security before this course, we arranged a
lecture where all students were given a short plenary introduction to software security and
the Protection Poker game. They played the game on an example project and responded to a
questionnaire that covered the students’ acceptance of the technique. Data collection
proceeded through facilitation and observations of students playing Protection Poker in
their group, and the observations were followed by group interviews towards the end of the
course, allowing detailed student feedback on the technique. Additionally, the main author
of this paper acted as supervisor for one of the student groups and took part in project
manager and supervisor meetings throughout the course. The questionnaire on acceptance
was repeated towards the end of the course. The study has been reported to the national
Data Protection Official for research.

Figure 2.
Overview of data-
collection activities

Aug Sept Oct Nov

23/8: Course starts,
students are assigned
groups and
projects/customers

17/11: Course ends,
students present their
project to customer +
examiner

11/11: Deadline
for delivering
report + code

7/9: Guest
lecture on
so�ware security

25/10:
Group
interview
PP

11/11-17/11:
2nd round of
ques�onnaire

13/9-30/9:
Facilita�on and
observa�on

7/9-17/11: Supervisor for one student group, including par�cipa�on in supervisor and group leader mee�ngs

Course
milestones

Data
collec�on
ac�vi�es

Source: Tøndel et al. (2018)

ICS
27,4

516

C

115

The main motivation for using a questionnaire was to capture students’ immediate and
longer-term acceptance of the Protection Poker technique (RQ1). A questionnaire could
easily reach many students and could easily be repeated. We decided to base the
questionnaire on the technology acceptance model (TAM) (Davis, 1985) for two reasons.
First, TAM, although criticized by some (Li, 2010), is considered a highly influential and
commonly employed theory for describing an individual’s acceptance of information
systems. Thus, we believed TAM could help us understand the different reasons for
acceptance of Protection Poker by the students, and that TAM-based questions could trigger
comments from the students related to acceptance. Second, we were able to adapt questions
from an existing questionnaire (Caroli and Caetano, 2015) to the phenomena we are
studying.

The TAM, adapted from the theory of reasoned action (Ajzen and Fishbein, 1980) and
originally proposed by Davis, suggests that when users are presented with a new
technology, a number of factors influence their decision about how andwhen they will use it,
notably:

� Perceived usefulness: This was defined by Davis as “the degree to which a person
believes that using a particular system would enhance his or her job performance”
(Davis, 1989).

� Perceived ease of use: Davis defined this as “the degree to which a person believes
that using a particular system would be free from effort” (Davis, 1989).

� External variables: These include “system characteristics, training, user
involvement in design, and the nature of the implementation process” (Venkatesh
and Davis, 1996).

For the observations, we created a rota where one of the authors served as facilitator and at
least one other author participated as observer. After each observation session, both the
facilitator and the observer filled in reflection notes in a template that contained the
following topics: group information; questions from the students on the technique;
suggested changes to the game; participation; mood; topics discussed; what worked well
with the game; challenges with the game, and; reflections on the observation; and how the
researchers may have influenced the process. After playing one session of Protection Poker,
all groups were encouraged to keep on playing by themselves during the project, and we
offered to return and offer support and/or facilitation at a later time, according to their needs.

When we facilitated the students in the capstone projects in playing the Protection Poker,
we covered steps 1-6 in Figure 3, in addition to calibration. Each Protection Poker sessions
lasted between 50 and 70min and contained the following activities:

� Introduction: The session started by having the students explain their system to the
facilitator.

� Assets: We prioritized calibrating the top end of the scale. The groups played on
two-three assets and spent between 1 and 17 min per asset played. For most (10 of
14) of the assets, the students were able to agree on a value with two rounds of
playing the cards.

� Features: Calibration of features was skipped in three of the groups because of
limited time left. We prioritized playing about features over identifying and
calibrating features. One group did not play on any features, because the nature of
their project (creation of an algorithm) made it difficult to come up with features.
The other five groups played on one to three features. The students spent between

Agile software
development

517

C

116

2 and 9 min per feature played. For all but one feature, two rounds of play were
necessary.

� Reflection: The session ended with reflection about the experience, and the students
were asked to provide feedback and suggest improvements.

Throughout, the facilitator was active in helping the group reach a consensus by suggesting
compromise values. This facilitation was done to speed up the playing, terminating
discussions whenmost arguments had been raised.

Towards the end of the course, all groups were invited to send two-three participants to an
event where the technique would be discussed in more detail. This event was organized as a
group interview and was scheduled to last for 2 h. The following topics were covered: students'
expectations to the event; use of the game in the group; brainstorming and discussion on the 4Ls
(Liked, Lacked, Learned, Longed for) (Caroli and Caetano, 2015); suggestions for improvements
to the technique; suggestions for improvements to how software security was handled in the
course, and; feedback on the event. Discussions were recorded and transcribed. To encourage
participation, all participants were served pizza and they had the opportunity to win cinema gift
cards. Non-responding groups were reminded via email. To promote active participation in the
group interviews, each event was split in two parallel sessions. Note that in the observations, we
found that only two of the six groups had obvious security concerns. The group interview had
low participation from those groups; only one participant from only one of those groups, while
all the groupswith limited security concerns participatedwith two-three people.

4.2 Industry practitioners
We have introduced Protection Poker to several of our industry collaborators, and in some
cases we have been able to observe gameplay and collect questionnaires afterwards. This
paper covers four interactions in companies and one interaction at a security conference
aimed at industry. An overview of these interactions is given in Table V. The questionnaires
used for data collection were a variation of the questionnaire used for the students, with the
same TAM-based questions. The sessions (events 1-4) were organized in the following way:

Figure 3.
Overview of our
suggested approach
to adopting
Protectio n Poker

Context: team in need of increased security awareness and/or knowledge exchange on so�ware security
AND
project where security has priority

Prepara�on Protec�on Poker session Follow up

Asset iden�fica�on

Calibra�on

Features from backlog

Team
collabora�on

so�ware

Scores
Notes from discussion
New tasks
Test

Risk management

New tasks/
requirements

Tests

• Increased security
awareness and knowledge

• Con�onous nudges about
security

• Explicit security
requirements

• Documented risk-based
security decisions

ICS
27,4

518

C

117

#
W
he
re

W
ho

W
ha
t

W
he
n

D
at
a
co
lle
ct
ed

N
o.
of
pa
rt
ic
ip
an
ts

1
So
ft
w
ar
e

de
ve
lo
pm

en
t

co
m
pa
ny

D
ev
el
op
er
s,
ar
ch
ite
ct
s,

se
cu
ri
ty

of
fi
ce
r

Pl
ay
ed

PP
on

ite
m
s
in
th
ei
r

ba
ck
lo
g

Ju
ne

20
16

(2
h)

Q
ue
st
io
nn

ai
re

re
sp
on
se
s

(4
),
ob
se
rv
at
io
n
no
te
s
(2
)

14
(3
gr
ou
ps
),
in

ad
di
tio

n
to
pa
rt
ic
ip
an
ts
lis
te
ni
ng

in
fr
om

an
ot
he
rs

ite
2

Se
cu
ri
ty

co
nf
er
en
ce

fo
ri
nd

us
tr
y

Pr
od
uc
to
w
ne
r(
1)
,

m
an
ag
er

(1
),
se
cu
ri
ty

ar
ch
ite
ct
(1
),
ot
he
r

se
cu
ri
ty

ro
le
s
(1
0)

Pl
ay
ed

PP
on

sy
nt
he
tic

ca
se

Se
pt
em

be
r2

01
6

Q
ue
st
io
nn

ai
re

re
sp
on
se
s

(1
3)
,n
ot
es

fr
om

di
sc
us
si
on

w
ith

tw
o
fa
ci
lit
at
or
s

20

3
So
ft
w
ar
e

de
ve
lo
pm

en
t

co
m
pa
ny

Pr
oj
ec
tm

an
ag
er

an
d

de
ve
lo
pe
rs

Pl
ay
ed

PP
on

ite
m
s
in

th
ei
rb

ac
kl
og

O
ct
ob
er

20
17

Q
ue
st
io
nn

ai
re

re
sp
on
se
s

(5
)

5

4
So
ft
w
ar
e

de
ve
lo
pm

en
t

co
m
pa
ny

D
ev
el
op
er
s,
se
cu
ri
ty

m
an
ag
er
,a
rc
hi
te
ct
s

Pl
ay
ed

PP
on

ite
m
s
in

th
ei
rb

ac
kl
og

Ja
nu

ar
y
20
17

(1
,5
h)

O
bs
er
va
tio

n
no
te
s
(1
)

8
on

si
te
,1

lis
te
ni
ng

in
(o
ne

gr
ou
p)

5
So
ft
w
ar
e

de
ve
lo
pm

en
t

co
m
pa
ny

Se
cu
ri
ty

of
fi
ce
r

Pr
es
en
te
d
PP

an
d
go
t

fe
ed
ba
ck

on
su
ita

bi
lit
y

fo
rt
he
ir
or
ga
ni
za
tio

n

Ju
ne

20
16

N
ot
es

(1
)

1

Table V.
Overview of events

with industry
practitioners

Agile software
development

519

C

118

� Presentation of Protection Poker: The events all started with a presentation
essentially identical to the one given to the capstone student groups.

� Playing in groups, with facilitator: The groups played a few rounds, either on a
synthetic case (event 2) or on features in their own backlog (event 1, 3 and 4). Note
that in event 1 there were only two facilitators, so the other groups (one local and
some remote) had to manage without support.

� Reflections and questionnaire (in events 2 and 3): In event 1, the participants did not
have time to fill out the questionnaire in the session but were asked to do this after
the session and deliver to the security officer.

4.3 Graduate-level software security course
Protection Poker was also studied in the graduate-level Software Security course (CSC515) in
the computer science department at the North Carolina State University during the Autumn
2018 semester[1]. This course is an optional elective for master and PhD students. The
purpose of the course is to introduce students to the discipline of designing, developing and
testing secure and dependable software-based systems. During the 15th week of the
semester, the students were given an approximately 30-min lecture on the Protection Poker
technique. After the lecture and during the same class period, the students did a 30-min in-
class exercise using the technique on a sample set of requirements.

In this course, the students are divided into 16 project teams (2-3 students per team, 58
students total). Through five deliverables during the 15-week semester, every team analysed
the security of the OpenMRS electronic health record application using a variety of
techniques and tools[2]. As part of the fourth deliverable, the students were asked to write
five new functional requirements for Open MRS to add functionality that is not in the
system yet. Each team then played Protection Poker on these requirements. This activity
was not conducted in the presence of any of the teaching staff. After the deliverable was
turned in, the students were asked to complete a questionnaire similar to that which was
administered to the capstone groups. The students completed the questionnaire during
class. The students were informed that the questionnaire response was part of a study and
that their participation was optional; 46 students completed the survey. This study was
approved by the university Institutional Review Board.

4.4 Analysis
All questionnaire data were analysed using descriptive statistics, to get an overview of
responses to the individual questions. We did not undertake further analysis of this data, as
the number of responses from each part of the study were limited.

The qualitative data from the capstone development projects (observations, group
interviews) were coded and organized within the Mind Manager tool. The qualitative data
came in different forms, and the coding and organising of the data was first done for one
type of data at the time. As an example, the template for observation notes contained a table
to note what worked well and what was challenging with specific aspects of Protection
Poker (Tøndel et al., 2018). All the data collected in that table was analysed together. In a
similar way, all the results from the 4L exercise in the group interviews were analysed
together (Tøndel et al., 2018) to identify what were the common responses. Then, the
transcribed group interviews and the free text observation notes were coded together with
the more structured qualitative data in the same mind map to extend the findings and to
identify other topics. These activities resulted in the identification of main areas where

ICS
27,4

520

C

119

improvement was needed (Tøndel et al., 2018) and the benefits and challenges of the
Protection Poker, taking only results from the capstone development projects into account.

The qualitative data from the interactions with industry representatives and from the
study at the graduate security course were less extensive. The reflection notes from some of
the industry events, and the responses given to the open-ended question in the
questionnaire, were coded to see if there were data that supported or conflicted with the
benefits and challenges identified in the capstone projects. In addition, we looked for
challenges and benefits not already identified in the capstone projects.

5. Results
This section presents the results according to the two research questions of this study.
Compared to Tøndel et al. (2018), this section gives an overview of results from industry
events and a graduate course, in addition to the capstone projects. However, this section
does not give as detailed an overview of the data collected from the capstone projects
(observations, questionnaire results, 4 L brainstorming and quotes from interviews) as the
previous version. Readers who want more details on the results from the capstone project
study are therefore referred to Tøndel et al. (2018).

The results point to one factor apart from Protection Poker that may have had a major
impact on the results, namely, the limited need for security in four out of the six capstone
projects. The results relating to this factor are thus given special attention. An overview of
the benefits and challenges identified with Protection Poker in this study can be found in
Tables VI and VII.

5.1 Acceptance of Protection Poker (RQ1)
Acceptance of Protection Poker (RQ1) was mainly studied through the TAM-based
questionnaire. Table VIII gives a high-level overview of the responses to the questionnaire.
Detailed results can be found in Tøndel (2018). The responses come from different sources:

� responses from the students of the capstone project after the introductory lecture (29
responses);

� responses from the students in the capstone projects at the end of the course (30
responses);

� responses from industry representatives taking part in playing Protection Poker at
different events (21 responses); and

� responses from students in a graduate-level course after using Protection Poker to
analyse the security risk of new requirements for their semester-long project (46
responses).

Four questions together cover the variable future use intention (“I intend to increase my use
of the PP for project-work in the future”; “I intend to use the PP in the future for my
projects”; “Given a choice, I would prefer not to use the PP in any future projects”; “I would
like to use the PP in the future”). In the capstone projects, responses show that the students
tend towards being positive to use Protection Poker. In the end, half (15) of the capstone
project students agree that they would like to use Protection Poker in the future, while only 5
did not want to use Protection Poker. Among the industry representatives the responses are
quite similar, with 12 wanting to use Protection Poker, while only 2 did not want to use
Protection Poker. The graduate students in the software security class were the most
positive to using Protection Poker, where 38 agreed that they want to use Protection Poker,
while only 3 disagreed.

Agile software
development

521

C

120

Table VI.
Overview of benefits
identified, with an
indication of where
evidence is
particularly strong
and where there may
be limited evidence
or no evidence

Benefit Capstone projects Industry
Graduate software
security

Playing PP is
perceived as useful
(B1)

Learned things from
playing PP. Helped them
think about security. Gave
overview of project
(questionnaire, group
interviews)

Expectation that PP can improve
security (questionnaire)

(Strong evidence) PP
is found to improve
security
(questionnaire)

PP is easy to learn
(B2)

(Strong evidence)Most
students agree that PP is
easy to learn
(questionnaire)

(Limited evidence) Respondents are
neutral on this aspect in the
questionnaire responses

Most agree that PP is
easy to learn
(questionnaire)

PP is easy to use
(B3)

Most find PP easy to use
(questionnaire)
Observations and group
interviews identify
challenging aspects

(Limited evidence) Respondents are
neutral on this aspect in the
questionnaire responses

Most agree that PP is
easy to use
(questionnaire)

PP brings about
useful discussions
in the team (B4)

(Strong evidence) View
expressed in group
interviews and supported
by observation

Supported by observation Discussions bring a
deeper understanding
and help reveal
security issues
(response to open-
ended question)

PP makes
everybody
participate in
security
discussions (B5)

Supported by
observations and group
interviews. However, we
observed that some are
passive

Observed that, although there was
a homogenous group, they still
ended up with different scores in
the beginning. Observed in one
company that team members did
contribute to the discussion
although they initially believed
they did not know much

Contributions from
team-members with
different perspectives
are useful (response
to open-ended
question)

The relative scale
makes PP useful
also for projects
where security is
not a major issue
(B6)

View expressed in group
interviews

(Not studied) (No evidence)

Results from
playing PP are
easy to interpret,
and can be used for
prioritization (B7)

View expressed in group
interviews. Especially
they liked the overview of
the assets

Liked the way PP estimate risk
(response from one company
representative)

PP can lead to risk
reduction by
modifying
requirements
(response to open-
ended question)

PP is fun to play
(B8)

View expressed in group
interviews

(No evidence) (No evidence)

Increase
knowledge and
awareness about
security (B9)

View expressed in group
interviews

Observed discussions that
increased security knowledge
among participants (example: A:
“to attack would you not need
to. . .” B: “but that is not so difficult
because. . .”)

(No evidence)

ICS
27,4

522

C

121

Challenge Capstone projects Industry
Graduate software
security

PP poker did not
improve security of the
software (C1)

(Strong evidence)
Results from PP does
not directly influence
development
(questionnaire, group
interviews)

(Not studied) (Conflicting evidence)
Improved security is
considered a main benefit
from PP (questionnaire)
and students express that
playing PP has made an
impact through modifying
requirements (response to
open-ended question)

Limited relevance for
their project (C2)

Four of six projects had
few security concerns

(Not studied) (Not studied) The
OpenMRS had many
security concerns

Starting to use PP is
time-consuming
because of calibration
and the need to identify
and play about assets
(C3)

(Strong evidence)
Supported by
observations. The time
needed to play was
considered a challenge
in group interviews

Observed that
calibration and asset
identification for the
first feature took a lot
of time

(No evidence)

It is difficult to reach
consensus, something
that results in a lot of
time spent and
sometimes result in
tension in the team (C4)

View expressed in
group interviews and
supported by
observations. But in
some of the group there
were no problems
related to this
(observations)

(No evidence) One student expressed
challenges related to
conflicts (response to
open-ended question)

Some team members
may end up with too
much influence (C5)

View expressed in
group interviews and
supported by
observations

(No evidence) (No evidence)

Ensuring confidence in
the result (C6)

View expressed in
group interviews

(No evidence) (No evidence)

The relative scale can
be difficult to
understand (C7)

Observed in one group.
View expressed in
group interview

(No evidence) (No evidence)

Selecting granularity of
assets and assigning
value to assets can be
challenging (C8)

View expressed in
group interview

Some expressed that
assets should be
identified beforehand to
ensure they are at a
common level

(No evidence)

The term exposure is
difficult to understand
(C9)

Observed in several
groups

Observed in one of the
companies

“It’s hard to know what is
easy to access and what is
not” (response to open-
ended question)

Exposure and asset
value are often mixed
up in the discussions
(C10)

(Strong evidence)Many
questions on the terms,
and the terms were often
mixed up in discussions
(observations)

Observed in at least
two events. Possible
misunderstanding:
exposure for each asset

(No evidence)

(continued)

Table VII.
Overview of

challenges identified,
with an indication of

where evidence is
particularly strong

and where there may
be limited evidence

or no evidence

Agile software
development

523

C

122

Four questions together cover the variable perceived usefulness (“I think PP will be useful in
my current project”; “Using the PP will improve the security of the product”; “Using the PP
will substantially reduce the number of serious security defects”; “The advantages of using
the PP outweighs the disadvantages”). Many students in the capstone projects found
Protection Poker to be useful; in the end more students agreed (14) than disagreed (4) that
the advantages of using Protection Poker outweigh the disadvantages. Expectations among
the capstone project students on what Protection Poker would deliver was in general high,
however, it seems that Protection Poker did not quite deliver in their current project. In

Challenge Capstone projects Industry
Graduate software
security

Important aspects from
the discussion is lost
(C11)

Observed in several
groups

In one company it was
suggested to improve
this by having
something on Jira

(No evidence)

Teams did not end up
using PP in a regular
fashion (C12)

(Strong evidence) Only
one of the student
groups used PP on their
own, and then only once

(Not studied) (Not studied)

Planning meetings are
already full (C13)

(Not studied) Response from
discussing Protection
Poker with company
representatives

(Not studied.)

Scalability across
teams (C14)

(Not studied) In one company it was
pointed out that
features and tasks
could be moved across
teams, and that they
had a common backlog.
Then it would be easier
if all teams used the
same assets and had
the same asset values
for them

(Not studied)

Many cards (C15) Response from some
students in group
interviews

Response from some
players in one of the
companies

(No evidence.)

The output from
playing PP is not
concrete in terms of
what to do next (C16)

Lacked discussions on
how an attack could
happen (group
interviews)

In the observation
notes from one
company it was noted
the lack of a “practical
product” from the
meeting

(No evidence)

PP takes too much time
(C17)

Observed when
beginning to use PP, but
do not know how this
will be later.
Questionnaire responses
slightly disagree. See
also C4

Neutral questionnaire
responses. But
concerns that teams
will not be able to use
the technique (ref. C13)

One student stated that
PP was “cumbersome and
time consuming”, another
that it was more formal
than what would be
expected in companies
(response to open-ended
question). Neutral
questionnaire responsesTable VII.

ICS
27,4

524

C

123

particular, Protection Poker does not seem to have delivered on security – not improving the
security of the product and not reducing security defects. The responses from the industry
representatives are very much in line with the responses from the students before they had used
Protection Poker in their own project, with one exception: the industry representatives are more
positive regarding the results from playing Protection Poker on the security of the product. On
the question “Using the PP will improve the security of the product”, 12 of the 21 respondents
agreed, and 4 strongly agreed, while only 1 disagreed. The graduate students in the software
security class were even more positive on the usefulness of Protection Poker, especially on its
ability to improve security; 25 students agreed, 12 strongly agreed and none disagreed.

Six questions together cover the variable perceived ease of use (“Learning to use the PP
was easy for me”; “I think the PP is clear and understandable”; “Using the PP requires a lot
of mental effort”; “I find the PP easy to use”; “The PP is cumbersome to use”; “Using the PP
takes too much time from my normal duties”). Overall, the capstone project students’
responses to these questions were positive, and increasingly so towards the end of the
course. To illustrate, in the end only one of the capstone project students found Protection
Poker to be difficult to learn, as opposed to 25, who found it easy, and the majority of the
students ended up finding Protection Poker to be clear and understandable (22 students) and
easy to use (23 students). The responses from the industry representatives however show
that they did not find Protection Poker to be as easy to use, and their responses were overall
neutral on the corresponding questions. The graduate students in the software security class
responses generally lie between these two groups.

5.2 Lessons learned and improvements identified by the players (RQ2)
Lessons learned and improvements (RQ2) were studied through observations and group
interviews in the study of the capstone projects. Two main areas were identified where
improvements were needed; the discussions and the scores and scales used. In the following, we
introduce these areas and the improvements suggested by the students related to these areas.

The discussions resulting from playing Protection Poker were considered highly useful
by many of the students that participated in the group interviews, but at the same time they
reported on several challenges related to keeping the discussions effective and efficient. Key
concerns by the students were that:

� Some players end up with too much influence because of their personality.
� Difficulties in reaching consensus results in fighting instead of a common

understanding.
� Protection Poker sessions take time.

These benefits and challenges were supported by observation notes from the researchers as
well. In the observation notes, half the capstone groups (3) were characterized either by
dominant or passive participants, something that negatively influenced the general mood

Table VIII.
High-level overview

of responses to
questionnaires

TAM variable
Capstone projects –
before

Capstone projects –
after

Industry
representatives

Graduate software
security

Future use intention Somewhat agree Somewhat agree, but
less so

Somewhat agree Agree

Perceived usefulness Somewhat agree Neutral Somewhat agree Agree
Perceived ease of use Somewhat agree Agree Neutral Somewhat agree

Agile software
development

525

C

124

while playing. In all groups, the facilitator was quite active in supporting the students in
reaching a consensus. An additional challenge observed was that important aspects from
the discussions got lost, as it was not noted down anywhere.

Although students did not have any clear suggestions for improvements that directly
address the challenge of having both good discussions and efficient playing of Protection
Poker, they had suggestions that could partly help improve the challenges related to the
discussions. One suggestion was to have fewer cards, and thus a more coarse-grained scale.
Another suggestion was to have more support on security in form of what to discuss and how
to ensure they were on the right track. Both the response from the students after the sessions
and our own observations suggest that it would have been very difficult for the students to
start using Protection Poker without an external facilitator that could help on the game and
bring in software security competence. Though the need for an external facilitator was clearly
expressed by the students, it is important to add that one group played Protection Poker on
their own after the supported session, and they reported that this had gone very well, and in
someways better because they did not have to explain the system to someone external.

Challenges relating to scales and scores concerned two main issues: understanding the
relative scale, and understanding the concepts asset value and exposure. Having a relative scale
was considered a benefit by some students, as it made Protection Poker a useful technique also
for projects without any major security issues. However, the scale was considered difficult to
understand and relate to by other students; You did not know if a “100”was Armageddon or it
was just “we need to look into this”. Additionally, disagreements on how to understand the
scale slowed down playing in some groups. Some of these challenges that we experienced with
the scale may be related to us skipping calibration of the low end of the scale to save time. The
improvements suggested by the students related to the scale go in two directions: to explain the
relativity of the scale better, or to change the scale. The latter suggestion was less common.
Additionally, students suggested to take the time to do a full calibration.

The terms asset and exposure seemed to be new to many of the students, and in the
observations the students had many questions on these terms. The terms were often mixed
up in the discussions, with students talking about the exposure of an asset or the value of a
feature. Especially the term exposure was found difficult to describe in a good way. For
assets it was sometimes difficult to know how to assess their value, as the value may be
different if you consider just confidentiality than if you include other aspects of its value as
well. Another challenge identified by the students was how to divide up assets in a way that
is consistent and does not impact the scores in an unintended way. They pointed out that if
you have assets at different levels of granularity this may skew the scores; a feature with
many assets of low granularity may get a higher score, and thus priority, than a feature that
has assets with higher granularity. Note however that in spite of these challenges, students
expressed that they found the end result to be easy to interpret, that is was predictable
because of the process and that it gave them a nice way to prioritize the assets of the project.
Students did not suggest any changes to these terms, but they suggested to identify assets
in advance, and provide better guidance on how to identify assets.

5.3 Effect of limited security issues in the capstone projects
The capstone project study found that students perceived little benefits from playing when it
comes to security. The open-ended responses on the questionnaire shed some light on this.
Though students did expect Protection Poker to have benefits, they were divided in their
expectations. Out of the 28 that responded to the open-ended question “How do you think
playing PP will influence the product?” 10 stated that they did not expect much influence. Of
those that did expect an influence, the majority (11) expected it to improve security awareness.

ICS
27,4

526

C

125

Other expectations included identifying the most important parts regarding security (4), a more
secure product (3), discussions on security (2) and agreement on security issues in the group (2).
Those that explained why they did not expect an impact from playing the game, explained that
this was because of limited security issues in their project. Open-ended responses to the
question “How do you believe software security is important to your project?” confirm our
observations that only two of the six groups had clear security issues that needed to be dealt
with, while four groups had limited attack surfaces or assets of little value, thus having limited
security needs. Because it is likely that the limited security needs of projects influenced the
usefulness of the technique when it comes to security, we additionally looked at the responses
from the two groups that had security issues (ten responses) in isolation. We found that for the
question on whether Protection Poker will improve the security of the product, all five students
that agree that using Protection Poker improved security come from these two groups. When it
comes to reduction of security defects, the students from the groups with security issues are
more positive than the others, however, also these students in general do not agree that they
experienced such a reduction from playing Protection Poker. Note that the graduate students in
the software security are more positive regarding the effect of playing Protection Poker on
security. These students both had more security competence and a project where security was
an important part because patient medical records are involved.

In spite of limited need for security, the questionnaire responses indicate that students
still ended up being quite positive regarding the usefulness of the game. Positive aspects of
the game were discussed in the group interviews, and these can shed some light on what the
students found useful. Overall, the students were positive to security and see the need for it
in the general case. They explained that they learned many things from playing. This
included knowledge about security (assets, attack surface, easy to overlook security issues).
However, other more general insights were more often pointed out, such as gaining
experience in group discussions, making decisions, coming to consensus, etc., and that they
learned things about their own software projects and how it was understood by other group
members. As stated by one student in the group interviews:

I think it is a good game, I think it works fine, but I don’t think I got that much out of it as I could
have, and I could have learned more about the different parts of Protection Poker and software
security if I had a game or a project with more security issues.

6. Discussion
Through our interaction with the industry and in the student projects we find that people
generally react positively to Protection Poker when we introduce the game, but there is room
for improvements. As can be seen from Tables VI and VII, industry representatives and
students that used Protection Poker in different types of projects ended up experiencing
many of the same benefits and challenges with Protection Poker. The main differences are
as follows:

� Industry representatives and students doing a security course are more positive on
the effects Protection Poker has on security.

� Industry representatives find Protection Poker more difficult than the students (to
learn and use).

� Less challenges related to the discussion were observed with industry representatives.
� Industry representatives identified challenges that were not relevant for the student

projects, e.g. challenges with scalability and with integrating the playing of
Planning Poker with other planning activities in industry settings.

Agile software
development

527

C

126

Many of the challenges identified with Protection Poker in this study overlap with
challenges identified in literature when it comes to integrating security activities in agile
development (see Section 2.2); these include challenges on:

� running the meetings (Cruzes et al., 2018): e.g. challenging discussions and group
dynamics (C4-5 in Table VII);

� documentation (Cruzes et al., 2018): e.g. that the end result is not concrete enough
(C16) and that key aspects from the discussion is lost (C11);

� integrating security techniques into the development work (Türpe and Poller, 2017):
e.g. gaining impact from playing (C1) and integrate with other activities and way of
work (C13, C14);

� priorities (Terpstra et al., 2017): e.g. making the time needed acceptable (C3, C17);
and

� awareness and knowledge (Terpstra et al., 2017): e.g. making security terms
understandable for the players (C9-10) and ensuring confidence in the results (C6).

Because of the overlap in types of challenges found, many of the issues that end up being
challenging with Protection Poker may not be because of this particular technique, but
rather point to more general challenges with this type of work. Thus, finding ways to tackle
such challenges with Protection Poker can be useful input also to other techniques in this
domain.

Based on the findings from this study, we would point at four major issues that need to
be improved on Protection Poker:

(1) making the time needed to play Protection Poker more acceptable for the teams;
(2) ensuring impact from playing Protection Poker on the security of the end product;
(3) better integration of Protection Poker with project-planning activities; and
(4) clarifying the scenarios for better adoption of Protection Poker in a project.

The students in the capstone projects ended up finding that Protection Poker did not
improve the security of the product (C1). Even though the professionals that participated in
this study and the graduate students were more positive on this aspect of Protection Poker,
such a feedback on the technique needs to be addressed, as a goal of improved security is the
main reason for investing time in performing such a technique in the team. Additionally, we
got the feedback both from students and professionals that playing Protection Poker took
too much time (C3-4, C17), and professionals pointed out the difficulties in integrating such a
time-consuming activity into existing planning activities in the projects (C13). As time and
budget is considered important factors that influence adoption of software security practices
(Kanniah and Mahrin, 2016) (see Section 2.2), it is important to address challenges related to
the time needed. Results additionally point to Protection Poker being more useful in some of
the teams than in others; thus, teams considering adopting Protection Poker should be
aware of the factors that can impact the usefulness of the technique for their particular
situation. In the following we discuss how to improve these parts of the game. An overview
of the approach we are suggesting can be found in Figure 3.

6.1 Reduce time needed to start using Protection Poker
Other studies have shown that the time needed to play Protection Poker is reduced after it
has been used by the team for some time (Williams et al., 2010). Still, it is important to ensure
that teams considering to adopt Protection Poker are not put off by the time it takes to start

ICS
27,4

528

C

127

using Protection Poker the first time (C3). Based on our experiences in these studies, the long
time it takes to begin using Protection Poker is because of the following issues:

� the time needed to learn the technique itself;
� the time needed to become familiar with the terms “asset”, “asset value” and

“exposure”/“ease of attack”;
� the need to calibrate the scale; and
� the need to play about all asset values related to a feature.

There is nothing that points to Protection Poker being more time consuming to learn than
other techniques, in fact one benefit identified is that Protection Poker is easy to learn (B2 in
Table VI). In the study, some challenges on understanding the terms were identified (C9-10).
However, this would probably be the case also for other security techniques if the players are
unfamiliar with software security (as was the case for most of the students in the capstone
projects). Though Protection Poker may benefit from terms that are even easier to use and
explain, the terms “asset” and “exposure” (or variations thereof) are common in security
techniques. Thus, it is likely that the main improvements related to Protection Poker and the
time it starts to use the technique would be related to calibration and playing about asset value.

In the capstone projects, we skipped part of the calibration to save time. Although we
observed that this worked well in most of the groups, we got the feedback from the students
that they would recommend taking the time to do a full calibration in future projects.
Identifying and prioritizing assets was something that the capstone project students in
general found useful (B7), however, there were challenges associated with doing this as part
of playing Protection Poker: it took time and there was the concern that if this was not done
at a similar granularity for the whole project this might skew the prioritization one ended up
making through the game (C8).

There are various options to reduce the time needed to do calibration and asset
identification. Teams could:

� decouple asset identification from the playing of Protection Poker;
� let one or two people perform calibration as a preparation; and
� drop the division into assets and exposure/ease of attack altogether and play about

only one issue per feature, e.g. “How easy is it to misuse this feature to get to/harm
important assets?”

Decoupling of asset identification from the playing of Protection Poker was suggested by
both students in capstone projects and by professional developers in one company. As this
is likely to speed up playing, as well as limit the challenge related to granularity of assets
(C8), we suggest that teams take this approach. Regarding calibration, we expect that this
could be done as a preparation, as we did not have major challenges in most teams where
full calibration was dropped. This would allow teams to spend less time on calibration but
still have a scale that is calibrated for their specific project (B6). Regarding the alternative of
dropping the division into assets and exposure altogether, we have no data to indicate
whether or not this would be an improvement to the game. Thus, we do not recommend that
teams take this approach. However, we would welcome more research into what are the
most important questions to ask in a security analysis task. We observed that players mixed
up the terms assets and exposure and had challenges in understanding these terms (C9-10).
Thus, it may be just as easy for them to drop this division and consider them together.
However, one important thing that the capstone project students liked was to get an

Agile software
development

529

C

128

overview of the assets for the project (B7) and if going in this direction one would lose that
benefit of playing Protection Poker.

6.2 Gaining impact from playing Protection Poker
Apart from limited security needs in four of the capstone projects (C2), we do not know what
factors that potentially made it difficult to use the results from the Protection Poker game in
the development. In the capstone projects, it was up to the students to use the results from
playing in any way they found fit. We did not follow up on how they used the results and
provided no specific guidance on how to do this. One potential issue is the limitation pointed
out by one student in the group interview that the game does not include anything on how
such an attack can be mitigated. If students lack this knowledge it can be difficult to
understand what can be done to reduce the risk associated with what they consider high risk
functionality in the software. The results from playing Protection Poker is a prioritization,
something the students found to be an important benefit (B7); however, turning this
prioritization into actual development tasks is not necessarily straightforward, especially if
the rationale for the scores is lost because of limited note taking (C11).

A major benefit of the Protection Poker technique is that it involves all team members in
useful discussions (B4-5). However, for these discussions to have an impact on the end
product, it is important that key aspects from these discussions are documented (C11) and
made into actionable tasks (C16). To encourage the documentation of more aspects from the
discussions, we recommend that teams have team collaboration software open during the
playing of Protection Poker, and that one person (e.g. the facilitator, the security champion
of the team, or someone else appointed this task) is responsible for adding important issues
along the way. This includes open issues that need to be investigated further, suggestions
for mitigations, attack vectors that should be considered, new assets identified, opinions on
the whether the risk is acceptable or not and ideas for tests. This way one ensures that the
team not only is left with a score after the discussions but also has the rationale behind the
score. After the session where Protection Poker is played, it is essential that someone is
responsible for making decisions based on the result from playing Protection Poker and
enforcing these decisions by adding development tasks.

6.3 Integrate Protection Poker with project-planning activities
A general impression, after observing the playing of Protection Poker and talking with
practitioners, is that few teams would be willing to adopt Protection Poker for every iteration.
Many of the main benefits from the technique as identified in this study, such as good
discussions (B4), increased security awareness (B9) and overview of system (B1). is not
dependent on playing Protection Poker for every feature. However, if not playing about every
feature then teams need other ways to ensure that security is addressed in a holistic manner,
and teams may lose the benefit of having regular security discussions in the full team. One
option to solve this challenge is to play Protection Poker less regularly, and for more high-
level features. Instead of playing Protection Poker for every feature that is to be implemented
in an iteration, one could play Protection Poker for the main features in each epic (more
overall groups of functionalities). Playing Protection Poker for each epic comes with the
benefit that one can more easily use the result of playing Protection Poker as input to effort
estimation and prioritization. Alternatively, teams would need some criteria as to when a
round of Protection Poker should be played. Teams could also decide to use Protection Poker
entirely as an awareness and training tool at various points throughout the project,
discussing the features that are more relevant for security in that stage of the project. Then
other techniques are necessary to ensure the elicitation of security requirements.

ICS
27,4

530

C

129

6.4 Criteria for adopting Protection Poker in a project
The results from this study show that Protection Poker is not that useful for projects with
very limited security issues, because of either limited attack surface or few assets of any
particular value. This type of projects is probably not as prominent in development
companies as in our case with capstone projects. Still, our results point to the need for some
kind of criteria to evaluate whether there are enough security issues in a project to justify the
effort needed to play Protection Poker.

The discussions were a main source of the benefits from playing Protection Poker and a
source of challenges, especially concerning time. Because of team dynamics issues, the
teams experienced the playing of Protection Poker quite differently. Protection Poker
initially aims to support good discussions, and the voting involved when putting out a card
is a way to ensure that all team members’ opinions are made visible. However, the goal of
reaching a consensus is not realistic in many settings. Teams need to be made aware that
this is challenging, and not necessarily a strict goal. Though it is not beneficial to have
everybody always agree, playing Protection Poker with participants that never agree, or
always need to be right, is challenging. Based on the results from this study one can assume
that how well Protection Poker will perform in the team, and especially the efficiency of the
discussions, is highly influenced by the team dynamics. Knowledge of team dynamics could
thus be one factor to consider when deciding if Protection Poker would be a good technique
for a particular team.

One reason why Protection Poker takes time is that it is recommended that the full team
participates in the playing. Having only one or two persons make an evaluation of assets
related to a feature, their value and the exposure related to a feature would be more efficient
in terms of time. However, it would be hard to get the same awareness raising in the whole
team related to security (B9) (Williams et al., 2010) with such an approach. Thus, teams that
already have a high awareness and knowledge about software security may not need to
spend the extra time on playing Protection Poker in the full team. However, if awareness and
knowledge raising is needed on security, playing Protection Poker could be considered a
type of security training for the whole team, and thus the extra time may be well worth the
effort in the long run. Organizations and teams should consider this before deciding whether
to invest time in playing Protection Poker.

7. Threats to validity
This study involves both students and professional software developers; however, most of
the data come from student projects. By performing the major parts of the study in a
university setting we were able to control the setup of the study in a way that would be
difficult to do with companies. Additionally, we had the ability to collect more data, as the
time students needed to invest in the data-collection activities was less of a concern
compared to what would be the case for professional developers. This allowed us to use
several data-collection methods to increase confidence in the results. Still, performing the
study with students has its drawbacks as these have different experiences and are in a
different context than professional software developers.

Research has shown that students in the later parts of their studies can be used with success
in studies instead of professional software developers in some cases, namely, for understanding
dependencies and relationships in software engineering (Höst et al., 2000) and for requirements
selection (Svahnberg et al., 2008). The topic of this study is related to, but not identical to, those
studies. We do not claim that the results from our study can be generalized to software
developers in general but believe it to be likely that many of the same issues that we found
would apply also in professional settings, in particular because many professionals in small

Agile software
development

531

C

130

and medium-sized development organizations would also be considered novices when it comes
to Protection Poker and have limited software security training (Jaatun et al., 2015). However,
the context would be different. Although the students in the capstone projects did have an
external customer and the aim of the course is to have a setting that is as similar as possible to
a real development project, the students had some concerns that professionals would not have
(e.g. writing the report and getting a good grade) and this may have impacted the results. Their
development projects were also likely to be simpler andwith fewer security concerns than what
many professional developers would likely encounter. From the results of our study we can see
that many of the same benefits and challenges were observed with both students and
professionals, but it is important to note that there were main differences as well. Thus, a study
withmore participation from professionals may have yielded different results on some aspects.

In the capstone project study, it is difficult to separate the effect of the technique itself
from other factors, such as motivation, skills, group dynamics and our influence as
researchers. In particular, having researchers act as facilitators constitutes a threat to
validity that may influence the process and the results and make the study harder to
replicate. We have aimed to be aware of the impact of the context throughout the capstone
project study. One way we did this is by having the first author be supervisor of one student
group. Additionally, we made sure we reflected on our role as researchers and took this into
account in the analysis (reflection on our influence as researchers was part of the template
for observation notes). As part of this, we made it clear for students that their opinion on
Protection Poker would not have any impact on their grade in the course. We as researchers
did not have any influence on the grades the students got, except for giving some input to
evaluators for the groupwhere the first author acted as supervisor.

In the events with professionals, our ability to collect rich data was reduced, and these
events were more limited in time than what was the case with students. The companies were
recruited based on existing contacts. Additionally, the response rates on the questionnaires
were sometimes rather low. Both these factors may lead to more positive responses regarding
Protection Poker than what we may have gotten in other companies and with more responses,
as it is likely that the more positive companies and participants when it comes to security are
willing to participate. The participants in the session in the conference mainly had roles and
background relating to security, and limited development background. Security people have a
potentially important role in promoting and supporting security work in software projects
(Tøndel et al., 2017), thus the opinions of representatives with this role is relevant to consider.
However, their opinions and perspectives may differ from developers. We did not aim to
analyse differences between responses from different groups of professionals, as the number of
questionnaire responses was not large enough to justify such analysis.

In the graduate level course, students performed the Protection Poker activity on their
own and reported the results. They were not aware they would be completing a
questionnaire when they completed the assignment, and the student were made aware
questionnaire was anonymous. When asked about their participation on the Protection
Poker part of the assignment, approximately 10 per cent of the students indicate they did not
participate fully yet they answered the questionnaire. There were three other parts of the
assignment, and sometimes the students divided up the work throughout the group.

8. Conclusion
Protection Poker is a collaborative technique for risk estimation that is particularly suited
for agile development teams. As of now we are not aware that Protection Poker ends up
being adopted by teams. This study has identified both benefits and challenges with
Protection Poker. It suggests how to tackle the main obstacles to adoption of the technique,

ICS
27,4

532

C

131

including ways to address the challenge that teams may find that Playing Protection poker
takes more time than they are willing to spend, at least in every iteration. Additionally, it
points to the importance of finding ways to ensure playing Protection Poker ends up having
an impact in form of improved security of the end product. To tackle this, this paper
suggests increasing preparation activities and ensuring more documentation and follow-up
from the discussions that take place during the playing.

Notes

1. Available at: https://sites.google.com/a/ncsu.edu/csc515-software-security/

2. Available at: https://openmrs.org/

References
Ajzen, I. and Fishbein, M. (1980),Understanding Attitudes and Predicting Social Behaviour, Pearson.
Alsaqaf, W., Daneva, M. and Wieringa, R. (2017), “Quality requirements in large-scale distributed agile

projects – a systematic literature review”, International Working Conference on Requirements
Engineering: Foundation for Software Quality, Springer.

Baca, D., Boldt, M., Carlsson, B. and Jacobsson, A. (2015a), “A novel security-enhanced agile software
development process applied in an industrial setting”, 2015 10th International Conference on
Availability, Reliability and Security (ARES), IEEE.

Baca, D., Boldt, M., Carlsson, B. and Jacobsson, A. (2015b), “A novel Security-Enhanced agile software
development process applied in an industrial setting”, 2015 10th International Conference on
Availability, Reliability and Security, 24-27 August, pp. 11-19.

Beck, K., Beedle, M.V., Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning, J.,
Highsmith, J., Hunt, A. and Jeffries, R. (2001), “Manifesto for agile software development”.

Caralli, R.A., Stevens, J.F., Young, L.R. and Wilson, W.R. (2007), “OCTAVE allegro: improving the
information security risk assessment process (CMU/SEI-2007-TR-012 ESC-TR-2007-012)”,
Software Engineering Institute at Carnegie Mellon University.

Caroli, P. and Caetano, T. (2015), “Fun Retrospectives – Activities and ideas for making agile
retrospectives more engaging”, Leanpub, available at: www.caroli.org/en/book-fun-retrospectives

Chandra, P. (2008), “Software assurance maturity model”, A guide to building security into software
development v1. 0, OWASP Project.

Cruzes, D.S., Jaatun, M.G., Bernsmed, K. and Tøndel, I.A. (2018), “Challenges and experiences with
applying Microsoft threat modeling in agile development projects”, Australasian Software
Engineering Conference (ASWEC),Adelaide.

Cybenko, G. (2006), “Why Johnny can't evaluate security risk”, IEEE Security and Privacy, p. 5.

Davis, F.D. (1985), A Technology Acceptance Model for Empirically Testing New End-User Information
Systems: Theory and Results, MA Institute of Technology.

Davis, F.D. (1989), “Perceived usefulness, perceived ease of use, and user acceptance of information
technology”,MIS Quarterly, Vol. 13 No. 3, pp. 319-340, doi: 10.2307/249008.

Deleersnyder, S., Win, B.D. and Glas, B. (2017), “Software assurance maturity model – how to guide – a
guide to building security into software development”, 1.5 ed., OWASP.

Dingsøyr, T., Moe, N.B., Fægri, T.E. and Seim, E.A. (2018), “Exploring software development at the
very large-scale: a revelatory case study and research agenda for agile method adaptation”,
Empirical Software Engineering, Vol. 23 No. 1, pp. 490-520.

Fenz, S. and Ekelhart, A. (2010), “Verification, validation, and evaluation in information security risk
management”, IEEE Security and Privacy, pp. 58-65.

Agile software
development

533

C

132

Geer, D. (2010), “Are companies actually using secure development life cycles?”, Computer, Vol. 43
No. 6, pp. 12-16.

Gerber, M. and Von Solms, R. (2005), “Management of risk in the information age”, Computers and
Security, Vol. 24, pp. 16-30.

Grenning, J. (2002), “Planning poker or how to avoid analysis paralysis while release planning”,
HawthornWoods: Renaissance Software Consulting, Vol. 3, pp. 22-23.

Höst, M., Regnell, B. and Wohlin, C. (2000), “Using students as subjects – a comparative study of
students and professionals in lead-time impact assessment”, Empirical Software Engineering,
Vol. 5 No. 3, pp. 201-214, available at: https://link.springer.com/article/10.1023/A:1026586415054

Howard, M. and Lipner, S. (2006), The Security Development Lifecycle: Process for Developing
Demonstrably More Secure Software, Microsoft Press.

ISO/IEC (2011), “ISO/IEC 27005: 2011 Information technology–security techniques–information
security risk management”.

Jaatun, M.G. and Tøndel, I.A. (2008), “Covering your assets in software engineering”, The Third
International Conference on Availability, Reliability and Security, IEEE, Barcelona.

Jaatun, M.G. and Tøndel, I.A. (2016), “Playing protection poker for practical software security”,
International Conference on Product-Focused Software Process Improvement.,Springer.

Jaatun, M.G., Cruzes, D.S., Bernsmed, K., Tøndel, I.A. and Røstad, L. (2015), “Software security maturity
in public organisations”, in International Conference on Information Security, Springer, Cham,
pp. 120-138, available at: https://link.springer.com/chapter/10.1007/978-3-319-23318-5_7

Jourdan, Z., Rainer, R.K., Marshall, T.E. and Ford, F.N. (2010), “An investigation of organizational
information security risk analysis”, Journal of Service Science, Vol. 3, p. 10.

Kanniah, S.L. and Mahrin, M.N. (2016), “A review on factors influencing implementation of secure
software development practices”, International Journal of Computer and Systems Engineering,
p. 10, available at: http://doi.org/10.5281/zenodo.1127256

Khaim, R., Naz, S., Abbas, F., Iqbal, N. and Hamayun, M. (2016), “A review of security integration technique
in agile software development”, International Journal of Software Engineering Applications, Vol. 7
No. 3, pp. 49-68.

Li, L. (2010), “A critical review of technology acceptance literature”, Southwest Decision Sciences
Institute Conference.

Mcgraw, G. (2004), “Software security”, IEEE Security and PrivacyMagazine, Vol. 2, pp. 80-83.
Mcgraw, G. (2006), Software Security: Building Security In, Addison-Wesley Professional.

Mcgraw, G., Migues, S. andWest, J. (2016), “Building security in maturity model (BSIMM7)”, Cigital.
MICROSOFT (2012), “Security development lifecycle for agile development”, available at: https://msdn.

microsoft.com/en-us/library/windows/desktop/ee790621.aspx

NIST (2010), “Guide for applying the risk management framework to federal information systems – a
security life cycle approach”, R1 ed.

Nyfjord, J. and Kajko-Mattsson, M. (2008), “Integrating risk management with software development:
state of practice”, International MultiConference of Engineers and Computer Scientists, IAENG,
HongKong.

Odzaly, E.E., Greer, D. and Stewart, D. (2018), “Agile risk management using software agents”, Journal
of Ambient Intelligence and Humanized Computing, Vol. 9 No. 3, pp. 823-841, available at: https://
doi.org/10.1007/s12652-017-0488-2

Oueslati, H., Rahman, M.M. and Ben Othmane, L. (2015), “Literature review of the challenges of
developing secure software using the agile approach”, 2015 10th International Conference on
Availability, Reliability and Security (ARES), IEEE.

Rhee, H.-S., Ryu, Y.U. and Kim, C.-T. (2012), “Unrealistic optimism on information security
management”, Computers and Security, Vol. 31, pp. 221-232.

ICS
27,4

534

C

133

Sulaman, S.M., Weyns, K. and Höst, M. (2013), “A review of research on risk analysis methods for IT
systems”, Proceedings of the 17th International Conference on Evaluation and Assessment in
Software Engineering,ACM, pp. 86-96.

Svahnberg, M., Aurum, A. andWohlin, C. (2008), “Using students as subjects-an empirical evaluation”,
in Proceedings of the Second ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement, ACM, pp. 288-290, available at: https://dl.acm.org/citation.cfm?
id=1414055

Tavares, B.G., Da silva, C.E.S. and de Souza, A.D. (2017), “Risk management analysis in scrum software
projects”, International Transactions in Operational Research, Vol. 26 No. 5.

Terpstra, E., Daneva, M. and Wang, C. (2017), “Agile practitioners’ understanding of security
requirements: insights from a grounded theory analysis”, 2017 IEEE 25th International
Requirements Engineering ConferenceWorkshops (REW), IEEE.

Tøndel, I.A. (2018), “Results from questionnaires on protection poker”.

Tøndel, I.A., Jaatun, M.G., Cruzes, D.S. and Moe, N.B. (2017), “Risk centric activities in secure software
development in public organisations”, International Journal of Secure Software Engineering,
Vol. 8 No. 4, pp. 1-30.

Tøndel, I.A., Jaatun, M.G., Cruzes, D.S. and Oyetoyan, T.D. (2018), “Understanding challenges to
adoption of the protection poker software security game”, 2nd International Workshop on
SECurity and Privacy Requirements Engineering (SECPRE 2018), Barcelona.

Tøndel, I.A., Line, M.B. and Johansen, G. (2015), “Assessing information security risks of AMI: What
makes it so difficult?”, 1st International conference on Information Systems Security and Privacy
2015,Angers.

Türpe, S. and Poller, A. (2017), “Managing security work in scrum: tensions and challenges”,
International Workshop on Secure Software Engineering in DevOps and Agile Development,
CEUR-WS,Oslo.

Venkatesh, V. and Davis, F.D. (1996), “A model of the antecedents of perceived ease of use:
Development and test”,Decision Sciences, Vol. 27 No. 3, pp. 451-481.

Williams, L., Gegick, M. and Meneely, A. (2009), “Protection poker: Structuring software security risk
assessment and knowledge transfer”, International Symposium on Engineering Secure Software
and Systems, Springer.

Williams, L., Mcgraw, G. and Migues, S. (2018), “Engineering security vulnerability prevention,
detection and response”, IEEE Software, Vol. 35 No. 5, pp. 76-80.

Williams, L., Meneely, A. and Shipley, G. (2010), “Protection poker: the new software security game”,
IEEE Security and Privacy Magazine, Vol. 8 No. 3, pp. 14-20.

Corresponding author
Inger Anne Tøndel can be contacted at: inger.anne.tondel@ntnu.no

For instructions on how to order reprints of this article, please visit our website:
www.emeraldgrouppublishing.com/licensing/reprints.htm
Or contact us for further details: permissions@emeraldinsight.com

Agile software
development

535

C

134

D

135

Paper D: ‘Towards a Conceptual Framework for Security
Requirements Work in Agile Software Development’

A written permission to include this material in its published form [30] has been obtained from
IGI Global.

D

DOI: 10.4018/IJSSSP.2020010103

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

﻿
Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

33

Towards a Conceptual Framework
for Security Requirements Work in
Agile Software Development
Inger Anne Tøndel, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

 https://orcid.org/0000-0001-7599-0342

Martin Gilje Jaatun, SINTEF Digital, Oslo, Norway

 https://orcid.org/0000-0001-7127-6694

ABSTRACT

Security requirement work plays a key role in achieving cost-effective and adequate security in
a software development project. Knowledge about software companies’ experiences of security
requirement work is important in order to bridge the observed gap between software security practices
and security risks in many projects today. Particularly, such knowledge can help researchers improve on
available practices and recommendations. This article uses the results of published empirical studies on
security requirement work to create a conceptual framework that shows key concepts related to work
context, this work itself and the effects of this work. The resulting framework points to the following
research challenges: 1) Identifying and understanding factors important for the effect of security
requirements work; 2) Understanding what is the importance of the chosen requirements approach
itself, and; 3) Properly taking into account contextual factors, especially factors related to individuals
and interactions, in planning and analysis of empirical studies on security requirements work.

Keywords
Agile Software Development, Conceptual Framework, Empirical Studies, Literature Review, Security
Requirements, Software Security

INTRODUCTION

In today’s interconnected world, we would claim that software security is an aspect to consider in
most software development projects. Currently, agile development methodologies are prominent in
software development. Such methods are used even for large scale development (Dikert, Paasivaara,
& Lassenius, 2016) and for security critical and safety critical software (Hanssen, Stålhane, &
Myklebust, 2018; Heeager & Nielsen, 2018; Oueslati, Rahman, & ben Othmane, 2015). Thus, good
ways of working with security within an agile development paradigm is necessary.

There has been done a lot of work on suggesting ways to deal with software security in agile
development projects, including proposals for integrating security into agile methodologies like XP

D

137

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

34

(Aydal, Paige, Chivers, & Brooke, 2006) and Scrum (Pohl & Hof, 2015). In 2009 the Microsoft
Security Development Lifecycle (SDL) (Howard & Lipner, 2006; Microsoft, n.d.) was released in
a version specific for agile development (Agile SDL) (Microsoft, 2009), and abuser stories have for
some time been a suggested way of representing security requirements within agile development
(Peeters, 2005). Additionally, there exist method-agnostic approaches to software security that should
be possible to integrate with agile development, such as the touchpoints for software security (McGraw,
2004, 2006), the Building Security in Maturity Model (BSIMM) (McGraw, Migues, & West, 2018)
and the OWASP Software Assurance Maturity Model (SAMM) (OWASP, n.d.). There thus seems
to be no lack of methods for doing software security work also within an agile paradigm. Still, many
have observed that security is frequently not given proper attention in software development projects
today (Tøndel, Jaatun, Cruzes, & Moe, 2017; Nicolaysen, Sassoon, Line, & Jaatun, 2010; Terpstra,
Daneva, & Wang, 2017).

As is well communicated by the abovementioned software security approaches, software security
should be an integrated part of development and have a role in the various software development
activities, including requirements, design, coding, testing, deployment and operations. Security is not
something that can be successfully added on as an afterthought, but should be built into the system
from the beginning. This however means that the total number of suggested security activities can
be quite overwhelming. It is possible for projects to spend a lot of effort on security, even over-
spending, if not properly addressing the security needs. Thus, we consider security requirements
work as foundational to achieving cost-effective security in a project.

In this article, we define software security requirements work as activities performed in relation
to a software development project to: 1) decide whether and how to identify security needs, risks or
requirements for a project; 2) do the requirements elicitation; 3) communicate the identified security
needs, risks or requirements, and; 4) integrate these and make priorities related to them in development.
By agile development we mean software development that in large part is guided by the Agile
principles, as outlined in the Agile Manifesto (Beck et al., 2001), including various methods such as
Scrum and XP. Compared to a waterfall development approach, requirements management in agile
development is “far more temporal, interactive and just in time” (Leffingwell, 2010). Additionally,
the need for requirements prioritization can be considered to be built into the approach; “[w]e admit
up front that we can’t implement (nor even discover) all potential requirements” (Leffingwell, 2010).
Security is only one of the types of requirements a development project needs to consider. When
negotiating the three variables cost, schedule and requirements (Leffingwell, 2010), requirements
may be modified or dropped altogether.

There exist few empirical studies on how security requirements are handled in software
development projects (Terpstra et al., 2017), thus “[h]ow practitioners in the field think about security
requirements and how they devise their processes of coping with the issues these requirements pose,
is hardly known” (Terpstra et al., 2017). Empirical studies of software security practices within agile
development can help us understand what makes companies and projects adopt (or not adopt) software
security practices, how different practices may help, what works well and what is challenging in certain
contexts, etc. Such knowledge is important in order to bridge the observed gap between software
security practices and software security needs and risks in many projects today. In particular, such
knowledge can help researchers improve on existing support provided to agile development projects
in terms of available practices and recommendations.

In this article, we aim to improve understanding of security requirements work within an agile
development approach. Our study aims to answer the following research questions:

•	 What factors are found in current empirical research to influence and/or characterize security
requirements work in agile projects in an industry setting?

•	 How do these factors impact the security requirements work and its effect?

D

138

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

35

We build on published empirical studies that cover security requirements work, emphasizing
results from studies performed in an industry setting. The findings from these studies are used to
build a conceptual framework that shows important concepts that impact and/or characterize security
requirements work, and the relations between these concepts. The conceptual framework is a step
towards a comprehensive understanding of security requirements work in agile projects, and can act
as a basis for further research on this topic, both in prioritizing which research studies to undertake,
and as input to planning and analysis in future empirical studies within this topic.

The remainder of this article is structured as follows. It starts by giving an overview of literature
reviews related to security requirements work in agile development and introducing two previously
suggested conceptual framework related to this type of work. Then it moves on to explaining the
method used to identify empirical sources and construct the conceptual framework. Following the
method description, the article introduces the selected studies and the concepts derived from these
studies before it presents the resulting conceptual framework. Then it discusses the validity of the
conceptual framework and its implications for research. The article ends with a summary of the main
conclusions of the article and introduces future work.

RELATED WORK

Since the publication of the Agile Manifesto in 2001 (Beck et al., 2001), many researchers and
practitioners have worked on how to include security into agile software development. These
discussions started quite early; Systematic Literature Reviews (SLRs) identify papers from the
very beginning discussing security in relation to agile development (Saldanha & Zorzo, 2019).
One example of such a paper is Beznosov’s suggestions from 2003 on how to integrate security
and eXtreme Programing (XP) (Beznosov, 2003). Although security in agile development has
been a topic of discussion and research since then, and a substantial amount of literature is
available on the subject (Bishop & Rowland, 2019), many authors point to the need for more
research to better understand and solve the challenges today’s software development projects are
facing when it comes to security (Bishop & Rowland, 2019; Saldanha & Zorzo, 2019; Villamizar,
Kalinowski, Viana & Fernández, 2018).

Lately, several literature reviews have been performed regarding agile software development
and security, and even specifically on security requirements in agile development. In this section,
we give an overview of these literature reviews and position this article in relation to these reviews.
Additionally, this section describes conceptual frameworks that have already been developed related
to security requirements in agile development.
Overview of Systematic Literature Reviews
In 2015, Oueslati et al. performed a literature review aimed at identifying “challenges of developing
secure software using the agile approach” (Oueslati et al., 2015). Fourteen challenges were identified,
and the challenges were categorized into five categories: “Software development life-cycle challenges”
concerned security activities not being included in agile methods, and difficulty integrating security
in every iteration due to short iteration times. “Incremental development challenges” were related to
dealing with frequent changes. “Security assurance challenges” were related to documenting and testing
the system in a manner expected for security assurance. “Awareness and collaboration challenges”
included neglection of security requirements, lack of experience and security awareness, and challenges
separating the developer and reviewer roles. “Security management challenges” concerned how added
costs and a lack of incentives resulted in security not being prioritized.

In 2016, Khaim et al. studied what approaches are suggested for software security in agile, the
role of the security expert in these approaches, and what kind of challenges emerge when integrating
security and agile development (Khaim et al., 2016). They found that half of the studies consider
integration of security into agile in a general way, 15% consider integration into Scrum, 23% XP and

D

139

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

36

12% FDD. In over half (54%) of the papers they studied, the security expert role was not specified,
and the impression of Khaim et al. is that those papers that include the security expert role do not
do this in a clear way and in a way that ensures involvement throughout development. Khaim et al.
identified a long list of challenges, including separating the software developer and security expert
roles, security assurance in the case of continuously changing code, documentation needs, refactoring,
lack of security experience of developers, tracking security requirements in case of frequent changes,
neglecting security requirements, unaware customers, etc.

In 2017, Alsaquaf et al. performed an SLR on quality requirements in large scale agile development
in order to identify practices and proposed approaches to cope with quality requirements challenges
in large scale distributed agile development (Alsaqaf, Daneva & Wieringa, 2007). Security was
considered a type of quality requirement. They found that, despite many available approaches, none of
the approaches they identified had been “tried out in real life settings” (Alsaqaf et al., 2017). Challenges
were identified related to the techniques available (no widely accepted techniques; inadequacy of
the existing techniques; traceability), the priorities made (functionality is prioritized; ignore some
types of requirements; validated late; insufficient analysis) and related to the Product Owner (lack of
knowledge; workload; availability; dependence). They pointed out that the challenges in large part
relate to agile-specific practices and that “some characteristics of agile [requirements engineering]
pitched as strengths in agile textbooks (e.g. the role of the product owner, the use of user stories) can
be considered in fact as inhibitors to engineering of [quality requirements]” (Terpstra et al., 2017).

In 2019, Bishop and Rowland analyzed literature in order to understand “the effect of security
practices on software development agility” (Bishop & Rowland, 2019). Additionally, they provided
a taxonomy that can be used to organize and summarize work on software security in agile. They
divided papers into two main categories: phase focused and phase independent. The requirements
phase was identified as the phase that had received the most research attention. Still, they pointed to
a need for more research, and especially empirical research, to extend the current body of knowledge
related to software security in agile development.

Additionally, 2018 and 2019 saw the publication of three literature studies that specifically
considered security requirements in agile development. Both Saldanha & Zorzo (2019) and Villamizar
et al. (2018) performed systematic mapping studies to understand the approaches taken to handle
security requirements in agile development projects, and to assess the coverage of current research
on this topic. Villamizar et al. found that most approaches are related to Scrum, and that most
approaches address specification and elicitation of security requirements. Both studies found that
solutions typically involve modifying the agile method or introducing new artefacts or guidelines to
handle security. Saldanha & Zorzo however also point to the importance of security training and its
possibility to impact the security level of the software. Both systematic mapping studies identify a lack
of empirical research, including empirical evaluations of existing approaches to security requirements
engineering in agile development. Other research gaps identified include tool support and verification
and validation of security requirements (Villamizar et al., 2018). Muneer et al. performed a systematic
literature review to compare “modern requirements management techniques with classic techniques
for managing Non-Functional requirements (NFRs) in agile Software Methods”, focusing primarily
on security requirements as a type of NFR (Muneer, Nadeem & Kasi, 2019). Their review concludes
that modern techniques have the potential to overcome some of the method weaknesses identified.
Objective of This Work
The work presented in this article is not an SLR, but a lighter and less comprehensive form of
literature review with a goal to complement existing SLRs in this area. Previous SLRs have covered
challenges related to security and agile (Oueslati et al., 2015), have identified the approaches covered
in research literature (Khaim et al., 2016; Saldanha & Zorzo, 2019; Villamizar et al., 2018; Bishop
& Rowland, 2019; Alsaquaf et al., 2017), the weaknesses and strengths of available approaches
(Muneer et al., 2019), the effect on agility (Bishop & Rowland, 2019), and the role of the security

D

140

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

37

expert (Khaim et al., 2016). Most SLRs point to the need for more empirical research (Alsaquaf
et al., 2017; Bishop & Rowland, 2019; Saldanha & Zorzo, 2019; Villamizar et al., 2018). We are
however not aware of any SLR that gives an overview of what we can learn from the empirical
research that has already taken place on security requirements work in agile development projects.
This article is an attempt to fill this gap.

As a mean to give an overview of what we can learn from existing empirical research on this topic,
this article combines previous findings into a conceptual framework. A conceptual framework can
be defined as “a network, or ‘a plane’, of interlinked concepts that together provide a comprehensive
understanding of a phenomenon or phenomena” (Jabareen, 2009). It is a product of theorization
(Jabareen, 2009) and has particular benefits for designing studies as it “forces you to be selective to
decide which variables are most important, which relationships are likely to be most meaningful,
and, as a consequence, what information should be collected and analyzed at least at the outset”
(Miles & Huberman, 1994). Thus, a conceptual framework based on existing empirical research can
be used to guide future empirical research on security requirements in agile development, a type of
study that is most needed. Conceptual frameworks can be “rudimentary or elaborate, theory-driven
or commonsensical, descriptive or causal” (Miles & Huberman, 1994). However, in this article we
take the advice from Jabareen (2009) to take an interpretative approach, rather than a causal/analytical
approach; stating “[c]onceptual frameworks aim to help us understand phenomena rather than to
predict them” (Jabareen, 2009).
Existing Conceptual Frameworks Related to Security
Requirements in Agile Development
We are aware of two existing attempts to create conceptual frameworks related to security requirements
in agile development. These have a different foundation than the conceptual framework presented
in this paper.
Conceptual Framework on Security Requirements as Viewed by Agile Practitioners
Terpstra et al. (2017) conducted a survey of practitioners’ postings on social media (LinkedIn) to
discover how agile practitioners reason about security requirements and how they cope with this type
of requirements. The analysis resulted in the identification of 21 concepts that indicate problems
regarding security requirements in agile, and 15 coping strategies. The problems identified are
varied, with central themes being the business value of security, the priorities that have to be made,
the tendency that security gets lost in the process, and the lack of awareness and knowledge. The
analysis additionally resulted in the development of a descriptive conceptual framework from the
viewpoint of the development team. This conceptual framework has been redrawn in Figure 1. The
boxes in this figure represent conceptual categories defined by Terpstra et al. that map to the figure
in the following way:

•	 Ownership of security requirements: Who is responsible for security requirements? Developers?
Business representatives/Product owner?

•	 Definition of “done” (DoD): Does the DoD need a revision?
•	 Business case: Is the business case clear on security requirements?
•	 Attitude towards security requirements: Why people do not care? No incentives to do something

about these requirements? No understanding of what the requirements mean?
•	 Organizational setup: Is the organizational context conductive to quickly finding the problem?
•	 Perceptions of priority: Are there different perceptions of priority?

The conceptual framework developed by Terpstra et al. describe important influences and
challenges with security requirements work in agile. It is however only based on one study.

D

141

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

38

Conceptual Framework Showing Important Categories When
Integrating Security Requirements Into Agile Development
Daneva & Wang (2018) performed a document analysis of seven “well documented agile secure
development frameworks put forward by companies or non-profit industry organizations supported
by companies.” Based on the practices that were part of these documents, they created the conceptual
framework depicted in Figure 2. The central overarching category of the framework is “Absorb security
requirements”, representing that “the development team absorbs the needs and the responsibility for

Figure 1. Conceptual framework developed by Terpstra et al. (2017)

Figure 2. Conceptual framework developed by Daneva and Wang (2018)

D

142

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

39

engineering security requirements” (Daneva & Wang, 2018). What this means is represented by the
other concepts in the framework:

•	 Activities: Introducing security activities (organizational and/or technical);
•	 Artefacts: Examples include abuser stories and risk assessments;
•	 Roles: Organizational or technical roles that could mirror agile specific roles (such as Scrum

master or product owner), or adding security expertise to the team;
•	 Competencies: Having necessary competence, e.g. on security testing and secure architecture.

This conceptual framework presents important categories for security requirements work, as
documented by key players. It however only describes current practice to the extent that the documented
frameworks are used as written in these documents.

RESEARCH METHOD

In order to construct a conceptual framework based on existing empirical studies, we performed a
series of phases: identifying published studies to use as a basis for the framework, analyzing the
published results of these studies to identify central concepts related to security requirements work,
and synthesize these concepts into a conceptual framework. In the following we describe each of
these phases in more detail. An overview of our approach is given Figure 3. As can be seen from this
figure, our approach was cyclical. In all we did three iterations of this cycle.
Identify Studies (Step 1)
Our goal in this step was to identify empirical studies covering aspects of security requirements work
in agile development. We were primarily interested in studies performed in industry settings. We did

Figure 3. Method for constructing the conceptual framework

D

143

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

40

not aim for an SLR. Instead we used the following strategy to identify relevant studies: 1) identify
relevant and recent SLRs and use them to find relevant papers, and; 2) supplement references from
SLRs with searches on Google Scholar for more recent studies. We did this in three rounds and over a
period of three years. The first round used the SLRs of Khaim et al. (2016) and Oueslati et al. (2015),
in addition to searches on Google Scholar to identify more recent studies that were not covered by the
published SLRs. We deliberately searched for empirical studies covering software security in agile,
and not specifically security requirements work, because we use this term in a broader sense than
eliciting and documenting security requirements. The second round used the SLR of Alsaquaf et al.
(2017) as well as additional searches on Google Scholar. The third round used the SLRs of Bishop
and Rowland (2019), Saldanha and Zorzo (2019), Villamizar et al. (2019) and Muneer et al. (2019).

We selected this lightweight approach to identifying empirical studies for two reasons: 1) we
did not believe it necessary to repeat the identification of relevant publications already performed by
other researchers, and 2) we did not have the goal to collect all relevant empirical evidence, but rather
sufficient evidence to create a first version of a conceptual framework that could later be extended
as new evidence is published.

The searching for and screening of literature was done by one researcher, and was done based on
title and abstract. For the studies that seemed to fit the inclusion criteria (empirical studies of security
requirements work in agile development), we further inspected the methods and results sections to
determine if they were relevant for this study. In the end, we ended up with the papers listed in Table 1.
Analyze Study Results (Step 2 and Step 3)
Our approach was inspired by Jabareen (2009), who proposed a method called conceptual framework
analysis particularly suited for multidisciplinary phenomena. Jabareen’s method is based on the
grounded theory model, and consists of seven phases: 1) “Mapping the selected data sources”, 2)
“Extensive reading and categorizing of the selected data”, 3) “Identifying and naming concepts”, 4)
“Deconstructing and categorizing the concepts”, 5) “Integrating concepts, 6) “Synthesis, resynthesis,
and making it all make sense” and 7) “Validating the conceptual framework” (Jabareen, 2009). We
did not follow this method in detail, as we are not aiming for a multidisciplinary framework with as
extensive sources as is recommended by Jabareen. Instead we used aspects of this method adjusted to
our needs. In particular, we took the advice to read and reread sources, and to categorize them based
on importance (Jabareen, 2009) and relevance (Maxwell, 2013). All the included studies (Table 1)
were divided into two categories: primary studies and secondary studies. The first category consists
of studies where security requirements work is a main part of the topic studied, the study is done
in an industry setting and with adequate research method (including adequate method description).
Secondary studies are studies with results that could be relevant for security requirements work,
but where security requirements is only a minor part of the overall study or where the study is not
adequately described, has obvious methodological limitations or is performed in a student setting.
Only the primary studies were used to identify concepts, while results from the secondary studies
were used where relevant to better understand and to validate/contradict the findings in the primary
studies. Concepts were identified by reading the results and discussion part of the primary studies in
detail, identifying any results related to security requirements work, and adding codes to these results.
Synthesize (Step 4 and Step 5)
The method used for constructing a conceptual framework builds on the practical advice of Miles
and Huberman (1994). To cite Miles and Huberman, “[s]etting out bins, naming them, and getting
clearer about their interrelationships lead you to a conceptual framework.” (Miles & Huberman,
1994). According to Miles and Huberman, conceptual frameworks are best done graphically, one
should expect to do several iterations, and they suggest using prior theorizing and empirical research
as important inputs. Additionally, they recommend that one should avoid the non-risk framework
with only global level variables and “two-directional arrows everywhere” (Miles & Huberman, 1994).

D

144

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

41

As will be seen from the following section, we made tables of concepts from the primary sources,
as suggested by Jabareen. In making these tables we integrated and synthesized concepts, as suggested
by Jabreen, in an iterative manner. Using Mind Manager, initial concepts identified from the primary
studies were grouped into overall concepts. This was done first for the different study types identified,
and then we combined concepts from the different study types into a modified and combined table
of concepts that we used to create the conceptual framework. In creating the graphical conceptual
framework, we looked again to the primary studies to identify what relations between the concepts
were visible in those studies.

CONCEPTS FROM EMPIRICAL STUDIES

In the following, we give an overview of the identified primary studies and the concepts
identified from these studies. An overview of the primary studies can be found in Table 2, while
an overview of secondary studies can be found in Table 3. We start with presenting studies that

Table 1. Overview of included papers and which SLRs that also include them

Identified Paper Oueslati et
al. (2015)

Khaim et
al. (2016)

Alsaquaf
et al.

(2017)

Bishop &
Rowland

(2019)

Saldanha
& Zorzo
(2019)

Villamizar
et al. (2019

Muneer et
al. (2019

Adelyar & Norta (2016) x
Aydal et al. (2016) x
Baca & Carlsson (2011) x x
Baca et al. (2015) x x
Bartsch (, 2011) x x x x
Bellomo & Woody
(2012) x

Fitzgerald et al. (2013) x
Ghani et al. (2014) x x x
Kongsli (2006) x x x x
Nicolaysen et al. (2010)
Pohl & Hof (2015) x
Poller et al. (2017) x
Rajba (2018) x
Renatus et al. (2015)
Rindell et al. (2016) x x
Sachdeva & Chung
(2017) x x x

Savola et al. (2012) x
Terpstra et al. (2017) x x x
Tøndel et al. (2017)
van der Heijden et al.,
2018 x

Williams et al. (2009)
Williams et al. (2010) x

D

145

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

42

Table 2. Overview of primary studies

Reference Study Goal Study Method
Adelyar &
Norta (2016)

Identify challenges in the customer and
developer practices

Interviews, 4 teams, team manager and 2-3
developers from each team

Baca et al.
(2015)

Evaluate SEAP (more security resources in the
team; incremental risk analysis)

Action research, one project, four versions, 8
development teams

Bartsch (2011) Understand challenges and mitigations in
security-critical agile development Interviews (10 interviewees from 9 companies)

Nicolaysen
et al. (2010)
(interview part)

Understand whether software security was a
specific concern in agile development Six interviews with software developers

Poller et al.
(2017) Impact of external audit and training Questionnaires, observations, document studies,

interviews (15); 13 months

Terpstra et al.
(2017)

Discover how agile practitioners reason about
security requirements and how they cope with
this type of requirements

Postings on LinkedIn, two discussion threads

Tøndel et al.
(2017)

Identify risk-centric practices in software
security Interviews; 23 organizations

van der Heijden
et al. (2018)

Identify security challenges in large-scale agile
development

Interviews (ten interviews from five teams) in a
financial organization

Williams et al.
(2010)

Effect of using Protection Poker (a technique for
security risk estimation)

Case study (observations, survey) in one team,
3 months

Table 3. Overview of secondary studies

Secondary Study Reason for not Including as Primary Study
Aydal et al. (2016) Lack of information about research method
Baca & Carlsson (2011) Security requirements is not a main focus

Bellomo & Woody (2012) Security requirements is not a main focus; Some
information on research method is lacking

Fitzgerald et al. (2013) Limited focus on security requirements work
Ghani et al. (2014) Lack of information about research method
Kongsli (2006) Experience report

Nicolaysen et al. (2010) (case study part) Case study in research project and with unclear research
method

Pohl & Hof (2015) Evaluation with students; weak research method
Rajba (2018) Lack of information about research method

Renatus et al. (2015) Security requirements is not a main focus; unclear research
method

Rindell et al. (2016) Security requirements is not a main focus
Savola et al. (2012) Limited focus on security requirements work
Sachdeva & Chung (2017) Lack of information about research method
Williams et al. (2009) Evaluations with students

D

146

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

43

cover software security in agile development in a broader sense, and then move on to studies
of specific techniques relevant for software security work. The study by Terpstra et al. (2017),
although it could be considered part of the first study category, is described in a separate section.
This is because Terpstra et al. provide a conceptual framework based on their findings, thus
concepts from this study have already been identified.
Studies That Provide an Overview of Security Requirements Work and Challenges
Six of the primary studies concern software security in agile development in a general sense, not
tied to any particular security technique and not limited to security requirements work. Five of these
studies use interviews as the mean of data collection. Adelyar and Norta performed interviews with 3-4
representatives from four teams, with the goal to identify security challenges in agile practices (Adelyar
& Norta, 2016). Bartsch performed ten interviews with participants from nine companies, with the goal
to “expand on the theoretical findings on security-critical agile development through an exploration
of the challenges and their mitigations in typical agile development projects” (Bartsch, 2011). In
the interviews, they focused on the following topics: “Customer involvement”, “Developer security
awareness and expertise”, “Effects of ‘agile’ on security”, “Security practices” and “Authorization”.
van der Heijden et al. performed ten interviews with varying roles in five teams, to understand
challenges in large-scale agile development (van der Heijden, Broasca & Serebrenic, 2018). Nicolaysen
et al. (2010) performed six interviews with software developers from different companies who were
using agile methodologies. The goal of the interviews was to understand whether software security
was a specific concern in agile software development. Tøndel et al. (2017) performed interviews with
representatives from 23 different public organizations related to their software security practices and
challenges. The goal of the study was to understand how current software organizations can work
with security in a risk-centric way, and it included both people in development teams and people in
information security positions in the organizations. The organizations mainly used some type of agile
development practices. The study by Poller et al. is a case study using a broader set of data collection
methods (Poller, Kocksch, Türpe, Epp & Kinder-Kurlanda, 2017). Poller et al. followed a product
group over 13 months, starting shortly after an external security audit, and they aimed to explore
how the development group’s work routines were affected by this external security audit and training.

Table 4 gives an overview of the main concepts identified from these studies. In the following
we introduce the main findings from these studies in more detail.
Adelyar and Norta (2016): Challenges With Agile Practices
Adelyar and Norta identified several agile practices that posed challenges to important security
principles. Frequent changes in software, different developer pairs involved, and unclear and
inconsistent requirements and priorities from the customer were found to pose challenges on security,
because they limited the possibility for having a system-wide view of the software, a simple design
and having an ongoing development attention on security. Additionally, it made it challenging to
maintain limitation of privileges and separation of privileges.
Bartsch (2011): Effects of Agile Development on Security
Bartsch found that the individuals and their relationships are highly important when it comes to
security, including whether and to what extent security requirements are identified. The role of
customers and developers was explored. For customers, Bartsch found that security awareness among
customers was heterogenous. Half of the interviewees talked about problems that stemmed from a lack
of security awareness with customers. On the other hand, one interviewee explained about a project
where “the customer was very security-aware and developed very specific security requirements
because the developers were rather unaware” (Bartsch, 2011). The trust relationship between the
customer and the development team impacts security. Often, customers can “only state unclear security
requirements leading to implicit security requirements” (Bartsch, 2011) and customers may lack the

D

147

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

44

continued on following page

Table 4. Overview of concepts from the studies of agile software security overall

Concept Relevant Findings
Priorities
(functionality vs.
security)

• Functional requirements get prioritized over software security (Nicolaysen et al., 2010; Tøndel
et al., 2017)

Project constraints • Management commits to fixed time and budget, resulting in few resources spent on security
(van der Heijden et al., 2018)

Business case for
security

• As security was not considered a feature, it was not part of feature requests (that is, not part of
expected deliveries and current priorities) (Poller et al., 2017)﻿
• Security not seen as part of working software – it costs extra time and money without providing
functionality (van der Heijden et al., 2018)

Pressure (time and
other tasks)

• Short iterations lead to pressure, which can lead to problems integrating security activities
(Bartsch, 2011)﻿
• Security gets lost in daily work due to time-pressure and other tasks that need to be finished
(Poller et al., 2017)

Customers and
customer relations

• Customers’ security awareness and priorities is heterogeneous and it impacts software security
in the projects (Bartsch, 2011; Nicolaysen et al., 2010)﻿
• The trust relationship with customers impacts software security, as non-technical customers
have a hard time comprehending security in a technical way and often trust developers to just
handle this (Bartsch, 2011)﻿
• Vendors are trusted to take care of security (Tøndel et al., 2017)﻿
• Customers (Bartsch, 2011) and Product Owners (van der Heijden et al., 2018) contribute to
security with their domain knowledge, even if their security awareness is low. Close involvement
of the customer/Product Owner is thus recommended.﻿
• There are “unclear privileges and responsibilities between customers and developers” (Adelyar
and Norta, 2016)

Individuals and
their security
posture and
competence

• “The overall security in a project depends on the security expertise of the individuals, either on
the customer or developer side” (Bartsch, 2011)﻿
• Architects have a potentially important role, but this is dependent on their personal initiative
and interest in security. In practice, few software architects seem to have security as a main
interest (Tøndel et al., 2017)﻿
• Product Owners are “often not aware enough of the added business value for performing
certain security actions” (van der Heijden et al., 2018).﻿
• Developers lack intrinsic motivation for security (Poller et al., 2017)﻿
• (Lack of) software security competence impacts software security (Nicolaysen et al., 2010)﻿
• Perceived threats, in particularly related to reputation (Nicolaysen et al., 2010) and concrete
threats expressed in monetary terms (Bartsch, 2011), increase security awareness. However, this
increased concern for security does not necessarily lead to a commitment to software security
(Nicolaysen et al., 2010).﻿
• Much of developers’ security expertise is self-taught and come from news and blogs.
Developers are motivated to learn security due to a feeling of responsibility for the project with a
holistic development approach. (Bartsch, 2011)﻿
• There are wide variations in security awareness. Training is important (van der Heijden et al.,
2018).﻿
• Organizations lack a structured approach for software security training (Tøndel et al., 2017;
Baca et al., 2015; Terpstra et al., 2017)﻿
• There is a high turnover in development teams, particularly due to inclusion of external
consultants. These consultants do as they are asked to, thus if they are not asked to consider
security they will not pay attention to it (van der Heijden et al., 2018).

Responsibility
• The responsibility for identifying and deciding on security requirements for the development
projects seems fragmented - no one fights for software security (Tøndel et al., 2017)﻿
• Accountability for security actions is unclear (van der Heijden et al., 2018)

Preferred security
strategy

• Other ways to secure the system (e.g. infrastructure security) reduces the perceived need for
software security (Nicolaysen et al., 2010).

D

148

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

45

Table 4. Continued

Concept Relevant Findings

Legislation, audit
• Legal requirements are a key driver for performing risk analysis (Tøndel et al., 2017)﻿
• Privacy legislation can make it difficult to work according to agile principles (Nicolaysen et al.,
2010)﻿
• External audits can increase security motivation of developers (Bartsch, 2011; Poller et al.,
2017)

Communication

• Improved communication among developers and quality assurance impacts security motivation
of developers (Bartsch, 2011)﻿
• Intra-company competition can impact security motivation of developers (Bartsch, 2011)﻿
• Developers may hold incorrect assumptions about managers’ security priorities when these are
not made explicit (Poller et al., 2017)﻿
• Security awareness and expertise spreads between developers in informal discussions (Bartsch,
2011)﻿
• Important decisions are made in sprint meetings, and security people are not present in these
meetings (Tøndel et al., 2017)﻿
• Security people are sometimes involved, but seem to be passive, either waiting to be invited or
participating in the beginning and then leaving the project to fend for itself (Tøndel et al., 2017)﻿
• Silo structure - security and legal competence in the organizations does not necessarily benefit
development (Tøndel et al., 2017)﻿
• There is tension between different groups, e.g. between architects and legal/security experts.
Hard to make compromises. (Tøndel et al., 2017) There is a lack of understanding between
information security officers and the development team; feels like “chasing different goals” (van
der Heijden et al., 2018).﻿
• Lack of documentation makes communication between the team and the security officer
ineffective (van der Heijden et al., 2018)﻿
• Security-related information should be easily available to the team (van der Heijden et al.,
2018)﻿
• Close involvement with a Security Officer is beneficial for teams, especially since this
increases acceptance of security (understand why) (van der Heijden et al., 2018)

Development
approach

• A holistic development approach can lead to a more complete picture of the system for
developers, and can impact developers’ sense of responsibility for security. A more complete
picture of the system can additionally, together with iterative and incremental development, lead
to improved and simpler design (Bartsch, 2011).﻿
• Team autonomy can make it more difficult for managers to prescribe security activities (Poller
et al., 2017)﻿
• Frequent changes in software requirements cause repetition of work, pressure on developers,
more complex designs, illogical sequences of integration. This impacts the attention developers
give to security, and make it hard to keep a system-wide view and demonstrate that the important
threats have been identified and mitigated (Adelvar and Norta, 2016).

Representation
of security
requirements

• Security requirements can be implicit or explicit. Customers can often only state implicit and
unclear security requirements (Bartsch, 2011).﻿
• Security was considered a matter of quality, and developers were expected to deal with quality
matters without these being explicit and visible (Poller et al., 2017)﻿
• Developers often derive security requirements from functional requirements. Some document
them as part of Definition of Done (DoD) to make the security requirements explicit (Bartsch,
2011).﻿
• Having a formal security requirements process can be considered too theoretical and
bureaucratic (Poller et al., 2017)﻿
• It is unclear what it means to “properly take care of security concerns”, e.g. what the
documentation requirements are (van der Heijden et al., 2018)﻿
• The security requirements formulated by security management were considered too technical,
but also ambiguous. From the security side there is the desire to keep the requirements generic
(van der Heijden et al., 2018).

Iterative process
• Security requirements are usually refined over several discussions and iterations. Functional
changes as well as the complexity of security requirements can impact the need for refinement
and iterations on the security requirements (Bartsch, 2011).

D

149

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

46

necessary technical expertise to understand the basis for the security measures. Thus, customers
usually assume that developers take appropriate measures to ensure adequate quality. However, a
majority of the interviewees mention that “irrespective of the customer’s security awareness, close
customer participation improves the security requirements elicitation with their domain knowledge”
(Bartsch, 2011). For developers, their individual interest in and sense of responsibility for security is
important as security awareness is generally built in an informal way; security knowledge is spread
as part of informal discussions and is often self-taught from news sources and blogs.

Bartsch found that the agile development approach has benefits when it comes to security,
despite some well-known challenges (e.g. “neglected assurance practices from the pressure of short
iterations” (Bartsch, 2011)). Agile practices can bring on a simpler software design and a more holistic
development approach for the individual developer. Bartsch found that this could lead developers
to feel responsible for the project, and thus increase their motivation regarding security. Compared
to pre-agile development, interviewees stated that “improved communication among developers
and quality assurance helped” (Bartsch, 2011) in addition to external audits and intra-company
competition on quality.

In general, security requirements are refined over several iterations. Bartsch explains that in
one project the authorization requirements were complicated and difficult to elicit bottom up, thus a
simpler top down model was implemented that then had to be refined and adapted in production. In
another project, functional changes repeatedly required security to be discussed.
Van der Heijden et al. (2018): Challenges in Large-Scale Agile Development
Of the challenges that van der Heijden et al. (2018) identified in their study, they were particularly
concerned with which challenges were specific for large-scale agile development. These were
“alignment of security in a distributed setting”, “developing a common understanding of roles and
responsibilities”, and “integration of low-overhead security testing tools”. In addition, the study
identified challenges that had been identified previously in the study performed by Bartsch (2011),
and thus was considered to be challenges also in smaller-scale agile: “implementing low-overhead
security documentation”, “spreading security awareness and expertise in the team”, “formulating
clear security requirements”, and “fostering Product Owner commitment to security”.
Nicolaysen et al. (2010): Software Security as a Concern in Agile Development
Nicolaysen et al. found that many factors negatively impact how the need for software security is
perceived and prioritized. In general functionality is given priority. About half of the customers
express some security concerns, but customers’ influence on security is not necessarily positive. They
give an example of this; one customer “thwarted a security solution [...] because they did not like it”
(Nicolaysen et al., 2010). The studied companies have a lack of security competence, few state that
they have experienced any security breaches, and in general security protection is achieved through
the infrastructure (e.g. firewalls). Reputation damage is something that worries the interviewees, but
the worry is not enough to commit to increased security efforts. Nicolaysen et al. state that that “[n]
one of the companies had found or created any fully developed technique for integrating software
security into agile software development” (Nicolaysen et al., 2010).
Tøndel et al. (2017): Risk Centric Software Security Practices
Tøndel et al. found that practices in the studied organizations were not risk based, although the
organizations performed some activities that could be said to be part of a risk-based approach to
security. Legal requirements were found to be an important driver for software security activities
and requirements.

Responsibility for software security was fragmented in many of the studied organizations. In
particular it seemed unclear where the responsibilities of security people in the organization end and
where the responsibility of the development organization starts when it comes to software security.

D

150

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

47

Although the organizations might have security experts in-house, this expertise did not necessarily
benefit the security work in the development projects, due to the silo structure of the organizations.
People working on security or other non-functional requirements did not necessarily have a place
at the table when important decisions on security were made in the projects. In many projects,
involvement of security expertise was considered challenging because development was done by
external vendors. The organizations offered limited formal training on software security. Software
architects were pointed out as potential allies in the software security work, but with the challenge
that few architects were considered to be particularly interested in security. As a result, it seemed
arbitrary whether or not security was considered for the projects. In general, functionality was often
prioritized over security.
Poller et al. (2017): Effects of External Security Audits on
Organizational Change in Relation to Software Security
Poller et al. (2017) found that software security was considered a quality aspect among other quality
aspects, and that in the studied company developers were thus expected to deal with security (as with
other quality aspects) without this being made explicit and visible. This was considered by Poller et
al. as a main reason for software security work not being established in the company. For developers,
the feature requests represented expected deliveries, and as security was not considered a feature
it was not on the feature request list. This resulted in security being perceived as not important by
some developers. There was a perception that managers “would see security as being in a resource
conflict with feature development” (Poller et al., 2017). The study however found that managers did
not seem opposed to security, but rather that security “had not yet come to their specific attention”
(Poller et al., 2017), and that it was considered a quality matter that developers were trusted to deal
with as a technical issue. Additionally, security lacked visibility in the team and the developers in
general lacked intrinsic motivation for security; their motivation was to “put something together and
seeing it work” (Poller et al., 2017).

The study identified challenges with having autonomous and self-organizing teams in that
managers had limited means of prescribing security activities. Instead they had to rely on less direct
approaches, e.g. indicators or training. Developers, on the other hand, found that security got “lost
in the daily work since we always have time-pressure, the release needs to be finished, tests need to
be done” (Poller et al., 2017), thus they did not find time to really go deep on security. Additionally,
lack of resources was considered one reason.

There was an attempt by security experts to establish a formal security requirements elicitation
process, but this met resistance from managers and developers because it was considered theoretical
and bureaucratic, and they were not convinced it would improve security.
Related Findings From Secondary Studies
Baca and Carlsson (2011) used interviews to evaluate the cost and benefit of the Microsoft SDL,
the Cigital Touchpoints and Common Criteria for agile development. They found that none of these
approaches were a good match with agile development because of high cost and a lack of benefits.
However, the activity of writing security requirements was endorsed, as developers believed it could
help identify easy gains and help guide the project. Aydal et al. (2006) demonstrated that software
security can be integrated with XP practices. In their study, security requirements were introduced
rather late in the process and they found that this could lead to many changes in the system. They
suggested using the Planning Game to establish security requirements within iterative and incremental
development.

There is some evidence in the study of Savola, Frühwirth & Pietikäinen (2012) that indicate that
regulations in a domain can impact the work on security requirements. In their study on metrics they
found that “the practitioners emphasized compliance (with legal and industry regulations, customers’
needs and organizational policies), whereas 80% of researchers emphasized the metrics’ ability to

D

151

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

48

offer a high-level overview of security” (Savola et al., 2012). Rindell, Hyrynsalmi & Leppänen (2016)
report on using Scrum for a regulated project with positive results. In the studied project, security
was however to some extent viewed as being on the side of the project (implemented in side tracks
to the main sprint cycle) and much of the extra security related work was documentation related.

Rajba (2018) presents a journey of one company in improving their security processes. Challenges
identified in the beginning of this journey included complex security checklists that were considered
too technical and not relevant, people being more interested in passing security reviews than making
more secure applications, challenges in scoping the security work so as to not having to undertake too
much at once, repetitive tasks, and a lack of documentation, security requirements and knowledge.
Many of these challenges were addressed with improvements in training and security checklists,
provision of templates, tool support, and improved use of an internal security review team.

Nicolaysen et al. (2010), in addition to reporting on interviews (as described above), report on a
case study of a research project. Due to the domain (healthcare), security was initially given attention in
the studied project. In the end, however, the resulting product had many security concerns (vulnerable
to seven out of the OWASP top 10 issues), and they found that “only the functional results of the
security design made it out of the backlog [...] leaving most non-functional security aspects alone
in the dark” (Nicolaysen et al., 2010). Nicolaysen et al. point to some reasons for this, mainly a lack
of continuity in the security experts assigned to the project, resulting in delays. Thus, the security
design was not completed as planned and implementation started before security had been properly
considered. Communication problems is also mentioned, although Nicolaysen et al. is not concrete
on what kind of communication problems there were and how they influenced development.
Studies of Specific Techniques
Though there are several suggested techniques for identifying and working with security requirements
in agile development, few of these techniques have been studied and evaluated in an industrial
environment. Two of the primary studies we identified study specific techniques related to software
security requirements work. Baca et al. performed an action research study at Ericsson, where they
studied the effects of implementing a security-enhanced agile software development process (SEAP)
(Baca, Boldt, Carlsson & Jacobsson, 2015). This process includes several software security activities
(e.g. code review, penetration testing), but the study reported focused on two key aspects of SEAP:
adding more security resources in the project and the development teams, and performing incremental
risk analysis. The study of SEAP included one product with 88 staff members distributed among 8
development teams. Four versions of the product were considered, of which the three latest versions
were developed using SEAP. Effort and identification and treatment of risk was compared between
versions.

Williams et al. proposed Protection Poker (Williams, Meneely & Gegick, 2010), which is a
technique for security risk estimation of requirements, as well as for security awareness building and
exchange of security information in the team. The technique is particularly suited for agile teams, and
Protection Poker is intended to be played in the planning meeting of every development iteration. The
effects of using Protection Poker were studied in a case study including one maintenance team at Red
Hat. The team had eleven participants (seven developers, three testers and one manager), and used
Scrum as their development methodology. The team studied had no security expert, and the knowledge
of software security varied among team members; some very knowledgeable, some relatively new
to software security. The study lasted for three months with five Protection Poker sessions in total.
Data collection was done using observation and a short survey.

Neither SEAP nor Protection Poker is specifically about security requirements. However,
performing incremental risk analysis and doing security risk estimation could be considered part of
security requirements work as defined in this paper. Table 5 gives an overview of the main concepts
identified from these two studies. In addition to the findings from the studies of the techniques
themselves that are used as a basis for this table, an underlying assumption is that the technique

D

152

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

49

itself is a factor that impacts security requirements work. In the following we explain the results of
the two studies in more detail.
Baca et al. (2015): The Effect of Added Security Resources and a Distributed and
Incremental Approach to Risk Assessment in an Agile Development Project
In their study, the introduction of SEAP was found to improve identification and handling of risk,
and because of this, the risk management was found to be more cost-efficient than with the approach
previously used by Ericsson.

Three aspects are however important to note related to this study. First, the process for risk
analysis used is not explained in detail. In the study, the risk analysis of four software versions of the
same product is compared, where v1.0 was developed using the traditional Ericsson approach, and
v2.0 - 4.0 were developed using SEAP. With the traditional approach, risk analysis was performed
once a year (per release) and involved six to eight persons for a day. With SEAP, the frequency of
risk analysis was 30-40 per year, involving three to four persons for an hour each time. The scope of
risk analysis with SEAP is much smaller than with the traditional approach. Another main difference
between SEAP and the traditional approach is the security resources involved in the analysis and in
the project in general. Traditionally the risk analysis was led by the security manager, and this role
was not directly involved in the development. With SEAP, more security resources are added to the
project (the equivalent of four full time positions), and one of these roles (the security master) is
assigned to two or three teams (25% per team). Available time apart from security work is spent as a
regular developer. The security master leads the risk analysis work. Based on the description of the
risk assessment process in SEAP we thus know that the frequency is increased, the scope for each
analysis is reduced, and the approach is more distributed.

Second, the reason for the identified improvement is not discussed in detail in the paper. The
authors claim that a main reason for the improvement is that security issues are dealt with in a more
distributed fashion, and thus more issues are solved directly by the team. Though not discussed in
the paper, it should also be expected that when security resources are added to the team, the security
people are more likely to understand the product and thus their analysis is likely to improve. However,
there are alternative explanations that are not discussed by the authors. One example of a factor that
may have influenced the results is related to the study design and its use of comparison. The traditional
approach was used for v1.0, and SEAP for later versions. The ability to identify more high risks with
SEAP may be due to the method, but may also be because v2.0 and up contain more risky features.
This, and other alternative explanations, are not discussed by the authors.

Third, the product developed in the study was related to online money transfer and was thus
considered to be security-critical. This allowed investing in the additional security resources required

Table 5. Overview of concepts from the studies of security requirements techniques

Concept Relevant Findings

Incremental security
analysis in the team

• An incremental risk analysis process improves identification and handling of risk. Security
issues are solved in the team (distributed, not centralized), more detailed analysis is performed,
more severe risks are identified and more risks are corrected. This leads to more cost-effective
risk management. (Baca et al., 2015)

Security resources in
team

• With security resources in the project it is possible to work distributed and solve issues in the
team (Baca et al., 2015).

Security discussions
in the team

• Using a technique for discussing security implications of functional requirements in the full
team leads to improvements in software security as it results in improved spread of security
knowledge and improved security skills (e.g. skills to think like an attacker), in addition to
leading to identification of security needs in the project in form of security requirements,
training needs and security activities (Williams et al., 2009).

D

153

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

50

by SEAP. Thus, we do not know whether or not the resources needed for SEAP can be justified for
projects that are less security-critical.
Williams et al. (2010): Risk Estimation Using Protection Poker
Williams et al. found that a main effect of using Protection Poker in this case study was that software
security knowledge was spread among team members, and key risks were discussed; “[d]uring
Protection Poker sessions, all team members participated in the conversation - some asking questions,
some sharing their software security expertise, all becoming incrementally better at thinking like
an attacker with each Protection Poker session” (Williams et al., 2010). The playing of Protection
Poker led to revisions of two requirements for added security, resulted in a request for education on
cross-site scripting, identified the need for more security testing, etc. It was found that Protection
Poker supported participation from all team members, also those with passive, quiet personalities.
Note however, that we cannot say from this study whether similar results could have been achieved
with another technique.
Related Findings From Secondary Studies
Protection Poker has also been studied in a trial with 50 advanced undergraduate students taking a
software engineering course (Williams, Gegick & Meneely, 2009). In that study, it was found that
Protection Poker resulted in more discussion and learning about software security compared to
previous semesters where Protection Poker was not used. In the discussions, general lessons about
security surfaced fast, e.g. discussions on input validations, common exploits, etc.

Kongsli (2006) reports on experiences with using misuse stories and automatic testing of security
in the development of web applications, and points to similar benefits as Baca et al. (2015) and Williams
et al. (2010) although using a different technique (misuse stories). Reported benefits include increased
security awareness in the development team and team ownership of security issues. Additionally,
Kongsli reports that when security is sufficiently broken down (in terms of misuse stories) it is easier
to relate to and handle by developers, though with the risk of misuse story incompleteness as security
concerns not directly related to a user story can be overlooked. This risk is not pointed out by Baca
et al. (2015) and Williams et al. (2010). Kongsli also points out that the need for a security specialist
on the team is not completely eliminated with the used security techniques.

Ghani, Azham and Jeong (2014) suggest adding the Security Backlog and the role of a Security
Master to Scrum, and evaluate how this impacts agility. Results are positive, in that agility is actually
found to slightly improve. This may be due to adding more security expertise and workforce.

Renatus, Teichmann and Eichler (2015) suggested a method for threat assessment in line with
agile principles and a method for evaluating agility of methods, and the method itself was evaluated
in one SME. Central to the method they suggested was a split between the tasks of developers without
in-depth security expertise and the security curator. Security curators got the task of pre-modeling the
features soon to be implemented, while the developers were tasked with figuring out how to implement
the controls (Renatus et al., 2015). This is in line with SEAP and Protection Poker when it comes to an
incremental approach to development but represents a slightly different approach to dealing with the
need for security expertise. Renatus et al. report that it was seen as a valuable approach by the SME.

The positive effect of incremental security analysis is supported by findings from Fitzgerald,
O’Sullivan & O’Brien (2013) who found that continuous compliance activities and transparency of
project status facilitate risk mitigation. In particular they point to benefits of risk prioritization, as
tackling the most significant risks first can improve risk mitigation. Bellomo & Woody (2012) report
on an interview study among agile program managers and Accreditation Reviewers at the Department
of Defense (DoD), mainly concerning high risk software where accreditation is necessary. Bellomo
and Woody underline the importance to support prioritisation of security requirements and the need
for security expertise being available to the team. Additionally, they advocate a risk-based incremental
approach to security feature design and development, as this can mitigate the temptation to “focus on

D

154

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

51

delivering the low hanging fruits first (the easy stuff) and ignore developing the more complex, high
risk capabilities” (Bellomo & Woody, 2012). Bellomo and Woody additionally found that enforced
use of a security impact assessment field in the backlog increases the likelihood that security risks
are continuously assessed.

Sachdeva & Chung (2017) report on a case study of two software projects, one in which security
and performance requirements were handled implicitly and as an afterthought, and one in which they
were identified and addressed early and added to the backlog. They found clear benefits of the latter
approach. Thus, though other studies point to benefits of incremental analysis, this study point to the
importance of early inclusion of security.

Pohl and Hof (2015) suggested Secure Scrum; a way to integrate security into development
without changing the underlying Scrum process. Their evaluation of Secure Scrum comes with its
weaknesses; relying on small student projects that lasted only a week. Bearing this in mind, the results
from this study are relevant as they point to effects of having a security technique. Pohl and Hof found
that security was not taken care of by the student developers that did not use Secure Scrum, but that
when equipped with this technique they were able to elicit security requirements and implement some
of these requirements. Security techniques can thus act as the reminder that is needed by developers
to include software security.
Conceptual Framework by Terpstra et al. (2017)
Terpstra et al. (2017) created a conceptual framework based on the results they got in their study of
professionals’ posts on LinkedIn. This conceptual framework is shown in Figure 1. In the following
we explain the conceptual categories of Terpstra et al. in more detail.

The conceptual category perceptions of priority was used by Terpstra et al. to represent issues
related to prioritization of security requirements at inter-iteration time. They found that customers
and business representatives often push for functionality and do not prioritize security. However,
developers’ priorities may be different. This is related to the conceptual category ownership of security
requirements that was used by Terpstra et al. to represent findings that show that no role takes or is
given full responsibility for security requirements in development projects. As stated by Terpstra et al.
“business representatives and product owners usually have little awareness of security requirements and
rarely work towards their elaboration early on” (Terpstra et al., 2017). This is supported by identified
challenges such as “[t]he product owner has often too much power and instills his attitude of treating
non-functional requirements”, and “[t]he product owner is sometimes acting like a business owner
or stakeholder and pushes only for features” (Terpstra et al., 2017). Additionally, they found that
“developers who understand risks associated with poorly treated security requirements, may not know
how to communicate the possible security issues to their product owner and convincingly present him
with information on how much it would cost if not fixed and if a problem arises” (Terpstra et al., 2017).

These challenges can in part be explained by findings related to the conceptual category business
case. Some of the challenges identified by Terpstra et al. was that “[a]gile techniques are business-value
driven” and “[s]ecurity is hard to ‘sell’ as a business value”. Additionally, “[s]ecurity requirements
cost money to elaborate due to experts’ involvement” and “[p]eople drop security because they
perceive it a fight not worth fighting” (Terpstra et al., 2017). To add to this, the conceptual category
attitude towards security requirements was used by Terpstra et al. to represent findings that in some
cases “team members ‘do not care’ about security requirements just because there is no incentive to
do so (...). Or, because no one really understands completely what these requirements are” (Terpstra
et al., 2017). Terpstra et al. found that using security regulation to justify the security requirements
was one coping strategy used by practitioners.

The conceptual category organizational setup was used by Terpstra et al. to represent findings that
show that the organizational culture can both help and hurt the security requirements work. Terpstra et
al. in particular found that the organizations’ approaches to educating developers on software security
could have an impact. Coping strategies identified include educating the business on security, raising

D

155

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

52

awareness in the development team, adding a security expert to the team, making sure the product
owner is supporting security, and having cross functional streams to help not forgetting about security.
Some of the challenges identified by Terpstra further explain how the agile development approach
in itself may be a challenge in having security being prioritized, e.g.: “People do care about security,
but do not think about it”; “Agile techniques are vulnerable for forgetting things like security” and;
“Security requirements get often delivered in the last minute” (Terpstra et al., 2017). The conceptual
category definition of “done” (DoD) was used by Terpstra et al. to represent the opinion of some
of the professionals that the DoD should include security requirements. They found that security
requirements often were poorly defined, and that coping strategies included integrating security into
the DoD, estimates, acceptance criteria and user stories.

RESULTS: THE MAIN CONCEPTS AND THEIR RELATIONS

In the previous section we identified several concepts relevant to security requirements work as reported
in the identified primary studies (see Table 3 and Table 4). Based on the concepts we identified,
as well as those identified by Terpstra et al. (2017), we then identified what we consider the most
important and prevalent concepts in the primary studies, and the relations between these concepts.
We used this to create a conceptual framework with a graphical representation. In this section we
describe the result of this work.
Main Concepts
Table 6 shows how the concepts from the primary papers have been grouped into a set of main
concepts. The main concepts are as follows:

•	 Teams’ security posture and competence: The security awareness and competence of the team
and the individual team members are important in remembering security, identifying the need
for security, following it up with performing security activities and in having the competence
needed to adequately handling the security (Terpstra et al., 2017; Bartsch, 2011; Nicolaysen et
al., 2010). Benefits have been identified that can be tied to a decentralized approach to security
analysis (Baca et al., 2015), but this implies commitment and capability of the development
teams in doing this work;

•	 Customers’ security posture and competence: The interviews reported by Bartsch (2011) in
particular, but also the interviews reported by Nicolaysen et al. (2010), show the importance the
customer plays in the work on security requirements. Both these studies show that customers
have the influence both to drive and hinder the work on security requirements;

•	 Customer relation and involvement: Customers have been found to provide valuable competence
to the discussions on security requirements, and their competence and the trust relationship with
the developers can influence how security requirements are specified (Bartsch, 2011; van der
Heijden et al., 2018);

•	 Business case for security: Functionality is often prioritized over security (Nicolaysen et al.,
2010; Terpstra et al., 2017). Security is in many cases not seen as part of the software or something
that adds value, but rather as a cost (Terpstra et al., 2017; Poller et al., 2017; van der Heijden et
al., 2018). However, legislation or audits that put requirements on security can motivate security
effort (Terpstra et al., 2017; Nicolaysen et al., 2010; Bartsch, 2011);

•	 Organizational culture and setup: Several aspects with the organizational culture have been
found to have an effect on security requirements work. Examples are the communication between
teams and central resources on quality (Bartsch, 2011) and the organization’s approach to software
security training (Terpstra et al., 2017). In addition, the organization has the potential to make
decisions that impact what security resources are available in a team and the formal ownership
for software security in projects;

D

156

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

53

•	 Process for making priorities on requirements: In agile projects, decisions on what security
work to prioritize can be made without any security experts being involved and the decision can
be highly dependent on the security posture of individuals (Terpstra et al., 2017);

•	 Development approach: An agile development approach can impact the security requirements
positively, e.g. it has been found that developers with a holistic view of the software they develop
can feel more responsibility for security (Bartsch, 2011). However, there are also known challenges
(e.g. pressure of short iterations) (Bartsch, 2011; Nicolaysen et al., 2010) and frequent changes
(Adelyar & Norta, 2016);

•	 Security requirements elicitation approach: Having a defined process for security
to make sure security is remembered throughout the project can make a difference.
Additionally, the approach selected can impact the effect of the work. As an example,
approaches such as Protection Poker where the full team discusses security can lead
to certain effects that would maybe not be present in a more expert oriented approach.
Security requirements work is commonly considered to be iterative (Bartsch, 2011) and
this should be supported by any selected elicitation approach;

•	 Security requirements representation: Security requirements often end up being implicit
(Bartsch, 2011; Adelyar & Norta, 2016). Having security requirements as part of the
Definition of Done is one suggested way to make them more explicit and actionable (Bartsch,
2011; Terpstra et al., 2017).

Table 6. Main concepts

Main Concepts Table 4 Concepts Table 5 Concepts Concepts Terpstra et
al. (2017)

Teams’ security
posture and abilities

Individuals and their security posture
and competence; Responsibility;
Preferred security strategy

Security resources in the
team

Attitude towards
security

Customers’ security
posture and
competence

Customers and customer relations;
Individuals and their security posture
and competence; Preferred security
strategy

- Perceptions of priority

Customer relation and
involvement Customers and customer relations - -

Business case for
security

Priorities; Project constraints;
Business case for security; Pressure;
Legislation, audit

- Business case

Organizational culture
and setup

Communication; Development
approach; Responsibility

Security resources in the
team

Organizational setup;
Ownership of security
requirements

Process for making
priorities on
requirements

Priorities; Project constraints;
Representation of security
requirements

- Perceptions of priority

Development
approach Development approach; Pressure - -

Security requirements
elicitation approach Iterative process,

Incremental security
analysis in the team;
Security discussions in
the team

-

Security requirements
representation

Representation of security
requirements - Definition of “done”

D

157

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

54

Identifying Relations Between Concepts
In the introduction, security requirements work was described as comprising activities to: 1) decide
whether and how to identify security needs, risks or requirements for a project; 2) do the requirements
elicitation; 3) communicate the identified security needs, risks or requirements, and; 4) integrate these
and make priorities related to them in development. These security requirements work activities take
part in a context that highly influence this work in various ways. Figure 4 depicts the conceptual
framework we ended up with based on the analysis of the selected papers. Here we have divided the
identified concepts into two main categories: 1) contextual factors, i.e. factors that are outside the
requirements work itself, but impact the security requirements work in some way (e.g. impact the
priority the security work is given, who participates, how it is done, etc.), and; 2) concepts related to
the more practical aspects of the work and how it is performed (e.g. who actually participates in an
activity, how the work is actually done, etc.).

In the following we describe the relations between the concepts in more detail. Additionally, we
introduce a third overall category that is largely missing from the identified papers, namely that of
the effect of the security requirements work.
Security Requirements Work Context
The team’s security posture and abilities can be influenced by a number of factors. An obvious
influence is training (Bartsch, 2011; Terpstra et al., 2017), however, this training does not need
to be formal. Protection Poker is an example of a technique that has been found to spread security
awareness and knowledge in a team through regular security discussions. Additionally, teams can
increase their security competence through communication with quality assurance functions in the
company or even a sense of competition with other teams (Bartsch, 2011). Aspects of the development
work can additionally have a major impact on security posture of the team. The size and scale of the
project itself can impact what type of challenges a project experience in their security work (van der
Heijden et al., 2018). Adelyar & Norta (2016) found that frequent changes to software under time

Figure 4. Conceptual framework based on the selected empirical studies (SR is in the figure an abbreviation of
‘security requirements’)

D

158

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

55

pressure negatively impacted developers’ security attention. Additionally, they found that it impacted
the ability to have a simple design and made the software more complex. Bartsch (2011) found that
having a holistic development approach can motivate software security and lead to simpler designs.
Agile development methods can thus impact positively or negatively on the security posture and
abilities of the team depending on the circumstances.

Customers’ security posture and competence and the way customers are involved in the security
requirements work impact software security work in many ways. It can, together with the relation
between the team and customer, impact how security requirements are initially presented, especially
their quality and whether they are implicit or explicit (Bartsch, 2011). Additionally, customers’ security
posture impacts the business case for security, e.g. by the customer making security a clear priority
(Bartsch, 2011; Nicolaysen et al., 2010; Terpstra et al., 2017). The business case again influences
the security posture of the individuals involved (Terpstra et al., 2017).
Performed Security Requirements Work
Several of the concepts identified fall within the category of performed security requirements work.
The relations between these concepts (e.g. how the way requirements are elicited influence how
they are prioritized, etc.) are however not discussed much in the papers we have studied. The main
relation present is that of the impact of having implicit vs. explicit security requirements (Bartsch,
2011; Poller et al., 2017), and having security included as a feature (Poller et al., 2017).
Security Requirements Work Effect
We find that one category is largely missing from the primary and secondary studies we have identified,
namely that of the effect; what makes the security requirements work useful in terms of impact. Figure
4, that shows the conceptual framework we ended up with based on the primary studies, thus includes
this effect but without further concepts to help understand it. To move towards an understanding
of the effect, we have however added what we understand from the sources to be potential effects
of the factors included in the category ‘Performed security requirements work’, namely the quality
of security requirements, the fact that they are identified and implemented, how easy they are to
integrate into development, and the security awareness and competence that is built by doing security
requirements work. Though we do not have any solid evidence to support that these are important
factors characterizing the effect of security requirements work, these have support in the identified
papers and can point towards factors that potentially are important for the effect of this type of work.

One effect of software security work that is somewhat available in the primary studies is that
of cost. We have however not added that effect to the conceptual framework as it is not clear from
the sources what the cost-benefit relationship associated with the security requirements work part
is. Cost is however one likely factor of the effect of software security requirements work as well.

Figure 4 shows a possible relationship between the effect of the security requirements work and
the security requirements work context. In the papers we build on, there are some pointers to the
potential of security requirements work to impact the context, e.g. in form of changes in security
competence and awareness among key actors, such as the Product Owner.

DISCUSSION

In the following we discuss recommendations for future research based on the conceptual framework
we developed, followed by a discussion of the validity of the conceptual framework.
Implications for Research
The conceptual framework depicted in Figure 4 shows that several contextual factors influence the
software security requirements work in agile development projects. This can be understood in more
than one way. One possible understanding is that the contextual factors are the factors that are best

D

159

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

56

understood in the underlying research, and thus future research should aim to identify and understand
also factors related to the security requirements work itself and the outcome. However, another
possible understanding is that contextual factors are highly important for security requirements work
and thus need to be properly understood in order to have an effective approach to software security
requirements work in an agile setting. This may point to the need for more research on these factors,
also keeping in mind that the contextual factors included in Figure 4 are rather complex, covering
characteristics of individuals, the organization, and their interactions.

In the empirical studies we identified, the role of the approach or technique used for security
requirements work is not clearly understood. Though there have been studies of different techniques
and approaches, there is a difference between evaluating one technique and finding out the effects
of that technique vs. understanding what makes the technique behave as it does compared to other
techniques. We believe there is a need for more studies evaluating various techniques and approaches,
especially in industry settings and over longer periods of time.

From the conceptual framework in Figure 4 one can see that the empirical studies we used
provide limited understanding of what causes security requirements work to have effect. It may be
more difficult to study and understand the effect of the work than to understand factors impacting
the security requirements work, since effects may be longer term and harder to pinpoint. Still, the
motivation of doing security requirements work would be an adequate level of implemented security,
and if a security requirements approach does not make a significant contribution towards that then
it is not worth the effort.

As can be seen from Table 7, many of the concepts we identified can be said to be directly related
to the values of the Agile Manifesto (Beck et al., 2001); “[i]ndividuals and interactions over processes
and tools” (V1 in Table 7), “[w]orking software over comprehensive documentation” (V2), “[c]ustomer
collaboration over contract negotiation” (V3), and “[r]esponding to change over following a plan”
(V4) (Beck et al., 2001). This points to the conceptual framework being related to agile development
in particular, and not to other types of development approaches. However, this is not necessarily the
case. Kanniah & Mahrin (2016) identified a set of factors impacting successful implementation of
software development practices based on an SLR. Many of the factors they identified are related to
the factors we have identified for security requirements work in agile development; the institutional
context, people and action, the project context and the system development process are all represented
in the conceptual framework in Figure 4. The factors identified by Kanniah and Mahrin are not
considered to be specific for agile development. Based on the current evidence it is thus difficult

Table 7. Main concepts and their relation to the principles of the Agile Manifesto (Beck et al., 2001)

Identified Main Concept V1 Individuals V2 Software V3 Customer V4 Change
Teams’ security posture and abilities x
Customers’ security posture and
competence x x

Customer relation and involvement x x
Business case for security x
Organizational culture and setup x
Process for making priorities on
requirements x x

Development approach x x
Security requirements elicitation approach x x
Security requirements representation x

D

160

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

57

to say what impact an agile development approach has on software security work, and thus what in
the conceptual framework we developed are specific to agile development, even if the conceptual
framework is entirely based on studies done on projects and companies using some kind of agile
development approach. Of the four agile principles, it is the value “Individuals and interactions over
processes and tools” (Beck et al., 2001) that seems to be most influential on security requirements
work. Of the ten factors that Kaniah and Mahrin later identified as the most influential (Kanniah &
Mahrin, 2018), a majority can also be considered to be concerned with individuals and interactions.

To sum up, there is a need for a deeper understanding of software security work in agile
development. Especially there is a need to understand better what factors are important for the effect
of the work, and to understand the role of the particular approach in bringing about this effect.
However, a conceptual framework has a role not only in directing research priorities but also to
“identify potential validity threats to your conclusions” (Maxwell, 2013). It is clear that contextual
factors are important and influence software security work in agile development in many ways,
especially factors concerning individuals and their interactions. Thus, understanding these and taking
these factors into account in future studies is essential in order to properly understand the findings.
Thus, the conceptual framework can be used to guide future research priorities, but also be input to
planning and analysis of future empirical studies.
Validity of the Conceptual Framework
The conceptual framework presented in this paper is based on nine empirical studies; five interview
studies addressing software security in agile (Adeyar and Norta, 2016; Bartsch, 2011; Nicolaysen
et al., 2010; Tøndel et al., 2017; van der Heijden, 2018), one case study on the impact of external
security audits on development (Poller et al., 2017), two evaluations of approaches or techniques
relevant for security requirements work (Baca et al., 2015; Williams et al., 2010) and one analysis of
professionals’ postings on LinkedIn related to security requirements in agile (Terpstra et al., 2017).
These nine studies together address the topic of security requirements work in agile from varying
perspectives and using varying methods, something that can be considered a strength. Still, the nine
primary studies we build on can be considered to be rather few, thus we have used a set of secondary
studies to improve understanding of the concepts identified from the primary studies.

As previously explained, we decided not to do a comprehensive and systematic search for
literature, as one would expect if doing an SLR. We made the initial assessment that given the recent
SLRs on software security in agile (Khaim et al., 2016; Oueslati et al., 2015) that we could use as a
basis for this work, it was not worthwhile to do a comprehensive search for literature. At later stages
in the process we used even more recent SLRs (Alsaquaf et al., 2017; Bishop & Rowland, 2019;
Saldanha & Zorzo, 2018; Villamizar et al., 2018) to add to the initial selection of papers. Deciding not
to do a full SLR is a weakness of our approach, and it can potentially have impacted the conceptual
framework we ended up with, as more identified studies could have resulted in more and/or different
concepts and relations between them. However, we never intended this conceptual framework to be a
complete and “‘finalised” conceptual framework, but rather a work in progress that should be improved
as more research becomes available (Maxwell, 2013). We would additionally like to point out that the
SLRs we used to identify papers seem to vary in what papers are included (see Table 1), something
that may indicate challenges in identifying all relevant papers also when doing an SLR. Several of
the SLRs we have used as a basis state that the current number of published empirical studies on
software security in agile development is rather low (Alsaquaf et al., 2017; Bishop & Rowland, 2019;
Saldanha & Zorzo, 2018; Villamizar et al., 2018), thus identification of a high number of studies
should not be expected regardless of method for identifying studies.

The conceptual framework presented in this paper is based solely on published empirical studies.
Restricting ourselves to only using such studies as a basis for the conceptual framework represents
a narrowing of focus, ignoring other sources of knowledge of security requirements work such as
unpublished results and the general experiences of researchers and practitioners (Maxwell, 2013;

D

161

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

58

Robson, 2011). Also, for this reason, this conceptual framework is to be considered work in progress,
and something that will need to be refined including more sources.

Relying on published empirical studies additionally pose limitations in that we only have access
to as much information about the studies as is available in the published papers. For the study category
consisting of more general studies, we would generally have benefited from more information on
study context as this would help us understand the results and the selected concepts in more depth.
For the studies of specific techniques, the results and thus the concepts are highly related to the
specifics of the techniques; if other techniques had been studies it is likely that other concepts would
have emerged from the results. It is hard to know what is the effect of the studied approaches (SEAP,
Protection Poker) compared to that of other techniques, i.e., which effects are due to the particular
way of working in the technique, and which are due to other factors.

Although the work of creating this conceptual framework has been done in a structured way,
there is always an element of creativity also in scientific work (Collins, 2019). In this work, the
coding of results from the primary sources (step 3), the reorganizing of these codes into themes/
concepts for the conceptual framework (step 4) and the development of the graphical representation
of the conceptual framework (step 5) all represent some form of creative work, although based on a
structured process and although we have aimed to preserve the link between the resulting framework
and the findings in the primary sources. It is likely that other researchers would make slightly different
categorizations and end up with a different graphical representation of the conceptual framework.
In many cases the concepts we ended up with using, both the initial concepts identified based on
the primary studies (Table 4 and Table 5) and the main concepts used in the conceptual framework
(Table 6), are somewhat overlapping. To illustrate, the security discussions in the teams that are part
of Protection Poker in many ways represent one form of incremental security analysis done by the
team, and such a discussion influences the security resources in the team. The concepts we ended up
with using represent out best effort to group key findings from the primary studies into meaningful
and related concepts. The concepts and the framework we ended up with should however not be
viewed as a final version, but as a starting point and something that can be improved upon as more
empirical research becomes available.

Further evaluation of this conceptual framework is needed. In its current state, the conceptual
framework has been primarily developed by one researcher. Future work includes discussing the
conceptual framework with more colleagues and validating and improving the conceptual framework
when new evidence becomes available. Note however that the concepts in the framework bear
similarities to the categories of challenges identified by Oueslati et al. (2015), especially to their
categories “[a]wareness and collaboration challenges” and “[s]ecurity management challenges” and
to challenges identified by Khaim et al. (2016) and Alsaquaf et al. (2017). Thus, the factors we have
identified have been pointed out also by other researchers aiming to understand challenges relating
to software security in agile development or quality requirements in agile development. Compared to
the conceptual framework developed by Daneva and Wang (2018), it integrates their key concepts of
activities, competencies, roles and artefacts, although in a slightly different way. Also, note that the last
iteration of the framework that included adding two more primary studies (Adelyar and Norta, 2016;
van der Heijden et al., 2018) resulted in only minor updates to the final concepts and to the conceptual
framework. Thus, we have reason to believe that this conceptual framework is able to cover the key
findings in current empirical research on software security requirements work in agile development.

In the Research Method section, we restated the recommendation from Miles and Huberman
(1994) to avoid a non-risk framework with only global level variables and two-directional arrows. The
conceptual framework we have presented in this paper is not a non-risk framework, but could be said
to be a low-risk framework with many high level concepts and mainly high-level relations between
the concepts. This is in many ways a result of limited studies to use as a basis for the conceptual
framework. Both Maxwell (2013) and Robson (2011) recommend an inclusive approach at the initial
stage. However, the conceptual framework should become more focused as it is refined (Maxwell,

D

162

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

59

2013). Thus, future revisions should move towards more specific concepts, and even excluding
concepts that are less important. Revisions can be made based on new data becoming available,
or could utilize other sources like experience, a broader set of literature, and thought experiments
(Maxwell, 2013; Robson, 2011).

CONCLUSION AND FUTURE WORK

This paper suggests a conceptual framework for software security requirements work in agile
development, with the motivation to increase understanding of this type of work and guide further
research. The conceptual framework is based on published empirical studies covering aspects of
software security requirements work in agile in an industrial setting. The results point to a need for
further empirical studies in this area, especially to improve understanding of factors important for
gaining impact from the work on software security requirements in agile projects, as this is largely
missing in current work. There is additionally a need for understanding to what extent the concrete
approach adopted for security requirements work shape the impact of this work given varying contexts.
This would help practitioners in deciding what methods to adopt for their particular case. Contextual
factors seem to be highly influential on the way security requirements are treated in current software
projects. Thus, these are important to take properly into account in future empirical research studies,
especially in plans for data collection and in the analysis phase.

In our own work, we are in the process of using this conceptual framework as an input to planning
and analysis of ongoing case studies related to software security requirements work in agile software
development. Especially, we plan to use the conceptual framework to provide some structure to the
analysis. Additionally, we plan to use the results of the ongoing and future case studies to improve
this conceptual framework.

ACKNOWLEDGMENT

This work was supported by the SoS-Agile: Science of Security in Agile Software Development
project, funded by the Research Council of Norway (grant number 247678).

D

163

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

60

REFERENCES

Adelyar, S. H., & Norta, A. (2016, September). Towards a secure agile software development process. In
Proceedings of the 2016 10th International Conference on the Quality of Information and Communications
Technology (QUATIC) (pp. 101-106). IEEE. doi:10.1109/QUATIC.2016.028
Alsaqaf, W., Daneva, M., & Wieringa, R. (2017). Quality requirements in large-scale distributed agile projects–a
systematic literature review. In Proceedings of the International working conference on requirements engineering:
Foundation for software quality (pp. 219–234). Academic Press. doi:10.1007/978-3-319-54045-0_17
Aydal, E. G., Paige, R. F., Chivers, H., & Brooke, P. J. (2006). Security planning and refactoring in extreme
programming. In Proceedings of the International conference on extreme programming and agile processes in
software engineering (pp. 154–163). Academic Press. doi:10.1007/11774129_16
Baca, D., Boldt, M., Carlsson, B., & Jacobsson, A. (2015). A novel security-enhanced agile software development
process applied in an industrial setting. In Proceedings of the 10th international conference on availability,
reliability and security (ARES) (pp. 11–19). Academic Press. doi:10.1109/ARES.2015.45
Baca, D., & Carlsson, B. (2011). Agile development with security engineering activities. In Proceedings of the
2011 international conference on software and systems process (pp. 149–158). Academic Press.
Bartsch, S. (2011, Aug). Practitioners’ perspectives on security in agile development. In Proceedings of the
2011 sixth international conference on Availability, reliability and security (ARES) (p. 479-484). doi:10.1109/
ARES.2011.82
Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., others (2001).
Manifesto for agile software development. Retrieved from http://www.agilemanifesto.org
Bellomo, S., & Woody, C. (2012). DoD Information Assurance and Agile: Challenges and Recommendations
Gathered Through Interviews with Agile Program Managers and DoD Accreditation Reviewers. Carnegie-
Melon University.
Beznosov, K. (2003, October). Extreme security engineering: On employing XP practices to achieve’good
enough security’without defining it. In Proceedings of the First ACM Workshop on Business Driven Security
Engineering (BizSec). Academic Press.
Bishop, D., & Rowland, P. (2019). Agile and secure software development: An unfinished story. Issues in
Information Systems, 20(1).
Collins, H. (2019). Forms of Life: The Method and Meaning of Sociology. MIT Press.
Daneva, M., & Wang, C. (2018, August). Security requirements engineering in the agile era: How does it work
in practice? In Proceedings of the 2018 IEEE 1st International Workshop on Quality Requirements in Agile
Projects (QuaRAP) (pp. 10-13). IEEE.
Dikert, K., Paasivaara, M., & Lassenius, C. (2016). Challenges and success factors for large-scale agile
transformations: A systematic literature review. Journal of Systems and Software, 119, 87–108. doi:10.1016/j.
jss.2016.06.013
Fitzgerald, B., Stol, K.-J., O’Sullivan, R., & O’Brien, D. (2013). Scaling agile methods to regulated environments:
An industry case study. In Proceedings of the 2013 international conference on software engineering (pp.
863–872). Academic Press. doi:10.1109/ICSE.2013.6606635
Ghani, I., Azham, Z., & Jeong, S. R. (2014). Integrating Software Security into Agile-Scrum Method. TIIS,
8(2), 646–663. doi:10.3837/tiis.2014.02.019
Hanssen, G. K., Stålhane, T., & Myklebust, T. (2018). SafescrumOR -agile development of safety-critical
software. Springer.
Heeager, L. T., & Nielsen, P. A. (2018). A conceptual model of agile software development in a safety-critical
context: A systematic literature review. Information and Software Technology, 103, 22–39. doi:10.1016/j.
infsof.2018.06.004
Howard, M., & Lipner, S. (2006). The security development lifecycle. Microsoft Press.

D

164

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

61

Jabareen, Y. (2009). Building a conceptual framework: Philosophy, definitions, and procedure. International
Journal of Qualitative Methods, 8(4), 49–62. doi:10.1177/160940690900800406
Kanniah, S. L., & Mahrin, M. N. (2016). A review on factors influencing implementation of secure software
development practices. International Journal of Computer and Systems Engineering, 10(8), 3032–3039.
Kanniah, S. L., & Mahrin, M. N. (2018). Secure software development practice adoption model: A delphi study.
Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 10(2-8), 71–75.
Khaim, R., Naz, S., Abbas, F., Iqbal, N., & Hamayun, M. (2016). A review of security integration technique in
agile software development. International Journal of Software Engineering and Its Applications, 7(3).
Kongsli, V. (2006). Towards agile security in web applications. In Companion to the 21st ACM SIGPLAN
symposium on object-oriented programming systems, languages, and applications (pp. 805–808). ACM.
Leffingwell, D. (2010). Agile software requirements: lean requirements practices for teams, programs, and the
enterprise. Addison-Wesley Professional.
Maxwell, J. A. (2013). Qualitative research design: An interactive approach (Vol. 41). Sage publications.
McGraw, G. (2004, March). Software security. Security & Privacy, 2(2), 80–83. doi:10.1109/MSECP.2004.1281254
McGraw, G. (2006). Software Security: Building Security In. Addison-Wesley.
McGraw, G., Migues, S., & West, J. (2018). BSIMM 9. Synopsys, Inc.
Microsoft. (2009, June 30). Security development lifecycle for agile development, version 1.0.
Microsoft. (n.d.). Microsoft security development lifecycle (No. Accessed 2019.08.07). Retrieved from https://
www.microsoft.com/en-us/SDL
Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook (2nd ed.). Sage.
Muneer, S. U., Nadeem, M., & Kasi, B. (2019). Comparison of modern techniques for analyzing NFRs in Agile:
A systematic literature review. Journal of Software Engineering Practice, 3(3), 1–12.
Nicolaysen, T., Sassoon, R., Line, M. B., & Jaatun, M. G. (2010). Agile software development: The straight and
narrow path to secure software? International Journal of Secure Software Engineering, 1(3), 71–85. doi:10.4018/
jsse.2010070105
Oueslati, H., Rahman, M. M., & ben Othmane, L. (2015). Literature review of the challenges of developing
secure software using the agile approach. In Proceedings of the 10th international conference on availability,
reliability and security (ARES) (pp. 540–547).
OWASP. (n.d.). Software assurance maturity model - a guide to building security into software development.
version 1.5 (Tech. Rep.). Open Web Application Security Project.

Peeters, J. (2005). Agile security requirements engineering. In Proceedings of the Symposium on requirements
engineering for information security. Academic Press.
Pohl, C., & Hof, H.-J. (2015). Secure scrum: Development of secure software with scrum.
Poller, A., Kocksch, L., Türpe, S., Epp, F. A., & Kinder-Kurlanda, K. (2017). Can security become a routine?:
a study of organizational change in an agile software development group. In Proceedings of the 2017 ACM
conference on computer supported cooperative work and social computing (pp. 2489– 2503). Academic Press.
doi:10.1145/2998181.2998191
Rajba, P. (2018, August). Challenges and mitigation approaches for getting secured applications in an enterprise
company. In Proceedings of the 13th International Conference on Availability, Reliability and Security (pp. 1-6).
Academic Press. doi:10.1145/3230833.3233276
Renatus, S., Teichmann, C., & Eichler, J. (2015). Method selection and tailoring for agile threat assessment and
mitigation. In Proceedings of the 10th international conference on availability, reliability and security (ARES)
(pp. 548–555). Academic Press. doi:10.1109/ARES.2015.96

D

165

International Journal of Systems and Software Security and Protection
Volume 11 • Issue 1 • January-June 2020

62

Inger Anne Tøndel is a PhD candidate at the Norwegian University of Science and Technology (NTNU) in
Trondheim, Norway, and a research scientist at SINTEF Digital in Trondheim, Norway. She received the M.Sc.
degree in Telematics from NTNU in 2004. Her research interests include software security, security requirements,
information security risk management, cyber-insurance and smart grid cyber security.

Martin Gilje Jaatun is a Senior Scientist at SINTEF Digital in Trondheim, Norway. He graduated from the Norwegian
Institute of Technology (NTH) in 1992, and received the Dr. Philos degree in critical information infrastructure
security from the University of Stavanger in 2015. He is an adjunct professor at the University of Stavanger,
and was Editor-in-Chief of the International Journal of Secure Software Engineering (IJSSE). Previous positions
include scientist at the Norwegian Defence Research Establishment (FFI), and Senior Lecturer in information
security at the Bodø Graduate School of Business. His research interests include software security, security in
cloud computing, and security of critical information infrastructures. He is vice chairman of the Cloud Computing
Association (cloudcom.org), vice chair of the IEEE Technical Committee on Cloud Computing (TCCLD), an IEEE
Cybersecurity Ambassador, and a Senior Member of the IEEE.

Rindell, K., Hyrynsalmi, S., & Leppänen, V. (2016, August). Case study of security development in an
agile environment: building identity management for a government agency. In Proceedings of the 2016 11th
International Conference on Availability, Reliability and Security (ARES) (pp. 556-563). IEEE. doi:10.1109/
ARES.2016.45
Robson, C. (2011). Real World Research (3rd ed.). John Wiley & Sons.
Sachdeva, V., & Chung, L. (2017, January). Handling non-functional requirements for big data and IOT projects
in Scrum. In Proceedings of the 2017 7th International Conference on Cloud Computing, Data Science &
Engineering-Confluence (pp. 216-221). IEEE. doi:10.1109/CONFLUENCE.2017.7943152
Saldanha, L. R., & Zorzo, A. (2019). Security requirements in agile software development: a systematic mapping
study. Pontifical Catholic University of Rio Grande Do Sul, 2019, 32p.
Savola, R. M., Frühwirth, C., & Pietikäinen, A. (2012). Risk-driven security metrics in agile software development-
an industrial pilot study. J. UCS, 18(12), 1679–1702.
Terpstra, E., Daneva, M., & Wang, C. (2017). Agile practitioners’ understanding of security requirements:
Insights from a grounded theory analysis. In Proceedings of the 2017 IEEE 25th international requirements
engineering conference workshops (REW) (pp. 439–442). IEEE Press.
Tøndel, I. A., Jaatun, M. G., Cruzes, D. S., & Moe, N. B. (2017). Risk centric activities in secure software
development in public organisations. International Journal of Secure Software Engineering, 8(4), 1–30.
doi:10.4018/IJSSE.2017100101
van der Heijden, A., Broasca, C., & Serebrenik, A. (2018, October). An empirical perspective on security challenges
in large-scale agile software development. In Proceedings of the 12th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (pp. 1-4). Academic Press. doi:10.1145/3239235.3267426
Villamizar, H., Kalinowski, M., Viana, M., & Fernández, D. M. (2018, August). A systematic mapping study on
security in agile requirements engineering. In Proceedings of the 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (pp. 454-461). IEEE. doi:10.1109/SEAA.2018.00080
Williams, L., Gegick, M., & Meneely, A. (2009). Protection poker: Structuring software security risk assessment
and knowledge transfer. In Proceedings of the International symposium on engineering secure software and
systems (pp. 122–134). Academic Press.
Williams, L., Meneely, A., & Shipley, G. (2010). Protection poker: The new software security game. IEEE
Security and Privacy, 8(3), 14–20. doi:10.1109/MSP.2010.58

D

166

E

167

Paper E: ‘The Security Intention Meeting Series as a way to increase
visibility of software security decisions in agile development projects’

The published material [31] is included here in accordance with ACM author rights.

E

The Security Intention Meeting Series as a way to increase
visibility of software security decisions in agile development

projects
Inger Anne Tøndel

Department of Computer Science, Norwegian University
of Science and Technology (NTNU)

Trondheim, Norway
inger.anne.tondel@ntnu.no

Daniela Soares Cruzes
Martin Gilje Jaatun

Kalle Rindell
SINTEF Digital

Trondheim, Norway

ABSTRACT
To achieve a level of security that is just right, software development
projects need to strike a balance between security and cost. This
necessitates making such decisions as to what security activities to
perform in development and which security requirements should
be given priority. Current evidence indicates that in many agile
development projects, software security is dealt with in a more or
less “accidental” way based on individuals’ security awareness and
interest. This approach is unlikely to lead to an optimal security
level for the product. This paper suggests Security Intention Recap
Meetings as a recurring organisational tool for evaluating current
practices regarding the security intentions of a software project, and
to make decisions on how to move forward. These meetings involve
key decision makers in the project, such as the product owner and
the project manager, with the purpose of making security decisions
visible and deliberate and to monitor their results.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→Agile software development;
Requirements analysis;
ACM Reference Format:
Inger Anne Tøndel, Daniela Soares Cruzes, Martin Gilje Jaatun, and Kalle
Rindell. 2019. The Security Intention Meeting Series as a way to increase
visibility of software security decisions in agile development projects . In
Proceedings of the 14th International Conference on Availability, Reliabil-
ity and Security (ARES 2019) (ARES ’19), August 26–29, 2019, Canterbury,
United Kingdom. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3339252.3340337

1 INTRODUCTION
In agile development projects, requirement management is dynamic.
As a rule, a development project will not be able to deliver a per-
fect product within the cost and time constraints [15]. This makes
requirements negotiation a key activity. In such an ecosphere, the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ARES ’19, August 26–29, 2019, Canterbury, United Kingdom
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7164-3/19/08. . . $15.00
https://doi.org/10.1145/3339252.3340337

security work needs to compete for its share of effort and money.
Achieving cost-effective security, however, is not an easy task: Un-
derstanding and assessing the security needs of the software being
under development is challenging in and of itself, further compli-
cated by the complex and constantly changing threat landscape.
Without a clear approach to identifying security needs and making
decisions on how to address them, software projects are unlikely
to end up with cost-effective security.

Studies have found evidence that software security is often dealt
with in an “accidental” way in agile projects [23]. It has even been
pointed out that “[a]gile techniques are vulnerable for forgetting
things like security.” [22]. Security and quality aspects have a ten-
dency to be sacrificed in favour of implementing more functionality
[2, 22, 23], and the decisions involved are commonly made without
involving security expertise [23]. The responsibility for software
security is often unclear [22, 23] in projects and organisations. Thus,
security is not a strategic decision, but rather left up to the individ-
uals involved and their security posture. In particular, the Product
Owner has been identified in studies as a common hindrance for
sufficiently prioritizing security and quality [2, 22].

Security needs to be considered from the start and throughout
a software project, and be visible as an important concern. This is
acknowledged in various software security approaches [9, 17] and is
reasserted by recent regulation regarding the handling of personal
data [7]. Security decisions include decisions on which security
activities and practices to perform and what security functionality
to implement, but also include other decisions (e.g. design choices)
that may have an impact on the security of the produced software.
Security decisions are not only made in the beginning of the project,
or only at some clearly identified gates, but happen throughout
development in big and small ways, sometimes without security
being explicitly taken into account.

This paper suggests an approach to bring security priorities and
decisions forward in an agile development projects: the Security
Intention Recap Meeting. This approach is based on ongoing inter-
actions with several development companies [6] and on studies of
other security techniques placed in an agile setting, in particular
threat modeling [21] [10] and the Protection Poker risk estimation
game [26][24]. The security intention recap meeting approach is
made for the context of agile software development and project
management. These meetings help addressing software security
in a systematic way by involving the key decision makers of the
project in regular assessments of the current state of the security
work, and by comparing how the work is in line with the security

E

169

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Inger Anne Tøndel, et al.

intentions for the project. The need to find a balance between se-
curity and cost is fully appreciated, and it is advocated that such a
balance is unlikely to be achieved without intentional discussions
about the right balance for this particular project.

This paper is organised as follows: Section 2 gives an overview
of challenges identified in literature on prioritization of software
security in agile software development projects. Section 3 presents
the concept of the security intention recap meetings and how to
organise them into a meeting series. Section 4 discusses the secu-
rity intention meeting series in relation to other software security
activities that are commonly recommended and can have similar
goals; that is, threat modeling and risk assessments. Additionally
the section identifies and discusses envisioned challenges to apply-
ing the approach in practice, explores ways to meet the challenges,
and describes plans for future research. Section 5 concludes the
paper.

2 CHALLENGES IN PRIORITIZING SECURITY
IN AGILE SOFTWARE DEVELOPMENT

In this section, an overview of related studies is given, providing
an empirical and theoretical basis for understanding the challenges
of getting security prioritised in agile software development. The
studies are generally in agreement that security is often neglected
or underprioritized [2, 18, 22, 23] and point out many factors and
challenges impacting how the security priorities are set in the agile
development. The following factors are recurrent in various forms:

• The individuals have a key role and their attitude, knowl-
edge, and priorities shape the priorities security is given in
the development project. The product owner in particular
influence priorities [2, 22], but there are also other impor-
tant roles (security experts, developers and management at
various levels) [13, 14] and there can be tensions between
different groups [22, 23].

• The ownership and responsibilities for software security are
currently unclear [22, 23]. This appears to have a negative
impact on the priority given to security [23].

• The business case for security is unclear, and the security
work is considered a fight not worth fighting [22]. The push
for functionality is strong, and this results in less focus on
security [2, 22, 23].

In a review of 44 primary studies, Kanniah and Mahrin [13]
identified commonly cited factors impacting the successful imple-
mentation of secure software development practices. The broad
set of factors identified include the institutional context, the peo-
ple involved and their actions, the project content and the system
development process. In a follow-up study with eight experts, the
following factors were identified by Kanniah and Mahrin as the ten
most important ones: 1) security experts, 2) security documentation,
3) project management, 4) developers, 5) project team, 6) security
audit team, 7) team collaboration, 8) development time, 9) policy
enforcement and 10) top management [14].

In a literature review of quality requirements work in agile de-
velopment, Alsaquaf et al. [2] identified the product owner as a
hindrance for quality requirements being properly addressed. The
product owners commonly have a “heavy workload” and “insuffi-
cient availability”, in addition to a “lack of knowledge” of quality

aspects [2]. Other challenges include inadequate or lacking tech-
niques, and challenges that functionality is prioritized while some
other types of requirements are ignored or insufficiently analysed.

In their systematic literature review, Oueslati et al. identified 14
challenges of developing secure software within the agile approach
[18]. The challenges were categorised the following way:

• “Software development life-cycle challenges” : security activi-
ties not included; hard to integrate security in every iteration
due to short iteration times.

• “Incremental development challenges” : dealing with changes.
• “Security assurance challenges” : documentation; testing; un-
stable development process.

• “Awareness and collaboration challenges” : security require-
ments neglected; lack of experience and security awareness;
separate the developer and reviewer roles.

• “Security management challenges” : giving priority to security.
Tøndel et al. [23] studied software security practices among 23

public organisations, using interviews as the main instrument of
data collection. This study aimed to identify risk-centric software
security practices in organisations and projects in the public do-
main. It involved people in development and information security
positions in organisations mainly using some type of agile software
development practices. The findings show that software security
work in these organisations is not generally based on security risk,
but rather triggered by the requirements for legal and regulatory
compliance, or more or less “accidental” detection of security mis-
takes in development. Barriers against security include unclear
responsibilities for software security, architects without an interest
in security, lack of security knowledge both on the developer and
procurer side, and security being considered a “technical issue”. In
the organisations studied, it was found that “[n]o one fights for soft-
ware security”, that risk treatment decisions were often “[a]rbitrary,
late and error driven” and that ”[t]ime pressure results in security
requirements being postponed (or even dropped)” [23].

Terpstra et al. [22] studied practitioners’ postings on social me-
dia (LinkedIn) to discover how agile practitioners reason about
security requirements, and how they cope with them. The analysis
resulted in the identification of 21 concepts that indicate problems
regarding security requirements in agile, and 15 coping strategies.
Problems identified include the limited business value of security,
the tendency that security gets lost in the process, and the lack of
awareness and knowledge. Their analysis resulted in a descriptive
conceptual framework that included the following categories:

• “[O]wnership of security requirements”: represents the find-
ing that no role assumes, or is given, full responsibility for
security requirements in development projects.

• “[D]efinition of Done (DoD)”: represents the opinion of some
professionals that the DoD should represent requirements
on the need to implement security measures.

• “[B]usiness case” : represents the findings pointing to security
not being part of the project’s business case.

• “[A]ttitude towards security requirements”: represents the
findings that in some cases “teammembers ‘do not care’ about
security requirements just because there is no incentive to do
so (...). Or, because no one really understands completely what
these requirements are”.

E

170

Security Intention Meeting ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

• “[O]rganizational setup”: represents the findings that show
that the organisational culture can both help and hurt the
security requirements work. In particular approaches to edu-
cating developers on software security could have an impact.

• “[P]erceptions of priority”: represents issues related to pri-
oritisation of security requirements at inter-iteration time.
Business representatives often drive priorities, pushing for
functionality, but their priorities can differ from developers.

3 THE SECURITY INTENTION MEETING
SERIES

A security intention (SI) recap meeting is a meeting primarily for
decision makers, and is intended to be part of a series where the
meetings build on each other. Both these aspects of the meeting are
necessary to reach the meeting goal of making software security
decisions more visible, systematic and deliberate. In the following
we explain how the SI recap meetings are organised into a series
and integrated into development before we move on to explaining
the different parts of the SI recap meeting in more detail

3.1 Integration into development
How often SI recap meetings should be held would depend on
the product and may vary throughout the project life cycle. Note,
however, that the SI recap meetings are meant to be relatively short
meetings (ideally maximum one hour), and we advocate to rather
have short meetings more often than longer meetings more seldom.
Figure 1 gives one example of possible timing in relation to the
software development activities of the project.

We envision one initial SI meeting in the beginning of the project,
one SI postmortemmeeting in the end, and several SI recapmeetings
during the course of the project. In the initial SI meeting at the
beginning of the project, the goal of the meeting is to clarify the
overall goals of the software security work in this project, decide
on which statements to use for self-evaluation during the project,
and decide on initial security activities needed in the initiation of
the project. The goal of the SI postmortem meeting is to evaluate
the software security approach in this project, related to the goal,
and identify learning points for future development projects. The
SI postmortem meeting could utilize any postmortem technique [4]
and could be part of a larger postmortem meeting for the project,
covering more issues than software security.

The SI meeting series, in addition to making software security
decisions more visible and deliberate, offers a possibility to doc-
ument important assumptions, priorities and decisions regarding
software security throughout the project. Thus notes should be
taken from the meetings and stored as part of the project docu-
mentation. Action points from the meeting should find their way
into any tools used for issue tracking. The self-evaluation results
additionally offer a way to track progress throughout the project
and learn more about what types of actions create the effects sought
after in order to meet software security goals.

3.2 The SI recap meeting
The SI recap meeting consists of two main parts: 1) an honest eval-
uation of the current state of software security in the development
of the product, and 2) deciding on action points on how to move

INTENTION:
In this project security is important because […] We want to make sure we deliver quality to our
customer, and this includes delivering the right amount of security for their needs.

Meeting date and person
responsible

People present

STATUS ASSESSMENT:
We want to know the current state of our approach to software security, so that we can make
good decisions on how we will move forward from here
Score: great, good, somewhat, lacking

Statement Score Successes Opportunities to improve

The teams have the skills
to understand and address
security in the software

We know what are the
most relevant attackers
and attack goals for the
software we develop

…

…

WAY FORWARD:
We will regularly improve our competence and ways of working, to ensure we work in line with
our intentions
Note: let these goals and steps be based on the current status, but also make sure to revisit the
goals and steps decided on in the previous security intention recap and consider what to keep,
what to drop, what to change

Improvement goal Concrete step Responsible Plan for progress
follow up

Schedule and plan for next security intention recap

Date and person
responsible

Who should join Any improvements to the security intention
recap meeting

Figure 2: Template for the security intention recap meeting

from here. The meeting shall not be longer than one hour. Figure 2
gives an example template for an SI recap meeting. In the following
we explain the key parts of the meeting.

3.2.1 Owner and Participants. As the SI recap meeting is a meet-
ing that is about making conscious decisions on software security, it
is of paramount importance that roles involved in making decisions
related to the particular product under development participates
in the meeting. Roles such as product owner and project manager
should be part of the meeting. Additionally, roles with security
responsibility, or responsibility for legal compliance (if relevant)
should be part of the meeting. In addition to these roles, it is nec-
essary to have meeting participants that are in touch with what
is happening in the actual development. Thus, it may be decided
to include one or more developers or testers in the meeting, in
particular people with a security champion or a team leader role.

One person needs to be responsible for the SI recap meeting,
and for keeping the SI meeting series alive. This person needs to
be motivated about software security. Ideally this person should be
part of the development project, so that the meeting is not seen as
initiated from outside the project.

3.2.2 Status assessment. The heart of the SI recap meeting is an
honest evaluation of the current state of software security in the
development of this particular product. Doing such a self-evaluation

E

171

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Inger Anne Tøndel, et al.

Initial
security

intention
meeting

Security
intention

recap
meeting

• Intention
• Follow up issues
• Meeting plan

Security
intention

recap
meeting

• Revised intention
• Status evaluation
• Follow up issues
• Meeting plan

Security
intention

postmortem
meeting

• Revised intention
• Status evaluation
• Follow up issues
• Meeting plan

• Status evaluation
• Learning points

Other (future) projects

Meeting # O 1 2 n n+1

repeat n times

Development activities

• Security action points • Security action points • Security action points

Figure 1: Illustration of the relationship between the security intention meetings and their output

serves two purposes: 1) to remind the participants of the security
goals of the project and what level of software security that is aimed
for, and 2) to identify areas where there is a need to adjust practices
to be more in line with the software security intentions for the
product. Current practice is evaluated related to a set of previously
selected statements (see subsection 3.2.3) that concretise what level
of software security is aimed for in this product For each statement
the participants discuss successes and opportunities to improve
(inspired by a tool for assessing onboarding [3]). Additionally, we
recommend that the meeting participants evaluate each of the
statements according to the following scale, to be clear about where
the practices are acceptable and where improvement is needed:

• Great: We are doing great, and do not need to prioritize
further improvement in this area

• Good: We know we could be better, but are fairly satisfied
with current practice

• Somewhat: We are doing some things, but really should im-
prove this part

• Lacking: We are doing close to nothing and are far from
realizing this goal

Discussing and documenting both an evaluation of current practice
and the basis for this evaluation (successes; opportunities to im-
prove) is the foundation for making decisions on the way forward.

In the self-evaluation part of the meeting it is essential that all
participants have their say so that the self-evaluation ends up being
as true as possible related to the current state. One wants to avoid
one or two meeting participants dominating the evaluation, leaving
out other perspectives. It is possible to use a voting mechanism
similar to that used in Planning Poker [8] or Protection Poker[25,
26] to ensure all participants make an individual assessment of each
statement, and that each individual assessment is made visible in
the meeting. In any case, the moderator of the SI recap meeting is
essential in creating a safe atmosphere for discussion and making
sure all relevant voices are heard in the meeting.

3.2.3 Process for selecting statements for self-evaluation. Each
project should select a manageable set of statements to assess for
the project. Selecting statements for self-evaluation is a way of
making priorities for the project, as these statements will be used to

guide attention and decisions in the project. Selecting some state-
ments implies not selecting others. As priorities need to be made
related to the particular project, we do not provide a finished list
to choose from, but rather a process for selecting statements. The
self-evaluation statements should be decided on in the beginning of
the project, but can be revised as the project moves along if under-
lying assumptions or overall priorities change related to software
security, or if one has reached the goals on one statement and wants
to put the focus elsewhere. The template in Figure 2 shows example
content for the self-evaluation statements.

Statements can be identified top-down, based on priorities on an
organisational level, or bottom-up, based on the individual project,
or a combination. We suggest that the first step in deciding on a set
of self-evaluation statements is to answer the following questions:

• Does the organisation have any strategies that sets out the
goals or ambitions regarding software security? Examples
of such documents would be software security manifestos
or KPIs.

• Does the organisation know its strong and weak spots when
it comes to software security, and have identified areas of
improvement? Examples would be results from a BSIMM or
OpenSAMM evaluation of practices.

• Does the product being developed have any specific char-
acteristics that can influence software security and make
software security different than in most other products we
develop? Examples could be customer expectations, legal
requirements,technology, and exposure of the software.

• Are there any aspects of the team(s) involved that impact
our ability to do software security well? Examples could be
security competence and awareness, and team culture.

By answering the above questions one would identify the main
sources for the self-evaluation statements. The next step would be
to identify possible statements from these main sources. Then the
final step would be to choose a manageable set of self-evaluation
statements for the project.We suggest to start with 5 to 7 statements.
If assuming that five minutes would be enough for an evaluation
of each statement, that would imply from 25 to 35 minutes of the
meeting spent on status assessment.

E

172

Security Intention Meeting ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

Projects need to balance the need for having self-evaluation
statements that are something to aim for and give a motivation to
improve, and the need for realistic statements. We recommend that
the statements selected represent the real ambitions of the project,
meaning that if a statement is met then the project is at the right
level of security in that area.

To give an idea of how self-evaluation statements can be identi-
fied in practice, Table 1 shows potential self-evaluation statements
that have been made based on the DevSecOps manifesto inspired
from the Build-Security-In Manifesto and the Secure Development
Lifecycle initiative principles at Comcast [16], BSIMM scores from
an evaluation of software security maturity in public organisations
[11] and for applications that handle personal health information
that is subject to legal requirements [12].

3.2.4 Way forward. Based on the status assessment, the partic-
ipants in the SI recap meeting should decide on concrete action
points that would move the state of software security more in line
with the goals for the product. Note that this may mean to start or
improve some software security initiatives (e.g. do a threat mod-
eling session, do a training session on a specific software security
topic, do a risk assessment, increase security testing efforts, etc.),
but it can also mean to stop or reduce efforts in one or more existing
software security activities. The action points decided on need to
be concrete and have a deadline and someone responsible in order
to increase likelihood that the action points will be followed up in
the day-to-day development activities. To increase the commitment
to the action points, we would suggest that the SI recap meeting
participants, as part of the “way forward” part of the meeting, re-
visit decisions from the previous meetings to see if the previous
action points have been followed up, and if not, discuss how to
increase the likelihood that the action points decided upon in the
current meeting will have more of an impact.

One important part of deciding on the way forward related to
software security is to decide upon when the next SI recap meeting
should be held for this product, and who should participate. The
reason we suggest that this is decided upon in this meeting, and
put into the calendars of the participants, is to reduce the likelihood
that the commitment to having these meetings is forgotten.

4 DISCUSSION
This section explains how the SI recap meeting is complementary
to other software security techniques such as risk assessment and
threat modeling. It moves on to looking at some known challenges
related to adoption of threat modeling and a risk estimation tech-
nique called Protection Poker. These already identified challenges
are then used to describe likely challenges to the SI recap meetings
so that these challenges can be proactively addressed. Finally, we
describe future research endeavors to evaluate and improve the SI
recap meeting approach.

4.1 Relation to other software security
techniques

Threat modeling [21] and risk assessment [23] activities can be
used to make decisions and priorities on how to move forward
based on an assessment of the current status. Compared to an
SI recap meeting, the status assessments made in these types of

activities are normally on amuch lower level of abstraction andwith
an emphasis on the system and what can go wrong. Thus these
activities usually take longer than what is envisioned for an SI
recap meeting. Often these activities are performed by participants
with technical competence and leave out decision makers. The SI
recap meetings are not an alternative to risk assessment or threat
modeling, but rather a place where the decision to perform or not
perform risk assessment or threat modeling activities could be
made.

Protection Poker [25, 26] is a security risk estimation game that
is particularly suited for agile teams. It offers a practical way of
doing risk assessment in an iterative fashion, and looks at the assets
and the ease of attack that comes with implementation of features.
Compared to the SI recap meetings, Protection Poker’s goal is less
geared towards decision making. The participants are different,
with Protection Poker involving the entire team. The time it takes
to play Protection Poker can vary from team to team, depending
on the discussions and their familiarity with the game. However, as
Protection Poker is intended to be played for every iteration with
the full team, the total time it takes would likely be much longer
than an SI recap meeting.

4.2 Potential Challenges
The SI recap meeting has not yet been tried out in practice in
development companies. The suggested approach is a response to
reported challenges in literature on having security being given
the “right” priority in agile software development projects, as well
as our own experiences with ongoing interactions with software
companies on software security [6]. Though the SI recap meetings
are different than techniques such as threatmodeling and Protection
Poker, we believe it would face some of the same challenges to
adoption. Thus we have looked to a study of adoption of Protection
Poker [24] and a study on applying Microsoft Threat Modeling to
agile projects [5] to identify what we believe are likely challenges
to adoption of the SI recap meeting approach. In the following we
explain these envisioned challenges and provide suggestions for
how to address them. Table 2 gives an overview of how challenges
identified for Protection Poker and threat modeling relate to the
envisioned challenges to the SI recap meetings.

4.2.1 Perceiving improved software security as a consequence
of the SI recap meeting. It is a likely challenge that the SI recap
meeting is viewed as “yet another meeting”. For both Protection
Poker and threat modeling it was challenging to see clearly how
the technique led to improved security of the software, and not
only discussions about security. The SI recap meeting, is likely to
face the challenge of having a visible and traceable direct impact
on the delivered security of the code.

To address this challenge, the SI recap meeting needs to ensure
that the meeting leads to actionable decisions that are followed up
in development. Having participants with the authority to make
decisions and have them implemented is thus of key importance.
At the same time, it is important that the development team(s) have
confidence that the decisions reached in these meetings are good
ones. Thus the competence of the participants is important, both
related to security and the overall understanding of the product, as

E

173

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Inger Anne Tøndel, et al.

Source Issue Potential self-evaluation statements

DevSecOps
Manifesto [16]

“Build security in more than bolt it
on” ;“Implement features securely more than
security features”

• We consider security in the design of all functionality, not
only for security features.

“Rely on empowered engineering teams more
than security specialists” ; “Build on culture
change more than policy enforcement”

• The teams have the skills to understand and address security
in the software.
• The teams feel responsible for how the software behaves in
production, including security implications.

“Use tools as feedback for learning more than
end-of-phase stage gates”

• We use security testing tools early to give feedback to
developers and improve their skills in writing
vulnerability-free software.

BSIMM scores [11] Attack Models is the area with lowest
maturity

• We know what are the most relevant attackers and attack
goals for the software we develop.

Strategy and Metrics is the area with the
second lowest maturity

• We have a clear processes for software security, and this
process is known and followed by the development team.

Product
characteristics

Health information • We meet legal requirements for protection of health related
data

Table 1: Example self-evaluation statements and their sources

Envisioned SI re-
cap meeting chal-
lenge

Related Protection Poker (PP) challenges [24] Related Threat Modeling challenges [5]

Perceiving
improved software
security as a
consequence of the
SI recap meeting

• PP did not improve security of the software
• Ensuring confidence in the results
• Important aspects from the discussion is lost
• The output from playing PP is not concrete in
terms of what to do next

• Documentation of the assets after the meeting was
not done
• Many discussions on threats and mitigation strategies
get lost
• The approach does not make a link to the actual code
• It is hard to know when enough analysis has been
done
• The output of the sessions are a list of
concerns/threats that are not concrete
• Follow up of the threats is challenging

Running and
facilitating the
meeting

• It is difficult to reach consensus, something that
results in a lot of time spent and sometimes results
in tension in the team
• Some team members may end up with too much
influence

• The meeting needs to be structured, but it is not
always clear on how to run the meeting
• It is hard to know which other people should be
included in the meetings besides the “core”
development team
• There are challenges with running meetings in
distributed settings
• The meetings are not effective

Selecting
self-evaluation
statements

• Starting to use PP is time consuming due to
calibration and the need to identify and play about
assets
• Selecting granularity of assets and assigning
value to assets can be challenging

• It is challenging to motivate the teams to draw the
diagrams
• It was hard to decide on the right level of abstraction
to the DFDs
• It takes long time to draw the diagrams

Establishing the SI
recap meeting as a
regular event

• Teams did not end up using PP in a regular
fashion
• Planning meetings are already full
• PP takes too much time

• There is a need for a security expert to run the
meeting; not every team has this profession available
• It is not easy to have everyone participating

Table 2: Selected challenges from study of Protection Poker[24] and Microsoft Threat Modeling [5]

E

174

Security Intention Meeting ARES ’19, August 26–29, 2019, Canterbury, United Kingdom

well as how the decisions made and their rationale is communicated
outside of the SI recap meeting.

4.2.2 Running and facilitating the meeting. Having effective se-
curity meetings where everybody’s opinion is heard and valued,
while at the same time aiming to reach some kind of consensus,
is challenging. As in the Protection Poker meetings [24], at the SI
recap meetings there will likely be some participants with more
authority than others, and there is a risk that these may end up
influencing other participants to the extent that important perspec-
tives are lost. This risk comes in addition to common challenges on
how to run meetings, how to know who should participate and how
to deal with distributed settings, as was found for threat modeling
[5].

Addressing these challenges fully is difficult, as it involves bal-
ancing somewhat conflicting goals (efficiency vs. including many
perspectives). However, having a skilled facilitator would be an
important step in ensuring quality of the meetings themselves.

4.2.3 Selecting self-evaluation statements. Protection Poker and
threat modeling approaches do not use self-evaluation statements
as we propose for the SI recap meetings. However, they need other
kinds of preparations (for example, calibration and possibly asset
identification and evaluation for Protection Poker, Data Flow Dia-
grams (DFDs) for threat modeling). These preparations require an
upfront investment in time and effort. Experiences from Protection
Poker and threat modeling show that it can be challenging to mo-
tivate participants for these preparatory activities, and that they
can be perceived as time consuming. The tasks can additionally
be challenging when it comes to “doing them right”, e.g. at the
right level of abstraction that makes them useful in the upcoming
activities.

As has already been pointed out, identifying self-evaluation
statements is a challenging task, and one that is important as it
guides future priorities. It is likely that this preparatory task will
require time and effort from key people if projects are to arrive at
an optimal set of self-evaluation statements. It is hard to foresee
how this will play out in practice before we start experimenting
with it in real companies and software development projects. We
expect that the process for selecting self-evaluation statements that
is laid out in subsection 3.2.3 will be improved substantially based
on future experiences with this part of the approach.

4.2.4 Establishing the SI recap meeting as a regular event. The
SI recap meetings are intended to be regular events that will serve
as reminders of security commitments and increase visibility of
security decisions throughout the development of an application.
Making the SI recap meetings into regular events is important to
increase visibility and awareness of all the ways security decisions
are made throughout the project, and influence these in a more
deliberate way. However, establishing a new regular practice is
challenging. It takes commitment from the project team over a
long period of time. In the studies of Protection Poker and threat
modeling, time issues and having people participate was consid-
ered challenging. Another study of Protection Poker found that
although the technique was found to have important benefits, the
team still stopped using Protection Poker some time after the study
for unknown reasons [26].

As already pointed out in section 3, it is important that one
person is responsible for the SI recap meeting and for keeping the
SI meeting series alive, “championing it”. Finding such a person, that
is both interested enough in software security and has the necessary
influence on the development project and ability to motivate others,
can however be challenging. Not every project may have such a
person available.

The SI meeting series we propose is by design lightweight and
can be easily adjusted to the needs of the project and the organisa-
tion. Adjustments can be made regarding meeting schedule, par-
ticipants and self-evaluation statements, something that may ease
adoption of the technique. Additionally, it is possible to argue that
the meeting has the potential to save effort in the longer run, as
making more deliberate security decisions and priorities may lead
to reduced costs later on (e.g. through not spending time on more
security activities than necessary, and by reducing the need for ex-
pensive changes that stem from big “surprises” related to security
implications of features or design choices). This however does not
take away the need for someone that is willing and able to push for
the meeting in a way that actually leads to longer-term adoption.

4.3 Further Work
Though the SI recap meeting approach builds on challenges and
needs that have been identified in previous research and in our
own continuing collaboration with software security companies
[6], the approach itself has not yet been tried out and validated
empirically. In the future, we plan to foster the adoption of this
approach in some of the companies we collaborate with and then
collect experiences and improve the approach. In particular we are
interested in investigating the following research questions:

• Adoption: How is the approach received in the companies?
What makes them interested in adopting the approach, and
how can one support long-term adoption?

• Effects: How does the SI recap meeting influence the develop-
ment, and what can be done to increase the positive effects
of using this approach while minimising the cost?

• Support: How can agile projects be supported in using the
SI recap meeting approach? Where is support most needed
and what are the recommendations that are most important
to give to projects wanting to adopt the approach when it
comes to frequency, length of meeting and participants?

• Self-evaluation statements: How to select statements in a
way that is motivating? How can projects be supported with
recommendations of what is important statements for their
kind of projects?

Additionally, we would welcome more research that can con-
tribute to understanding what can be done to support longer term
adoption of software security activities and that can help under-
stand what are the most important goals and practices to strive
for in an agile project when it comes to software security. Better
understanding of these aspects can feed the content of the SI recap
meeting, but also software security priorities in a more general
sense.

E

175

ARES ’19, August 26–29, 2019, Canterbury, United Kingdom Inger Anne Tøndel, et al.

5 CONCLUSION
This paper proposes the security intention meeting series as a way
to make software security decisions more visible, systematic and
deliberate in agile development projects. By tackling current chal-
lenges that security is easily “forgotten” in agile development [22]
and sacrificed for functionality [2, 22, 23] and that security priorities
are highly dependent on the varying interests of the individuals
involved [2, 22], projects are more likely to move towards cost-
effective software security. In order to achieve this, the SI recap
meetings needs to be adopted by software projects and organisa-
tions and integrated into their way of working.

ACKNOWLEDGMENT
This work was supported by the Science of Security in Agile Software
Development project (SoS-Agile), funded by the Research Council
of Norway (grant number 247678).

REFERENCES
[1] Icek Ajzen. 1991. The theory of planned behavior. Organizational Behavior

and Human Decision Processes 50, 2 (1991), 179 – 211. https://doi.org/10.1016/
0749-5978(91)90020-T Theories of Cognitive Self-Regulation.

[2] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. 2017. Quality requirements in
large-scale distributed agile projects–a systematic literature review. In Interna-
tional Working Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 219–234.

[3] Talya N Bauer. 2010. Onboarding new employees: Maximizing success. SHRM
Foundation’s Effective Practice Guideline Series 7 (2010).

[4] Paulo Caroli and Taina Caetano. 2015. Fun Retrospectives - Activities and ideas for
making agile retrospectives more engaging. Leanpub, Layton.

[5] Daniela Soares Cruzes, Martin Gilje Jaatun, Karin Bernsmed, and Inger Anne
Tøndel. 2018. Challenges and Experiences with Applying Microsoft Threat
Modeling in Agile Development Projects. In 2018 25th Australasian Software
Engineering Conference (ASWEC). IEEE, 111–120.

[6] Daniela S. Cruzes, Martin G. Jaatun, and Tosin D. Oyetoyan. 2018. Challenges
and Approaches of Performing Canonical Action Research in Software Security:
Research Paper. In Proceedings of the 5th Annual Symposium and Bootcamp on Hot
Topics in the Science of Security (HoTSoS ’18). ACM, New York, NY, USA, Article 8,
11 pages. https://doi.org/10.1145/3190619.3190634

[7] EU. 2016. Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation). L 119 (2016).

[8] James Grenning. 2002. Planning poker or how to avoid analysis paralysis while
release planning. Hawthorn Woods: Renaissance Software Consulting 3 (2002),
22–23.

[9] Michael Howard and Steve Lipner. 2006. The Security Development Lifecycle.
Microsoft Press.

[10] Martin Gilje Jaatun, Karin Bernsmed, Daniela S. Cruzes, and Inger Anne Tøndel.
2019. Threat Modeling in Agile Software Development. In Exploring Security
in Software Architecture and Design, Michael Felderer and Riccardo Scandariato
(Eds.). IGI Global.

[11] Martin Gilje Jaatun, Daniela S. Cruzes, Karin Bernsmed, Inger Anne Tøndel, and
Lillian Røstad. 2015. Software Security Maturity in Public Organisations. In
Information Security, Javier Lopez and Chris J. Mitchell (Eds.). Lecture Notes in
Computer Science, Vol. 9290. Springer International Publishing, 120–138.

[12] J. Jensen, I. A. Tøndel, M. G. Jaatun, P. H. Meland, and H. Andresen. 2009.
Reusable Security Requirements for Healthcare Applications. In 2009 Inter-
national Conference on Availability, Reliability and Security. 380–385. https:
//doi.org/10.1109/ARES.2009.107

[13] Sri Lakshmi Kanniah and Mohd Naz’ri Mahrin. 2016. A review on factors in-
fluencing implementation of secure software development practices. World
Academy of Science, Engineering and Technology, International Journal of Social,
Behavioural, Educational, Economic, Business and Industrial Engineering 10, 8
(2016), 2860–2867.

[14] Sri Lakshmi Kanniah and Mohd Naz’ri Mahrin. 2018. Secure Software Develop-
ment Practice Adoption Model: A Delphi Study. Journal of Telecommunication,
Electronic and Computer Engineering (JTEC) 10, 2-8 (2018), 71–75.

[15] Dean Leffingwell. 2010. Agile software requirements: lean requirements practices
for teams, programs, and the enterprise. Addison-Wesley Professional.

[16] Larry Maccherone. 2017. The DevSecOps Manifesto. https://medium.com/
continuous-agile/the-devsecops-manifesto-94579e0eb716. (2017). Accessed:
2019-04-30.

[17] Gary McGraw. 2006. Software Security: Building Security In. Addison-Wesley.
[18] Hela Oueslati, Mohammad Masudur Rahman, and Lotfi ben Othmane. 2015.

Literature review of the challenges of developing secure software using the agile
approach. In 10th International Conference on Availability, Reliability and Security
(ARES). IEEE, 540–547.

[19] James O Prochaska. 2008. Decision making in the transtheoretical model of
behavior change. Medical decision making 28, 6 (2008), 845–849.

[20] Ronald W Rogers and Steven Prentice-Dunn. 1997. Protection motivation the-
ory. In Handbook of health behavior research 1: Personal and social determinants.
Plenum Press, 113–132.

[21] Adam Shostack. 2014. Threat Modeling: Designing for Security. Wiley.
[22] Evenynke Terpstra, Maya Daneva, and Chong Wang. 2017. Agile Practitioners’

Understanding of Security Requirements: Insights from a Grounded Theory
Analysis. In 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). IEEE, 439–442.

[23] Inger Anne Tøndel, Martin Gilje Jaatun, Daniela Soares Cruzes, and Nils Brede
Moe. 2017. Risk Centric Activities in Secure Software Development in Public
Organisations. International Journal of Secure Software Engineering (IJSSE) 8, 4
(2017), 1–30.

[24] Inger Anne Tøndel, Laurie Williams, Daniela Soares Cruzes, and Martin Gilje
Jaatun. 2019. Collaborative Security Risk Estimation in Agile Software Develop-
ment. Information and Computer Security (2019).

[25] Laurie Williams, Michael Gegick, and Andrew Meneely. 2009. Protection poker:
Structuring software security risk assessment and knowledge transfer. In In-
ternational Symposium on Engineering Secure Software and Systems. Springer,
122–134.

[26] Laurie Williams, Andrew Meneely, and Grant Shipley. 2010. Protection poker:
The new software security game. IEEE Security and Privacy 8, 3 (2010), 14–20.

E

176

F

177

Paper F: ‘Achieving “Good Enough” Software Security: The Role of
Objectivity’

The published material [32] is included here in accordance with ACM author rights.

F

Achieving “good enough” software security: the role of
objectivity

Inger Anne Tøndel
inger.anne.tondel@ntnu.no

Norwegian University of Science and
Technology (NTNU)
Trondheim, Norway

Daniela Soares Cruzes
SINTEF Digital

Trondheim, Norway
daniela.s.cruzes@sintef.no

Martin Gilje Jaatun
SINTEF Digital

Trondheim, Norway
martin.g.jaatun@sintef.no

ABSTRACT
Today’s software development projects need to consider security
as one of the qualities the software should possess. However, over-
spending on security will imply that the software will become more
expensive and often also delayed. This paper discusses the role of
objectivity in assessing and researching the goal of good enough
security. Different understandings of objectivity are introduced,
and the paper explores how these can guide the way forward in
improving judgements on what level of security is good enough.
The paper recommends adopting and improving upon methods that
include different perspectives, support the building of interactive
expertise, and support confirmability by keeping documentation of
the basis on which judgements were made.

CCS CONCEPTS
• Security and privacy → Software security engineering; •
Software and its engineering→Agile software development;
Risk management; Requirements analysis.

KEYWORDS
software security, objectivity, security level, good enough security,
security priorities, agile software development
ACM Reference Format:
Inger Anne Tøndel, Daniela Soares Cruzes, and Martin Gilje Jaatun. 2020.
Achieving “good enough” software security: the role of objectivity . In
Evaluation and Assessment in Software Engineering (EASE 2020), April 15–
17, 2020, Trondheim, Norway. ACM, New York, NY, USA, 6 pages. https:
//doi.org/10.1145/3383219.3383267

1 INTRODUCTION
In today’s interconnected and digitized world, a large portion of
the software that is developed needs to consider security. This is
the case not only for software that is considered security critical
(e.g., military systems), but also for the more “normal” type of
software (e.g., web applications, mobile apps). The goal and focus
of these software development approaches is to deliver value to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2020, April 15–17, 2020, Trondheim, Norway
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7731-7/20/04. . . $15.00
https://doi.org/10.1145/3383219.3383267

the customers, and security is commonly seen as a secondary goal;
something that must be considered but usually would imply extra
development time and costs. Viewed this way, security could have a
negative impact on the output of functionalities, and over-spending
on security may make the software less competitive or successful.
However, not putting in the necessary security is not a good option,
as this may cause severe problems later on.

Security experts in general would agree that perfect or total
security is an illusion [13, 24], this is e.g. a foundation for a risk-
management approach to security [13] - an approach taken in major
security standards such as ISO/IEC 27001 [14]. Determining what
is good enough is however hard [24]. Beznosov [5] suggests not
defining what is “good enough”, but rather letting the customer
define and adjust security needs as the project progresses, utilizing
the customer involvement built into agile development approaches.
Sandhu [24] suggests two design principles: “Designing with the
application in mind”, and viewing security as being “about trade-
offs, not absolutes” [24]. Hurlburt [13] points to the human factor
as a reason why “systems security will never be better than good
enough” [13]. He acknowledges the importance of investing in a
robust upfront security design, but argues that this will not solve
the problem completely. He points out that with today’s distributed
attacks there is a need for more overarching approaches, not only
considering whether an attacker might be discouraged from at-
tacking one particular system. He suggests instead, “an objective,
consensus-based rating system” [13] that companies can use to
rank risks of different products and organizations, and claims that
through the use of such a rating system one may establish a kind
of working threshold that defines what is considered good enough
when it comes to security.

Objectivity is a key characteristic for research in general, and
even a part of research ethics [21]. Objectivity can be understood in
differentways, but is often considered as a striving towards avoiding
bias [9, 21] to ensure adequate “standing of our judgements and
interpretations” [9]. Thus, objectivity is related to a confidence
that multiple observers could come to similar judgements [22].
We agree with Hurlburt that there is a need to objectively assess
what is good enough when it comes to security. We additionally
agree with Sadhu that “good enough” is not something that can be
defined outside of the context of a particular project, organization or
product. In this emerging results paper we continue the discussion
on objectivity in relation to security, exploring what it would mean
to have an “objectively correct” level of security, and which security
analysis approaches can support objective judgements about “good
enough security”. We build on insights from our own empirical
studies on software security performed over a period of several

F

179

EASE 2020, April 15–17, 2020, Trondheim, Norway I.A. Tøndel, et al.

years. Additionally, we introduce theory on objectivity and examine
what this type of theory may bring to security practice and research.

The paper is organised as follows. Section 2 introduces the con-
cept of objectivity in more detail, and different ways to understand
objectivity. Section 3 explains the research approach taken in the
empirical research that underlie the claims we make in this pa-
per about software security practice in agile development projects.
Then Section 4 exemplifies challenges in reaching objective eval-
uations of software security. In Section 5 we propose and discuss
strategies that could help increasing objectivity both in software se-
curity analysis and in research on “good enough” software security.
Section 6 concludes the paper.

2 AN INTRODUCTION TO DIFFERENT
UNDERSTANDINGS OF OBJECTIVITY

In this paper we use a set of different philosophical understandings
of objectivity, as described by Gaukroger [9], to structure our in-
troduction to objectivity. Additionally, we bring in understandings
and practical considerations on how to achieve objectivity from
research methods literature.

Objectivity can be understood as “a judgement that is free of
prejudice and bias” [9], or even as “a judgement which is free of
all assumptions and values” [9]. These understandings are both
describing a “particular state of mind” [9], and are both negative
theories of objectivity, stating what should be removed in order
to be objective. Aiming to be free of prejudice and bias can be a
challenging endeavor, but Gaukroger argues that it is a sensible goal
[9]: “Objectivity requires us to stand back from our perceptions,
our beliefs and opinions, to reflect on them, and subject them to a
particular kind of scrutiny and judgement. Above all, it requires a
degree of indifference in judging that may conflict with our needs
and desires.” [9]. Removing all assumptions and values is however
not possible [9, 20]; nothing is a “view from nowhere” [9], all beliefs
are socially situated [11].

Quantitative methods have long been associated with objectivity.
There is a seeming neutrality that comes from having numbers -
“The numbers speak for themselves!” [9]. Gaukroger argues that
practices that could fall into the term ‘number crunching’ “are
not necessarily subjected either to reasoned judgement or to the
empirical evaluation of particular cases, but typically bypass any
form of independent or objective reasoning at all” [9]. Aiming for a
judgement free from prejudice and bias does not mean eliminating
judgement. Instead of letting the numbers be “a substitute for deci-
sion making” they could be used as “an aid to decision making” [9],
or even as illustrations allowing for a more persuasive argument
[7].

Objectivity can be understood as consisting of “accurate rep-
resentations” [9]. What constitutes an accurate representation is
however subject to judgement, and can be considered differently
depending on what one wants the representations for. Objectivity
is not an absolute - you are not either objective or not objective
- but rather there are degrees of objectivity. The understanding
of objectivity as accurate representations points to objectivity as
“something that can be learned and improved upon through practice”
[9]. “Trained judgement” as well as “identification and elimination
of arbitrary judgement” [9] becomes important traits of objectivity.

Objectivity as accurate representation however is costly and needs
to be balanced against other concerns.

Objectivity can be understood related to the procedure used,
viewing an objective procedure as “one that allows us to decide be-
tween conflicting views of theories” [9]. Objectivity is seen as a core
aspect of science [9], and the methods used in science is expected
to support objectivity. The scientific method and the progress to-
wards better and better theories rely on theories being falsifiable
and that scientists do serious attempts at refuting theories [20]. It
has however been argued that the way objectivity is used in science
does not necessarily fit other contexts, e.g. the needs when study-
ing human behaviour [9] or when using other research paradigms
[17] than those using conventional scientific methods. The types
of methods used in e.g. sociology have some fundamentally ‘sub-
jective’ traits where research approaches to eliminate subjectivity,
such as double-blind testing, do not work [7]. This however does
not mean that qualitative studies cannot strive for and demonstrate
objectivity. In the following we introduce two examples of this: the
suggestion to replace objectivity with confirmability in naturalistic
studies [17], and the concept of strong objectivity from feminist
studies [11].

Lincoln and Guba [17] argue that confirmability is a preferable
concept to objectivity within the naturalistic paradigm, a primar-
ily qualitative research paradigm where studies are performed in
natural settings and researchers avoid manipulating the research
outcomes a priori [17]. A move towards confirmability removes
the issue from “the investigator’s characteristics” to “the charac-
teristics of the data: Are they or are they not confirmable?” [17]
According to Lincoln and Guba, confirmability is tightly linked with
auditability, and they argue that research studies must establish an
audit trail consisting of (e.g.) raw data, data reduction and analysis
products, data reconstruction and synthesis products, process notes,
materials relating to intentions and dispositions, and instrument
development information [17]. Confirmability thus requires that
the research design is constructed in such a way that the audit trail
is preserved, and Lincoln and Guba also state that an actual audit
must take place.

Similar thoughts to that of Lincoln and Guba can be found in sev-
eral other qualitative methods textbooks. Examples include Miles
and Huberman [19] who proposed a set of questions to ask of a qual-
itative study about objectivity. These questions cover to what extent
the methods are described explicitly and in detail, whether there
is a record of the study detailed enough to be considered an audit
trail, whether it is possible to follow the sequence of data collec-
tion, processing and presentation, whether researcher assumptions,
values and biases are made explicit, whether competing hypotheses
are considered, and whether study data is retained and available for
re-analysis by others. Additionally, Collins in his introduction to
sociology research affirms that “if qualitative research is to deserve
the label of “science” it should be conducted in such a way that
it could be replicated in principle” [7]. Collins however does not
only link replicability to method concerns, but also to the ability to
generalise from the results - “as the significance broadens, there are
more and more ways of checking” [7]. On a more practical level,
confirmability seems analogous to accountability of (e.g.) service
providers, since both concepts aim to verify that the researchers cf.
service providers are “doing the right thing”. In security research,

F

180

Achieving “good enough” software security: the role of objectivity EASE 2020, April 15–17, 2020, Trondheim, Norway

the concept of accountability came into prominence with the intro-
duction of the EU General Data Protection Regulation, where the
ability to demonstrate that handling of sensitive personally iden-
tifiable information is performed in a compliant manner became
an explicit requirement. An accountable organization must define
what it does when it handles personal data, monitor how it acts,
remedy any discrepancies between the definition of what should
occur and what is actually occurring, and explain and justify any
related action [16].

The concept of strong objectivity stems from feminist stand-
point theory [11]. Standpoint theory points out that all knowledge
arises in particular social situations with people with particular
social positions, and thus is not value-free. The concept of strong
objectivity brings the assumptions and agendas of the researchers
into the research as part of what is investigated, acknowledging
that these are not easily detected by individuals. It claims that by
taking the perspectives of the marginalized or oppressed one can
achieve more objective knowledge. Marginalised individuals are
“outsiders within” [11] and are thus able to understand both their
own position and that of the dominant culture.

Gaukroger additionally points out another possible understand-
ing of objectivity, namely that “something is objective if it leads to
conclusions which are universally accepted” [9]. Similarly, Robson
[22] claims that ‘objective’ can be taken to refer to what multiple
observers agree to as a phenomenon, in contrast to the subjective
experience of the single individual. However, Gaukroger warns that
“we should not assume that there is a correlation between degree
of agreement and degree of objectivity” [9].

To sum up, objectivity can be understood in different ways. There
is a need to consider for particular cases “what we want out of ob-
jectivity” [9] and how objectivity can be secured. In the remaining
parts of this paper we look more closely at objectivity related to
judgement about the security level, and in particular what level
of security is “good enough”. We make use of the understandings
of objectivity as 1) procedures that allow one to decide between
conflicting views, 2) accurate representations, and 3) freedom from
prejudice and bias, and we touch upon the understanding of objec-
tivity as universally accepted conclusions (see Table 1).

3 RESEARCH METHODOLOGY
Our claims about agile software security in this paper are based
on involvement over several years with companies on the topic
of software security in agile development. This includes interview
studies involving about 20 public companies with the aim to iden-
tify practices and challenges in agile development [15, 28] and
action research involving several companies, as part of the SoS-
Agile research project [8]. In this project we have investigated how
to meaningfully integrate software security into agile software
development activities. The companies we have worked with are
varied in their size, the type of software they develop and their
organization, and include smaller development departments, dis-
tributed development teams, and larger development organisations.
We have studied individual projects, as well as overall organiza-
tional approaches to software security in agile development. Our
major involvement has been with three companies, and these have

Table 1: Understandings of objectivity used in the examples

Understanding of
objectivity

Example from software
security

Objectivity as a procedure that
allows one to decide between
conflicting views – with the sci-
entific method and its focus on
falsification as an example of
such a procedure.

To what extent “we have good
enough software security” is a
falsifiable claim, i.e., whether
one is able to identify cases of
security levels that are too low
as well as too high.

Objectivity as accurate repre-
sentations, and objectivity as
universally accepted conclu-
sions.

The different roles/stakeholders
involved in judgements about
software security, and their
varying viewpoints and under-
standing about software secu-
rity.

Objectivity as freedom from
prejudice and bias.

The prejudice and bias com-
monly found among security ex-
perts when approaching a devel-
opment project.

been studied over several years. In addition to those, we have had
shorter collaborations with five companies on more specific issues.

In action research, the aim is to merge theory and practice in
such a way that real-world problems are solved by theory-informed
actions in collaboration between researchers and practitioners [10].
In our research, the “action” has been the introduction of various
security practices; threat modeling, static analysis tools, self man-
agement for security and security requirements work. To obtain a
wide understanding of the transformation phenomenon, various
data collection mechanisms have been applied, including observa-
tions, interviews, questionnaires and document analysis, and we
have built a close relationship with the software companies. Build-
ing a close relationship is important in any action research study.
Aspects of security work however makes it even more important,
in our experience. This is due to the secrecy and sensitivity of the
information and artefacts that are dealt with in the organization,
but also that security requirements are mostly non-functional and
not really the focus in the daily activities of software teams.

4 OBJECTIVITY CONCERNS IN JUDGEMENTS
ABOUT “GOOD ENOUGH” SOFTWARE
SECURITY

In the following we exemplify challenges in reaching objective eval-
uations of the level of software security, and in particular whether
the level of software security is “good enough”. We draw upon
different understandings of objectivity, as shown in Table 1.

4.1 Is “we have good enough security” a
falsifiable claim?

There are a variety of ways one may go about evaluating the level
of software security in a project. Still, judging whether the security
level is too high or too low – currently and in the near future – is
not straightforward. We illustrate this with some examples.

F

181

EASE 2020, April 15–17, 2020, Trondheim, Norway I.A. Tøndel, et al.

A na’́ive evaluation of the claim “we have good enough security”
would be to consider whether the system experiences any security
incidents; thus a system that is successfully attacked would not be
satisfactorily secure. There is some merit to this, however, there is a
need for ways to evaluate security that are less reactive. Results of
code review, static code analysis and security testing offer a more
proactive evaluation of security, and can provide some assertion
that one is on the right track. This does not mean, though, that it
is clear how much analysis and testing is enough. Additionally, all
security issues identified using such approaches do not necessarily
need to be addressed to achieve good enough security. Another
seemingly straightforward way of addressing whether the software
security is good enough, is to consider whether it meets legislative
and customer requirements on security. However, customers often
consider security as an implicit requirement that should be taken
care of by the developers [2], and legislative requirements and their
concrete implications for the project can be a case of debate and
negotiation between different types of experts [28].

It has been argued that it may be easier to evaluate software se-
curity based on the processes performed, rather than the software
itself [18]. In our research and interaction with software devel-
opment companies we have often used the Building Security In
Maturity Model (BSIMM) [18, 31] as a tool to help companies iden-
tify practices that they want to apply or improve [15]. All software
security activities included in the BSIMM are activities that are
performed in real companies. The BSIMM additionally identifies
which activities are most commonly adopted by software compa-
nies, and, by extension, most companies would probably benefit
from doing. However, companies are of different size and develop
software with different security requirements. In our work with
small and medium sized software development companies, we find
that it is not trivial to know which activities to recommend to a
software company, despite the knowledge of which activities are
most common. A BSIMM evaluation would give you knowledge
about what activities you do and don’t do, but not whether you
have adopted a set of practices that fits your needs. Additionally,
doing a full scale BSIMM evaluation is costly. In our use of BSIMM
as a research tool we have relied heavily on self-evaluation, and
thus on the company’s own understanding of their own practices.
Interestingly, we have observed that in one company their overall
BSIMM self-evaluation scores actually dropped after investing in
several improvements in their software security practices. This was
because they now had a better understanding of the implications
of the BSIMM activities and the limitations of their own practices.

A mantra in most security work is that the approach should be
risk based, meaning that one is aware of what the main risks are,
and targets those in a strategic manner. Risk assessments should
then ideally help software projects identify this “good enough” level
of security. There exists a variety of methods for performing risk as-
sessments related to information or software security, some highly
detailed and quantitative in nature, others less formal and quali-
tative in nature. There is research showing that software projects
often do not have a risk-based approach to software security [28].
Still, it is safe to assume that agile software projects would typically
rely on qualitative risk analysis with expert evaluations for security
risk assessments, as this is a cost-effective approach and can be
done in a relatively short amount of time. Such analysis has been

critiqued for not measuring risk, but rather “human judgement
about security risk” [12], and that though this judgement can be
useful, it comes with its limitations. It is an open question how
much effort needs to be put into a risk analysis for the result to be
reliable. Note also that security is in many ways a moving target –
new vulnerabilities and attacks can invalidate previous assumptions
and thus demand a new risk assessment to be performed.

The kinds of security analysis introduced above would mainly be
able to identify lacks in security. Indications of too much security
would probably come in other forms, e.g. through loss in compet-
itiveness and broken deadlines. These are however very indirect
measures of the security level, and these problems may stem from
sources not related to security as well. There are many approaches
to evaluate cyber security investments, with the Return on Security
Investments being one example [4]. In practice however, we find
that companies we interact with only discuss this in informal terms.

Based on the above we would claim that though it may be pos-
sible to state after-the-fact that the security at some point was
too low, it is very difficult to know if a project invests more than
necessary on security, or if the same investments could be more
efficiently used in a different way. Indicators may be introduced
throughout, but this does not necessarily increase objectivity if not
paired with proper judgment about what kind of decision support
they provide.

4.2 Can you see something you don’t have
knowledge about?

In ongoing research on software security requirements and priori-
ties in agile projects, we have used interviews as one of the data
collection methods, and have among other things asked different ac-
tors in a software development project to what extent they believe
they ended up with good enough security in the project; not too
high or too low. In a project where we asked a security champion
(SC) of a team, a product owner (PO) and a technical product owner
(TPO) this question, they all agreed the security was good enough,
but they had different explanations as to why that was the case.

The SC is a developer that is a regular part of the development
team but has been assigned some responsibility for security. The
SC thought security had been given the right priority. The project
could have done more on security, but then the SC believed they
would have had problems finishing. The SC had observed a raised
security awareness in the development team compared to previous
projects, and that this had impacted the software developed, thus
the security level was not considered too low either.

The TPO has a background as a developer and software architect
and brings his technical background into strategic discussions and
priorities in the project. The TPO believed the level of security
was about right, but that the sense of responsibility for security
should be different so that everybody took responsibility for se-
curity without having to make a big process around it. The TPO
believed security was important but did not have capacity to take
this on as yet another task.

The PO is responsible for prioritising the requirements and rep-
resents the customer interests. In this project the PO had focus on
following up the formal security requirements towards the customer
to ensure the contractual obligations were met. The PO trusted the

F

182

Achieving “good enough” software security: the role of objectivity EASE 2020, April 15–17, 2020, Trondheim, Norway

TPO and the SC, was aware that the SC and TPO spent some time
on security, and consequently trusted that the level of security was
about right.

We bring out this example to illustrate that the security level
and priorities are viewed differently based on the position and the
competence of the one making the evaluation; in this case from a
perspective of how security is perceived by the team (SC), the sense
of responsibility (TPO) and trust in others (PO). The PO that does
not have that deep technical knowledge, including on security, is
not in a position to see security problems if not told about this, and
is not aware of security issues that have come up along the way
and have been decided upon by the team (while the SC and TPO
are aware of this).

With such varying viewpoints, a relevant question is ‘What is
an accurate representation?’ The common understanding is not
necessarily the most objective one, as this is a highly specialized
topic and objectivity in representations can require skills and train-
ing [9]. However, is it also possible that individuals with a lot of
security awareness and knowledge may see “too many” security
issues or at least more than what you, from a business perspective,
would want to invest on fixing?

4.3 Is prejudice and bias a driver for software
security assessments and research?

Security analysis and research is often done based on the assump-
tion that the security work currently is not good enough and needs
to be improved. This can be considered a form of prejudice and bias
– the state of software security is, before any study has been per-
formed, considered to be too low. Adding to this potential challenge
is what has been characterised as a “disconnect between security
and development” [29] stemming from these expert communities
traditionally being isolated from each other. Thus, security experts
commonly lack an adequate understanding of development [29].

The role and mindset of a security expert is often to identify
problems; that lies in the nature of the field and the tasks. This
could be represented by the auditor role. Security experts could
however assume another role, that of the guide or the supervisor,
providing support to developers and strengthening what they are
already doing that is good. This requires another skill set [29] and
possibly a more positive attitude. It is an open question to what
extent the mindset of the security expert, it being that of auditor or
support, affects how they assess the security level.

5 WAY FORWARD
The previous section exemplified challenges of making objective
judgements of whether the security is good enough. In the following
we suggest ways in which practitioners and security researchers
can draw on the different understandings of objectivity to improve
their judgements of security. We discuss the following strategies:
including a variety of perspectives, building interactional expertise,
and supporting confirmability.

In security analysis, it is quite common to aim to “think like
an attacker”, e.g. as is done in threat modeling [25]. We would
claim that bringing in more perspectives is one way of increasing
accuracy of representation. Relevant perspectives include not only
that of the attacker, but that of developers, operations, customers,

users, managers, etc. When taking the attacker’s perspective this is
done as an exercise in thinking, but other types of actors may even
be invited to take part in the analysis. Several security techniques
support this kind of involvement; risk analysis can be done with a
wide range of participants, games such as Protection Poker [30, 32]
invite broad attendance though mainly from the development team,
and techniques such as the Security Intention Meeting [27] aim
to include the management level regularly in high-level security
analysis and decisions. The cost of such involvement, however,
needs to be taken into account.

In addition to improving accuracy of representation, bringing in
representatives of different perspectives can potentially help flash
out prejudices and bias of the researcher or security practitioner
doing the security analysis. The concept of strong objectivity [11]
points to this potential role of being “gazed back” at from the ob-
jects of study, and through this being able to gaze back at oneself,
one’s own socially situated beliefs and practices, from a location
further away from daily work [11]. The true effects of strong objec-
tivity come with practices that are too extensive and thus out of the
scope for the topic of this paper. Still, one may likely experience
some of these effects simply by including and truly listen to other
perspectives on the security level. Experiences from using the con-
cept of strong objectivity in a transdisciplinary research project
[23] point to benefits of being open and transparent about own
positions and standpoints; “there always exist value judgements
in science. Reaching objectivity requires not only making these
transparent and accessible, but also necessitates submitting those
judgements to an open and rational debate” [23]. This goes beyond
just engaging different stakeholders and includes such things as
addressing power imbalances.

In literature, the PO role has been found to commonly limit the
priority given to security [1, 26]. The business case for security
is often considered unclear [26] while the push for functionality
is strong, and this results in less focus on security [1, 26, 28]. In
our experience with companies, we see that the PO role can act as
a hindrance for security in many cases. Additionally, we observe
that POs often have limited competence about software security.
Building security competence at the PO level could be a way to
increase the PO’s ability to make good judgements related to se-
curity priorities. This is however not a one way street. There is a
need for security experts, as well as security concerned develop-
ers, to understand the perspectives of the PO so that these roles
can have fruitful discussions about security and project priorities.
To cite Sandhu: “We are completely clueless about what is good
enough. [...] Business people cannot tell us because they don’t un-
derstand security and security people cannot tell us because they
don’t understand business. We must close this divide” [24].

We exemplify this need by addressing an underlying assumption
in this paper, namely that too much security will lead to drawbacks
such as increased cost, reduced usability, etc. Though this is com-
monly considered to be the case, it is not necessarily always true.
The Privacy by Design [6] initiative does in one of its principles
encourage the move away from zero-sum thinking about privacy, to
positive-sum, looking for win-win solutions that is good for privacy
as well as other goals of the system. In the same way, if the thinking
about security is mainly that it hampers other system goals, one
may miss solution alternatives where security can help achieving

F

183

EASE 2020, April 15–17, 2020, Trondheim, Norway I.A. Tøndel, et al.

other types of goals in the system as well. Having security experts
with a better understanding of the project goals is one possible step
towards a kind of thinking that may lead to positive-sum solutions.
The need for competence lies at the level of interactional expertise
[7], that is, there is a need for being able to understand each other,
speaking the language, but not being able to perform or directly
contribute to each others tasks. Meeting and talking together can
help build the necessary trust and understanding [7].

This paper has informally discussed several types of indicators to
approach an evaluation of what is good enough, including the time
spent on security, security testing results, what other companies
do (BSIMM), what some experts assess to be the need (risk anal-
ysis), the security awareness in the development team, etc. More
research is needed to know to what extent there is a good correla-
tion between any of these indicators and the security of the final
system. We do not in this paper make any claims as to what types
of security analysis methods would best support objective security
evaluations, apart from our recommendation to include different
viewpoints in the analysis. More research is needed in order to
make such claims. However, we draw on the concept of confirma-
bility in recommending that the judgements as well as the reasons
behind any judgements are kept so that assumptions and decisions
can be revisited at a later stage. This is important in case there is
a security incident, but also in order to deal with changing threat
landscapes and project goals. Note however that though this is to
some extent in conflict with the agile manifesto and its emphasis
on ”[w]orking software over comprehensive documentation” [3],
agile is not about no documentation, and it is possible to document
these types of issues as part of e.g. the software’s structure, commit
messages, unit tests and comments.

6 CONCLUSION
This paper has used theory on objectivity to see how it can im-
prove both researchers’ and practitioners’ assessment of what is
good enough when it comes to software security. More research
is needed in order to provide agile-friendly and concrete method
support on achieving objective judgements about what is “good
enough”. As a way forward, this paper suggests researching and
adopting practices that include different perspectives, supports the
building of interactive expertise among key actors, and that support
confirmability by documenting judgements about security and their
rationale.

ACKNOWLEDGMENTS
This work was supported by the SoS-Agile: Science of Security
in Agile Software Development project, funded by the Research
Council of Norway (grant number 247678, https://www.sintef.no/
en/digital/sos-agile/). Thanks to Prof. Jonathan Knowles and Prof.
Colin Boyd for commenting on this paper at various stages.

REFERENCES
[1] Wasim Alsaqaf, Maya Daneva, and Roel Wieringa. 2017. Quality requirements in

large-scale distributed agile projects–a systematic literature review. In Interna-
tional Working Conference on Requirements Engineering: Foundation for Software
Quality. Springer, 219–234.

[2] S. Bartsch. 2011. Practitioners’ Perspectives on Security in Agile Development.
In Availability, Reliability and Security (ARES), 2011 Sixth International Conference
on. IEEE, 479–484. https://doi.org/10.1109/ARES.2011.82

[3] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cun-
ningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron
Jeffries, et al. 2001. Manifesto for agile software development. Online at
http://www.agilemanifesto.org (2001).

[4] Stefan Beissel et al. 2016. Cybersecurity investments. Springer.
[5] Konstantin Beznosov. 2003. Extreme security engineering: On employing XP

practices to achieve’good enough security’without defining it. In First ACM
Workshop on Business Driven Security Engineering (BizSec). Fairfax, VA. Citeseer.

[6] Ann Cavoukian et al. 2009. Privacy by design: The 7 foundational principles.
Information and Privacy Commissioner of Ontario, Canada 5 (2009).

[7] Harry Collins. 2019. Forms of Life: The Method and Meaning of Sociology. MIT
Press.

[8] Daniela S. Cruzes, Martin G. Jaatun, and Tosin D. Oyetoyan. 2018. Challenges
and Approaches of Performing Canonical Action Research in Software Security:
Research Paper. In Proceedings of the 5th Annual Symposium and Bootcamp on Hot
Topics in the Science of Security (HoTSoS ’18). ACM, New York, NY, USA, Article
8, 11 pages. https://doi.org/10.1145/3190619.3190634

[9] Stephen Gaukroger. 2012. Objectivity: A very short introduction. Oxford University
Press.

[10] Davydd J Greenwood and Morten Levin. 2006. Introduction to action research:
Social research for social change. SAGE publications.

[11] Sandra Harding. 1991. Strong objectivity” and socially situated knowledge.Whose
science (1991), 138–163.

[12] Lance Hayden. 2010. IT security metrics: A practical framework for measuring
security & protecting data. Vol. 396. McGraw Hill New York.

[13] George Hurlburt. 2016. " Good Enough" Security: The Best We’ll Ever Have.
Computer 49, 7 (2016), 98–101.

[14] ISO. 2013. Information technology – Security techniques – Information security
management systems – Requirements. ISO/IEC Standard 27001:2013. https:
//www.iso.org/standard/54534.html

[15] Martin Gilje Jaatun, Daniela S. Cruzes, Karin Bernsmed, Inger Anne Tøndel, and
Lillian Røstad. 2015. Software Security Maturity in Public Organisations. In
Information Security, Javier Lopez and Chris J. Mitchell (Eds.). Lecture Notes in
Computer Science, Vol. 9290. Springer International Publishing, 120–138.

[16] Martin Gilje Jaatun, Siani Pearson, Frédéric Gittler, Ronald Leenes, and Maartje
Niezen. 2016. Enhancing Accountability in the Cloud. International Journal of
Information Management (2016). https://doi.org/10.1016/j.ijinfomgt.2016.03.004

[17] Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. Sage Publications
Inc.

[18] Gary McGraw, SammyMigues, and Jacob West. 2018. BSIMM 9. Technical Report.
Synopsys, Inc.

[19] Matthew B. Miles and A. Michael Huberman. 1994. Qualitative data analysis: An
expanded sourcebook (2nd ed.). Sage.

[20] Karl R Popper. 1972. Objective Knowledge: An Evolutionary Approach. Oxford
University Press, Chapter The bucket and the searchlight: Two theories of knowl-
edge.

[21] David B Resnik et al. 2011. What is ethics in research & why is it important.
National Institute of Environmental Health Sciences 1, 10 (2011), 49–70.

[22] Colin Robson. 2011. Real World Research (3 ed.). John Wiley & Sons.
[23] Judith Rosendahl, Matheus A Zanella, Stephan Rist, and Jes Weigelt. 2015. Sci-

entists’ situated knowledge: Strong objectivity in transdisciplinarity. Futures 65
(2015), 17–27.

[24] Ravi Sandhu. 2003. Good-enough security. IEEE Internet Computing 7, 1 (2003),
66–68.

[25] Adam Shostack. 2014. Threat Modeling: Designing for Security. Wiley.
[26] Evenynke Terpstra, Maya Daneva, and Chong Wang. 2017. Agile Practitioners’

Understanding of Security Requirements: Insights from a Grounded Theory
Analysis. In 2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). IEEE, 439–442.

[27] Inger Anne Tøndel, Daniela Soares Cruzes, Martin Gilje Jaatun, and Kalle Rindell.
2019. The Security Intention Meeting Series as a way to increase visibility of
software security decisions in agile development projects. In Proceedings of the
14th International Conference on Availability, Reliability and Security. ACM, 59.

[28] Inger Anne Tøndel, Martin Gilje Jaatun, Daniela Soares Cruzes, and Nils Brede
Moe. 2017. Risk Centric Activities in Secure Software Development in Public
Organisations. International Journal of Secure Software Engineering (IJSSE) 8, 4
(2017), 1–30.

[29] K. R. van Wyk and G. McGraw. 2005. Bridging the gap between software devel-
opment and information security. IEEE Security & Privacy 3, 5 (2005), 75–79.

[30] Laurie Williams, Michael Gegick, and Andrew Meneely. 2009. Protection poker:
Structuring software security risk assessment and knowledge transfer. In In-
ternational Symposium on Engineering Secure Software and Systems. Springer,
122–134.

[31] Laurie Williams, Gary McGraw, and Sammy Migues. 2018. Engineering Security
Vulnerability Prevention, Detection, and Response. IEEE Software 35, 5 (2018),
76–80.

[32] Laurie Williams, Andrew Meneely, and Grant Shipley. 2010. Protection poker:
The new software security game. IEEE Security and Privacy 8, 3 (2010), 14–20.

F

184

G

185

Paper G: ‘Influencing the security prioritisation of an agile software
development project’

Included is the published material [33], following the Creative Commons Attribution 4.0
International (CC BY 4.0) licensing arrangement used by Elsevier.

G

Computers & Security 118 (2022) 102744

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Influencing the security prioritisation of an agile software

development project

Inger Anne Tøndel a , ∗, Daniela Soares Cruzes a , b , Martin Gilje Jaatun
b , Guttorm Sindre

a

a Department of Computer Science, Norwegian University of Science and Technology (NTNU), Sem Sælandsvei 9, Gløshaugen, Trondheim 7034, Norway
b SINTEF Digital, Strindvegen 4, Trondheim 7034, Norway

a r t i c l e i n f o

Article history:

Received 22 December 2021

Revised 19 April 2022

Accepted 23 April 2022

Available online 25 April 2022

Keywords:

Software security

Agile software development

Case study

Security priority

Security requirements

a b s t r a c t

Software security is a complex topic, and for development projects it can be challenging to assess what

security is necessary and cost-effective. Agile Software Development (ASD) values self-management. Thus,

teams and their Product Owners are expected to also manage software security prioritisation. In this

paper we build on the notion that security experts who want to influence the priority given to security in

ASD need to do this through interactions and support for teams rather than prescribing certain activities

or priorities. But to do this effectively, there is a need to understand what hinders and supports teams in

prioritising security. Based on a longitudinal case study, this article offers insight into the strategy used

by one security professional in an SME to influence the priority of security in software development

projects in the company. The main result is a model of influences on security prioritisation that can

assist in understanding what supports or hinders the prioritisation of security in ASD, thus providing

recommendations for security professionals. Two alternative strategies are outlined for software security

in ASD – prescribed and emerging – where we hypothesise that an emerging approach can be more

relevant for SMEs doing ASD, and that this can impact how such companies should consider software

security maturity.

© 2022 The Authors. Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

Today, software is an integrated and important part of daily life,

as well as of our critical infrastructures, and it is essential that

software has adequate security. What "adequate security" means

is however unclear and may vary between different types of soft-

ware projects and even with time as development progresses and

requirements are negotiated (Tøndel et al., 2020a). Furthermore,

which practices would be good to adopt to achieve this adequate

level of security can depend on the development company and

their development approach. Thus, software development projects

need to make priorities and decisions related to security through-

out development.

The challenge of prioritising security is present both in Agile

Software Development (ASD) (Beck et al., 2001) and in more tradi-

tional development approaches (Blaine and Cleland-Huang, 2008).

However, as ASD is central in conventional software development,

there is currently a need to address this challenge within a context

∗ Corresponding author.

E-mail address: inger.anne.tondel@ntnu.no (I.A. Tøndel) .

of ASD. From a security standpoint, many have expressed scep-

ticism towards ASD (Türpe and Poller, 2017), and challenges re-

lated to security and other non-functional or quality aspects in

ASD are extensively documented in several systematic literature re-

views (Inayat et al., 2015 ; Oueslati et al., 2015 ; Khaim et al., 2016 ;

Alsaqaf et al., 2017 ; Behutiye et al., 2020 ; Jarz ̨ebowicz et al., 2021).

Challenges for prioritising security include missing or implicit se-

curity requirements (Khaim et al., 2016 ; Behutiye et al., 2020), a

lack of incentives for security in the early stages of development

(Oueslati et al., 2015 ; Behutiye et al., 2020), and security not be-

ing a part of agile frameworks (Oueslati et al., 2015) – all this

leading to a neglect of security (Inayat et al., 2015 ; Oueslati et al.,

2015 ; Behutiye et al., 2020 ; Jarz ̨ebowicz et al., 2021). But ASD also

brings positive aspects related to security priority, e.g., through

supporting security requirements iterations (Türpe, 2017), and the

incompatibility of security and ASD has been declared a myth

(Rindell et al., 2017).

Popular agile approaches such as Scrum (Schwaber, 2004) do

not have roles or activities specific for security. As a response, sev-

eral extensions to Scrum and other agile frameworks have been

developed to integrate security into the process (Williams et al.,

2010 ; Pohl and Hof, 2015 ; Rindell et al., 2015 ; Koç and Aydos, 2017 ;

https://doi.org/10.1016/j.cose.2022.102744

0167-4048/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

G

187

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Baldassarre et al., 2021). However, Scrum does not aim to pre-

scribe how to perform the development work (including software

security) in detail. Rather, it is a management framework aimed

to "create an environment where development teams can self-

organize and take responsibility for their work while being man-

aged to the extent necessary for a project to succeed" (Türpe and

Poller, 2017). ASD values "Individuals and interactions over pro-

cesses and tools" and trusts skilled and motivated software teams

to do their job well (Beck et al., 2001). Thus, in ASD, the challenge

of getting security prioritised needs to be addressed through inter-

actions and support for teams rather than by prescribing specific

ways of doing software security and its prioritisation (Türpe and

Poller, 2017 ; Weir et al., 2020a). Consequently, there is need to un-

derstand what supports and hinders prioritisation of security.

Research has identified a frequent divide between software se-

curity and information security (van Wyk and McGraw, 2005 ;

Tøndel et al., 2020c). Thus, the involvement of security profession-

als may be less than optimal in many organisations (Ashenden and

Lawrence, 2016 ; Thomas et al., 2018 ; Palombo et al., 2020). In

Scrum, Product Owners are responsible for prioritisation of the

backlog. Thus, Product Owners are key actors to interact with for

security professionals who want to influence the priority given to

security requirements. However, Product Owners have previously

been identified as a common hindrance for quality aspects such as

security, e.g., due to lack of knowledge, heavy workload, or insuffi-

cient availability (Alsaqaf et al., 2017).

This article provides insight into the strategy used by one se-

curity professional to influence the priority of software security in

software development projects in the company. Through a longitu-

dinal case study, we address the following two research questions

(RQs):

• RQ1: What influences the security prioritisation throughout an

ASD project?

• RQ2: How can security professionals increase the attention key

decision makers give to security in an ASD project?

As literature generally claim that security requirements tend

to be neglected in ASD (Inayat et al., 2015 ; Oueslati et al., 2015 ;

Behutiye et al., 2020 ; Jarz ̨ebowicz and Weichbroth, 2021), we ex-

pect that support for security prioritisation is important for soft-

ware companies in general. Still, we chose to study a company

that can be characterised as a small and medium sized enterprise

(SME). Research points to SMEs as having the largest potential for

software security improvements (Weir et al., 2020a). As SMEs are

less likely to have a strong security department and a software

security program that ensures software security to be addressed

throughout development, they are less likely to be considered ma-

ture when it comes to software security, e.g., according to the

Building Security In Maturity Framework (BSIMM) (Migues et al.,

2021). Still, we suggest that also SMEs can and should strive to-

wards adequate security in their products but expect that they

need other ways to structure and think about such security ini-

tiatives than larger enterprises. A lot of our software is developed

by SMEs. To illustrate, in Norway most software companies are of

small or medium size. Thus, it is important to increase knowledge

on how to support SMEs in making software with adequate secu-

rity.

This article makes contributions to both theory and practice.

Based on this case study we develop a model of influences on se-

curity prioritisation, organised into five influence categories. Then

we relate these findings to the state of the art, to build confidence

in the model. The model can aid future research on security en-

gineering in ASD, providing a framework for understanding. It can

also help practitioners, especially security professionals, in navigat-

ing opportunities and challenges when trying to improve the pri-

ority of security in their projects.

This article is structured as follows. In Section 2 we explain the

background for the research design. In Section 3 we explain our

research approach. In Section 4 we describe the findings related

to the two research questions. In Section 5 we introduce related

work and relate it to our findings, in Section 6 we discuss our

contribution, and in Section 7 we discuss the threats to validity.

Section 8 concludes the article.

2. Background

This section explains the background for the research design,

focusing on two key aspects: the need for an exploratory and in-

ductive approach, and the decision to study a security expert’s ini-

tiatives to improve security prioritisation.

2.1. The need for exploring security prioritisation in agile software

development

"Security is not simply a set of features or a functional compo-

nent to be added to a system" (Türpe, 2017). According to McGraw ,

"Software Security is the practice of building software to be secure

and to function properly under malicious attack" (McGraw, 2006).

This implies that although security features are frequently neces-

sary in a software system, other features also need to be secure,

lest they be exploited by malicious attackers. Put in another way,

it will likely be obvious to developers that an authentication mech-

anism needs to be secure, as attackers would like to compromise

or circumvent it for illicit access to a system. However, any part

of the software that reads data not provided by the developer is a

potential target of attack (buffer overflows, SQL injection, etc. etc.).

The large number of potential activities (BSIMM has 122 activities

in its BSIMM12 version (Migues et al., 2021)), checklists (e.g., as

in the OWASP Application Security Verification Standard (van der

Stock et al., 2021)), and vulnerability and attack patterns (e.g.,

as organised within the Common Weakness Enumeration (CWE)

(https://cwe.mitre.org/) and the Common Attack Pattern Enumer-

ation and Classification (CAPEC) (https://capec.mitre.org/)) all illus-

trate the broadness and the extensiveness of the software security

work.

In this article we consider the concept security prioritisation to

include prioritisation amongst security requirements and activi-

ties, prioritisation of security vs. other aspects such as function-

ality, as well as the priority and attention given to security in the

day-to-day work. Thus, security prioritisation is a broad term that

can encompass many different activities. Looking at BSIMM, activ-

ities like [SM1.2] Create evangelist role and perform internal mar-

keting, [PT1.1] Use external penetration testers to find problems , and

[CMVM1.2] Identify software defects found in operations monitoring

and feed them back to development , although very different, all are

likely to influence security prioritisation through raising the pro-

file of security work and draw attention to specific vulnerabilities.

This comes in addition to activities aimed at identifying security

requirements and prioritise them for development.

To our knowledge, there are no studies that examine the pri-

ority given to security throughout a development project. Such a

study can complement existing literature, e.g., on challenges to se-

curity in ASD (Inayat et al., 2015 ; Oueslati et al., 2015 ; Khaim et al.,

2016 ; Alsaqaf et al., 2017 ; Behutiye et al., 2020 ; Jarz ̨ebowicz and

Weichbroth, 2021). The potential influences on the security prior-

ity are however numerous. In addition to security being a broad

concern that includes functional as well as non-functional aspects

(Türpe, 2017), it is characterised by dispersed responsibilities as

such a broad concern cannot solely be the responsibility of clearly

defined security roles (Kocksch et al., 2018). Security prioritisation

thus involves a broad set of individuals and their daily choices and

2

G

188

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

priorities. Whereas the broad range of challenges is well docu-

mented in literature, more knowledge is needed on which chal-

lenges apply in which situations. Studies have shown that chal-

lenges identified in one company are not generally applicable to

other companies (Karhapää et al., 2021 ; Olsson et al., 2021). This,

and the lack of a theory on what brings priority to security in an

ASD project, made us decide on an exploratory research design.

2.2. The role of security experts in security prioritisation in agile

software development

Security experts are not usually involved in requirements pri-

oritisation in ASD. Prioritisation criteria, decision makers, and pri-

oritisation frequencies may vary between projects but, typically,

the most important prioritisation criterion is business value, with

size, effort, and cost estimations being important inputs as well.

Project constraints like release dates, budget, and available re-

sources are important influences (Bakalova et al., 2011). The project

backlog contains the requirements for the project, of which a pri-

oritised subset is to be implemented in the upcoming iteration.

Although the Product Owners are typically responsible for priori-

tising the backlogs based on expected business value (Türpe and

Poller, 2017), developers are often influential in practice, providing

advice and suggesting solutions. Changes in prioritisation can stem

from external changes or learning experiences (Bakalova et al.,

2011).

While requirements prioritisation in ASD usually not involves

security experts, security expertise is often considered a pre-

requisite for working with security requirements (Daneva and

Wang, 2018). In ASD, the relation between security experts

and development teams is not always optimal (Ashenden and

Lawrence, 2016 ; Thomas et al., 2018 ; Tøndel et al., 2020c). How-

ever, a study of the adoption of secure development tools identi-

fied that "if companies structure their security processes so that

security teams and other developers often interact, developers are

more likely to feel personally responsible for security" (Xiao et al.,

2014). Chowdhury et al. (2020) suggested that all organisational

units have a strong relationship with the security department as

a way of dealing with the implications of time pressure on secu-

rity. Ashenden and Lawrence (2016) found that "when a security

process works well, it is often because the security practitioner

has good soft skills." Others have pointed to the need for combin-

ing top-down and bottom-up approaches to security (Cruzes and

Johansen, 2021). Including security experts in the development

team, e.g., through the Security Champion role, is another sug-

gestion (Antukh, 2017 ; van der Veer, 2019 ; Palombo et al., 2020 ;

Tøndel et al., 2020c ; Jaatun and Cruzes, 2021 ; Tuladhar et al.,

2021).

Much of the existing work on the involvement of security ex-

perts in ASD has been centred on moving software security to

the developers, e.g., as is done by Palombo et al. (2020) and

Tuladhar et al. (2021) . Both represent ethnographic studies, and

show how security experts effectively can bring security to de-

velopers through co-creation (Palombo et al., 2020) and situated

learning (Tuladhar et al., 2021). However, there are fewer stud-

ies on how to bring security to Project Managers and Product

Owners. This is the case although neglect of quality requirements

(including security) is a challenge commonly reported in ASD

(Behutiye et al., 2020 ; Jarz ̨ebowicz and Weichbroth 2021), and al-

though Product Owners have been found to be a common hin-

drance for security (Alsaqaf et al., 2017 ; Terpstra et al., 2017).

Daneva and Wang (2018) suggested to redefine the role of Prod-

uct Owners when it comes to security requirements and their pri-

oritisation, e.g., by having a Product Owner and a security expert

share ownership over the backlog. With this article we contribute

with knowledge on how security professionals can bring security

to Product Owners.

Although we study the practices of a security expert, we are

in this study more interested in what makes the security ex-

pert’s actions have (or not have) an effect than in identifying a

new or improved method or coping strategy for security priori-

tisation. Existing literature documents that a broad set of prac-

tices can be involved in work with security requirements (see

Terpstra et al. (2017) and Daneva and Wang (2018) for overviews

of coping strategies for security requirements in ASD). Further,

there are specific techniques that offer support for prioritisation

of security requirements. A prominent example is Protection Poker

(Williams et al., 2010), a collaborative risk-estimation game that

identifies and ranks security risks related to the features to be

implemented in the upcoming iteration. Another is the approach

by Ionita et al. (2019) that suggest a way to integrate risk as-

sessment with security requirements prioritisation to populate the

product backlog with prioritised security requirements. But de-

spite availability of such techniques, there is limited knowledge on

what coping strategies are most beneficial and why (Tøndel and

Jaatun, 2020), and there is still the challenge of being able to make

security gain priority in practice (Türpe and Poller, 2017). This

work contributes with knowledge on what supports and hinders

prioritisation of security.

3. Research approach

Our research approach is exploratory. Modern software de-

velopment can be complex or messy in nature (Pelrine 2011 ;

Tøndel et al., 2020b) and thus, a plethora of potential influences

exist. Case studies are suited for in-depth investigation of complex

contemporary phenomena where the boundary between context

and phenomenon can be unclear (Yin, 2018). A longitudinal case

study allowed for a proper attention to context as well as a thor-

ough investigation of a broad set of influences.

3.1. The case

The research questions call for studying a case with changing

security prioritisation and with security professionals working to

increase security attention amongst key decision makers. Through

a research project with several company participants, we had ac-

cess to a case that matched these needs. The company – sub-

sequently called DevCo – was an SME with about 80 developers

across four locations. The main office of the company was in Nor-

way and within reasonable travelling distance for the researchers.

The other locations were in Eastern Europe and in two of the

Nordic countries. They developed software solutions on a contract

basis, but with the aim to, through these contracts, develop prod-

ucts that could be offered to a broader set of actors within the

sector in which they operated. Solutions included mobile apps for

the public, hardware-orientated solutions for real time monitoring,

and back-end solutions. In DevCo, development was performed ac-

cording to Scrum in the main aspects we wanted to investigate

(development in iterations; backlog; Product Owner role respon-

sible for requirements refinement and prioritisation; autonomous

teams; etc.) although the environment of the project (e.g., the bid

process and the contracts) was not fully agile. The only central se-

curity resource was a Security Officer in a 60% position, and the Se-

curity Officer role was placed in the development department. De-

vCo had some experience on including software security in some

previous projects and had recently increased their attention to se-

curity through hiring a Security Officer and establishing a Secu-

rity Champion role in the development team. Still, DevCo lacked

systematic attention to security on the Product Owner and Project

Manager level.

3

G

189

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

At the time of the study, DevCo had just received a big new

project – in the following called ProjectAlpha – where the cus-

tomer had more explicit security requirements than what DevCo

had experienced before, thus motivating the need to improve on

software security. In ProjectAlpha they were to develop front-end

solutions for Android and iOS, as well as back-end solutions that

integrated with security solutions from a third party. Not long af-

ter, they started a second big project – ProjectBeta – where there

was less security push from the customer and where the technol-

ogy was more complex, involving more hardware components. The

Security Officer used the security push from the customer in Pro-

jectAlpha to start a new initiative, in the following called the Se-

curity Requirements Initiative. This initiative offered a process to

elicit, document, prioritise, and follow up on security requirements,

and ProjectAlpha was its pilot.

For us, DevCo offered an opportunity not only to study the

changing security priorities (RQ1) and the impact of security ex-

pert initiatives (RQ2). We also considered the case to have charac-

teristics that we suspected to be common amongst SMEs – mak-

ing this a relevant case to study in a single-case study design

(Yin, 2018) – at the same time as it was interesting from a theoret-

ical standpoint. We assumed that for SMEs it would be common to

have few dedicated security resources, to have some software se-

curity experience but without a strong software security program

(thus limited software security maturity), and to have established

ASD practices but with challenges to change the larger environ-

ment surrounding the company to make the full project agile. Still,

the relatively short distance between security experts and devel-

opment allowed them to interact regularly and thus study this in-

teraction. Further, studying an SME made it more feasible to aim

for an overview of a broad set of influences than what we expect

would have been possible with a larger development company –

taking into account the invisibility of security and security work

(Kocksch et al., 2018).

A further benefit of the case was that two new projects were

starting almost simultaneously, allowing us to opt for an embed-

ded single-case design with each project as a single unit of anal-

ysis (Yin, 2018). Thus, we could study similar interactions and ini-

tiatives in two projects and learn from similarities and differences

that would be identified amongst them. However, our main em-

phasis was on ProjectAlpha as the Security Requirements Initiative

pilot. In this project the key participants were positive to partici-

pating in this study and willing to act as interviewees etc., more

so than in ProjectBeta. According to our embedded single-case de-

sign we considered each project as a unit of analysis, but we anal-

ysed data from ProjectAlpha first, using an inductive approach to

identify influences on security priority and understand the impli-

cations of the Security Officer and the Security Requirements Ini-

tiative. Then we analysed data from ProjectBeta with a deductive

approach, based on the findings from ProjectAlpha. This allowed

us to study one project in detail (ProjectAlpha) while strengthen-

ing and extending upon the findings with additional data from an-

other project (ProjectBeta) in the same company.

ProjectAlpha had a duration of around two years. It involved

one team where most of the developers were in the Eastern Eu-

rope office, while the project management as well as the Security

Champion and the Security Officer were in the main office in Nor-

way. The project had two Product Owners. One of them had exten-

sive understanding of the customer domain and was responsible

for the front end. The other, sometimes in the following referred to

as the technical Product Owner (TPO), had a strong technical com-

petence and had previously worked as a developer/consultant at

DevCo. In addition to Product Owner responsibilities for the back

end, the TPO had responsibility for the architecture of the overall

product. The Project Manager of ProjectAlpha was responsible for

monitoring the contract activities and following up the customer,

the budget, and the requirements. This Project Manager was new

to DevCo, and ProjectAlpha was his first main project in DevCo.

The developers (including the Security Champion) and the Secu-

rity Officer were part of the development department, while the

Project Manager and the two Product Owners were in the project

management department. Operations, that were to be responsible

for operation of the software solution after development, was or-

ganised in yet another department. ProjectBeta had a similar or-

ganisation except that it consisted of more teams, and that the Se-

curity Champion and the Product Owner was placed at other office

locations.

3.2. Data collection

In the case study, we used multiple methods of data collection.

As can be seen from the overview given in Fig. 1 , data collection

took place between April 2018 and June 2020 and included obser-

vations, interviews, status updates with the Security Officer, and

documentation of processes and requirements. We opted for such

varied data collection because we wanted to get a broad view of

the security prioritisation in ProjectAlpha and get to a rich de-

scription of this case. Observations allowed us to observe key se-

curity discussions first-hand, status updates with the Security Of-

ficer and interviews allowed us to collected personal experiences

from the main actors, and access to key documentation items such

as security requirements allowed for direct knowledge about the

projects’ requirements and how they were documented throughout

the project. Data collection was spread out in time throughout the

whole period of the study, with an emphasis on observations in

the beginning, interviews towards the first release of ProjectAlpha,

and status updates with the Security Officer throughout. To prop-

erly account for the context, we did not limit data collection to

the two projects but collected supplementary data from surround-

ing activities such as department and security guild meetings. We

aimed to observe as many as possible of the scheduled meetings

where security priorities were to be discussed in ProjectAlpha. For

interviews, we recruited four key individuals: the Security Cham-

pion, the two Product Owners and the Project Manager. These were

selected due to their involvement in the Security Requirements Ini-

tiative and their influence on project priorities. From ProjectBeta

we did try to recruit both the Product Owner and the Security

Champion, however we were only able to get an interview with

the Security Champion. All data collection was done by the first

author.

3.3. Analysis

We needed an analysis approach that could help us make good

use of our multi-method data collection and support us in our

need to take a broad view of the situation to identify influences

on security priorities. We opted for an analysis approach based

on thematic coding (Maxwell, 2013), Situational Analysis (SA)

(Clarke et al., 2016) and Narrative Analysis (NA) (Riessman, 2008).

Thematic coding supported us in categorizing and structuring the

collected data into themes. SA and NA, on the other hand, helped

us identify connections in the data material through analysing the

situation as a whole (SA) and through analysing narratives in an

unfragmented state (NA). Fig. 2 gives an overview of the analysis

process for arriving at the influence categories (RQ1).

Coding of data was performed in the tool MAXQDA. Although

the coding approach was inductive, we used categories from the

conceptual model of Tøndel and Jaatun (2020) to organise the in-

ductive codes within concepts that had already been identified as

relevant based on previous studies: the context of the security

work including the security posture of the customer, the organisa-

tion, and the team; the way the security work that was performed,

4

G

190

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Fig. 1. Overview of data collection (SO = Security Officer, SC = Security Champion, PM = Project Manager, PO = Product Owner, SRI = Security Requirements Initiative).

Fig. 2. Analysis process for arriving at influences and influence categories.

and; its effect. This helped us get some initial structure to the data

and increase overview from the onset.

As influences on security priorities can be related both to con-

textual aspects as well as the technique and the effect observed,

influences on the priority given to software security could be found

within all our organising codes. To capture the broad set of influ-

ences, and at the same time make analysis more manageable, we

utilized memoing (Maxwell, 2013). For each of the topics "security

decisions", "influences", and "impact" we created a longer memo

where we wrote a summary of all the codes that were related to

the topic, and we used the functionality of MAXQDA to link rele-

vant codes to the memos for traceability. We made three versions

of all these memo types; one (I) based on data from interviews,

and two (II and III) based on observations and Security Officer sta-

tus updates – where II considered the start-up phase (Ref. Fig. 1)

and III the rest of the project. This approach was taken to make

the analysis more manageable, not taking the full data material

into account at once, and to allow for identifying similarities and

variations in findings amongst these data sources on key issues

(Eisenhardt, 1989). All research memos were discussed with the

Security Officer of DevCo, and comments from the Security Officer

to the memos were noted down. Generally, the Security Officer did

5

G

191

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Fig. 3. Example showing part of the link between one identified influence and coded segments, demonstrating how the identified influences are related to memos that are

linked to coded segments from the data material that are ordered according to categories from Tøndel and Jaatun (2020) .

not object to the findings in the memos, except for a few minor

corrections, but sometimes had additional comments and further

explanations of phenomena described in the memos.

From all these nine memos, we extracted influences that low-

ered and increased the priority given to security. This resulted

in two long lists of influences, subsequently refined and cate-

gorised using the tool MindManager. In this process we compared

the identified influences and grouped those that were similar into

refined influences. Finally, we grouped the identified influences

into five influence categories that emerged from this categorisa-

tion process (driving force, visibility, room to manoeuvre, motiva-

tion, and process match) and developed a definition for each of

these categories. Fig. 3 demonstrates how the influences we iden-

tified through this analysis process can be traced back to coded

segments.

To strengthen the results from the study of ProjectAlpha, we

analysed data from ProjectBeta and from the surrounding context.

For this additional material, we performed deductive coding. We

deliberately looked for data that could dispute our findings from

ProjectAlpha or expand our understanding of the already identified

influences.

SA and NA were utilised to build a stronger understanding

about the identified influences and to reduce the risk of miss-

ing important influences in our analysis. Constructing a Social

Worlds/Arenas Map (Clarke et al., 2016) for ProjectAlpha helped us

get an overview of all the collective actors that were to a smaller

or larger extent influencing the priority given to security in this

project. Constructing Positional Maps (Clarke et al., 2016) helped

us get an understanding of an important underlying debate in

the data material, that of whether one should rely on software

craftmanship and everybody taking responsibility for security, or

whether there should be a central push for security, e.g., through

procedural requirements and audits. NA supported us in analysing

the narratives collected in interviews in an unfragmented manner,

looking at the content and the flow of events. We also constructed

our own narratives of the evolvement of the Security Requirements

Initiative based on status updates with the Security Officer, and ob-

servations.

To visualise the flow of events in the collected and constructed

narratives we created causal networks (Miles et al., 2018). These

causal networks helped us understand how states and/or actions

were understood as interrelated into sequences. The causal net-

works supported us in the refinement of the influences. However,

their main importance was in their support for identifying and un-

derstanding strategies applied by the Security Officer and the un-

derlying mechanism at play (RQ2).

4. Findings

Through the analysis we identified a large set of influences on

the priority given to security, and we organised them into five cat-

egories (Fig. 4): driving force, visibility, motivation, room to ma-

noeuvre, and process match. These categories together cover as-

pects of the individuals, the project, and the company. In the fol-

lowing we provide a definition of each of these categories before

the following subsections explain the influences observed within

each of these categories:

• Driving force refers to someone who takes initiative and re-

sponsibility for making software security happen. A negative

driving force would actively hinder software security.

• Visibility refers to the degree to which security is visible (seen,

known about) to stakeholders related to the project. This in-

cludes the visibility of security to developers in their daily cod-

ing activities, to project management and top management, to

the customer, and in the product.

• Motivation refers to the willingness to focus on software secu-

rity, as well as the aspects that cause such willingness. Reasons

for doing or not doing software security, and activities that pro-

vide such reason would be part of this category.

• Room to manoeuvre refer to resources and opportunities to

prioritise software security, and to act accordingly. This might

include time, budget, competence, etc.

• Process match refers to the ability to fit the security approach

into the existing software development process, so that they

align well.

6

G

192

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Fig. 4. Conceptual model of influences on security priority (PM = Project Manager, PO = Product Owner).

Note that we can see in the data that these five influence cat-

egories are somewhat related, and we found that some of the in-

fluences could fit more than one category. In such cases, we chose

the category that was most explicitly linked to the influence. Visi-

bility plays an important role for motivation, and it was sometime

hard to distinguish between the two, but we still opted for keep-

ing both categories as motivation can happen also without visibil-

ity. Room to manoeuvre and process match can inhibit motivation

for security, e.g., in cases where these pose limitations for security

that are hard to overcome. Driving force is related to motivation

and room to manoeuvre, as individuals with a motivation for secu-

rity and room to take on security tasks are more likely to take on

responsibility and push for security. Driving force is also related to

visibility, as a driving force can contribute to security being more

visible, and it is related to process match as, e.g., organisational

structures can strengthen or limit the potential influence of an in-

dividual or a role.

In the following we explain the how the identified influences

played out in the study, as well as the strategies used by the Se-

curity Officer related to these influence categories. Fig. 5 gives an

overview of the evolution of the Security Requirements Initiative

that the Security Officer initiated.

4.1. Driving force

There were several roles that had a potential influence on the

priority given to security in this project. Fig. 6 gives an overview

of these roles, through a social worlds/arenas map created through

Situational Analysis (Clarke et al., 2016). In this figure, the size of

the oval shapes and their overlap with the main concern (the pri-

ority given to security in ProjectAlpha) represent our understand-

ing of the magnitude of their influence. Table 1 provide a descrip-

tion of their influence. As can be seen from this figure and table,

the main driving forces for software security were the Security Of-

ficer and the Security Champion.

For the Security Officer, it was highly useful to have the Secu-

rity Champion role as a driving force for security within the de-

velopment team. The Security Officer collaborated closely with the

Security Champion both in performing the activities of the Secu-

rity Requirements Initiative and in increasing its adoption. At the

Product Owner and Project Manager level, however, there was no

similar champion role to collaborate with, and the Security Offi-

cer had challenges in being the driving force for security towards

Product Owners due to the organisation of the Security Officer

role in the development department. The Security Officer’s inter-

action with operations was challenging for similar reasons; when

the Security Officer made effort s to involve operations in Project-

Beta, the Security Officer got the perception that operations viewed

interaction with the Security Officer as doing development a

favour.

Aspects related to trust and view of responsibility amongst in-

dividuals and roles influenced the adoption of the Security Re-

quirements Initiative in ways that were not always easy to pre-

dict for the Security Officer. When the Project Manager and the

less technical Product Owner saw that security was addressed by

someone else, this resulted in a less perceived need to take active

responsibility for security themselves. Moreover, when the Secu-

rity Officer arranged security onboarding meetings with develop-

7

G

193

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Fig. 5. Overview of the stages of the Security Requirements Initiative.

Fig. 6. Social worlds/arenas map for ProjectAlpha (SO = Security Officer, SC = Security Champion, PM = Project Manager, PO = Product Owner).

ers, they got the impression that they had to do security but no

one else had to, and they pushed back on this message.

4.2. Visibility

Both the priority given to security and the visibility of security

varied throughout the project in a way that indicates that they are

linked. Fig. 7 shows a generalised view of how the priority given

to security was depicted in interviews. As shown, it varied in a

U-curve but with some spikes along the way. The drop in the U-

curve was explained in the following way in one of the interviews

(shortened and paraphrased): We had quite high attention to secu-

rity in the beginning, as part of planning. And we started development

with an aim to do security well and document it well. But then, to-

wards the middle, some of this had been, maybe not forgotten but at

least not as prioritised. The focus was on making sure to finish, deliver,

and make money on the project.

This "forgetting" or down-prioritising of security can be ex-

plained partly by limited visibility of security, as described in

Table 2 . Various triggers for security were important for the spikes,

including triggers related to requirements, security roles and activ-

ities such as pentests. This made security visible and on the agenda

of both the Project Manager and the Product Owner roles. On the

other hand, a lack of visibility of security in formal routines low-

ered the attention given to security.

The Security Officer was active in increasing the visibility of

security throughout the project, and actively made use of secu-

rity triggers by arranging security meetings, pushing for secu-

rity through documentation, and poking about security tasks. Note

however that the Security Officer experienced a need to strike a

balance between reminding key individuals about their security

tasks and respecting that they were pressed for time.

4.3. Motivation

The drops as well as the spikes in security attention can also

to some extent be explained by motivational factors. This is out-

lined in Table 3 . Motivation and view of security varied from team

to team, and between individuals. In ProjectAlpha, the interaction

and relation to the customer was important for the motivation for

security, as illustrated by the following narrative from an interview

(shortened and paraphrased): We were bound by the requirement

8

G

194

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Table 1

Overview of the social worlds/arenas involved and their influence as Driving Force.

Social world/arena How they influenced the priority given to security (including the battling of challenges)

Influence in conceptual

model (Fig. 4)

Security Resources:

Security Officer

• Initiated and followed up the Security Requirements Initiative, arranged meetings and poked

individuals about security tasks.

• Later, the Security Officer left the company and a drop in security focus was observed.

• Had to battle issues with formal authority, as the Product Owners, the Project Manager, and

operations were not in the development department.

• It was not scalable to be personally involved in all follow-ups on security.

+ Involvement of the

Security Officer

- Limited authority of the

Security Officer

Security Resources:

Security Champion

• Supported continuity of security attention in the development teams.

• More successful when able to present security issues to Product Owners in a way that made them

understand the costs and the risks and made them able to make an informed decision.

+ Security Champion role

in teams

+ Security Champion able

to communicate effectively

with Product Owner

Developers in the

project

• Several developer initiatives for security came in addition to the explicit security requirements from

the customer.

• Developers did the coding and made choices on which security mechanisms to apply.

• Influence on the project management roles because of technical competence.

+ Developer initiatives for

security

Project Management

(Project Manager,

Product Owners)

• Influence through prioritisation and budget, but largely delegated prioritisation to the security
resources, and to some extent to the developers.

• Product Owners explained that they relied on the ability of the Security Champion, developers, or

the Security Officer to bring important security issues to their attention.

• Viewed as more of a hindrance for security in ProjectBeta, as the Security Champion felt their

security concerns were not taken seriously by the Product Owner.

- Unclear responsibilities

for security

- The Product Owner as a

potential hindrance for

security

Customer • Indirect influence through the explicit security requirements.

• Still, it seems security was not that visible in communication with the customer throughout, except

from occasions such as presentation of security analysis or discussions concerning specific security

requirements.

(Indirect influence, thus

not included as driving

force)

3rd Parties (vendors of

software components

they had to integrate

with; security experts

involved by the

customer)

• Technological solutions from 3rd parties could support (or not support) the security requirements,

thus indirectly allowing for (or hampering) their prioritisation.

• 3rd parties involved by the customer were perceived as security experts and influenced through the

security competence they brought and the push they represented toward security.

(Indirect influence, thus

not included as driving

force)

Management • Management influence was perceived differently by the individuals at DevCo; some perceived a

support from senior management on spending resources on security, while others explained that

senior management expected them to do security but did not understand that this had a cost.

(No clear examples of how

this influence played out,

thus not included as

driving force)

Operations • Had security competence that could have benefited development and knew how security was

addressed during operation, but the silo structure limited operation’s involvement during

development. There were ongoing initiatives to improve that.

(Potential driving force,

but not much active in the

project)

Fig. 7. Typical timeline drawn in interviews.

from the customer that there should be a security analysis. Thus, we

worked on that to get a good start. And then, at some point, we pre-

sented this to the customer and their technical consultant. And we

received very good feedback on the work we had done, they were im-

pressed, had never had software vendors that had that much secu-

rity focus. And then we got this drop because we got a little compla-

cent. ProjectAlpha additionally benefited from key individuals with

a positive view of security, as expressed in the following interview

quote: "It is a huge difference! In previous projects it has not been,

let’s say, a first-level thing. It has been delivering of features and en-

suring customer requirements and then security is some murky stuff

in the bottom that we should take care of if time. But now it has be-

come something that has to be in place." In ProjectBeta, on the other

hand, there were key individuals which did not seem to be as pos-

itive towards security.

One of the strategies used by the Security Officer, was to

put attention on the explicit security requirements coming from

the customer. Further, the Security Requirements Initiative itself

pushed for security through creating a process for security re-

quirements elicitation, documentation and follow up, and thus

was an aim to increase motivation for security. Despite sev-

eral challenges related to its adoption, we observed strong pos-

itive effects related to increased security awareness. Intervie-

wees stated that, to some extent, this awareness spread also

to other roles in the project, including testers and developers.

Even meetings that seemed to be quite unsuccessful led to im-

proved security awareness. It is likely that this increased secu-

rity awareness had broader consequences in form of more de-

veloper initiatives for security and less pushback from Prod-

uct Owners, etc., though we have no clear data to support this

causality.

9

G

195

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Table 2

Overview of the role of influences related to visibility on the security priority timeline in Fig. 7 .

Stage in timeline How this was influenced by visibility

Influence in conceptual

model (Fig. 4)

Initial high security

attention

• Security analysis was required from the customer in the beginning of the project.

• The Security Requirements Initiative pushed for the security priorities being made early in the

project.

+ Triggers to remember

security

Drop in security

attention

• The security requirements were less visible than the functional requirements, and this was

particularly the case for security requirements that were more overarching or unclear, and thus

hard to demonstrate and test. These requirements were often postponed.

• A lack of security focus in the Product Owners’ processes (e.g., in form of requirements for security

analysis or Key Performance Indicators (KPIs) on security) resulted in security work not being

visible and accounted for. One Product Owner compared security to testing and explained that

testing was part of the procedures and processes and were part of KPIs, and thus testing was done

despite time pressure and although the management and Product Owner level often thought that

testing took too much time.

• The security work that was done often ended up being quite invisible as well (e.g., only known

about by developers), and thus did not help build security culture in the same way as if it would

have been more visible.

- Requirements that are

hard to demonstrate and

test

- Non-assigned tasks

- Lack of metrics for

security in the Product

Owners’ processes

- Invisible security in

decisions

Some ongoing

attention, despite the

drop

• The Security Officer and the Security Champion roles served as visual reminders of security. This

could take the form of remembering that there were security tasks to be done when seeing the

Security Officer in the office, or in case of the Security Champion: "It becomes kind of, we can call it

security advertisement. You can see that he has to spend hours on security champion work" (as

explained by one of the Product Owners).

+ Triggers to remember

security

Spikes • In iterations where security requirements were to be implemented, security was more visible.

• Security requirements that gave visible security (were functional) served more as a trigger for

security and were easier to give priority, as opposed to more overarching security requirements.

• Customer interaction on security (e.g., presentations, questions) put security on the agenda of

Project Managers and Product Owners.

• Performing an external penetration test increased visibility of security towards the Project Manager

and Product Owner roles.

+ Triggers to remember

security

+ Security requirements

that give visible security

+ External penetration test

Increase towards

release

• Security became visible as part of a need to check whether all the explicit security requirements

from the contract were fulfilled.

+ Triggers to remember

security

4.4. Room to manoeuvre

The room to manoeuvre is dependant on resources such as

time, budget, and competence. Table 4 shows how these resources

influenced the priority given to security. Of particular importance

for getting ongoing priority were the dedicated security roles that

represented time and budget for security, as well as competence.

On the other hand, the strong time pressure experienced – espe-

cially by Product Owners – represented a major hindrance for giv-

ing priority to security.

The Security Officer experienced that time pressure led to a

resistance to take on security tasks, and used several strategies

to address this resistance (focusing on security requirements from

the customer, splitting into smaller tasks, pushing security through

documentation and meetings, and poking about security tasks).

Progress was difficult as it relied on Product Owners who did not

have security as part of their procedures and did not have time for

additional tasks. This issue was difficult for the Security Officer to

address, as it depended on the overall project load and the con-

tracts with the customer. Thus, adding security to the beginning

of the project was not early enough, one needed to also consider

the bid process (and this was now no longer an option). To further

emphasise this need, it turned out that some of the security re-

quirements stemming from the bid process of ProjectAlpha did not

make much sense and were costly to address, and thus had to be

renegotiated.

Regarding competence, the Security Officer supported learn-

ing between projects. Further, the activities and meetings initi-

ated as part of the Security Requirements Initiative increased se-

curity awareness and competence. Note however that the individ-

uals most involved in the Security Requirements Initiative had pre-

existing technical security competence, something that may have

limited the potential effect of competence building on security.

4.5. Process match

Table 5 explains the influences identified related to the match

with the process of the Product Owners, the developers, and the

overall culture of DevCo. The Security Requirements Initiative was

viewed as an addition to existing processes, largely related to doc-

umentation, and as lacking integration with the processes of the

Product Owners.

The Security Officer experienced several challenges when it

came to integrating the Security Requirements Initiative into the

processes of DevCo. As seen in Fig. 5 , in the early stages it was

important for the Security Officer to get overview of the secu-

rity requirements to prepare for getting Product Owners involved

in prioritisation. There was however a trade-off between present-

ing good quality security requirements documentation and getting

early involvement from Product Owners on security. Throughout, it

was challenging to find a way to structure the security documen-

tation so that it was more usable for the Product Owners, and still

provided overview for the Security Officer.

To improve the Security Requirements Initiative, interviewees

suggested both to have more formal procedures for security and

to have everybody take on more responsibility for security with-

out having to add a lot of extra overhead. To explore these po-

tential axis of integration and responsibility, Fig. 8 uses Situational

Analysis and its Positional Map (Clarke et al., 2016) to span out

the practices that were applied in the project or that were pro-

posed by interviewees. The adopted approach to have a separate

Confluence page for security requirements represented a less inte-

grated approach than what was suggested by some interviewees,

10

G

196

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Table 3

Overview of the role of influences related to motivation on the security priority timeline in Fig. 7 – note that as ProjectAlpha and ProjectBeta experienced main differences

when it comes to security motivation, Table 3 represent findings from ProjectAlpha unless otherwise specified.

Stage in timeline How this was influenced by motivation

Influence in conceptual

model (Fig. 4)

Initial high security

attention

• Having to go through the explicit security requirements from the customer increased understanding

on what to deliver on security and increased motivation to do a good job on security.

• Presentation of the security analysis to the customer led to a motivation to do a good job on this

analysis.

+ Explicit security

requirements from

customer

+ Customer interaction on

security

Drop in security

attention

• They experienced perceived trust from the customer on security. Throughout, customer meetings

emphasised the showing of functionality.

• The motivation for security was reduced when security was not explicitly required in procedures or

in requirements and were not audited. This especially became a motivational challenge in

combination with security tasks that delayed development.

• In ProjectBeta, the Security Champion experienced a Product Owner with a view of security as cost

without real gains. Thus, the motivation to spend time on upgrading the security of an already

working solution was low, and the approach to security became more reactive.

- Trust from the customer

on security

- Focus on showing

functionality

- Security is not explicitly

required and not audited

- Security tasks that delay

development

- View of security as costs

without real gains

Some ongoing

attention, despite the

drop

• Security was viewed as something that had to be in place and was discussed as something that

could be beneficial for future sales and solutions.

• Security experts were in the loop on the customer side and the project had to interact with these

experts: "Of course, when you have good people on the other side then you want to deliver good work

too. (…) And I use them, (…) ask questions."

• The need for integration with solutions from 3rd parties, and thus the need to secure that

interaction, increased the perceived need for and the motivation to handle security.

• GDPR represented a push and motivation for security, and requirements related to GDPR came up

in the observed meetings.

• Security aware Product Owners knew that the customer needed security, even if it was not

explicitly stated or if it was not pushed for in the same way as features. However, it could be

challenging for Product Owners to balance what the customer explicitly stated as requirements

with what the Product Owner knew the customer needed to have in addition to that (e.g., security).

+ Third-party security

experts

+ Integration with 3rd

parties

+ Product Owner sees the

need for security

+ Security viewed as

something that has to be

in place

+ Beneficial for future

sales or solutions

+ GDPR

Spikes • Customer interaction on security (e.g., presentations, questions) increased the motivation to do a

good job on security.

+ Explicit security

requirements from

customer

+ Customer interaction on

security

Increase towards

release
• There was a need to check that all the promised security had been delivered. Meetings were

arranged to discuss this.

• The need to document the system, including the security, could motivate for and put attention on

security. Such documentation could, e.g., be part of release notes for customers or operations.

+ Explicit security

requirements from

customer

+ Need to document the

system, including the

security

namely, to have security more integrated into Jira and have it han-

dled as any other requirement. However, having a separate Conflu-

ence page for security eased overview and follow up by security

experts external to the project, thus supporting an approach with

more central control in form of procedural requirements and secu-

rity audits. The Security Requirements Initiative however struggled

with limited formal authority in procedures and thus, in practice,

became quite reliant on individual initiative in a context where se-

curity was largely seen as an addition.

4.6. Influence interactions

Note that it was the combination of the influences that re-

sulted in the changing security priorities in the projects. In each

situation, several influences were present simultaneously and to-

gether contributed to or hindered the prioritisation of security. In

the following we provide two examples of narratives from inter-

views (shortened and paraphrased) that illustrate how different in-

fluences could play together and lead to a certain security prioriti-

sation. Both narratives come from ProjectAlpha.

The first example concerns how the development team and its

Security Champion responded to a customer requirement on secu-

rity: We found that one of the things the customer had suggested was

not easy to do, and it did not help much with security. In previous

projects, I had wanted to implement an encryption solution and, be-

cause of this requirement, considered this project an opportunity to

go through with it. I brought the issue up with the other developers

using Slack, and the others agreed to this solution. Then we just did

it without involving anyone else. What we implemented is something

that gives good security. However, it is probably only us developers

that know it has been done as it is not documented anywhere.

This example shows the importance of developers and the Se-

curity Champion as driving forces for security, and the importance

of their motivation (want to implement encryption) and room to

manoeuvre (skills and time) that allows them to identify and im-

plement security solutions. In this case, the process match was re-

lated to their ability to do this security improvement within their

current process without involving other decision makers. The secu-

rity requirement from the customer sparked the visibility of the is-

sue and contributed to the opening (motivation) to go through with

it, despite the customer requirement not being considered a good

one. The resulting challenge related to visibility is not a challenge

for security prioritisation regarding this particular security solution

but may represent a missed opportunity to increase visibility more

generally and thus influence security prioritisation more broadly.

The second example concerns a security weakness identified by

the development team and the technical Product Owner and their

decision on how to address this weakness: We identified a potential

11

G

197

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Table 4

Overview of the role of influences related to room to manoeuvre.

Resource How this influenced the priority given to security

Influence in conceptual

model (Fig. 4)

Time and budget • The Security Champion and Security Officer roles had pre-allocated time to work on security tasks.

• Product Owners already had a high workload with limited possibility to take on more tasks. It was

challenging for them to find time to work on the security requirements.

• Product Owners explained that short deadlines led to a strong pressure to start development

immediately but, at the same time, because of the fixed contracts it was essential to get security in

before development started. Thus, security ended up requiring a delay in development that there

was no room for.

• Short deadlines put a lot of pressure on Product Owners who were often involved in several

projects at the same time, all at different stages. Thus, when the Security Champion later became a

Product Owner he found himself "surprised that I am not performing better than those that were

Product Owner s while I was Security Champion and developer".

+ Dedicated budget and

roles for security

- Time pressure in/around

the project

- Product Owner with

limited time

- Short deadline and fixed

contract

Competence • The influence of the Security Officer was dependant on the Security Officer’s ability to understand

the technology of the projects, and thus was stronger in ProjectAlpha than in ProjectBeta where the

Security Officer was less able to understand the system under development.

• Both the Security Officer and the Security Champion roles contributed to the availability of arenas

to exchange experiences between projects on security. This happened through the Security Guild

that allowed for discussions amongst all Security Champions and through the Security Officer being

involved in a broad set of projects.

• The security in the development projects was highly dependant on the security awareness and

competence of the developers, as they were creating their own security initiatives. Security

competence and awareness varied greatly amongst the development teams of DevCo, and amongst

Product Owners.

• Security competence is important to perform security activities well. ProjectAlpha experienced that

in meetings it was challenging to rank risk, a task that required broad security competence, and it

could be difficult to know which security requirements were most important.

• With few individuals with security competence, these became a bottleneck.

• More complex projects put stronger demands on competence. Security seemed to suffer in

ProjectBeta which was more complex both in terms of technology and team structure.

+ Security Officer able to

understand the system

well

+ Arenas to exchange

experiences

+ Security awareness and

competence of individuals

- Team with limited

security competence/

awareness

- Product Owner / Project

Manager with limited

security competence

- Challenging to rank risk

- Limited number of

people with technical

security competence

- Complex project and/or

technology

Table 5

Overview of the role of influences related to process match.

Process How this influenced the priority given to security

Influence in conceptual

model (Fig. 4)

Product Owners’

process

• Security was viewed and represented as an add-on having separate documents in the tender, and

separate Confluence pages and procedures.

• Suggestions for tighter integration included having security as a requirement in Jira at the same

level as other requirements (e.g., as part of Definition of Done), and including security into the

Product Owners’ procedures to ensure security activities were done for all projects.

• Following up of the security analysis was not part of the process and there were thus no

procedures in place to ensure that the analysis led to improved security in practice.

• Security activities were seen as “developers’ job”.

- Security viewed and

represented as an add-on

- Security not explicitly

part of Product Owners’

procedures

- Follow up of security

analysis is not part of the

process

Development process • Security requirements and concerns that were easy to solve and were easy to implement by

developers without asking for permission to spend extra resources and time, were generally

addressed.

• Security was to some extent viewed as documentation and talked about as "spending a day to

document the security around that function" . This documentation was difficult to integrate with an

agile way of working and was considered to "use up lots of time".

• Teams already found themselves drowning in detail in Jira and security documentation just added

to this already existing overload of information.

+ Easy to implement by

developers without asking

for permission

- Security viewed as

documentation

- Security documentation

was overwhelming

Culture • Some interviewees pointed to the role of habit, as they were generally not used to working with

security this systematically.

• Interviews and observations called for closer collaboration between development and operations

and suggested that this could bring benefits for security due to the security competence and

awareness of operations staff.

- Habit/way of working

does not include security

- Lack of culture for

involving operations

security weakness. This weakness is not something we consider a ma-

jor issue but is still something that could open up for some potential

attacks. Several suggestions for handling this issue came up and were

discussed. We settled on accepting the weakness but identified ways

to address this in operations. I am however not sure if we ended up

sharing these considerations and the suggestion for a solution with

operations.

This example also shows the importance of developers as driv-

ing force for security, including their motivation and skills (room to

manoeuvre). The team was capable of identifying the issue, assess-

ing its importance, evaluating alternative solutions, and reaching a

decision. However, limited visibility of the decision and organisa-

tional silos (process match) likely hindered the decision to be fol-

lowed up on in practice.

12

G

198

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Fig. 8. Positional Map showing how the practices of ProjectAlpha and the suggestions for improvements brought up in interviews can be placed according to the axis of

integration and responsibility.

5. Related work

We are not aware of other studies that aim to understand in-

fluences on security priority through studying industrial projects

in depth. Thus, our study represents new knowledge on what

supports and hinders prioritisation of security in practice. There

are however some related studies that identify challenges, triggers

and barriers, or coping strategies related to security requirements

and security prioritisation more broadly, disconnected from a par-

ticular project. Terpstra et al. (2017) studied practitioners’ post-

ings on LinkedIn to understand what contextual factors practition-

ers perceive as challenging when it comes to security require-

ments in ASD. They identified 21 concepts that indicated prob-

lems and 15 coping strategies. Tøndel et al. (2017) studied soft-

ware security practices of public companies to understand how

to take a risk-centric approach to software security. They identi-

fied triggers and barriers for software security activity. Daneva and

Wang (2018) studied documented security requirements engineer-

ing frameworks for ASD, that were known to be used in practice,

and identified 46 coping strategies. As can be seen from Table 6 ,

these match well with the influence categories we identified in

our study, indicating that the conceptual model of influences on

the security priority that came out of our study is relevant more

broadly. Further it builds confidence in the findings in this study.

This confidence is further strengthened as these influence cate-

gories are widely present also in the broader secure software en-

gineering literature.

Driving force is related to championing, and in literature the

role of Security Champion (Antukh, 2017 ; Jaatun and Cruzes, 2021)

utilises that terminology. In this case study, we consider champi-

oning in the context of a broader set of roles (Kocksch et al., 2018)

and include championing that is not formally recognised and made

visible (e.g., developer initiatives for security). As a cross-cutting

concern, security requires "intertwined and distributed responsi-

bilities, often crossing organizational, professional or even legal

boundaries" (Kocksch et al., 2018). At the same time, unclear re-

sponsibilities (Kocksch et al., 2018) can be a hindrance for effective

security work. Literature has shown a great potential for security

experts to increase developers’ sense of responsibility for security

through their interaction (Xiao et al., 2014 ; Palombo et al., 2020)

but has also pointed to challenges in this relation (Ashenden and

Lawrence, 2016 ; Tøndel et al., 2020c ; Weir et al., 2020b) and the

possibility of having the opposite effect if developers feel judged or

security becomes a hurdle (Ashenden and Lawrence, 2016). Product

Owners have been identified as a potential hindrance for software

security being prioritised (Terpstra et al., 2017 ; Alsaqaf et al., 2019).

Regarding visibility , literature points to the potential invisibil-

ity of security in technology and in the development work. Secu-

rity has some inherent aspects that can make it invisible in devel-

opment. For instance, security vulnerabilities rarely affect normal

use, and thus “tend to remain invisible until one specifically looks

for them” (Türpe, 2017). Security can be considered a type of care

work, and care is generally "not a task in itself" (Kocksch et al.,

2018). The common oscillations between security and insecurity

(Kocksch et al., 2018) gives security a transitory and changing ap-

pearance, and the bigger concept of software quality is considered

"fuzzy" in software development (Karhapää et al., 2021). In periods

of time pressure, visual cues in the workplace can be one of several

strategies to increase the likelihood that security is remembered

(Chowdhury et al., 2020). Further, previous studies found that it is

important to have security as an explicit requirement, rather than

implicit (Bartsch, 2011 ; Poller et al., 2017 ; Terpstra et al., 2017).

When it comes to motivation, security requires ongoing com-

mitment, as one is dealing with "a never-ending cycle of leak

and fix" where security weaknesses may spark security work and

where effort s to increase security can lead to new insecurities

(Kocksch et al., 2018). This commitment cannot be confined to

specific roles. According to Viega (2020) , software vendors need

outside pressure to do a good job on security. This is supported

by Xie et al. (2011) , identifying customer concerns, government

regulations, and organisational policies as factors that motivate

or constrain security. Security can be hard to sell as a business

value and people can "drop security because they perceive it a

fight not worth fighting" (Terpstra et al., 2017). The most cited

13

G

199

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Table 6

Mapping of influence categories to influences identified in related studies (for Terpstra et al. and Daneva and Wang, the numbers in the table are the same IDs that

are used in their papers respectively; a (-) represents a problem or barrier, a (+) represents a trigger or coping strategy).

Influence category Terpstra et al. (2017) Tøndel et al. (2017) Daneva and Wang (2018)

Driving force (-) The product owner can be a hindrance

(C13, 15)

(-) Unclear responsibilities.

(-) Architects do not take on

responsibility.

(+) Add security champion, security

master, etc. (S19, 22)

Visibility (-) Security requirements that are poorly

defined (C8).

(-) Security is forgotten (C7, 18).

(-) Rely on tacit knowledge (C17).

(+) Use cross-functional streams to not

forget (S13)

(+) Check, review (S14–15)

(+) Security included as user stories (+) Document security requirements,

security debt, decisions, etc. (S1–3, 6–8,

13, 16, 38, 41)

(+) Monitor, test, review, certify (S31, 33,

37, 39)

Motivation (-) Unclear business

value (C1, 3).

(-) Low customer priority (C6).

(-) Fight not worth fighting (C4).

(-) Developers do not care (C11).

(+) Use regulation to justify requirements

(S7).

(+) Ensure product owner support (S12).

(-) Security viewed as primarily a

technical issue.

(-) Limited interest from architects.

(-/ +) Risk perception.

(+) Legal requirements.

(+) Errors made.

(+) Security made the project interesting.

(+) Security stakeholder in the team

translates security requirements into

business value (S20).

(+) Own security requirements (S32).

(+) Discuss the risk to the business (S43).

Room to

manoeuvre

(-) Cost because of expert involvement

(C2).

(-) Limited knowledge amongst

developers (C11–12, 20) and product

owners (C14).

(+) Add security expert to team (S9)

(+) Educate and raise awareness (S10–11)

(-) Time pressure.

(-) Limited competence and awareness

(procurers, developers), and limited

training.

(+) Budget for security.

(+) Allocate time (S4)

(+) Add security roles to the team (S21,

23)

(+) Use risk analysis to build awareness

(S26)

(+) Virtual security group (S27)

(+) Training (S28–30)

(+) Approve/ban tools/functions (S35–36)

Process match (-) Late security requirements (C9).

(-) Planning sessions without quality

stakeholders (C10).

(-) Organisational structure (C21).

(-) Limitations of agile (C19) and its

implementation (C16).

(+) Integrate security requirements (S1,

3–6)

(+) Include security in estimates (S2)

(-) Contractors responsible – limited

follow up.

(-) Agile development.

(-) CISO not able to follow up

(+) New product.

(+) Integrate security requirements (S1–3,

6–8, 17)

(+) Integrate security activities (S9–10,

12, 15, 40, 42)

(+) Have periodic security sprints (S5) or

a sprint security bucket (S11, 18))

(+) Have security experts take part in

prioritisation (S24–25)

(+) Let security specialists use the same

whiteboards/ as the team (S34).

(+) Security control posts in the process

(S44–45).

(+) Hybrid security and functionality

testing (S46)

Other (-) Different people prioritise security

differently (C5).

(-) Balancing security with other needs

reasons for not paying off technical debt have been found to be

low priority, lack of organisational interest, focusing on short term

goals, and cost (Freire et al., 2020). A view of security as an ad-

dition (not part of working software) and extra cost (van der

Heijden et al., 2018) or a view of security as a hygiene-factor

(where meeting security requirements will not result in positive

feedback) (Loser and Degeling, 2014) can reduce motivation for

security.

As for room to manoeuvre , literature supports the im-

portance of time, budget, and competence. Time pressure is

a well-documented challenge for security work (Bartsch 2011 ;

Poller et al., 2017 ; Alsaqaf et al., 2019 ; Behutiye et al., 2020 ;

Chowdhury et al., 2020). Software security work can represent

substantial effort (Venson et al., 2019). A recent study of human

cybersecurity behaviour (Chowdhury et al., 2020) confirmed the

influence of time pressure, and identified six patterns of non-

secure behaviour stemming from time pressure: avoiding, bypass-

ing, disclosing, disregarding, influencing, and over-relying. Further,

security is a specialized competence involving complex reasoning

(Türpe, 2017). It involves the idea of an attacker, something that

requires developers to think "outside the box" (Weir et al., 2020b).

It is unrealistic to expect the average developer or Product Owner

to be a security expert (Viega, 2020). Training has been identified

as a pilar for security requirements integration in ASD (Türpe and

Poller, 2017 ; Daneva and Wang, 2018).

Regarding process match, several works point towards the

need for alignment with the development processes (Türpe and

Poller, 2017 ; Daneva and Wang, 2018 ; Tøndel and Jaatun, 2020),

exemplified by the following quote: "in order to succeed, ap-

proaches to encourage and anchor security work in a development

setting must be aligned to the setting’s defining organizational as-

pects" (Türpe and Poller, 2017). Companies need to balance agility

with the need to produce extra artefacts, perform additional ac-

tivities, and have additional roles (Daneva and Wang, 2018). Pre-

vious literature points to the need for setting up the company to

properly react to and handle quality requirements (Olsson et al.,

2019), and identifies challenges of integrating security and other

quality aspects into ASD (Oueslati et al., 2015 ; Alsaqaf et al., 2017 ;

Behutiye et al., 2020).

6. Discussion

The conceptual model of influences on security priority repre-

sents a way to approach how an ASD project and its context sup-

ports software security getting prioritised. For security profession-

als, the influence categories can be used to assess the situation in

and around a project to consider the need for follow-up and select

a strategy that matches the situation of a project. In the following

we build on the influences identified in Section 4 and highlight

the main lessons learned for each influence category. These have

14

G

200

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Fig. 9. Recommendations for security experts for each of the influence categories, based on experiences from this case.

Fig. 10. Positional Map showing positions that can be taken related to placement of responsibility for security and level of integration of security into development. The

emphasis is on potential consequences of the various positions for security.

been identified by considering Tables 1–5 as well as the experi-

ences made by the Security Officer, extracting the key takeaways.

Fig. 9 gives an overview of our recommendations for what security

experts should take into consideration for each of the identified

influence categories.

The suggestion for process match, that companies consider

whether to go towards an emerging or prescribed approach to soft-

ware security, is related to Fig. 10 . This figure is a more general

form of the Positional Map already presented in Fig. 8 , and we

use it to provide our understanding of what certain positions in

the map would entail. In an emerging approach, security is fully

integrated with the way of working and everybody takes responsi-

bility for security (upper-left). In a prescribed approach, one relies

on procedures and separate follow-up on security (lower-right). It

is unclear what would be the added benefit of combining pro-

cedures with fully integrated security (upper-right) although this

seems to be called for to some extent in the data material. Both

emerging and prescribed approaches to security have their merits,

and can be combined, e.g., as captured by the term ambidextrous

security (Cruzes and Johansen, 2021). However, although software

security approaches can find themselves on a continuum between

being prescribed and emerging, these approaches are to some ex-

15

G

201

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

tent in conflict – as experienced in our study and as also pointed

out by Jarz ̨ebowicz and Weichbroth (2021) . They state that some

of the documentation practices related to non-functional require-

ments in agile software development are mutually contradictory;

you cannot both have separate documentation techniques for non-

functional requirements and document them in the same way and

together with functional requirements.

Note that in this study we have not investigated the influence

of ASD on the priority given to security, although we place our

study in the context of ASD. While literature documents challenges

to software security in ASD, priority of quality aspects such as

security is challenging also outside of ASD (Blaine and Cleland-

Huang, 2008). Security professionals need to deal with the chal-

lenges of getting security prioritised regardless of whether the

challenges are caused by ASD or are more general. Still, we spec-

ulate, based on Fig. 10 , that an emerging approach is particularly

relevant with ASD. For SMEs with limited central security exper-

tise, it may also be the only viable option.

We view the influence model presented in this article as an

important complement to existing maturity models for software

security, such as BSIMM and OWASP SAMM, that are more activ-

ity orientated, and favours documented processes. We do not op-

pose using BSIMM or OWASP SAMM for agile development – on

the contrary we have used BSIMM in previous work (Jaatun et al.,

2015 ; Jaatun, 2017). Both BSIMM and OWASP SAMM give an

overview of activities that should be considered by software de-

velopment projects. However, based on our use of BSIMM with

SMEs doing software development, it is our impression that the

full set of activities offered can be quite overwhelming and that it

is hard for an SME with limited central resources dedicated to se-

curity to get to a point where such security activities are integrated

into the work processes. Further, agile principles point to "Individ-

uals and interactions over processes and tools", "Working software

over comprehensive documentation", "Customer collaboration over

contract negotiation", and "Responding to change over following a

plan" (Beck et al., 2001). Although this clearly does not mean that

ASD calls for no processes or no documentation, it still points to

a need to consider other options. Self-managed and autonomous

teams are important in ASD, and as was illustrated in Fig. 10 , it

is possible to opt for a more emerging approach to software se-

curity where more responsibility is given to the teams. However,

this calls for other ways to assess projects for security and support

them in their security work, and this work represents one step in

that direction.

The influence model identified in this study come from the

study of a case that would be placed in the more undesirable lower

left quadrant of Fig. 10 . One should expect that the influences

could have been different if the studied case had fitted elsewhere

in this Positional Map. Thus, despite broad support in literature for

the identified influence categories, more research is needed to get

to a model of influences that we can consider to be generally ap-

plicable. We speculate that having a model of influences for secu-

rity priority in ASD projects is more important for organisations

aiming for an emerging approach to software security, and thus

studies should be performed for such organisations.

7. Threats to validity

In the following we discuss our study in relation to the valid-

ity criteria that have been recommended for case studies within

software engineering (Runeson and Höst, 2009 ; Yin, 2018).

7.1. Construct validity

Construct validity can be defined as the “accuracy with which

a case study’s measures reflect the concepts being studied”

(Yin, 2018). This study is concerned with the concept of security

priority. Through identifying what influences the priority given to

security in an ASD project, it contributes to operationalising what

security priority can mean in this context.

According to Sjøberg and Bergersen (2021) , threats to construct

validity can be divided into three categories: inadequate defini-

tion of the concept, construct underrepresentation, and construct-

representation bias. Literature did not offer us a theory of soft-

ware security priority to build on in our study. However, literature

offered descriptions of security work as cross-cutting and fuzzy

(Türpe, 2017 ; Kocksch et al., 2018 ; Karhapää et al., 2021), and iden-

tified a broad set of challenges to security in ASD (Inayat et al.,

2015 ; Oueslati et al., 2015 ; Khaim et al., 2016 ; Alsaqaf et al.,

2017 ; Behutiye et al., 2020 ; Jarz ̨ebowicz and Weichbroth, 2021).

Thus, in the design of the case study we were deliberately broad

and open in our view of what security priority could look like

and what could influence the security priority. We aimed to en-

ter the interviews and observations and our study of documen-

tation with an open mind. In observations we noted down as

much detail as possible – to reduce risk that we missed impor-

tant aspects whose significance we did not understand at the

time of observation. The use of Situational Analysis (Clarke et al.,

2016) supported us in taking in the totality of the case and all

its elements. Thus, we did address the threat of construct un-

derrepresentation and construct-representation bias in our design,

while there remains a risk of inadequate definition of the con-

cept; ’security priority’ was difficult to define and thus difficult to

measure.

Additional strategies important to support construct validity

was our prolonged involvement with DevCo, the use of triangu-

lation in data collection and analysis, the involvement of the Secu-

rity Officer of DevCo in discussing the findings, and the opportu-

nity given to DevCo representatives to review the initial research

report. This way, we ensured that the concept of security priority

was addressed from different angles and over time, and that our

understandings as researchers reflected the understanding and ex-

periences of company representatives.

7.2. Internal validity

Internal validity considers the “strength of the causal or other

“how” and “why” inferences made in a case study” (Yin, 2018).

Strategies supporting internal validity in qualitative studies include

thick and context-rich descriptions, triangulation, linking results

to prior or emerging theory, identify areas of uncertainty, seeking

negative evidence, considering rival explanations, and original par-

ticipants finding the conclusions accurate (Miles et al., 2018). In

this study we have made use of all these strategies. Further, our

analysis approach supported us in identifying similarities as well

as discrepancies in the data, as we in turn focused our analysis ef-

forts on different parts of the data material. Note that though we

made effort s to look for discrepant evidence and question our find-

ings, we did not find much. In the following we point to the main

potential biases we have identified.

We collected the perspectives of individuals in different roles

and with different levels of competence on security. There are

however several additional actors whose voices we did not seek

out in data collection but that could have given valuable insights

and perspectives. Examples are developers, managers, testers, and

operations.

Our close collaboration with the Security Officer, both during

data collection and analysis, was a strength and a weakness in our

study. As we gained access to the case through the Security Offi-

cer and collaborated closely with the Security Officer throughout,

there was a threat of us favouring the Security Officer perspective

and being seen as too strongly linked with the Security Officer. We

16

G

202

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

were concerned that this could lead to a potential unwillingness

to share information with us in interviews. Thus, in interviews we

brought up these issues in the beginning, as part of going through

a data consent form, and made the interviewees aware that infor-

mation they shared in the interview could be withheld from the

Security Officer. However, none of the interviewees expressed any

concerns related to us sharing information with the Security Of-

ficer, and in our impression, talked quite freely also about their

challenges. This made us conclude that our strong relation with

the Security Officer was viewed positively, increasing our potential

contribution to the work in the company, and increasing their trust

in us as researchers.

It is likely that our presence as researchers influenced the

project we studied. At the very least, it is likely that our pres-

ence worked as a visual cue to consider and talk about security

issues. To make us aware of and reflect on our influence as re-

searchers on the case, we specifically included this as a point in

the observation template. Thus, for every observation the first au-

thor wrote about how she may have influenced what she observed,

and this regular reflection enabled us to take this aspect into

account in data collection and analysis. In interviews, our influ-

ence as researchers was probably even larger, as we together with

the interviewees steered the conversation and were co-creators

in the narratives that came out of the interviews. However, we

were aware of our influence and took measures, in the creation

of the interview guide and during the interviews themselves, to

create an atmosphere of trust and allow the interviewee to talk

freely about their experience related to specific examples of their

choosing.

7.3. External validity

External validity concerns the "extent to which the findings

from a case study can be analytically generalized to other situa-

tions that were not part of the original study" (Yin, 2018). Some

particulars of the studied case may have led this case to expe-

rience different influences than what would be present in most

other development projects. Regarding Driving force, it is likely that

different influences would have been observed if there had not

been a Security Champion in the team, and if the Security Offi-

cer had not been placed in the development department. When

it comes to Visibility , different influences might have been expe-

rienced if, e.g., security had been part of procedures at the Prod-

uct Owner level. Regarding Motivation , the security push from the

customer and the third-party security experts involved on the cus-

tomer side in ProjectAlpha will not be present in all development

projects – and was not present in ProjectBeta. For Room to manoeu-

vre , the need to compete for projects in a bid process contributed

to challenges regarding time and budget for security. This may be

different for other types of projects. Further, interviews revealed

that the Product Owners were particularly pressed for time during

the period of the study because of several big projects in paral-

lel. And finally, for Process match , there was a lack of culture for

involving operations and security was not fully part of their pro-

cesses. They were also already being overloaded with documenta-

tion in Jira. This may not be the case for other projects, though

we hypothesise that many projects could experience similar

challenges.

To support external validity, we have aimed for a thick descrip-

tion to support readers in judging whether the reported results are

relevant for other contexts. Furthermore, we show how our results

confirm the results from previous studies (see Section 5). This need

for a thick description however had to be balanced with the wish

for anonymity from the studied company. Norway is a small coun-

try, thus too many details could easily jeopardize this anonymity.

7.4. Reliability

Reliability can be defined as the "consistency and repeatabil-

ity of producing a case study’s findings" (Yin, 2018). Throughout

we kept an overview of all data collection activities and interac-

tion with the case. In data collection, we emphasised the collec-

tion of detailed data, recording and transcribing all the interviews

and making thorough observation notes. We kept an analysis jour-

nal and used several techniques in analysis to ensure a thorough

consideration of all the evidence. Findings were validated with the

Security Officer of DevCo.

8. Conclusion

In this article we have reported on the findings from a longitu-

dinal case study that gives insight into the strategy used by one se-

curity professional in an SME to influence the priority assigned to

security in software development projects in the company. Based

on the study of this case we have identified influences on the

priority given to security in the development projects, as well as

made recommendations for security professionals who want to in-

crease key decision makers’ attention to security. With this work

we complement existing maturity models that are activity orien-

tated with a model of influence categories giving an overview of

characteristics of situations that can influence the priority given to

security.

For practitioners, this study offers knowledge of potential in-

fluences on the priority given to software security in ASD. This

knowledge can be used to assess which ongoing development

projects need to be given particular attention to increase the

chances that software security is adequately addressed through-

out. Further, this assessment considers that projects may do well

on security despite a lack of formal procedures or processes. The

recommendations can support security professionals in selecting

successful strategies for influencing ASD projects and the prior-

ity they give to security. As part of selecting such a strategy, we

suggest that companies should make a strategic decision whether

they, on a longer-term, would aim to evolve towards a prescribed

or emerging approach to security. When applying the results from

this article, practitioners should however be aware that the results

are based on a single case study. Thus, it is important to consider

how well the studied project matches with the context where this

result is applied.

For researchers, this study provides a model of influences on

the priority given to software security, based on a detailed study of

one case over a longer period, and is built on an analysis approach

that takes the full situation into account. This model needs to be

validated and extended upon in further research. The influences

identified, as well as the recommendations for security practition-

ers, can provide a basis to build upon to in research aimed to make

recommendations for security professionals on which strategy to

choose in varying circumstances. Moreover, researchers could take

the discussions we provide on prescribed vs. emerging security ap-

proaches as inspiration to conduct studies aimed towards making

recommendations for when companies should select a prescribed

vs. emerging approach to security. Similarly, future studies could

be aimed towards providing companies with recommendations on

how to gradually build successful prescribed and emerging security

initiatives in various contexts, as well as when and how to com-

bine features of prescribed and emerging approaches successfully.

Declaration of Competing Interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared to

influence the work reported in this paper.

17

G

203

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

CRediT authorship contribution statement

Inger Anne Tøndel: Conceptualization, Methodology, Formal

analysis, Investigation, Writing – original draft, Visualization.

Daniela Soares Cruzes: Conceptualization, Methodology, Writing

– review & editing, Funding acquisition, Resources. Martin Gilje

Jaatun: Writing – review & editing, Supervision. Guttorm Sindre:

Writing – review & editing, Supervision.

Acknowledgments

This research was funded by the Research Council of Norway ,

Grant No. 247678 . The authors would like to thank the company

where this study was performed, especially the interviewees and

the participants in the meetings we observed. We would also like

to thank our colleagues in the “Fabrikk” for valuable comments on

an earlier version of this article.

References

Alsaqaf, W., Daneva, M., Wieringa, R., Grünbacher, P., Perini, A., 2017. Quality re-
quirements in large-scale distributed agile projects–a systematic literature re-

view. In: Requirements Engineering: Foundation for Software Quality, 10153.

Springer, Cham, pp. 219–234. doi: 10.1007/978- 3- 319- 54045- 0 _ 17 REFSQ 2017 .
Alsaqaf, W., Daneva, M., Wieringa, R., 2019. Quality requirements challenges in the

context of large-scale distributed agile: an empirical study. Inf. Softw. Technol.
110, 39–55. doi: 10.1016/j.infsof.2019.01.009 .

Antukh, A., 2017. Security Champions Playbook. OWASP . https://github.com/c0rdis/
security- champions- playbook/tree/master/Security%20Playbook .

Ashenden, D., Lawrence, D., 2016. Security dialogues: building better relationships
between security and business. IEEE Secur. Priv. 14 (3), 82–87. doi: 10.1109/MSP.

2016.57 .

Bakalova, Z., Daneva, M., Herrmann, A., Wieringa, R., 2011. Agile requirements prior-
itization: what happens in practice and what is described in literature. In: Pro-

ceedings of the International Working Conference on Requirements Engineering
doi: 10.1007/978- 3- 642- 19858- 8 _ 18 , Foundation for Software Quality, Springer .

Baldassarre, M.T., Barletta, V.S., Caivano, D., Piccinno, A., 2021. Integrating Security
and Privacy in HCD-Scrum. In: Proceedings of the 14th Biannual Conference of

the Italian SIGCHI Chapter. Bolzano, Italy, p. 37. doi: 10.1145/3464385.3464746 .

Bartsch, S., 2011. Practitioners’ perspectives on security in agile development. In:
Proceedings of the Sixth International Conference on Availability, Reliability and

Security (ARES), pp. 479–484. doi: 10.1109/ARES.2011.82 .
K. Beck, M. Beedle, A. Van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J.

Grenning, J. Highsmith, A. Hunt, R. Jeffries (2001) Manifesto for agile software
development. https://agilemanifesto.org/

Behutiye, W., Karhapää, P., López, L., Burgués, X., Martínez-Fernández, S.,

Vollmer, A.M., Rodríguez, P., Franch, X., Oivo, M., 2020. Management of quality
requirements in agile and rapid software development: a systematic mapping

study. Inf. Softw. Technol. 123, 106225. doi: 10.1016/j.infsof.2019.106225 .
Blaine, J.D., Cleland-Huang, J., 2008. Software quality requirements: how to balance

competing priorities. IEEE Softw. 25 (2), 22–24. doi: 10.1109/MS.2008.46 .
Chowdhury, N.H., Adam, M.T.P., Teubner, T., 2020. Time pressure in human cyber-

security behavior: theoretical framework and countermeasures. Comput. Secur.

97, 101931. doi: 10.1016/j.cose.2020.101931 .
Clarke, A.E., Friese, C., Washburn, R., 2016. Situational Analysis in Practice: Mapping

Research with Grounded Theory. Routledge .
Cruzes, D.S., Johansen, E.A., 2021. Building an ambidextrous software security initia-

tive. In: Manuel, M., Jorge Marx, G., Rory, V.O.C., Alena, B. (Eds.), Balancing Agile
and Disciplined Engineering and Management Approaches for IT Services and

Software Products. IGI Global, pp. 167–188. doi: 10.4018/978- 1- 7998- 4165- 4.

ch009 .
Daneva, M., Wang, C., 2018. Security requirements engineering in the agile era: how

does it work in practice? In: Proceedings of the IEEE 1st International Workshop
on Quality Requirements in Agile Projects (QuaRAP) doi: 10.1109/QuaRAP.2018.

0 0 0 08 .
Eisenhardt, K.M., 1989. Building theories from case study research. Acad. Manag.

Rev. 4 (14), 532–550. doi: 10.5465/amr.1989.4308385 .

Freire, S., Rios, N., Gutierrez, B., Torres, D., Mendonça, M., Izurieta, C., Seaman, C.,
Spínola, R.O., 2020. Surveying software practitioners on technical debt pay-

ment practices and reasons for not paying off debt items. In: Proceedings of
the Evaluation and Assessment in Software Engineering (EASE), pp. 210–219.

doi: 10.1145/3383219.3383241 .
Inayat, I., Salim, S.S., Marczak, S., Daneva, M., Shamshirband, S., 2015. A systematic

literature review on agile requirements engineering practices and challenges.
Comput. Hum. Behav. 51, 915–929. doi: 10.1016/j.chb.2014.10.046 .

Ionita, D., Cvd, V., Ikkink, H.J.K., Neven, E., Daneva, M., Kuipers, M., 2019. Towards

risk-driven security requirements management in agile software development.
In: Proceedings of the International Conference on Advanced Information Sys-

tems Engineering doi: 10.1007/978- 3- 030- 21297- 1 _ 12 , Springer .
Jaatun, M.G., 2017. The building security in maturity model as a research tool. Em-

pirical Research for Software Security: Foundations and Experience .

Jaatun, M.G., Cruzes, D.S., 2021. Care and feeding of your security champion. In:
Proceedings of the International Conference on Cyber Situational Awareness,

Data Analytics and Assessment (CyberSA), IEEE doi: 10.1109/CyberSA52016.2021.
9478254 .

Jaatun, M.G., Cruzes, D.S., Bernsmed, K., Tøndel, I.A., Røstad, L., Lopez, J.,
Mitchell, C., 2015. Software security maturity in public organisations. In: In-

formation Security, ISC 2015, 9290. Springer, Cham, pp. 120–138. doi: 10.1007/
978- 3- 319- 23318- 5 _ 7 .

Jarz ̨ebowicz, A., Weichbroth, P., Przybyłek, A., Miler, J., Poth, A., Riel, A., 2021. A Sys-

tematic literature review on implementing non-functional requirements in agile
software development: issues and facilitating practices. In: Lean and Agile Soft-

ware Development, LASD 2021, 408. Springer, Cham, pp. 91–110. doi: 10.1007/
978- 3- 030- 67084- 9 _ 6 .

Karhapää, P., Behutiye, W., Rodríguez, P., Oivo, M., Costal, D., Franch, X., Aaramaa, S.,
Chora ́s, M., Partanen, J., Abherve, A., 2021. Strategies to manage quality require-

ments in agile software development: a multiple case study. Empir. Softw. Eng.

26, 28. doi: 10.1007/s10664- 020- 09903- x .
Khaim, R., Naz, S., Abbas, F., Iqbal, N., Hamayun, M., 2016. A review of security in-

tegration technique in agile software development. Int. J. Softw. Eng. Appl. 7,
4 9–6 8 IJSEA3 .

Koç, G., Aydos, M., 2017. Trustworthy scrum: development of secure software with
scrum. In: Proceedings of the International Conference on Computer Science

and Engineering (UBMK), IEEE .

Kocksch, L., Korn, M., Poller, A., Wagenknecht, S., 2018. Caring for IT security: ac-
countabilities, moralities, and oscillations in IT security practices. In: Proceed-

ings of the ACM on Human-Computer Interaction - CSCW doi: 10.1145/3274361 .
Loser, K.U., Degeling, M., Kimppa, K., Whitehouse, D., Kuusela, T., Phahlamohlaka, J.,

2014. Security and privacy as hygiene factors of developer behavior in small and
agile teams. In: ICT and Society, 431. Springer, Berlin, Heidelberg, pp. 255–265.

doi: 10.1007/978- 3- 662- 44208- 1 _ 21 HCC 2014 .

Maxwell, J.A., 2013. Qualitative Research Design: an Interactive Approach. Applied
Social Research Methods 41 Sage publications .

McGraw, G., 2006. Software security: Building Security in. Software security: Build-
ing Security in. Addison-Wesley Professional .

Migues, S., Erlikhman, E., Ewers, J., Nassery, K., (2021) BSIMM12 2021 Found.
Report. Synopsis. https://www.bsimm.com/content/dam/bsimm/reports/

bsimm12-foundations.pdf

Miles, M.B., Huberman, A.M., Saldaña, J., 2018. Qualitative Data analysis: a methods
Sourcebook. Sage publications .

Olsson, T., Wnuk, K., Gorschek, T., 2019. An empirical study on decision making for
quality requirements. J. Syst. Softw. 149, 217–233. doi: 10.1016/j.jss.2018.12.002 .

Olsson, T., Wnuk, K., Jansen, S., 2021. A validated model for the scoping process
of quality requirements: a multi-case study. Empir. Softw. Eng. 26 (2), 1–29.

doi: 10.1007/s10664- 020- 09896- 7 .

Oueslati, H., Rahman, M.M., Lb, O., 2015. Literature Review of the challenges of de-
veloping secure software using the agile approach. In: Proceedings of the 10th

International Conference on Availability, Reliability and Security, pp. 540–547.
doi: 10.1109/ares.2015.69 24-27 Aug. 2015 .

Palombo, H., Tabari, A.Z., Lende, D., Ligatti, J., Ou, X., 2020. An ethnographic under-
standing of software (in) security and a co-creation model to improve secure

software development. In: Proceedings of the Sixteenth Symposium on Usable
Privacy and Security SOUPS 2020 .

Pelrine, J., 2011. On understanding software agility: a social complexity point of

view. Emerg. Complex. Organ. 13, 26–37 .
Pohl, C., Hof, H.J., 2015. Secure scrum: development of secure software with scrum.

arXiv Prepr. arXiv: 1507.02992 .
Poller, A., Kocksch, L., Türpe, S., Epp, F.A., Kinder-Kurlanda, K., 2017. Can security

become a routine?: a study of organizational change in an agile software de-
velopment group. In: Proceedings of the 2017 ACM Conference on Computer

Supported Cooperative Work and Social Computing. Portland, Oregon, USA,

pp. 2489–2503. doi: 10.1145/2998181.2998191 .
Riessman, C.K., 2008. Narrative Methods for the Human Sciences. Sage .

Rindell, K., Hyrynsalmi, S., Leppänen, V., 2015. Securing scrum for VAHTI. In: Pro-
ceedings of the 14th Symposium on Programming Languages and Software

Tools .
Rindell, K., Hyrynsalmi, S., Leppänen, V., 2017. Busting a myth: review of agile

security engineering methods. In: ARES ’17: Proceedings of the 12th Interna-

tional Conference on Availability, Reliability and Security, pp. 1–10. doi: 10.1145/
3098954.3103170 .

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study re-
search in software engineering. Empir. Softw. Eng. 2 (14), 131–164. doi: 10.1007/

s10664- 008- 9102- 8 .
Schwaber, K., 2004. Agile Project Management with Scrum. Microsoft press .

Sjøberg, D., Bergersen, G., 2021. Construct Validity in Software engineering. TechRxiv

doi: 10.36227/techrxiv.14141027.v1 .
Terpstra, E., Daneva, M., Wang, C., 2017. Agile practitioners’ understanding of secu-

rity requirements: insights from a grounded theory analysis. In: Proceedings of
the 2017 IEEE 25th International Requirements Engineering Conference Work-

shops (REW), pp. 439–442. doi: 10.1109/REW.2017.54 .
Thomas, T.W., Tabassum, M., Chu, B., Lipford, H., 2018. Security during applica-

tion development: an application security expert perspective. In: CHI ’18: Pro-

ceedings of the 2018 CHI Conference on Human Factors in Computing Systems
doi: 10.1145/3173574.3173836 .

Tuladhar, A., Lende, D., Ligatti, J., Ou, X., 2021. An Analysis of the Role of Situated
Learning in Starting a Security Culture in a Software Company. In: Proceedings

of the USENIX Symposium on Usable Privacy and Security (SOUPS) 2021 .

18

G

204

I.A. Tøndel, D.S. Cruzes, M.G. Jaatun et al. Computers & Security 118 (2022) 102744

Türpe, S., 2017. The trouble with security requirements. In: Proceedings of the IEEE
25th International Requirements Engineering Conference (RE). IEEE doi: 10.1109/

RE.2017.13 .
S. Türpe, A. Poller (2017) Managing security work in scrum: tensions and challenges.

SecSE@ ESORICS 2017:34–49.
Tøndel, I.A., Cruzes, D.S., Jaatun, M.G., 2020a. Achieving" Good Enough" software

security: the role of objectivity. In: EASE ’20: Proceedings of the Evaluation
and Assessment in Software Engineering, pp. 360–365. doi: 10.1145/3383219.

3383267 .

Tøndel, I.A., Cruzes, D.S., Jaatun, M.G., 2020b. Using Situational and Narrative Analy-
sis for Investigating the Messiness of Software Security. In: ESEM ’20: Proceed-

ings of the 14th ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), pp. 1–6. doi: 10.1145/3382494.3422162 .

Tøndel, I.A., Jaatun, M.G., 2020. Towards a conceptual framework for security re-
quirements work in agile software development. Int. J. Syst. Softw. Sec. Prot. 11

(1), 33–62. doi: 10.4018/IJSSSP.2020010103 , IJSSSP .

Tøndel, I.A., Jaatun, M.G., Cruzes, D.S., 2020c. IT security is from mars, software
security is from venus. IEEE Secur. Priv. 18 (4), 48–54. doi: 10.1109/MSEC.2020.

2969064 .
Tøndel, I.A., Jaatun, M.G., Cruzes, D.S., Moe, N.B., 2017. Risk centric activities in se-

cure software development in public organisations. Int. J. Sec. Softw. Eng. 8, 1–
30. doi: 10.4018/IJSSE.2017100101 , IJSSE4 .

van der Stock, A., Cuthbert, D., Manico, J., Grossman, J.C., Lang, E., (2021) OWASP

application security verification standard 4.0.3, ed.
van der Veer, R., (2019) SAMM agile guidance. https://owaspsamm.org/guidance/

agile/
van der Heijden, A., Broasca, C., Serebrenik, A., 2018. An empirical perspective on

security challenges in large-scale agile software development. In: Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement. Oulu, Finland. ACM doi: 10.1145/3239235.3267426 .

van Wyk, K.R., McGraw, G., 2005. Bridging the gap between software development
and information security. IEEE Secur. Priv. 3.5, 75–79. doi: 10.1109/MSP.2005.118 .

Venson, E., Alfayez, R., Gomes, M.M., Figueiredo, R.M., Boehm, B., 2019. The impact
of software security practices on development effort: an initial survey. In: Pro-

ceedings of the ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), IEEE doi: 10.1109/ESEM.2019.8870153 .

Viega, J., 2020. 20 years of software security. Computer 53, 75–78. doi: 10.1109/MC.

2020.3013685 , Long Beach Calif11 .
Weir, C., Becker, I., Noble, J., Blair, L., Sasse, M.A., Rashid, A., 2020a. Interventions

for long-term software security: creating a lightweight program of assurance
techniques for developers. Softw. Pract. Exp. 50 (3), 275–298. doi: 10.1002/spe.

2774 .
Weir, C., Rashid, A., Noble, J., 2020b. Challenging software developers: dialectic as a

foundation for security assurance techniques. J. Cybersecur. 6 (1). doi: 10.1093/

cybsec/tyaa007 .

Williams, L., Meneely, A., Shipley, G., 2010. Protection poker: the new software se-
curity "Game". IEEE Secur. Priv. 14–20. doi: 10.1109/msp.2010.58 , 8.3 .

Xiao, S., Witschey, J., Murphy-Hill, E., 2014. Social influences on secure develop-
ment tool adoption: why security tools spread. In: Proceedings of the 17th

ACM conference on Computer supported cooperative work & social computing,
pp. 1095–1106. doi: 10.1145/2531602.2531722 .

Xie, J., Lipford, H.R., Chu, B., 2011. Why do programmers make security errors? In:
Proceedings of the IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC), IEEE doi: 10.1109/VLHCC.2011.6070393 .

Yin, R.K., 2018. Case study Research and Applications. Sage, p. 6e .

Inger Anne Tøndel is a senior research scientist at SINTEF Digital, Trondheim, Nor-

way, and a Ph.D. candidate at the at the Department of Computer Science, Nor-
wegian University of Science and Technology (NTNU), Trondheim. Her research in-

terests include software security, security requirements, information security risk

management, and smart-grid cybersecurity. Tøndel received an M.Sc. in telematics
from NTNU in 2004.

Daniela Soares Cruzes is a professor at the Department of Computer Science,

NTNU, Trondheim, Norway. Her research interests are agile software development,
software security, software-testing processes, empirical research methods, theory

development, and synthesis of software-engineering studies. Cruzes received her
Dr.Ing. in electrical and computer engineering with emphasis in empirical software

engineering at the University of Campinas, Brazil, in 2007. She has two postdoctoral
studies, one at the Fraunhofer center at the University of Maryland, College Park,

and one at the Norwegian University of Science and Technology, Trondheim. She is

a member of committees with various highly ranked international conferences and
journals.

Martin Gilje Jaatun is a senior research scientist at SINTEF Digital, Trondheim, Nor-
way, and an adjunct professor at the University of Stavanger, Norway. His research

interests include software security, security in cloud computing, and security of crit-
ical information infrastructures. Jaatun received his Dr.Philos. in critical information

infrastructure security from the University of Stavanger in 2015. He is vice chair of

the Cloud Computing Association, vice chair of the IEEE CS Technical Committee
on Cloud Computing, an IEEE Cybersecurity Ambassador, an IEEE Computer Society

Distinguished Visitor, and a Senior Member of the IEEE.

Guttorm Sindre is a professor at the Department of Computer Science, NTNU,

Trondheim, Norway. His-research interests are in requirements engineering, secu-
rity requirements, and IT education and didactics. Sindre obtained his Ph.D. from

the Norwegian Institute of Technology in 1990. He was the leader of Excited Centre

of Excellent IT Education from 2016 to 2021.

19

G

205

G

H

207

Paper H: ‘Continuous software security through security
prioritisation meetings’

Included is the published material [33], following the Creative Commons Attribution 4.0
International (CC BY 4.0) licensing arrangement used by Elsevier. The online supplementary
material in Appendix B is included after the article.

H

The Journal of Systems & Software 194 (2022) 111477

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

In practice

Continuous software security through security prioritisation
meetings✩

Inger Anne Tøndel ∗, Daniela Soares Cruzes
Norwegian University of Science and Technology (NTNU), Department of Computer Science, Sem Sælandsvei 9, Gløshaugen, 7034 Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 22 March 2022
Received in revised form 18 June 2022
Accepted 2 August 2022
Available online 18 August 2022

Keywords:
Software security
Security meeting
Security prioritisation
Security requirements
Agile software development

a b s t r a c t

Software security needs to be a continuous endeavour in current software development practices.
Frequent software updates, paired with an ongoing flow of security breaches, requires software
companies to address software security throughout development and post deployment. Prescriptive
software security approaches do not match well with agile software development and its emphasis on
self-management. Agile approaches are however in favour of meetings as a coordination and problem-
solving strategy. This article investigates the role of regular security meetings centred on making
security priorities and decisions for achieving continuous software security. Through technical action
research and an observational case study, we studied variations of such meetings in three companies.
We found that such meetings can reach key stakeholders, make security more visible, and contribute
to ongoing security prioritisation. Thus, security meetings are a promising approach, especially for
small and medium sized development companies with basic yet immature security competence. Future
research should investigate further the role of such meetings and how best to organise them for
different contexts and needs. For this we outline implications for research and practice, e.g., related
to participants and how to organise the discussions and prioritisations in the meeting.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Contemporary software development happens as a continuous
flow of software development rather than as larger planned incre-
ments. Further, software products are updated throughout their
whole lifetime, to meet customer demands for new and improved
features and to ensure continuous quality. Pairing this with daily
news of security breaches, it becomes clear that software security
needs to be a continuous endeavour as well.

As Fitzgerald and Stol (2014), we use continuous to represent
a ‘‘holistic endeavor’’ and the ‘‘entire software life-cycle’’. They
define continuous security as, ‘‘Transforming security from being
treated as just another non-functional requirement to a key con-
cern throughout all phases of the development lifecycle and even
post deployment’’ (Fitzgerald and Stol, 2014).

Continuous security does not come without effort. For security
experts it would thus be tempting to prescribe security activities
and tools to use during development and beyond, to ensure
security is properly addressed. Research, however, shows that
such prescriptive approaches are challenging to pair with the self-
management of agile software development (ASD) (T‘̀urpe and

✩ Editor: Dr. Daniel Mendez.
∗ Corresponding author.

E-mail addresses: inger.anne.tondel@ntnu.no (I.A. Tøndel),
daniela.s.cruzes@ntnu.no (D.S. Cruzes).

Poller 2017; (Weir et al., 2020a), and rather suggest ’’sensitizing
the developers to their security needs, allowing them to choose
for themselves which tools and techniques to use’’ (Weir et al.,
2020a).

There are several frameworks and maturity models available
for software companies wanting to continuously address software
security, here exemplified by the OWASP Software Assurance
Maturity Model (SAMM) (Crawley et al., 2020) and the Building
Security In Maturity Model (BSIMM) (Migues et al., 2021). Both
are agnostic to the development approach, and thus are relevant
also for ASD (van der Veer, 2019). However, the comprehensive-
ness of these models (e.g., BSIMM12 now consists of 122 activities
within the domains of governance, intelligence, SSDL touchpoints,
and deployment) can make them hard to approach, especially for
smaller companies that do not necessarily have the resources to
build a large security program (Tøndel et al., 2020). And research
points to small and medium-sized enterprises (SMEs) as having
the largest potential for improvement of software security (Weir
et al., 2020a). Further, knowing which activities to apply is not
straight-forward. Being too ambitious may lead to an overspend-
ing on security (Tøndel et al., 2020), which can have negative
business implications. For companies, what is considered ade-
quate and cost-effective when it comes to security may vary
between projects and change over time (McGraw et al., 2013;
Tøndel et al., 2020), as development progresses and requirements

https://doi.org/10.1016/j.jss.2022.111477
0164-1212/© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

H

209

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

are negotiated. Thus, there is a need for strategic decisions on
security on a regular basis.

ASD is oriented towards people, interactions, and self-
management (Beck et al., 2001), with meetings as a major mean
of coordination (Strode et al., 2012). To exemplify, Scrum
(Schwaber, 2004) is largely centred on meetings and include five
meeting types: sprint planning meeting, daily Scrum meeting,
sprint review meeting, sprint retrospective meeting, and prod-
uct backlog refinement. None of these meetings are focused on
security. Some researchers have proposed regular meetings on
security in ASD, in form of adding security review meetings to
Scrum when necessary (Kongsli, 2006), using Protection Poker to
collectively estimate the security risk in every iteration (Williams
et al., 2010), or organising a Security Intention Meeting Series
to regularly involve decision makers in security prioritisation
(Tøndel et al., 2019a). Further, less regular meetings are proposed
in form of Threat Modelling sessions (Bernsmed et al., 2022) or
security workshops aimed toward security incentivisation (Weir
et al., 2020a). Many of the activities included in BSIMM or OWASP
SAMM could be performed through or supported by regular meet-
ings, examples being Threat Assessment, Security Architecture,
and Architecture Assessment in OWASP SAMM. However, existing
research points to uncertainties in how to best organise such
meetings to ensure effect on the software security (Cruzes et al.,
2018; Tøndel et al., 2019b). A better understanding is needed
on what are the effects of security meetings related to devel-
opment, and how practitioners can be guided in ensuring effect
from meetings. Furthermore, previous studies have identified
challenges regarding longer-term adoption of security meetings
(Tøndel et al., 2019b; Weir et al., 2020a, 2021; Bernsmed et al.,
2022), leading to the need for more knowledge of how to support
ongoing adoption.

This article proposes and studies regular security meetings
that: (1) are not confined to security experts but rather include
key decision makers as participants, (2) identifies and assesses se-
curity needs, and makes prioritisations and decisions on the next
steps, and (3) are flexible and can be adjusted to the needs and
priorities of the company when it comes to meeting scheduling
and organisation. As such, we build on the previous suggestions
for a Security Intention Meeting Series (Tøndel et al., 2019a).
The research we report on is part of a design science study
aimed at improving software security prioritisation by developing
a meeting approach that satisfies the needs of ASD projects. We
study such security meetings in three SMEs, one of which were
already running this type of meeting, and two where we brought
this meeting type to the company. Our main research question is
the following: How can regular security meetings centred on making
security prioritisations and decisions be organised to maximise their
positive effect on the priority given to security? (RQ1).

We have previously described the concept security prioritisa-
tion as ‘‘prioritisation among security requirements and activities,
prioritisation of security vs. other aspects such as functionality, as
well as the priority and attention given to security in the day-to-
day work’’. Thus, we take a broad view of security prioritisation.
To relate to this rather intangible concept of security prioritisa-
tion, it is necessary to concretise what security prioritisation may
look like in a project, and what can be done to influence the
priority given to security. As part of this design science study,
we have previously performed a case study to investigate what
influences the security prioritisation throughout an ASD project.
We found that the priority given to security was influenced by the
presence of a driving force for security, the visibility of security,
the motivation, the room to manoeuvre, and the process match
(Tøndel et al., 2022). In the study reported in this paper, we
use these previously identified influence categories to support us
in understanding how the studied meetings can have a positive

effect on the priority given to security. Additionally, we study
what effects are seen by adopting this type of meeting (RQ2) and
what facilitates or hinders the adoption of such meetings (RQ3).

The studied meeting instances varied in their structure, the
support offered, and in who participated. The companies varied
in size, development approach, and in customer relations. This
variety allowed us to identify similarities and variations across
the cases, and use this to understand: (1) what are common
experiences that a broader set of companies might expect from
applying this meeting concept, and (2) how key variations can
be explained based on the cases. The article contributes both to
practice and research: (1) we use the lessons learned to provide
development companies with better support in deciding whether
to take up regular security meetings in development, and how to
organise such meetings, and (2) we provide researchers with in-
sight into the practical experiences in performing such meetings
and point to research needs.

The article is organised as follows. Section 2 uses litera-
ture to motivate regular software security meetings, as well
as presents current knowledge on security meetings in ASD.
Section 3 describes the research approach, including the cases
studied. Section 4 presents the findings according to the three
research questions. Section 5 discusses the implications of these
findings, Section 6 discusses the threats to validity, and Section 7
concludes the article.

2. Background and related work

This section uses current literature on software security and
on meetings in ASD to explain the theoretical background for
investigating regular security meetings. Furthermore, it describes
the known evidence from studies of similar types of meetings,
and introduces in more detail the Security Intention Meeting
Series that we build on in this work.

2.1. Background for investigating regular security meetings

There is a growing body of literature on how to integrate secu-
rity and other software qualities with ASD. This includes literature
on working with security requirements in ASD (Villamizar et al.,
2018; Tøndel and Jaatun, 2020), managing quality requirement
sin ASD (Behutiye et al., 2020); (Jarzębowicz and Weichbroth,
2021), and on bringing ASD to safety-critical systems (Heeager
and Nielsen, 2018). Literature reviews within this area point to
some recurring challenges of working with security and other
quality requirements in ASD. One challenge identified by many
studies is that of neglect of quality requirements (Behutiye et al.,
2020); (Jarzębowicz and Weichbroth, 2021). Related challenges
are that of late consideration of quality requirements (Behutiye
et al., 2020) and a lack of recognition by stakeholders (Jarzębow-
icz and Weichbroth, 2021). Proposed solutions include initiatives
to start focus on quality requirements earlier in the project, and to
involve multiple roles and viewpoints in eliciting and reviewing
quality requirements (Jarzębowicz and Weichbroth, 2021). Still, a
main criticism towards much of the existing research in this field
is the limited empirical evaluations of proposed techniques and
approaches to integrate software security into ASD (Villamizar
et al., 2018; Bishop and Rowland, 2019; Behutiye et al., 2020).
There is a call for more guidelines, not only practices and methods
(Behutiye et al., 2020). Furthermore, there is still a need for
more lightweight strategies, as the challenge of time constraints
due to short iterations have not received adequate attention in
the proposed strategies, despite this being a commonly reported
challenge (Behutiye et al., 2020).

Literature provides some knowledge on what can increase the
priority given to security in an agile development context. New-
ton et al. (2019) studied literature and performed interviews to

2

H

210

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 1. Literature supporting the suitability of regular security meetings to achieve prioritisations and decisions regarding security.

identify success factors for software security in ASD. They pointed
out the importance of practices centred around individuals and
culture. This is in line findings in the previously mentioned case
study (Tøndel et al., 2022), where we identified five areas that
influence software security prioritisation in an ASD project. Many
of these influence areas (driving force, visibility, motivation, room
to manoeuvre, and process match) are related to individuals and
culture.

Türpe and Poller (2017) explored tensions between Scrum
and security requirements through a case study. They identified
challenges related to key stakeholders such as product owners.
They pointed out that it is important to make security visible
as a concern, and they emphasised the need for more research
on prioritisation of security and on improving collaboration be-
tween agile teams and security experts. Drawing on data from
ethnographic studies, Kocksch et al. (2018) explained how secu-
rity’s similarities with care work (invisible, undervalued, never
finished) can make recognition of security work challenging. Fur-
thermore, they pointed out how security needs to be handled in
collaboration among a broad set of stakeholders. Building on the-
ory on objectivity, Tøndel et al. (2020) identified the inclusion of a
variety of perspectives and the building of interactional expertise
as key strategies to move towards ‘‘good enough’’ security.

Assal and Chiasson (2019) performed a survey aimed at under-
standing how to support developers in their work on software
security. They found that developers need to identify with the
importance of security. In this respect, the ethnographic studies
of Palombo et al. (2020) and Tuladhar et al. (2021) pointed to
the role of co-creation and situational learning (respectively) in
changing software security practices. It is not enough to point

developers to the presence of security problems. Rather, changes
are seen when developers and security experts work together
to solve problems. This is in line with Weir et al. (2020b), who
identified the need to move towards a ‘‘dialectic’’ approach to
security. Building on data from interviews they identified inter-
actions among developers and other stakeholders as a prime way
to achieve security in a cost-effective way.

Fig. 1 provides our summary and synthesis of the findings from
the above-mentioned studies. On the right side of this figure, we
list key findings from the studies. Then, on the left side of the
figure, we synthesise these findings into a set of effects called
for in literature, and a set of recommended strategies. Letters are
used to link the findings from the studies (on the right) with the
effects/strategies (on the left). As shown in the figure, there is
a call for more visible and tangible security (Türpe and Poller,
2017; Kocksch et al., 2018; Assal and Chiasson, 2019; Tøndel
et al., 2022), for reaching key stakeholders with security (Türpe
and Poller, 2017; Kocksch et al., 2018; Assal and Chiasson, 2019),
and for making security an ongoing priority (Türpe and Poller,
2017; Kocksch et al., 2018; Assal and Chiasson, 2019; Tøndel et al.,
2022). Recommended strategies for security include stakeholder
involvement (Türpe and Poller, 2017; Kocksch et al., 2018; Tøndel
et al., 2020; Weir et al., 2020b), security reflection (Türpe and
Poller, 2017), security prioritisation and follow-up (Türpe and
Poller, 2017; Kocksch et al., 2018), co-creation and situated learn-
ing (Türpe and Poller, 2017; Palombo et al., 2020; Tøndel et al.,
2020; Tuladhar et al., 2021; Tøndel et al., 2022), documentation
for security (Türpe and Poller, 2017; Tøndel et al., 2020, 2022),
and having a context supportive of emerging security practices

3

H

211

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

(Türpe and Poller, 2017; Assal and Chiasson, 2019; Tøndel et al.,
2022)

Security meetings are not a goal, but a possible mean to
achieve ongoing and strategic prioritisation of security. Regular
security meetings are likely to be able to support the effects
and strategies identified in Fig. 1, e.g., by involving stakeholders
on security and engaging them in regular security reflection,
prioritisation, and follow-up. Furthermore, addressing security
through meetings is highly compatible with an agile approach.
According to the Agile manifesto, ‘‘The most efficient and effective
method of conveying information to and within a development
team is face-to-face conversation’’ (Beck et al., 2001). As already
mentioned, Scrum relies on several meetings (Schwaber, 2004).
Daily stand-up meetings are also recommended within Kanban
(Ahmad et al., 2013). In ASD, meetings support teamwork quality
through balancing member contributions and facilitating mutual
support (Lindsjørn et al., 2016), and offers a major mean of
coordination (Strode et al., 2012; Moe et al., 2018).

2.2. Related work on regular security meetings in ASD

Despite meetings playing a central role in ASD, there is limited
research on the effect and organisation of meetings that involve
activities related to ongoing prioritisation, planning, and follow-
up. Of such meetings specific to ASD, the daily stand-up meeting
has been most extensively studied by Stray et al. (2016).

When it comes to security meetings directed towards ag-
ile or continuous software development, we have identified the
following approaches:

• Security Review (SR) meeting (Kongsli, 2006): Arranged af-
ter the Scrum iteration planning meetings in cases where
there were many or complex security concerns related to
the user stories that were picked. The full development team
participated in this meeting to ensure collective ownership
also of security issues.

• Protection Poker (PP) (Williams et al., 2009, 2010; Tøndel
et al., 2019b): A collaborative risk estimation game that
gathers the whole development team to discuss, identify
and rank the software security risks related to the features
to be implemented in the upcoming iteration.

• Threat Modelling (TM) meetings, as studied by Cruzes et al.
(2018) and Bernsmed et al. (2022): Meetings centred on
performing threat modelling, e.g., using Data Flow Diagrams
and the STRIDE mnemonic.

• Facilitated Security Workshops (SW) (Weir et al., 2020a,
2021): Workshops centred on incentivisation, threat as-
sessment, and on-the-job training. Used the Agile Security
Game, a simplified threat assessment, and follow-up ses-
sions, to discuss security issues and questions. Workshops
were led by researchers who were not security experts, to
study the effect of this workshop package also when there
were no security experts available.

• The Security Intention Meeting Series (Tøndel et al., 2019a):
A meeting series to gather key decision makers in a project,
to regularly assess the state of the software security of the
project and identify concrete actions moving forward.

Fig. 2 gives an overview of identified effects from these meet-
ing types, as well as what has been found to work well or be
challenging. The figure is organised so that findings from studies
of the security meetings are presented together, while findings
on the daily stand-up meetings are presented separately. In the
following, we first present aspects related to meeting organisa-
tion, before moving on to output and effect, and, finally, point to
facets of the context.

When it comes to meeting organisation, many of the aspects
of the meetings that worked well were related to strategies called
for in existing literature (see Fig. 1). Examples are stakeholder in-
volvement (participation by the full team Kongsli, 2006; Williams
et al., 2010; Weir et al., 2020a; Bernsmed et al., 2022, facilitation
by managers Weir et al., 2021), security reflection (discussions
and active participation Tøndel et al., 2019b; Bernsmed et al.,
2022), and co-creation and situated learning (peer-based learn-
ing Weir et al., 2021). This points to meetings as a powerful
intervention, which should be properly addressed in research.
Broad participation and discussions were pointed out as impor-
tant across the different security meetings. Broad participation
however came with the risk of less effective meetings (Stray et al.,
2016). Both Protection Poker and Threat Modelling found clear
needs for some security expertise, e.g., to be able to explain terms
and ensure quality (Cruzes et al., 2018; Tøndel et al., 2019b;
Bernsmed et al., 2022). This contrasts with the Security Work-
shops, which had as a requirement that they should work also
without security experts (Weir et al., 2020a). The challenges and
uncertainties identified related to meeting organisation (e.g., un-
certainties on how to structure the meeting and who to include in
order to make the meetings effective Cruzes et al., 2018; Tøndel
et al., 2019b) points to a need to further explore different meeting
types and collect more experiences to guide both researchers and
practitioners. This article meets this need.

When it comes to effect and output, both the daily stand-
up meeting and the security meetings could help get overview
of issues and solve problems/make improvements. Related to
the desired effects outlined in Fig. 1, the meetings generally
contributed to making security more visible and tangible. De-
spite the meetings leading to security improvements in processes
and code, studies point to challenges in following up the risks
identified in the meetings and seeing how the meeting output is
linked to improved security of the products (Cruzes et al., 2018;
Tøndel et al., 2019b). There is a need to understand better what
makes this transition challenging, so that better guidance can be
offered. Existing literature (see Fig. 1) points to following up of
prioritisations, something that can be done in meetings. However,
there are likely more complex reasons that make this transition
challenging. To exemplify, both Palombo et al. (2020) and Weir
et al. (2020a) emphasise the systemic aspect of software secu-
rity. The study reported on in this article examines how effects
from meetings can be supported or hindered (RQ1), considering
aspects of the meeting as well as the context.

When it comes to the context, the studies of these meetings
pointed to the importance of motivation and time for security
(Tøndel et al., 2019b; Weir et al., 2020a; Bernsmed et al., 2022).
Further, the company size and the security maturity level might
be important for longer-term adoption. Weir et al. (2021), who
studied eight organisations of varying size, found that adoption
was strongest in the medium-sized organisations, followed by
the smaller organisations, while adoption was low in the larger
organisations. However, we have reason to believe that a broader
set of contextual factors have implications for adoption of meet-
ings and their effect. We base this expectation on the large
number of documented challenges to software security and other
quality aspects in ASD (Oueslati et al., 2015; Behutiye et al., 2020;
Jarzębowicz and Weichbroth, 2021), as well as the substantial
amount of organisational blockers and motivators (Weir et al.,
2020a) and influences (Tøndel et al., 2022) identified for adopting
and prioritising software security practices. In this article we
contribute with more knowledge on contextual factors important
for getting effect and adoption of regular security meetings in
development companies or teams. Further, as time has been iden-
tified as one key obstacle, we study meeting approaches where
the schedule can be adapted to the time pressure experienced in
the company.

4

H

212

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 2. Key findings from studies of the daily stand-up meeting, as well as the Security Review Meeting (SR), Protection Poker (PP), Threat Modelling (TM), and
facilitated security workshops (SW).

2.3. The security intention meeting series

In this study, we decided to examine meetings that followed
the spirit set out for the Security Intention Meeting Series (Tøn-
del et al., 2019a) but with freedom for companies to adapt the
approach to match their needs. This is based on recommenda-
tions that developers should not be prescribed a particular way
of addressing security, but rather be empowered to make their
own decisions (Türpe and Poller, 2017; Weir et al., 2020a). The
Security Intention Meeting Series approach was a response to
challenges with getting companies to consider security in every
iteration, e.g., as is done in Protection Poker, while needing a
more lightweight and recurring approach than what is common
for threat modelling and security risk analysis (Tøndel et al.,
2019a). Further, this meeting approach had not yet been studied
empirically.

The Security Intention Meeting Series approach (Tøndel et al.,
2019a) can be summarised as follows. Early in the project, key
decision makers are gathered, together with people knowledge-
able about security and development, to discuss the security
intentions of the project. This implies agreeing on the security
goals and needs of the project, and what aspects need to be
given particular attention (intention setting). Then, regular follow-
up meetings are arranged throughout. These consists of a status
assessment (‘Are we moving towards our goals regarding software
security?’) and an identification of action points for the next
period (‘What will be our concrete priorities moving forward?’).
Companies and projects are, however, free to adapt the meeting
approach to their needs, e.g., regarding how often to arrange such
meetings, who should facilitate the meetings, and who should
be invited as participants. Still, some guidance is given. Shorter
meetings are preferred to longer ones, there should be some
regularity to the meetings (e.g., by always agreeing on a time for

the next meeting as part of the meeting), one person should be
responsible, and roles such as product owner or project manager
should be present.

3. Research approach

First, this section describes the overall research approach of
this work as that of design science, and explains how technical
action research and case studies were used in combination to
support the design goal. Then, it introduces the research design
choices that were made for both the technical action research
and case study research parts of the study, before it describes
each of these parts in more detail. Finally, the analysis approach
is presented.

3.1. Combining technical action research and observational case
studies into a design science research approach

The main research question of this work represents a design
goal, aimed at improving software security prioritisation by de-
veloping a meeting approach that satisfies the needs of agile de-
velopment projects. Consequently, the overall research approach
of this work is design science (Wieringa, 2014). Design science ‘‘is
the design and investigation of artifacts in context’’, where the
artefacts ‘‘interact with a problem context in order to improve
something in that context’’ (Wieringa, 2014). Thus, design science
iterates between two problem-solving activities: (1) designing
artifacts to bring about improvements, and (2) answering knowl-
edge questions about the context and the artifact in the context.
To answer the knowledge questions, the researcher can bring in
other research methods (Wieringa, 2014). Two of the possibilities
are observational case studies (‘‘a study of a real-world case with-
out performing an intervention’’ (Wieringa, 2014) and technical

5

H

213

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 3. The overall research approach, using design science with technical action research and observational case studies to validate and refine the recommendations
for security prioritisation meetings.

action research (‘‘the use of an experimental artifact to help a
client and to learn about its effects in practice’’ (Wieringa, 2014).
Both observational case studies and technical action research can
provide understanding of the underlying mechanisms that pro-
duce real-world phenomena (Wieringa, 2014). Thus, both these
research approaches were suited to understand the adoption and
the effects of these meetings (the artefact) and what brought
about this adoption and effect.

The overall design science approach is depicted in Fig. 3. The
concern of this article is step 2–4 in this figure. The decision to
combine action research and case study research was pragmatic;
we used technical action research with the companies we studied
that did not already perform regular security prioritisation meet-
ings and used observational case study with a company that was
already performing such meetings. When action research was
applied, our goal in the study was both to help the company with
their security and to validate and refine the meeting concept, and
we iterated upon and adapted the meeting approach throughout
the study to better meet the needs of the company. When case
study research was applied, we studied a meeting approach al-
ready in use by the company without aiming to improve upon
the approach or help the company in their approach to software
security.

3.2. Overarching research design choices

The Security Intention Meeting Series approach (Tøndel et al.,
2019a) that we wanted to validate and refine through this study
had already been designed. However, as our goal was to improve
this approach, we were free to adapt this meeting concept to
the needs of the companies we interacted with. We see this as
a strength of our study. There is no one single way to achieve
security prioritisation through regular security meetings. The size
of the company and the type of project and customer might
impact both how to run the meeting effectively, what kind of
support would be needed, e.g., in form of a template, and who
should participate. Thus, the meetings we studied all shared key
characteristics with the original idea of the Security Intention
Meeting. Still, we allowed for variation from these characteristics
on some aspects depending on the needs of the company. Thus,
there are some discrepancies in who participated in the meetings
and in the setting of intentions, compared to the original design
of the approach. An overview of the characteristics of the studied
meeting models is given in Table 1.

To perform this study, we needed to recruit companies with:
(1) an intention to perform ongoing security prioritisation, and (2)
an ongoing security prioritisation meeting initiative or a wiliness
to initiate such a meeting initiative. Through a research project
with several company participants, we had access to several
cases that matched these needs, and we opted to involve three
companies in the study. The companies have been given the
pseudonyms MediumCo, SmallCo, and UnaidedCo for the purpose

of this article. An overview of characteristics of these compa-
nies is given in Table 2. This variety of companies allowed us
to evaluate this meeting type in companies ranging from very
small to medium size, and with different customer relations that
in varying ways constrained their ability to incorporate regular
security meetings as part of development. Further, it allowed
us to study how to start applying such a meeting, as well as
study a meeting that had already been successfully adopted by a
development company. The choice to focus on SMEs was guided
by literature showing smaller companies have a larger potential
for improvements in their software security than larger compa-
nies, and showing more success with security meetings in smaller
companies (Weir et al., 2020a).

For all cases, we used multiple data collection methods, as
is recommended for case studies (Yin, 2018). An overview is
given in Table 3. The action research study was centred on meet-
ings that we facilitated and observed. Meeting observations were
supplemented with other data sources, including interviews. For
the observational case study, we used a similar approach where
observation of meetings was a central part of data collection. All
data collection was done by the first author, and in the cases
where we used action research, the second author had the role
of facilitator of the meetings. In MediumCo and UnaidedCo the
observer was largely passive in meetings, while the observer
participated more to the discussion in SmallCo. The first author
took detailed notes from all security meetings, including notes on
the structure of the meetings, the topics that were discussed, the
types of security decisions and priorities made, the participants’
level of engagement, what worked well, what was challenging,
and if anything was surprising. We also reflected on the potential
influence of the observer in the meeting. Interviews were semi-
structured, and covered topics such as the goal of the security
meetings, their effect, how the meetings could be improved, and
the intention to continue with the meetings. With UnaidedCo,
the retrospective was led by the first author and covered similar
topics as the interviews. More information on the data collection
instruments is given in Appendix B.

The main ethical aspects of this study are the privacy of the
individuals participating in the study, the sensitive information
on the security of the solutions as shared with us in meetings,
and ensuring volunteer participation in the study. Privacy related
to data collection and analysis was specified in a report sent to
the Norwegian Centre for Research Data, an organisation that pro-
vides data protection services to Norwegian research institutions.
This ensured that data handling plans were in accordance with
current privacy legislation. Observation notes were made in such
a way that individuals were not directly identified. Interviews
were only recorded upon interviewees informed consent. When
it comes to security of sensitive company data, this was ensured
through non-disclosure agreements (NDAs) with the companies.
In observations, we took care not to write down what the partic-
ipants pointed out as highly sensitive. Access to the raw data and

6

H

214

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 1
Meeting model characteristics.
Meeting model
characteristics

MediumCo SmallCo UnaidedCo

Meeting
maturity

Initiated in one project, then continued in
another project, and eventually brought to
another team.

Not used before. Had run this type of
meeting for 10 months
when we started
observation.

Scope Project/team Project Department

Participants
from the
company

Initial use: 3–5 people from the following
roles: security resources (security officer,
security champion), product owners (mainly
those with more technical background),
developer representatives.

Developers (1–2) Department lead and
system architects (5)

Brought to new team: the product owner and
the full team.

Physical/online
facilities

Initial use: mixture of physical and online
participants, shared screen

Online meeting with
shared screen

Physical meeting, one
location, screen shown
in meetingBrought to new team: online meeting with

shared screen

Facilitation Initial use: security officer External security expert Department lead
Brought to new team: product owner

Frequency Initial use: Monthly — time for next meeting
decided upon in the meeting

Biweekly — time for
next meeting decided
upon in the meeting

Monthly

Brought to new team: NA

Duration 45 min–1 h Initially 1 h. Later 30
min.

2 h scheduled, usually
spent 1 h and 30–45
min

Support
material

Confluence page with security areas and
supporting questions.

Excel sheet with security
areas and supporting
questions.

NA

Meeting
documentation

Confluence page: concerns and action points
added within the structure of the support
material

Excel sheet: concerns
and action points added
within the structure of
the support material

Meeting memos with
action points + excel
sheet with overview of
all identified security
concerns that were not
yet fully addressed

Typical agenda (1) Status of tasks and open issues from
previous meetings; (2) Discuss security areas
not previously addressed, or where there are
open issues still; (3) Time for next meeting.

(1) Status of action
points from last
meeting; (2) Open
discussion on security
issues; (3) Excel sheet
with security concerns;
(4) New action points.

Table 2
Company characteristics.
Company characteristics MediumCo SmallCo UnaidedCo

developers About 80 developers 2–3 developers About 20 developers

locations with developers 4 1 1

Criticality of security (Medium) Clear security risks,
mainly related to offering a
public service to many users,
and in ensuring validity of
tickets.

(Low) Limited security risks
but with plans to develop new
solutions that brings in both
privacy and security concerns.

(High) Develops solutions that
handle security critical
information.

Customer relation Targets mainly one sector. Bid
process in competition with
other actors. Varying security
concerns among customers.

Several smaller customers
without much security
competence and concerns. New
bigger customer upcoming.

One main customer (the
mother company) that is
concerned about security.

Agile principles adherence Hybrid. Scrum-based
development process but with
rather fixed contracts.

Few developers, thus few clear
processes.

Hybrid. Kanban-based
processes within the
development department.

Presence of central security support Initially: security officer as part
of the development
department and security
champions in development
teams. Later: key resources left
without being replaced.

NA Chief Security Officer in
mother company (the
customer). One person in the
development department with
an informal security role.

7

H

215

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 3
Overview of data collection.
Data collection MediumCo SmallCo UnaidedCo

Main research approach Action research Action research Case study

Observations of security meetings
(documented in an observation template)

7 (one of which were
shortened/largely skipped)
(11/2019–08/2020)

11 meetings
(10/2020–03/2021)

4 (09/2019–03/2020)

Other observations (documented in an
observation template)

2 meetings to bring this
technique to new team

3 introductory meetings before
starting with the meeting
template; 1 visit to the
company

NA

Interviews (interviews at MediumCo and
SmallCo were recorded and transcribed upon
interviewee consent; interviews and
retrospective at UnaidedCo were performed
by two researchers, where one was
responsible for taking notes)

Interviews with two product
owners after participating in
meetings (online) (06/2020)

Interview with the main
developer after participating in
meetings (online) (05/2021)

Interview with 2 meeting
participants and 3 outsiders
before observations started
(in-person) (04/2019);
retrospective after observations
(2 sessions, 4 participants from
the meeting + one outsider,
in-person but with one online
participant) (09/2020)

Status updates (documented in notes or in
emails)

6 informal talks with the
security officer
(08/2019–06/2020); email
exchange with one product
owner (08/2020)

Email exchange with main
developer on adoption of the
technique 10 months after the
other data collection (01/2022)

NA

Documentation Example confluence page;
description of security areas
and security questions

Excel sheet used as template
for meetings; description of the
meeting approach written by
the main developer; some of
the security material developed
as a result of the meeting

NA

the analysed data was limited to a few individuals. Participation
in the study was voluntary for the companies and the individ-
uals. However, we recognise that for MediumCo and SmallCo,
participation in the study led to them getting support in their
software security work. This may have made it more difficult for
them to refuse participation. For all companies, it might also be
challenging for individuals to refuse participation if the company
was part of the study. However, we got the impression that
participants were positive towards contributing to this research.

3.3. Technical action research: MediumCo and SmallCo

Technical action research relies on mutual trust, and such trust
can take a long time to establish (Wieringa, 2014). When we
recruited the first company, MediumCo, the meeting concept had
not yet been tried out in a company and we thus needed to work
with a company where we had predefined trust to try out new
ways of working. MediumCo matched this need. Furthermore, it
was a good case as it had characteristics that we suspected to be
common among SME; it had few dedicated security resources, an
ongoing yet immature software security initiative, cross-border
working arrangements, and operated in a strongly competitive
business. Thus, it was a relevant case to study, also if we would
end up with a single-case design (Yin, 2018). We had worked
with MediumCo before and had good knowledge of the company
and its context, something that reduced one of the common
challenges in canonical action research, i.e., to deal with the
organisational complexity when diagnosing the current situation
(Davison et al., 2012). This also made it easier for us to make
an initial instantiation of the meeting concept that matched this
company

MediumCo and its development was organised in several
teams, and projects could be performed by one or more teams.
Each of these teams had one or two product owners associated
with the team. A security officer role was part of the development
department, overseeing and supporting the security work in the
teams. In addition, each team had one assigned security champion

– a developer with extra attention to security issues. We started
working with a team (in the following referred to as Team A)
where the product owners were technically skilled and interested
in security, thus making them open to try this technique. The
security officer was active in adapting the security intention
meeting concept to the needs of MediumCo.

In the instantiation of the security intention meeting for Medi-
umCo, the status assessment was supported by a checklist con-
sisting of some general questions and a long list of security areas
to consider (See Appendix A). This way the meeting participants
were supported in identifying all the important security issues
to be considered. However, this made the intention setting be
more technical and thorough than originally envisioned (Tøndel
et al., 2019a). In the meetings, participants assessed the status
of already identified security tasks, discussed security needs and
progress related to the security areas in the checklist, and iden-
tified priorities moving forward, including a time for the next
meeting. Participants were product owners, the security officer,
and key representatives from development.

As illustrated in Fig. 4, we facilitated and observed five meet-
ings in Team A. Then we performed interviews with the two
product owners that were considered the key participants in
these meetings. Based on the experiences from Team A, the
company wanted to bring the meeting to another team (Team B).
An introduction to the meeting approach was given by one of the
product owners involved in Team A. In this case, no researcher
was involved as facilitator. Instead, the Product Owner of Team B
did the facilitation. The meeting concept was the same, however,
in this case participants included the full team.

Experiences from MediumCo made us interested to see how
this meeting approach would work in a company with less re-
sources dedicated to security. This led to the recruitment of
SmallCo, a very small development company with close to no
previous experience in software security. They were motivated to
participate, as envisioned changes to their software product port-
folio made it necessary to incorporate more security into their
development activities. Thus, working with SmallCo represented

8

H

216

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 4. Overview of the technical action research with MediumCo and SmallCo.

an opportunity to see how regular security prioritisation meet-
ings could support companies with limited security resources and
experiences, a situation we envision to be common in many SMEs.

After having iterated over the meeting approach with Medi-
umCo, the meeting support material used was refined to make it
less company specific. Then it was brought to SmallCo. Initially,
we spent some time getting to know the company, as we had not
worked with this company before. This took the form of meetings
and a company visit. Then, we facilitated eleven meetings, fol-
lowed by an interview with the main developer of SmallCo. The
meetings had a similar structure as in MediumCo, but with only
developers as participants. However, due to the limited size of
this company these developers had roles also related to security,
and they were involved in strategic discussions with managers in
the company.

The number of meetings facilitated and observed was based on
practical considerations as well as principles related to saturation.
In MediumCo, we facilitated enough meetings in Team A to make
the company confident that they could continue with meetings
if they chose to. When meetings were brought to Team B, we
observed all meetings that were performed. In SmallCo, we ended
up achieving saturation in our observations, with no main new
issues emerging in the last few meetings. More details on the
meeting model and the support material used in MediumCo and
SmallCo can be found in Appendix A and in Table 1.

Technical action research is different from other action re-
search as it is artifact-driven, not problem driven (Wieringa,
2014). Still, it satisfies the principles of canonical action research
(Davison et al., 2004; Wieringa and Moralı, 2012). Table 4 pro-
vides an overview of how the technical action research, as applied
in this study, relates to these principles.

3.4. Observational case study: UnaidedCo

Case studies study phenomena in their real-world context
(Runeson and Höst, 2009; Yin, 2018), and in this case required
a company already performing some sort of regular security
prioritisation meeting. Through our interaction with companies,
we identified a company that had such a practice. This happened
as part of work we were doing with this company to identify and

evaluate their software security practices. At that point we were
already doing technical action research with MediumCo, and we
saw the opportunity to complement the knowledge gained from
technical action research with a case study of a security meeting
approach that were ongoing and led by the company itself.

The meeting approach had been developed by UnaidedCo in-
dependent of the ideas related to the security intention meeting
series (Tøndel et al., 2019a). However, the meeting had many
similarities with the original security intention meeting concept.
Due to the organisation of the meeting at the department level, no
product owners or similar were present (these were in a different
department). Meeting participants consisted of the department
manager as well as senior employees. Together this group had
security competence, decision making authority, and knowledge
of the development. There was less attention to the setting of
intentions and following them up, as compared with the original
idea. A typical meeting started with going through the status
of previous action points. Then followed an open discussion on
security concerns, with the aim to identify and note down any
such concerns to inform security prioritisations. Then the partic-
ipants decided on action points for the next period. The meeting
happened monthly. More details on the meeting model and the
support material used in MediumCo and SmallCo can be found in
Appendix A and in Table 1.

Fig. 5 provides an overview of the case study with UnaidedCo.
As already stated, it started with interviews aimed to identify and
evaluate current software security practices. Then, we moved on
to observing four security group meetings. These were facilitated
by UnaidedCo, and the first author acted as an observer. Eventu-
ally, we arranged a retrospective that served as an opportunity
for the company to discuss and improve upon their own meeting
practice, as well as an opportunity to get feedback on initial
findings from the observations. This way, we established a basic
overview of the context in which the meetings took place, got
deep knowledge on the meetings through observations, and got
to know the participants’ thoughts on the meetings and their
effect.

The number of meetings observed (4) was agreed with the
company beforehand. We however experienced that few new
issues came up in the meeting observed last, indicating that we
were moving towards saturation in the observations.

9

H

217

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 4
Adherence to the principles of canonical action research (Davison et al., 2004).
Canonical action
research principle

Technical action research as performed in this study

1 – the principle of
the researcher–client
agreement

The action research was part of a bigger research project where we had established
NDAs with the companies. The companies agreed that this meeting could be a good
approach for them given their situation, and they agreed to participate in data
collection.

2 – the principle of
the cyclical process
model (diagnosis –
action planning –
intervention –
evaluation – reflection)

For both MediumCo and SmallCo, there were initial activities to understand their needs
and assess the relevance of the security meeting approach as an intervention
(diagnosis). Then, the meeting approach was instantiated for the company (action
planning) before the meeting series started (intervention). In relation to the meeting
there were reflections with the participants on the meeting itself, and the researchers
also made their assessment of how the meetings could be improved (evaluation,
reflection). Based on this, adjustments were made before the next meeting. Evaluation
also happened in semi-structured interviews.

3 – the principle of
theory

The action research was guided by the hypothesis that the artifact would be able to
improve the security prioritisation in the companies. Previous knowledge on influences
on security prioritisation were used to understand the effects of applying the artifact.

4 – the principle of
change through
action

Each cycle aimed to improve the security prioritisation of the company/project, as well
as improve the security meeting approach.

5 – the principle of
learning through
reflection

The researchers and the company representatives reflected on the meetings, both as
part of the meetings themselves and in interviews.

Fig. 5. Overview of the observational case study with UnaidedCo.

3.5. Analysis

The analysis approach we applied allowed us to dig deep into
each case individually, while allowing for the necessary overview
to identify findings and learning points across cases. The analysis
process consisted of two main stages, as depicted in Fig. 6. The
first stage was concerned with analysing each case individually.
This was important, as a main strength of case studies – and
we would claim, also of action research – is to be able to dig
deep into cases and take the wholeness of the case into account
(Yin, 2018). Thus, cross-case synthesis, the second analysis stage,
should be performed with the goal ‘‘to retain the integrity of the
entire case and then to compare or synthesise any within-case
patterns across the cases’’ (Yin, 2018). These recommendations
informed the analysis process of this study. We used the same
analysis strategy for each case, including the same coding struc-
ture. However, synthesis was done on the aggregated findings
from each case. These aggregated findings were documented in
longer memos. This approach was chosen to ensure we did not
perform a simplified comparison on the variable level but rather
compared and synthesised findings on the case level (Yin, 2018).
To support cross-case comparison, the findings from each case
were summarised in a table in an excel sheet, as visualised in
Fig. 6. This is in line with recommendations from Miles et al.
(2018) of using matrix displays to support cross-case analysis.
This table provided an overview of the findings related to the
effect identified from the meetings (RQ2), what was found to
increase or reduce this effect (RQ1), and what contributed to
or hindered adoption (RQ3). For each entry in the table, it was
stated which case (marked M (MediumCo), S (SmallCo), or U

(UnaidedCo) in Fig. 6) it was related to. The entries were sorted
according to the relevant influence category. In Section 4 that
presents the findings, Tables 7, 8, and 10 use the same format
as was used for cross-case synthesis.

The process used for analysing individual cases is depicted
in Fig. 7. All the collected data was imported into the qualita-
tive data analysis software MAXQDA Pro 2020, and deductively
coded within the coding structure shown in Table 5. According
to (Maxwell, 2013), there are three main types of codes. Or-
ganisational categories represent areas you want to investigate.
Substantive categories describe what happened or what was said.
Theoretical categories place the data into a more general abstract
framework. In this study, organisational categories were selected
according to the research questions, as shown in Table 5. These
categories were used to structure the data material, and initial
coding used only these categories to organise the data. This
could be considered indexing, in line with recommendations from
Deterding and Waters (2021), and implied coding larger chunks
of text into the organising categories. Then, for each of the organ-
ising categories, we performed analytical coding into substantive
and theoretical categories. This is in line with recommendations
from Deterding and Waters (2021) to focus on one research
question at a time and to apply only a few analytic codes at the
time to increase the reliability and validity of the coding.

As we were interested in identifying effects on the priority
given to security (RQ1), we used previous knowledge on influ-
ences on security priority as theoretical codes (Tøndel et al.,
2022). Thus, our coding approach was deductive. Our deductive
approach was however not motivated by theory-testing (Wohlin

10

H

218

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 6. Overview of the analysis process.

Table 5
Overview of coding structure.
Organisational
category — area

Organisational category —
subarea

Theoretical codes Relation to RQs

Adoption Examples of adoption NA RQ3

Examples of non-adoption NA

Reasons for adoption Driving force; Visibility; Motivation; Room
to manouvre; Process match

Challenges to adoption Driving force; Visibility; Motivation; Room
to manouvre; Process match

Effects Positive effects Driving force; Visibility; Motivation; Room
to manouvre; Process match

RQ2

Contributes to effect
– Context-related
– Meeting-related
– Task-related

Driving force; Visibility; Motivation; Room
to manouvre; Process match

RQ1

Hinders effect
– Context-related
– Meeting-related
– Task-related

Driving force; Visibility; Motivation; Room
to manouvre; Process match

RQ1

Challenges and
improvement
suggestions

Challenges in the meeting NA RQ1

Challenges in the context NA

Worked well Worked well in the meeting NA RQ1

Worked well in the context NA

and Aurum, 2015). Rather, it was motivated by a need to ap-
proach and understand this rather broad and abstract concept
(the priority given to security) in a systematic way. For definitions
of the influence categories, see Table 6. As can be seen from
the overview of the coding structure in Table 5, we used these
theoretical categories in the coding related to adoption and effect,
based on the following considerations:

• Effect (RQ2): We had a special interest in identifying and
understanding effects related to security prioritisation, and
these influence categories could help identify effects likely
to have an impact on the prioritisation given to security

• Aspects that contributed to or hindered effects (RQ1): The
five categories structure influences on the priority given to

security, and thus could also help identify and structure
influences on the effect of these meetings.

• Reasons and challenges for adoption (RQ3): We hypothe-
sised that these influence categories could also help iden-
tify and structure conditions that influence adoption of the
meetings, as adoption of these meetings can be considered
part of giving security priority.

As was presented in Section 2 and summarised in Fig. 1,
there are many potential effects and recommended strategies that
support the suitability of regular security meetings to achieve
prioritisations and decisions regarding security. The influence
areas we decided to use as theoretical categories in the coding
are part of this foundation. Still, it was important to ensure that
we, by deciding to build on these influence areas, did not exclude

11

H

219

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 7. Strategy for coding, memoing, and contributing to cross-case synthesis.

Table 6
Influence areas from Tøndel et al. (2022).
Influence area Definition from Tøndel et al. (2022)

Driving force Someone who takes initiative and responsibility for making software security happen. A
negative driving force would actively hinder software security.

Visibility The degree to which security is visible (seen, known about) to stakeholders related to
the project. This includes the visibility of security to developers in their daily coding
activities, to project management and top management, to the customer, and in the
product.

Motivation The willingness to focus on software security, as well as the aspects that cause such
willingness. Reasons for doing or not doing software security, and activities that
provide such reason would be part of this category.

Room to manoeuvre Resources and opportunities to prioritise software security, and to act accordingly. This
might include time, budget, competence, etc.

Process match The ability to fit the security approach into the existing software development process,
so that they align well.

other aspects that could be important as well. We thus performed
a mapping of the effects and recommended strategies identified
from the broader set of literature (and as depicted in Fig. 1) with
the influence areas from Tøndel et al. (2022). This mapping is
shown in Fig. 8. Some of the relations are quite clear, like the
relation between the effect ‘‘Visible and tangible security’’ and
the influence area ‘‘Visibility’’. Other relations were more subtle.
Examples are the effect ‘‘Ongoing priority of security’’ and the
recommended strategy ‘‘Context supportive of emerging security
practices’’. These we consider covered by all the influence areas
in combination. Considering each influence area, driving force
includes effects and strategies related to stakeholders as these
can be important driving forces (or the opposite) for security
prioritisation. Visibility includes making security more tangible,
e.g., through prioritisation and documentation. Motivation in-
cludes getting towards an ongoing priority of security. Room to
manoeuvre includes aspects related to reflection and learning, as
this supports security knowledge and awareness. Process match
concerns how the process for security prioritisation and follow
up is organised, including who is involved.

After coding, we wrote four longer memos per case (as shown
in Fig. 7), identifying and describing the findings related to the
topic of the memo: adoption, effect, challenges and improve-
ments, and worked well. Fig. 9 provides an example from this
process. The memos offered an opportunity to summarise the
key findings and reflect on them. The key findings were then
again used as input to the cross-case table. As is shown in
Fig. 7, the memos on adoption and effects were organised using
the influence categories, and were used as the main input for
the cross-case table. The memos on challenges and improve-
ments and on what worked well were used to complement the
findings.

4. Findings

In the following we present the findings, organised according
to the research questions. We start by describing the effects of the
meetings (RQ2). Then we move on to presenting lessons learned
on what contributed to or hindered the effect (RQ1). Finally, we
describe findings related to adoption (RQ3).

12

H

220

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 8. The effects and strategies identified in literature (ref. the overview given in Fig. 1) can be covered by deductive coding based on the influence categories
from Tøndel et al. (2022). Note that the effect ’ongoing priority of security’ and the strategy ’context supportive of emerging security practices’ are covered by all
influence categories in combination.

Fig. 9. Example illustrating the link between the codes, the memos, and the cross-case table.

13

H

221

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 7
Effects on the influence categories on security priority (M = MediumCo, S = SmallCo, U = UnaidedCo).
Influence category Effect M S U

Driving force Enabling developers to take on responsibility and initiative for
security in their work (including further security meetings)

X X

Visibility Identify, clarify, and document security needs, issues, and tasks X X X

Visibility of the security tasks they are doing, and the security
they currently have in place

X X

Uncover non-functioning security roles/tasks X

Motivation Positive view of the security work and meetings in the
department/company

X X X

Room to manoeuvre Awareness and knowledge building on security X X X

Reuse of knowledge and security work across projects,
opening for reduced cost of security

X X X

Increased confidence on security and on the decisions made,
and opening for getting support for decisions from colleagues

X X

Process match A way to start and continue working with security, including
ideas for how to modify and adapt the approach to better
match their needs

X X

4.1. Effects from the meetings

The meetings brought many positive effects. All meetings led
to the creation of security documentation. SmallCo and Unaid-
edCo reported on direct effects in their development; examples
being a merge request template, security workshops, develop-
ing an incident response management process, starting to use a
password manager, implementation of solutions for signatures
and authentication, improved solution for remote support, the
establishment of additional security meetings, and fixing of iden-
tified weaknesses. As shown in Table 7, the meetings also brought
effects related to all the influence categories previously found to
affect the priority given to security.

Looking at the influence categories, the main effects came
within ’room to manoeuvre’ and ‘visibility’. In all three compa-
nies, the meetings helped build security competence and aware-
ness among participants. The discussions brought both general
and specific security competence relevant for the software being
developed, and note-taking made the identified security needs,
issues, and tasks visible also longer term. There is even evidence
that this awareness, competence, and visibility spread to individ-
uals who did not participate in the meetings (in the following
termed ‘outsiders’). As meeting participants gained more compe-
tence and confidence on security, they improved their ability to
act as a driving force for security. Note, however, that the meet-
ings did not necessarily give more time for security, although
there is some evidence that they made it easier to ask for time
to do security tasks (SmallCo).

The meetings helped get an overview of current security work
and uncover potentials to improve this work, thus contributing
to more cost-effective security. Improvements identified con-
cerned reuse across projects, addressing non-functional security
roles/tasks, and improving the security meetings. The meetings
offered one way to get started with and continue working with
security.

4.2. Lessons learned on meeting organisation

Table 8 gives an overview of identified influences on the effect
of the meeting. In the following we describe lessons learned from
all the cases when it comes to effectively organising these meet-
ings. We start with describing the similarities identified across
cases. Then, we bring up the main variations among the cases.
Finally, we delve into one overarching issue emerging from the
analysis: confidence in the software security prioritisations and
their effect.

4.2.1. Similarities across the cases
In all three cases, the following aspects of the meeting were

important contributors to the effect:

• A view in the company of security as important and worth-
while (motivation)

• Regular security meetings as regular security reminders to-
wards both participants and outsiders (visibility)

• Participants positioned to take action and bring a security
mindset to outsiders (driving force)

• Participants being positive and engaged towards the meet-
ing and security (motivation), having security competence
and experience (room to manoeuvre)

• Good discussions in the meetings to build awareness and
competence (room to manoeuvre)

• Concrete action points from the meeting (process match)

These contributors could, e.g., play out as follows. UnaidedCo
had for several years experienced an ongoing push for security
and this ensured an opening to spend time and money on security
(including gathering senior people for a security meeting). In
UnaidedCo, participants explained that the meetings helped them
think more about security and made them do more security
tasks, and we observed that when the security meetings were
postponed less security activities seemed to happen. In Medi-
umCo, personal engagement motivated a product owner to take
on responsibility for security tasks despite strong time pressure.
Participants in UnaidedCo stated that the discussions were the
most important part of the meeting. In MediumCo, one of the
product owners held clear action points as the most useful result
of the meetings.

All the studied cases experienced the following challenges in
getting effect from the meeting:

• Important discussion points risked being lost as not all
points seemed to be noted down (visibility)

• A focus on functionality in the company and among cus-
tomers pushed security to the background (motivation)

• Time pressure made it hard to take on responsibility for
and/or perform the action points, or made it hard to set
aside time for necessary security training (room to manoeu-
vre)

In all meetings, one person took responsibility for taking notes,
and usually these notes were made visible to all participants.
Still, we observed that there was a risk of forgetting to write

14

H

222

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 8
Overview of influences on the effect of the meeting (M = MediumCo, S = SmallCo, U = UnaidedCo). Note that the term ‘‘outsiders’’ is here used to refer to company
employees not participating in the meeting.
Influence
category

Contributes to the effect M S U Hinders the effect M S U

Driving force Participants that are positioned to take
action and bring a security mindset to
outsiders

X X X

Facilitator that pushes for
documentation and follow up of action
points

X X

Skilled security expert as facilitator and
contributor to the meeting

X X

Visibility Regular meetings mean regular security
reminders (for participants and
outsiders)

X X X Important discussion points can be lost
as not all points seem to be noted down

X X X

Template gives visibility to topics for
discussion and support in identifying
and documenting issues

X X Outsiders may not read security
documentation although it is made
available to them

X X

Template brings attention to similarities
and differences among projects

X Outsiders do not feel they get enough
information from the meeting

X

Actions are taken to bring security
priorities to outsiders

X X Visible costs of security while effects of
security work are less clear X

Security issues visible to outsiders are
easier prioritised

X

Motivation Participants that are engaged and
positive towards the meeting and
security

X X X Focus on functionality in the company
and among customers

X X X

A view in the company of security as
important and worthwhile

X X X Too many prioritised tasks, long list of
issues to address and consider

X

External pushes for security, e.g.,
pentest, customers

X Security tasks that are boring or
unpleasant

X

Room to
manoeuvre

Meeting participants with security
competence and experience

X X X Lack of trust in own judgement —
analysis paralysis

X

Good security discussions in the meeting
build awareness and competence

X X X Challenges in understanding security
terms in the template

X

Template (security areas, questions) that
support discussion and knowledge
building

X Knowledge needs related to practical
security solutions make it hard to
translate decisions into code, etc.

X

Initiatives to bring security competence
to the company

X X Time pressure makes it hard to take on
responsibility for and/or perform the
action points

X X

Room to spend time on security X

Ability to identify a wide variety of
issues quickly in the meeting

X Tasks that are difficult, large, or concern
old systems

X

Having concrete things to discuss helps
justify the time spent in the meeting

X Hard to set aside time for training X

Lack of roles such as sysadmin to
establish security infrastructure, etc.

X

Process match Concrete action points from the meeting X X X Not well placed to deal with non-project
related issues

X X

Ability to include results from meeting
in external planning process

X Participants that are not the right ones
to be responsible for an action point

X X

Small company, low security maturity,
easy to get effects

X Need perspectives from outsiders X

Lack process for following up meeting
results in development

X

Meeting too early or too late during
development

X X

down discussion points, and that it could be challenging to know
what to document and how. Unsurprisingly, all studied com-
panies experienced a push for functionality that impacted the
priority of security. UnaidedCo explained that the product owners
were mainly concerned with functionality. Similarly, MediumCo
explained that customers pay for features, not security. Conse-
quently, it was hard to push for security when the security tasks
could delay development of features. This push for functionality
was somewhat related to time pressure, which was particularly

strong in MediumCo. Their most stated reason for skipping se-
curity tasks was time pressure, and all roles experienced such
pressure. One product owner thus explained that the security
meetings mainly served to give him bad conscience, as it made
him aware of all the things he did not manage to do:

‘‘Product owner: It kind of works that you are part of discussions
and contribute with what you know, one hour and every month.
However, it does not happen that much in-between.

15

H

223

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Interviewee: But it does not have an effect that you are reminded
of it every month?

Product owner: Yes, reminds me of it and gets a bad conscience
for everything that should be in Jira, and tasks related to that’’.

4.2.2. Variation: participants
The characteristics of the meeting participants varied across

the cases, as shown in Table 9. The cases had different needs to
be met by the meetings. This can explain the variations, as all
have their benefits and challenges. In the following we point to
lessons learned when it comes to meeting participants.

It was important to have security competence in the meeting
(room to manoeuvre), but it was not necessary to only have
participants with security competence. To illustrate, in SmallCo
the security competence was held by the facilitator who could
explain terms, point to potential challenges, question assump-
tions, and point towards solutions. Further, the need for security
competence did not mean there had to be a security expert in
the meeting; many of the participants with developer, architect,
or product owner roles had sufficient competence to identify and
discuss security issues and mitigations. We, however, observed
variations in depth and speed of discussion that may be related
to security expertise and driving force. The clearest example of
valuing efficiency over depth was found when bringing the meet-
ing to a new team at MediumCo. Here the product owner leading
the meeting managed to go through the full template, including
all the 13 security areas, in 75 min. The previous meetings in
MediumCo that were facilitated by a security expert, had spent
considerably more time on each security area, digging deeper and
asking hard questions on assumptions.

The meeting needed participants positioned to take respon-
sibility for the tasks prioritised in the meeting (process match,
room to manoeuvre). In UnaidedCo, meeting participants were
given responsibility for security action points, while other tasks
were normally the responsibility of team leads. Thus, the secu-
rity tasks were not fully integrated in their process. However,
assigning responsibility for security tasks to the team leads was
challenging as they were not participants in the security meet-
ings, and thus not present to report on the status of the action
points. For MediumCo, meeting participants lacked the capacity
to take on responsibility for more tasks due to time pressure.
Thus, there were discussions on whether to add participants who
were better positioned to do the necessary work on the action
points (e.g., a security champion or developer). Further, many
of the meeting discussions in MediumCo covered topics that
involved operations or other development teams. Thus, partici-
pants lacked knowledge to make realistic assumptions about the
risk, and many of the issues and action points identified were
concerned with gathering more information.

4.2.3. Variation: meeting scope
The meetings we studied either had a department scope or a

project and team scope, and both scopes had their benefits and
challenges (primarily related to process match). Regarding ben-
efits, the department-scope of UnaidedCo made their meetings
well placed to make decisions that affected the whole department
and not only one project or team. Several department level ini-
tiatives stemmed from these meetings, including a merge request
template and hacker workshops. The project-scoped meetings
of MediumCo and SmallCo were able to dig deeper into the
individual projects, but also cross-cutting security concerns were
discussed. Although the department-level meetings were well po-
sitioned to support learning across projects and technology, such
effects were also seen in MediumCo where cross-team learning
happened through participants being involved in security work
in several projects. And as stated by the developer in SmallCo:

‘‘We have talked about one project, but I have always kept in mind
all the other projects’’.

Challenges were more prominent in the project-scoped meet-
ings. Both scopes experienced issues falling between two stools;
security issues could concern another development team (Medi-
umCo), operations (MediumCo), or be too big to address within
current plans (UnaidedCo). However, project-scoped meetings
had more challenges in acting on cross-cutting concerns. Both
scopes experienced challenges related to keeping a lifecycle per-
spective; also UnaidedCo found it harder to make security happen
in existing vs. new systems. However, a product owner at Medi-
umCo advocated for a product scope rather than a project scope
in the meetings, as software changes were made also for products
not in active development in a project; ‘‘A customer comes and
wants to pay 50 000 NOK to add a button, and then we add that
button. This does not become a project, and then there is no security
decisions meeting (. . .). We make a change; we spend two weeks and
make a change and that’s it’’.

Challenges related to meeting scheduling were specific for
project-level meetings. When scheduling meetings too early in
the project, there was not enough information to make security
prioritisations and decisions. Changes to projects were normal,
especially in the beginning, thus there were considerations on
how long to wait for things to settle. Further, there were concerns
about when to revisit previous assumptions. When starting the
meetings too late, the option to influence the project plans and
estimations were largely lost. We observed a risk that the meeting
could be experienced as a security kick-off for a project, without
this leading to regular security meetings as was the intention.

4.2.4. Variation: support material
Both SmallCo and MediumCo used support material in form

of security areas and security questions in their meetings (see
Appendix A). Observations pointed to a potential effect in both
companies, related to triggering ideas for discussion, aiding in
documentation, supporting awareness and knowledge building,
and building confidence in the assessments made (visibility, room
to manoeuvre). The material supported the experienced facili-
tator, and even allowed the product owner in the new team
at MediumCo to run the meeting after being introduced to the
material. In SmallCo, it offered a way to get started with the
big topic of security, by breaking security into more manageable
pieces, and it brought visibility to topics that had not been much
considered in their solutions before; ‘‘The biggest advantage is that
you know a bit more, it is more structured what to talk about. It is
easier to remember what we have talked about, and what we have
not talked about’’ (developer SmallCo). These effects came despite
both companies identifying many potential improvements to the
material. Note, however, that UnaidedCo did not use such support
and still covered a broad set of security aspects in the dis-
cussions, produced organised security documentation, and built
competence and awareness on security.

4.2.5. Variation: company’s size and security maturity
Our study included a very small company just starting to

work with software security (SmallCo), as well as medium-sized
companies that already had experience with software security
(MediumCo and UnaidedCo). SmallCo experienced challenges re-
lated to room to manoeuvre, while MediumCo and UnaidedCo
experienced challenges related to process match and visibility.

Competence was important in all cases, but as a small com-
pany with few developers and technical resources, SmallCo ex-
perienced that a lack of practical security skills was a hindrance
for implementing security measures. Further, as they lacked roles
such as sysadmin, developers had to take broader responsibility
for practical tasks. In, e.g., MediumCo, such roles were filled,

16

H

224

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 9
Observed variations that can be related to the selection of participants.
Case Participants Benefits Challenges Main effect

MediumCo —
initial project

Small set of participants
with decision making
power and competence.
Facilitation by security
expert.

Good discussions,
confidence.

Individuals highly
pressured for time,
lacked involvement in
all parts of the
project.

Addressed the need to identify
security issues not explicit in
customer requirements and get
towards solving the security
issues.

MediumCo —
new team

Full team. Facilitation by
product owner.

Broad awareness of
security issues.

Efficiency over depth
in discussions. Did
not redo the meeting.

Identification and
documentation of issues.

SmallCo Two developers.
Facilitation by security
expert.

Developers that could
bring improved
security focus.

Need additional
meetings to bring
broader changes.

Got started, built competence,
established new practices.

UnaidedCo Seniors. Facilitation by
manager.

Reach key actors in
the department,
positioned to make
changes.

Get broader effects,
reach beyond the
participants, get tasks
prioritised by team
leaders.

Identified, documented, and
addressed issues. Support for
participants in their ongoing
attention to security.

and more competence was available, but the challenges were
related to company silos and security concerns being viewed
as part of someone else’s responsibility. To exemplify, the new
team applying the meeting found that for many issues they were
dependent on third parties, other teams, or operations. However,
these issues were generally skipped in the discussions, thus no
action was made to ensure that they were in fact addressed.

Integration into the larger development process was challeng-
ing for the medium-sized companies. In MediumCo, the product
owners were used to doing refinement in Jira. There was, how-
ever, no surrounding security process that ensured action points
from the meetings were followed up on, e.g., by adding them to
Jira. In UnaidedCo, security tasks were generally not included as
user stories and added to Target Process and their Kanban. Thus,
in both companies there was a need to remember to look at a
separate list/page for security tasks. Adding the security tasks
into Jira or TargetProcess was, however, not without challenges.
In MediumCo, Jira was explained as already being filled with too
much information, making it hard to navigate. It was thus easier
to get an overview of all security decisions in a Confluence page.
In UnaidedCo, adding all security concerns to Target Process was
not an option, as the information was considered too sensitive to
store in a Cloud solution. Note that, on a related point, UnaidedCo
successfully included larger security tasks in yearly plans for the
department, showing that integration with the planning process
already in place could be effective.

Both SmallCo and UnaidedCo took action to spread informa-
tion from the meetings to outsiders. In SmallCo it was easy for the
participants to discuss the meetings informally with other em-
ployees, including management. Still, they started a new security
meeting series with management. UnaidedCo spread information
from the meetings in weekly department-level status meetings
and in emails — with meetings being most effective. Still, out-
siders expressed that they wanted more information from the
security meetings, and roles outside the department (such as
product owners) most likely did not know about these meetings
and the prioritisations made there. Broad sharing of information
was however challenging, as much of the security documentation
created in the meetings was considered highly sensitive. Further,
making security documentation available to a broader set of
individuals did not imply that this documentation was read and
understood by others.

4.2.6. Variation: maturity of meeting series
Challenges to the meetings varied depending on whether the

meeting series was just starting, or whether it had been go-
ing on for some time. Initial challenges included understanding

how much time to set aside, and clearly communicating the
goal and structure of the meeting (MediumCo). Further on, chal-
lenges included how to proceed when all security areas had
been discussed, and when to revisit assumptions (SmallCo). After
meetings had been going on for a long time, the number of issues
identified but not yet addressed could be challenging to manage
(UnaidedCo) — as stated in the retrospective of UnaidedCo: if you
should go through the to-do list, this is the whole meeting.

4.2.7. Overarching issue: confidence in the software security priori-
tisation and follow-up

Experiences from UnaidedCo showed that prioritisation and
concretisation of tasks were important prerequisites for action.
Security discussions took place also before they started with this
meeting series, but those discussions usually did not lead to
actions, as there was no clear process for following up on the
issues. Due to the meeting series, all these issues were docu-
mented, and they ended up with a long list of security issues.
To start addressing the issues, prioritisation became important.
But prioritisation was also challenging. The retrospective showed
that often more action points were prioritised than what was
realistic to address before the next meeting, leading to erosion
of responsibility.

Challenges related to prioritisation were found within all in-
fluence categories. In all the studied cases it was difficult for
the observer to understand why some issues were prioritised
over other issues, indicating unclear prioritisation criteria. The
developer from SmallCo talked about the risk of analysis paralysis,
especially if participants lacked confidence in own ability to make
good security decisions. For UnaidedCo, it was challenging to
manage the long list of concerns identified over the course of all
meetings, and thus it seemed easier to prioritise newly identified
concerns. Furthermore, tasks that were boring (e.g., fixing an
existing system) or unpleasant (e.g., could cause down-time or
required work outside of normal working hours) were less likely
to be prioritised.

Prioritisation also happened outside of meetings, and in re-
lation to the totality of the tasks that the participants were
expected to address. This prioritisation (security vs. features)
was described as more challenging than the prioritisation among
security tasks happening in the meetings. In the meetings, we
observed that when action points had not been addressed, there
was often little discussion as to why this was the case. Thus one
missed the opportunity to learn about barriers to security work
and improve how action points were addressed in the future. All
observed meetings benefited from an open and non-judgemental
tone where participants were willing to share knowledge needs
and insecurities. However, the need to hold participants account-

17

H

225

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

able for following up on their responsibilities for action points
was slightly neglected.

4.3. Conditions leading to adoption

An overview of what contributed to or hindered the adoption
of the meeting, both shorter and longer term, is given in Table 10.
In the following we describe mainly what we found to be impor-
tant for longer-term adoption. The meetings that were adopted
longer term were the monthly security group meetings at Un-
aidedCo, that had been going on for some time before our study,
and the monthly management meetings on security, that were
started by SmallCo while we did our study with them. Further,
SmallCo included security in daily meetings among developers.
The meetings we initiated in SmallCo and MediumCo were not
continued.

The meetings that were adopted longer-term shared some
characteristics. Though both SmallCo and UnaidedCo were trig-
gered by external security experts in initiating their meetings,
the meeting approach they applied had been created by the
company itself, and was driven by key individuals from develop-
ment. Both companies applied cross-project meetings. Moreover,
management in both companies acknowledged the importance of
spending time on security, and the time needed for the meetings
was perceived as acceptable.

Offering a good process match was supportive of adoption,
although not enough to ensure or hinder adoption (process match
could be achieved over time). It was considered beneficial to have
an easy approach that could be done efficiently, and that could
be adapted to the needs of the company. On the other hand,
it was challenging with security meetings that were somewhat
‘‘on the side’’ of their development process, and thus had to be
remembered and prioritised over ‘‘real development tasks’’, with
each development project needing to consider when to start with
security meetings.

In both cases where we brought in the support material and
helped facilitate the meetings, these ended up not being adopted.
The reasons put out were limited need for such a thorough ap-
proach in the new projects they had currently initiated (SmallCo),
and time pressure of product owners in combination with no cen-
tral security officer role that continued to push for the meetings
(MediumCo). These are all aspects of the context. Thus, we cannot
conclude that aspects of the support material or the agenda of
these meetings prevented adoption. On the contrary, SmallCo
expressed an intention to continue using this support material;
that excel sheet was really good, so we need to remember to use
that! (statement from observation notes).

5. Discussion

We started this article with introducing the concept of con-
tinuous software security. This concept implies that software
security is treated as a key concern throughout the software’s
lifecycle (Fitzgerald and Stol, 2014). For this to happen, litera-
ture points to the need to reach key stakeholders with software
security, to make security more visible and tangible, and to pri-
oritise security in an ongoing manner (Fig. 1). In this section we
relate our findings to the literature, and identify implications for
research and practice. We organise the discussion according to
the topics we identified from literature in Fig. 1, and we use bold
whenever we refer to topics in that figure.

The meetings contributed towards ongoing priority of secu-
rity directly through the activities that happened in the meeting,
and through positive effects within all the influence categories
related to security priority (Table 7). This included contributions
towards visible and tangible security. The effects observed re-
semble those found for related techniques (Fig. 2) in that the
meetings led to concrete security improvements, and the strongest
effects were related to visibility, competence, and awareness
of security. Thus, we claim that such effects can be expected
from security meetings in general. However, literature points
to stronger effects of security workshops in smaller companies,
compared to larger and more mature ones (Weir et al., 2021). In
the study by Weir et al. (2021), this finding may, however, be
due to organisational turmoil in one of the large companies they
studied, rather than their approach (Weir et al., 2020a). We found
that the meetings were effective in all cases, but that it was easier
to get effects in the smaller and less mature company (SmallCo).

Implication for practice:
(P1) Regular security meetings are recommended for small
and medium sized development companies that need to
strengthen their software security maturity.

Implication for research
(R1) As we found that regular security meetings can be effec-
tive in smaller companies, further research should study what
role (if any) regular security meetings can play in larger and
more mature organisations, and how they should be organised
in these contexts to support adoption and be effective.

The meetings’ ability to reach key stakeholderswas related to
who was participating in the meeting, although we experienced
that the effects of the meeting could reach beyond participants.
Relevant strategies when deciding on participants are stake-
holder involvement and co-creation and situated learning, but
these need to be balanced towards the concern that larger meet-
ings tend to be less effective (Stray et al., 2016). The variations
among the cases concerning meeting participants, all had their
pros and cons (Table 9), and it appears that there is no one-
size-fits-all in this respect, as different participants may serve
diverse needs (Weir et al., 2020a). Recommendations on whether
to include the full team, a security expert, managers, and product
owners come up in literature (see Fig. 2). Experiences from our
study relate to these recommendations in the following way:

• Literature highlights the importance of involving the full
team and not only seniors (see Fig. 2). Both MediumCo and
UnaidedCo violated this recommendation, and still found
the meetings effective. However, we found that the meeting
needed some participants with room to take on responsi-
bility for security tasks, and seniors may experience more
time-pressure hindering them to take on this responsibility.

• Literature conflicts on whether meetings need a security
expert (Weir et al., 2020a; Bernsmed et al., 2022). We found
involvement of a security expert to be beneficial, and prob-
ably necessary when initial security competence was low
(as in SmallCo). However, a security expert was unnec-
essary when at least some participants were aware and
knowledgeable about security.

• Previous findings that facilitation by management is benefi-
cial (Weir et al., 2021) is somewhat supported (UnaidedCo).

18

H

226

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

• The importance of product owner participation is unclear
in literature and in our study. Weir et al. (2021) found sur-
prisingly few effects of involving the product owner. In our
study, product owners were involved in MediumCo but not
in UnaidedCo. Both report on challenges that functionality
is prioritised over security, and one of the product owners
of MediumCo expressed that the meeting mainly led to bad
conscience, not improved security.

Implication for practice:
(P2) When selecting participants, consider what are the main
needs for your team/project/company. If you are in dire
need of security competence, consider involving a security
expert with the full team, alternatively a security expert
with individuals interested in security, who can spread secu-
rity competence and awareness to their team (e.g., security
champions). If you need decision making power and com-
petence, consider involving senior people. If communication
and overview is a main need, consider involving participants
across silos (e.g., both from dev and ops).
(P3) Include participants who can take responsibility for
security tasks in development.
(P4) If possible, have a manager as facilitator of the meetings.

Implication for research:
(R2) As our results suggest that there is no one-size-fits-all
regarding meeting participants, companies need guidance on
which participants to include for varying meeting aims and
contexts.

Weir et al. (2020a) recommended ‘‘the promotion of soft-
ware development security as a systemic, rather than purely a
development team, matter’’. Literature shows that awareness of
security weaknesses is not enough to induce change (Palombo
et al., 2020). Clearly, a meeting alone cannot create a context sup-
portive of emerging security practices. It does not replace the
need to address the more structural and systemic blockers that
hinder developers and product owners in prioritising security in
practice, but it can support identification of these blockers. For
this, product owner participation appears important but not nec-
essary; discussions of systemic blockers and conflicting demands
took place in all cases. However, these were often hard to address
in practice and they could easily be viewed out of scope for the
meeting, especially if the meeting had a project scope.

Implication for practice
(P5) Product owners can have an important role to play in
the meetings, but beware that meeting participation will not
necessarily change the priority they give to security if systemic
blockers are not addressed.
(P6) Discussing reasons for not doing security work (without
assigning blame), is one potential way to get more insight into
the blockers that are present.
(P7) If there is a strong need for overarching changes, a
department-level meeting may be called for.

Implication for research
(R3) Systemic blockers for software security came up in meet-
ing discussions, indicating that security meetings can address
such blockers. Still, more knowledge is needed on how to posi-
tion and structure security meetings to best address systemic
concerns, including how to document and follow up on such
concerns within and beyond the meetings.

Literature advocates for emerging security practices (in con-
trast to prescribed practices) (Türpe and Poller, 2017; Weir et al.,
2020a). Our study support this; the practices that are adopted
longer term are those that emerged in the companies. Further,
we hypothesise that emerging practices can be better positioned
to deal with challenges in the context that may hinder security
work, such as time-pressure — a prominent challenge in literature
(Fig. 2) and in our study. The studied companies were able to
select a meeting schedule that suited their need, and thus time
for the meeting seemed not to be a main issue, although meetings
were sometimes postponed. To ensure continuous adoption, we
would highlight the importance of having a strong driving force
for the meeting, someone with the authority to invite the right
participants, facilitate the meeting, and ensure meetings are ar-
ranged regularly. We identified a potential need to change the
meeting as a project progresses (SmallCo) and as the number
of identified concerns increases (UnaidedCo). Although findings
suggest that a good process match is supportive of adoption,
this can be achieved over time. An engaged facilitator can take
responsibility for making strategic decisions on how to improve
the meeting, and adjust to changes in the needs of a project
and/or company.

Implication for practice:
(P8) Adopt your own meeting approach that suits your needs
(including your level of time-pressure), rather than copying
an approach from others. This does not exclude learning from
others’ experiences.
(P9) Ensure that someone is championing the meeting, and
that this person has the necessary authority and motivation to
make the meeting happen regularly and make improvements.

Implication for research:
(R4) As results indicate that meeting effectiveness can change
with time, companies can benefit from guidance on how to
ensure meeting adoption and efficiency in varying stages (e.g.,
as a project progresses or as the company matures).

The scope of the studied meetings varied, with some taking a
project-scope and others a department-scope. We cannot claim
that one is always better than the other, although some benefits
were identified with a department scope (stronger ability to ad-
dress more overarching concerns and cover products not in active
development). We also saw a potential challenge with project-
scope meetings in that each project must remember to initiate
its meeting series.

Implication for practice:
(P10) If you go for a project-specific security meeting, ensure
that the meeting becomes part of routines so that the meet-
ing is remembered for all projects. Further, consider whether
there is a need for meetings also for key products not under
active development.

Implication for research:
(R5) Our results slightly favour department-scoped meetings,
and we speculate that this is related to us studying smaller
companies where such broader-scoped meetings may be more
feasible than in larger companies. More knowledge is needed
to determine what meeting scope is most effective in varying
contexts.

19

H

227

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

In the meetings, time for security reflection and discussion
was highly important for the effect of the meetings. This is in
line with experiences from similar techniques (Fig. 2). The effect
was however linked to documentation; there was a need to
ensure key discussion points were documented (and not lost
Cruzes et al., 2018; Tøndel et al., 2019b), and visible documen-
tation supported the discussions (Stray et al., 2016). This study
is not conclusive on how to structure the discussions and the
documentation. Meetings were successful both with and without
support material. Support material in form of a checklist has been
suggested as an improvement to the security workshops studied
by Weir et al. (2020a). The main benefits of the support material
as used in this study was that it made security more concrete
and manageable, structured the discussions, gave confidence,
and supported non-experts as meeting facilitators. However, we
are not aware that the companies continued using it after the
study.

Implication for practice:
(P11) Meetings should allow ample time for discussions; thus,
the agenda should not be too rigid.
(P12) One participant should be responsible for taking notes.
(P13) Notes on a shared screen, including notes from previous
meetings, can support discussions.

Implication for research:
(R6) Though this study sheds light on the potential benefits
of using support material in security meetings, the necessity
of such material is not clear. The potential role of support
material should be investigated further, including when such
support is most needed, what support is effective for which
types of meetings and contexts (e.g., with a department-scope
vs. a project-scope), and how the needs for support mate-
rial can vary with time as the company’s security maturity
changes.

Positive effects of the meetings were observed in all the
studied cases, despite all cases struggling with how to get the
most effect from the meetings. We even discovered a potential
for the meeting to contribute with more cost-effective secu-
rity, e.g., through supporting reuse across project and address
non-functional security roles and tasks. Security prioritisation
and follow up was essential for getting these positive effects.
Still, confidence in the decisions was challenging, and it was
not always clear how the security priorities were made. Similar
challenges have been identified also for other security meeting
types (Fig. 2).

Studies show that not all security vulnerabilities are exploited
(Nayak et al., 2014). Thus, to arrive at cost-effective security, it is
important to address those issues most likely to cause problems.
Yet, we observed that questions like ‘‘what is most important?’’
often remained unanswered in the meetings, whereas other cri-
teria (e.g., ease, concreteness) tended to be more used in the
prioritisation.

A learning point from the meetings was that it was important
to spread information to outsiders. Prioritisation of security did
not only happen in the meetings — the prioritisation of secu-
rity vs. features and other tasks that happened outside of the
meetings was even more challenging than the prioritisation that
happened in the meeting.

Implication for practice:
(P14) Beware of the tendency to prioritise easy and concrete
tasks and newly identified tasks, without considering whether
they are the most important tasks.
(P15) Beware of prioritising too many action points in a meet-
ing. It is better to identify a few action points that end up
being addressed, than identifying many action points where
the understanding is that all will not be addressed.
(P16) For those action points that are prioritised, there is a
need to ensure that they are concrete, and that responsibility
and deadline are properly defined.
(P17) As the number of identified concerns grow, consider
pruning the list outside of the meeting, to avoid overload and
make the meeting more engaging.
(P18) Actions should be taken to bring information from the
security meetings to a broader set of individuals. Sharing of
such information in person (e.g., in meetings rather than on
email) is preferred.

Implication for research:
(R7) As results indicate that security meetings can con-
tribute to more cost-effective security, future research could
investigate how meetings can be organised to support cost-
effectiveness and how this cost-effectiveness can be assessed
and made visible.
(R8) Research can contribute with prioritisation and decision-
making support and strategies to be used in security meetings,
to address the overarching challenge of confidence in security
prioritisation.
(R9) Companies can benefit from improved strategies for com-
municating priorities from the meeting, and integrating them
into their way of working.

6. Threats to validity

In the following we discuss the threats to the validity of our
study results, using the classification scheme suggested for case
studies (Runeson and Höst, 2009; Yin, 2018).

Construct validity can be defined as the ‘‘accuracy with which
a case study’s measures reflect the concepts being studied’’ (Yin,
2018) (Runeson and Höst, 2009). The concept of security priority
is important in this study; we were interested in understanding
the effects these meetings had on security prioritisation. ’Security
priority’ was operationalised through five influence categories:
driving force, visibility, motivation, room to manoeuvre, and pro-
cess match (Tøndel et al., 2022). These influence categories stem
from one case study, and thus cannot be said to be an estab-
lished theory on what brings priority to security in ASD. We are
however not aware of the existence of such a theory. Though
stemming from one case study, these influences are prominent
also in the broader literature (Tøndel et al., 2022), strengthening
our assumption that they would be relevant also in the contexts
studied in this paper. We did find these influence categories
useful in structuring and reasoning about our findings, something
that supports their relevance. Still, there is a need for more stud-
ies that can form a stronger theoretical basis for understanding
what brings priority to security in ASD. Measuring the effect on
security prioritisation was however challenging, also with the
use of these influence categories. Effects could be quite invisible
(e.g., knowledge, motivation) and they could manifest outside of
the meetings. Thus, we relied on participants reporting this effect
in meetings or in interviews/retrospective.

20

H

228

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Internal validity is concerned with causal relations and the
risk that effects observed may have been caused by factors not
considered in the study (Runeson and Höst, 2009). In qualitative
studies, internal validity can be supported by strategies such as
triangulation, thick descriptions, linking results to theory, seeking
negative evidence, considering rival explanations, and having par-
ticipants find the conclusions accurate (Miles et al., 2018). These
strategies were applied in this study. Still, there are potential bi-
ases. The influence categories used in the analysis helped relate to
the broad concept of security prioritisation. However, by building
this strongly on these influence categories, that we ourselves had
developed in a previous case study, there is a risk of confirmation
bias. This study did not use these influence categories in order to
confirm them. Still, the categories informed our understanding of
security prioritisation and may have led us to see prioritisation
that was not there, or miss aspects of prioritisation that we
had not previously identified. However, these risks would be
there also with a more inductive analysis approach, although less
visible.

We acknowledge that in the cases where we used action
research, our influence as researchers was considerable (Petersen
and Gencel, 2013). We helped develop the meeting used in
SmallCo and MediumCo, and thus there is a risk of bias related
to us wanting this meeting to succeed. We have been aware of
this risk throughout. Also note that the findings tip in favour of
department level meetings (which we did not initially suggest). It
is likely that our presence as researchers influenced the meetings
we studied. Participants may have wanted to let the meetings
we facilitated (MediumCo, SmallCo) look good to please us as
researchers. They may also have wanted the meetings they or-
ganised (UnaidedCo) to come out as successful. We took care to
regularly reflect on our influence as researchers, as part of the
observation template. In interviews we made sure to express a
need to not only hear about the good aspects of the meetings,
but that we wanted to know about the challenging parts as well,
so that we could improve. Our impression is that participants
trusted us enough to give us their honest feedback. For us, it was
particularly important that participants were honest about what
they saw as effects of the meeting, as we did not have direct ways
to measure this. In addition to encouraging participants to give
honest feedback, we considered rival explanations in our analysis.
To exemplify, in the study we saw that it was easier to get and
see the effects of the meeting when you started from ‘‘nothing’’
(as in SmallCo). But then, what we saw as effects might not be
effects of the meeting approach but rather effects of starting to
work on security and to interact with external security experts.
Thus, we were restrictive in claiming something to be effects of
the meeting and made efforts to point to contextual factors that
could be important for the effects.

External validity ‘‘is concerned with to what extent it is pos-
sible to generalise the findings, and to what extent the findings
are of interest to other people outside the investigated case’’
(Runeson and Höst, 2009). As is common for case studies and
action research, there are many contexts and many meeting
approaches that we have not considered in this study. However,
studying three companies with varying meeting operationali-
sations, allowed for identifying similarities. Thus, it pointed us
towards findings that are likely to be shared by more than one
context/meeting type. To support readers in judging whether the
findings might be relevant for their context, we provided details
on the company contexts and the meetings we studied (within

the limitation that the anonymity of the companies should not
be compromised). Note that the companies we have studied
are of small or medium size, and we expect that results for
larger companies may vary considerably from the findings in this
study.

Reliability ‘‘is concerned with to what extent the data and the
analysis are dependent on the specific researchers’’ (Runeson and
Höst, 2009). In our study, reliability is supported through the use
of an observation template, the recording and transcription of
interviews, and the clear protocol for analysing the data. Further,
data triangulation and member checking (as part of interviews,
retrospectives, and the sharing of the draft research report) help
support reliability. To exemplify, in interviews and retrospectives
we took care to let the participants present their view, without
first bringing in our understanding. Still, we also used the oppor-
tunity to provide our understanding when relevant, and get the
interviewee to respond to that. We also shared a previous draft of
this article with key study participants, and the feedback received
support the validity of the findings. In the action research part of
our study, two researchers were involved, where one took the
main role as facilitator and the other did the data collection and
analysis, thus being able to take a more external view of the
meeting. Having only one researcher doing the analysis repre-
sents a threat to reliability. However, findings were discussed
among the two researchers at several points throughout analysis.
Replication is a general challenge for action research studies as it
relies heavily on a trust relationship between the researcher and
the company (Wieringa, 2014). However, to support replication
in theory, we have provided details about the data collection in-
struments and the meeting concept used, as well as our approach
to analysis.

7. Conclusion

This article proposes regular security meetings as a strategy
for continuous software security, and reports on a study of such
meetings in three companies. The studied meetings varied in
scope (project/team or department), participants (full team, se-
niors), support material, and context (small to medium size, low
to medium security maturity).

Results from this study show that regular security meetings
can contribute to ongoing priority of security, more visible and
tangible security, and can reach key stakeholders — all these
effects are called for in literature. Based on the lessons learned
from the cases, we identify implications for practice and for
research.

For practitioners, we find evidence that regular security meet-
ings are useful for small and medium sized development com-
panies that need to strengthen their software security maturity.
Companies should seek to adopt a meeting approach aligned with
their own needs, this includes selecting a meeting scope, partic-
ipants, a meeting schedule, and a meeting structure. However,
the lessons learned from this study can give some directions,
e.g., pointing out the need for participants able to take respon-
sibility for tasks, the importance of having time for discussions,
and benefits and pitfalls of a department scope vs. a project
scope.

For future research, we point to the need for more compe-
tence to improve the ability to support companies in selecting a
meeting approach that suits their needs. This includes knowledge
on how meetings should be adapted to different contexts and
needs, knowledge on how to position the meeting to address
systemic blockers for software security, and knowledge on the
role of support material in different meeting models.

21

H

229

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Fig. 10. Excerpt from Confluence page of MediumCo.

Table 10
Influences on adoption (M = MediumCo, S = SmallCo, U = UnaidedCo).
Influence
category

Contributes to the adoption M S U Hinders the adoption M S U

Driving force Someone with authority initiating and
inviting to meetings

X X X

Participants are senior people X

Visibility

Motivation Participants that are motivated to meet
and discuss security

X X X Not all projects have a clear security
need, thus meeting not always necessary

X

A general push for security in the
company

X X

Room to
manoeuvre

The cost of security meetings is accepted X Challenging to set aside time X X

The meeting is considered easy to do,
and can be done quickly

X X

Process match Ability to adapt the meeting to own
needs

X Disconnected from the ‘‘real work’’ they
are doing that is more urgent

X

The practice of deciding on a time for
the next meeting

X X Initial project work is creative and
exploring, not considering security, etc.

X

If it turns out that all projects have
similar security needs, a checklist may
be a better option

X

CRediT authorship contribution statement

Inger Anne Tøndel: Conceptualization, Methodology, Valida-
tion, Investigation, Writing – original draft, Visualization. Daniela
Soares Cruzes: Conceptualization, Methodology, Validation, Re-
sources, Writing – review & editing, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing
interests: The authors have previous relationships with two of
the companies, either in form of previous part time deployment
or being involved in consultancy projects towards companies.

Acknowledgements

This research was funded by the Research Council of Norway,
grant nr. 247678. The authors would like to thank the companies
where this study was performed, especially the interviewees and
the participants in the meetings we observed. Thanks to our col-
league Martin Gilje Jaatun for participating in the data collection
at UnaidedCo. Thanks to Prof. Guttorm Sindre and our colleagues
in the ‘‘Fabrikk’’ for many useful comments on this article.

Appendix A. Meeting approach used by the companies

The meetings in UnaidedCo had the following structure. In the
beginning of the meeting, they went through the list of activities
that was prioritised in the previous meeting, to assess status. In

22

H

230

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 11
Overview of areas covered by the support material, as used in SmallCo.

Area Supporting questions

Overall concerns Level of security we aim
for

Why is security important in this project?
What are our main assets that we need to secure?
What are our main security concerns in this project?
Are there explicit security requirements from the tender/customer?

Analysis and training
needs

Compared to previous projects, are there new types of technology, new types of security requirements,
new types of threats, new types of assets?
Do we plan considerable design changes in existing solutions?
Do we have the necessary overview to understand the security risks in the solution?
Are we aware of areas where we lack the necessary security competence?

Security coding and
testing practices

Do we have the necessary coding practices to ensure the security of our code is according to our
needs?
Is the current practice of code review sufficient?
Do we need specific types of testing for security?
What about pentesting?

Security areas Privacy What sensitive data is handled by the project?

Authentication and
password management

Which authentication and password mechanisms will be used here and where?

Authorisation and role
management

What is the RBAC for the front-end and back-end?
What are the database user accounts and privileges?
Which privileges will operations have on the databases?
Which privileges others will have?
Does some actions need extra authentication?

Session management Is there any type of session definition for a ‘‘Device?’’ Do we need to document this?

Cryptography and key
management

Where are we using Tokens and Keys for authentication?
Which are they?
Do we have a procedure that is good for managing these? Should we have changes in the way we do
things today?

Network security Are there any requirements to be added based on the list of equipment?
Do we need a better description of how the connections will be done and who will be part of this?
What are the requirements for the network setup on the Server side?
Who will be responsible for intrusion detection?
What are the trust boundaries here?
Do we need to describe back-end access and how it is secured?
How is the access to the network? What will be the privileges?

Audit logging and
analysis

Which logging is needed for different reasons, such as repudiation and for detecting attacks or
problems in the system?
Is there any logging of actions we should do for cases of auditing in our systems?

Attack detection Who is responsible for doing performing attack detection?
Do we depend on any other parties, e.g., where we are not the only one officially managing the
network and resources?
Which type of attacks will we try to detect?
Will we revoke a device after it was registered?
How do we assure the integrity of the data about devices?
Can we revoke registration of a device? Which situations should we do that?

Incident management What incidents can happen?
What procedures do we need to have in place for incident management?
Do we need to train for any specific incidents?

Physical security What are the components that we need to physically protect?
How will we protect these components?
What is it that we are assuming that makes the device secure in the platform?
Can we revoke registration of a device? Which situations should we do that?
Are there recommendations that we need to give to the customers?

Availability protection Which types of assets are important to be available all the time?
When do we need to take backup?
Who is responsible of backup of what?
What are the requirements to backup of data?

(continued on next page)

cases where other security activities had been done that were not
on the list, these were also informed about and discussed. Then
followed an open discussion about security concerns that should
be noted down and addressed. After this open discussion, they
opened the excel sheet where they had recorded all previously
identified security concerns. This excel sheet contained a short
description of each concern, in addition to information on which
application it concerned, what was the status, what was the prior-
ity, and who (if any) was responsible. Then, after going through
the excel sheet, they decided on a set of activities to focus on

in the next period. Throughout the meeting facilitator took notes
that were shown on screen. Notes could be taken directly in a
meeting memo, or in the excel sheet.

The meeting in MediumCo and SmallCo had a different struc-
ture. These meetings made use of support material that offered a
set of areas to cover and questions to aid in making decisions.
These were organised in a Confluence page in MediumCo and
an excel sheet in SmallCo. The security areas were adapted from
Firesmith (2003) for use in MediumCo, and the questions were
initially developed based on the needs of the first project where

23

H

231

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Table 11 (continued).
Area Supporting questions

Data security and
integrity

Who will take care of the integrity of the data that we get from third parties? Do we need to worry
about this?
On cases of corruption of the data, how do we recover?
Which types of procedures for database protections for the back end we will have?
How are we planning to make sure the data on each device is correct and updated? Do we need?
How are we planning to have backup in case the data gets corrupted?

Third party component
analysis

Which third party components will be involved here and how this can affect security?
What are the entry points from other systems?
Where is data integrity most important? For what data, for what functionality, for what input?

Release notes Release notes to
operations

NA

Release notes to
customers

NA

these meetings were applied. Fig. 10 shows how the support-
ing Confluence page looked like in MediumCo. Table 11 gives
an overview of all the security areas covered in the support
material, in the form used by SmallCo. MediumCo and SmallCo
used the same security areas but had slightly different sup-
port for the overall concerns (in MediumCo covered by the Sec-
tion Background in the Confluence page, see Fig. 10). More-
over, the supporting questions had been made less company and
technology-specific before bringing them to SmallCo.

In a typical meeting in MediumCo and SmallCo, they started
with going through the action points from the previous meet-
ing before the facilitator selected a few security areas to focus
on in the meeting. These were then discussed, and notes were
taken (visible on screen) on decisions, concerns, and open issues
identified in the discussions. As part of this they identified action
points. To exemplify, one meeting in MediumCo had already iden-
tified in the agenda three areas from the checklist they wanted to
discuss (privacy, network security, and key management). Then
in the meeting they discussed the associated questions and any
already noted concerns on Confluence, and updated the docu-
mentation in Confluence on these issues. Then, due to extra time,
they moved on to discuss a few more security areas as well. In
the initial meeting, the main emphasis was on the open issues in
the beginning of the template (e.g., what are our main concerns
to security in this project?) while later meetings went more into
detail on the different areas, and revisited previous decisions and
discussions. The exception to this approach was when the meet-
ing series was brought to the new team in MediumCo, and the
team managed to go through the full template in one meeting.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jss.2022.111477.

References

Ahmad, M.O., Markkula, J., Oivo, M., 2013. Kanban in software development:
A systematic literature review. In: 2013 39th Euromicro Conference on
Software Engineering and Advanced Applications. http://dx.doi.org/10.1109/
SEAA.2013.28.

Assal, H., Chiasson, S., 2019. ’Think secure from the beginning’: A survey with
software developers. In: Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. http://dx.doi.org/10.1145/3290605.3300519.

Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W.,
Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., 2001. Manifesto
for agile software development. https://agilemanifesto.org/.

Behutiye, W., Karhapää, P., López, L., Burgués, X., Martínez-Fernández, S.,
Vollmer, A.M., Rodríguez, P., Franch, X., Oivo, M., 2020. Management of
quality requirements in agile and rapid software development: A systematic
mapping study. Inf. Softw. Technol. 123, 106225. http://dx.doi.org/10.1016/j.
infsof.2019.106225.

Bernsmed, K., Cruzes, D.S., Jaatun, M.G., Iovan, M., 2022. Adopting threat
modelling in agile software development projects. J. Syst. Softw. 183, 111090.
http://dx.doi.org/10.1016/j.jss.2021.111090.

Bishop, D., Rowland, P., 2019. Agile and secure software development: An
unfinished story. Issues Inf. Syst. 20 (1).

Crawley, B., Glas, B., Jenkins, B., Cooper, C., Kefer, D., Parekh, H., Dileo, J.,
Ellingsworth, J., Kennedy, J., Kisserli, N., Duarte, P., Arriada, S., Kravchenko, Y.,
2020. Presenting OWASP SAMM - OWASP SAMM V2.0 - Core Model Doc-
ument. OWASP. https://github.com/OWASP/samm/blob/master/Supporting%
20Resources/v2.0/OWASP-SAMM-v2.0.pdf.

Cruzes, D.S., Jaatun, M.G., Bernsmed, K., Tøndel, I.A., 2018. Challenges and experi-
ences with applying microsoft threat modeling in agile development projects.
In: 2018 25th Australasian Software Engineering Conference. ASWEC, http:
//dx.doi.org/10.1109/ASWEC.2018.00023.

Davison, R., Martinsons, M.G., Kock, N., 2004. Principles of canonical action
research. Inf. Syst. J. 14 (1), 65–86. http://dx.doi.org/10.1111/j.1365-2575.
2004.00162.x.

Davison, R.M., Martinsons, M.G., Ou, C.X., 2012. The roles of theory in canonical
action research. MIS Q. 763–786. http://dx.doi.org/10.2307/41703480.

Deterding, N.M., Waters, M.C., 2021. Flexible coding of in-depth interviews: A
twenty-first-century approach. Sociol. Methods Res. 50 (2), 708–739. http:
//dx.doi.org/10.1177/0049124118799377.

Firesmith, D.G., 2003. Common Concepts Underlying Safety Security and
Survivability Engineering. The Software Engineering Institute, Carnegie-
Mellon University, https://resources.sei.cmu.edu/asset_files/TechnicalNote/
2003_004_001_14198.pdf.

Fitzgerald, B., Stol, K.-J., 2014. Continuous software engineering and beyond:
Trends and challenges. In: Proceedings of the 1st International Workshop on
Rapid Continuous Software Engineering. http://dx.doi.org/10.1145/2593812.
2593813.

Heeager, L.T., Nielsen, P.A., 2018. A conceptual model of agile software develop-
ment in a safety-critical context: A systematic literature review. Inf. Softw.
Technol. 103, 22–39. http://dx.doi.org/10.1016/j.infsof.2018.06.004.

Jarzębowicz, A., Weichbroth, P., 2021. A systematic literature review on imple-
menting non-functional requirements in agile software development: Issues
and facilitating practices. In: Przybyłek, A., Miler, J., Poth, A., Riel, A. (Eds.),
Lean and Agile Software Development, Vol. 408. LASD 2021, Springer, Cham,
pp. 91–110. http://dx.doi.org/10.1007/978-3-030-67084-9_6.

Kocksch, L., Korn, M., Poller, A., Wagenknecht, S., 2018. Caring for IT security:
Accountabilitie, moralities, and oscillations in IT security practices. In: Proc.
ACM Hum.-Comput. Interact. 2.CSCW. http://dx.doi.org/10.1145/3274361.

Kongsli, V., 2006. Towards agile security in web applications. In: OOPSLA
’06: Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented
Programming Systems, Languages, and Applications. ACM, http://dx.doi.org/
10.1145/1176617.1176727.

Lindsjørn, Y., Sjøberg, D.I.K., Dingsøyr, T., Bergersen, G.R., Dybå, T., 2016. Team-
work quality and project success in software development: A survey of agile
development teams. J. Syst. Softw. 122, 274–286. http://dx.doi.org/10.1016/
j.jss.2016.09.028.

Maxwell, J.A., 2013. Qualitative research design: An interactive approach. In:
Applied Social Research Methods Series, vol. 41, Sage publications.

McGraw, G., Allen, J.H., Mead, N., Ellison, R.J., Barnum, S., 2013. Software Security
Engineering: A Guide for Project Managers. Carnegie Mellon University,
Software Engineering Institute, https://apps.dtic.mil/sti/pdfs/ADA617944.pdf.

Migues, S., Erlikhman, E., Ewers, J., Nassery, K., 2021. BSIMM12 2021
Foundations Report. Synopsis. https://www.bsimm.com/content/dam/bsimm/
reports/bsimm12-foundations.pdf.

Miles, M.B., Huberman, A.M., Saldaña, J., 2018. Qualitative Data Analysis: A
Methods Sourcebook. Sage publications.

Moe, N.B., Dingsøyr, T., Rolland, K., 2018. To schedule or not to schedule? An
investigation of meetings as an inter-team coordination mechanism in large-
scale agile software development. Int. J. Inf. Syst. Project Manag. 6 (3), 45–59.
http://dx.doi.org/10.12821/ijispm060303.

24

H

232

I.A. Tøndel and D.S. Cruzes The Journal of Systems & Software 194 (2022) 111477

Nayak, K., Marino, D., Efstathopoulos, P., Dumitraş, T., 2014. Some vulnerabilities
are different than others. In: International Workshop on Recent Advances in
Intrusion Detection. Springer, http://dx.doi.org/10.1007/978-3-319-11379-1_
21.

Newton, N., Anslow, C., Drechsler, A., 2019. Information security in agile software
development projects: A critical success factor perspective. In: 27th European
Conference on Information Systems. ECIS.

Oueslati, H., Rahman, M.M., Othma, Lb, 2015. Literature review of the challenges
of developing secure software using the agile approach. In: 2015 10th
International Conference on Availability, Reliability and Security. http://dx.
doi.org/10.1109/ares.2015.69.

Palombo, H., Tabari, A.Z., Lende, D., Ligatti, J., Ou, X., 2020. An ethnographic
understanding of software (in) security and a co-creation model to improve
secure software development. In: Sixteenth Symposium on Usable Privacy
and Security. SOUPS 2020.

Petersen, K., Gencel, C., 2013. Worldviews, research methods, and their relation-
ship to validity in empirical software engineering research. In: 2013 Joint
Conference of the 23rd International Workshop on Software Measurement
and the 8th International Conference on Software Process and Product
Measurement. http://dx.doi.org/10.1109/IWSM-Mensura.2013.22.

Runeson, P., Höst, M., 2009. Guidelines for conducting and reporting case study
research in software engineering. Empir. Softw. Eng. 14 (2), 131–164. http:
//dx.doi.org/10.1007/s10664-008-9102-8.

Schwaber, K., 2004. Agile Project Management with Scrum. Microsoft Press.
Stray, V., Sjøberg, D.I.K., Dybå, T., 2016. The daily stand-up meeting: A grounded

theory study. J. Syst. Softw. 114, 101–124. http://dx.doi.org/10.1016/j.jss.
2016.01.004.

Strode, D.E., Huff, S.L., Hope, B., Link, S., 2012. Coordination in co-located agile
software development projects. J. Syst. Softw. 85 (6), 1222–1238. http:
//dx.doi.org/10.1016/j.jss.2012.02.017.

Tøndel, I.A., Cruzes, D.S., Jaatun, M.G., 2020. Achieving good enough software
security: The role of objectivity. In: EASE ’20: Proceedings of the Evaluation
and Assessment in Software Engineering. pp. 360–365. http://dx.doi.org/10.
1145/3383219.3383267.

Tøndel, I.A., Cruzes, D.S., Jaatun, M.G., Rindell, K., 2019a. The security intention
meeting series as a way to increase visibility of software security decisions
in agile development projects. In: Proceedings of the 14th International
Conference on Availability, Reliability and Security. http://dx.doi.org/10.1145/
3339252.3340337.

Tøndel, I.A., Cruzes, D.S., Jaatun, M.G., Sindre, G., 2022. Influencing the security
prioritisation of an agile software development project. Comput. Secur. 118,
102744. http://dx.doi.org/10.1016/j.cose.2022.102744.

Tøndel, I.A., Jaatun, M.G., 2020. Towards a conceptual framework for security
requirements work in agile software development. Int. J. Syst. Softw. Secur.
Prot. (IJSSSP) 11 (1), 33–62. http://dx.doi.org/10.4018/IJSSSP.2020010103.

Tøndel, I.A., Jaatun, M.G., Cruzes, D.S., Williams, L., 2019b. Collaborative security
risk estimation in agile software development. Inf. Comput. Secur. 26 (4),
508–535. http://dx.doi.org/10.1108/ICS-12-2018-0138.

Tuladhar, A., Lende, D., Ligatti, J., Ou, X., 2021. An analysis of the role of situated
learning in starting a security culture in a software company. In: USENIX
Symposium on Usable Privacy and Security. SOUPS 2021.

Türpe, S., Poller, A., 2017. Managing security work in scrum: Tensions and
challenges. In: The International Workshop on Secure Software Engineering
in DevOps and Agile Development. SecSE, pp. 34–49.

van der Veer, R., 2019. SAMM agile guidance. https://owaspsamm.org/guidance/
agile/.

Villamizar, H., Kalinowski, M., Viana, M., Fernández, D.M., 2018. A systematic
mapping study on security in agile requirements engineering. In: 2018 44th
Euromicro Conference on Software Engineering and Advanced Applications.
SEAA, IEEE, http://dx.doi.org/10.1109/SEAA.2018.00080.

Weir, C., Becker, I., Blair, L., 2021. A passion for security: Intervening to help
software developers. In: 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Software Engineering in Practice. ICSE-SEIP, http://dx.
doi.org/10.1109/ICSE-SEIP52600.2021.00011.

Weir, C., Becker, I., Noble, J., Blair, L., Sasse, M.A., Rashid, A., 2020a. Interventions
for long-term software security: Creating a lightweight program of assurance
techniques for developers. Softw. - Pract. Exp. 50 (3), 275–298. http://dx.doi.
org/10.1002/spe.2774.

Weir, C., Rashid, A., Noble, J., 2020b. Challenging software developers: Dialectic
as a foundation for security assurance techniques. J. Cybersecur. 6 (1),
http://dx.doi.org/10.1093/cybsec/tyaa007.

Wieringa, R.J., 2014. Design Science Methodology for Information Systems and
Software Engineering. Springer.

Wieringa, R., Moralı, A., 2012. Technical action research as a validation method
in information systems design science. In: Design Science Research in
Information Systems. In: Advances in Theory and Practice. DESRIST, vol. 212,
Springer, http://dx.doi.org/10.1007/978-3-642-29863-9_17.

Williams, L., Gegick, M., Meneely, A., 2009. Protection poker: Structuring soft-
ware security risk assessment and knowledge transfer. In: Engineering
Secure Software and Systems. ESSoS 2009, Springer, http://dx.doi.org/10.
1007/978-3-642-00199-4_11.

Williams, L., Meneely, A., Shipley, G., 2010. Protection poker: The new software
security game. IEEE Secur. Priv. 8 (3), 14–20. http://dx.doi.org/10.1109/msp.
2010.58.

Wohlin, C., Aurum, A., 2015. Towards a decision-making structure for selecting
a research design in empirical software engineering. Empir. Softw. Eng. 20
(6), 1427–1455. http://dx.doi.org/10.1007/s10664-014-9319-7.

Yin, R.K., 2018. Case Study Research and Applications, sixth ed. Sage.

Inger Anne Tøndel is a Ph.D. candidate at the Department of Computer Science,
Norwegian University of Science and Technology (NTNU), Trondheim. Recently,
she held a position as a senior research scientist at SINTEF Digital, Trondheim,
Norway, and her research interests include software security, security require-
ments, information security risk management, cyber insurance, and smart-grid
cybersecurity. She now works as a senior advisor at the Norwegian Directorate
of e-health. Tøndel received an M.Sc. in telematics from NTNU in 2004.

Daniela Soares Cruzes is a professor at the Department of Computer Sci-
ence, NTNU, Trondheim, Norway. Her research interests are agile software
development, software security, software-testing processes, empirical research
methods, theory development, and synthesis of software-engineering studies.
Cruzes received her Dr.Ing. in electrical and computer engineering with emphasis
in empirical software engineering at the University of Campinas, Brazil, in 2007.
She has two postdoctoral studies, one at the Fraunhofer Center at the University
of Maryland, College Park, and one at the Norwegian University of Science and
Technology, Trondheim. She is a member of committees with various highly
ranked international conferences and journals.

25

H

233

H

234 Appendix A. Primary papers

Supplementary material Paper H: Data collection instruments

This appendix gives an overview of the data collection instruments used in this study. The same
observation template was used for all cases, while the interview guides were targeted towards
the case.

Observation template

The observation template consisted of the following parts, and combined notes taken during the
meeting with reflections afterwards:

• Event details: date and time, type of meeting, observer(s), team, number and type of
participants, meeting goal, overall agenda/structure.

• What happened: notes taken during the meeting by the observer – on discussions,
decisions, engagement by participants, etc.

• Reflections made after the meeting:
– How is what happened in this meeting related to the security intention meeting series

concept? What worked well that we can learn from to improve the concept? What
was challenging that we can learn from to improve the concept?

– What kind of priorities were made, discussed, or identified related to security
requirements (in a broad sense)?

– Did any factors come up (in the meeting or in me as an observer) that could be
related to security priorities, and in what way could they be related?

– What questions did they have?

– To what extent did everybody participate? What was the mood in the session? Were
they open to try?

– Did they make or suggest any changes to the meeting? (If so, explain.)

– Which types of awareness do you think was created here?

– Do you have any interesting thoughts on the session? (If so, explain.) Was anything
surprising to you? For example, something that you thought would happen but
didn’t? Or something that you did not expect but happened?

– What security topics were mainly discussed (threats, assets, vulnerabilities, mitiga-
tions)?

– What worked well, what was challenging?

– Do you think they will keep doing this? (Please justify your answer.)

– How did the observation go? Any thoughts/opinions on how we as observers and
participants may have influenced the process?

H

235

Interview guide MediumCo

The interview guide used for the semi-structured interviews consisted of four topics. First,
issues concerning data management was presented and discussed. Then, the meeting discussed
a recently held security decision meeting. Then, we moved on to discussing what they thought
would happen after they no longer received support for facilitation of the meeting. Then, we
talked about security decisions and prioritisation more generally.

1) Purpose of the interview, data management, consent
2) We want to talk to you about the security decision meeting we had recently, and similar

meetings:
a) Do you remember having meetings of this type previously?

b) What do you consider the goal of such a security decision meeting?

c) What motivates you to participate, or what reduces your motivation to participate?

d) What do you experience as the effect of this meeting?

e) What in the meeting works well?

f) What in the meeting can be improved to increase its usefulness?

g) Could we do anything other than a meeting to get the same or a better effect on
software security?

3) Support for facilitation of this meeting stops now, what do you think about continuing this
type of meetings:

a) If you get the responsibility, will you continue with such security decision meetings?

b) Who should be responsible for security decision meetings?
4) The meeting is about security decisions and prioritisation

a) How is it for you to make security priorities?

b) How do you think this is for other product owners with less technical knowledge?

c) What factors influences what focus you give to security?

d) How can a product owner be supported in making good security decisions? Can
such a meeting play a role? If so, how?

Interview guide SmallCo

The interview with SmallCo emphasised adoption. This was grounded in our research questions,
but also in our experiences from MediumCo, that showed that adoption was challenging. Before
the interview at SmallCo, the interviewee filled out a questionnaire based on the Technology
Acceptance Model (TAM) (Davis 1989) to evaluate the meeting. The questionnaire was a
modification of questionnaires used in previous studies (Dyba et al. 2004; Tøndel et al. 2018a;

H

236 Appendix A. Primary papers

Tøndel et al. 2018b). This questionnaire was not intended to be used in a quantitative analysis,
but rather to be used as a basis for discussion in the interview. The interview guide for the
semi-structured interview was as follows:

1) Purpose of the interview, data management, consent
2) Compatibility:

a) How is this way of working compatible with your work practices in this company?

b) What could be done to make it a better match?

c) Discuss related questionnaire responses.
3) Complexity and triability:

a) How difficult or easy is it for you to work with the excel sheet? What makes it
easier? What makes it more difficult?

b) How easy or difficult is it to use the excel sheet as a basis for a security meeting?
What could make it easier

c) How do you think it would be to start using the excel sheet and have such meetings
without our help? Would it be possible? What would be most challenging?

d) Discuss related questionnaire responses.
4) Observability and relative advantage:

a) What is the result of using this technique?

b) How visible are these results?

c) What could be done to have more visible results?

d) To what extend to you find the time spent is worth it? The time in the meeting, the
time to follow up, the time spent in the first project, time spent in later projects?

e) Discuss related questionnaire responses.
5) Adoption in general:

a) What are your thoughts on continuing this practice without our support?

b) What would lead you to continue using this or other techniques for security?

c) What leads to you stopping using the techniques?

d) Our last meetings has been less centred on the excel sheet than those in the beginning,
do you have any thoughts on that?

e) Discuss related questionnaire responses.
6) Usefulness outside of the meeting:

a) Have you used the documentation created outside of the meeting? If so, how? How
did it work?

b) Have the security priorities made in the meeting had any effect on your work?
7) Wind up:

a) Do you have any more comments on the meeting, or any recommendations for others
that would consider adopting this meeting type?

H

237

Interviews and retrospective UnaidedCo

Before officially starting the case study, we performed an evaluation with UnaidedCo to identify
and evaluate their software security practices, based on BSIMM (Migues et al. 2021). This
evaluation consisted of individual interviews with developers and a group session with senior in
the development department where we went through all BSIMM activities and considered to
what extent they were adopted. The individual interviews used the following interview guide:

• Purpose of the interview, data management
• Can you tell us about your role and what you are developing?
• Can you tell us about your software development process, including how you work with

security?
• How do you identify the security needs and requirements?
• How do you consider how much time you need to spend on identifying security requirements

or threats towards the system?
• Do you do any analysis of security in the architecture/design, or do you do any threat

modelling?
• Do you have guidelines for how to consider security during coding?
• Do you have any practices on evaluating the security of the software you are developing?
• What do you do if a security vulnerability is discovered, and there is an incident?
• Do you consider that you have received the necessary training on software security?
• Who has the responsibility for software security, in your opinion?
• What do you think about having a security group in the department?

The retrospective happened after observation of the meetings. The brainstorming performed in
the retrospective was supported by the tool Mentimeter. The following topics were covered:

• Session 1:
– What is the goal of the security group? (brainstorm, discussion)

– What is the effect of the security group? (brainstorm, discussion)

– Do you have good enough security in your products? (vote on a scale, discussion)

– What works well? (brainstorm, discussion)

– What can be improved to increase the usefulness? (brainstorm, discussion)

– Feedback on this retrospective session
• Session 2:

– Researcher presenting experiences from other companies on software security, to
trigger discussions on the software security work at UnaidedCo. Topics covered:
security awareness, knowing that security activities leads to improved security in
the software, people and responsibilities, development vs. operations, visibility of
security, knowing what is good enough

238 Appendix A. Primary papers

– How is it to do security prioritisation in the meetings? How is it to do security
prioritisation in your daily activities? (vote on a scale, discussion)

– What makes it difficult to do prioritisation related to security? (brainstorm, discus-
sion)

– What helps you make prioritisation related to security? (brainstorm, discussion)

– What factors are used in security prioritisation? Which should be used? (ranking
of some predefined factors identified during observation - e.g., time to do the task,
effect, risk.)

– Presentation of the idea behind the security intention meeting series and the
instantiation at MediumCo – as a basis for discussion

– Feedback on this retrospective session, and thoughts about the future

References

Davis FD (1989) Perceived usefulness, perceived ease of use, and user acceptance of information
technology. MIS quarterly:319-340. https://doi.org/10.2307/249008
Dyba T, Moe NB, Mikkelsen EM (2004) An empirical investigation on factors affecting software
developer acceptance and utilization of electronic process guides. 10th International Symposium
on Software Metrics, 2004. Proceedings., IEEE. https://doi.org/10.1109/METRIC.2004.
1357905

Migues S, Erlikhman E, Ewers J, Nassery K (2021) BSIMM12 2021 Foundations Report. Syn-
opsis. https://www.bsimm.com/content/dam/bsimm/reports/bsimm12-foundations.pdf
Tøndel IA, Jaatun MG, Cruzes D, Oyetoyan TD (2018a) Understanding challenges to adoption
of the Protection Poker software security game. In: Computer Security. SECPRE Cyber CPS
2018, Springer, vol 11387, pp 153-172. https://doi.org/10.1007/978-3-030-12786-2_10
Tøndel IA, Oyetoyan TD, Jaatun MG, Cruzes D (2018b) Understanding challenges to adoption
of the Microsoft Elevation of Privilege game. Proceedings of the 5th Annual Symposium
and Bootcamp on Hot Topics in the Science of Security. https://doi.org/10.1145/3190619.
3190633

A
pp

en
di

x B
Secondary papers

The following papers are not included in the thesis, but are relevant to the content of the thesis
in the following way:

• Paper I ‘Understanding Challenges to Adoption of the Protection Poker Software
Security Game’: This paper presents results from the study of Protection Poker with
students. It was not included in the thesis, as Paper C is an extended version of this paper.

• Paper J ‘Understanding Challenges to Adoption of the Microsoft Elevation of
Privilege Game’: This paper presents results from the study of the Microsoft Elevation
of Privilege game with students, in the same environment as the study presented in Paper I.
The study of Microsoft Elevation of Privilege - a threat modelling game - was part of the
initial empirical exploration. However, results from the Protection Poker game were more
promising, and the Protection Poker game was also more in line with the need for security
prioritisation. Still, experiences from studying the Microsoft Elevation of Privilege game
were important in shaping this thesis.

• Paper K ‘Challenges and Experiences with Applying Microsoft Threat Modeling
in Agile Development Projects’: This paper presents results on threat modelling, and
identifies challenges to threat modeling, including threat modelling meetings. This was
used as input in the work on the Security Intention Meeting Series (e.g., in Paper H).

• Paper L ‘Using Situational and Narrative Analysis for Investigating the Messiness
of Software Security’: This paper introduces the concept of messiness in relation to
software security, a concept that in this thesis is mentioned in the discussion of this thesis
(Chapter 5). Furthermore, it argues that the messiness of software security should have

239

240 Appendix B. Secondary papers

implications for analysis in studies of software security practices in companies. The
analysis approach proposed in this paper was used in Paper H of this thesis.

• Paper M ‘The Quality Triage Method: Quickly Identifying User Stories with Quality
Risks’: In the discussion (Chapter 5) it was pointed out that one important direction of
future work was to consider quality aspects together. This paper represents one step in
this direction, proposing a method to identify quality requirements and their interaction
within an agile software development setting.

• Paper N ‘SecureScale: Exploring Synergies between Security and Scalability in
Software Development and Operation’: This paper investigates the relation between two
quality aspects, security and scalability, and how these can benefit from being considered
more in relation to each other. Thus, it represents one step towards a more integrated
approach to quality requirements (as called for in the discussion (Chapter 5).

