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Abstract

Early meal detection can help improve the performance of continuous glucose
monitoring systems (CGM). Modern diabetes solutions such as artificial pan-
creas rely on CGM systems to monitor the glucose level in the blood and based
on the sugar level in the blood, insulin is dosed. These CGM systems are how-
ever not ideal and are subject to time delays of 30-40 min from meal onset until
the meal is detected. Earlier studies have shown promising results in meal de-
tection by using recorded sounds of bowel movement during and after a meal
onset. Such a method could be used to improve CGM systems by reducing time
delays, however, the method suffered from a high number of false positives
(FP). In this study, both bowel and swallowing sound recordings were used to
reduce the number of FP’s. Results showed that both the number of FP’s and the
meal detection time were reduced. The average meal detection time for such a
system is 1-2 min.

For this project, a total of 10 meal recordings were obtained, where each record-
ing gathered data from four microphones simultaneously. Each one of the four
microphones gathered data from a specific location, two of the microphones
were placed at the right and left side of the lower part of the abdomen, one
was placed right above the collar bone, and the last one was placed right be-
low the right ear. The microphones captured bowel, swallowing, and chewing
sounds, and these were used for training a support vector machine classifier
using frequency spectrum features.
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1 Introduction

1.1 Background

1.1.1 Diabetes

Diabetes is a metabolic disease that is caused by the reduction or absence of the
production of the hormone insulin. Most of the food eaten is broken down into
sugar (glucose) and released into the bloodstream. When the blood sugar goes
up, the body signals the pancreas to release insulin, which acts like a key to let
the blood sugar into the body cells for use as energy [2].

Diabetes patients have inadequate or no production of insulin, which may re-
sult in high blood glucose levels, also known as hyperglycemia. Symptoms of
hyperglycemia develop slowly over several days or weeks. The longer blood
sugar levels stay high, the more serious the symptoms become. Hyperglycemia
may lead to shortness of breath, weakness, confusion, abdominal pain, and also
coma [3].

There are three main types of diabetes, which are type 1 diabetes, type 2 di-
abetes, and gastrointestinal diabetes. Type 1 diabetes is caused by an autoim-
mune reaction, where the body attacks itself by mistake, this stops the body’s
insulin production. Approximately 5 − 10% of diabetes patients have diabetes
type 1 [2]. While for type 2 diabetes, the body produces insulin, but however
it does not use it well, and it can not keep the blood sugar at normal levels.
About 90 − 95% of people who have diabetes have type 2 diabetes [2]. Gas-
trointestinal diabetes is due to a high blood glucose level that develops during
pregnancy and usually disappears after [4].

1.1.2 Diabetes treatment

Type 2 diabetes can be prevented or even delayed with a healthier lifestyle
change, such as being more active and eating healthier. That is however not the
case for type 1 diabetes patients, as they need to take insulin on a daily basis to
survive [2].

The insulin dosage for type 1 diabetes patients depends on the measured glu-
cose level in the blood, thus a finger stick blood test is often required before
administrating the insulin dose. The patient can take an insulin shot using a sy-
ringe, an insulin pen, or an insulin pump. An insulin pump is a small machine
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that delivers steady insulin doses throughout the day, although patients might
require to take an extra dose of insulin at mealtime through the pump.

More advanced diabetes treatments such as artificial pancreas (AP) relies on
continues glucose monitoring (CGM) systems. These types of systems moni-
tor the glucose level in the bloodstream periodically using sensor technologies.
However, a major problem with this type of technology is that it needs calibra-
tion from time to time, thus twice a day the patient is required to test a drop of
blood on a standard glucose meter[5].

1.2 Motivation

A major problem with these advanced diabetes treatments is that the patient’s
involvement in the therapy is still vital, the treatment affects the daily life of
the patient. Another thing about CGM systems is that they are subject to time
delays of 30-40 minutes from meal onset until the meal is detected [6]. The
CGM systems are subject to time delays and slow dynamics due to the latency
of interstitial fluid. As a consequence, patients are required to announce the
meal intake, this is required by clinically tested systems for glucose control.

An automatic meal detection system could help mitigate some of the problems
of CGM systems by reducing the time required for the administration of insulin,
and it may also cut down the need for meal announcements. Such an early meal
detection system using bowel sound recordings was attempted by Konstanze
Kölle [6]. His study showed promising results, as the average meal detection
time was reduced to 10 minutes. Even though the study showed promising
results, it was still lacking as the accuracy and recall of the system were low,
and the system produced a lot of false positives. Other systems considered the
possibility of detecting a meal intake based on swallowing sounds, such systems
had high accuracy, as high as 75% [7] [8] [9][10].

Both types of systems showed significant results, however, as a standalone sys-
tem for meal detection these systems are unreliable since any false positive can
trigger a wrong insulin dose, and that can result in transient and serious hy-
perglycemia [11]. A system that combines both bowel and swallowing sounds
could help increase the reliability of meal detection. If such an automatic meal
detection system is possible, then when combined with a CGM system, the de-
lay between-meal onset and detection could be drastically reduced, improving
the overall performance of CGM systems.
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1.3 Objective

This thesis takes the work done by Konstanze a step further by relying on both
bowel and swallowing sound recordings for building a meal detection system.
The same data acquisition protocol used by Konstanze will be followed in this
thesis, for both swallowing and bowel sound recordings. All the recordings used
in this project were captured by four channels (microphones), the microphones
were used to capture bowel, swallowing, and chewing sounds. The chewing
sounds were recorded but not used, because another master student needed
them for his project.

1.4 Thesis outline

This thesis will be organized as such. First, some important concepts for un-
derstanding the different parts of the system will be explained in detail in the
theory section. Then, in the subsequent two sections, the protocol for data ac-
quisition as well as the method for implementing the system will be introduced.
These sections will also describe how the classifier is trained and validated, and
how the performance of the system is assessed. Followed by that, a section will
deal with presenting the results found in this project. These results will then be
discussed, and the most important findings in this project will be summarized.
Lastly, the feasibility of such a system would be discussed in addition to future
work.
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2 Theory

2.1 Introduction

The diagram in Figure 1 shows the general steps for data analysis in any ma-
chine learning system, and these steps yield also for this project. During this
section, these steps will be presented in more detail.

Figure 1: General steps of bowel and swallowing sound analysis.

In the first step, the data is acquired for this project, data is collected through
four microphones that record simultaneously. These microphones measure the
variation in air pressure and convert the variations into an electrical signal via
an analog-to-digital converter (ADC).

In the second step, the recordings will be filtered to remove unwanted infor-
mation in the signal. This includes high-frequency content where there is no
information of interest. After that, the signal is then normalized before the fea-
ture calculation step.

In the third step, the filtered and normalized data are used to extract the most
important and nonredundant information. This data is then used in the fourth
step, where it’s processed and analyzed.
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2.2 Signal processing

2.2.1 Quantization

The number of bits of information per sample is the bit depth. When quanti-
zation is performed, the bit depth of the signal is reduced, this process leads
to constraining the large set of values to a smaller one. Quantization leads to
rounding of the values in the original signal, which in turn reduces the sharp-
ness of the signal. This operation gives a lower signal-to-noise ratio (SNR), as a
result of cutting some of the signal’s highest peaks [12]. The frequency response
of the signal is however unaffected by this operation since it’s only constrained
by the sampling rate of the signal.

2.2.2 Decimation

Downsampling is the operation where the sampling rate is reduced by keeping
every M’th sample, where M is the downsampling factor. Lowpass filtering is
not involved in the operation. Decimation is the operation where the sampling
rate is reduced, but before that lowpass filtering is applied to avoid aliasing.
Aliasing is caused by downsampling with a sampling rate below the Nyquist
rate. Decimation leads to a reduction in the power of the signal since the high-
frequency content of the signal is attenuated [13].

2.2.3 Normalization

The goal of normalization is to use a common scale for the data without dis-
torting the differences in the range of values. This helps with increasing the
training speed of the classifier as the features used are in a similar range and
values [14]. Linear normalization was used for this project, where the range of
the values after normalization was between 0 and 1. Normalization is given by

x′ =
x− xmin

xmax − xmin
(1)

where x’ is the normalized signal, x is the signal amplitude at a given time, and
xmin, xmax is the minimum and maximum amplitude of the signal respectively.
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2.2.4 Median filtering

Median is a term describing the element in the middle of a sorted data set.
Median filtering of length N will iterate through the data using a window of
length N, where for each iteration the elements in the window are sorted and
only the median is kept. This operation leads to a smoothing of the data, as
outliers are removed.

2.3 Features

Training a classifier can be an intensive operation, as it requires a lot of process-
ing power. Training requires a large amount of data, and usually, there is a lot
of redundancy in the data, this could be exploited. By removing the redundant
data, not only is the processing time reduced but also the prediction ability of
the classifier is improved. The set of selected data for training the classifier is
known as features.

2.3.1 Feature extraction

The frequency spectrum shows the amplitude of the frequency content of the
signal. For this project, the features extracted are power frequency-based, for
both bowel and swallowing sounds.

Earlier studies confirmed that most of the signal power spectrum density for
bowel sounds is concentrated below 1000 Hz [15][16]. The largest power spec-
trum density of abdominal sounds is located between 100-500 Hz [15]. This
was also confirmed by Konstanze Kölle, who noted that during a meal onset
most of the power increase is for frequencies below 1000 Hz [6].

Regarding the frequency spectrum of swallowing sounds, the active frequency
content of the signal during a meal intake seems to be in the region 400-1000
Hz [17]. However, information about the meal content, such as the type of food
or liquid is located in the higher frequency range. This information is located in
the frequency range up to 3600 Hz [8].

For this project, as it was not important to detect the type of food that is in-
gested, only meal onset, a frequency range of 0-1000 Hz sufficed as most meal
onset information were located at these frequencies for both swallowing and
bowel sounds. To ensure that no information is lost, and allow for the possibil-
ity of accessing additional information, later on, a frequency range of 0-2000
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Hz was used. This allowed also for more relaxed filter constraints during deci-
mation (lowpass filtering).

2.3.2 Feature calculation

Using the frequency spectrum of the signal, features such as power spectral
density (PSD) could be calculated. PSD shows the energy of the signal as a
function of frequency. The PSD is obtained using the Fourier Transform and is
given by

P̂s(f) =
∆t

N
|
N−1∑
n=0

xs,ne
−i2πfn|2 (2)

Where ∆t is the sampling interval and N is the number of samples in time
segment s [18].

2.4 Machine learning

Machine learning (ML) is a subfield of artificial intelligence that allows software
applications to become more accurate at predicting outcomes without being
explicitly programmed to do so. ML algorithms use historical data as input to
predict new output values [19]. There are two main types of ML, which are
supervised learning and unsupervised learning. This project uses supervised
learning.

2.4.1 Supervised learning

In supervised ML, the algorithm is supplied with training data that is labeled.
The algorithm trains using the labeled data and then try to learn how to map
the new data, Xnew, to an output, Ypredicted, by using the known input and output
pair (X,Y) [20]. The performance of the mapping is measured using a loss func-
tion, the loss function used for this project is the mean squared error (MSE),
and is given by (3), where N is the number of training samples.

L(Y, Ypredicted) =
1

N

N∑
i=0

(Y − Ypredicted)
2 (3)

Supervised learning can be separated into two types of problems, which are
classification and regression. This project focuses on classification problems. In
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classification problems, an algorithm is used to assign data to a specific class.
It recognizes specific entities within the data set and attempts to draw some
conclusions on how those entities should be labeled or defined [20].

2.4.2 Training, validation, and test data

All ML systems require data to work, as predictions depend on the data fed into
the system. The most common three types of data used to build a ML system
are training, validation, and testing. Training data is used to train the classifier
and estimate the parameters of the model. Validation data is used to validate
and tune the hyperparameters of the model by providing an unbiased data set.
The test data is used to test the overall performance of the system, this data
must not be used during training.

2.4.3 Support vector machines

Support vector machines (SVM) is the classifier used for this project. The clas-
sifier performs the classification by finding the optimal hyperplane, which is
the optimal plane in the feature space that separates the training data. The
hyperplane is chosen based on the highest possible margin. Margin is the dis-
tance from the hyperplane to the nearest data point [21]. A major advantage of
SVM’s is that it only relies on a small subset of data called support vectors for
classification, for that reason it does not require a large data set.

Assuming the data is linearly separable, a simple linear model can be used, like
the one shown in Figure 2 (a). However, if the data is nonlinear, a kernel can
be used, where a nonlinear mapping of the data occurs in higher dimensions,
making it easier to find the hyperplane. An illustration of such a hyperplane is
shown in Figure 2 (b), where the data is mapped from 2 to 3 dimensions to find
a linear hyperplane. This decision boundary can then be projected back into its
original space.

2.4.4 Kernel function

Kernel functions transform low-dimensional input into a higher dimensional,
converting a non-separable problem into a separable one. The kernel used in
this project is the radial basis function (RBF). RBF has the property that each
basis function depends on the radial distance from a center µj so that
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Figure 2: Illustration of a linear SVM (a) and a nonlinear SVM (b) [1].

ϕj(x) = h(||x − µj||). The function uses a similarity measure between the in-
put vector {x1, ...., xN} and the target vector {t1, ...., tN} using the Euclidean
distance, ||x − µj||. The goal is to find a smooth function f(x) that fits every
target value exactly, so that f(xn) = tn for n = 1, ....N . To achieve this, f(x) is
expressed as a linear combination of RBF’s, one centered on every data point.
The function is given by

f(x) =
N∑

n=1

ωnh(||x− xn||) (4)

Where the values of the coefficients {ωn} are found by least squares. Since
there is the same number of coefficients as there are constraints, the result is a
function that fits every target value [21].
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2.4.5 Selection of hyperparameters

SVM’s implemented in the scikit-learn library has two hyperparameters, C and
γ. The selection of the hyperplane depends on the margin, and the margin is
influenced by the hyperparameters of the classifier. The kernel coefficient for
RBF is γ, the higher the value of γ the higher the generalization error. The
classifier tends to overfit for large γ, as a result, the predictive quality of the
classifier becomes bad. C is the penalty parameter of the error term, it controls
the trade-off between smooth decision boundary and classifying the training
points correctly. Low C encourages a larger margin, therefore allowing for more
errors. C can be seen as a regularization parameter.

Both the values of γ and C should be balanced, in such a way that the classifier
performs well on the test data. To see the effects of the hyperparameters on the
classifier, a loss function such as MSE can be used, as shown in (3).

2.4.6 Feature selection

Feature selection is an important step in every ML system. This step helps the
classifier reduce the number of variables in the data set by using only the rele-
vant and nonredundant ones. In this project mutual information (MI) was used
for feature selection. MI measures the statistical dependence between data,
which involves detecting any sort of relationship between the data. Everything
from mean, variance, or even higher moments. Given two random variables X
and Y, MI is given by

I(X, Y ) =

∫
X

∫
Y

p(x, y)log
p(x, y)

p(x)(p(y))
dxdy (5)

Where p(x) and p(y) are the marginal density functions, and p(x,y) is the joint
probability density function of X and Y [22]. Assuming X, and Y are uncorre-
lated then the value of MI will be zero as the joint probability density function is
equal to p(x, y) = p(x)p(y), consequently, I(X, Y ) = 0. If X and Y are correlated,
then I(X, Y ) > 0.

To find the best features, the mutual information should be maximized with
respect to the selected features, Xs, and the target variable y.

S̃ = argmax
S

I(Xs; y) (6)

Such that |S| = k, where k is the number of features we want to select [23].
For this project, only the three best features were used for training, k = 3.
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2.4.7 Performance assessment

A common metric to measure the accuracy of classifiers is the ratio between
the true positive (TP), false positive (FP) and true negative (TN). Where TP is
the outcome when the classifier predicts a meal onset correctly and FP is the
outcome when the classifier predicts a meal onset falsely (no meal is detected
as a meal onset). TN is the outcome when the classifier correctly detects no
meal onset.

The true positive rate (TPR), also called recall, is defined as

TPR =
TP

TP + FP
(7)

The recall is a measure of the classifier’s ability to find all the predicted posi-
tives. It aims at measuring the proportion of the samples classified as positive
which really belong to the positive class.

False positive rate (FPR) is defined as

FPR =
FP

FP + TN
(8)

FPR is the probability that the classifier gets a positive value when the true
value is negative.

It is common to plot the TPR with respect to the FPR on a graph to represent
the performance of a classifier. The better the classifier performance, the higher
TPR should be, and the lower FPR should be, and vice versa. A perfect classifier
would have a TPR of one and an FPR of zero.
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3 Equipment and protocol for data acquisition

3.1 Introduction

The data recording required a protocol that was approved, that is why the same
protocol for the pilot study of "Analysis of bowel sounds related to meal onset"
by Konstanze Kölle was used [24]. The following section describes the protocol
and equipment used for data gathering.

3.2 Recording equipment

A diagram of the equipment used for recording is shown in Figure 3. The sound
is picked up using four SPM0687LR5H-1 microphones. The microphone has
a uniform frequency response and a high SNR [25]. The microphones were
placed in a stethoscope-shaped (disc-shaped) microphone holder to capture
the sounds made by the body more clearly. Before placing the microphone on
the skin, a double-ended tape (ring-shaped) was attached to the microphone to
hold it in place during recording.

Figure 3: Representation of the equipment layout during the data collection.

The four microphones are connected to a box, where they are powered via a
power source (battery). The microphone signal is forwarded to a sound card.
The sound card used for the project is Roland Octa-Capture, with a bit resolu-
tion of 24-bits and a sampling frequency of 48 kHz audio [26]. The output of
the sound card is connected to a computer, where the recordings are saved.

3.3 Protocol for recording data without noise

For each audio recording, there was a total of four microphones recording si-
multaneously. Each one of the microphones was attached to a specific location.
The location of the microphones can be seen in Figure 4.



3 Equipment and protocol for data acquisition 13

Figure 4: Locations of the four microphones.

The first microphone was placed right under the right ear and was used for
recording chewing sounds, this recording was not used in this project. The sec-
ond microphone was placed just over the collar bone on the neck to record
swallowing sounds. Different microphone placements were tested in the paper
"Automatic detection and recognition of swallowing sounds" [8]. Based on the
findings in the paper, the best placement appeared to be just above the collar
bone, since these recordings had the highest power. This location was, however,
not the most comfortable with regard to head movements. The third and fourth
microphones were placed on the lower abdominal region, the right and left part
of the abdomen, to capture bowel sounds.

Before the recording sessions, the subjects were asked to fast for a minimum of
three hours. The first 15 min of the recording was used as a reference, as the
subjects were asked to continue fasting. After that, the subjects could then eat a
meal of their choice, often the meal consisted of a slice of bread with cheese and
a glass of water. The meal duration had to be less than 15 min. After the meal,
the recording continued for another 45 min to monitor the digestive behavior.

During the recordings, the subjects were asked to move as little as possible to
avoid disturbing the recordings, since movement created friction noise in the
recordings. The subjects were allowed to read a book or use their phone to
avoid falling asleep after the meal onset, after 30 min of recording. For this
protocol, there was a total of seven recordings, most were 65-75 min long.
Nevertheless, only five of them were included in this project, due to problems
with two of the recordings. The protocol is illustrated in Figure 5.
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Figure 5: Protocol for recording data without noise.

3.4 Protocol for recording data with noise

To test the robustness of the classification system, five new recordings were ac-
quired. These new recordings were intended for testing how noise in the swal-
lowing recordings affected the system, and to check how well the system per-
formed in a more realistic environment. The new recordings followed a newly
proposed protocol, Figure 6.

Figure 6: Protocol for recording data with noise.

In these new recordings, only swallowing and chewing sounds were recorded,
hence no fasting was required before recording. The first 5 min of recording
were used as a reference, similarly as in the previous protocol. For the next
10 min, the subject was asked to read out loud from a book or a newspaper.
After that, the subject could eat a meal of their choice for up to 15 min. After
the meal, the subject had to be quiet for 5 min, and then read for another 5
min. Two out of those five recordings had also some reading during the meal
onset, the subject was asked to eat for 25-30s and then read for at least 10-15
seconds, and then repeat. This part was added to see if noise during the meal
onset could be picked up by the system.
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4 Method description and implementation

4.1 Introduction

The main task of the project was implementing a system for automatic meal
detection using bowel and swallowing sounds. Konstanze Kölle’s system and
research [6] served as a baseline for this project. This section describes how the
system was implemented.

4.2 Data acquisition

The first seven recordings were acquired using the protocol in Figure 5. These
recordings were taken by two subjects (master students). During the recordings
the subjects were sitting on a chair, while the microphones were taped on the
four locations as shown in Figure 4, the microphones on the abdomen region
were covered by clothes for comfort reasons. Out of the seven recordings, only
five recordings were used, as two of the recordings were corrupted.

In addition to the first five recordings, five new recordings of data augmented
with noise were acquired using the protocol in Figure 6. These new recordings
were needed to test the robustness of the system. These five recordings were
also taken by the same two subjects. Two out of these five recordings had also
noise during the meal onset (see Section 3.4).

In total there were only 10 recordings that were used for this project, and due to
lack of time no more recordings were taken. The recordings were uploaded on
google drive, in order to make accessing them from google colaboratory easier.
Google colaboratory was used as a python compiler, as it provided free access
to computing resources including GPUs.

4.3 Data Pre-processing

The recorded audio files had a bit rate of 24 bits, while python only worked
for 8- and 16-bit rates. Thus it was necessary to quantize the data, in order to
convert the bit rate of the files from 24 bits to 16 bits. This process was first
performed in python, however, it was later on changed. Due to convenience
purposes, the quantization was performed on a digital audio editor, Audacity,
because the audio files were too large to handle on google drive.



16 4 Method description and implementation

After quantization, the data was decimated. In order to decimate, the audio
files were lowpass filtered to remove the frequency content above 2 kHz. The
lowpass, anti-aliasing filter used was the 8’th order Chebyshev type 1 filter.
This filter was used due to its flat frequency response in the frequency range of
interest, furthermore, the magnitude of the filter at cutoff was equal to -3 dB
(0.5). After filtering the data was downsampled to 4 kHz using a downsampling
factor of 12. This lead to a reduction in the total file sizes by a factor equal to
the downsampling factor.

The final step in the pre-processing was normalization. Each recording was
normalized individually. The data was normalized by a linear normalization, as
in (1)

4.4 Feature extraction

In the feature extraction part of the project, frequency spectrum features were
calculated. Before the feature calculation, the recordings were first segmented
using four-time segments of length, 10, 20, 30, and 60 seconds. To allow for
continuity between the time segments, an overlap of 50% was carried out. The
segmentation was used to see whether the segment length had an influence
on the performance of the system. After segmentation power spectrum features
were extracted. The total power, the power in 100 Hz bands from 0-2000 Hz,
and also the power fraction in these frequency bands were calculated. A de-
tailed list of the extracted features is shown in Table 1.

Features Number of features
Total power 1
Power in 100 Hz frequency bands from 0 Hz to 2000 Hz 2-21
Power fraction in 100 Hz frequency bands from 0 Hz to 2000 Hz 22-40

Table 1: Description of the extracted features.

These extracted features were then median filtered and used to build a feature
matrix for each recording. Each recording from a single microphone had a total
of four feature files, one for each time segment. Each feature matrix was also
normalized such that all values were between 0 and 1. A typical feature matrix
shape is shown in Figure 7, where each row corresponds to a feature at a given
time segment, and n is the number of time segments.
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a1,1 a1,2 · · · a1,41
a2,1 a2,2 · · · a2,41
...

... . . . ...
an,1 an,2 · · · an,41

Figure 7: Feature matrix, where rows correspond to a feature at a given time segment,
and n is the number of time segments.

Since this project used features from both swallowing and bowel sound record-
ings, the feature matrix had to include all these features. A new feature matrix
with 123 features was built, one for each meal recording. This was built by
combining the feature matrices from each meal recording. An example of such
a feature matrix is shown in Figure 8, where the first 41 features were from
swallowing sounds, the next 41 were from right bowel sounds, and the last 41
were from left bowel sounds.

a1,1 a1,2 · · · a1,41 b1,1 b1,2 · · · b1,41 c1,1 c1,2 · · · c1,41
a2,1 a2,2 · · · a2,41 b2,1 b2,2 · · · b2,41 c2,1 c2,2 · · · c2,41
...

... . . . ...
...

... . . . ...
...

... . . . ...
an,1 an,2 · · · an,41 bn,1 bn,2 · · · bn,41 cn,1 cn,2 · · · cn,41

Figure 8: Feature matrix, where rows correspond to a feature at a given time segment,
and n is the number of time segments, and a, b, c are swallowing, right
bowel, and left bowel sound features respectively.

Different feature matrices were also built throughout this project. Some of the
built feature matrices included a matrix with only bowel sound features (82
features), and a matrix with only swallowing sound features (41 features). All
these matrices were used to train and build different classification systems.

4.5 Data processing and analysis

4.5.1 Splitting of the data

After pre-processing the data was split into training, validation, and test set.
There were in total 10 meal recordings, six of these meals were used as part
of the training and validation set. The splitting between the training set and
the validation set was done via leave-one-out-cross-validation (LOOCV). Where
each one of the six meals was assigned to the validation set, one at a time, via
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an iterative procedure, and the remaining meals were assigned to the training
set. This maximized the performance of the classifier, given the small data set
that was available. The last four recordings were used as part of the test set.
Since two of the meals augmented with noise had also noise during the meal
onset, one of the meals was always part of the training set and the other was
always part of the test set.

Splitting was sometimes performed separately for the meals with and without
noise. In the early stages of the project when there were no meal recordings
with noise, only five meals were available, thus three of the meals were used
for training and validation, while the other two were used for testing.

The data were either distributed at random between the training/validation
and test set or distributed according to the subject of the recording. The latter
splitting was executed by assigning the meal recordings from one subject to
the training/validation set while assigning the meal recordings from another
subject to the test set.

4.5.2 Training and Classification

The training of the classifier can be divided into three steps. The procedure for
training the classifiers is shown in Figure 10, where the arrows indicate how
the output of each step builds the basis for the next step. The training starts
after feature extraction.

In the first step, the data is split, and the response vector is created. The re-
sponse vector is the labeling vector that will be used to train the classifier, it
could also be called the target vector. A visualization of how the response vec-
tor should look like is shown in Figure 9. Response delay is the parameter
used to account for the delayed onset of audible bowel activity after the meal
started, and the response duration is the parameter that is used to find the in-
terval length best suited for early meal detection. Each element of the response
vector was either assigned the class "0" or "1". The response vector is assigned
the class "0" as default and "1" as a meal indicator [6].
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Figure 9: Representation of the response vector, where response delay and response
duration are relative to the meal start.

There were variations in the segment length of the feature matrix, as well as
variations in the response delay and response duration of the response vector,
all the possible parameter values are shown in Table 2. In total there were 144
possible parameter combinations, and each combination was used to build a
classifier, thus in total, there were 144 classifiers built for each validation meal.

Parameter Values Unit
Time segment 10, 20, 30, 60 s
Response delay 0, 4, 6, 8, 10 min
Response duration 1, 2, 5, 10, 15, 20 min

Table 2: Parameter combinations.

Before building the classifiers, the best features were selected using the MI
between each feature vector (rows in the feature matrix) and the response vec-
tor. Only the three best features were selected, those with the highest cross-
correlation score, as they were deemed the most relevant features. These se-
lected features were used to train the SVM classifiers along with the response
vector.

A grid search with the values 2[−10,−5,0,5,10] for both the γ and C was used to tune
the hyperparameters of the SVM’s. One SVM model was built for each grid point
and parameter combination, where only the hyperparameters that resulted in
the lowest MSE between the predicted output and the response were selected.



20 4 Method description and implementation

The main takeaway point in this step is that those features and parameter com-
binations that resulted in the highest number of TP’s were selected and for-
warded to the next step.

In the second step, the selected features and parameter combinations from the
first step were used to build a new SVM model. There is no feature selection in
this step. A new SVM model was then built using the selected features. Here,
the hyperparameters were once again tuned via a grid search with the same
values as before. The hyperparameters that resulted in the lowest MSE were
selected. The point of this step is to find the tuning for each of the selected
parameter combinations.

In the third step of the classifier training procedure, the tuned classifiers were
trained once more using both training and validation sets, as there was no need
for validation since the hyperparameters were already tuned in the previous
step. The final classifiers were then tested using the test meals.

Figure 10: Procedure for training the classifiers.
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4.5.3 Evaluation of the performance

The performance of the 144 classifiers built in the first step of the training
procedure was evaluated by the TPR with respect to the FPR graph for both the
training and validation meals. Using the graph for the average of all LOOCV
runs, the parameter combinations that resulted in the four best classifiers were
selected, one for each time segment. The parameter combinations for these four
classifiers were then forwarded to the second and third steps of the training
procedure.

The final classifiers from the third step were used on the test meals, and to
assess the meal prediction a plot showing the predicted response vector against
the true response vector was used. Using this plot the numbers of TP’s and FP’s
were calculated. The way a FP was given is by the occurrence of two consecutive
ones before the true meal onset, while a TP was given by the occurrence of two
consecutive ones after the meal onset.

All recordings had a meal onset 15 min after the recording started, thus any
detected consecutive ones after the 15’th min were counted as a TP, while any
consecutive ones before that were counted as a FP. A meal is detected when
the first two consecutive ones are detected and repeated consecutive ones af-
terward only work as a confirmation for meal detection.
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5 Results and observations

5.1 Introduction

As mentioned earlier (see section 4.5.1) the data were split based on the data
types, either randomly or based on the subject of the recordings. In addition,
different feature combinations were tested (see section 4.4). This was used to
build and test a couple of different classification systems. In this section, the
results and observations from these classification systems will be presented.

5.2 Classification using only bowel sound recordings

The first classification system was trained using only bowel sounds, both right
and left bowel sound recordings. Only the recordings without noise were used
for training and testing, in total three meals were used for training and valida-
tion, and two meals were used for testing. Figure 11 shows a plot of the TPR
and FPR for each parameter combination for the average of all LOOCV runs.

Figure 11: True positive rate vs false positive rate for the validation meals in step 1.
Each marker represents the average of all LOOCV runs for a given parame-
ter combination.

.

The parameter combinations that resulted in the best classifiers were picked
from Figure 11, one parameter combination for each time segment. These pa-
rameter combinations were then used in steps 2 and 3 in the training process.
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The selected parameter combination for each time segment is presented in Ta-
ble 3.

Delay Duration Segment
2 2 10
2 15 20
0 15 30
2 15 60

Table 3: Best parameter combination for each time segment for classification using
bowel sound recordings.

The final classifiers with these parameter combinations resulted in the following
count for TP’s and FP’s for the test meals, Figure 12. It’s clear that the classifier
didn’t perform well enough as there were multiple FP’s that were counted. The
classifier with the 10s time segment performed the worst, as there were no TP’s,
and only one FP was counted.

Figure 12: True positive and false positive meal detection for each test meal, for the
four final classifiers.

The predicted response vector was plotted against the true response vector for
the 10s and 20s time segment for both test meals, Figure 13 and 14. The true
response vector was plotted with the same parameter combinations as the pre-
dicted response vector, however, the meal delay used was always zero. This
was plotted to visualize how well the classifier predicted a meal onset. For both
meals, the actual meal onset was at the 15’th min of the recording.

The classifier with 10s time segment, Figure 13, was not able to predict much,
only a couple of consecutive ones were labeled at the beginning of the first
test meal indicating a meal detection 15 min before the actual meal onset, and
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Figure 13: True vs predicted response vector for the test meals, for the final classifier
with 10s time segment. The graph on the top and bottom are respectively
the first and second test meals.

Figure 14: True vs predicted response vector for the test meals, for the final classifier
with 20s time segment. The graph on the top and bottom are respectively
the first and second test meals.



5 Results and observations 25

hence a FP was counted. As for the second meal no prediction was present, thus
no meal was detected.

As for the classifier with the 20s time segment, Figure 14, there were multiple
false meal labels for the first meal. This could be seen clearly in the graph since
there were multiple labeled ones both before and after the meal onset, that is
why both a TP and a FP were counted. As for the second meal, there were ones
labeled at beginning of the meal recording, thus a FP was counted. For both
test meals, a meal was detected 15 min before the actual meal onset.

5.3 Classification using bowel and swallowing sound record-
ings

For this classification system, swallowing sound features were combined with
the features from both the right and left bowel sounds, to train, validate and
test the classification system.

This classification system was built using data without noise. The same three
meals from earlier were used for training and validation, and the two remaining
meals were used for testing. The TPR and FPR are plotted for each parameter
combination in Figure 15 for the average of all LOOCV runs. The best classifiers
in this system outperformed the best classifiers in the previous classification
system, with regards to TPR and FPR.

Figure 15: True positive rate vs false positive rate for the validation meals in step 1.
Each marker represents the average of all LOOCV runs for a given parame-
ter combination.
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Once again the parameter combinations that resulted in the best classifiers were
selected and used for training in steps 2 and 3. The parameter combination for
this system is presented in Table 4. The four final classifiers were then used on
the test meals, and the TP and FP count for each classifier is shown in Figure
16.

Delay Duration Segment
0 10 10
2 10 20
4 5 30
0 20 60

Table 4: Best parameter combination for each time segment for classification using
bowel and swallowing sound recordings.

Figure 16: True positive and false positive meal detection for each test meal, for the
four final classifiers.

The classifiers had no FPs, only TPs. To understand why the classifiers per-
formed so well, the predicted response vector was plotted against the true re-
sponse vector for the 10s and 20s time segment, Figure 17 and 18. From these
plots, there was no meal labeling before the true meal onset, which explains
why there were no FP’s. Both classifiers were able to label the meal during the
actual meal duration. There seems to be some false labeling at the end of the
meals for both classifiers.

The features selected by each classifier in the LOOCV iterations are shown in
Figure 19. Most features seemed to be selected from the swallowing sound
features, especially the features from 0-20.

Another data splitting modality was also tested for this system. The data was
split based on different subjects, the system was trained using meals from one
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Figure 17: True vs predicted response vector for the test meals, for the final classifier
with 10s time segment. The graph on the top and bottom are respectively
the first and second test meals.

Figure 18: True vs predicted response vector for the test meals, for the final classifier
with 20s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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Figure 19: Features selected during every LOOCV iteration, where the first 41 are swal-
lowing sound features, the next 41 are right bowel sound features, and the
last 41 are left bowel sound features.

subject and tested using meals from another subject. In total, there were three
training meals and two test meals. The results from this system were similar
to the results shown above, that is why the results were not included in this
section, but rather in Appendix A.

5.4 Classification using data augmented with noise

For this project, only swallowing recordings were augmented with noise, hence
all classification systems built in this subsection are trained and tested using
swallowing sound recordings only. Two classification systems were built, one of
which was not trained using data augmented with noise, while the other was
trained using data augmented with noise. Both systems were tested using data
augmented with noise.

5.4.1 Training without data augmented with noise

The first classification system was trained and validated using data without
noise, and then tested using data augmented with noise. It was trained using
three training data chosen randomly from the meals without noise and tested
using two meals augmented with noise. One of the test meals augmented with
noise had also noise during the meal intake (the first meal). TPR and FPR for
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all parameter combinations for the average of all LOOCV runs for this system
are shown in Figure 20. This classifier had similar TPR and FPR values to the
classifier trained with all features (bowel and swallowing sound).

Figure 20: True positive rate vs false positive rate for the validation meals in step 1.
Each marker represents the average of all LOOCV runs for a given parame-
ter combination.

The counted TP and FP for each test meal are plotted in Figure 21. This plot
showed that the classifiers did not label anything for the 30s and 60s time
segments, while for the 10s, and 20s time segment both a FP and a TP was
counted. Once again the predicted and the true response vector for 10s and 20s
time segments was plotted, Figure 22 and 23. It could be seen that for both time
segments, the classifier predicted the talking in the recording as a meal, both
before and after the meal onset, that is why both a TP and a FP were counted.



30 5 Results and observations

Figure 21: True positive and false positive meal detection for each test meal, for the
four final classifiers.

Figure 22: True vs predicted response vector for the test meals, for the final classifier
with 10s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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Figure 23: True vs predicted response vector for the test meals, for the final classifier
with 20s time segment. The graph on the top and bottom are respectively
the first and second test meals.

5.4.2 Training with and without data augmented with noise

The second classification system was built using a combination of both data
augmented with and without noise. The training and validation data set con-
sisted of six meals, three with noise, and three without noise. The test set con-
sisted of the same test meal as in the previous classification system, two meal
recordings augmented with noise.

The TPR and FPR for all parameter combinations for the average of all LOOCV
runs for this classification system are plotted in Figure 24. The TPR for this
system was much lower than all the previously built systems, however, the FPR
was surprisingly low.

TP’s and FP’s were plotted in Figure 21. It seems from the plot that the four
final classifiers were much better at predicting a meal onset when compared
to the final classifiers in the previous system. The final classifiers were able to
label almost all the meals.

To better understand why the classifiers behaved like this, once again the true
response vector was plotted against the predicted response vector for the classi-
fiers with 10s and 20s time segment, Figure 26 and 27. From these two figures,
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Figure 24: True positive rate vs false positive rate for the validation meals in step 1.
Each marker represents the average of all LOOCV runs for a given parame-
ter combination.

Figure 25: True positive and false positive meal detection for each test meal, for the
four final classifiers.

it is possible to see that the classifier had a better prediction for the meal. Unlike
the previous classifiers, the talking was not labeled as a meal, however, some of
the silent parts were labeled as a meal. It seems that the classifiers only counted
FP’s for the first meal, the meal which had some talking during the meal onset.
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Figure 26: True vs predicted response vector for the test meals, for the final classifier
with 10s time segment. The graph on the top and bottom are respectively
the first and second test meals.

Figure 27: True vs predicted response vector for the test meals, for the final classifier
with 20s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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5.5 Additional plots and observations

Additional findings, plots, and results are presented in Appendix A, such as the
30s and 60s time segment for the classifiers predicted and true response vector,
and the TPR and FPR plot for all parameter combinations for the average of the
training data.
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6 Discussion

6.1 Evaluation of the performance of classification using only
bowel sound recordings

The classification system that was trained using only bowel sounds did not
perform that well, as it struggled to detect a meal onset, even using the four
final classifiers. When compared to Konstanze Kölle’s system [6], which only
had features from a single bowel location, the addition of an extra bowel
sound(right/left bowel) feature to the feature matrix did not improve the per-
formance of the classifiers, not one bit.

The addition of the extra recording seems to have affected how well the differ-
ent parameter combinations performed. As it’s clear in Figure 11 that the clas-
sifiers built were separable in duration, the higher the duration is the higher
is the FPR. The classifiers with a duration of 20 min had the highest FPR. The
classifiers with a duration of 10 and 15 min had low FPR and good TPR, these
classifiers were also among the best classifiers. A reason for this could be that
the classifier’s duration aligned with the real duration of the recorded meals,
which was often between 8-12 min.

Looking at Figure 12 there seems to be a couple of meals with both a TP and
a FP, this follows directly from the messy true vs predicted label plots, like the
one in Figure 14 for the first meal. The predicted response vector has consec-
utive ones all over the plot, both before and after the meal onset. This follows
naturally from the way bowel sounds are, as bowel sounds may cycle from peak
to peak with a period over 50-60 minutes [27]. Thus bowel sound peaks appear
all over the recording, and are more apparent for the right bowel recordings,
this clearly affected the feature selection and training of the SVM classifiers. An-
other thing that also affected the prediction was the noise in the bowel sound
recordings, as any movement by the subject led to friction noise between the
microphone and the skin. This noise was especially apparent at the beginning of
the recordings as subjects usually adjusted their seating. This is evident in Fig-
ure 13 and 14 where meal labels are assigned at the beginning of the recording.
All these effects were captured differently by the different time segments.

For this classification system, the meal detection time for the test meals varied
from one classifier to another. Some had false meal detection 15 min before
the actual meal onset, due to FP’s, while others had no meal detection as the
classifiers were not able to detect anything. Meal detections occurred seldom
within the actual meal onset duration.



36 6 Discussion

This classification system suffered from many FP’s, thus it will not be safe to
use such a system to help CGM systems with meal detection as it could lead to
a false insulin dosage, which could be life-threatening for diabetes patients.

6.2 Evaluation of the performance of the classification using
bowel and swallowing sound recordings

The classification system that was trained using both bowel and swallowing
sound recordings outperformed the classification system that was trained using
only bowel sound recordings. The best classifiers had TPR as high as 0.85 and
FPR as low as 0.01, as can be seen in Figure 15. Just like the previous classifi-
cation system, the classifiers with the duration of 20 min had the highest FPR
and often performed the worst. Classifiers with the duration of 5 and 10 min
were among the best classifiers, this aligns with the increase in power for the
swallowing features, which lasted throughout the whole meal duration (8-12
min).

For this classification system, no FP’s were detected for any of the test meals
using the final four classifiers, as could be seen in Figure 16. The reason behind
this could be easily understood by looking at Figure 17 and 18. There was no
meal labeling by the classifiers before the actual meal onset. Most predicted
meal labels are kept within the true meal duration, however, there seems to
be some false meal labeling at the end of the recordings. The labeling at the
end of the recordings does not affect the meal detection, it only confirms the
meal detection. These predictions at the end of the recording are caused by
noise due to movement at the end of the recording. It’s possible to reduce such
noise in the predictions by training the SVM classifiers with data that has more
labeling. Meal onset, friction noise, speech, or any other disturbances in the
recordings could be labeled before being fed into the SVM classifier for training,
theoretically, this should improve the performance of the system.

The classifier improved performance could be explained by looking at how the
addition of swallowing sounds affected the feature selection. Swallowing sound
features have a large increase in power during a meal onset. Most selected fea-
tures were swallowing features, as could be seen in Figure 19. The features in
the frequency range of 400-1000 Hz (100 Hz power band feature) for swallow-
ing sounds had the highest power during meal intake when compared to all the
other features. For this reason, the majority of the classifiers selected features
only from swallowing sounds. The power at the 100 Hz band from 1600-1700
Hz was also among the most selected features for swallowing sounds, this fea-
ture is related to the type of food that was consumed. Frequencies above 1000
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Hz seemed to provide important meal information, some of this information is
lost due to lowpass filtering of everything above 2000 Hz. These frequencies
must be investigated as part of future work.

All recordings were performed in an almost ideal environment, without any
noise, since the subjects were asked to stay quiet and minimize their move-
ments as much as possible. All these factors could have affected the results of
the classifier since the noise clearly impacted the classifier’s meal labeling. Had
the recording environment been more realistic, by having more natural move-
ment by the subject and more noise, then the feature selection and the training
would have certainly been affected, especially by the low-frequency noise that
could overlap with the frequency range of the features. For this reason, five new
recordings were obtained, all augmented with noise. The main idea was to see
to what extent noise affected the system’s meal labeling.

This classification system was also tested using two different data splitting
modalities to test whether the selection of training and test set impacted the
system’s performance. The training, validation, and test data were split either
randomly or based on the subject of the recording. However, both modalities
provided similar results, as it seemed that the most relevant features did not
vary from one subject to another. Still based on these findings, it’s not possi-
ble to conclude whether the system is subject-independent or not, since all the
recordings came from only two subjects. Both subjects were males and both
of them were of similar age and physical condition. Therefore more data from
subjects of different ages, physical conditions, and genders is needed before
concluding to what extent the system is subject-independent.

This classifier had an average meal detection time of about 1-2 min and was
able to correctly predict the meal duration to a certain extent. A downside to
this classifier is that it was easily affected by noise, as friction noise picked
up by the microphone was labeled as a meal onset by the classifier. All things
considered, this system is far from perfect and could not be used for early meal
detection to aid CGM systems as of now. However, as more data with more
variability and better labeling is collected this might change.
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6.3 Evaluation of the performance of the classification using
data augmented with noise

6.3.1 Training without data augmented with noise

The new data augmented with noise was only obtained for swallowing sounds,
thus there was no need to train the classification system using all the parameter
combinations, as they were mainly used for bowel sounds to aid in labeling the
response vector. However, all the parameter combinations were still used to
ensure that they had no effect on the performance of the classifier.

Looking at Figure 24, it’s clear that the best classifiers were those that actually
had a meal delay of 0 and 2 min and a duration of 5, 10, and 15 min. These
classifiers were only trained using the swallowing sounds from the first five
recordings (no noise). During the meal duration, the power of the frequency
features increases, the classifiers with meal duration and delay close to the ac-
tual meal values performed the best during the meal labeling since the training
labels (response vector) were then more accurate, hence better training. Since
the same recordings were used, the true meal duration was still between 8 to
12 min.

It should be noted that the classification system trained using only swallowing
features performed in a similar manner to the classification system that was
trained using all features. Just as mentioned earlier, most of the selected fea-
tures for the best classifiers were from swallowing sounds, thus the system was
already too dependent on the swallowing features.

The test set consisted of two swallowing sound recordings, both augmented
with noise. One of the recordings had also some noise (reading) during the
meal onset, this was to test whether the system could distinguish noise from
the meal. The classifiers with the time segments of the 30s and 60s struggled
with detecting a meal onset as could be seen in Figure 21. There was nothing
classified in the predicted response vector for these segments, as the SVM model
was completely off and therefore was not able to predict anything. As for the
classifiers with the time segments of 10s and 20s, the classifier was able to clas-
sify a meal onset, and both a TP and FP were counted for both meals. Looking at
Figure 22 and 23, there were almost no meal detections during the actual meal
duration at all. The classifier labeled the noisy (reading) parts of the recording
as a meal. This classification system had no actual reliability whatsoever, seeing
that no meal was labeled correctly.
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6.3.2 Training with and without data augmented with noise

For this system, only a few parameter combinations were used to speed up the
training process. To improve the performance of the previous system, a better
SVM model with proper training data was used. The training data consisted
of both data with and without noise. Figure 24 at first glance may give the
impression that the system is unusable, however, by looking at the TP and FP
count in Figure 25 there seems to be a substantial improvement when compared
to the previous classification system. There were predictions for all classifiers,
even for the 30s and 60s segment.

Figure 26 and 27 shows that the classifiers were better at correctly labeling
the actual meal onset, it was better at predicting the true response vector. The
classifiers were also better at ignoring the noisy parts of the recordings, how-
ever, the silent parts of the recordings were falsely labeled as a meal onset. The
classifier struggled with the first meal since the meal had noise during the meal
onset. For the first meal, the classifier counted both a FP and a TP for the 10s
and 20s time segments and struggled with predicting anything for the 30s time
segment. This was probably due to the bad labeling of the data set, as the noisy
parts of the recordings were not labeled properly, and thus the SVM classifiers
were trained to label a meal and ignore noise while being trained with noise
that is labeled "falsely" as a meal.

Even though the classifier was limited by the quality of the data labeling, it
performed quite well, as the average meal detection time was about 2-3 min
for the meals that were only given a TP. This shows promising results, as with
a better training set, the system’s performance would improve a lot.
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7 Conclusion

This project investigated the feasibility of early meal detection by the use of
both swallowing and bowel sounds. The support vector machine classifiers built
for this project showed promising results even with the limited amount of data
that were available. The best classifiers were able to achieve a recall as high as
0.85, with an average meal detection time of 1-2 min. These results proved that
it is possible to improve Konstanze Kölle’s system by introducing swallowing
sound features to the system.

The classifiers performed well without noise, but once the noise was introduced
the performance of the classifiers was degraded drastically, as it struggled to
distinguish between noise and meal onset in the recordings. The system was
trained using a limited set of data, and due to the lack of proper labeling, the
noise was often predicted as a meal.

The classification system shows great potential, however, as it stands, the sys-
tem can not be used to aid CGM systems since the system is easily affected
by noise, hence more investigation is required to have a better assessment of
the system’s performance. To conclude, in a feature work, as the system is im-
proved and more data is collected, the feasibility of early meal detection based
on bowel and swallowing sounds will be assessed.
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8 Suggestions for future work

8.1 Testing different filtering methods for swallowing sound
recordings

As the system stands right now, both bowel and swallowing sound features are
pre-processed in a similar manner. This is not ideal as there is some meal in-
formation in the frequency range of 2 kHz and above which are missed upon
swallowing sounds due to filtering. This frequency range provides direct in-
formation about the meal, such as the hardness or softness of the food, this
information might be helpful in meal detection. This needs to be further in-
vestigated, and ideally different pre-processing should be used for swallowing
sound recordings.

8.2 Testing different feature calculation and selection meth-
ods

The feature calculation should also be changed to take into account the dif-
ference in the frequency content of bowel and swallowing sounds. Swallowing
sounds features should include higher frequency content since the higher fre-
quency content provide meal information,

Another thing that must be investigated is the features that are extracted for this
project, as the power spectrum features were introduced and used mainly for
bowel sound recording. There might be other features for swallowing sounds,
that reduce the impact of noise in the features. Other features should be con-
sidered such as nonlinear features, and non-frequency-based features because
features affect the training of the classifiers.

Another thing that also must be considered is how features are selected, as
the system is right now, only the three best features are selected, most of the
time only swallowing features are selected. Different feature selection methods
should be considered to see how it impacts the classification system. Because as
it stands right now there is almost no need for combining bowel and swallowing
recording. This should be investigated.
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8.3 Collecting more data

Most data for this experiment were obtained in a controlled environment and
does not represent a realistic recording environment. This was a major draw-
back for the system, as when new data (data augmented with noise) were
added the classifier performance was degraded drastically. Recordings should
include more natural movement, noise such as talking during the meal, and
also more natural noise from the environment.

Another thing that could affect the classifier was the lack of labeling. There was
a lot of noise due to friction between the sensors and the skin, and since it was
not labeled, the system was not able to distinguish between noise and meal
during predictions. All training data must be properly labeled.

The amount of variability in the data that was available for this experiment was
also lacking. There were in total 10 recordings that were used in this project, all
these recordings were from two subjects, hence there was little to no variability
in the data. New data must be recorded, the data should include people of
different age groups and physical conditions. The new data should also include
an equal amount of data from both genders.

8.4 Testing different parameter combinations

The parameter combinations that were used in this project were proposed for
the bowel sound recordings by Konstanze Kölle [6], however, they are irrelevant
for swallowing sound recordings. Swallowing sounds features seemed to only
be affected by the segment length, as the longer the segment length is the more
swallowing information is captured, and vice versa. Different time segments
lengths should be tested, to see what works the best for both swallowing and
bowel sound features.

8.5 Testing different classifiers

Different classifiers should be tested to see whether the performance of the
system could be improved. SVM classifiers worked well for meal detection using
bowel and swallowing sound recordings, but there might be other alternatives
that perform even better. The use of other classifiers, such as hidden Markov
models and Gaussian mixture models should be investigated.
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8.6 What should the final system look like

Another thing that should be looked into is what the final system could look
like. If the system is gonna measure both swallowing and bowel sounds, in
what way should the system be designed, with regard to both comfort and
robustness. Should the sensor be acoustic, or would a less visible sensor be
more appropriate for the patient? Also, another thing to look at would be the
sensor placement, as it might not be that comfortable to have the swallowing
sensor just above the collar bone for a long period. Other approaches such as
placing it at the backside of the neck or at the chest should be investigated.
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A Additional results and observations

In this section, additional results and observations are presented for the classi-
fication systems that were built in this project.

A.1 Classification using only bowel sound recordings

First, the TPR and FPR for all parameter combinations for the average of all
training meals are plotted, Figure 28. The TPR and FPR were similar to the
average over the LOOCV, Figure 11.

Figure 28: True positive rate vs false positive rate for the training meals in step 1. Each
marker represents the average of all training meals for a given parameter
combination.

.

The predicted and the true response vector is plotted for the 30s, and 60s time
segments, Figure 29 and 30, as only the 10s and 20s segments were shown
in the main part of the report. For the 30s time segment, Figure 29, only a
TP was counted for the first meal, and the meal was detected almost 42 min
after the meal onset. As for the second meal, both a TP and FP were counted
and the meal was detected 14 min before meal onset. While for the 60s time
segment, Figure 30, both a TP and a FP were counted for the first meal, and
the meal detection time was around 14 minutes before the actual meal onset.
As for the second meal, only a TP was detected, no FP was issued as there were
no consecutive ones before the meal onset, meal detection time was 34 minutes
after the meal onset. The meal detection time for the classifiers was either long
after, or long before the actual meal onset.
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Figure 29: True vs predicted response vector for the test meals, for the final classifier
with 30s time segment. The graph on the top and bottom are respectively
the first and second test meals.

Figure 30: True vs predicted response vector for the test meals, for the final classifier
with 60s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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A.2 Classification using bowel and swallowing sound record-
ings

Two data splitting modalities were tested for this classification system, in the
first one the data was split randomly, while in the second one the data were
split based on the subject of the recording.

A.2.1 Splitting training and test data randomly

This system is the same as the one described in the main part of the report.
For this system first the TPR and FPR for all parameter combinations for the
average of all training meals are plotted, Figure 31. Similar TPR and FPR were
observed for the validation meals average, Figure 15.

Figure 31: True positive rate vs false positive rate for the training meals in step 1. Each
marker represents the average of all training meals for a given parameter
combination.

Since the predicted and true response vector for the 10s and 20s segment was
already plotted, the 30s and 60s time segments were plotted here, Figure 32
and 33. For both classifiers, only TP was counted, with an average meal detec-
tion time of 4 min. Unlike the classifiers with the short time segments, these
classifiers labeled more of the noise in the recordings as a meal. It seemed that
the longer the time segment the more events are captured, both meal and un-
wanted events, such as noise are captured in the calculated features. This in
turn affects the training of the SVM classifiers.
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Figure 32: True vs predicted response vector for the test meals, for the final classifier
with 30s time segment. The graph on the top and bottom are respectively
the first and second test meals.

Figure 33: True vs predicted response vector for the test meals, for the final classifier
with 60s time segment. The graph on the top and bottom are respectively
the first and second test meals.



50 A Additional results and observations

A.2.2 Splitting training and test data based on the subjects

This classification system was briefly mentioned in the main part of the report,
but none of the results were included as they were similar to the classification
system above. This system was trained using three meals from a single sub-
ject and then tested using two meals from another subject, to test whether the
system is subject-dependent. The classifier performance did improve with the
training data as can be seen in the TPR and FPR for all parameter combinations
for the average of all training meals plot, Figure 34. The TPR and FPR were
a little higher for the training meals, compared to the preceding system, how-
ever, similar results were observed when the TPR and FPR were plotted for the
average of all LOOCV runs, Figure 35.

Figure 34: True positive rate vs false positive rate for the training meals in step 1. Each
marker represents the average of all training meals for a given parameter
combination.

Other than the difference in TPR and FPR plot for the training data, the clas-
sifiers performed exactly alike. To ensure that the performance is not different,
The TP and FP count for the test meal was plotted, Figure 36. For all test meals,
only TP’s were counted. Based on these findings, the system was assumed to
be subject-independent. Nevertheless, more data is required to make a genuine
assessment of the system’s subject dependency.
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Figure 35: True positive rate vs false positive rate for the validation meals in step 1.
Each marker represents the average of all LOOCV runs for a given parame-
ter combination.

Figure 36: True positive and false positive meal detection for each test meal, for the
four final classifiers.
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A.3 Classification using only swallowing features

The final classifiers in the previous classification system used only swallowing
features. The system proved to be dependent on the swallowing features, that’s
why a classification system using only swallowing sounds was tested. It was
built to see if there was at all a need for bowel sound recordings for meal
detection. The TPR and FPR for all parameter combinations for the average of
both training meals and all LOOCV runs are plotted in Figure 37 and 38.

Figure 37: True positive rate vs false positive rate for the training meals in step 1. Each
marker represents the average of all training meals for a given parameter
combination.
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Figure 38: True positive rate vs false positive rate for the validation meals in step 1.
Each marker represents the average of all LOOCV runs for a given parame-
ter combination.

The four final classifiers TP and FP plot is shown in Figure 39. This classifier
had similar results as the previous classifier with all features. These results con-
firmed that there is no need for bowel sounds, due to the way the different
features are selected and incorporated into the system. The features from dif-
ferent recordings should be incorporated into the system in a better way, this
was included in the future work section.

Figure 39: True positive and false positive meal detection for each test meal, for the
four final classifiers.
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A.4 Classification using data augmented with noise

Two classification systems were built for testing data augmented with noise.
The plots that were not included in the main part of the report are included in
this part.

A.4.1 Training without data augmented with noise

The TPR and FPR for all parameter combinations for the average of all training
meals in this system is the same as the one shown in the previous section, Figure
37. As described in the main part of the report the classifiers for the 30s and
60s time segments were not able to predict anything, since the SVM classifiers
were not provided with good training data. For that reason, there was no meal
labeling in the predicted response vector, as could be seen in Figure 40 and 41.

Figure 40: True vs predicted response vector for the test meals, for the final classifier
with 30s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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Figure 41: True vs predicted response vector for the test meals, for the final classifier
with 60s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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A.4.2 Training with and without data augmented with noise

When the training and validation set included data augmented with noise, the
performance of the classifier with regard to TPR and FPR for the average over
the training meals was poor, Figure 42, just as it was for the average over the
LOOCV runs, Figure 24.

Figure 42: True positive rate vs false positive rate for the training meals in step 1. Each
marker represents the average of all training meals for a given parameter
combination.

However, unlike the final classifiers for the 30s and 60s time segments in the
preceding system (see Appendix A.4.1), the classifiers in this system were able
to predict a meal onset. This could be seen in the predicted and true response
vector plot, Figure 43 and 44, there was a meal prediction for both classifiers.
Similar to the 10s and 20s time segments, the classifiers struggled with the first
test meal, since the meal had also reading (noise) during the meal. Thus the
30s time segment classifier was not able to detect a meal for the first meal. The
average meal detection time for the three meals that were detected is 2 min.
Unlike the classifiers with the 10s and 20s time segments, these classifiers did
not label the talking as a meal, which is why the testing of different segment
lengths was included in future works.
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Figure 43: True vs predicted response vector for the test meals, for the final classifier
with 30s time segment. The graph on the top and bottom are respectively
the first and second test meals.

Figure 44: True vs predicted response vector for the test meals, for the final classifier
with 60s time segment. The graph on the top and bottom are respectively
the first and second test meals.
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B Zip file

This thesis comes with a zip file that contains all the code used for this project,
in addition to all the features that were used in this project. The code is included
in the file "Code", while the features are included in the file "Features" as shown
in Figure 45. Konstanze Kölle’s paper [6] is also included in the zip file as
"Konstanze thesis.pdf".

Figure 45: Included zip file content
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