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Abstract

Artificial Pancreas systems rely on Continuous Glucose Monitoring systems to
measure blood glucose levels and based on that measurement, the insulin dose
is calculated and administered through an insulin pump. However, these sys-
tems are not perfect and suffer from time delays from the onset of the meal
until the meal is detected and insulin is administered. Patients are required
to announce their meal intake and also calibrate the system by taking a fin-
ger stick blood test on a daily basis. In a previous project, the work done by
Konstanze k. on automatic meal onset detection using bowel sound recordings
was continued, and swallowing sound recordings were introduced. This project
continues the previous work and adapts such a system using only swallowing
sound recordings. Furthermore, speech, meal onset, meal type, and swallowing
detectors were built to monitor the food intake, this includes the duration of
the meal, the meal type, and the number of swallows. This study showed the
potential of using swallowing sound recordings to improve and work around
the downsides of Artificial Pancreas systems.

For the first part of the project, 10 swallowing recordings were used to build
a meal onset and a speech detector. Using these recordings, Power Spectral
Density features were extracted and used for training and building Multilayer
Perceptron classification models. The speech detector had an accuracy and an
F1 score of 99%, while the meal onset detector had an accuracy and an F1 score
of 95%.

For the second part of the project, 20 new recordings were acquired to build
a meal type and a swallowing detector. These recordings were acquired using
two pre-selected meals, oats and salad. The recordings were obtained using
two subjects, where each recording was about 30 min to 35 min, and the mi-
crophone used for capturing the swallowing sounds was placed just above the
collar bone on the neck. Using these recordings, Mel spectrogram features were
extracted and used to build Convolutional Neural Network classification mod-
els. The swallowing detector had an accuracy of 93% and an F1 score of 92%,
while the meal type detector had an accuracy and an F1 score of 96%.
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Sammendrag

Kunstig Bukspyttkjertel systemer er avhengige av Kontinuerlig Glukose Overvåkn-
ingssystemer til å måle blodsukkernivået, og basert på denne målingen bereg-
nes insulindosen og avgis via en insulinpumpe. Disse systemer er derimot ikke
perfekte og lider av tidsforsinkelser fra starten på måltidet er oppdaget frem
til insulin er administrert. Pasienter er påkrevd å kunngjøre måltids inntaket i
tillegg til å kalibrere systemet på daglig basis. I et tidligere prosjekt ble arbeidet
utført av Konstanze K. om automatisk deteksjon på starten av måltidet ved bruk
av tarm lydopptak videreført, og svelge lydopptak ble innført. Dette prosjektet
viderefører det arbeidet og tilpasser det slik at kun lydopptak av svelgelyder
benyttes. I tillegg, ble en tale, måltidsstart, mattype, og svelge detektor bygget
for å overvåke matinntaket, dette inkluderer varigheten på måltidet, mattype,
og antall svelger. Dette studiet har visst potensialet av å bruke svelge lydopptak
til å forbedre og unngå ulempene med en kunstig Bukspyttkjertel.

På første delen av prosjektet ble 10 svelge lydopptak brukt til å bygge en
måltidsstart og en tale detektor. Ved å bruke disse opptakene ble effektspektral-
tetthet features beregnet, og brukt til å trene og bygge en Multilayer Perceptron
klassifiseringsmodell. Tale detektoren hadde en nøyaktighet og en F1 score på
99%, mens måltidsstart detektoren hadde en nøyaktighet og en F1 score på
95%.

På den andre delen av prosjektet, ble 20 nye opptak tatt for å bygge en mattype
og en svelge detektor. Disse opptakene ble hentet ved hjelp av to forhåndsvalgte
mattyper, havre og salat. Opptakene ble samlet ved hjelp av to personer, hvor
hvert opptak varte i ca. 30 min til 35 min, og mikrofonene som ble benyttet
for å fange svelgelydene ble plassert rett over kragebeinet på halsen. Ved å
bruke disse opptakene, ble Mel spektrogram features beregnet og brukt til å
lage en Convolutional Neural Network klassifiseringsmodel. Svelge detektoren
hadde en nøyaktighet på 93% og en F1 score på 92%, imens mattype detektoren
hadde en nøyaktighet og en F1 score på 96%.
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1 Introduction 1

1 Introduction

1.1 Background

1.1.1 Diabetes

Diabetes is a chronic disease caused by the pancreas insufficient production
of the hormone insulin. The hormone insulin is responsible for regulating the
sugar level in the blood [10]. When food is consumed, it is broken down into
glucose (sugar) and released into the bloodstream. Insulin acts then as a key to
allow blood sugar into the body cells, in order to allow the cells to use energy
[11].

The lack of sufficient insulin production can result in a high blood glucose level,
also known as hyperglycemia. The longer the blood sugar level stays high the
more damage it can cause the body. Hyperglycemia can lead to serious dam-
age to the human body, especially to the nerves and blood vessels [10]. Hy-
perglycemia symptoms include weakness, shortness of breath, abdominal pain,
and blurry vision[12] [7].

Diabetes patients are usually classified into two categories, type 1 diabetes and
type 2 diabetes, pregnant women can also have a temporary form of diabetes
known as gestational diabetes. Type 1 diabetes patients require insulin to be
administered on a daily basis, as their body does not produce insulin on its
own. Type 2 diabetes patient’s bodies produce insulin, however, the body does
not utilize it efficiently, thus the blood sugar is not kept at a normal level. Most
diabetes patients have type 2 diabetes, around 90-95% of patients [11] [7].
Gestational diabetes is hyperglycemia that develops during pregnancy, the glu-
cose level in the blood is higher than normal, however, it is less than those
diagnosed with diabetes [13] [10].

1.1.2 Diabetes treatment

Prevention of type 2 diabetes is simpler than that of type 1 diabetes. A simple
change to a healthier lifestyle could make a difference. Everything from eating
healthier to being more active can help prevent or delay the onset of type 2
diabetes [11]. This is not the case for all type 2 diabetes patients, some patients
are also required to take insulin for treatment [10].

Type 1 diabetes require insulin, therefore an insulin dose is given based on the
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blood glucose level. For this reason, a finger stick blood test is required before
administering insulin. Insulin can be delivered today using a needle or a pen,
or an insulin pump. The insulin pump is an automated solution that delivers
insulin through a tube that goes under the skin. It is programmed to work as
the body naturally would, by delivering insulin doses throughout the day [14].
Insulin pumps require a lot of information from the user throughout the day,
including checking the glucose level by a finger stick blood test or manually
increasing the insulin dose.

Other advanced diabetes solutions such as Artificial Pancreas (AP) systems rely
on Continues Glucose Monitoring (CGM) devices. This type of system uses sen-
sors that are inserted under the skin, into the fatty tissue [15], to measure the
glucose level in the blood. Based on the sensor measurement, the needed in-
sulin dose is administered. This type of system often requires calibration, thus
the patient is required to measure the glucose level in the blood on a daily basis
using a finger stick blood test [16]. CGM systems are subject to time delays of
30 min to 40 min from the meal onset until the meal is detected [17]. Hence,
patients are required to announce their meal intake, this is a requirement by all
clinically tested systems for glucose control [7].

1.2 Motivation

Today’s insulin delivery solutions are not perfect, most treatments require the
patient to be involved in every step of the therapy. This is not ideal, as the main
idea behind these systems is to reduce the mental burden the treatment has on
the patient, and also reduce the daily time spent on therapy.

To improve AP systems, an automatic meal onset detection system was pro-
posed. The idea was to automate some of the steps in the treatment process,
which in turn reduces the involvement of the patient during therapy. This sys-
tem can remove the patient’s need to announce the meal intake, in addition to
reducing the meal onset detection time. Konstanze K. [17] tested the possibility
of such an automatic meal onset detection system using bowel sound record-
ings. The study she conducted used a Support Vector Machine (SVM) classifier
to detect the meal onset. Her study showed promising results, as the average
meal onset detection time was reduced from 30 min to 40 min to approximately
10 min. Her system was however not perfect, as the recall and accuracy of the
system were quite poor, and the proposed system suffered from a large number
of False Positives (FPs).

In an earlier project, the work done by Konstanze K. was taken one step fur-
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ther by using a combination of both swallowing and bowel sound recordings
as a means to detect the meal onset [7]. The proposed system used an SVM
classifier. The addition of swallowing sound recordings helped reduce the de-
tection time of meal onset to about 2 min, in addition to improving the overall
recall and accuracy of the system. The proposed system worked well under a
controlled environment, however, once the noise was introduced, the system
performance was affected. When noise was introduced into the system in the
form of speech, the amount of induced FPs increased, and the system struggled
to separate between the meal onset and noise. In addition, the results from the
previous project showed a weakness in using SVM as a classifier, because when
the complexity of the problem is increased, the results are worsened.

Both studies showed that meal onset detection is possible using either swal-
lowing or bowel sound recordings. Additionally, swallowing sound recordings
could not only be helpful for injecting insulin at the right time, but could also
provide relevant meal information, thus providing an estimate of the required
insulin dose. This could help improve the current available AP solutions, and
also reduce some of the burden diabetes treatment has on the patient.

1.3 Related work

Recent meal onset detection systems rely on different types of sensors. Some
of the most commonly used types of sensors include inertial measurement unit
sensors (IMU), microphone sensors, and piezoelectric sensors. This section is
inspired by Muhammed U. and Huanhuan C. work on "Recent Trends in Food
Intake Monitoring using Wearable Sensors" [18].

Piezoelectric sensors are used for automatic food monitoring by measuring
force, acceleration, pressure, and strain. The way these sensors are used for
detecting swallows is by utilizing vibration features.

Alshurafa et al. [19] used a wearable necklace that uses a piezoelectric sensor
for swallowing and food type detection. The collected data is transmitted into
a mobile app for processing. The acquired data are processed by calculating the
standard deviation via a sliding window, before smoothing and filtering using
a Savitzky-Golay convolution filter. Swallows are then found by counting the
number of peaks detected after pre-processing, given a specific threshold for
the spacing between the swallows. As for classifying the food type, swallowing
spectrograms are divided into 16 bins and used to calculate statistical features
such as skewness, mean, kurtosis, etc. A total of 360 features were calculated
per bin. Three different classifiers were tested, k-Nearest Neighbour (kNN),
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Bayesian Network, and Random Forest (RF). The study showed that it was
possible to distinguish between liquids and solids with an F1 score of 90%.

IMU sensors use force and angular rate for detecting the meal onset. These
sensors capture body movement and provide relevant features that are used
to obtain relevant meal information. A couple of IMU sensor-based approaches
detected eating activity using wrist bands or smartwatches with built-in IMU
sensors [20][21][22].

To detect meal onset Zhang et.al. [20] used a wrist band inertial sensor. Meal
onset detection was achieved via a two-step approach, where in the first step the
motion was detected, and the stationary period of individual movements was
separated from other activities. In the second step, meal onset was detected via
a motif-based approach, where motif candidates were searched for and then
classified using an RF algorithm. This approach gave a 90% recall and an F1
score of 61%.

The research by Konstantinos K., Christos D., and Anastasios D. [21] relied on
the inertial sensors of a smartwatch to detect eating events. By using the built-
in six-axis inertial sensor in the watch, and an advanced motif-based time-point
fusion technique, feeding gestures were detected. The classification system used
Convolutional Neural Networks (CNN) for detecting certain movements, and
Long Short-Term Memory (LSTM) for detecting eating sequences. Using this
method, the recall was as high as 92% and the F1 score was as high as 88%.

In a recent study, Konstantinos K., Christos D., and Anastasios D. [22] did a sim-
ilar study on detecting food intake cycles, by using the built-in inertial sensors
in a watch. In this study, wrist movements and eating episodes were identified.
Similar to their previous research, CNN was used to classify different move-
ment patterns, before using an LSTM to classify the eating sequences. Using
this method, a recall of 93% and an F1 score of 91% were achieved.

IMU-based approaches did not really have many swallowing-based meal onset
detection methods, there were more chewing-based meal onset detection ap-
proaches [23][24]. Wang et al. [23] proposed a system that uses a single axis
accelerometer to detect chewing activity, where frequency and time domain-
based features are extracted and passed on to a classification algorithm that
used Decision Trees (DTs), Multilayer Perceptron (MLP), SVM, Neural Networks
(NNs) and a Weight-Supported SVM. This method provided a recall of 92% and
an F1 score of 91%.

Christos M., Vasilis K., and N. Maglaveras [24] approached the detection of
chews using 3-axis orientation data acquired by a smartwatch accelerome-
ter. The features extracted from orientation are classified using an SVM. This
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method yielded 92% bite detection accuracy.

Microphone sensors had a large number of swallowing and chewing-based
meal onset detection approaches [25][26][27][28]. The collected acoustic data
could not only be used for meal onset detection, but also for medical applica-
tions in the field of dysphagia (difficulties of swallowing) and health/eating
monitoring.

Oleksandr M., Paulo M., Stephanie S., Walter B., and Edward S. [25] used a
microphone sensor to detect food intake episodes based on swallowing sounds.
Their approach consisted of two steps, wherein the first step swallowing sounds
were detected based on Mel-scale Fourier spectrum features. In the second
step, an SVM classifier was used to identify swallowing sounds. Their system
achieved accuracies of up to 80%.

Hajer K., Atta B., Dan I., and Jacques D. [26] work was about the detection
of swallowing sounds, speech, and other ambient sounds through a neck-worn
microphone for automated dysphagia patient care. The proposed system used
a frequency-based analysis detection algorithm to distinguish between all three
types of acoustic signals. The system also used an integrated automatic detec-
tion algorithm with the Gaussian Mixture Model (GMM) as a classifier. The
classifier was trained using Mel-scaled features. The recognition accuracy of
this system could reach up to 88.8%.

Temiloluwa O. Maysam G.[27] proposed a neck-worn system for the recognition
of swallowing, coughing, chewing, breathing, speech, and heartbeat activity for
health monitoring purposes. The system used a mix of time, frequency, and
cepstral features to classify the different activities. The classifiers used for this
system included kNN and Naive Bayes. Using these classifiers, the recognition
rate for speech was in the range of 97.2% to 99.4%.

Yin B., Mingsong L., Chen S., Wenyao X, Nan G., and Wang Y. [28], used a
wearable system to monitor and recognize food intake. The systems collected
acoustic data were first pre-processed before being sent to a smartphone, where
the food type is recognized. The chews and swallows were recognized first,
using a Hidden Markov Model (HMM), before extracting time, frequency, and
non-linear features. These features were then used on a DT-based algorithm to
extract the type of food consumed. Using this method, the accuracy of food type
recognition was about 84.9%, while differentiating between liquids and solid
foods had an accuracy of 97.6% and 99.7% respectively.
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1.4 Objective

As shown from the research conducted in the previous section, swallowing
sound data could not only be used for automatic detection of meal onset, but
also for classifying swallows and detecting the meal type. Hence in this thesis, a
couple of detectors will be implemented using Artificial Neural Network (ANN)
classifiers to monitor the food intake and to review the feasibility of using them
for improving AP systems.

The main objective of this research will be to investigate the possibility of us-
ing swallowing sound recordings to improve the current treatment of diabetes
patients. In order to do that, the goal will be to conduct a swallowing sound
recording experiment as a means to help identify the meal type and detect swal-
lows. For this purpose, a fixed protocol for administrating such an experiment is
needed. Furthermore different types of features should be extracted and tested
based on the studies in the section above to see what fits such a system. These
features will then be used to build and test different ANN classification models.

Furthermore, as a continuation of the work done in a previous project [7],
instead of using SVMs for meal onset detection, ANN models will be used.
Speech detection will also be conducted to see whether it’s possible to remove
speech/noise from the meal region using an ANN classifier since SVMs did not
work well in the previous project.

1.5 Contribution of this study

The main contribution of this study will be the four built ANN classifiers that
could be used in future work to give an idea about how much food is con-
sumed. The information obtained from these four detectors could also be used
to improve some aspects of the current AP systems. This study showed also how
different feature extraction methods affected the performance of the built clas-
sifiers, and how different problems encountered during the work on this project
were tackled. Furthermore, the work done in this project included some rele-
vant information and findings that could be relevant for future work in similar
studies.
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1.6 Thesis outline

This thesis is organized as such, first, the most important and necessary con-
cepts needed for understanding the system and its different parts will be ex-
plained in detail in the theory section. After that, a short section about the
equipment, the protocol, and the procedure used for the data acquisition will
be presented. Following that, there will be two sections about the built systems.
The first section will describe the method and implementation of the speech
and meal onset detectors, in addition to presenting and discussing the results.
The second section will describe the implementation method for the swallow-
ing and meal type detectors, in addition to discussing and presenting the results
of both systems.

To conclude this thesis, all the important findings in this thesis will be presented
and summarized in the conclusion section. This includes the feasibility of using
such a system to improve AP systems. Last but not least, there will be a short
section that tackles future work.
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2 Theory

2.1 Introduction

This section introduces the relevant theory needed to understand and support
the research dealt with in this project. This section provides relevant concepts
about swallowing sounds, signal processing, feature calculation, and machine
learning.

2.2 Swallowing

Swallowing ensures that solid food or liquids are transferred from the mouth
to the stomach via the pharynx and oesophagus [29]. The anatomy involved in
the swallowing process is shown in Figure 1.

Figure 1: Anatomy of swallowing related organs [1].

Swallowing consists of four phases, which are the pre-oral phase, oral phase,
pharyngeal phase, and oesophageal phase [30]. The pre-oral phase is the phase
before the food enters the mouth when the person eating is anticipating the
food, and the mouth starts salivating by the sight and smell of food. Then comes
the oral phase, where the food enters the mouth and the chewing starts. The
food is chewed into smaller pieces and mixed with saliva to form a bolus (a
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ball-shaped mass), before being transferred to the back of the mouth, at the
pharynx.

The pharyngeal phase is where the reflex of swallowing is initiated. The soft
palate is raised and the nasal cavity is sealed, which prevents any food or fluids
from coming out of the nose. In this phase the larynx also moves upward and
forward, thus the vocal folds close, and the epiglottis closes over the airway.
In this step, the breathing stops for a brief moment. The bolus is then pushed
down by the pharynx, by contraction. The oesophageal sphincter opens also
up to allow the bolus to pass through. After passing the upper oesophageal
sphincter closes, this prevents the bolus from moving back up.

In the final phase, the bolus is moved through the oesophagus via contraction
until it reaches the stomach, where the lower oesophageal sphincter opens and
closes to allow the bolus to enter the stomach, and prevent reflux.

2.2.1 Swallowing frequency range

Excluding the pre-oral phase of a swallow, swallowing sounds can also be di-
vided into three phases, which are the Initial Discrete Sound (IDS), Bolus Tran-
sit Sound (BTS) and Final Discrete Sound (FDS) [26]. IDS is created due to the
opening of the cricoid-pharynx in the pharyngeal phase, BTS is created in the
pharyngeal phase when the bolus moves into the oesophagus. FDS is created in
the final phase, the oesophageal phase. Swallowing different food types, liquids
or solids generates different frequency characteristics at all the different stages.

The analysis made by Hajer Khalifi and co. [26] showed that swallowing foods
with liquid-like consistency was associated with a frequency upper range of
3617 Hz. Swallowing water was associated with a frequency range of up to
2300 Hz, while dry swallowing (saliva) had a maximum frequency of 200 Hz.
Other studies showed that the intensity of spectra in the frequency range 400
Hz to 1000 Hz significantly differed between liquids, semi-liquids, and solids
[31]. For the purposes of this study, a frequency range of 0 Hz to 4 kHz was
used in order to make sure that most meal information is kept.

In the frequency range below 1 kHz, noise sources such as heartbeat and breath-
ing sounds could overlap with the frequency range of the swallowing sounds.
Heartbeat sounds can have frequencies in the range of 20 Hz to 150 Hz [32],
while breathing sounds can have frequencies in the range of 60 Hz to 700 Hz
[33].
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2.3 Signal processing

In this subsection of the project, most of the parts were reused from the previous
project [7], as there were no substantial changes since no relevant new material
was found during the work on this thesis.

2.3.1 Quantization

The number of bits of information per sample is the bit depth. When quanti-
zation is performed, the bit depth of the signal is reduced, this process leads
to constraining the large set of values to a smaller one. Quantization leads to
rounding of the values in the original signal, which in turn reduces the sharp-
ness of the signal. This operation gives a lower signal-to-noise ratio (SNR), as a
result of cutting some of the signal’s highest peaks [34]. The frequency response
of the signal is however unaffected by this operation since it’s only constrained
by the sampling rate of the signal.

2.3.2 Decimation

Downsampling is the operation where the sampling rate is reduced by keeping
every M’th sample, where M is the downsampling factor. Lowpass filtering is
not involved in the operation. Decimation is the operation where the sampling
rate is reduced, but before that, lowpass filtering is applied to avoid aliasing.
Aliasing is caused by downsampling with a sampling rate below the Nyquist
rate. Decimation leads to a reduction in the power of the signal since the high-
frequency content of the signal is attenuated [35].

2.3.3 Normalization

The goal of normalization is to use a common scale for the data without dis-
torting the differences in the range of values. This helps with increasing the
training speed of the classifier as the features used are in a similar range and
values [36]. Linear normalization was used for this project, where the range of
the values after normalization was between 0 and 1. Normalization is given by:

x′ =
x− xmin

xmax − xmin
(1)
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Where x’ is the normalized signal, x is the signal amplitude at a given time, and
xmin, xmax is the minimum and maximum amplitude of the signal respectively.

2.4 Features

For this project frequency spectrum-based features were extracted to help train
and test the built classification models. The features extracted in this project
are represented in this subsection.

2.4.1 Power density spectrum

Power Spectral Density (PSD) features can be calculated using Fourier trans-
form, and is given by [7]:

P̂s(f) =
∆t

N
|
N−1∑
n=0

xs,ne
−i2πfn|2 (2)

Where ∆t is the sampling interval and N is the number of samples in time
segment s [37]. This feature shows how the signal energy is distributed in the
frequency domain. For this project power in different frequency bands in addi-
tion to the power fraction in these bands was calculated.

2.4.2 Mel spectrogram

Mel frequency features are widely used for speech recognition. As the name
suggests, Mel scale is used, which allows mimicking of the hearing perception
of humans for machines, as humans tend to have higher resolution for lower
frequencies [38]. Mel scale transforms the frequency scale into a non-linear
frequency scale.

Mel spectrogram is just like a normal spectrogram that shows the power of the
signal over time and frequency, however, the frequency is plotted using the Mel
scale. Mel spectrogram is calculated by first breaking down the audio signal
into frames with overlap, and then for each frame, the Fourier transform is
calculated. Then the signal is converted into a Mel scale using a triangulation
bandpass filter. These filters are wider at higher frequencies to mimic human



12 2 Theory

hearing. For each frame, the magnitude of the signal is decomposed into com-
ponents that correspond to the frequencies on the Mel scale [39]. In this project,
the signal was decomposed into a total of 128 frequency components, meaning
there was a total of 128 features.

2.4.3 Mel frequency cepstral coefficients, Delta and Delta-Delta

The steps for calculating the Mel frequency cepstral coefficients are illustrated
in Figure 2.

Figure 2: Block diagram of the steps to calculate Mel frequency cepstral coeffi-
cients.

In the first step, the audio signal is broken down into frames with overlap. It is
common to use a hamming window to frame the signal, this keeps the original
frequency information while maintaining less noise. After framing, the Fourier
transform is applied to each frame in order to extract the frequency informa-
tion. After this step, frequency is mapped into the Mel scale using triangular
bandpass filters, before taking the logarithm. The logarithm makes it possible
to mimic the power perception of humans, as humans are more sensitive to
small changes at lower power than at higher power. In the last step, the inverse
Fourier transform is applied. Most of the information is kept within the first few
coefficients [40] [41]. Hence only the first 13 coefficients are often used.

It’s common to calculate Delta and Delta-Delta features alongside MFCC fea-
tures. These features represent the evolution of the MFCC over time. These fea-
tures are great for representing time-varying signals such as speech, and in this
case, swallowing. Delta coefficients are computed using Equation (3), where
dt is the Delta coefficient at frame t computed from the MFCC coefficients ct+n

and ct−n at frame t± n, n is usually set to two [42].
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dt =

∑N
n=1 n(ct+n − ct−n)

2
∑N

n=1 n
2

(3)

Delta-Delta coefficients are also calculated using Equation (3), but in this case
the Delta-Delta coefficients are computed using the Delta coefficients ct+n and
ct−n [40]. Both MFCC and MFCC-delta’s features were tested early on in the
project but were later on dropped, as they did not contribute to the final built
models.

2.5 Machine learning

Machine learning (ML) enables the system to learn and improve through ex-
perience with the help of data. This enables the system to solve a multitude
of problems in different fields from business and art to science and technol-
ogy. ML algorithms can be classified into three different categories, which are
supervised learning, unsupervised learning, and reinforcement learning.

In supervised learning, the model is trained using labeled data to solve classifi-
cation and regression problems. In unsupervised learning, the model is trained
using unlabeled data. Unsupervised problems include clustering and data anal-
ysis. Reinforcement learning is different from the other two methods as the
model is trained by trial and error, where the main goal of the system is to
maximize the rewards [43].

This project tackles a supervised learning problem, a classification problem,
where the algorithm is trained to assign the data to a specific class. The main
classifier used for this purpose is an Artificial Neural Network.

2.5.1 Artificial neural networks

Artificial Neural Network (ANN) are learning algorithms that are inspired by
the way biological Neural Networks work. ANNs are great at recognizing pat-
terns in any type of data, either its images, text, sound, etc [44].

Each ANN consists of a large number of nodes, where calculations take place.
The nodes from each layer are interconnected, and each connection is weighted.
In each node, the weighted node’s connections are summed. These weights de-
cide the significance each node has on the next layer, also each node has a bias
connected to it, which offsets the node’s output. The summed inputs are passed
through an activation function that decides whether the output of the node is
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activated or not, depending on a pre-defined threshold [45]. A typical node can
look like this, Figure 3, where a1 to aN are the inputs from the previous nodes,
and aout is the output from the current node.

Figure 3: Typical inputs and output of a node, where a1 to aN and w1 to wN are
the previous node’s outputs with the corresponding weights, b is the bias, and
aout is the current node output.

A typical ANN consists of three types of layers, an input layer, a hidden layer,
and an output layer. Each layer consists of multiple nodes. The input layer is the
first layer of the network, and usually has the same number of nodes as features
or inputs. Following the input layer is the hidden layer, most of the computation
is carried out here [46]. Lastly is the output layer, this layer is responsible for
producing the results, and has the same number of nodes as classes or required
outputs. A typical ANN is shown in Figure 4, which is also known as a Deep
Neural Network (DNN), as it consists of multiple hidden layers (more than
three).

Figure 4: Typical Deep Neural Network structure. It consists of more than three
hidden layers.
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2.5.2 Activation function

Activation functions simply decide whether a node is activated or not (fires or
not), given certain criteria are met. These functions are only used in the hidden
and output layers. The output of the neuron (Y) is given by the sum of the
weighted inputs from other neurons, and the bias of the neuron, (4) [47].

Y =
∑

(Weight · input) + bias (4)

The output of the node can, in theory, have any value, this is where activation
functions come into play. The activation function checks the Y value in order
to decide whether the neuron in the next layer will use the output from the
current node or not. The activation function also reduces the range of outputs.

There are two main types of activation functions, linear and nonlinear. For the
task at hand, a non-linear activation function was used, as the problem itself
is non-linear. The nonlinear activation function of choice for this project was
Rectified Linear Unit (ReLu). This function outputs zero if the input is negative
and returns the same value for positive inputs. The function could be written as
shown in (5) [2], where max is a function that returns the input value as long
as it is equal to or greater than zero.

f(x) = max(0, x) (5)

Graphically ReLu can look like the plot shown in Figure 5. Even though the
function looks simple, it works really well for most classification problems, ReLu
is in fact one of the most popular activation functions [48].

Figure 5: Graph of the Rectified Linear Unit Function [2].
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The activation function serves two primary purposes, the first is to help the
model account for interaction effects, and the second is to help the model ac-
count for non-linear effects [2]. Interaction effects are in essence how some
inputs of a given node might dominate the output by having a large value,
making the output either zero or positive. These interaction effects increase
even more with the increase in the number of layers and nodes. As for cap-
turing non-linearity, ReLu is non-linear around zero, as it changes from zero
to positive, thus it has limited non-linearity [2]. However, due to the biases in
each node, the slope moves where it changes, and due to the fact that there
are many nodes, this allows for many slope changes, which in turn produces
nonlinearity.

The output layer usually uses a different activation function than that of the
hidden layers, and this function is selected with regard to the desired output
of the ANN. The problems in this project were either binary or multi-class clas-
sification problems. For the purpose of binary classification, Sigmoid is usually
used as the activation function for the output layer. This function converts the
input into probabilities between 0 and 1, and the output is interpreted as one
class or the other depending on the probability value, whether it is larger or
smaller than 0.5 [49]. The function is shown in (6), where z is the input of the
node.

Sigmoid(z) =
1

1 + e−z
(6)

For multi-class classification problems, softmax is used as the output activation
function. Each input is converted into a probability value between 0 and 1,
where the sum of all the outputs is always 1. The function is shown below, (7),
where the node’s input zi, is normalized over all the output layer outputs, zj
[50]. The sigmoid function can be seen as a special case of a softmax function,
where one of the two output nodes has no weights.

softmax(zi) =
exp(zi)∑
j exp(zj)

(7)

2.5.3 Training, validation, and test set

To build a machine learning system, it is common to have three types of data,
training, validation, and test data. Training data is used only to train the model
and update the parameters. Validation data is only used to tune the hyperpa-
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rameters and check for overfitting. The test set is used to test the final model,
and check how well it performs on unseen data, this data must not be used
at any stage during the training of the model [7]. The validation set is often
confused with the test set, however, they are not the same.

2.5.4 Training the network

This subsection is inspired by Tor Andre M. signal processing course, TTT4135
[51]. The parameters (weight and bias) in the model are usually initialized at
random and then updated during training. In order to train the model, there
should be a measure that describes how good the output of the model is, a
measure of error, and hence a loss function is defined. The most commonly
used loss function for classification problems is the cross-entropy loss, which is
given by (8), where y is the true label and ŷ is the predicted label.

l(y, ŷ) =
∑
i

−yilog(ŷi) (8)

Given a loss function, the total loss for the given training problem can be de-
fined as:

L(Θ, X, Y ) =
1

|X|
∑

il(yn, f(xn; Θ)) (9)

Where Θ is the parameters of the network, while X and Y are the training data
and their labels. The goal of training the neural network is to minimize the total
loss with respect to the parameters as shown in (10). However, this problem
cannot be solved in a closed form, and must therefore be solved by numerical
search, usually using the gradient descent algorithm.

Θ̂,= argmin
Θ

L(Θ, X, Y ) (10)

The gradient descent algorithm optimizes the network and reduces the loss,
however, to achieve this, the gradient must be calculated. The back-propagation
algorithm is used to calculate the gradients, and it does so by first looping
through the network and doing the forward computation where the intermedi-
ate results are stored. The stored results are then used to calculate and update
the gradients. This works because it can be shown that the gradient ΘL depends
on the next gradient ΘL+1.

When looping through the data, one of the following three approaches could
be used, Batch, Mini-Batch, and Stochastic Gradient Descent (SGD). In Batch
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all the training data is used to compute and update the gradients, this leads
to slow convergence per epoch (complete pass through the training set). In
Mini-patch only a small subset of data is used for computing the gradient, thus
the gradients are less accurate, however, the model is updated multiple times
per epoch and converges faster. Lastly SGD uses only one training sample that
is selected at random to compute the gradient. The gradients are even less
accurate than for Batch, however, the gradients converge faster than that of
Batch.

For this project, an extension of the gradient descent algorithm was used, which
is called the Adaptive Movement Estimation algorithm, or Adam in short. The
algorithm "adapts a learning rate for each variable for the objective function
and further smooths the search process by using an exponentially decreasing
moving average of the gradient to make updates to variables" [52].

One of the essential hyperparameters for learning the network is the learning
rate for the gradient descent algorithm. As the name suggests it’s responsible
for how fast the network learns, and thus how fast the parameters are updated.
The selection of this hyperparameter depends on many factors, such as the
topology of the network and the data set. This hyperparameter is usually tuned
throughout the building process of the model, in order to make sure that the
loss is decreasing per epoch [53]. The effect the learning rate has on the loss
is illustrated in Figure 6, as can be seen, the value must not be too high or too
low, as both can cause a high loss.

Figure 6: Illustration of the model’s loss over each training epoch, given differ-
ent learning rates [3].
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2.5.5 Overtraining

Overtraining becomes a problem when the model starts learning the training
data too well, this makes the model’s predictive ability bad. This problem can
occur due to multiple factors, such as when the model is too complex for the
problem at hand, or when there is little training data. Overtraining is usually
detected by plotting the loss against the number of iterations for both the train-
ing and validation set, as illustrated in Figure 7. The model is overtrained if the
training set loss keeps decreasing while the validation set loss starts increasing.
When this occurs the model’s generalizability on new data becomes horrible,
this leads to a low training loss and a high test loss.

Another problem that can occur when training the model is undertraining,
which is the exact opposite of overtraining. This happens when the model has
not been trained long enough. This leads to a high training loss and a high test
loss. The best scenario is to find the sweet spot, where the model is balanced,
having low training and test loss [54].

Figure 7: Illustration of the loss curve for both the training and validation set,
where the early stopping is marked by a dotted line [4].

To avoid overtraining methods such as early stopping, feature selection, reg-
ularization, and dropout could be used. Early stopping is about stopping the
model’s training before it starts overtraining by reducing the number of epochs,
just as illustrated in Figure 7. Regularization is the process where parameters
with large coefficients are penalized using a penalty term. The parameters with
large coefficients are usually the ones responsible for limiting the variance,
which then leads to overfitting [43]. Dropout helps with overtraining by dis-
carding a number of node connections so that they do not contribute to the
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model’s output, and those connections are chosen at random. This helps to
break down dependencies in the model.

Feature selection helps with reducing the complexity of the model, as the re-
dundant and nonrelevant variables are removed, this also helps with overtrain-
ing. For this project Analysis of Variance (ANOVA) F-test was used for feature
selection. The test calculates the relationship between two variance values, in
this case, the input variable and the target variable, and determines whether
it comes from the same distribution or not [55]. The more likely that it comes
from the same distribution, the higher the score the variable gets, this makes it
more likely to be selected, and vice versa.

2.5.6 Types of Neural Networks

There are many types of ANN out there, some of the most popular ones are Mul-
tilayer Perceptrons (MLPs), Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (RNNs). For this project only MLP and CNN were used,
both are described below. RNN was not explained, as it’s outside the scope of
this study.

Multilayer perceptron

MLP is composed of a series of fully connected layers and is the most basic
ANN out of the other two. This network is a class of Feed-Forward ANN [56]
and thus has the same structure as the DNN shown in Figure 4.

Convolutional neural network

Unlike MLPs, CNN can take images as inputs. CNN uses convolution layers that
carry convolution operations, this allows the network to capture temporal and
spatial dependencies. Each convolution layer has a number of filters/kernels
that compute features from the images. The features extracted include lines,
edges, shapes, etc.

In addition to convolution layers, CNN uses also pooling layers that reduce
the dimensionality of the input by the use of statistics such as max, mean or
average. For this project Max-pooling was used, this returns the maximum value
from the image portion that is covered by the kernel.
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CNN includes also Nonlinear processing by having a fully-connected layer at
the end of the model, an MLP. This usually comes after flattening the output of
the images, so that it’s of suitable form for the MLP [57]. A typical CNN for a
multi-class classification problem is shown in Figure 8, where the input image
is classified into one of three classes, based on the class output with the highest
probability.

Figure 8: A typical Convolution Neural Network, and an example of a multi-
class classification problem [5].

2.5.7 Performance assessment

To assess the performance of the built ANN models, learning curves were used.
Learning curves are a great way to see whether the model is being overtrained
or undertrained. The loss and accuracy learning curves are usually plotted for
both the training and validation set.

Some common classifications metrics such as True Positive (TP), False Positive
(FP), True Negative (TN) and False Negative (FN), are also used in this project.
TP describes how many correctly classified predictions there are for a given
class. FP describes how many falsely classified predictions there are for a given
class. TN is when you predict that an observation does not belong to a class
correctly. FN occurs when you predict that an observation does not belong to a
class falsely [58]. All of these are usually summarized in a confusion matrix, an
example of a binary confusion matrix is shown in Figure 9.
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Figure 9: Binary confusion matrix [6].

Other metrics such as accuracy, precision, and recall are also commonly used
to describe the performance of the system, these matrices are computed using
the confusion matrix. Accuracy is defined as (11), where Total is the number
of all classified elements. Accuracy is a measure of how often the classifier
predicts correctly. Precision is defined as (12), and is a measure of the quality
of the classifier. Last but not least, Recall is defined as (13), and describes the
quantity, that is, how many of the relevant items are selected [58].

Accuracy =
TP + TN

Total
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

Recall and precision can be combined into a single metric, also called the F1
score. This is defined as shown below:

F1 =
2 ·Recall · Precision

Recall + Precision
(14)

All these matrices and plots are of importance, especially in the early phases of
building the ML models. They were actively used during this project, to improve
the results and build the best possible classification models.



2 Theory 23

2.6 Python

Python is a great programming language, especially for machine learning ap-
plications. It has a lot of great libraries for different applications. Libraries such
as TensorFlow, and Librosa have many great built-in functions for calculating
features and building ANN models. It has also a large number of great tools to
analyze and deal with data. For this project, Google Colabroratory was used for
programming in Python, as it allowed for free GPU access on the Web.
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3 Equipment and protocol for data acquisition

3.1 Introduction

This section presents the equipment and protocol used in this project. Some
of its parts are inspired by the previous project [7], since the same equipment
has been used. The protocol used in this project was inspired by Konstanze K.
protocol in the pilot study "Analysis of bowel sounds related to meal onset"
[59], in addition to the paper on "Automatic food intake detection based on
swallowing sounds" [25].

3.2 Equipment used

The equipment used for this project is shown in Figure 10. The microphones
used for recording are connected to the red box, which is the power supply
of the microphones. There were a total of four SPM0687LR5H-1 microphones,
each one of the four microphones was placed inside a stethoscope/disc-shaped
holder, this design was intentionally like this to make capturing sounds made
by the human body easier. These microphones are omnidirectional and have a
uniform frequency response and a high SNR [60].

Figure 10: Equipment used for data collection, The microphone is shown on the
right lower side of the image, pointed to by the black arrow.

The output of the microphone is connected to a sound card, the Roland Octa-
Capture sound card. The sound card takes in the analog sound data from the
microphone and digitizes it. This sound card has a resolution of 24 bits and a
sampling frequency of 48 kHz [61]. All the recordings are initiated and saved
in the laptop connected to the sound card, before being stored on the cloud,
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on Google drive. A diagram of the equipment used for recording is shown in
Figure 11.

Figure 11: Representation of the equipment layout during the data collection
[7].

3.3 Protocol for meal type recordings

For the meal type experiments, it was necessary to have two meals with a dis-
tinct difference in consistency, for this purpose salad and oats were selected. For
the oatmeal, a pre-packaged oat in a cup of 54 g was used, while for the salad
meal, a pre-packaged salad plate of 225 g was used, as shown in Figure 12. The
salad meal contained also pasta, chicken, and dressing, only the pasta, salad,
and dressing were consumed in each meal, this accounted for roughly 78% of
the weight of the meal. Thus, the salad meal was actually around 175.5 g. The
salad, dressing, and pasta were mixed before each salad meal recording, in or-
der to ensure that every bite contained salad. The oatmeal had to be prepared
using hot water, it was prepared exactly as instructed on the package before
each oatmeal recording. Pre-packaged meals were used to make sure that the
same amount and same meals were consumed in each recording.

Figure 12: The prepackaged oat and salad meals were used for the meal type
recordings. The pictures are brought from the store’s website, "Meny" [8][9].

The meal type experiment recordings followed the proposed protocol shown in
Figure 13. The first 20 min of the recording were used as a reference, there was
no talking or eating during that period. After that, the subject was able to eat
either of the proposed meals, either oats or salad. The meal duration could not
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exceed 10 min, which was manageable as the meal portions were quite small.
After the meal ended, the recording continued for another 5 min, again there
was no talking or eating during that period. In total the whole recording lasted
between 30 min to 35 min.

Figure 13: Protocol for meal type recordings.

3.4 Old recordings protocol

Some recordings from the previous project [7] were also included for use in
this project, mainly for the speech and meal onset detection part of the project.
These recordings had a similar protocol to the meal type recordings, how-
ever, some parts were longer, and some parts included noise in the form of
speech. There were two types of recordings acquired in the previous project,
some recordings were augmented with noise, while the other recordings had
no noise, only the meal onset [7].

The recordings without noise had a protocol like the one shown in Figure 14.
The subjects were asked to fast for a minimum of 3 hours before the record-
ings, as, unlike this project, bowel sound recordings were used in the previous
project. The recordings started by first using the first 15 min as a reference,
there was no meal or talking during this period. After that the subject could
have a meal of their choice, usually, the meal consisted of a slice of bread with
some cheese or other toppings and a glass of water. After that the recording
continued for another 45 min, once again there was no talking or eating during
that period, this was to monitor the digestive behavior.

Figure 14: Protocol for recording data without noise [7].

The noise-augmented recordings had a protocol similar to that shown in Figure



3 Equipment and protocol for data acquisition 27

15. These recordings were intended to represent a more realistic environment.
This protocol was more focused on the swallowing recordings, just like the meal
type protocol, thus fasting before the recording was not needed. The recordings
consisted of 5 min of silence, followed by 10 min of reading from a book or news
article. The first 15 min were used as a reference. Then the subject could eat
once again a meal of their choice, for up to 15 min. Then after the meal, there
was 5 min of silence followed by 5 min of reading. In addition to that, two
of the meal recordings augmented with noise had also speech during the meal
onset, the subjects were asked to eat normally, then speak for 10-15 s, and then
continue eating, this was repeated throughout the meal onset period. This was
mainly to see how the model would react to speech in the meal onset region.

Figure 15: Protocol for recording data augmented with noise [7].

3.5 Recording procedure

This recording procedure yielded all the recordings, both the old recordings
and meal type recordings. For each recording all four microphones were used
simultaneously, the placement of the microphones is shown in Figure 16. "The
swallowing microphone was placed just above the collar bone on the neck to
record swallowing sounds. Different microphone placements were tested in the
paper "Automatic detection and recognition of swallowing sounds" [26]. Based
on the findings in the paper, the best placement appeared to be just above the
collar bone, since these recordings had the highest power. This location was,
however, not the most comfortable with regard to head movements." [7].

Two of the other three microphones were placed on the lower abdominal re-
gion, these were used to capture bowel sounds. The third microphone was
placed 2 cm below the right ear to capture chewing sounds. The recordings
captured from these three microphones were not used in this project, they were
only captured for use in other projects.
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Figure 16: Locations of the four microphones [7].

The microphones were fastened on the specific locations using a double-sided
tape, that was placed in the outer ring of the microphone, as could be seen
for two of the microphones in the lower right part of Figure 10. This ensured
that the microphone stayed in place during the entire recording process. All
the recordings were obtained in a quiet room, with as little noise as possible.
For all the recordings, the subjects were seated on a reclined chair and asked
to move as little as possible, in order to minimize any unnecessary noise that
could affect the quality of the recordings. Subjects could read a book or use
their phone throughout the experiment period to avoid boredom, as long as
they did not move too much.
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4 Speech and meal onset detection

This section introduces the built meal onset and speech detection systems, these
were built using an MLP classification model. These two systems were built to
improve the results from the previous project [7] and to test whether an ANN
classifier performed better than an SVM classifier for such a problem.

4.1 Method description and implementation

This section describes how the speech and meal onset detection systems were
implemented. All the steps required for building the systems, including pre-
processing, feature extraction, training, and classification, will be explained in
detail.

4.1.1 Data acquisition

For this part of the project, the data collected in a previous project were used
[7]. There were a total of 10 recordings, 5 of them were augmented with noise,
while the other 5 were not augmented with noise. All recordings were acquired
using the protocols and procedures described in sections 3.4 and 3.5. These
recordings were collected by 2 subjects, this ensured some variability, even
though both subjects were around the same age (mid-twenties), and had no
history of health problems related to swallowing.

These recordings were meant to test the speech detector’s ability to classify
speech in the recordings, and whether the meal onset region in the recordings
affected the classification or not. As for the meal onset detector, the system’s
ability to distinguish between the meal onset and noise was tested, this included
friction noise from the movement of the microphones, talking, and other noise
sources. In order to make use of all the available data, all of the recordings
were used for both systems, since during this stage of the project, there were
no other accessible recordings data.

4.1.2 Data pre-processing

The recordings obtained using the "Roland Octa-Capture" sound card had a bit
rate of 24 bits, the bit rate was reduced to 16 bits by quantization. This was
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to reduce the size of the recordings before working with them on the cloud,
as they were too large to handle on Google drive because most of the data
were stored there. The quantization was performed using Audacity, which is an
audio editor. Audacity was used only for simplicity reasons. This process was
also convenient since most of Python’s built-in libraries supported 8-bit, and
16-bit data out of the box.

After quantizing the recording data, the data was decimated. This was a two-
step process, where first the data was filtered and then downsampled. Deci-
mation was applied using either a bandpass or a lowpass filter. A lowpass 5’th
order Butterworth filter with a cutoff frequency of 4 kHz or a bandpass 5’th
order Butterworth filter with a cutoff frequency of 80 Hz and 4 kHz were used.
Both filters had a linear phase response in the region of interest, in addition to
a flat amplitude response. This helped with keeping the original signal shape
after filtering. In addition, at the cut-off frequency, the magnitude had a -3 dB
amplitude drop for both filters. The frequency and phase response of the fil-
ters could be seen in Figure 17, as could be seen the graphs for both filters
were overlapping. This was the first of many other variations to test how the
performance of the system was affected by such variations.

Figure 17: Amplitude and phase response plot for the decimation filters. The
black lines illustrate the cut-off frequency and magnitude drop by -3 dB. Am-
plitude responses for both filters are overlapping.

The cutoff frequency for the lowpass filter was selected based on the literature,
and also the spectrogram of the raw recordings which is shown in Figure 18.
The spectrogram is from one of the recordings augmented with noise, it was
plotted for a duration of 2 min. In the first minute, the subject was talking,
while in the second minute the subject was eating. It was clear that most of the
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power for the meal onset was concentrated for the frequencies below 1.5 kHz.
Speech could easily reach frequencies up to 20 kHz. Since meal information
is more important than speech for this project, the selection of the low cutoff
frequency of 4 kHz would not affect the performance of the system. Also, some
high-power speech information is kept for frequencies below 4 kHz.

Figure 18: Spectrogram of raw meal recording, where the first minute contains
talking, while the second minute contains only meal intake.

The cutoff frequency for the bandpass filter of 4 kHz was selected for the same
reasons as mentioned above, while the cutoff of 80 Hz was selected to reduce
some of the noise from heartbeat and breathing sounds while keeping most of
the relevant meal information intact. After filtering the signal was downsam-
pled to 8 kHz, this reduced the total amount of data by a factor equal to the
downsampling factor, L = 6.

4.1.3 Feature extraction

For both classification systems, frequency spectrum-based features were ex-
tracted. PSD features were extracted, since, in the meal and speech region of
the recording, the power is much higher for the frequency range of interest, as
when compared to non-speech and non-meal regions in the recording. In ad-
dition, the power level is also different for speech and the meal onset regions
of the recording, speech tends to have more power. In addition, PSD features
proved to work well for meal onset detection using an SVM classifier in the
previous project [7].
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Before calculating PSD features each recording data was first normalized in-
dividually, by simply dividing by the max value within the data. PSD features
were then calculated by first segmenting the data into segments of equal length
with 50% overlap. Three segmentation lengths were tested, 5 s, 10 s, and 15
s. This was done to see whether segmentation length had an effect on the per-
formance of the classification systems or not. For each segment, power features
were calculated for each 100 Hz band in the frequency range from 0 Hz to 4
kHz, using the formula in Equation (2). In addition to that, the total power in
the frequency range from 0 Hz to 4 kHz, and the power fraction for each 100
Hz band in the frequency range from 0 Hz to 4 kHz were also extracted. These
features are summarized in Table 1.

Features Number of features
Total power 1
Power in 100 Hz frequency bands from 0 Hz to 4 kHz 40
Power fraction in 100 Hz frequency bands from 0 Hz to 4 kHz 40

Table 1: Description of the extracted Power Spectrum Density features [7].

After calculating the PSD features, each feature was then normalized using (1),
which scaled the features to values between 0 and 1. The normalized features
were then used to build a feature matrix for all the recording data. Where the
columns represented the features, and the rows represent the time segments,
as illustrated in Figure 19.

x1,1 x1,2 · · · x1,81

x2,1 x2,2 · · · x2,81
...

... . . . ...
xn,1 xn,2 · · · xn,81

Figure 19: Feature matrix, where columns correspond to features at a given
time segment, and n is the segments in the recording data.

4.1.4 Data splitting

After feature extraction, the data was split into training, validation, and test
set. Since there were initially only ten recordings, all of the recordings were
used for training and testing both models. Three recordings were assigned for
testing the model, two of which were augmented with noise. As for the training
and validation set, a total of seven recordings were used, six for training and
one for validation.
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The test set recordings were selected beforehand because two of the recordings
augmented with noise had also speech during the meal onset. This was done
to see how speech in the meal onset duration is classified since this affected
the built SVM classifier in the previous project [7]. The built SVM classifier
struggled to separate speech from the meal onset. The last test recording was
selected out of the recordings without speech, the recording was selected at
random. The rest of the recordings were assigned to the training and validation
set at random.

4.1.5 Training and classification

Before training and building an ANN model, a labeling vector is needed. This
vector is in essence the target vector that the ANN model will try to predict
when training the model. For the speech detection model, a label of "1" was
given for each segment that contained speech, while all the other segments
were given the label "0". Similarly, for the meal onset detection model, a label
of "1" was given for each segment that contained a meal onset, while the non-
meal segments were given a "0". Since there are two classes in each model,
meal or no meal and speech or no speech, both problems are considered to be
a part of a binary classification problem.

After building the labeling vector, the feature selection algorithm was used,
in this project, ANOVA F-test was used. Different feature selection percentages
were tested while building the model, as the performance of the model var-
ied depending on the number of selected features. This percentage was fixed
when the final classification model was built. For the speech detector, 35% of
the features were selected, 28 features in total. As for the meal onset detector,
50% of the features were selected, a total of 40 features. This step is impor-
tant to reduce the complexity of the classifiers as much as possible, help with
overtraining, and also reduce the training time.

When building an ANN model, there is not really a specific method, different
things must be tested in order to obtain a working model. Hence when building
the model, a different number of layers, nodes, learning rates, epochs, activa-
tion functions, and batch sizes were used. Often the first thing that is tested is
the number of nodes in each layer, just to have a grasp on what works, whether
it’s a large or a small number of nodes. After that, a different number of hidden
layers is tested, including different activation functions, until the results are sta-
ble. Then the learning rate, number of epochs, and batch size are varied until
the results stop improving. When the results are good, some of the methods to
avoid overtraining are used. The model that gave the best results with regard
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to the test set is usually selected. For starters, this building process was first
executed using the bandpass filtered 10 s segment features, these features were
used as a reference for both the meal and speech detectors.

When a functioning model is built, and the results stop improving, the architec-
ture of the model is set. When that is the case, then the model is tested using
both the lowpass and bandpass filtered features for the 10 s segment. The re-
sults are compared, and the features that give the best results are used in the
next comparison step. In the next comparison step the features using the best
filter and segmentation lengths of 5 s, 10 s, and 20 s are compared. When the
most suitable feature extraction method is selected, the model is then tuned one
last time to ensure that the best possible results are achieved before selecting
the final architecture.

The final system for the speech detector is shown in Figure 20. The final archi-
tecture used for this detector was that of an MLP. The model consisted of three
layers in total. The input layer was a flattening layer, with 28 Nodes, one for
each feature. This was used to convert the data into a 1D shape to allow for
calculations in the next layer. Then there was a hidden layer consisting of 200
nodes, with a dropout rate of 30%, the activation function used for this layer
was ReLu. Most computations take place in this layer. Lastly, the output layer
had only 2 nodes, one for each class, and since this is a binary classification
problem, Sigmoid is usually used as an activation function, however, softmax
was used as it provided better results.

Figure 20: The final model for speech detection.



4 Speech and meal onset detection 35

The final built classifier for the meal onset detector is shown in Figure 21. The
architecture used was also that of an MLP. Just like the speech detector model,
the input layer was a flattening layer, with 40 nodes. The model had a total
of two hidden layers, with 100 nodes in each, and a dropout rate of 50%. The
activation function used for the hidden layers was ReLu. The output layer had
also 2 nodes, one for each class, just like the previous classifier, Softmax was
used as an activation function.

Figure 21: The final model for meal onset detection.

Each segment is assigned to a class based on the output of the models, both two
output nodes give the probability of the segment being part of either one of the
classes. The class with the highest probability is assigned to that segment. This
is done for all the segments in the test meal, which in turn creates a predicted
labeling vector that could be used to evaluate the performance of the model.

4.1.6 Evaluation of the performance

In order to make sure that the best-built model was selected, the loss curve
in addition to the accuracy curve for both the training and validation data was
plotted. These graphs could give an indication of whether the number of epochs
is good enough, or whether the system is being overtrained or undertrained.
These graphs can also give an indication of whether the learning rate is too
high or too low.

In addition, the final system performance was tested using the test data. The
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predicted labels were plotted against the true labels, this plot was used to give
an idea about where in the recordings the classifier performed good or bad.
In addition, the confusion matrix was used for assessing the performance of
the system. Values such as precision, recall, accuracy, and F1 score were also
calculated, as this gave exact values for the performance of the system on the
test set.

For each time the model is trained, the initial conditions vary at random, thus
the model performed differently from run to run. That is why it was necessary
to run the system multiple times and make sure that the results were not just a
one-time case. Thus all the results presented in the next section are stored after
running the system multiple times.

4.2 Results

In this section, the results from the speech and meal onset detectors built in the
previous section are presented.

4.2.1 Speech detection

When using ANOVA F-test on the labeling vector and the features, the features
that had the highest score were often the power features in the range of 0 Hz to
2 kHz. In addition, the total power feature had also a high score. As mentioned
earlier, in section 4.1.5, only 28 features were selected, thus only those with the
highest score were used to train and test the classifier.

For the final built system, the features extracted using a bandpass filter, with
a segment length of 10 s gave the best results. This is clear when looking at
the results shown in Table 2. In this table, all the extracted results from the
confusion matrix are represented for all the tested feature extraction combina-
tions. The best feature extraction combination was used to extract all the results
represented below in this section.

When it comes to the final built classifier, it had a precision, accuracy, recall, and
an F1 score of 99% on the test data. The classification system had an accuracy
and loss curve per epoch for the training and validation set as seen in Figure
22. As could be seen, the model was run for a total of 20 epochs, as usually
after that the model showed a tendency to be overtrained. It could be seen that
the accuracy for both the training and validation set was in the range of 95%
to 97%, while the loss was is in the range of 0.1 to 0.15. The final built model
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had a learning rate of 10−3, and used the whole training data as the batch size.

Filtering Segment Precision Recall Accuracy F1-score TN FN FP TP
Bandpass 10 s 99 % 99 % 99 % 99 % 1100 10 4 350
Lowpass 10 s 97 % 96 % 96 % 96 % 1100 18 35 340
Bandpass 20 s 96 % 95 % 95 % 95 % 540 7 29 170
Bandpass 5 s 97 % 97 % 97 % 97 % 2200 14 87 710

Table 2: Table showing the result from training and testing the model with
different features.

(a) (b)

Figure 22: a) Accuracy and b) Loss curve per epoch for the training and valida-
tion set using the final model.

The confusion matrix for the test data could be seen in Figure 23 a). From the
confusion matrix, it was clear that the system performed extremely well, and it
did not struggle to distinguish between speech and non-speech segments in the
meal recordings, except for a couple of times, 14 to be precise.

When looking at the predicted labeling vector, as shown in Figure 23 b). It
could be seen that for the first meal, there was no speech, and this was clas-
sified correctly by the model, that recording had only meal onset. As for meal
recording numbers 6, and 9, both recordings had speech between the 5’th min
to 10’th min and the 25’th min to 30’th min. These two recordings had also
some speech during the meal onset, between the 15’th min to 20’th min, but as
could be seen in the figure this wasn’t picked up by the detector at all. Most FPs
and FNs seem to be either at the beginning or at the end of the speech regions.
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(a)

(b)

Figure 23: a) Confusion matrix and b) true and predicted labeling vector plotted
over time for the test set using the final model. Label "1" is speech, while label
"0" is no speech. For most of the meal recording, the true and predicted labels
(labeling vectors) are overlapping.

4.2.2 Meal onset detection

The most selected feature for this classifier was the power feature in the 0 Hz
to 100 Hz band, this feature had much higher score than all the other features.
The other most selected features were the power and power fraction features
in the frequency range of 0 Hz to 1 kHz. For this classifier, only the 40 best
features were used, as mentioned earlier, section 4.1.5.

For this system, the recording data that performed the best were the lowpass
filtered with 10 s segment length, as could be seen in Table 3. In the table,
all the metrics extracted from the confusion matrix are represented. The best
feature extraction combination was used to extract all the results shown below
in this section.
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Filtering Segment Precision Recall Accuracy F1-score TN FN FP TP
Bandpass 10 s 87 % 88 % 88 % 88 % 1200 110 71 73
Lowpass 10 s 96 % 95 % 95 % 95 % 1300 10 64 170
Lowpass 20 s 92 % 91 % 91 % 88 % 660 68 0 22
Lowpass 5 s 92 % 91 % 91 % 88 % 2600 170 36 190

Table 3: Table showing the result from training and testing the model with
different features.

The built classifier using these features had a precision of 96%, and recall of
95%, while the accuracy and F1 score were both 95% on the test set. The
final meal onset detection classifier performed similarly to the speech detection
classifier, as could be seen in the learning curves for both the training and the
validation set, Figure 24. The train and validation set accuracy was around
95% to 96%, while the loss was in the range of 0.1 to 0.2. The final model had
a learning rate of 10−3 and used the whole training data as the batch size.

(a) (b)

Figure 24: a) Accuracy and b) Loss curve per epoch for the training and valida-
tion set using the final model.

The results on the test set using the best feature extraction combination were
also good, as could be seen in the confusion matrix, Figure 25 a). The results
are quite similar to the speech detectors, however, there seems to be a larger
number of FP’s. Looking at Figure 25 b), for the 5’th recording, it’s clear that
most of the FP’s appear at the end of the recording, as for the 6’th recording
most of the FP’s appear to be at the region of the recording where there is
speech. The 9’th recording had a large number of FP’s showing at the beginning
of the recording. All of these contributed to the high number of FP’s (64). The
average meal onset detection time for this classifier is 5 min, as long as the
removable noise segments are accounted for, such as speech.
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(a)

(b)

Figure 25: a) Confusion matrix and b) true and predicted labeling vector plotted
over time for the test set. Label "1" is meal onset, while label "0" is no meal
onset. For most of the meal recording, the true and predicted labels (labeling
vectors) are overlapping.

4.3 Discussion

In this part of the thesis, the implementation methods and results represented
in the previous sections will be discussed.

4.3.1 Speech detection

The bandpass filtered features gave the best results for this detector, this might
be due to the fact that noise in the lower frequency range of 0 Hz to 100 Hz had
high power. Since PSD features were used, the noise level affected the feature
selection algorithm, ANOVA F-test, such that when lowpass filtered features
were used, the most selected feature was often the feature in the 0 Hz to 100
Hz band, this was not the case for the bandpass filtered features.
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The most selected features from the ANOVA F-test algorithm were always the
total power, and the lower frequency PSD features, 0 Hz to 2 kHz. These fea-
tures had the most power when compared to other frequencies. There was also
a clear difference in power between speech regions of the recording and non-
speech regions of the recording as shown in Figure 18. All of this helped with
the good performance of the classifier.

The results represented in Table 2 show that increasing the segment length
from 10 s to 20 s leads to more FP’s, especially in the beginning and the end
parts of the speech regions in the recording. This could be because, increasing
the segment length leads to picking up more of the non-speech parts, especially
in the first 2-3 segments that follow before and after the speech regions. Hence
more FP’s were picked. Reducing the segment length from 10 s to 5 s led also
to more FP, however, unlike the 20 s segment, most of the FP were within the
speech region. This could be because, in the speech regions, the subject is not
reading non-stop, thus some parts might have no talking. This is picked up more
often in the shorter segment length, thus more FP’s are given.

It’s worth noting that the few FP’s for the bandpass 10 s segment length features
were always at the beginning or at the end of the speech region, as shown in
Figure 23. This could be due to the fact that the labels in the labeling vector
were set to the nearest minute, however, the subject did not always start reading
on the dot. Hence the labeling of the speech region is not perfect. This is clearly
picked up by the detector.

The final built model shown in Figure 20 used only a single hidden layer. This
was because, during the early stages of the model it seemed that adding more
hidden layers just added unnecessary complexity, and the result did not improve
or change by much. That is why the model was kept as simple as possible.
Changing the number of nodes in the hidden layer did not have a substantial
effect on the result, that is why it was kept at 200. As for dropout, the value
was selected based on the loss curve, in order to avoid overtraining the model.

The model’s output layer used Softmax instead of Sigmoid as an activation
function, even though the classification problem was binary. This was due to
the fact that the model performed better with Softmax, probably due to having
one extra output node, and the fact that softmax outputs are interrelated. Even
though the additional node at the output increased the complexity of the model,
the additional gradients constrained the network and prevented overfitting.

When it comes to the learning rate, it seemed that the network learned pretty
fast, even though the whole training data was used as the batch size. It could be
seen in the accuracy curve plot, Figure 22 a), that there are a lot of fluctuations
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in the accuracy in the first few epochs, however, it stabilizes more near the 10’th
to 20’th epoch. This might have been due to having a large learning rate, 10−3.
However, when looking at the loss curve, Figure 22 b), it looked more stable.
Increasing the learning rate led sometimes to a more stable accuracy increase
on the validation set, but usually, the validation loss became worse, and more
epochs were then needed to train the model. That is why the learning rate was
kept as it is.

The results from the confusion matrix and labeling vector plots, Figure 23,
showed that speech detection was possible. The detector was not confused by
the meal onset region at all. A big contributing factor to that was that speech
usually had a much higher power for lower, and higher frequencies than for
the meal onset. The difference in power between the meal onset and speech
regions of the recordings could be clearly seen in Figure 18.

Two of the test recordings, meal number 6 and 9, had some speech during the
meal region onset, between the 15’th min to 20’th min. This was not detected at
all by the system, Figure 23 b). This is not a problem for now, as the system was
only intended to detect speech outside the meal region, as it was important to
be able to separate those two regions. This could be detected by the other built
systems later on, such as the swallowing detector. This should be investigated
later on, as those speech regions inside the meal onset could induce FP’s, which
in turn affects the performance of the system.

Unlike the SVM result from the previous project [7], the built classifier was able
to clearly separate speech regions in the recordings from non-speech regions.
This showed that ANN models are more powerful and capable than SVM, for
such a problem, given the available data set. The plan of using this system was
to remove most speech-related noise that could affect the food intake monitor-
ing, this seemed feasible using this classification model.

4.3.2 Meal onset detection

Unlike the speech detector, the lowpass filtered features performed the best
for the meal onset detector. The most selected feature using the ANOVA F-test
algorithm for this model was the 0 Hz to 100 Hz power band feature. This fre-
quency region had always high power, especially during the meal onset. Band-
pass features did not give good results, since most frequencies in that region
were filtered out, and thus some important meal information was lost.

The results in Table 3 showed that increasing the segment length from 10 s to
20 s lead to having no FP’s outside the meal region, however inside the meal
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region there was a lot of FN, and the classifier did not work properly for the 20
s segmentation length. When decreasing the segment length from 10 s to 5 s,
the number of FP’s increased, as more noise was classified as meal onset. Also,
there were a lot more FN’s inside the meal region. The classifier shifted a lot
between the class "1" and "0", meal and no meal, during the meal onset. This
is similar to the speech detector case, as the subjects are not consuming food
non-stop in the meal region. Thus some segments might be missing the typical
characteristics of a meal segment, which explains the high number of FNs.

The final built model for the meal onset detector, Figure 21, needed more hid-
den layers than the speech detector, Figure 20, since the problem was more
challenging with regard to the overlap in frequency content. The frequency
range for speech and other noise sources in the recording such as heartbeat,
breathing, and talking overlapped with the lower frequency range of the meal
onset, due to lowpass filtering. Having 100 nodes in each layer seemed to work
pretty well, changing it did not really affect the performance or the training
time by much. In addition, the learning rate of the model, which was 10−3

worked fine, as the model was trained fairly quickly, even though the whole
training set was as the batch size. In the output layer, Softmax was also used
instead of Sigmoid as an activation function. The reasoning behind this choice
is similar to that of the speech detection classifier, mentioned in the section
above.

The results from the confusion matrix and labeling vector plot, Figure 25,
showed that the model suffered from a few FP’s. Most of the FP’s were con-
centrated at the beginning and end of the recordings. The FP’s at the end of the
recordings are mostly due to friction noise in the recordings, as subjects moved
a lot more during the end of the recordings, due to stiffness in the muscles from
prolonged sitting. The noise at the beginning of meal recording nr. 9 seems to
be caused by the heartbeat noise in the recording. The heartbeat rhythm was
faster at the beginning of the recording but went down later on. This showed
that this type of noise is harder to remove than other noises such as speech, as
there is plenty of overlap in the frequency domain. The noise in the 6’th can
be easily removed by applying the speech detector from earlier, as this noise is
caused by talking. This noise was easily detected by the speech detector and is
not a big problem.

The average meal onset detection time was 5 min when accounting for the
removable noise, such as speech that could be removed using the speech de-
tector. This was quite the improvement when compared to the CGM system’s
time delays of 30 min to 40 min. Given the high accuracy, and F1 score, the
duration of most meals was classified correctly. The system could be feasible
for automatic meal onset detection only if the induced FPs due to noise can
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be removed. This could be possible by using a specific meal duration thresh-
old, where for example consecutive labels of duration shorter than 1 min are
removed, or something similar. This must be investigated if such a system is to
be used for automatic meal onset detection to help CGM systems with the time
delays, and when insulin should be administrated.

This system was originally only intended to detect the meal onset region in or-
der to decide when insulin should be administrated. Furthermore, it was used
to help with building meal type and swallowing detectors that are introduced
in the next section. When training the other classification systems, if the whole
recording is used, then the training time and complexity of the model is in-
creased. That is why instead of training the meal type detector and swallowing
detector on the whole recording, only the meal onset region is used. The meal
onset detector could be used to pinpoint the start and end of the meal, in addi-
tion, the speech detector system could be used to remove the noise from talking
if needed.

The meal onset detector built using ANN performed much better than the pre-
vious project’s SVM classifier. The SVM classifier from the previous project had
a recall of 85% [7], while the ANN classifier had a recall of 95% on the test set.
Even though the systems were built using different methods, more or less the
same type of data and features were used, and it was clear that ANN performed
much better.
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5 Swallowing and meal type detector

This section introduces how the swallowing and meal type detectors were built
using a CNN classification model. The main idea behind these two detection
systems was to see whether it was possible to build a system that gave an es-
timate of how much food is consumed during the meal onset. A swallowing
detector system could give an idea about the amount of food by counting the
number of swallows during the meal onset. By combining the results from a
swallowing detector and a meal type detector, the amount of food consumed
could be roughly estimated, as the more liquidy the food consistency is the
more swallows occurs within a specific time period, and the drier the food is
the fewer swallows occurs. This is due to fact that more chewing is required the
dryer the food is so that the food becomes moist enough before swallowing.

5.1 Method description and implementation

This section of the project provides a step-by-step description of how the models
were implemented. In addition, the reasoning behind some of the steps is briefly
discussed.

5.1.1 Data acquisition

For this part of the project, a total of 20 new recordings were acquired, using
the protocol and recording procedure described in sections 3.3 and 3.5. From
each meal type, 10 recordings were acquired. These recordings were acquired
using the same two subjects from the previous project [7]. Both of the subjects
were available for 10 recording sessions, 5 oat and 5 salad meal recordings
were acquired from each subject. Only these recordings were used for this part
of the project, as the 10 recordings from the previous project [7] did not have
the same protocol, also the meals consumed were different.

5.1.2 Labeling the data

After acquiring the data, the recordings were then labeled manually one at a
time using Audacity. All the swallows during the meal region were labeled,
and both the beginning and the end of the swallows were marked manually by
listening to the recordings. A typical swallow, taken from the row recordings
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(salad recording) is shown in Figure 26, where the dotted blue lines show the
beginning and the end of a swallow. The three phases of a swallow are clearly
visible in the plot, the first phase, IDS, is from 0.22 s to 0.45 s, the second phase,
BTS, is from 0.45 s to 0.7 s, while the final phase, FDS, is from 0.7 s to 0.85 s.
These three phases could be clearly identified for most swallows, even though
the swallow duration varied.

Originally the swallowing sound recordings were used to label the swallows in
the recording, however, this was much harder to do than expected, as breathing
and heartbeat sound affected the noise levels in the recordings. Hence at times,
it was difficult to hear the swallow. Instead, the recordings intended to capture
chewing sounds were used to label the swallows, since the recordings were
acquired simultaneously, the recordings were synchronized and the swallow
locations corresponded in both recordings. Using these recordings, it was much
easier to label the swallows as the noise from breathing and heartbeat was not
as apparent in these recordings.

Figure 26: Raw swallow sound sample extracted from a salad meal recording,
the swallow begins and ends between the dotted blue lines. The three phases
of a swallow are also clearly visible.

5.1.3 Data pre-processing

Just like the speech and meal onset detectors, the pre-processing steps de-
scribed here are similar. First, the recording data were quantized, to reduce
the bit rate from 24 bits to 16 bits. After quantizing, the data were decimated,
this was a two-step process. First, the data were lowpass filtered, since this part
of the project is about extracting meal information, all the frequency ranges
that could contain information about the meal were kept. Hence Bandpass fil-
tering was not used in this part of the project. The second step of decimation
was downsampling the data, the data were downsampled to 8 kHz, by using a
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downsampling factor of L = 6.

5.1.4 Feature extraction

The idea early on was to once again use PSD features to build the models, how-
ever, this did not work as planned. Using PSD features, both the built models
did not work, since power features were too simple and were not able to cap-
ture the relevant meal type, and swallowing information. Thus other features
had to be used. With regard to the available research regarding swallowing de-
tectors, MFCC and Mel spectrogram seemed to be commonly used, hence both
features were tested. MFCC features and its Delta features were tested early
on, and were calculated in a similar way to PSD features and used to build a
feature matrix like the one shown in Figure 19. However, once again the results
were bad and thus these features were also dropped. Mel spectrogram showed
some promising results, thus only Mel spectrogram features were extracted for
this part of the project.

Before extracting Mel spectrogram features, each meal recording was first nor-
malized individually, by simply dividing with the max value within the data.
Since the plan was to use only the meal onset region for training and testing
the model, only the meal onset region was kept after normalization. After nor-
malizing the data, the data was then segmented using three different segment
lengths, 0.6 s, 1.0 s, and 1.5 s, with a hop length of 0.2 s for all the three-
segment lengths. Hop length is the region of the segments that do not overlap.
The segment lengths were selected based on the typical length of a swallow,
while the hop length was selected based on what gave good results.

During labeling the average swallow length of oats and salad was about 0.6
s, some swallows, however, could reach a duration of up to 1 s, thus these
two segments were used. In addition, 1.5 s was used to capture any relevant
information in the region before and after a swallow. A box plot of the labeled
duration of oat and salad swallows is shown in Figure 27, as could be seen
oat bolus seemed to have a longer swallowing duration on average than salad
bolus.

After segmentation, each segment was framed into frames of lengths 0.2 s, 0.1
s, and 0.04 s, with a respective frame hop length of 0.1 s, 0.05 s, and 0.01 s.
These values were selected to determine whether a higher or lower time resolu-
tion works the best, and also to test a wide variety of values. For all the frames
in a segment, Mel spectrogram features were calculated, in total 128 features
were calculated for each frame. Having this different segmentation, framing,
and hop lengths allowed for more testing with regard to how the performance
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Figure 27: Box plot of the duration of the labeled swallows for all the 20 meal
type recordings.

of the built classifiers was affected. The time resolution of the features is af-
fected by the frame length, since the smaller the frame length is the better
the Mel spectrogram time resolution becomes, this might have an effect on the
classifiers. After this step, each feature within each segment was then normal-
ized linearly, using (1). This scaled the features to values between 0 and 1,
before saving the Mel spectrogram features as images for training and testing
the model.

Originally for both the swallowing detector and meal type detector, the features
were extracted from the whole meal onset region, however, this was later on
changed for the swallowing detector. Feeding the swallowing detector whole
meals during training did not lead to good results, as creating a labeling vector
for the data was much harder like this, since some segments included both parts
of a swallow and a non-swallow. For this reason, the features for training and
validation set for the swallowing detector were acquired in a different manner.

The manually labeled swallow markings using Audacity were used to extract
only the swallows. Swallowing segments were extracted by using the beginning
of a labeled swallow marking and taking the following samples until there is
enough samples to fill the desired segment length. For each swallow segment,
Mel spectrogram features were extracted. Similar framing length and frame
hop length was used as mentioned earlier. The non-swallowing segments were
then extracted just like earlier, however now a constraint of 0.5 s before and
after each labeled swallow was applied. This constraint was added to avoid
extracting segments that included parts of a swallow. This reduced the total
amount of training segments in each recording, however, the labeling vector
became more accurate.

These extracted swallow segments contained most of the time a whole swal-
low, in addition to a few non-swallow parts before and after the swallow, this
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depended on the segment length. The 0.6 s swallow segments included most of
the time a whole swallow. The 1.0 s segments included 0.2 s before a swallow,
a whole swallow, and usually, in the end, it included some non-swallow parts.
The 1.5 s segments, included 0.5 s worth of samples before a swallow, then the
whole swallow, and also non-swallow parts at the end. The swallow segment
contents are illustrated in Figure 28. An example of a 1.0 s segment swallow
Mel spectrogram is shown in Figure 29, for both oat and salad swallows.

Figure 28: Illustration of the extracted swallow segments, the Figure shows the
content of the three used segment lengths. Pre- and Post-Swallow are the parts
in the recording that follow before and after a swallow.

(a) (b)

Figure 29: Mel spectrogram of swallowing a) oat bolus and b) salad bolus. The
segment length used is 1.0 s, with a frame length of 0.04 s, and a hop frame
length of 0.01 s. Both swallows start and end around 0.2 s and 0.8 s.

5.1.5 Data splitting

For both systems, all of the 20 meal recordings data were used for training and
testing the models. 14 of the meals were used for training, 2 were used for
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validation and 4 were used for testing the model. The meals assigned for each
data type were picked at random.

Since the swallowing detector used more accurately labeled swallow segments
for training and validation, there were a lot fewer segments to train on. On
average there were about 24 swallows in the meal onset duration for the salad
meals, and 19 swallows for the oatmeals. There were on average 400-450 non-
swallow segments acquired from each recording. Since there were only 19 to 24
swallow segments and about 400 to 450 non-swallow segments in each record-
ing, this unbalance in the data affected the performance of the detector. For
this reason, only 25 non-swallow segments were used from each recording in
the training and validation set, these were selected at random. Meanwhile, all
the swallow segments were used from each recording in the training and val-
idation set. This allowed the training and validation data to be more balanced
with regard to the data available for each class.

5.1.6 Training and classification

The first step before training the classifier is once again to create the labeling
vector. For the meal type detector, two different labeling vectors were tested,
and thus two detectors were also built. The first labeling vector had three
classes, the segments in the meal onset region that had no swallows were either
assigned a label of "1" or "2" depending on the meal consumed, oats being class
"1" and salad being class "2". The swallow segments were assigned the label "0".

As for the second labeling vector-only two classes were used, all the segments
in the oatmeal data were assigned the label "0", while all the segments in the
salad meal data were assigned the label "1". Two labeling vectors were created
to see whether more accurate labeling of all segments was helpful or not. Only
one labeling vector was built for the swallowing detector. The labeling vector
had two classes, the swallowing segments were given a label of "1" and non-
swallowing segments were given a label of "0".

After building the labeling vector, different ANN models (MLP and CNN) were
built and tested on the data that was segmented using 1.5 s, and 0.2 s hop
length, with a framing length of 0.2 s and frame hop length of 0.1 s. This data
was used as a reference for building the models. The model was built in a
similar way to that of the meal onset and speech detector, by trying and imple-
menting different parts of the model, one step at a time. It started by testing
a different number of nodes, then changing the number of hidden layers and
their activation functions, and finally choosing a proper learning rate, number
of epochs, and batch size.
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When a model that had good results was built, all the other segment lengths
were then tested before settling on a specific segment length based on the best
results. When the best segment length is selected, the other proposed framing
and hop length combinations are then tested to see which one gives the best re-
sults. When one segment, frame, and frame hop length combination is selected,
the model is tuned one final time to assure that the best model for the data is
selected. This step was the same for both swallowing and meal type detector.

For the swallowing detector model, the final built classifier is shown in Fig-
ure 30. The final architecture was that of a CNN model since it usually works
the best for image classification problems. The CNN consisted of only one con-
volution layer, the input layer, that used ReLu as an activation function. 64
filters were used in the convolutional layer, and the kernel size was 2x2. The
input data was in the shape nx5x128x1, where n is the number of images, and
5x128x1 is the dimension of the 2D images converted into 3D since convolution
layers require 3D inputs.

The shape of the data is converted to nx4x127x64 after the convolution layer,
due to the filters (64 features), and the convolution operation. After the convo-
lutions layer followed a max-pooling layer, with a kernel size of 2x2. The data
was then flattened for use in fully connected layers. After the flattening layer,
there were two hidden layers, each having 64 nodes, with a dropout rate of
50%. Both layers used ReLu as an activation function. Lastly, the output layer
had 2 nodes, and used Softmax as an activation function, since the results were
better this way, even though the classification problem is binary.

Figure 30: The final model for swallowing detection.

The final classifier for the meal type detector is shown in Figure 31. The final
architecture was also that of a CNN model. The model consisted of one con-
volutional layer, the input layer, that used also ReLu as an activation function.
The convolutional layer had 64 filters, and a kernel size of 3x3. The input size
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was nx9x128x1, where n is the number of images used for classification, and
9x128x1 is the dimension of the images. After the convolution layer, a max-
pooling layer was used with a kernel size of 3x3. The output of that layer was
flattened before being sent to fully connected layers. There were 3 hidden layers
in total, all of them used ReLu as an activation function, and had 128 nodes.
The first and third layers used a dropout rate of 30% while the second layer
used a dropout rate of 50%.

Since there were 2 labeling vectors, one with three classes, and one with two
classes, two classification models were also used. Both models had the same
architecture, the same input layer, and hidden layers structure, the only differ-
ence was the output layer. When the labeling vector with three classes is used,
the output layer used has 3 nodes, one for each class, just as shown in Fig-
ure 31. Since this is a multi-class classification problem, Softmax is used as an
activation function for that model. When the labeling vector with 2 classes is
used, the number of nodes in the output layer is reduced to 2, and the activa-
tion function is kept as Softmax. This was due to the fact that the results were
better this way, even though the problem is that of binary classification.

Figure 31: The final model for meal type detection.

5.1.7 Evaluation of the performance

The performance of both the meal type and swallowing detector was evaluated
in a similar way to the meal onset and speech detector systems. The model’s
performance on the training and validation set was first evaluated using the
learning curves, the accuracy, and loss curves. The performance on the test set
was then evaluated using the confusion matrix, where values such as preci-
sion, recall, accuracy, and F1 score were calculated. Also, a plot showing the
predicted and true labeling vectors was used. In addition, since the initial con-
ditions vary at random for each iteration, the systems were run multiple times
before storing the results.
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Using only the confusion matrix values could be misleading at times for eval-
uating the performances of the meal type and swallowing detector, hence ad-
ditional measurements were included. For the swallowing detector the number
of correctly classified swallows, in addition to the number of falsely predicted
swallows were counted. These were counted by summing the amount of avail-
able consecutive segments labeled as a swallow, segments assigned the label
"1" in the predicted labeling vector. If those consecutive segments lay within
an actual swallow in the labeling vector plot then it is counted as a correctly
classified swallow, otherwise, the consecutive segments are counted as a falsely
predicted swallow.

When it comes to the meal type detector, the certainty of the classification was
calculated, which is basically the ratio of correctly classified segments within a
meal recording data. Certainty was calculated by simply counting the number
of correctly classified segments and dividing it by the actual total number of
segments for each test meal recording, (15).

Certainty =
Total correctly predicted segments for a given meal

Total number of segments for a given meal
(15)

5.2 Results

5.2.1 Swallowing detector

The features that performed the best, were those that were extracted using
a segment length of 0.6 s, hop length of 0.2 s, frame length of 0.2 s, and a
frame hop length of 0.1 s. All the results for the different segments, frames,
and hop lengths extracted from the confusion matrix using the final model are
summarized in Table 4. The best feature extraction method was used to extract
all the results represented below in this section.

Segment Frame Frame hop length Precision Recall Accuracy F1 score TN FN FP TP
1.5 s 0.2 s 0.1 s 88 % 89 % 89 % 89 % 5700 390 280 11
1 s 0.2 s 0.1 s 91 % 92 % 92 % 91 % 5700 300 220 99
0.6 s 0.2 s 0.1 s 92 % 93 % 93 % 92 % 5500 300 110 98
0.6 s 0.1 s 0.05 s 90 % 90 % 90 % 90 % 5600 320 340 84
0.6 s 0.04 s 0.01 s 90 % 89 % 89 % 90 % 5600 300 410 110

Table 4: Table showing the result from training and testing the model with
different features. Hop length for all the segments is 0.2 s.

As could be seen in Table 4, for the final model, the precision and F1 score was
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92%, while the recall and, accuracy was 93% for the test set. The final model
had a learning rate of 2 · 10−2 and was trained for a total of 30 epochs, with
a batch size of 50, this resulted in the following learning curves, Figure 32. As
could be seen the accuracy was in the range of 85% to 90% for both the training
and validation set. The loss for the training set was as low as 0.22 and as high
as 0.35 for the validation set.

(a) (b)

Figure 32: a) Accuracy and b) Loss curve per epoch for the training and valida-
tion set using the final model.

The performance of the model on the test set could be understood by looking
at the confusion matrix and labeling plot in Figure 33. As could be seen only
1/4 of the swallowing segments were detected correctly, also a similar amount
of FP was counted as TP, 110, and 98 respectively. When looking at the label-
ing plot, the red lines represent the true swallowing segments, while the blue
lines represent the predicted swallowing segments. Purple lines indicate that
the swallowing segments and predicted swallowing segments overlap. The 9’th
and 14’th recordings in the labeling plot seemed to have a lot more FPs than
the other two meal recordings, the 1’st, and 16’th.
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(a)

(b)

Figure 33: a) Confusion matrix and b) true and predicted labeling vector plot-
ted over time for the test set. Label "1" is swallowing, while label "0" is no
swallowing. Most of the true and predicted labels (labeling vectors) are over-
lapping, and thus have the color purple.

The amount of falsely predicted and correctly predicted swallows for the test
set are summarized in Table 5, for both before and after using the proposed
smoothing algorithm. Before using the smoothing algorithm, for the 1’st meal,
there were 19 actual swallows in the recording, and 17 out of those 19 were
classified correctly. The classifier predicted 4 swallows falsely, due to FP’s. The
16’th meal results were similar to the 1’st meal results, as could be seen in the
Table. The two other meals performed badly, with regards to both the number
of correctly and falsely classified swallows.

To remove most of the falsely predicted swallows, a smoothing algorithm was
implemented. The algorithm worked in such a way that only the consecutive
swallowing segments in the predicted labeling vector are kept. Thus any pre-
dicted swallow segment that is surrounded by predicted non-swallow segments
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is relabeled as a non-swallow segment. The idea behind this was to remove
most of the FP’s induced by any non-swallow-related noise, such as breathing
or chewing. The results of the smoothing algorithm are shown in Table 5. As
could be seen the amount of falsely detected swallows was reduced by a fair
amount, while the amount of correctly classified was affected slightly but not
as much as the amount of falsely predicted swallows.

Smoothing Algorithem X Before After
Meal Recording
Number

Actual Number
of Swallows

Corectly Classified
Swallows

Falsely Predicted
Swallows

Correctly Classified
Swallows

Falsely Predicted
Swallows

1 19 17 4 15 3
9 21 3 32 2 18
14 23 4 25 1 6
16 22 20 4 15 0

Table 5: Table showing the number of actual swallows, correctly classified swal-
lows, and the total number of predicted swallows for the test meals.

5.2.2 Meal type detector

First, the results for the meal type detector when using the multi-class labeling
vector are represented. For this meal type detector, the features that performed
the best were those that had a segment length of 1 s, hop length of 0.2 s, a
framing length of 0.2 s, and a hop length of 0.1 s. The precision was 77%,
recall and accuracy was 81% while the F1 score was 78%. This could be clearly
seen in Table 6, where all the results for the different segments, frames, and
frame hop lengths extracted from the confusion matrix using the final model
are represented. In addition, the average certainty over all the test meals is also
summarized in the Table. The best feature extraction method is used to extract
all the results presented below in this section.

Segment Frame Frame hop length Precision Recall Accuracy F1 score Average certainty
1.5 0.2 0.1 79 % 79 % 79 % 79 % 88.25 %
1 0.2 0.1 77 % 81 % 81 % 78 % 88.75 %
0.6 0.2 0.1 72 % 64 % 64 % 63 % 68 %
1 0.1 0.05 76 % 78 % 78 % 74 % 85 %
1 0.04 0.01 72 % 69 % 69 % 70 % 80.75 %

Table 6: Table showing the result from training and testing the model with
different features. Hop length for all the segments is 0.2 s.

The final model had a learning rate of 10−3 and was trained for a total of 10
epochs, using a batch size of 100. The learning curves could be seen in Figure
34. The training and validation set had an accuracy of 92% and 85%, and a loss
of 0.2 and 0.35 respectively.
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(a) (b)

Figure 34: a) Accuracy and b) Loss curve per epoch for the training and valida-
tion set using the final model for the multi-class classification problem.

The results on the test set could be seen in the confusion matrix and labeling
vector plot, Figure 35. It’s clear that the results of the confusion matrix did
not really provide a lot of interpretable information, the results extracted from
the labeling plot were more meaningful. As could be seen the certainty for 3/4
of test meals was above 90%, and the average certainty for all the test meals
was around 88.75%. Having a high certainty meant that most segments were
classified correctly, and thus the labeling plot had less swinging between the
classes. When looking at the confusion matrix, it seemed that oats segments
are classified more often as salad, than salad segments are classified as oats.

The other built meal type detector used for the binary classification labeling
vector was tested using only the best performing features from the multi-class
detector above. The same model was used, with the same learning rate, num-
ber of epochs, and batch size, the only difference was the number of nodes in
the output layer. The learning curves, for the training and validation set, are
shown in Figure 36. Unlike the learning curves of the previous model, both the
accuracy and loss seemed to be more stable, as they did not fluctuate as much.
The accuracy for the training set was 95%, while the validation set accuracy
was around 85%. The loss for the validation set was 0.27, while the training
loss was around 0.38.
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(a)

(b)

Figure 35: a) Confusion matrix and b) true and predicted labeling vector plotted
over time for the test set using the multi-class classification model. Label "2" is
salad, while label "1" is oats, and label "0" is swallows. For most of the meal
recording, the true and predicted labels (labeling vectors) are overlapping.

(a) (b)

Figure 36: a) Accuracy and b) Loss curve per epoch for the training and valida-
tion set using the final model for the binary classification problem.
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The model’s confusion matrix and labeling vector results for the test set are
shown in Figure 37. As could be seen all test meals had certainty around 90%
and above, this model performed much better than the multi-class classification
model. The average certainty for this model was around 93.8%, but as could
be seen there were still many FP’s in most of the test meals, thus the smoothing
algorithm that was used for the swallowing detector was changed slightly for
use in this system as well.

The algorithm was altered so that it was iterated 4 times. In the first itera-
tion the consecutive segments, with less than two subsequent segments of the
same label are relabeled to the other class. Then in the second iteration, all
the consecutive segments, with less than three subsequent labels of the same
type are relabeled to the opposite class. This is done two more times, for four
subsequent segments, and also for five subsequent segments. Thus only the con-
secutive segments of the same type with more than 5 subsequent segments of
the same label are left unaltered. This step removed many of the FP’s.

The precision, recall, accuracy, and F1 score before using the smoothing algo-
rithm was 94% on the test set. The precision, recall, accuracy, and F1 score after
using the smoothing algorithm were increased to 96%. The average certainty
increased also to 96.8%.
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(a)

(b)

Figure 37: a) Confusion matrix and b) true and predicted labeling vector plotted
over time for the test set using the binary classification model. Label "1" is salad,
while label "0" is oats. For most of the meal recording, the true and predicted
labels (labeling vectors) are overlapping.

5.3 Discussion

5.3.1 Swallowing detector

Labeling the swallows in the swallowing recordings proved to be a difficult
task, as the noise level varied from one recording to another. This was due
to sources of error that included the placement of the microphone which might
have varied slightly from one recording to another, the movement of the subject,
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and whether a pressure is applied on the microphone due to slight bending of
the neck or not. This made the manual labeling of the recording difficult, and
for this reason, the chewing recordings were used to label the swallows. Any
slight movement or bending of the neck during the meal intake did not create
any noise in the recordings, and thus labeling the swallows was much easier, as
it was possible to hear most of the swallows clearly.

When building the swallowing detector unlike the previous systems, not the en-
tire meal onset region was used during training. As explained in section 5.1.5,
only the swallowing segments and a random subset of the non-swallowing seg-
ments were used. This was done to improve the training quality, as previous
methods of segmenting the whole region lead to some segments having parts
of both a swallow and a non-swallow. This made labeling the segments more
difficult, as in how much must the segment include of the swallow for it to be
considered a swallow or vice versa, for this reason, the classifier did not per-
form well. When testing the model, however, the whole meal region was used,
and the swallows could be a part of multiple consecutive segments, this had to
be accounted for in the smoothing algorithm. This is why only the consecutive
labeled segments of swallows, the segments labeled as "1", are accounted for as
a predicted swallow.

The best features were those that were segmented with a segment length of
0.6 s, this correlated well with the average length of a swallow, which was
around 0.6 s. Thus when using this segmentation length, most segments had
a full swallow within. The classifier trained using the segment length of 0.6 s
had the best performance when compared to other segment lengths, as shown
in Table 4. When the segment length was increased, the number of FP’s also
increased. A reason for that is that when the segment length is increased, the
training segments then do not only contain a whole swallow but also some
parts of other noise sources in the recording, such as chewing and breathing.
This confused the classifier and affected the training process.

Different framing and frame hop lengths were also tested for the 0.6 s segment.
The results represented in Table 4 show that using a larger frame size caused
the system to have a larger number of FP’s, while a smaller frame size usually
reduced the number of FP’s. The number of TP’s, however, remained more or
less the same. There was no advantage in reducing the frame, or the frame
hop length. The increase in the number of FP’s was not beneficial, as the whole
idea of the system is to estimate the amount of food consumed, based on the
number of detected swallows. The more swallows are detected, the more food
is assumed to be consumed, as the amount of consumed food correlates with
the number of meal-related swallows.
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The model accuracy and loss, Figure 32, showed a lot of fluctuation which is
a sign of a high learning rate, however, the learning rate was kept as it is,
as otherwise a large number of epochs was needed to train the model, and
the results usually remained more or less the same. A large number of epochs
usually lead to overtraining, which usually worsened the generalizability of the
model on test data. The model used 50 training data as batch size, mini-batch
since the results were much better and loss often converged faster. This can also
affect the smoothness of the loss and accuracy curves, it usually gives smoother
curves, unlike when using the whole training set as the batch size. However,
this was not the case here, probably due to the learning rate.

The confusion matrix results, Figure 33 a), looked not too good at first glance,
as it seemed only 1/4 of the actual swallowing segments were correctly classi-
fied, and there was also a similar number of FP’s to TP’s. When looking at the
labeling vector plot, Figure 33 b), there seemed to be a lot of none consecu-
tive segment’s labeled as "1". These FP’s correlated most of the time with the
location of chews, breathing, and external sounds in the recording. This was
exploited by the smoothing algorithm to remove some of the FP’s, as usually
such noises do not last long, and are kept within a single segment. Hence the
falsely classified segments are usually surrounded by correctly classified seg-
ments. Thus only the consecutive labeled segments as "1" were kept, and every
consecutive segment labeled as "1" was regarded as a swallow. Using this al-
gorithm the number of correctly classified swallows remained more or less the
same, while the number of falsely predicted swallows was reduced, as could be
seen in Table 5.

This model was intended to be used for detecting the amount of meal-related
swallows. When combining this information with the information received from
the meal onset and meal type detector, this should then give an approximation
of how much food has been consumed. Based on that information, the amount
of insulin needed to be administrated could be estimated. As it stands right now
for the best performing test meals (two meals), about 73% of the swallows are
detected correctly, if all the test meals are included then only about 40% of
the swallows are detected correctly. This is not ideal, the system needs more
improvement for it to be even considered for such a purpose.

The results for the number of detected swallows for some meals were horri-
ble, a factor contributing to these results is the quality of the recordings. Some
recordings had more noise than the others. This is why labeling the swallows
using the swallowing recordings was difficult. This might be due to fact that
the microphone used, was originally intended to pick up bowel sound move-
ments, thus the stethoscope-like container that was used could have affected
the quality of the recordings.



5 Swallowing and meal type detector 63

Since the microphone was kept in place using double-sided tape, the pressure
inside the microphone container remained constant, this allowed the micro-
phone to pick up a lot more noise from within the body. Thus breathing, heart-
beat and internal body noises had sometimes high amplitude, especially when
the subject bends the neck slightly during the recordings. The fact that the mi-
crophone was also omnidirectional did not help, as uncontrolled noise from the
environment was also picked sometimes by the microphone. In addition, the
problems following from proximity effects, where the lower frequency content
of the signal is amplified played a role in affecting the results. This is not ap-
plicable for use as it stands right now, as there will be more noise sources in a
more realistic use scenario.

Sven M. Carlsen who is a professor in clinical research at the Department of
Clinical and Molecular Medicine at NTNU was consulted about the possibility
of using such a swallowing detector for estimating the amount of insulin. Based
on his feedback, it seemed that the insulin dose is affected by many other factors
in addition to the number of swallows. There are many hormones in the body
that acts as insulin blockers. For example, if the patient is stressed or has been
a part of some activity, more insulin will then be needed. These hormones are
affected by the physical and mental state of the patient. For this reason, relying
only on the swallowing sounds for determining the needed amount of insulin
is not accurate enough, more measurements should be included. However, the
amount of swallows is an important factor, that could help towards reaching
that goal.

5.3.2 Meal type detector

Unlike the swallowing detector, which relied and was trained mainly on swal-
lowing sounds, this detector was built using a different approach. The swallow
sounds did not seem to give relevant information about the meal type, as could
be seen in Figure 29, most frequency contents were similar for both the swal-
lowed oat and salad bolus. What helped with the results were the chewing
sounds captured in the swallowing recordings, the chews had higher power
frequency content for salad than for oats. Since the swallow sounds did not
provide relevant information about the meal type, two types of classifiers with
different numbers of classes were built.
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Multi-classification

The meal type detection system performed better for the higher segment lengths,
as shown in Table 6. The results from the 1.5 s and 1.0 s segments were quite
similar, however, the 1.0 s segment just edged it. The larger the segment is the
more information is contained about the meal type, thus the classifier becomes
less uncertain. It seemed that increasing the segment length led to increasing
the number of TP’s. Reducing the framing length and frame hop length, showed
similar results to that of the swallowing detector. Reducing these values led to
more FP’s, and thus the systems classification performance dropped. Also, it
seemed that the smaller the framing length and frame hop length is, the more
the system struggled to distinguish between the oat and salad meal segments.

The model accuracy and loss, Figure 34, showed a lot of fluctuations, even
though the batch size was as low as 100, which again is most probably due
to the high learning rate. Lowering the learning rate could have reduced it,
however, the number of epochs would have to increase to more than 10. This
was not done since the training time would have increased by a lot. The training
of this model already took some time due to the complexity of the model, as
shown in Figure 31, and since the result was not that bad, it was kept as it is.

This model also showed a tendency to have a bias towards a certain meal type,
as the certainty for the oat meal’s can at times be higher than the certainty for
the salad meals, and vice versa. This usually occurred when the selected meals
in the training set were unbalanced, such that when the model selected more
oat than salad meals for training or the other way around. This creates a bias
in the training set which at times affected the performance.

The confusion matrix in Figure 35 a), did not really provide much information
on how good the system actually was, this is why certainty was introduced.
When looking at the average certainty for the test meals, which was around
88.75%, it was clear that the system worked pretty well.

When taking a look at the labeling plot, Figure 35 b), the systems miss-classified
a number of segments throughout the meal onset. This of course is not ideal, as
the whole idea of the system is to help the swallowing detector give a rough esti-
mate of the amount of food consumed. Since the classifier is switching between
labels constantly, the classifier becomes less accurate for such a purpose. For
this reason, the smoothing algorithm from the swallowing detector was imple-
mented for the multi-class classifier, however, it did not work at all. It actually
worsened some of the results, due to the classifier shifting constantly between
the three classes. The smoothing algorithm was only used on the binary classifi-
cation model, because the smoothing algorithm worked better when two classes
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were used, as shown in the swallowing detector results, in section 5.2.1.

Binary classification

Using the same features and model architecture in Figure 31, with one node less
in the output layer, the binary classifier was built. The learning curves seemed
more stable than that of the multi-classification model, Figure 36, as the curves
were smoother. There were no apparent fluctuations for the used number of
epochs, given the current learning rate. The classifier performed well on the
validation data, as the accuracy was higher than that of the training set. Simi-
larly, the validation set loss was lower than that of the training set. This was not
the case for the multi-class classification model, it usually had better accuracy
and loss on the training set.

The result using this classifier was much better, as the certainty of the classifier
was about 93.8%, and that was even before implementing the smoothing al-
gorithm. When the smoothing algorithm was used, the algorithm worked only
when it was iterated multiple times, while increasing the number of consecutive
labels that are kept or changed. This worked well, as when having a low number
of consecutive labels removed first, most FP’s in the regions of recording with
a high number of swinging between labels are removed first, the most crowded
regions. When iterating with a higher number of consecutive’s, the FP’s in the
less crowded regions of the recording are removed. This helped improve the
performance, and the average certainty was increased to 96.8%.

The smoothing algorithm could be iterated for a larger number of consecutive
to reach a 100% certainty rate, this is not a problem for the data in hand as of
now. However, as more realistic data is included, it would be expected to have
recordings of meals consisting of multiple food types. Hence, a certain limit on
the number of consecutive must be selected to make detecting the food type
more accurate and avoid false removal of correctly labeled segments. This must
be investigated, for as it stands right now, this system might not be applicable
at all unless the subject eats one food type at a time. Another possibility is to
set a certain time/threshold for how often the meal type detector should detect
the meal type, for example, for each 30 s, 1 min, or 2 min, this must also be
investigated.

As mentioned earlier, this model was intended to be used in addition to the
swallowing and meal onset detector to help identify how much food is con-
sumed. The results from the meal onset, swallowing and meal type classifier
could be used to give a rough estimate of the amount of food intake. The next
step should be to try and see whether it is possible to build a mathematical
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model, that combines all of these results, the meal duration, percentage of swal-
lows detected correctly, and meal type in order to estimate the amount of food
consumed. Such a model was not attempted due to lack of time, in addition to
the fact, that such a model will require a tremendous amount of data, which
was not accessible for this project.

If such a model can be found, then it might be possible to roughly estimate the
amount of food consumed, and even give an estimate about how much insulin
should be administrated after the meal onset, however insulin blockers must
still be accounted for. How good should both the swallowing detector and the
meal type detectors be, with regard to the percentage of correctly classified
swallows and the certainty of the meal type for such a model to work needs
more investigation.
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6 Conclusion

In this project, the feasibility of using swallowing sound recordings to improve
the current treatment methods for diabetic patients was investigated. For this
purpose, four different classifiers were implemented, and all of them were im-
plemented using an ANN as a classification model. First, a speech detector was
built to remove all speech-related noise in the recordings, this system had an
accuracy and F1 score of 99%. Then a meal onset detector was built, to distin-
guish the meal region from the non-meal region in the recordings. The accuracy
and F1 score using this system was 95%, while the average meal detection time
was 5 min. Both these classification systems were built to continue the work
done in the previous project [7], thus recordings acquired from the previous
project were used to train and test both classifiers. Both classifiers were also
used to reduce the complexity of the other built classifiers.

For the two other classifiers, 20 new recordings were acquired using a newly
proposed protocol. Using these data, a swallowing detector and meal type de-
tectors were built. The swallowing detector had an accuracy and F1 score of
93% and 92% respectively, while the swallowing detection rate was about 73%
for the best-performing test meals. The best performing meal type detector
while using a smoothing algorithm had an accuracy and F1 score of 96%, and
an average certainty rate of 96.8% on the test set.

The work in this project has shown that using these proposed classification sys-
tems to give an indication about the amount of food consumed and insulin level
is not enough. The needed insulin level is determined by many factors, such as
the hormones that act as insulin blockers, which are affected by the physical
and mental state of the patient. In addition, to estimate the amount of food
consumed, the performance of the built detector must be improved, especially
the swallowing detector. Thus such a system is not feasible as it stands now,
however it could be used as one of the building blocks for such a system in the
future since it provides relevant meal information.
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7 Suggestions for future work

7.1 Test other microphones

The microphone used for the experiments might have not been ideal for col-
lecting swallowing sounds, as it was omnidirectional. This meant that the mi-
crophone picked up sound equally from all directions, thus the microphone did
not only pick up swallowing sounds but also noise from the environment. Even
though the recording environment was quiet, sometimes unexpected noises are
heard in the recording, such as police sirens. A more directional microphone
might help with reducing the picked-up noise from the environment.

Another thing worth mentioning is that since the microphone is placed on
the skin, near the sound source, the proximity effect becomes a problem. This
causes amplification of the lower frequency components of the signal. This was
clearly a problem as the low-frequency components of the signal had always
high power. This of course could be solved by filtering the lower frequency
contents using a highpass filter, or an equalizer. This must be investigated.

7.2 Improving the swallowing and meal type detector

The result of the swallowing detector was not that good, as it was affected
by the quality of the recordings. The swallowing detector worked fine for the
recordings that had less noise in them. If the microphone is changed then the
system must be trained and tested again to see whether it’s the classifier that
works poorly or if it is only the recordings that are affecting it.

Also, the meal type detector should be tested for meal recordings that contain
more than one meal type, since the classifier switched a lot between labels. This
could affect the reliability of the model’s classification. A possible approach for
this problem could be dividing the meal onset region into segments of 30 s, or
1 min, or 2 min, etc, and then deciding the consistency only in that time frame.
This could be done by assigning it to the label with the highest certainty. This
must be looked into if such a system is considered for future work.
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7.3 Collect more data with more variability

All the collected data for the models built in this project were conducted by
only 2 subjects. The systems built could have been subject-dependent, but that
is difficult to conclude with the amount of data at hand. Hence it is important
for future work to include data collection from more subjects, from different
age groups, genders, etc.

Different meals must also be included in the new data set recordings, as only
having two sets of meals was fine in the first stage of the project. More common
foods such as bread, rice, meat, and different types of fruits and vegetables can
be included in the next stage of the project. Also, different types of liquids can
also be included, such as water, soup, and soda to see whether it is possible to
differentiate between such liquids or not.

In addition, recording acquired in a more realistic environment should be in-
cluded. This could help with reducing the amount of FPs due to both external
and internal noise sources, such as friction noise and noise from the environ-
ment. As more data is collected the uncertainties in the system’s subject depend-
ability could be reduced, in addition, the performance of the systems could also
improve as more data for training and testing is provided.

7.4 Consulting a doctor

If these systems are to be used in estimating the amount of food consumed for
diabetes treatment, a doctor must be consulted, with regard to how good the
systems should be. For example, how large should the percentage of correctly
detected swallows be for the system to be reliable for such a purpose? This,
in turn, introduces a more realistic goal/criteria for the system to satisfy, with
regard to the expected performance. The system should then be improved in
such a way that the criteria are satisfied.

In addition, how can the information obtained from the built classifiers be used
to calculate the needed insulin dose, should be looked into. 40% to 50% [62]
of the daily insulin cannot be calculated using the proposed systems, because
it is due to insulin being replaced overnight, background insulin replacement,
and insulin between meals. The rest 60% to 50% of insulin is due to food, and
high blood sugar correction, this is where the proposed systems could be used.
If the insulin blocking hormones are not taken into account, how much of that
percentage is covered by the built classification systems, and how reliable is it
then. It’s important to take that into consideration in future work.
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7.5 Amount of food consumed

Another thing that must be investigated is how the amount of food consumed is
gonna be estimated using the proposed systems. One possible way of doing that
is collecting more data, and then using some type of classifier and solving the
problem as some kind of a regression problem. ANN or other types of classifiers
could be used for this problem, and it can be solved by relying on the known
meal information and the results obtained from the built classifiers. How this
could be approached is up for discussion.

7.6 Meal type detector

During the early stages of building a meal type detector, the system was built
using the swallowing segments only. It was trained using swallowing segments
that were labeled either as oats or salad, "0" or "1". This, however, did not work,
due to the fact that the frequency content of both swallows, oat and salad,
was more or less the same, as shown in Figure 29. This must be investigated
one more time, using different features, time-based statistical features, or even
using the same features if the microphone is changed.

Also when looking at the duration box plot, in Figure 27, it could be seen that
the average duration of the oat bolus swallows is longer than salad bolus swal-
lows. This could be exploited using a classifier built to distinguish between
the food types using durations, as on average, dry food takes longer to swal-
low than moist food. This was not tested in this project, as the classifiers built
performed better for longer segment lengths, thus duration information was
harder to perceive. A shorter segment length should be used if the duration is
to be used for such a purpose, as then there will be a larger difference in the
amount of detected consecutive segments classified for swallows of different
food types.

7.7 Final system design

The final design of such as system should also be looked into if the work done
in this project is to be used in future research. Where and how should the
microphones be placed should be investigated, as placing the microphone just
above the collar bone proved to be problematic with regard to internal body
noises. Also, placing it in that region was uncomfortable in the long run, with
regard to head movement.
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A Zip file

A zip file is also included with this thesis. This file contains most of the relevant
code used in this project in addition to a couple of papers. The file contains the
code for decimation, feature extraction (Mel spectrogram and PSD features),
and the code for the four built classifiers, as shown in Figure 38. In addition,
the zip file contains also Konstanze K. [17], and the previous project [7] paper,
"Konstanze’s paper" and "ProsjektOppgave".

Figure 38: Included zip file content.
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