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Abstract

Diabetes is one of the most prevalent conditions in the world. Millions of pa-
tients depend on invasive and inconvenient treatments to maintain daily func-
tion. Research in alternative treatments has lead to conception of the term ar-
tificial pancreas, a fully autonomous system which replaces the faulty insulin
production capabilities of the patients pancreas. One among the numerous con-
siderations for realizing such system, is autonomous dietary monitoring. Ap-
propriate injection of insulin requires early information about meal onset, and
accurate dosage is dependent on information about the nutritional contents of
the food. This study is one of the numerous ongoing research projects by the
Artificial Pancreas Trondheim research group, and covers the investigation into
approaches for meal type classification.

The meal type classification systems developed in this study are based on
neural network models trained on data extracted from audio recordings. A
dataset consisting of 20 audio recordings, capturing the chewing sounds dur-
ing consumption of salad and oat meals, is used to extract Power spectrum
density (PSD) and Mel spectrogram features. The initial approach uses a fully
connected neural network model, trained on the PSD features to classify the
two meal types. Although this approach manages to correctly identify the meal
region in the recordings, it fails to reliably identify the meal type.

The second approach implements 3 systems using a convolutional neural
network, trained on Mel spectrogram chewing segments. Two of the systems,
the chew detector and Mel meal type classifier, are combined to provide meal
type classification. This approach correctly classifies meal types for all 20 testing
recordings and achieves average prediction ratio of 90.5%. The third system,
which combines the previous two, performs similarly, achieving 90.3% predic-
tion ratio. Additional testing of the dataset configurations indicates that the
optimal segment length for the dataset is around 350 to 450ms. Although the
testing conditions were controlled and recordings confined to only two meal
types, this study proves the feasibility of meal type classification and provides a
working implementation with a very good performance.
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1 Introduction

1.1 About the study

Investigation into dietary monitoring is part of continued effort by the Artificial
Pancreas Trondheim (APT) research group to develop a fully autonomous de-
vice to replace the faulty insulin regulation capabilities of a diabetes patients
pancreas. Dietary monitoring plays an integral role in realizing the artificial
pancreas. A system which can provide information about meal onset and meal
contents is crucial for accurate calculation of insulin dosage.

The initial pilot study by K.Kölle [Kölle, 2019] investigated the feasibility of
using bowel sounds for early meal detection. Compared to conventional meth-
ods of blood glucose level based meal detection with detection delay of up to
40 minutes, her support vector machine (SVM) system based on power spec-
trum density (PSD) features, managed to reduce detection time to 10 minutes.
Continuing her work, Viljar. B [Bliksvær, 2021] attempted to improve the pre-
vious system by augmenting the bowel sound dataset with EKG measurement
features. In the masters project study by the author [Klavins, 2022], which was
built on the results of the previous two studies, an SVM model was trained us-
ing combination of bowel and chewing sound PSD features. It was found that
for the SVM meal detection system, the chewing features yielded significantly
better results.

For this study a slightly different dietary monitoring avenue is investigated.
This master’s thesis will cover the development and implementation of a meal
type classification system. The main purpose of such system would be to pro-
vide nutritional information which could be used as a guideline for calculation
of insulin dosage and other parameters for the artificial pancreas system. Like in
the previous studies, this study aims for a non-invasive, audio based machine
learning system. More specifically, the meal type classification system will be
implemented using convolutional and fully-connected neural network models
with a dataset created from audio recordings that capture chewing sounds dur-
ing the meal.

1.1.1 Goals

The primary goal for this study is to develop a meal type classification system
which reliably provides correct information about the meal type in a recording.
Reliability requirements for a system depend on its application. For regular di-
etary monitoring, lower reliability is permitted, however as an integral compo-
nent of a medical device, the reliability must be held to much higher standards.
For application in the artificial pancreas, our system would need to deliver as
close to 100% classification accuracy and reliability as possible.
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The testing data in this study consists of 20 audio recordings and two differ-
ent meal types. In one sense the accuracy and reliability can be measured by the
number of recordings whose meal type is correctly identified. If testing dataset
consists of 20 recordings, we’d expect all 20 to have a correctly classified meal
type.

In addition to that, our system will not evaluate the entire meal as a whole.
Instead the recordings will be periodically segmented, and each segment will
be evaluated separately, and the aggregate of all the separate predictions will
be used to assign a predicted meal type to the entire recording. This necessarily
introduces the need for a threshold of acceptable prediction confidence. The
metric for decision in this study is prediction ratio, which gives the prediction
confidence for a given meal type in a recording. It can be argued, that as long as
the aggregate prediction ratio score is > 50% for the correct class, the meal will
be classified correctly, however a medical system with a prediction confidence
of 50.1% doesn’t sound very reliable.

For this study the main priority will be achieving 20/20 correct meal type
classification. The prediction confidence threshold however, is a subject of de-
bate. For this study, no specific prediction confidence goal will be set. Instead
the aim is to achieve as high prediction ratio as possible. For a practical artificial
pancreas system the acceptable threshold for prediction confidence would need
to be evaluated by physiology and diabetes experts.

1.2 Literature review

Chewing and meal detection systems aren’t a novelty. For over a decade a con-
siderable amount of research has been done investigating methods for detecting
dietary patterns and food intake. In general these methods can be condensed
to two types: one, directly sensing food consumption mechanisms, and two,
exploiting physiological changes as the result of food consumption.

1.2.1 Physiological metrics

The most notable dietary monitoring approaches based on physiological changes
involve ECG analysis and bowel sound detection. ECG method involves analyz-
ing heart rate patterns and trends before, during and after food consumption.
More specifically, ECG can help to identify blood glucose levels (BGL) by ex-
ploiting the connection between BGL and heart rate [Cordeiro u. a., 2021],
[Porumb u. a., 2020]. This type of research is favoured due to the availability of
ECG in commercial devices and the potential to provide diabetic patients with
a non-invasive alternative to existing BGL monitoring methods. Further on, as
intestinal movements and bowel activity are linked to food consumption, the
detection of abdominal sounds has also been investigated [Kölle, 2019], [Wang
u. a., 2022a].



1 Introduction 3

1.2.2 Direct motion sensors

Physically, food consumption consists of mastication which processes food into
more easily digestible chunks by chewing, followed by swallowing. There are
multitude of suggested approaches which exploit these two consumption mech-
anisms. For chewing specifically, the survey paper ,[Selamat u. Ali, 2020], presents
a broad compilation of the chewing based dietary monitoring methods from
the past decade. To summarize, most modern dietary monitoring methods are
based on sensors (as opposed to manual logging). The single-sensing meth-
ods, such as acoustic, piezoelectric sensors, electromyography (EMG) and ac-
celerometers, use a single sensor to capture a specific defining signal. There
are also multi-sensing approaches which aggregate multiple sensors. The fol-
lowing few paragraphs will briefly touch on these different methods and their
performance.

Acoustic sensors Ranging from in-ear monitors and hearing aids to neck-
band throat microphones, they are used for detection of chewing sounds either
through air or bone conduction. Main challenge with this approach is balancing
high-quality signal captures and user comfort when wearing the sensors, as
well as mitigating impact of background noise. Accuracy-wise performance of
acoustically based detection systems is in the mid 80% to mid 90% range.

Piezoelectric sensors Piezoelectric sensors measure deformation in the piezo-
electric material. This mechanism can be used to directly detect movement of
the jaw or chewing muscles. These sensors reside under patients ear with the
help of a medical tape, or they can be built into wearables, such glasses, to
measure temporalis (chewing) muscle. Piezoelectric-based detection systems
have been used mainly for chew and chewing pattern detection, however they
have also been used in food-type (liquid/solid) detection as well as chewing
behaviour analysis. This sensor provides the advantage of being simple, non-
obtrusive and power-efficient, however other daily activities can affect the mea-
surements and identification of liquid consumption is a challenge. For the men-
tioned tasks the accuracy of most piezo-electric systems is mid 90%.

EMG sensors Electromyogram sensors work by detecting the electrical sig-
nals produced by muscle movement. Like the piezoelectric sensors, these have
been employed in wearable devices for a direct contact with the skin above
chewing muscles (temporalis specifically). For one study, the combination of vi-
bration sensor with the wearable EMG device provided a robust detection with
low artifacts for non-chewing activities. They were also able to classify food
types based on their texture. This approach provides simple, unobtrusive de-
sign and few artifacts. Main challenge with EMG is providing electrodes with
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a direct and reliable contact with the skin, while remaining unobtrusive. They
are also limited to detecting food types based on texture. Although there are
fewer studies on EMG sensors, the examined systems achieve accuracy of mid
90% (with few exceptions).

Multi-sensor systems Multi-sensor systems aggregate multiple sensors in or-
der to detect chewing or a combination of additional factors, such as swal-
lowing, bite, and motion sensing. For example, Automatic Ingestion System
(AIM) consists of 3 sensing modalities: piezoelectric, accelerometer and hand-
to-mouth gesture sensors. Each sensor is placed in a separate suitable location
on the body. The other, so called SPLENDID multi-sensor system employs a
photoplethysmogram (PPG) sensor (measure blood pulse using light emitting
diode and photosensor) and in-ear housing microphone. Chewing detection
performance for these systems is on par with the single-sensor systems, with
accuracy scores in the 80% to 90% range.

1.2.3 Food classification

As mentioned, the methodologies discussed above are a summary of the [Sela-
mat u. Ali, 2020] survey study. Among the compiled studies, the 3 main goals
were: food intake detection, chew count estimation and meal type classifica-
tion.

Regarding our primary goal for this study, meal type classification, all of
the examined studies in the survey performed classification on multiple (typi-
cally around 8 different) food types, some including liquids. Food characteristic
(hard, soft, crispy, etc) variety varied from study to study however most studies
include foods to cover, at least partially, the the spectrum of sound characteris-
tics. Collectively, the studies investigate broad spectrum of classification mod-
els, such as Hidden Markov Model (HMM), Bayes Naive & Fisher discriminant
classifier, Linear discriminant analysis (LDA), Decision tree (DT) and Artificial
neural network (ANN). Food type classification accuracy for all methods ranges
from 46% to high 90%, with the majority towards the higher end (around 80%
on avg.)

1.3 Contribution of the study

This study was initiated with the main goal of developing a system for clas-
sifying different food types using audio recordings of meals. As noted in the
introduction, meal onset detection was already familiar from previous APT re-
search projects, so the initial approach for this study was to apply the same
methods for the purpose of meal type classification. Beyond that, the path was
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yet not completely mapped out, and many aspects of the implementation and
testing that are presented in this thesis were adopted along the way.

By the end of the study, in addition to accomplishing the main goal of de-
veloping a meal classification system, other notable contributions to the topic
were made. Primarily, two types of systems were implemented; a meal type
classification system with a complimentary chewing detector, as well as a com-
bined alternative. As such, the importance of a well working chewing detection
system for this approach was discovered. The study also presents the effect of
segment length choice on classification performance, for the particular system
implementation that is used. It also addresses the different challenges and is-
sues which were discovered through the process, and are likely to be relevant
for future studies.
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2 Theory

2.1 Sound characteristics of food

Basis for data in this study are the sound producing mechanisms of mastication.
Study by C.Dacremont [Dacremont, 1995] analyzed characteristic frequencies
of various foods during mastication, and showed that for particularly crispy
foods frequencies of 5000Hz are reached. Crunchy foods, such as carrots, ex-
hibit characteristic frequencies between 1250 and 2000Hz.

2.2 Pre-Processing

This subsection covers the theory behind the different data pre-processing meth-
ods used for feature extraction and dataset preparation.

2.2.1 Decimation

Decimation refers to the two-step process of filtering and downsampling a sig-
nal. Benefits of this operation include reduced file size as well as removal of
redundant information. The filtering step applies an anti-aliasing filter which
removes unwanted frequencies, and the downsampling step effectively reduces
the sampling frequency of the signal.

Anti-aliasing filter Prior to downsampling, the signal must be treated with
an anti-aliasing filter. Purpose of this step is to remove any frequency content
that will exceed Nyquist limit after downsampling. If anti-alias filter isn’t ap-
plied, the signal will get corrupted by frequencies above Nyquist limit, which
after downsampling will be transformed to a different frequency within the
Nyquist range, effectively adding false information. In order to filter correctly,
the Nyquist equation is used to calculate the cut-off frequency for the filter. The
cutoff frequency corresponds to half of the sampling frequency:

Fs = 2 · Fmax (1)

In practice, the anti-aliasing filter is typically a low-pass filter with cut-off fre-
quency given by Fmax in the equation above.

Downsampling Downsampling is the second step in decimation. This process
changes the working sampling frequency of the signal by picking every M’th
signal sample, resulting in a signal which has the same playback duration, but
less samples. For a correct playback of the downsampled signal, the new sam-
pling rate is used. The variable M is determined by the old and new sampling
frequencies: M = Fs old

Fs new
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2.2.2 Fourier transform

Perhaps the most important tool for signal analysis and digital signal processing
is the Fourier transform. In short, the mathematical operation transforms the
signal from a time domain to a frequency domain, revealing the frequency con-
tent of the signal. The amplitude of the spectrum can be visualised where the
x-axis becomes a range of frequencies with y-axis giving magnitude of each fre-
quency. The Fourier transform is originally an operation for continuous signals,
however the digital version, the Discrete Fourier transform (DFT), is often im-
plemented with the efficient Fast Fourier transform (FFT) algorithm. The DFT
is given in the equation below:

X(k) =
N−1∑
n=0

x(n)e−jk 2π
N

n k = 0, 1, 2...N − 1 (2)

2.2.3 Power Spectral Density

A useful tool for analyzing the spectrum of a signal is the Power spectral den-
sity (PSD). This operation transforms the time signal to the frequency domain
and distributes the signal power relative to the frequency components of the
spectrum. Equation 3 calculates the PSD by squaring the absolute value of the
Fourier transform of a discrete signal x(n) and dividing by the number of fre-
quency bins.

PSD(k) =
1

N

∣∣∣∣∣∣
N−1∑
n=0

x(n)e−jk 2π
N

n

∣∣∣∣∣∣
2

k = 0, 1, 2...N − 1 (3)

2.2.4 Spectrogram

An often employed method for audio signal analysis is the spectrogram. Being a
slight variation of the short-time fourier transform (STFT), the spectrogram es-
sentially stacks multiple FFT windows along the time dimension showing how
the frequency contents change over time. It is visualised in plot where x-axis
represents time, y-axis is the frequency range and the intensity of the frequency
components is mapped to a color-gradient. Usually, to improve visualisation of
a wide dynamic range signal, the y-axis (frequency) is converted to logarith-
mic scale and the color-axis (intensity) is displayed in dB. Figure 1 presents
a visual summary of the spectrogram creation process as well as the resulting
spectrogram. [Roberts]
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(a) (b)

Figure 1: Concise illustration of the working principles of a spectrogram (a) and the
resulting spectrogram (b) [Roberts]

Mel Spectrogram As mentioned above, the y-axis can receive a logarithmic
transformation. An alternative transformation exists, which maps the frequency
range so that it reflects the distances between the frequencies in a way that
the human ear would perceive as being equidistant in pitch. This is perhaps
illustrated best visually in Figure 2, where the line indicates the transformation
between a logarithmic and Mel scale.

Figure 2: Visual illustration of conversion to mel scale [Roberts]
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2.3 Neural networks

At the core of the meal type classification systems in this study is a neural
network model. The basic concept and working principles are explained in this
subsection.

2.3.1 Brief history and basic principles

The idea of computational neural network stems from biological neural net-
works, such as those comprising parts of the human brain, which are able to
express complex dynamics by means of relatively simple mechanics that can be
reduced to elementary arithmetic operations. Building upon the the early re-
search by W.S McCulloch, W.H Pitts and F. Rosenblatt in 40s and 60s, the field
of machine learning has, with the advent of modern computing, been able to
fully realize the concepts proposed by these early pioneers.

At the base of modern neural networks is the Perceptron, originally proposed
by Rosenblatt in the 60s. With what initially was just an algorithm, the Percep-
tron has gone to define the fully-connected networks with millions of nodes
that we think of today.

The following operations describe the perceptron algorithm, however they
also apply to the modern fully-connected neural networks. The operational unit
of the perceptron can be thought of as a node defined by multiple parameters:
inputs, weights, bias and an output. The node receives some number of real
valued inputs. Importance of each input signal is manually regulated by multi-
plying it with some weight value. The weighted inputs, along with a bias value,
are then summed together. The result is then evaluated by the activation func-
tion, which essentially performs thresholding using a defined function. Output
of the activation function is the output of the node. Figure 3 illustrates the
perceptron.

Figure 3: Perceptron [Guesmi u. a., 2018]

2.3.2 Neural network layers

The simplest kind of modern neural networks are made up of such perceptron-
like nodes. In general the network consists of 3 parts: input layer, hidden layer
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and the output layer.
The input layer is a column of nodes, where each node takes one input value

and propagates it through the aforementioned mathematical operations, pro-
ducing an output. After the input layer, the next column of nodes, aka. layer, is
a hidden layer. Outputs of the input layer are connected to inputs of nodes in
the hidden layer. An architecture where the output of each node is connected
to all input nodes in the next layer is a fully-connected network. One can, and
often does, add multiple such hidden layers, before adding the final layer, the
output layer. An important characteristic of the output layer is that it needs to,
in some way, represent the desired output options. Usually this is done by sim-
ply having as many output nodes as there are classes in the dataset. Visually,
such fully-connected network, is presented in Figure 4

Figure 4: Diagram of a fully-connected neural network [Scanlon]

2.3.3 Activation functions

As briefly mentioned for the perceptron, the activation function is used to get
outputs from network nodes. Depending on the application of the network and
input data, different activation functions are suitable. The following activation
functions are best suited for the NN application in this study. [Sharma]

Softmax
softmax(X)i =

exi∑K
i=1 e

xi

(4)
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Figure 5: Softmax function [Basta]

Softmax is a function that maps a list of numbers to a list of probabilities,
such that all individual probabilities sum up to 1. This can be interpreted from
the equation 4, where probability of value xi is the exponential fraction of the
sum of all i = 0, ..., K node output value exponents. Softmax is well suited as
the activation for the output (final) layer for a multi-class classifier, and expects
the output node count to be equal to the number of classes.

ReLU

Figure 6: ReLU function [Sultan]

Rectified Linear Unit (ReLU) is currently a very popular hidden layer acti-
vation function, which is mainly due to its desirable properties. In order for
the network to approximate non-linear patterns, it requires a non-linear ac-
tivation function. At first glance ReLU might appear to be linear, however its
behavior for negative values provides its overall non-linearity property. Due to
its unbounded growth, ReLU avoids vanishing gradients and is thus a great
combination with gradient-based optimization algorithms.
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2.3.4 Loss function

A loss or cost function is a metric thats used by the network during the training
process to assess the performance. Loss function creates some measure between
the expected/desired output (true label) and the actual output (predicted la-
bel).

Considering a single input sample xn, belonging to the class yn (true label),
the neural network will return a value, on (predicted label), representing the
class it decides the sample xn belongs to. The cost function measures the error
between yn and on. A particular cost function, which will be utilized in this
study is the Cross-entropy.

Cross-entropy [Brownlee, a] Cross-entropy is a concept stemming from in-
formation theory and describes the average number of bits/nats required to
represent an event coming from one distribution instead of another.

The first information theory concept, expressed by equation 5, is the infor-
mation of an event. Probable events contain little information and vice versa.

h(x) = −log(P (x)) =
1

log(P (x))
(5)

Further on, Entropy, is defined as the amount of bits/nats required to represent
the information of an event. For an event xi from a distribution P, the entropy
is given as sum of products between information of the event h(xi) and the
probability of that event P (xi) (eq. 6).

H(X) = −
N∑
i=1

P (xi)̇h(xi) = −
N∑
i=1

P (xi)̇log(P (xi)) (6)

Finally to arrive at cross-entropy we define two probability distributions. Dis-
tribution P describes the target distribution (for true labels), and O describes
the predicted distribution (for predicted labels). The cross-entropy captures the
difference between the target and predicted distributions, and based on this
it captures the difference between predicted and true labels. Cross-entropy is
given in equation 7.

H(P,O) = −
N∑
i=1

P (xi)̇log(O(xi)) (7)

Cross-entropy loss functions apply to both binary and multi-class classifica-
tion problems. Because the implementations vary slightly to accommodate the
number of output classes, they are differentiated by name:

• Binary cross-entropy
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• Categorical cross-entropy

Since cross-entropy relies on probabilities, it nicely complements a softmax out-
put activation function.

2.3.5 Training procedure

The neural network training procedure follows an iterative process, where the
entire training dataset is processed for set number of cycles, called epochs. For
each epoch the training dataset is subdivided in batches of a defined size (batch
size), and each batch gets forward- and back-propagated, thus training the net-
work.

Forward- and Back-propagation Giving the network input values and prop-
agating them through the network is called forward-propagation. Outputs from
the forward-propagation are then evaluated by the loss function giving the
amount of error.

The important part of the network is it’s ability to improve its performance
over multiple epochs, in other words “learn”. To cause the network to learn,
the different network parameters (weights and biases) need to be adjusted.
While its technically entirely possible to apply some elbow grease and adjust
the millions of variables manually, a more rational approach is to automate this
process. This is done through the combination of an optimizer and an algorithm
called the back-propagation.

As established above, the loss function gives a measure for the error. Its main
use is as a guideline for optimizing (training) the network. Thinking of the loss
function in terms of a shape on a graph, it necessarily has a minimum, where
the error is the smallest. Obtaining the minimum is usually done by computing
the derivative (or gradient for multi-dimensional functions) and setting that to
zero. For neural networks these computations end up very complex, making
numerical solutions the only viable option. One such numerical method is the
gradient descent (eq. 8).

Wt = Wt−1 − ϵ△Wt−1 = Wt−1 − ϵ
dC(Y,O)

dW
(8)

The new weights, Wt, are determined by the previous weight, Wt−1, minus the
gradient of the cost function with respect to the previous weights. The epsilon
is defined as the learning rate, a value between 0 and 1, which determines how
big the jump in the direction of gradient descent will be. The general act of
updating weights and biases is called optimization, where this specific type of
optimization is gradient descent.

The back-propagation algorithm is used to compute the gradient part of
equation 8. Due to the network architecture, computation of error gradients
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with respect to a given layers weights depends on error gradients of its sub-
sequent layers. Thus the algorithm starts with error from the output layer
works its way back to the input. Back-propagation algorithm defines an effi-
cient method for computation of, as the name suggests, backwards propagating
error gradient.

2.3.6 Optimizers

Gradient descent (and its variants) The optimizer that’s used for this study
is a derivative of gradient descent, which is why it can be beneficial to un-
derstand it beforehand. There are 3 main variations of gradient descent (GD):
Stochastic gradient descent (SGD), Mini-batch stochastic gradient descent and reg-
ular GD. Recall the description of batches in subsection 2.3.5. Essentially, batch
size determines the type of GD that is used. Quick summary of the three:

1. Stochastic gradient descent (SGD):

(a) Performs optimization based on a randomly (stochasticly) selected
single sample from the training dataset

(b) Very fast, but the optimization is very noisy.

2. Mini-batch stochastic gradient descent:

(a) Performs optimization based on a randomly selected part (batch) of
the training dataset

(b) Go-to method for most neural networks, as it strikes balance between
smooth optimization and speed.

3. Gradient descent:

(a) Performs optimization based on the entire training dataset

(b) Slow, due to having to compute gradients for all training samples.
This is especially true for networks with large datasets. Upside is a
smoother approach towards the cost function minimum.

Adam Adam is an optimizer derived from stochastic gradient descent and
was developed to incorporate benefits of AdaGrad and RMSProp optimization
algorithms. Without getting too technical, here is how it improves upon the
gradient descent.

Adam implements individual learning rates for each parameter (weight),
where these rates are calculated using first (mean) and second (uncentered
variance) moments of recent gradient magnitudes. These properties help deal-
ing with sparse gradients and make Adam a great option for computer vision
applications. [Brownlee, b]
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2.3.7 Training parameters and overfitting

Training the network is usually a very simple process, initialized with a handful
of function calls in Python. All the difficult operations are neatly tucked behind
the api calls of machine learning libraries such as Tensorflow. The user input
is however required for picking the training parameters: learning rate of opti-
mizer, number of epochs and batch size. Epochs in particular set the amount of
training that the network gets. With too little training, the performance will be
sub-optimal, however too much training can result in overfitting.

Model overfitting This machine learning phenomenon refers to a situation
where excessive optimization causes the model to learn the training inputs too
well, to the point where the performance on similar but unseen data suffers.
This is best visualized by the Figure 7a.

(a) (b)

Figure 7: Illustration of underfitted, overfitted and properly trained model [Hoffman]
(a), Illustration of using loss curves during training to avoid sub-optimal
network performance (b)

There are multiple ways of avoiding overfitting of a model. The simplest and
the most general method is by tracking the loss curves during the training. A
good training method will always involve the use of separate dataset samples
for training, validation and testing. During training the network is optimized
using training data. By using separate validation data after each epoch to test
the network, the validation loss can be used as a guide to know when the
training has reached an optimal point. Initially, as the model improves, the loss
for both training and validation data will decrease. Once the validation loss
plateaus, the model is optimally trained and training should be stopped. After
this point the loss will likely start to increase. A typical training loss curve can
be seen in Figure 7b.

Regularization can also be used to reduce overfitting. By using a so-called
dropout layer, the model will disable random nodes for each training epoch.
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This forces the network to generalize the connections and patterns, leading to
better performance on unseen data.

Dropout layers and loss curves are the main tools that were used to achieve
optimized models in this study.

2.3.8 Neural network datasets

When discussing overfitting in the previous Section 2.3.7, 3 types of datasets
are mentioned: training, validation and testing. This section will briefly explains
the purpose of the 3 datasets and how they are obtained.

In reality neural networks are trained and tested with data originating from
the same dataset, however the individual samples cannot be same for train-
ing and testing. This separation is achieved by splitting the entire dataset into
different parts. For the simplest case this means a training and testing split,
however its common to also include a validation split.

Training split is used mainly for training. This will usually be the bulk of the
entire dataset to maximize learning. Its allowed to test the model using training
data however these tests aren’t considered valid since the exact samples have
already been used to optimize the network during training.

For valid testing a separate testing split is used. This is a part of the dataset
that has been excluded from training and is thus unseen by the network. How-
ever since the testing samples are from the same dataset, they represent the
same type of data. When used for testing they provide a realistic indication for
real-world performance.

Additionally, a part of the dataset may used as a validation split. Validation
samples are used during training to validate the intermediate performance after
each training epoch. The validation data are never used to train the model, but
act as a mini testing data. This is also the data that’s used to calculate the
validation loss and look out for overfitting during training.

2.3.9 Deep Neural Networks

A Deep Neural Network (DNN) is an umbrella term for neural network archi-
tectures with more than one hidden layer. DNNs typically describe feed-forward
network architectures, for which the inputs propagate through the network in
only one direction (towards the final output). Just for reference, Recurrent neu-
ral networks (RNN) aren’t a subset of DNNs, due to their ability to have nodes
that have access to previous inputs (memory). A Convolutional neural network
however, is a subset of DNN.
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2.3.10 Convolutional Neural Networks

Convolutional neural networks (CNN) are a variation of DNNs, where the first
few layers typically contain convolution and pooling filters, which extract spe-
cific features from the input data. These are followed by a number of fully-
connected (FC) layers to provide the final output. Lets examine the architecture
in more detail. Figure 8 will provide a reference.

Figure 8: Convolutional neural network architecture [Saha]

CNNs solve two main issues that regular FC-networks face when working
with images. First issue is the size of inputs. In order to provide image as an
input to a FC-network, the image needs to be flattened, resulting in the num-
ber of inputs corresponding to the number of pixels in the image. For modern
image resolutions, network node and parameter amounts exceed reasonable
processing capacity. The second issue is FC-networks ability to recognize lo-
cal pixel correlations and extract image features and patterns. Both issues are
solved by the combination of correlation and pooling layers, which reduce the
image dimensionality as well as extract characteristic image features.

Convolution layer The input layer of a CNN is typically a convolution layer.
It takes a whole image as the input and applies a spatial convolution filter over
the whole image. The filter is a kernel with a predefined size (eg. 3x3 window)
which moves along the pixels with a specified stride, essentially performing dot-
product between the kernel and the pixels it selects. For each step, the resulting
dot-product is a single value corresponding to single pixel in the output. Each
convolution layer is made up of multiple such filters with each filter, by the end
of the training session, optimized to extract some specific feature. Each filter in
the layer has its own output. The convolution operation is shown in Figure 9
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Figure 9: Convolution layer [Lendave]

Using the filters, the convolution operation extracts specific feature elements
from the input training images. The first features that are extracted are low-
level, meaning simple edges, lines and gradients. Subsequent convolution lay-
ers construct progressively higher level features using the lower level features,
as illustratively depicted in Figure 10

Figure 10: Feature levels in a CNN [Nvidia]

Pooling layer One or multiple convolutional layers are typically followed by
a pooling layer. There are two main types of pooling: max-pooling and average-
pooling. Analogous to the convolution layer, the pooling layer performs spatial
image filtering using a kernel with specific stride. The difference is that the
operation performed on the selected pixels is either max-value (max-pooling)
or averaging (average-pooling). Figure 11 shows the max-pooling operation.

In general, pooling layers are used for dimensionality reduction which in
turn reduces computational cost of the subsequent layers. Additionally, the
pooling layer can help the network to learn the features in a spatially and
rotationally invariant way. Max-pooling specifically has the added benefit of
de-noising the features, which is why in most cases its considered better than
average-pooling.
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Figure 11: Max-pooling layer [PapersWithCode]

Fully-connected layer The extracted features from the convolution and pool-
ing layers are flattened to 1D vector and used as input for fully-connected lay-
ers. The final FC layer provides the network output and consists of the same
number of nodes as classes.

2.3.11 Evaluation metrics

The following metrics are the main methods of neural network evaluation used
in this study.

Confusion matrix One of the most basic an intuitive ways of summarizing
predictions of an NN model is to use a so called confusion matrix. In its sim-
plest from for a binary classifier, it’s a 2x2 matrix, with each cell containing
quantity of one of the 4 possible classification outcomes: true positive (TP),
true negative (TN) and false positive (FP), false negative (FN). The desired and
correct outcomes are true positive/negative predictions. Example of a confusion
matrix is shown in Figure 12.

Figure 12: Example of confusion matrix for binary class problem
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Accuracy, Precision and Recall The confusion matrix can be interpreted as
is, however the values can also be used to calculate more intuitive statistics.

• Accuracy: Value between 0 and 1, representing how many of the total
predictions are correct.

TP + TN

TP + TN + FP + FN
=

Number of all correct predictions
Total number of predictions

(9)

• Precision: Value between 0 and 1, representing how many of the pre-
dicted positives are actual positives.

TP
TP+FP

= Number of positive predictions which are actually positive
Number of positive predictions

(10)

• Recall: Value between 0 and 1, representing how many of all actual posi-
tive class samples have been detected.

TP
TP+FN

= Number of positive predictions which are actually positive
Total number of actual positive class samples

(11)

Prediction ratio is a decision and evaluation metric that gives the ratio/per-
centage of how many of the total predictions belong to one particular class.
This metric doesn’t require true labels to compute and thus can be used to
make majority-based classification decisions in this study. Following equation
expresses the ratio:

Prediction ratio (%) =
Class 1 predictions

Class 1 predictions + Class 2 predictions
· 100 (12)

This metric was conceived by the author during the study as an intuitive way
of evaluating predictions, however same metric may already exist academically
under some other name.

2.3.12 Feature selection

Feature selection is a method used to eliminate less-relevant information from
the dataset. The samples, which comprise the dataset, are made up of certain
metrics which contain some information about the data, called features. Before
training the network, it may be beneficial to remove the features which are less
conducive to improving the neural networks performance.

Feature selection uses some metric to determine the relevance of features.
For the case of supervised learning, where each sample has a pre-determined
class label, this metric typically evaluates some correlation between the sample
and the label.
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SelectKBest using Chi-squared metric [SkLearn] For this study the feature
selection is implemented using Pythons SkLearn library, which provides the Se-
lectKBest feature selection method. This method picks K best features based on
the Chi-squared metric.
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3 Data acquisition

The dataset collection was performed as a part of the thesis by the author and
his colleague. What follows is a description of the contents of the dataset and
the methods of its conception.

3.1 Data considerations

Prior to creating a data collection protocol, the data content requirements had
to be made clear. Although the audio recordings were created primarily for this
study, some consideration went into creating a protocol that would also suit par-
allel APT research. These aspects of the recording protocol were unnecessary
for the purpose of this study, however they did not interfere with the quality of
data that was required here. With that said, the following data content require-
ments were necessary for investigating specifically the objective of this study,
the meal type classification.

• The dataset consists of at least two meal types with distinct sound char-
acteristics.

• For simplicity, each recording is confined to only one meal type

• Also for simplicity, all environmental influence should be kept to mini-
mum.

3.2 Equipment and setup

3.2.1 Recording equipment

The audio recording setup consists of 4 Knowle’s [SPM0687LR5H-1] micro-
phones, connected to a laptop through a Roland Octa-capture sound card.
Recording software was Reaper audio workstation. Each microphone has a cus-
tom 3D printed cup-like housing which helps to attach the unit to the test sub-
ject with a double-sided tape. The hardware setup is illustrated in Figure 13

Figure 13: Data collection equipment: Laptop, Roland Octa-capture DAC and custom
built housing for 4 cup style microphones.
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Each microphone has its designated channel for capturing one of the 4 areas
of interest, as shown in Table 1. Thus, each recording session produces 4 audio
files.

Mic/channel Target sound Location

1 Chewing sounds Approx. 3cm under the right ear

2 Swallowing sounds Above the center of the collar bone

3 Right bowel sounds Right lower abdomen

4 Left bowel sounds Left lower abdomen

Table 1: Summary of microphone placements for recording sessions. Grayed out chan-
nels were not used for this study. Only data from channel 1 was used for this
study. [Klavins, 2022]

Note: Since chewing sounds are the primary focus, only recordings from
channel 1 were used in this study. Recordings from the other channels are used
in different APT research.

The equipment that’s used and the microphone locations are identical to the
ones used in the meal onset detection study by the author [Klavins, 2022].
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3.2.2 Meals

(a) (b)

Figure 14: Oats meal [BareBra] (a), Salad Meal [Matinfo] (b)

In order to control for portion size, the meals were chosen in a pre-packaged,
single-portion format. The oats meal consists of quinoa, oats and date pieces
in a porridge-like mixture with hot water. The salad meal consists of iceberg
lettuce, red cabbage, pasta and salad dressing. Note that the chicken in the
salad was not consumed.

These meals were chosen based on their sound characteristics. While no
objective analysis influenced the decision, it was determined based on personal
experience, that the oats and salad were sonically distinct enough.

3.3 Dataset collection protocol

As mentioned earlier, the protocol was designed to suit not only this meal type
classification study, but also other APT studies. This mainly entails extended
silence regions, beyond what is conceptually required for this study. The final
protocol that was settled on is summarized in Figure 15

Figure 15: Protocol for data collection

The procedure for a single recording session is as follows:

1. Prior to recording the subject takes a comfortable sitting position. One
of the two meals is chosen and prepared for consumption (remove pack-
aging, add hot water, etc) to make it easy for the subject and to avoid
unnecessary noise.



3 Data acquisition 25

2. Once the recording starts the subject is instructed to remain in a sitting
position and make as little noise as possible.

3. At the 20 minute mark the subject starts consuming the meal. Subject
consumes the meal within about 5 minutes.

4. After the meal is consumed, the subject remains sitting silently for addi-
tional 5 minutes.

3.4 Resulting dataset

The recordings were conducted on two healthy male subjects (author and his
colleague) within a span of a week. Each day of the recording session each
subject made at least 1 pair of recordings, one for each meal type. Total of 20
recording sessions were made, with 10 recordings per test subject, of which 5
were oat meals and another 5 were salad meals. For a complete list of record-
ings refer to Appendix A
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4 Method description and implementation

This section covers all development and implementation information for all
4 systems covered in this study. This includes pre-processing and creation of
datasets as well as detailed information about each system. The 4 systems that
are implemented are: PSD meal type classifier, Chew detector, Mel meal type
classifier and 3-class meal type classifier.

Appendix B contains the source code of the systems implemented in this
study. The cited APT studies ([Kölle, 2019], [Klavins, 2022] and [Bliksvær,
2021]) which may not be available online are also included.

4.1 Tools

The following digital tools were used to achieve the results in this study:

• Audacity - Free open source audio manipulation application.

– Labeling of chews and inspection of the recordings

• Python

– Used to implement practically everything in the study.

• Main Python libraries

– TensorFlow - Neural network models and all algorithms surrounding
training, testing and evaluation

– Soundfile - Loading and saving audio files.

– Matplotlib - Plots and diagrams

– Pandas - Dataset storage and manipulation

– Librosa - Mel spectrogram dataset creation and audio recording anal-
ysis

– Sklearn - PSD feature dataset creation, dataset scaling and other use-
ful mathematical operations

4.2 Data collection

4.3 Pre-processing of the raw audio recordings

Prior to extracting the PSD and Mel features to create the datasets, the “raw” au-
dio recordings are pre-processed. The soundcard and the setup is set to operate
at a sampling frequency of 48000Hz. Considering that most sounds associated
with food consumption are in 4000Hz frequency range, this sampling frequency



4 Method description and implementation 27

is superfluous and the recordings were decimated to 8000Hz, to comply with
4000Hz Nyquist limit. The 4000Hz frequency was chosen based partially on
the findings covered in the theory Section 2.1, as well as the data analysis
which will be covered in the discussion Section 6.6.2, which showed that for
our recordings most of the frequencies were below 2kHz. 4000Hz seemed like
a safe compromise. The decimation also uses the SkLearn’s cheby1 low-pass
Chebyshev filter with cut-off frequency of 4000Hz as the anti-aliasing filter,
however most low-pass filter types will work for this purpose.

4.4 Dataset creation and architecture

For the purposes of this study a Dataset refers to a collection of samples in the
form of some matrix that are used for training, validating and testing the dif-
ferent systems. Datasets are constructed using two different methods, first of
which is based on PSD features, and is the exact same as conceptualized in
[Kölle, 2019] as well as used in [Klavins, 2022](authors masters project) and
[Bliksvær, 2021]. The second method, involving Mel spectrogram, was concep-
tualized during this study.

4.4.1 PSD feature dataset

Figure 16: PSD feature matrix of one recording. Entire recording segmented in to M
segments, and N PSD based features extracted from each segment.

Motivation for using PSD features As this study is in a sense a continua-
tion of authors masters project [Klavins, 2022], naturally the first approach for
dataset creation was the method that had successfully worked in that project.
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This specific feature set was introduced by the APT pilot study on early meal
detection [Kölle, 2019], and has been subsequently used in similar APT stud-
ies with proven results. Originally created to capture characteristics of bowel
sounds, the method extracted the total power as well as power and fractional
power from 100Hz bands in the 0-2000Hz range. The PSD based, power fea-
tures were chosen based on the bowel sound analysis which showed increase in
the signal power for frequencies below 1000Hz when bowel sounds occurred.
The total power captures the overall signal strength information, while the
power in the frequency bands allows to differentiate between bowel sounds
and environmental noise. From experience, including total power as well as
power in frequency bands contains valuable information about the dynamics of
the signal. The same type of feature extraction method was successfully utilized
in the meal onset detection study using chewing sounds [Klavins, 2022].

Creating the PSD feature dataset A single PSD feature matrix, such as shown
in Figure 16, is extracted from each of the 20 recordings. Each pre-processed
recording is periodically segmented into segments of defined length and shift,
resulting in M segments. The resulting feature matrix is scaled with SkLearn’s
MinMaxScaler method, which transforms values for each feature row between 0
and 1. The scaling helps stabilizing the models training process avoiding exces-
sive weight fluctuations due to large error gradients, leading to a better trained
model.

For recordings with 8000Hz sampling frequency, the following N features
are extracted from each segment:

Feature No. Description
0 Power in the 0-4000Hz frequency range (total power in that signal segment)
1 to N/2 Power in B Hz wide bands, collectively spanning the 0-4000Hz range.

N/2+1 to N-1
Fractional power in B Hz wide bands, collectively spanning the 0-4000Hz range.
Obtained by dividing features no. 1 to N/2 by feature no. 0.

Table 2: Description of the PSD based, power features that were used to create the
feature matrix in Figure 16

Segment length and shift is customizable. For this study segment lengths of
0.45, 1, 10, 20, 30 and 60 seconds were used. The shift for all segment length
configurations is half of the segment length. The previously mentioned study on
chewing sounds used only the segment lengths of 10-60s, which worked well
for meal onset detection. For this study, in addition to those segment lengths, we
also include 0.45s and 1s segments. Motivation for this is the fact that chew-
ing occurrences are shorter than one second (confirmed later in Figure 19).
The smaller segment length features could capture more/other details than the
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longer 10-60s segment features, and thus potentially work better for meal type
classification.

The Frequency bin size is 25Hz for all but one segment length configuration.
For 0.45s segments, feature extraction causes numerical errors. For this seg-
ment length, the smallest error-free bin size of 80Hz was used. In general, the
frequency bins were made as small as possible to include as much frequency
detail as possible, however the chosen values were on the low-end constrained
by numerical errors in the feature extraction process. Summary of the different
PSD feature datasets used in this study is shown in Table 3.

Segment length Shift Frequency bin Frequency range
Resulting shape

NxM
0.45 seconds 0.225 seconds 50Hz 0-4000Hz (161xM)

1 second 0.5 seconds 25Hz 0-4000Hz (321xM)
10 seconds 5 seconds 25Hz 0-4000Hz (321xM)
20 seconds 10 seconds 25Hz 0-4000Hz (321xM)
30 seconds 15 seconds 25Hz 0-4000Hz (321xM)
60 seconds 30 seconds 25Hz 0-4000Hz (321xM)

Table 3: List of PSD feature dataset configurations used in this study

4.4.2 Mel spectrogram dataset

Motivation After failure to achieve acceptable results using multiple config-
urations of the PSD-based features, a new approach was devised. Unlike PSD
feature matrices, which use periodically segmented recordings for both training
and testing, the new, Mel spectrogram based dataset uses individually extracted
chewing segments for training, and periodically segmented recordings for test-
ing.

The use of Mel spectrogram segments was inspired by another concurrent
APT research project, which implements the system from [Wang u. a., 2022b].

Labeling

Figure 17: Excerpt from Audacity of a labeled region in the recording

Each individual chew was manually labeled for each of the chosen training
recordings. In total 5 of the 20 recordings were labeled , 2 salad and 3 oat
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meal recordings (for more details sect. 6.6.4). Labeling was conducted using
Audacity, an audio manipulation software, which provides a method for easily
marking regions of the recording and exporting the beginning and end time of
each marked region to a text file. Each region, aka. true label, captures exactly
the duration of a chew occurrence, which is characterised by two peaks, one
for biting down and the other for relaxing the jaw. Short section of a labeled
recording is shown in Figure 17.

Training dataset (Mel spectrogram from individual chew segments)

Figure 18: Single sample in the training dataset, created by applying a Mel spectro-
gram to a segment of the recording selected by the manual chew labels

After the recordings were labeled, Mel spectrogram segments could be cre-
ated using the labeled regions. To do this, a segment, starting at beginning of
the label and ending at start + segmentlength, is selected from the signal. A
Mel spectrogram is then applied to the segment resulting in a 128xM matrix,
where 128 is the number of frequency bins, and M is the number of time win-
dows within the labeled segment. The resulting Mel spectrogram segment is
shown in Figure 18. The same procedure is repeated to create a Mel spectro-
gram segments for each manual chewing label, which together comprise the
training dataset for all 3 Mel spectrogram based systems.

There are 3 parameters which make up the Mel spectrogram segment: Seg-
ment length, Mel window length and Mel shift.

Choice of segment length is based on the chew length analysis performed on
all manually created chewing labels, the results of which are presented in Figure
19. The median chew length for both oats and salad chews is roughly 350ms,
which is chosen as the segment length of the primary dataset. Three other
datasets are created, using segment lengths of 100ms, 450ms and 500ms. The
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4 datasets will be compared in a test to indicate the optimal segment length.
It would be ideal to create segments with the exact length of each individual
chew label, however the neural network expects same dimensions for all inputs,
hence one-size-fits-all segment length is chosen for this approach.

Figure 19: Segment length statistics for the different meal type labels.

Two other parameters are used: Mel window length and Mel window shift.
Both are given in milliseconds and determine the resolution of the Mel spectro-
gram. For example a 100ms long segment with Mel window length of 30ms and
shift of 10ms will produce 8 time windows within that segment. All 4 datasets
used the same Mel window length of 30ms and Mel shift of 10ms, a choice
which is further discussed in Section 6.6.1. The 4 datasets used in this study
are summarized in Table 4.

Dataset Dimensions Segment length Mel window length Mel shift
128x8 100ms 30ms 10ms

128x33 350ms 30ms 10ms
128x43 450ms 30ms 10ms
128x48 500ms 30ms 10ms

Table 4: Training datasets used for Mel spectrogram based systems in this study
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Testing dataset (Mel spectrogram of periodically segmented recordings)

Figure 20: Single recording in the testing dataset, which consists of periodically se-
lected segments from the recording with Mel spectrogram applied to each.
Each segment corresponds to the same type of Mel spectrogram segment as
in training dataset, shown in Figure 18.

In a practical application the system would not have the luxury of having in-
put samples in the form of segments that only and exactly capture each chewing
occurrence, such as is the case for the training dataset. For a live use case the
input would be an audio stream from a microphone or a recording of some
length. One approach is to create the segments periodically along the length of
the recording. Testing dataset is created according to this format.

The neural networks used in this study expect that dimensions of input sam-
ples are equal, hence the same 128xM matrix needs to serve as input for testing.
Here’s what’s different for the testing dataset: Instead of extracting Mel spectro-
gram from manual chew labels, the entire recording is periodically segmented
and Mel spectrogram is extracted from each segment. For this, in addition to
segment length, Mel window length and Mel shift, a new parameter is required:
the Segment shift. Segment shift defines the relative displacement between the
segments, given in milliseconds. This results in a Nx128xM matrix for the en-
tire recording, with N being the number of segments spanning the recording.
Choice of segment shift value is discussed in Section 6.6.1

Each training dataset from Table 4 has its corresponding testing dataset.
Testing datasets are summarized in Table 5.
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Sample dimensions Segment length Segment shift Mel window length Mel shift
Nx128x8 100ms 50ms 30ms 10ms

Nx128x33 350ms 50ms 30ms 10ms
Nx128x43 450ms 50ms 30ms 10ms
Nx128x48 500ms 50ms 30ms 10ms

Table 5: Testing datasets used in this study. N corresponds to the number of segments
in each recording

Note: Segmenting the entire recording in such manner yields files of 2GB
a piece. Majority of the recording contains superfluous amounts of silence for
our purposes. Thus for storage considerations only a part of the recordings are
segmented. For simplicity, the contents of the testing dataset will be referred
to as “segmented recordings”, but in practice it means that each segmented
recording only contains a part of the segments in the 30 minute-or-so long
recordings. For chew detector and 3-class meal type classifier, a region from
15 minutes to the end of the recording is used. This translates to 5 minutes
of silence prior to and after the meal region, as well as the meal region itself.
The included 5 minute silence parts aren’t actually needed to test a meal type
classification scenario, since as noted previously, its already possible to isolate
the meal region and only focus on that. These parts are included out of curiosity,
to see how these systems, which can identify regions of silence, perform outside
of the meal region.

The Mel meal type classification system only classifies chews, and as such
doesn’t require any silence regions for testing. Therefore for this system the
testing dataset contains only segments from the meal region.

4.5 PSD Meal type classifier

This system was the first attempt at creating a meal type classifier using the
meal type audio recordings. This system was based on the PSD feature dataset
which was successfully used during authors master’s project [Klavins, 2022]
to implement a meal onset detection system. Although that project utilizes an
SVM model, it was thought that re-using the features and coupling with the
more advanced neural network would be sufficient for meal type classification.
This subsection covers the first attempt at implementing meal type classification
system.
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4.5.1 Network model

Figure 21: Neural network model of the PSD meal type classifier)

Although many different layer combinations and configurations were tested,
the architecture given in Figure 21, works as good as nearly any other. Adding
more layers doesn’t improve the performance, so in favor of picking a compu-
tationally light model, this model was settled on.

Model consists of two fully connected layers. Input dimension of the first
layer corresponds to the number of feature bins for each input segment, N.
The second layer contains 1/4th of the inputs of the first layer. Each layer is
accompanied with a dropout layer with dropout rate of 0.6. The dropout is
rather aggressive to prevent excessive over-training, which happens within very
few epochs. The network produces 3 output probabilities, one for each class:
“salad”, “oats” and “silence”.

4.5.2 Dataset labeling

As a first step, the system creates labels for each of the recordings in the dataset.
Each recording is a matrix such as in Figure 16, with N features and M time
segments. The labels are Mx1 arrays with each element corresponding to the
class that specific segment belongs to. Labels of classes “silence”, “oats” and
“salad”, get the values 0, 1 and 2 respectively. Segments of the entire meal
consumption region are marked as either “oats” or “salad”, depending on the
meal that’s consumed. The rest of the segments are marked as “silence”.



4 Method description and implementation 35

4.5.3 Feature selection

The entire dataset consists of PSD features as detailed in Section 4.4.1. Recall
that each segmented recording is a NxM matrix where N corresponds to the
number of features.

For this system implementation feature selection is performed on the dataset.
This process picks the K best of the N features. Feature selection is performed
using the SelectKBest method with Chi-squared metric, from SkLearn’s library.
The threshold is configurable, but for the final model is set to select 30% of
the best features. While the influence of the feature selection in general is quite
minimal, multiple threshold values were briefly tested and the 30% was found
to give the least false positive predictions across the different dataset configu-
rations. The feature selection then returns the indexes of features to keep, and
the rest are discarded from the dataset.

4.5.4 Training, validation and testing split

This system divides the dataset of 20 recordings into training, validation and
testing splits. First, 20% (4 recordings) of the dataset is set aside as testing split,
and the remaining 80% is further split 80/20 (13 and 3 recordings) into train-
ing and validation splits. The resulting dataset is shown in Figure 22. Note that
the actual percentages are more crude due to them being rounded to include
whole recordings. Also the recordings for each split are chosen randomly each
time the splitting operation is performed.

Figure 22: Overview of the dataset for the PSD meal type classification system
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4.5.5 Training the neural network

The training is handled by the built in methods of Tensorflow library, which re-
quire little work on the users part. There are however some training parameters
the user can configure to tune the network. The final model was trained using
the following parameters:

• Loss function: Binary categorical crossentropy

• Optimizer: Adam, with learning rate of 0.001

• Batch size: 1024

• Epochs: 7

Note as a technical detail, that although the dataset is thought of as a collec-
tion of separate recordings, the network trains only on per-segment basis. This
means that with the training split, which contains 14 segmented recordings, the
network takes only one Nx1 segment at a time.

4.5.6 Testing the neural network

To test the network the segmented recordings in the testing split are used. These
are 4 randomly chosen recordings and they are tested separately. Each test gives
an Mx1 array of labels corresponding to each segment of the test recording.

4.6 Chew detector (CD)

The chew detector is one of the 3 systems implemented with Mel spectrogram
dataset. It attempts to identify whether or not a segment of the recording con-
tains a chew. This system could be be used on its own for dietary monitoring,
however its main goal is to augment the Mel meal type classification system,
which will be detailed in a later subsection.
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4.6.1 Network model

Figure 23: Neural network architecture for the chew detection system. Layer dimen-
sions correspond to input sample dimension of 128x33, thus for other in-
puts tested the dimensions will vary. (k=kernel size, s=stride)

Figure 23 illustrates the neural network architecture of the chew detection sys-
tem. This architecture was arrived at through testing many different combina-
tions and orders of pooling and convolution layers, different kernel, stride and
filter size configurations, as well as number of fully connected layers and node
amounts. Although not very methodically, the process involved picking one spe-
cific parameter, testing random values/combinations and narrowing down to a
value/combination that works the best. The architecture in Figure 23 is not
meant to represent the best possible model for this type of system. In fact,
multiple, slightly different configurations lead to similar results, and the final
chosen values were among the ones which gave the best results. Obtaining the
best possible model and detailing the process is beyond the scope of this study.

As will be detailed later in the study, the Mel meal type classifier and the
3-class meal type classifier, was found to perform optimally using this same ar-
chitecture. Also note that the dimensions of the layers in the figure correspond
to an input sample of 128x33. Other input sample dimensions will produce
different layer dimensions.

The classifier is a convolutional neural network (CNN) with two conv-conv-
pool (CCP) layers and subsequent fully-connected layers. Note that none of the
layers have enabled padding, meaning that the convolution operations will also
reduce the dimensionality.

First pair of convolutional layers are equipped with 16 feature filters, and
stride of 2x1. This stride allows to reduce the dimensionality of the frequency
dimension (128) while keeping the time dimension (M) intact. This was done
because the Mel spectrogram segments are rectangular, and application of un-
even stride effectively squares off the dimensions. This prevents the shorter
time dimension of the filters from becoming too narrow, thus helping with fea-
ture learning. The second pair of CCP layers increases the filter amount to 32,
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and has a kernel of 3x3 and stride of 1x1 for both.
Each pair of CCP layers is complete with a max-pooling layer. Both are iden-

tical with 2x2 kernel and 2x2 stride.
After the two CCP pairs, the features are flattened and followed by two fully-

connected (FC) layers. First FC layer is the same dimension as the output of the
flattening layer. The second FC layer has 32 nodes, with the intuition being that
each filter gets its own node. Additionally, two dropout layers are placed before
and after the first FC layer, both with dropout rate of 0.2. Finally the two output
nodes are activated by a softmax.

4.6.2 Dataset initialization and pre-processing

The first step in the chain of events for chew detection system is loading in and
pre-processing the dataset.

Loading the dataset also automatically loads the labels for each Mel segment
in the dataset, thus no explicit labeling is required. Each segment belongs to
one of two classes, “oats” or “salad”. The Mel training and testing datasets are
loaded in separate dataframes (Pandas containers for data).

As for pre-processing, this is not to be confused with the pre-processing that
was performed on the raw audio recordings to down-sample them. When cre-
ating the dataset no special scaling is applied. Due to gradient operations in the
NN it’s advised to scale the datasets prior to use in training. This will result in
better learning performance. The following scaling operations are performed:

1. Logarhitmic scaling of the dataset to narrow the dynamic range of the
values, by applying 20 · log10(x) operation. This also makes the dataset
samples visually presentable in a plot.

2. Sklearn’s MinMaxScaler method is applied to scale values between 0 and
1.

MaxMinScaler first analyzes the entire training dataset, effectively learning the
max and min values in the dataset. Subsequently, it transforms the entire train-
ing dataset to values between 0 and 1. The same MinMax scaler that’s been
initialized with training dataset is also applied to the testing dataset. The idea
here is to scale the values such that they are suitable for NN, but also preserve
the amplitude differences between individual samples in the datasets. If scal-
ing was performed on samples individually, the amplitude differences would be
lost.
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4.6.3 Training, validation and testing split

For the chew detection system the creation of training, validation and test split
goes through a two step process. First step is augmenting the training dataset
with “silence” class segments. Second step is performing the actual split.

Augmenting training dataset with “silence” class segments Chew detector
outputs one of two classes: “chew” or “silence” (non-chew). The Mel spectro-
gram training dataset is comprised only of segments from the “chew” class,
hence the dataset requires additional segments of the “silence” class. These si-
lence segments are actually taken randomly from the testing dataset. To avoid
mixing the samples from the recordings, the silence segments are taken from
the same recordings that were manually labeled and used to create the training
segments. Note that each segmented recording in the testing dataset contains
two types of “silence” segments: ones that are located outside of the meal re-
gion, and ones which are part of the meal region, but don’t contain any chews.

Following process augments the training dataset:

1. Select a segmented recording from the testing dataset. The recording
must be chosen among those that were used to create the training dataset.

2. For each recording find all the segments which do not overlap with any la-
beled chew segments of the corresponding recording. Since none of these
found segments overlap with a chewing label, they are technically from
“silence” class.

3. From all these chosen “silence” segments, randomly pick a set number of
samples. This number is chosen by the user. Equal number of meal region
and non-meal region silence segments are chosen.

4. Finally, add the chosen “silence” segments to the training dataset

For all of the testing done in this study, the augmentation chose 3 times as many
“silence” class segments as there were “chew” segments. Other ratios, such as
1:1, 1:2 were tested, however 1:3 “chew” to “silence” segment ratio was found
to work best. Ratio of 1:4 wasn’t possible as the recording started to run out of
“silence” segments to pick from.
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Splitting the training dataset After the training dataset has been augmented
with segments from “silence” class, it is split into a training, validation and
testing splits, with each being 76%, 19% and 5% of the training dataset respec-
tively. These seemingly arbitrary percentages were arrived at by firstly setting
aside 5% to be the testing split, and the remaining 95% were split into 80%
training and 20% validation split, which is along the lines of how the splits are
conventionally created for machine learning applications.

Note: The two terms testing split and testing dataset will be used throughout
this thesis, and its important to know the difference. Testing split contains indi-
vidual segments created from the manual chew labels. Testing dataset contains
all 20 recordings which have been segmented periodically (thus chronologi-
cally), and do not necessarily contain precise chewing occurrence, such as in
the training split. In order to avoid confusion, Figure 24 shows the different
datasets and splits.

Figure 24: Overview of the dataset structure for the chew detection system

All “chew” class segments in the testing split precisely capture a chew. Results
from the testing split can’t be used to indicate real world performance, however
it provides an insight of how well the network learned the training dataset data.
The actual testing dataset, which consists of entire segmented recordings, is not
split into anything, and is saved for the actual testing part.

4.6.4 Training the neural network

Training of the neural network is a very straight forward process, thanks to
the convenient Tensorflow library, which does all of the hard work. Some user
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input is however required for choosing the training parameters as well as the
network architecture. The architecture is once again shown in the Figure 23,
and the following training parameters are used:

• Loss function: Sparse categorical cross-entropy

• Optimizer: Adam, with learning rate of 0.0001

• Batch size: 128

• Epochs: Dynamic epochs using Early stopping with validation loss delta of
0.0001 and patience of 30 epochs. This configuration allows the training
to stop automatically once the condition is met.

Multiple different values for learning rate, batch size and early stopping param-
eters were briefly tested before the values given above were chosen. The final
chosen values do not necessarily represent the best choice, however they were
chosen because they worked just fine for producing a good model. These values
are included purely to give more context to the whole training procedure, how-
ever in reality, these precise values aren’t very significant to the performance.
Slightly different values might work just as well.

The early stopping mechanism allows the training to terminate once the
change in validation loss across the last 30 epochs doesn’t change more than
0.0001. This means that once the validation loss has reached a plateau, further
training is omitted to avoid overfitting, such as described in theory Section
2.3.7.

4.6.5 Testing the Neural Network

The network is tested in two ways: using the testing split, and using the testing
dataset.

Testing split As described in subsection 4.6.3, the testing split is derived from
the training dataset. A part of the training dataset is set aside to be used for
rudimentary testing after the training is done. Again, each sample is a Mel
spectrogram segment containing either a chew or silence (non-chew). Once the
test is performed the results can displayed in a confusion matrix. Again, this test
isn’t a good indication of how well it detects chews in a segmented recording
such as the testing dataset. The results from this test were mainly used during
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development of network architecture for a simple and fast indication of models
performance.

Testing dataset The testing dataset contains Mel spectrogram segments which
are selected from a part of of a recording in a periodic manner. In order to re-
duce computational cost and storage requirements, only a part of the whole
recording is used, specifically from 15 minutes to the end of the recording (as
mentioned in the note in Section 4.4.2).

If it’s not already clear, it should be noted that for the chew detector, as well
as for the next two systems, the recordings which were used to create training
dataset, were also used to create the testing dataset. In general this is a big no-
no as a machine learning practice. However in this case, even though the same
recordings are used, the resulting samples in the datasets differ. This is because
while the training dataset contains segments which capture only and exactly
a chew, the testing dataset segments the recordings periodically, meaning that
each segment will not necessarily capture the exact chew. In either case, it will
be evident upon viewing the results in the next section, that the performance
on the recordings that were used in training is on par with the rest.

Finally, the testing procedure itself using the testing dataset is as follows.
Each Nx128xM testing recording is evaluated by the trained model. The output
from the test is a Nx1 array, where each element is a predicted label, corre-
sponding to a 128xM segment of the recording. The resulting prediction labels
were also saved to a file, which are imported by the Mel meal type classifier
and used to remove non-chewing segments.

This part only describes the technical execution of using testing dataset for
model evaluation. The methodical tests which will be presented in the results
section are described by later in this section (4.9).

4.7 Mel meal type classifier (MMT)

Main goal of the meal type classification system is to differentiate between the
food types that are consumed in the different recordings in our dataset. The
meals consist of either oats or salad, which are the two classes this system
will attempt to identify. In addition to classifying any given input segment, re-
gardless of whether or not its a chew, the system will be augmented with the
chewing detector to exclude the non-chew segments and improve MMT’s clas-
sification ability. This will be discussed in the 4.7.5 section, where it comes into
effect.



4 Method description and implementation 43

4.7.1 Network model

Figure 25: Neural network architecture for the Mel meal type classification system.
Dimension numbers correspond to input sample dimension of 128x33, thus
for other inputs tested the dimensions will vary. (k=kernel size, s=stride)

If this architecture looks very similar to the one used for chew detection sys-
tem, then that’s because it is in fact the same network architecture. Although
initially the architecture was different than for the CD system, through the pro-
cess of testing models with numerous layer, filter, stride, kernel configurations,
the same architecture turned out to perform best. As was already mentioned for
the CD system, obtaining the best possible network architecture for this system
and detailing the entire process is beyond the scope of the study. The process
for testing different network architectures follows the same process that was
used for the CD system.

4.7.2 Dataset pre-processing

The dataset is first pre-processed in the same way that it is for the chew detector.
In fact the same dataset is used both for MMT and CD sytems. In order to keep
this short, please refer back to 4.6.2 for in-depth method details.

4.7.3 Training, validation and testing split
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After pre-processing, the training dataset is split into a training, validation and
testing splits in a similar way to the CD system, described in 4.6.3. The differ-
ence here is that the training dataset isn’t augmented with “silence” class prior
to splitting. This isn’t required as all the segments in the training dataset are
chewing segments belonging to “oats” or “salad” classes. Thus this part of the
system only performs splitting of the training dataset.

The splitting operation separates the training dataset in the same propor-
tions as for the CD dataset. That is 76% for training, 19% for validation and 5%
for testing. The resulting datasets are shown in Figure 26

Figure 26: Overview of the dataset structure for the Mel meal type classification system

4.7.4 Training the Neural Network

Training the network here is identical to the way the CD was trained (section
4.6.4). That is to say that Tensorflow manages this part. The following training
parameters are used for the MMT system training:

• Loss function: Sparse categorical cross-entropy

• Optimizer:Adam, with learning rate of 0.0001

• Batch size: 128

• Epochs: Dynamic epochs using Early stopping with validation loss delta
of 0.001 and patience of 15 epochs.

Just like for the CD system, these chosen values are not meant to represent
the best possible choice, however from the brief testing that was done with
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different values, these seemed to perform optimally. The patience and delta for
early stopping is slightly different than for the CD system, which seemed to
allow the training to stop at a better point, where the model was slightly more
optimal than with CD values.

4.7.5 Testing the neural network

The network is tested in two ways: using the testing split, and using the testing
dataset.

Testing split The testing split is used after the training to test the networks
performance on the labeled chew segments. The result of this test is a confusion
matrix, and it gives an indication of how well the network has learned the
training dataset. Again, the main purpose of the testing split was to give a
simple and quick indication of the models performance during the development
of the network architecture. The results from this test aren’t very insightful
when it comes to the performance in a realistic scenario, which is what the
testing dataset is used for.

Testing dataset Once again the testing dataset is used to benchmark meal
classification performance in a realistic scenario, one in which each segment
doesn’t necessarily precisely capture a single chewing event. Recall that the
testing dataset consists of 20 segmented recordings. Each recording is tested
individually. The test is performed twice: First on all segments in the recording,
and second, only on the segments which have been identified as chews by the
chew detection system.

The first test is straight forward. Each recording in the testing dataset is
fed to the network, producing an array where each element is a class label
corresponding to that segment in the recording.

For the second test, the predicted chew labels are loaded from a file which
were created by the CD system. These labels are applied to the same MMT
meal type prediction array as in first test. This effectively nulls all the segments
which aren’t identified as chews by the CD. Consequently all the segments that
are identified as chews, retain their predicted label as either “salad” or “oats”.
Prediction ratio is used as the primary metric.
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4.8 3-class meal type classifier (3C)

The 4th system in this study is one which combines the MMT and CD into one
system. Although this system is somewhat redundant in the sense that the two
previous systems are combined to produce the same result, it was initiated as
a part of the study to provide an alternative avenue, at a point where the two
system approach didn’t work properly. Full description and evaluation of this
system is mainly included to give a broader overview of the things that were
attempted in this study. There are however some benefits for this system which
are discussed later in Section 6.4.

4.8.1 Network model

Figure 27: Neural network architecture for the 3-class meal type classification system.
Dimension numbers correspond to input sample dimension of 128x33, thus
for other inputs tested the dimensions will vary. (k=kernel size, s=stride)

The network architecture is once again the same. Each system, including the
3C, initially started with their own network architecture, however after many
hours of tuning the network, all 3 systems ended up with the same architecture.
For completion, the model is shown in Figure 27

4.8.2 Dataset pre-processing

This system uses the same dataset as the previous two systems, that is, a col-
lection of chewing segments for training dataset, and periodically segmented
recordings for the testing dataset. As such, the pre-processing step is also the
same, so for more details please refer back to Section 4.6.2.
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4.8.3 Training, validation and testing split

The training dataset is augmented and split exactly like for the chewing de-
tection system, described in Section 4.6.3. The training dataset thus contains
segments of 3 classes: “oats”, “salad” (both chews) and “silence”. The splitting
operation once again separates the training dataset in the same proportions,
shown in Figure 28

Figure 28: Overview of the dataset structure for the 3-class meal type classification
system

4.8.4 Training the Neural Network

Training procedure is no different than for the CD and MMT systems. The fol-
lowing training configuration was used:

• Loss function: Sparse categorical cross-entropy

• Optimizer:Adam, with learning rate of 0.0001

• Batch size: 128

• Epochs: Dynamic epochs using Early stopping with validation loss delta
of 0.001 and patience of 30 epochs.
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All parameters are the same as for CD and MMT systems, except for delta and
patience for early stopping. Again, this change optimizes the point at which the
training is stopped, resulting in a more optimal model.

4.8.5 Testing the neural network

The training procedure is essentially the same as for the CD and MMT sys-
tems. The testing split is once again mainly used as an indication of networks
performance during the development of the architecture. For evaluation of per-
formance in a more realistic scenario, the testing dataset recordings are used.
For each testing recording the network outputs an array of predicted labels for
each segment of the recording, the same way as for the CD and MMT systems.
Unlike the MMT system, there is no need to apply CD predicted chewing labels,
as this system already identifies the silence segments.

4.9 Testing procedures

This subsection describes the different testing procedures that will be used to
obtain results which will be presented in the results section. Two main tests are
performed; System tests, which evaluate the performance of each system based
on the described metrics, and dataset test, which will compare the performance
of the 4 different Mel spectrogram datasets in order to identify the segment
length parameter which gives the optimal results.

Note: Best achieved model The following few paragraphs detail the testing
procedures for the different systems. In any case, unless indicated otherwise,
each system is using the best achieved neural network model. The measure for
obtaining the best model was prediction ratio. To obtain the best model, the sys-
tem cycle is repeated until a model, which performs the best out of the bunch, is
found. That model is saved and used for these tests. This process can take many
attempts, as it depends on two randomized factors: 1, the random selection of
segments for training, validation and testing splits, and 2, the randomized Ten-
sorflow model initialization. The second factor is out of our control, however
the first factor is deliberately randomized. This is mainly to avoid performance
bias due to the selected training segments. Downside of this randomization is
that the process for finding the best model takes time.
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4.9.1 System and Dataset test - PSD meal type classifier

The PSD meal type classifier is the only system in this study which used PSD
based features. This was also the first approach at meal type classification. The
numbers will be provided in the results section, however it will be mentioned al-
ready here that for the purpose of meal type classification this approach worked
very poorly.

Creating any objective test of this system is another issue. As the results sec-
tion will explain, the classifier performed nearly identically on all the different
segment length datasets that were tested (from Table 3). In all test cases the
system has a bias towards one class or the other, depending on the randomly
selected training, validation and testing split recordings, as well as the random-
ized initialization that Tensorflow does to its network models. Due to this fact,
no specific test will be performed on this system. Instead the results directly
from the test in Section 4.5.6 will be presented.

4.9.2 System test - Chew detector (CD)

The chew detection system was designed to be used in combination with the
meal type classifier. This system test will provide indication of the performance
in relation to the true labels which were created manually, as well as the per-
formance when used in combination with the Mel meal type classifier.

Testing procedure follows the methodology of “testing dataset” in Section
4.6.5. For this test the 350ms segment length dataset (128x33) is evaluated us-
ing the best achieved CD model. Only 5 of the recordings have corresponding
true chewing labels. These recordings will be used to assess the chew detec-
tion performance based on accuracy, precision and recall metrics. In addition
that, the predicted labels from all 20 recordings will be combined with the best
achieved MMT model to provide average prediction ratio score.

The results for this test are given in Table 6

4.9.3 System test - Mel meal type classifier (MMT)

Creating a meaningful performance metric solely for the MMT system is a diffi-
cult task. This is because it is a 2 class classifier for a dataset which actually has
3 classes, the 3rd being “silence”. Hence the segments which don’t contain any
type of chew, will still be forced to the class closest to either “oats” or “salad”.
In practice this means that these “silence” segments will be classified as mostly
“oats”.

In order to properly test the MMT system, the “silence” segments need to
be removed. Two options are available: using predictions from the CD or using
the true (manual) chew labels. The results section includes performance results
for both options. CD prediction labels for the 20 testing dataset recordings were
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created using the best achieved CD model trained on the 350ms segment length
dataset (128x33). The MMT system for this test also uses the best achieved
model, trained on the same 350ms segment length dataset.

5 of the 20 recordings in the testing dataset, have corresponding true labels,
and will be used to gauge performance for a scenario with “ideal” chewing
labels. Additionally, the accuracy, precision and recall metrics will be calculated
using the true and predicted labels for the 5 recordings. Results are shown in
Table 7

4.9.4 System test - 3-class meal type classifier (3C)

The 3 class meal type classifier (3C) essentially combines the MMT and CD in
one system. Since its using the same network model and dataset, the testing
procedure will be similar to the two separate systems. All 20 testing dataset
recordings will be assessed using the best achieved 3C network model, trained
on the 350ms segment length dataset. Performance for all 20 testing recordings
will be measured using prediction ratio, as well as the accuracy, precision and
recall measures for the 5 recordings with true labels.

4.9.5 Dataset test - Mel spectrogram features

The 3 Mel spectrogram based systems all used the same type of dataset for
training and testing. Recall Tables 4 and 5, which contain the 4 datasets which
will be benchmarked in this test.

Chew detector and Mel meal type classifier The chewing detector and Mel
meal type classifier are meant to be used in tandem, and will thus be tested
as such. That said, their collective performance will depend on their individual
performance, due to the fact that they are trained separately. In order to test
this properly the following procedure will be used:

One of the systems will be trained on the control dataset, which is chosen as
the 350ms segment length dataset (128x33). That system will be trained once
and remain unchanged during the testing of the other system. The other system
will perform 3 test runs for each of the 4 dataset configurations (total 12 runs).
For each test run, to evaluate the performance, the systems will be combined
and the resulting prediction ratio from the MMT will be used as a metric. This
test is performed twice, such that each system is tested on the 4 datasets, while
the other is the control.

The intention is to test the impact of each dataset type on CD and MMT sep-
arately, as its not guaranteed that both will perform best on the same type
of dataset. Also note that because the dataset splitting operation randomly
chooses the segments for each split, the performance from run to run may
fluctuate by a considerable amount. This randomization can’t be completely
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removed as part of it is due to the way Tensorflow initializes the models. Also,
having additional randomization from the dataset splitting operation eliminates
bias that a certain choice of training segments may produce. Therefore our tests
include 3 runs for each dataset, such that this randomization can be averaged,
and a somewhat realistic performance impression is gained.

3 Class meal type classifier The 3 class meal type classifier doesn’t rely on
other systems to perform meal type classification, thus the above described test-
ing procedure is simplified. For this system the same 3 runs will be performed
on each of the 4 datasets.
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5 Results and observations

5.1 Results - PSD Meal type classifier test

The results from testing the PSD dataset configurations from Table 3, can be
summarized in the two Figures below.

Figure 29: Typical prediction result for the PSD meal type classification system when
using datasets with segment length of 0.45, 10, 20, 30 and 60 seconds.
Predicted labels in blue, True labels in orange.

Figure 30: Typical prediction result for the PSD meal type classification system when
using dataset with segment length of 1 second. Predicted labels in blue,
True labels in orange.

Figure 29 represents the typical result when training the system using PSD
features with segment length of 0.45, 10, 20, 30 and 60 seconds. The system
is always biased towards one class or the other, leading to all predictions being
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of the same class. Which class gets biased is random and changes each time
the system is trained. This randomization is caused by the dataset splitting
operation (which is intentional), as well as the randomized Tensorflow model
initialization. Although randomization is responsible for the changing bias, the
bias itself is a flaw of this system.

A slightly better result is obtained when the system is trained using PSD
featues with segment length of 1 second, as shown in Figure 30. The bias is
reduced, allowing few segments during the meal time to be classified correctly,
however majority of the predictions are still subject to a bias. This dataset con-
figuration was tested (ran) multiple times and the best observed case achieved
accuracy in the mid 60% range, for all 4 test recordings. All in all, the 1 sec-
ond segment length dataset performed slightly better than others, however the
results were still very variable from run to run. None of the runs managed to
correctly classify the meal types of all 4 testing recordings.

Despite the meal type classification flaws, this system excels at meal onset
detection. All of the tested dataset configurations managed to correctly detect
meal regions for all the tested recordings. This isn’t surprising considering that
the same type of dataset was used in [Klavins, 2022] to detect meal onset.

5.2 Results - Chew detector system test

Recording
Meal
Type Accuracy Precision Recall

MMT Prediction
Ratio (CD)

MMT Prediction
Ratio (True)

01-220215-1528* oats 0.973 0.290 0.763 95.2% 97.8%
01-220215-1601* salad 0.948 0.331 0.902 86.7% 94.9%
01-220215-1647* oats 0.979 0.271 0.669 89.5% 94.5%
01-220215-1726* salad 0.974 0.408 0.876 89.5% 97.2%
01-220216-1238* oats 0.976 0.331 0.840 98.0% 100.0%

Avg. 5 recs. - 0.970 0.332 0.837 91.8% 96.9%
Total 20 recordings - - - - 90.5% -

Table 6: Results from the chew detector system test 4.9.2. Recordings marked with *
have true labels available. For this test the network is trained and tested with
the 350ms segment length dataset (128x33).
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Figure 31: Chew detector predicted and true labels for two testing recordings: oats
meal (top), salad meal (bottom). The green labels indicate the predictions,
which were either class “silence” or “chew”. The red labels are the true
labels, and are provided for reference.

Table 6 contains the results from the system test in Section 4.9.2. For this test
the dataset with 350ms segment length is used. The test evaluates 5 of the 20
recordings in the testing dataset which have true labels available. The 3 per-
formance metrics, the accuracy, precision and recall, are calculated for the pre-
dicted labels relative to the true labels. The 6th column gives the CD predicted
label performance on the best achieved MMT system model. For comparison,
the MMT performance using the true labels is given in column 7. The average
prediction ratio, obtained using predicted labels of all 20 recordings is given on
the bottom row.

The accuracy, precision and recall metrics measure systems ability to cor-
rectly detect chewing segments. During system development it was observed
that the most important metrics, which translate directly to MMT performance,
was the precision and recall. These are observed slightly higher for the salad
meals. Curiously, the MMT prediction ratio is higher for the oats meals. The
most lacking aspect of the performance is the precision, which averaged for all
5 meals to 0.332.

In combination with MMT, which is its intended purpose, the CD system
performs very well overall. The average prediction ratio for the 5 recordings is
91.8%, which on average is 5.1% less than the true labels achieved for the same
recordings. Additionally, the prediction ratio of the MMT using CD predicted
chew labels is 90.5% when averaged for all 20 testing recordings.

Figure 31 shows the true and predicted labels for the first 2 meals in the
table. Each spike in the plot corresponds to prediction label of a segment in the
test recording. Recall that the segmented testing recordings contain only a part
of the entire recording, specifically 15 minutes to the end of the recording. This
corresponds to roughly 5 minutes of silence, then 5 minutes of meal consump-
tion, followed by another 5 minutes of silence. The predictions also reflect these
regions of the recording. Few false positive chew detections are made outside
of the meal region, which is an issue solved by a meal onset detector such as in
Klavins [2022], or even by using the PSD meal type classifier, which as we’ve
seen works well for this purpose. This figure is included mainly to give a visual
sense of the predictions that the CD system provides.
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5.3 Results - Mel meal type classifier system test

Recording
(ch-yymmdd-time)

Predicted Class
(No chewing labels)

Prediction ratio
(CD chewing labels)

Prediction ratio
(True chewing labels)

01-220215-1528 (oats)* 98.3% (oats) 95.2% (oats) 97.8%
01-220215-1601 (salad)* 71.3% (oats) 86.7% (salad) 94.9%
01-220215-1647 (oats)* 96.1% (oats) 89.5% (oats) 94.5%
01-220215-1726 (salad)* 71.5% (oats) 89.5% (salad) 97.2%
01-220216-1238 (oats)* 99.2% (oats) 98.0% (oats) 100.0%
01-220216-1315 (salad) 70.4% (oats) 84.9% (salad) -
01-220216-1404 (oats) 94.6% (oats) 85.9% (oats) -
01-220216-1438 (salad) 57.4% (oats) 84.1% (salad) -
01-220217-1435 (oats) 97.9% (oats) 94.6% (oats) -
01-220217-1506 (salad) 55.6% (oats) 90.5% (salad) -
01-220217-1541 (oats) 92.7% (oats) 80.1% (oats) -
01-220217-1612 (salad) 58.4% (salad) 91.5% (salad) -
01-220217-1707 (oats) 98.5% (oats) 94.8% (oats) -
01-220217-1740 (oats) 94.3% (oats) 88.8% (oats) -
01-220217-1813 (salad) 68.5% (oats) 85.0% (salad) -
01-220217-1848 (salad) 65.4% (oats) 85.8% (salad) -
01-220218-1424 (oats) 94.6% (oats) 93.3% (oats) -
01-220218-1458 (salad) 73.5% (salad) 98.0% (salad) -
01-220218-1542 (oats) 99.0% (oats) 96.1% (oats) -
01-220218-1615 (salad) 54.9% (oats) 97.4% (salad) -

Avg. 5 labeled recs. 70.2% ± 38.0% 91.8% ± 4.2%
96.9% ± 2.2%

(o=97.4%, s=96.1%)
Avg. 15 unlabeled recs. 69.7% ± 27.6% 90.1% ± 5.4% -

Avg. all 20 recs.
69.8% ± 29.43%

(o=96.5%, s=43.2%)
90.5% ± 5.2%

(o=91.6%, s=89.3%) -

Correct predictions 12/20 20/20 5/5
* Labeled recordings Accuracy Precision Recall
5 CD labeled recordings 0.916 0.558 0.840
5 true labeled recordings 0.998 0.976 0.978

Table 7: Results from the Mel meal type classifier system test 4.9.3. Recordings marked
with * have true labels available. For this test the network is trained on the
350ms segment length dataset (128x33).

Figure 32: Predicted and true labels for two recordings: oats meal (top), salad meal
(bottom). Predictions are made using MMT system with CD predicted chew
labels. The blue labels indicate the predictions, which were either class “si-
lence”, “salad” or “oats”. The true labels in red show two classes “silence”
or “chew”. For the true labels all of the chews are of the meal type indicated
by the title of the recording.
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Table 7 shows the results obtained from the test in Section 4.9.3. For this test
the dataset with 350ms segment length is used.

Recall the earlier statement about using the same recordings to create the
training and testing dataset in Section 4.6.5. That claim can be verified with
these results. The first 5 testing recordings, marked with *, were created by
periodically segmenting the same recordings that were used to extract the in-
dividual chew segments for the training dataset. In most cases this is seen as
a flawed way of testing, however the argument proposed here is that by seg-
menting the recording periodically, such as is the case for the testing dataset, it
changes the individual segments enough for this to not be a concern. Compar-
ing averages, 91.8% and 90.1%, for the 5 marked and 15 unmarked recordings
respectively, the difference is 1.7% with 4% standard deviation. The marked
testing recordings do perform slightly better, however due to the small differ-
ence it was concluded that the labeled recordings have practically no significant
advantage in terms of performance. For transparency, the performance averages
of all unmarked testing recordings are also provided.

Notice that the results for the first 5 recordings, as well as the 5 and 20
recording average prediction ratios are identical to results Table 6 for the CD
system test. This is no coincidence, as the same best achieved CD system model
was used to generate the chew labels for this MMT system test.

The the important metric for meal type classification is the prediction ratio.
This metric gives the percentage of segments in the predictions that are pre-
dicted as either “oats” or “salad” class, and can be used for the final decision
of meal type of the recording. Relying on this metric, the meal types in all 20
recordings are predicted correctly, with average prediction ratio of 90.5% and
5.2% standard deviation. This comes to avg. 91.6% for oats recordings, and
89.3% for salad recordings.

The second column contains the prediction ratios for the MMT system with-
out applying any kind of chewing labels. This was included to show the neces-
sity of appropriate chew detector, as without one the performance is consider-
ably worse. For the 20 testing recordings, the oats recordings reach prediction
average of 96.6% while salad recordings only 43.2%, leading to only 12/20
correctly classified recordings. As mentioned earlier, this is caused by the fact
that all of the “silence” class segments are classified to the closest of the two
meal type classes, which is “oats”.

The fourth column shows the prediction ratios for the first 5 recordings using
the true chewing labels. This means that all of the MMT predictions are made
only on segments that contain exactly a chew, which in theory allows to judge
pure MMT performance. For the 5 tested recordings, the average prediction
ratio was 96.9%, which is a 5.1% increase compared to using the CD predicted
chew labels. This reveals two things: one, the pure MMT meal classification
ability is very close to perfect, and two, the discrepancy between the prediction
ratio for oats (97.4%) and salad (96.1%) is caused by the MMT. Additionally,
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the accuracy, precision and recall metrics measure the meal type classification
abilities for the 5 labeled recordings. The chewing segments can be selected
using either the CD predictions or the true chewing labels. The results table
includes these metrics for both. When using the true labels, all 3 metrics are
very close to a perfect score of 1. The CD labels also have high, but slightly
lower score for accuracy and recall. Precision however, is significantly lower for
the CD predicted labels. This is likely correlated to the precision results seen for
chewing detector test in Table 6.

Figure 32 shows the prediction and true labels for the 2 first recordings in
the results table. Recall that for MMT system, the testing dataset was created
using only the meal region part of the recording, thus in comparison to the
analogous Figure 31 for the CD system, the silence parts aren’t present here.
Once again, this figure is included only to provide a visual representation of the
predictions that the system makes.
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5.4 Results - 3-class meal type classifier system test

Recording
(ch-yymmdd-time) Prediction ratio

01-220215-1528 (oats)* 94.5% (oats)
01-220215-1601 (salad)* 85.4% (salad)
01-220215-1647 (oats)* 94.7% (oats)
01-220215-1726 (salad)* 84.6% (salad)
01-220216-1238 (oats)* 95.3% (oats)
01-220216-1315 (salad) 85.0% (salad)
01-220216-1404 (oats) 81.3% (oats)
01-220216-1438 (salad) 85.1% (salad)
01-220217-1435 (oats) 97.1% (oats)
01-220217-1506 (salad) 87.3% (salad)
01-220217-1541 (oats) 83.0% (oats)
01-220217-1612 (salad) 92.3% (salad)
01-220217-1707 (oats) 92.0% (oats)
01-220217-1740 (oats) 90.2% (oats)
01-220217-1813 (salad) 91.4% (salad)
01-220217-1848 (salad) 86.0% (salad)
01-220218-1424 (oats) 91.6% (oats)
01-220218-1458 (salad) 97.8% (salad)
01-220218-1542 (oats) 96.1% (oats)
01-220218-1615 (salad) 94.9% (salad)

All 20 recordings
avg. 90.3% ± 5.1%

(o=91.6%, s=89.0%)
5 labeled recordings avg. 90.9% ± 5.4%
15 unlabeled recordings avg. 90.1% ± 5.2%
Correct predictions 20/20
Accuracy (5 labeled) 0.970
Precision (5 labeled) 0.556
Recall (5 labeled) 0.877

Table 8: Results from the 3-class meal type classifier system test 4.9.4. Recordings
marked with * have true labels available. For this test the network is trained
on the 350ms segment length dataset (128x33).

Figure 33: 3C system predicted and true labels for two recordings: oats meal (top),
salad meal (bottom). The yellow labels indicate the predictions, which were
either class “silence”, “salad” or “oats”. The true labels in red show two
classes “silence” or “chew”. For the true labels all of the chews are of the
meal type indicated by the title of the recording.



5 Results and observations 59

Concluding the system testing part, the results of the 3-class meal type classifier
(3C) system test from Section 4.9.4, are presented in Table 8. For this test the
dataset with 350ms segment length is used.

The performance is nearly identical to the MMT system. The 3C correctly
classified all 20 testing recordings with average prediction ratio of 90.3% and
standard deviation of 5.1%.

Once again, its possible to compare the performance between the recordings
marked with * and those without. For the 3C system this difference is even
smaller than for the MMT system.

The accuracy, precision and recall metrics also closely resemble the results
from the MMT system. Precision is still lacking behind despite the system not
relying on external chewing detector to remove silence segments.

Like for the previous two systems, the Figure 33 provides a visual represen-
tation of the predictions made by the 3C system. Like for the CD system, all
testing dataset recordings capture only from the 15 minutes to the end of the
original recording. This looks very similar to the CD system predictions in figure
31, which makes sense considering that the performance of the 3C system and
the MMT system using CD chew labels is practically equal.

5.5 Training curves and testing split evaluation

This section includes the training loss and accuracy curves for the best achieved
system models of the CD, MMT and 3C systems, as well as the testing split
confusion matrices. These results are included to satiate the potential curiosity
of the reader, and provide more transparency about the results.

(a) (b) (c)

Figure 34: Confusion matrix for the testing split of the best achieved CD (a), MMT (b)
and 3C (c) system model

Although the testing split implementation was covered in the methodology
section, the actual use for it in the study was limited. The testing split was
mostly used for quick and general evaluation of performance during earlier
development of the neural network architecture. When it came to fine tuning
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the system, it was found that testing split didn’t reflect the performance of the
testing dataset. In certain cases the performance would improve on testing split,
where it would suffer for the testing dataset. Since optimizing for the realistic
data scenario is the goal, from that point into the development only the testing
dataset was used to assess the performance. The testing split confusion matrices
for the CD, MMT and 3C systems are shown in the Figure 34.

(a)

(b)

(c)

Figure 35: Training loss and accuracy curves of the best achieved CD (a), MMT (b)
and 3C (c) system model

The training loss and accuracy curves for training and validation splits of the
best achieved models for the 3 systems are given in Figure 35. As mentioned
in the methodology section, the number of epochs is controlled dynamically by
Early stopping. This terminates further training once the validation loss reaches
a plateau, avoiding potential overfitting.
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5.6 Results - Mel feature dataset test

Testing system
Control
System

Testing
Dataset Run

No.
correct

recordings

Prediction
Ratio

(correct class)

Prediction
Ratio
Avg.

1 20/20 81.7%
2 20/20 85.1%128x33

(MMT)
128x8

(100ms)
3 20/20 82.8%

83.2% ± 1.7%

1 20/20 90.1%
2 20/20 88.4%128x33

(MMT)
128x33
(350ms)

3 20/20 87.8%
88.8% ± 1.2%

1 20/20 90.4%
2 20/20 86.8%128x33

(MMT)
128x43
(450ms)

3 20/20 89.8%
87.9% ± 2.7%

1 20/20 88.0%
2 20/20 85.1%

Chewing Detector
(CD)

128x33
(MMT)

128x48
(500ms)

3 20/20 89.3%
87.9% ± 0.8%

1 20/20 84.5%
2 20/20 83.8%128x33

(CD)
128x8

(100ms)
3 20/20 84.2%

84.2% ± 0.4%

1 20/20 85.9%
2 20/20 87.0%128x33

(CD)
128x33
(350ms)

3 20/20 88.2%
87.0% ± 1.2%

1 20/20 87.9%
2 20/20 88.4%128x33

(CD)
128x43
(450ms)

3 20/20 86.6%
87.6% ± 0.9%

1 20/20 87.7%
2 20/20 85.6%

Mel Meal
Type Classifier

(MMT)

128x33
(CD)

128x48
(500ms)

3 20/20 86.2%
86.5% ± 1.1%

1 20/20 75.8%
2 20/20 76.2%None

128x8
(100ms)

3 20/20 78.7%
76.9% ± 1.6%

1 20/20 87.0%
2 20/20 87.5%None

128x33
(350ms)

3 20/20 85.5%
86.7% ± 1.0%

1 20/20 88.9%
2 20/20 90.2%None

128x43
(450ms)

3 20/20 88.6%
89.2% ± 0.9%

1 20/20 89.3%
2 20/20 85.6%

3-Class Meal
Type Classifier

(3C)

None
128x48
(500ms)

3 20/20 88.4%
87.8% ± 1.9%

Table 9: Results table for the Mel spectrogram dataset test 4.9.5
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The table above summarizes the results from the Mel spectrogram dataset test
in subsection 4.9.5. All 3 systems that use Mel spectrogram dataset were tested.
The test evaluated the performance across the 4 different Mel spectrogram
datasets from Tables 4 and 5. The differing factor being the segment length,
this test would indicate which segment lengths perform better for this particular
type of Mel spectrogram based systems. The metric for evaluation is prediction
ratio.

For the chew detection system, the smallest, 100ms segment length dataset
achieved average prediction ratio of 83.2%, with the best run reaching 85.1%.
The datasets with segment lengths of 350, 450 and 500ms achieved prediction
ratios of 88.8%, 87.9% and 87.9% respectively, and all performed considerably
better than 100ms. When considering their standard variations, the prediction
ratio difference between the 3 longest segment length datasets isn’t very signif-
icant, however the 350ms dataset seems to perform the best.

Mel meal type classifie has very similar results. The 100ms dataset achieved
prediction ratio of 84.2%, while the 350ms, 450ms and 500ms segment length
datasets achieved 87.0%, 87.6% and 86.5%, respectively. The 3 longer segment
length datasets once again outperform the smaller, 100ms dataset, by a consid-
erable margin. Overall, the best performing dataset for the MMT system is the
450ms segment length dataset.

Finally, for the 3C dataset test, the results are very similar to the MMT sys-
tem. The 100ms segment length dataset is once again the worst performing
out of the 4. The 3 remaining datasets have similar performance in the 86-
89% range. Between them, the best performance of 89.2% was achieved by
the 450ms dataset. The 500ms dataset performed slightly worse, with 87.8%,
however it managed to edge out the 350ms dataset, which achieved 86.7%.

Overall, the 450ms segment length works best for the MMT and 3C systems,
while the CD system performs better with 350ms segment length.
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6 Discussion

6.1 The PSD meal type classifier

The first approach for meal type classification was a fully connected neural net-
work trained on PSD feature dataset. As observed in the results Section 5.1,
the meal detection performance was very poor. In total, 5 different PSD feature
configurations with varying segment lengths (0.45, 1, 10, 20, 30 and 60 sec-
onds) were tested. All resulting predictions were plagued with a strong bias for
predicting only one of the two meal type classes. The features with 1 sec. seg-
ment length showed slightly better performance, however these results were
still unreliable and worse than would be acceptable. The reason for the slight
performance improvement for features with 1 sec. segment length is unknown.
It could be argued that, compared to the 10+ sec. segment length features, the
1 sec. segment length is closer to the length of a single chew which works bet-
ter for meal type classification. This theory is contradicted by the fact that the
even smaller, 0.45 second, segment length features performed identically to the
10+ second segment length features. Recall Figure 19, which indicates that the
individual chews are around 350ms long. If capturing a chew more precisely
helped the PSD meal type classifier, then the 0.45 second features would be
expected to perform similar to the 1 second segments.

Although unintentionally, the PSD meal type classifier did work very well for
meal onset detection. In all cases the system managed to correctly differentiate
the meal region from silence, as evidenced by the Figures 29 and 30. This was
the case for all the test runs. While this feature is needed for the grand scheme
of realizing an artificial pancreas system, the same result was already achieved
using SVMs in the previous work done by the author [Klavins, 2022].

6.1.1 Why PSD features don’t work well for meal classification?

After seeing these results, it is then curious why the PSD features fail to provide
sufficient information for meal type classification, when they work well enough
for meal region detection. Two hypothesis are presented.

Firstly, the neural network is only as good as its training data. For PSD meal
type classifier the training data consists of multiple whole-length recordings
which are segmented periodically, and each segment consisting of multiple fea-
tures. The collection of training segments capture everything that happens in
the recording. Non-chewing events, such as silence, random noises and swal-
lowing events are also present. The labeling which is used for training, marks
the entire meal region as the specific meal type, meaning that all the non-
chewing events there within are also labeled as that meal type. Human analysis
of the recordings reveals that largely chewing and swallowing events are the
only auditory cues which perceivably distinguish the meal types, with a strong
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emphasis on chewing events. Putting all this together, its possible that the poor
performance is influenced by the non-chewing events, which don’t really con-
tribute to differentiating between the meal types, but nevertheless have been
marked as part of one or the other meal type class.

The second observation, which is more likely to contribute to the poor meal
type classification performance, is the information that the PSD features cap-
ture. Observe Figure 36, which shows the comparison between PSD and Mel
spectrogram features, as well as a reference spectrogram of the the chewing
event in Audacity. Although the PSD segment in the figure isn’t the same as the
PSD based feature matrices (Fig. 16) used for training, it provides an insight
in the type of information that the PSD based features are able to extract. The
PSD spectrogram has little resemblance to the reference spectrogram. The same
observation was made for other randomly selected segments of the recording.
Sometimes the PSD features would show significant peaks where there is little
auditory activity, and vice versa. This isn’t to suggest that the PSD based fea-
tures are useless. Rather, this indicates that for the system that which was used
in this study, the PSD features do not capture the appropriate details, which can
cause poor meal type classification performance. The Mel spectrogram captures
the chewing events much more accurately.

Figure 36: Comparison between PSD spectrogram, Mel spectrogram and Audacity ref-
erence of a single chew occurrence. All 3 windows capture the same length
and region of the audio recording.

6.2 Chew detector

The CD system was designed to complement the MMT system. Unlike the PSD
meal type classifier, both the CD and MMT are using Mel features. Not only is
there a change from PSD features to Mel spectrogram, but also the way that
the segments are extracted. Instead of using periodically selected segments, the
training dataset consists of Mel spectrogram segments which only, and more or
less precisely, capture a single chew occurrence.

Although the objective of the CD system is to assist the MMT system, and
thus its performance is ultimately measured in conjunction with MMT, its in-
dividual objective is to as closely as possible resemble the true labels, which
were created manually for 5 of the 20 recordings. To measure this ability the
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accuracy, precision and recall metrics were created using the predicted and true
labels for the 5 recordings. Judging by these metrics, the overall chew detec-
tion performance is good, with the exception of one issue, low precision. The
accuracy and recall for the detected chews is relatively high (0.970 and 0.837
respectively), meaning that most of the actual, true labeled, chews are detected.
However the precision is somewhat low (0.332), meaning that there are a lot
of predicted chews which aren’t actual chews.

6.2.1 Why is precision low?

Figure 37: Section of the recording and true labels in Audacity (top), and a plot of CD
predicted (green) labels and true (red) labels of the corresponding record-
ing section (bottom)

Figure 37 shows a snippet of the predicted (green) and true (red) segment
labels, as well as the corresponding spectrogram along with the true labels from
Audacity. This figure captures the two aspects of the low precision problem.

Firstly, notice the left side of the plot. For many of the true labels there are
multiple predicted labels scattered in close proximity. The likely cause for this
phenomenon lies in structure of the testing dataset. Since the testing recordings
are periodically segmented with a segment shift of 50ms, there are multiple
segments which capture the same, roughly 350ms long chew. If this is the case,
the CD system technically doesn’t make a mistake, but since the true labels are
only assigned for a single segment, this is seen as a fault by the metrics. As this
is a technical issue, it could be fixed by creating true labels which mark multiple
consecutive segments which include the same chew.

The second issue that’s causing low precision is apparent on the right hand
side of the plot. Notice how the region doesn’t contain any true chews, yet the
CD detects multiple segments all the same. By cross-referencing the region with
the reference spectrogram, as well as listening to the recording, it turns out that
the region contains only non-chewing sounds, such as swallowing and tongue
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movements. This seems to be a quite considerable source of false-positive de-
tections. A possible solution would be to introduce training segments which
capture swallowing and miscellaneous sonic elements. Its uncertain how well
this would work, considering that the training dataset already contains non-
chewing segments extracted from within the meal region during the training
dataset augmentation step in Section 4.6.4. This in all likelihood means that
some of the miscellaneous sounds have already been included in training. In-
cluding these more deliberately and methodically could however potentially
help reduce these false positives.

6.2.2 Improving the chewing detector

One of the issues that’s been highlighted by the Figure 37 is the false positive
prediction of non-chewing noises such as swallowing and miscellaneous mouth
sounds. If this is already an issue for our very controlled recording protocol,
it is likely that for a dataset which also includes environmental noise, the per-
formance impact would be even more detrimental. As will be detailed later in
Section 6.6.2, certain flaws were discovered in the data acquisition equipment
which might have affected the overall performance results in this study, includ-
ing chewing detection. All these factors suggest that relying on audio cues alone
to detect chews might be unreliable.

Literature review section has listed multiple methods of dietary monitoring,
specifically through detection of chews. One of the least intrusive approaches is
using a piezoelectric sensor attached to the temporalis muscle, directly captur-
ing the muscle flexion during mastication. Combining the current audio data
with measurements from a piezoelectric sensor could very likely eliminate the
problem of false positives. Each prediction label made by the Mel spectrogram
data could be cross-referenced by flexion pattern detected by the sensor to en-
sure that the detections are indeed chews.

6.3 Mel meal type detector

Taking the MMT system results (Table 7) at face value, the performance is very
good. In a real world application the meal type classifier would make the final
decision based on the prediction ratio, which essentially picks the most common
class among the predicted class labels. With this metric the system achieves
correct classification for all 20 meals with a very good average prediction ratio
of 90.5%. These results are achieved in combination with the predicted chew
labels from the CD system.

When using the true chewing labels instead of the CD predictions, the in-
fluence of incorrectly predicted CD chew labels is eliminated from the MMT
performance. For this configuration, as shown in column 4 of the results Table
7, the MMT achieves average prediction ratio of 96.9%, for the 5 labeled meals.
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Note that this is the result for the 5 testing recordings which were also used to
create the training dataset, but as discussed in the results section, there is a
very small difference in performance between the 5 labeled and 15 unlabeled
recordings. Therefore it seems appropriate to conclude that if the CD chew-
ing labels were more accurate, all 20 recordings could see a similar average
prediction ratio as for the 5 labeled recordings.

The prediction ratio results for the individual classes follow the same trend,
both when true and CD predicted chewing labels are used. That is, oat record-
ings have a slightly higher prediction ratio than salad, regardless of whether
the true or CD labels are used.

The accuracy, precision and recall metrics for the 5 labeled recordings (bot-
tom of the table) confirm that the largest source of error for the MMT system
is false positive CD chewing labels. All metrics achieve nearly perfect scores
when the true labels are used, thus the primary focus for further improvement
of meal type classification should be correct detection of chew segments by the
CD system.

As a sidenote, it was already mentioned multiple times that the testing
recordings contained only a part of the entire recording. For MMT system tests
this was only the meal region. It is assumed that in a live testing scenario a
valid meal region would be provided by a meal onset detection system, such as
in [Klavins, 2022].

6.3.1 Why does the MMT perform slightly better for oats recordings?

This might be a nitpick considering that the majority of the errors in MMT
system are caused by incorrectly selected chewing segments, however as results
have shown, there remains a slight performance advantage for recordings with
oat meals. The influence of CD chew labels for this issue has also been ruled
out by using true labels, which means that this is an inherent issue of the MMT
system.

While its not certain as to what causes this slight bias, here are a few facts
which may help to find an answer. The initial suspicion was that this was caused
by class imbalance. This however was quickly dispelled by comparing the ratios
of the two classes in the training dataset: 1302 oats segments, and 1712 salad
segments. Considering that more training examples should lead to a better per-
formance, this fact seems to contradict the observations where oats meals are
predicted slightly better. Also, this discrepancy shouldn’t be caused by influence
of non-chewing features during training, as the training dataset consists solely
of segments which, more or less exactly, capture only a single chew occurrence.

The more likely explanation is provided when examining the nature of mas-
tication. The principal mechanism that allows the MMT system to classify meal
types is the frequency content of the spectrogram. The idea for choosing salad
and oats as the food types was that their characteristic sound is different. Oats
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sound more muffled and bassy, while salad is crispier and louder. However,
what happens once the salad gets chewed, or perhaps is stale and no longer
crispy? In that case the salad will be less distinguishable from the oats meal.
This was also observed when listening to the recording while creating the man-
ual labels. The intensity and sound characteristic of salad chews becomes more
similar to oats as the test subject proceeds to chew the salad. This explana-
tion also conforms with the prediction labels shown in Figure 32. Notice that
groupings of predicted labels are followed by slightly larger gaps. These gaps
correspond to the test subject swallowing the food and taking another mouth-
ful. Each grouping of frequent predictions is then a period where test subject
masticates the mouthful. Also notice that for the salad meal, the last few pre-
dicted labels of each grouping tend to be predicted as oats, which agrees with
the theory that mastication of food will over time change the sound character-
istic of food, leading to false predictions.

Recall from Section 3.2.2 that the salad meal also included some pasta,
which was consumed together with salad. Well prepared pasta, as was the case,
isn’t crispy like salad and produces sound characteristics more similar to oats
meal, which could also cause the few salad segments to be predicted as oats.

6.3.2 Possible improvements for meal type classification

Although the MMT system performed very well when provided with accurate
chewing labels, the system has not yet reached its full potential. What we’ve
established is that for two, quite distinct meals, the performance is very good.
The next logical step is challenging the system by introducing larger variety of
meals, and perhaps meals which have similar sound characteristics. By adding
more meal types the classifier is very likely to decrease in performance. As the
current system stands, the Mel spectrogram based training dataset is enough,
however for multiple meal types this might become the limiting factor. Here
are some ideas which might need to be considered for when the system is ex-
panded.

Firstly, a possible differentiating property which could be exploited is the dif-
ference in chew occurrence frequency between the meal types. While creating
manual labels it was observed that oat meals had considerably fewer chewing
occurrences than salad meals. This isn’t due to oat meals being shorter and
therefore having fewer chews, as all recordings had nearly equivalent meal du-
rations. Each oats meal had roughly 250 chewing labels while salad had double.
Somehow adding this property into training dataset could potentially help dis-
tinguish between meal types.

After the recordings were labeled some analysis was performed on the statis-
tics of the labels (figure 19). This analysis reveals another property which could
potentially be used in meal type classification, the chew length difference. As
evidenced from the figure, salad meals tend to have shorter chewing occur-
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rences than salad. While this difference is small, and perhaps statistically not
significant enough for these specific food types, it might be more significant
once larger food variety is introduced. A challenge with implementing both
suggestions is that they require a reliable chew detector.

6.4 3-Class meal type classifier

Finally, lets review the 3-class meal type classifier. As it has been mentioned
many times, this system essentially combines the CD and MMT systems, and
judging from the results in Table 8, the performance is also practically the same.
The average prediction ratio for all 20 testing recordings is 90.3%, which is only
0.02% different than the MMT system and isn’t statistically significant. It also
exhibits the same slight class bias towards oat meals, with 91.6% prediction
ratio for oats meals and 89.0% for salad. This behaviour has the same explana-
tion as for the MMT. This begs the question, why even have a 3-class classifier?
Was it all worth the effort?

6.4.1 Comparing 3-class classifier to the CD + MMT combination

When paying attention purely to the results, both methods for meal type classi-
fication gave essentially the same results. Not only they used the same training
and testing datasets, but also the same network architecture turned out to work
best for both. While this wasn’t expected initially, it probably should have. In
reality, the 3C system was created at a point in the study when the CD+MMT
systems didn’t work. Although those problems were largely centered around
technical implementation, and are now solved, the 3C system persists.

Now lets look at the differences and advantages each approach has. For one,
the 3C system has clear advantage in a practical implementation. This should
come as no surprise as combining two separate systems not only takes more
software resources, but also separate configuration for each system, which cre-
ates more complexity for the same result.

Advantage that two separate systems have is configurability. While for a sim-
ple two class meal type classifier the simple models are enough, in a more re-
alistic application scenario, with many different food types and environmental
noise in datasets, a much more complex system would likely be required. It is
therefore not certain that the same network architecture for both CD and MMT
would suffice. More likely than not, the architecture would need to be more
closely tailored to their individual tasks. This almost certainly becomes the case
if additional and different dataset features are introduced. In that sense, per-
fecting two individual systems, and combining them only once they are com-
plete, is an easier task than perfecting a single system.
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6.5 Meeting the goals for the study

The primary goals for this study were outlined in Section 1.1.1. Performance
requirements in relation to application in an artificial pancreas system were
briefly discussed, where it was concluded that the focus in this study should be
on correctly classifying the meal type of all 20 testing recordings while aiming
for the highest possible prediction confidence.

This study implemented two main meal type classification systems, and both
performed nearly equally. Both managed to correctly identify the meal type of
all 20 testing recordings, with average prediction ratio of ≈ 90%. In terms of the
goals that were set prior to the study, this is a very good result. As noted in the
aforementioned section, the acceptable prediction confidence, in this case mea-
sured by prediction ratio, would need to be assessed by doctors or experts in
the field. This value would need to be evaluated in conjunction with the artifi-
cial pancreas (AP) as a whole. Perhaps the final AP implementation will feature
a different security/safety mechanism for ensuring reliability and accuracy of
predictions. Either way, for the simple case of two meal types, this system de-
livered average prediction confidence of 90.5%, which is close to what author
guesses would be determined to be acceptable for application in AP system.

It should also be mentioned that the current meal type classification imple-
mentation is very simplistic and still considerable ways off from what would
likely be required for a finalized AP system. It’s therefore difficult to assess per-
formance requirements in that context.

6.6 Datasets, data acquisition and labeling

In this section we’ll analyze the choices of parameter values for creating the
Mel spectrogram datasets, as well as cover some problems that were discovered
during data acquisition.

6.6.1 Mel spectrogram dataset

Segment length The general conclusion from the Mel dataset test results in
Table 9, is that longer segment length features work generally better. Initially
the 100ms segment length dataset (128x8) was used only for CD system. The
idea was that having a short segment length of 100ms would capture only
the initial down-bite peak of the chewing occurrences, which is usually the
strongest portion of the chew and shows up best on the spectrogram, thus work-
ing better for chew detection than longer segments. In reality, results show that,
although the performance with the shorter segment length was decent, it was
exceeded by the segments with length 350ms, 450ms and 500ms. Comparing
these numbers to Figure 19, its apparent that these segment lengths allow to
capture nearly the entire chew. This was also the intention for the three longer
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segment length datasets, as the idea was for the MMT and 3C neural networks
to learn the spectrogram patterns of the entire chew and use them to sepa-
rate the two meal types. However as it turned out, the longer segment length
datasets were superior also for chew detection.

Between the 3 longer segment length datasets (350, 450 and 500ms), the
best were the 350 and 450ms. Again, basing off of chew length analysis in
Figure 19, the two segment lengths best capture the individual chews. During
labeling, it was observed that in certain instances the true chew labels were
less than 400ms apart from one and other. Thus it’s likely that for the 500ms
segments, more than a single chew was captured, negatively impacting the per-
formance. This leads to the conclusion that for the Mel spectrogram systems
that were implemented in this study, the best segment lengths to use are 350ms
and 450ms.

Segment shift Segment shift is a parameter only present in the testing dataset.
It decides the periodicity of the overlapping segments. For all 4 datasets a shift
of 50ms was used. Although not documented in the results, early tests quickly
showed problems with larger shifts. The main issue being that larger shifts
make too large jumps, meaning that capturing a good segment of a chewing
occurrence is less likely. Larger shift values cause more segments to contain
partial chews, which make classification process more difficult.

The short segment shift doesn’t come without downsides. The first obvious
downside is increased file size, as more segments are required to cover the
chosen length of the recording. Second downside is indirectly mentioned earlier
in discussion Section 6.2, where the the issue of low precision is covered. There
it was mentioned that each true chewing label is surrounded by a small group of
consecutively predicted chewing labels. The likely reason for this is that a small
segment shift was used. As the shift gets smaller, more consecutive segments
capture the same chew, only slightly shifted with respect to one and other. This
isn’t a big issue as the possible workaround suggested adapting the true labels
to also include the consecutive segments which capture the same chew.

In conclusion, for optimal performance on the methods used in this study, it’s
best to use shorter shift, with the drawback of larger data storage requirements
and slightly more complicated implementation to avoid incorrect accuracy, pre-
cision and recall metrics.

Mel window length and shift The two Mel spectrogram parameters which
are present for all Mel spectrogram datasets are the Mel window length and
Mel shift. During the early stages of Mel-based system implementation, dif-
ferent values for these parameters were tried. A conclusion was reached that
more detailed spectrograms yield better results. This meant that primarily Mel
window length had to be as small as possible. Too small values however, would
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produce numerical errors for spectrogram. Thus a suitable value of 30ms, which
was close to the limit, was chosen for all the datasets. The Mel window length
could be even further reduced, however this would come at the cost of reduced
frequency bins, which arguably contain more important sound characteristic
information. How much the number of frequency bins affects the performance
remains to be tested.

The Mel window shift could go much lower, however was set to a value of
10ms. Any lower values would only smear/stretch the spectrogram and not pro-
vide any more details. Additionally the spectrograms would be larger storage-
wise, which was already a problem for computers with lower RAM capacities.

6.6.2 Data acquisition and it’s issues

The neural network can only be as good as its input data. Although thus far
it has not been mentioned, the quality of audio recordings has been a consid-
erable sticking point during the development of the study. The issue that was
discovered early on, was poor sound quality in the recordings. After some test-
ing it was confirmed to be caused by the microphone cup housing, shown in
Figure 13. The housing is attached to the patient by a double sided tape ring
which effectively creates isolated pressure area inside the microphone cup. The
microphones were designed for previous APT studies to capture bowel sounds
by placement on the stomach region, and the pressure isolation helps pick up
the low amplitude bowel sounds. This also causes a low-pass filtering and res-
onance effect on the audio, which works well for capturing the low-frequency
(up to 2kHz) bowel sounds. However for the purpose of capturing chewing
sounds, which as denoted in theory section may reach 5kHz, the setup causes
loss of important high-frequency information.

(a) (b)

Figure 38: Excerpt of non-pre-processed salad meal recording spectrogram in Audacity
(a). Spectral centroid of all manual chew label segments (also on non-pre-
processed recordings) (b)
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Figure 38 shows analysis that was performed on the raw audio recordings.
The spectrogram clearly shows most of the sonic information being confined
below 1kHz, with faint peaks up to 2kHz. The figure on the right shows the
spectral centroid calculated from all manually labeled chewing segments. The
centroid essentially highlights the center of mass of frequencies in the signal.
These are clearly in the sub 1000Hz range. By manually listening to the record-
ings its clear that high-frequency information has been cut, by what sounds like
a muffling effect, caused by the microphone setup.

Figure 39: Chewing spectrogram of a cookie (left) and a carrot (right) from the [Bi
u. a., 2016]

For comparison, the spectrograms in Figure 39 are taken from a different
meal classification study ([Bi u. a., 2016]), and show spectrograms of chews
for two different foods (cookie and carrot). Unfortunately it might be hard to
see due to poor image quality, but the frequency axis indicates that the chewing
sounds display clear and strong activity all the way to 2kHz. The recording
setup for this study used two direct skin contact microphones on both sides of
the neck/throat. “The throat microphone converts vibration signals from the skin
surface to acoustic signals rather than picking up sound wave pressure as most
common microphones do.”.

Unfortunately it wasn’t possible to change the recording setup for our study
to something that works better for capturing chewing sounds. Although the sys-
tems worked very well with the data they were given, no reason comes to mind
why using a better setup which captures higher frequency sounds wouldn’t lead
to even better classification performance. This would be even more important
for future tests classifying larger variety of foods, where the distinction would
likely be in the small high frequency details. Participants of this study have
not investigated possible replacements for the current microphones/equipment,
thus no suggestions are made on that part. This decision should be influenced
by the opinion of an audio/acoustics and physiology expert.

6.6.3 Ideas for dataset improvement

A few things which also relate to dataset improvement were already mentioned
in Section 6.3.2, such as adding chew occurrence frequency and chew length
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metrics.
Moreover, due to periodicity of the segments in the Mel spectrogram testing

datasets, the chew occurrences are captured multiple times, where the same
chew is contained in consecutive segments, with only a slight shift in the spec-
trogram. For the neural network to classify these slightly shifted and/or partial
chews, it requires the ability to identify the chew elements in a spatially in-
variant way. Although pooling layers already help the network reduce spatial
variance by downsampling the images, another common practice is to augment
the training dataset with distorted versions of existing samples, adding more
data diversity and helping achieve spatial invariance. One way to add variety
for this type of study could be to shift the chew segment forwards or backwards
in time by a small amount. This way, instead of one segment, each manual
chewing label will produce possibly 3 segments: backwards shifted, forwards
shifted and no shift. The shift would need to be small enough to not overlap
with other chewing labels potentially accidentally including another chewing
occurrence.

6.6.4 Choice of recording labeling

It feels necessary to briefly comment on the choices that were involved for label-
ing the recordings. Only 5 of the 20 recordings were manually labeled, thus the
entire system was trained on data from only 5 meals. Initially only 2 record-
ings of each meal type were chosen, however in order to somewhat balance
the datasets with roughly equal amounts of oats and salad class segments, a
third oats recording was labeled. This is a very laborious process, thus initially
the focus was to get the system to work with smaller amount of samples, and
create further labels if performance was lacking. This never came to be as the
system performed very well with training segments from only 5 recordings. At
this point, labeling more recordings would likely yield diminishing returns for
performance.
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7 Conclusion

This study was initiated to investigate and provide an implementation of a meal
type classifier. The initial approach with PSD features, was based on its success
for meal onset detection in the previous work by author. This implementation
utilized a 3 layer neural network trained on PSD-based features from periodi-
cally segmented audio recordings, however it was unsuccessful. The resulting
system inadvertently excelled at meal onset detection, however the meal type
classification performance was very unreliable and biased towards one class.
The tests found the different PSD feature segment lengths to be inconsequen-
tial, and that for this specific system implementation the PSD features are inap-
propriate.

The subsequent approach involved adopting a whole different type of fea-
tures based on Mel spectrogram, as well as altering the training method by
training on individually segmented chewing occurrences created from manu-
ally labeled recordings. This approach spawned 3 different systems: chew de-
tector (CD), Mel meal type classifier (MMT) and the 3-class meal type classifier
(3C), the latter of which combines the first two. Although initially the models
started out with different network architectures and training parameters, the
final implementations of all 3 systems were very similar.

Testing was performed using Mel spectrograms extracted from segments of
periodically segmented recordings. The CD and MMT systems are designed to
operate together, and were tested as such, achieving average prediction ratio
of 90.5% and correct meal type prediction for all 20 testing recordings. Addi-
tionally the MMT system was tested with the true, manually created, chewing
labels for the 5 labeled recordings, and compared to the performance of CD pre-
dicted chewing labels. The true labels achieved avg. prediction ratio of 96.9%
compared to 91.8% by the CD chewing labels. This discrepancy was caused
by the relatively poorer precision score of the CD system. The test highlights
the importance of using a good chewing detector in conjunction with the MMT
system. The 3C system achieved very similar performance to the CD+MMT ap-
proach, both in terms of avg. prediction ratio, which was 90.3%, as well as the
accuracy, precision and recall metrics.

Finally, different configurations of the Mel spectrogram dataset were tested.
This test involved comparing the avg. prediction ratios of datasets created with
4 different segment lengths: 100ms, 350ms, 450ms and 500ms. Although the
CD and MMT were tested separately, both of their tests indicate that the two
longer segment lengths were superior to the shorter. The 3C system also con-
firms the shorter segment length of being a poorer performer. In conclusion,
this test indicates that, at least for the approach in this study, the 350ms and
450ms segment length Mel spectrograms perform best.
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8 Future work

Many things have already been mentioned in the discussion section suggesting
possible avenues for future endeavours. In this section these ideas are more
structurally composed.

• Augmenting the chew detection system with data from a piezoelectric
sensor on the temporalis muscle (Section 6.2.2).

• Extending and challenging present meal type classification systems by in-
troducing larger variety of food types and environmental, everyday noises
in the recordings (Section 6.3.2).

• Introducing additional features in the dataset which could help improve
classification. As previously mentioned, chew occurrence frequency and
segment length are two possibilities (Section 6.3.2).

• Finding a better method of capturing chewing sounds. The method/e-
quipment used in this study was likely limiting the performance (Section
6.6.2).

• Augment the dataset with distorted training samples to improve the spa-
tial invariance of the neural network model (Section 6.6.3).
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Appendix A Dataset metadata: Information about
each recording

filename ch
date

(yymmdd) time
meal start

(min)
meal end

(min) type subject recLen (ms)

01-220215-1528 1 220215 1528 20 24 soft 1 1799986.25
01-220215-1601 1 220215 1601 20 25.67 hard 1 1861293
01-220215-1647 1 220215 1647 20 25.5 soft 2 1800290.25
01-220215-1726 1 220215 1726 20 25 hard 2 1820855.625
01-220216-1238 1 220216 1238 20 25 soft 1 1816157
01-220216-1315 1 220216 1315 20 25.4 hard 1 1848151.625
01-220216-1404 1 220216 1404 20 25 soft 2 1800957
01-220216-1438 1 220216 1438 20 25.37 hard 2 1833959.625
01-220217-1435 1 220217 1435 20.1 25 soft 1 1822514.25
01-220217-1506 1 220217 1506 20 25 hard 1 1801895.625
01-220217-1541 1 220217 1541 20 25 soft 1 1801618.25
01-220217-1612 1 220217 1612 23.5 28.25 hard 1 2102269
01-220217-1707 1 220217 1707 20 25 soft 2 1803415.625
01-220217-1740 1 220217 1740 20 25 soft 2 1848498.25
01-220217-1813 1 220217 1813 20 25 hard 2 1891693
01-220217-1848 1 220217 1848 20 25 hard 2 1806605
01-220218-1424 1 220218 1424 20 25 soft 2 1800781
01-220218-1458 1 220218 1458 20.5 26 hard 2 1863581
01-220218-1542 1 220218 1542 20 25 soft 1 1820541
01-220218-1615 1 220218 1615 20 25 hard 1 1818023.625

Table 10: Information about the recordings which were collected with the data acqui-
sition methods described in section 3. Meal type hard=salad and soft=oats.

Appendix B Source code & Cited studies

For those with access to the thesis accessories, there will be an included zip file
containing all the source code of the system implementations in this study. This
zip file doesn’t contain the datasets or the raw recordings as the file sizes exceed
100GB. The raw recordings can be obtained from the APT. The datasets can be
created from the raw-recordings using the code included in the “Pre-processing”
folder.

Zip file contents (Folders):

• Audacity Files:

– Contains the audacity files with manual labels (.aup3). These labels
have been exported to the .txt files

• FoodTypeDetection:
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– Contains Python Notebook (.ipynb) files, with the implementations
of the 4 systems discussed in this study

• Pre-Processing:

– Contains Python and Python Notebook files for pre-processing the
raw audio recordings as well as performing the feature extraction

• Saves:

– Contains the saved best achieved models of the 3 Mel spectrogram
systems.

• Studies:

– Copies of the studies [Kölle, 2019], [Klavins, 2022] and [Bliksvær,
2021], which are possibly not available online.
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