
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Kristiane Snarvold Sletten

Adopting Functional Grammar in
Conceptual Design

Design Exploration in a Parametric Environment

Master’s thesis in Civil and Environmental Engineering
Supervisor: Nils Erik Anders Rønnquist
Co-supervisor: Sverre Magnus Haakonsen
June 2022

M
as

te
r’s

 th
es

is

Kristiane Snarvold Sletten

Adopting Functional Grammar in
Conceptual Design

Design Exploration in a Parametric Environment

Master’s thesis in Civil and Environmental Engineering
Supervisor: Nils Erik Anders Rønnquist
Co-supervisor: Sverre Magnus Haakonsen
June 2022

Norwegian University of Science and Technology
Faculty of Engineering
Department of Structural Engineering

Department of Structural Engineering
Faculty of Engineering

NTNU − Norwegian University of Science and Technology

MASTER THESIS 2022

SUBJECT AREA:

Conceptual Structural Design

DATE:

07.06.2022

NO. OF PAGES:

8 + 62 + 15

TITLE:

Adopting Functional Grammar in Conceptual Design
Design Exploration in a Parametric Environment

Anvendelse av Funksjonell Grammatikk i Konseptuell Design
Designutforsking i Parametrisk Miljø

BY:

Kristiane Snarvold Sletten

RESPONSIBLE TEACHER: Nils Erik Anders Rønnquist

SUPERVISOR(S): Sverre Magnus Haakonsen

CARRIED OUT AT: Department of Structural Engineering, NTNU, Trondheim

SUMMARY:
New and advanced digital tools, like parametric design software, have positively influenced the synergy
between architects and engineers. Even though the existing computational tools enhance the collaboration, it
lacks the features to take advantage of the cooperation's potential in the conceptual phase. Architectural
modelling tools design geometry in the absence of structural performance, while engineers' structural
analysis tools need a predefined geometry to be analysed. Functional grammar, introduced by William J.
Mitchell, aims to integrate these methods by combining design exploration and structural analysis. This thesis
addresses this topic, and the approach is based on shape grammar. That is, shapes get modified and
generated when rules are applied to an initial shape. The intention of the digital implementation of functional
grammar is to achieve a generative design exploration parallel with analysing the structural performance. It
involves developing rules as plug-in components for Grasshopper to perform these operations. In addition to
integrating structural analysis software, other aspects can be combined with shape grammar to exploit the
approach's power. For instance, this thesis adds price estimation and a prediction of CO2 equivalents to
accomplish another dimension for evaluating structures. After establishing the algorithm, a manual design
exploration was executed to demonstrate the power of functional grammar as a design approach. The
investigation discovered that different configurations were the most favourable based on which objective was
validated the highest. Further, it illustrated the effectiveness and simplicity of the method when it already was
constructed. A multi-objective optimisation aimed to minimise displacement, price estimation and CO2
equivalents with utilisation and buckling load factor as constraints. The optimisation generated less valuable
architectural language than the manual design alternatives. It requires short and efficient scripts to achieve
quick and accurate computations and feasible structures. The study has demonstrated the flexibility and
usefulness of shape grammars in early-stage design.

ACCESSIBILITY

Preface

This Master thesis was written as a concluding part of my Master of Science degree at the Nor-
wegian University of Science and Technology (NTNU), Department of Structural Engineering.
Within five months, from January to June 2022, I have researched and written to finalise it.

During my years at NTNU, I got the opportunity to combine architecture and engineering through
a Minor in Architecture. I learned how architecture and engineering have evolved throughout
thousands of years and how close cooperation between the two disciplines could positively influ-
ence a design in the conceptual phase. My summer internships and courses like AAR4209 and
TKT4198 have given me an insight into parametric design and its huge potential. The previous
semester’s project assignment concerned the conceptual design of a pedestrian bridge. I had both
the structural and architectural responsibility of developing and analysing the structural behaviour
in the parametric software Rhino Grasshopper. Buildings increase in complexity and are fre-
quently given an unusual shape; hence early involvement of engineers and the usage of parametric
design is essential. With this in mind, in addition to my growing interest in the field, I wanted to
explore conceptual structural design further.

This master thesis would not have been possible without my advisors’ feedback and guidance.
PhD-student Sverre Magnus Haakonsen has been an exceptional advisor, available always; thank
you! Thanks to Professor Nils Erik Anders Rønnquist for discussing different topics for this thesis
and Marcin Lukowski for giving me a helping hand when needed. I would also like to thank Bunji
Izumi for the help and everything I have learned from him.

The greatest thanks to my family and friends who have supported and believed in me. Not only
have they been there through this last semester, but all my years with studies in Trondheim. I
am grateful for all the daily conversations that have kept me calm and committed throughout the
process and their contribution to discussions to further develop this thesis and me as an engineer.
Thanks to my fellow students who have inspired me with their knowledge and as human beings.
It has been a pleasure to learn from them and be a part of this society.

Finally, I would thank myself for these five years and for writing a master’s thesis that contributes
to my overall knowledge as a structural engineer.

Trondheim, 7th June 2022

Kristiane Snarvold Sletten

i

ii

Abstract

New and advanced digital tools, like parametric design software, have positively influenced the
synergy between architects and engineers. Even though the existing computational tools enhance
the collaboration, it lacks the features to take advantage of the cooperation’s potential in the con-
ceptual phase. Architectural modelling tools design geometry in the absence of structural per-
formance, while engineers’ structural analysis tools need a predefined geometry to be analysed.
Functional grammar, introduced by William J. Mitchell, aims to integrate these methods by com-
bining design exploration and structural analysis.

This thesis addresses this topic, and the approach is based on shape grammar. That is, shapes
get modified and generated when rules are applied to an initial shape. The intention of the di-
gital implementation of functional grammar is to achieve a generative design exploration parallel
with analysing the structural performance. It involves developing rules as plug-in components for
Grasshopper to perform these operations. In addition to integrating structural analysis software,
other aspects can be combined with shape grammar to exploit the approach’s power. For instance,
this thesis adds price estimation and a prediction of CO2 equivalents to accomplish another dimen-
sion for evaluating structures.

After establishing the algorithm, a manual design exploration was executed to demonstrate the
power of functional grammar as a design approach. The investigation discovered that different
configurations were the most favourable based on which objective was validated the highest. Fur-
ther, it illustrated the effectiveness and simplicity of the method when it already was constructed.
A multi-objective optimisation aimed to minimise displacement, price estimation and CO2 equi-
valents with utilisation and buckling load factor as constraints. The optimisation generated less
valuable architectural language than the manual design alternatives. It requires short and effi-
cient scripts to achieve quick and accurate computations and feasible structures. The study has
demonstrated the flexibility and usefulness of shape grammars in early-stage design.

iii

iv

Sammendrag

Nye og avanserte digitale verktøy, som for eksempel programvarer innenfor parametrisk design,
har hatt en positiv effekt på samarbeidet mellom arkitekter og ingeniører. Selv om de eksist-
erende beregningsverktøyene forbedrer samspillet, mangler de funksjoner for å utnytte det fulle
potensialet ved et samarbeid i den konseptuelle fasen. Det betyr at arkitekter med sine modeller-
ingsverktøy designer geometrien uten å ta hensyn til konstruksjonens bærevne, mens ingeniørenes
analyseverktøy har behov for en forhåndsdefinert geometri for å utføre beregningene. Funksjonell
grammatikk, introdusert av William J. Mitchell, har som mål å integrere metodene ved å kombinere
designutforskning og konstruksjonsanalyse.

Denne masteroppgaven fordyper seg i funksjonell grammatikk som baserer seg på formgram-
matikk, det vil si at design blir generert basert på regler som endrer på den initielle formen. Den
digitale implementering av funksjonell grammatikk for å oppnå en generativ designutforskning
parallelt med konstruksjonsanalyse innebærer å utvikle en programvareutividelse i Grasshopper
som inneholder et sett av regler for å endre på geometrien. I tillegg til å integrere programvare for
analyse, kan ytterligere aspekter legges til for å utnytte potensialet ved metoden. For eksempel, tar
denne oppgaven for seg prisestimering og en prediksjon av CO2-ekvivalenter som medfører flere
dimensjoner å vurdere konstruksjonsystemer ut i fra.

Etter å ha etablert algoritmen, ble det en rekke designalternativer manuelt utarbeidet for å demon-
strere potensialet til funksjonell grammatikk ved designutforsking. Studiet oppdaget at det varierte
hvilke konfigurasjoner som var den mest gunstige basert på hvilket aspekt som ble validert høyest.
I tillegg illustrerte den hvor effektiv og lettvint bruken av metoden er når den allerede har blitt
etablert. Den multi-objektive optimaliseringen ble utført med mål om å minimere forskyvning,
prisestimering og CO2 ekvivalenter med utnyttelse og knekklastfaktor som begrensninger. Det
viste seg at optimaliseringen genererte mindre verdifulle arkitektoniske uttrykk enn de designal-
ternativer som var valgt manuelt. Det kreves korte og effektive koder for å oppnå raske og nøyak-
tige beregninger og gjennomførbare konstruksjoner. Dette studiet har demonstrert fleksibiliteten
og nytten av formgrammatikk i tidlig designfase.

v

vi

Table of Contents

Preface i

Abstract iii

Sammendrag v

1 Introduction 1

2 Background 3

2.1 Architects and Engineers . 3

2.2 Conceptual Design . 5

2.3 Computational Design . 6

2.4 Optimisation . 7

3 Shape Grammar 11

3.1 Defining Shape Grammar . 11

3.2 The Evolution of Shape Grammar . 11

3.3 Functional Grammar . 13

3.4 Labelled Shapes . 15

3.5 Software Tools . 15

4 Digital Implementation of Functional Grammar 19

4.1 Mitchell Rules . 19

4.2 Additional Plug-ins . 27

4.3 Structural Configurations . 28

4.4 Volumetric Geometry . 30

5 Structural Analysis 31

5.1 Loads . 31

5.2 Establishing Analytical Model . 31

6 Exploration with Shape Grammar 39

vii

6.1 Price Estimation . 39

6.2 CO2 Emission . 40

6.3 Manual Exploration of Shape Grammar . 40

6.4 Optimisation of the Design . 47

6.5 Discussion and Remarks . 55

7 Further Work 57

8 Conclusion 59

Bibliography 61

Appendix 63

A Configurations . 63

B C# Scripts . 66

C Optimisation Results . 68

D Grasshopper . 76

E Video . 77

viii

1 Introduction

Advanced computer technology creates endless possibilities within the design, analysis, fabrica-
tion and shape of structures. Previously, the shape dominated the structural performance, whereas
today, due to technology, complex and unusual forms are built even though they are materially
inefficient. Adopting various design tools facilitates a parallel evaluation between structural per-
formance and design generation. Bridging the gap between these approaches enables greater struc-
tural input integration during the conceptual phase.

Functional grammar aims to bridge this gap with rule application that incorporates engineering
and fabrication knowledge. It produces shapes that satisfy the functional requirements, as well as
realisable materials and fabrication processes. The approach is based on shape grammar which
modifies a shape derived from rule application. Functional grammar as a design strategy involves
generative design exploration (shape grammar) combined with analysing structural behaviour.

With today’s numerous requirements for structures and the development of a computational archi-
tecture which embraces parametric design and form-finding, multi-objective optimisation (MOO)
is relevant for solving complex design problems. An optimisation is highly relevant for a con-
ceptual study to detect the best solution. The outcome depends on the design goals, for instance,
structural performance, price and CO2 equivalents. Parameters such as cross-section and material
could be adjusted to improve the computed results. Methods like form-finding and optimisation
may generate designs beyond a designer’s mind.

The presented work aims to integrate and evaluate the use of shape grammars in a parametric
environment. By defining example grammars with and without functional requirements, the res-
ulting structures are analysed and compared to demonstrate the flexibility and usefulness of shape
grammars in early-stage design.

This thesis is based on ongoing research within shape grammar at Conceptual Structural Design
Group (CSGD), Department of Structural Engineering at NTNU. Section 4 focuses on the digital
implementation of functional grammar proposed by William J.Mitchell. That is, to transform the
shape rules into plug-in components. These plug-in components are used as a design approach,
creating high flexibility in design exploration. Integrating Karamba to perform an FE-analysis
allows the structural performance to be continuously interpreted. To further explore the opportun-
ities within the functional grammar, scripts to calculate volume, price, and CO2 equivalents have
been developed. By adding an architectural model of the geometric shapes, the thesis demon-
strates a broad aspect of functional grammar. Lastly, a MOO targeting minimised displacement,
price estimation and CO2 equivalents for steel and timber structures is completed.

1

2

2 Background

2.1 Architects and Engineers

Up to about 1450, there was neither something called architects nor engineers. They went by
the profession architekton; an ancient Greek word that can be translated into "master builder",
responsible for both the artistic and technical design. The desire to build bigger and better than
their predecessors have constantly required innovations (Addis, 2015, pp. 6–8). Innovations have
led to the fundamental knowledge about structures that newer designs are based on and influenced
by.

(a) Dome of Pantheon, Rome, Italy. Image by
Heracles Kritiko/Shutterstock.

(b) As Duomo di Milano shows, Gothic cathed-
rals introduced spires and pointed arches. Image
by Simone Simone.

(c) Felix Candela’s roof design in eight hyper-
bolic paraboloid thin concrete shells. Los Mana-
tials, Mexico. Image by Felipe Gabaldón

(d) Implementation of iron enable long spans for
the St. Pancras station in London. Source: (‘10
Things to Do at London’s St Pancras’, n.d.)

Figure 2.1: Impressive and innovative buildings through the years and decades.

The Greek and Roman engineers accomplished impressive masonry vaults, like the Pantheon in
Rome (see Figure 2.1a). They based themselves on qualitative science, which entails assump-
tions from former experience (Addis, 2015, p. 60). Ambitions to build higher, more beautiful, and
span further let the architecture unfold. The domes were replaced with spires and the semicir-
cular arches by pointed arches as the Gothic era arose (see Figure 2.1b) (Popovic Larsen, 2016,
pp. 41–43). The implementation of iron enabled tension members and trusses, initiating an ex-
pression of lightness due to slender and lightweight structures, known as skeleton frames. Roofs
at railway stations spanned further, achieving spaces free from supports (see Figure 2.1d) (Popovic
Larsen, 2016, pp. 59–67). Furthermore, the invention of reinforced concrete generated solid, three-

3

dimensional forms and had the ability to cantilever out beyond their supports (see Figure 2.1c)
(Addis, 2015, p. 629). Unlike the traditional materials, there was no empirical knowledge related
to new materials.

Aligned with the development of science, mathematics and new materials, the specialisation of
the two disciplines created a clear distinction between their contribution to a project. The architect
became the designer and solved the architectural issues, whereas the engineer was responsible for
the technical challenges (Popovic Larsen, 2016, p. 1).

Even though there is still a definite difference between the roles and their contribution to a project,
we experience a positive tendency of engineers’ impact and participation in the design process.
With increased focus on the benefits of cooperating in the conceptual phase, engineers are in-
creasingly involved in early form finding. The parallel process of geometric design and structural
analysis is possible due to the available computational tools (Popovic Larsen, 2016, p. 101). New
technology, like parametric design software, enables complex geometric shapes and high execu-
tion, easily adaptable to adjustments. It reduces the time and costs without compromising the
architectural expression or structural performance. Hence, it provokes innovative and advanced
structures, resulting in a high level of design and constantly surpassing previous barriers.

Despite the roles, there are recently developed projects designed by engineers. The state-of-the-art
building, Burj Khalifa in Dubai in Figure 2.2, was designed by the two structural engineers Owings
and Merrill (‘The Future of Structural Engineering Will Survive the High-Tech Revolution’, 2016).
They utilised simulation and modelling tools to rapidly analyse and iterate forms that optimised
material quantities and minimised wind loads.

Figure 2.2: Burj Khalifa in Dubai, United Arab Emirates (‘The Future of Structural Engineering
Will Survive the High-Tech Revolution’, 2016).

4

2.2 Conceptual Design

A building project involves several stakeholders who have various interests and influence in the
different phases. With the highest uncertainty in the initial stage, identifying the risk factors like
multiple design changes increases the likelihood of success. As Figure 2.3 indicates, a project is
more sensitive to modification when reaching the schematic design, affecting the project costs neg-
atively. As figure Figure 2.4 demonstrates, structural engineers gradually replace the architects’
role in a project. When reaching the phase "construction documents", the architects are almost
no longer involved in the project. In this traditional approach, engineers have little impact on the
geometric outcome, generating less efficient design. This structural efficiency can be increased by
integrating structural principles in the conceptual phase. However, it requires high commitment
and anchorage to achieve significant global design decisions.

Figure 2.3: The MacLeamy Curve. With time the project becomes more sensitive of changes.
Image by Saeed Talebi alternated from the American Institute of Architects (Talebi, 2014).

Figure 2.4: Traditionally the geometric shape are fixed in the conceptual design phase, while the
structural consideration increase outwards in the process. Image by Caitlin T. Mueller.

5

As Mueller states, based on history, theory and nature, the form has a higher impact on the struc-
tural performance than material, member size and internal topology. It is a reasonable statement
since the form distributes the forces’ flow and magnitude. By solving architectural and structural
problems simultaneously, there is accomplished unique and original design. In addition, it con-
tributes to an integrated structural design that utilises material properties and natural law, rather
than irrational execution (Mueller, 2014, p. 22). For instance, stave churches in Norway have
an enduring structural form (see Figure 2.6). A more recent example in Figure 2.5 is the Dulles
Airport Terminal by architect Eero Saarinen, where the structural form reveals the flow of forces.

Figure 2.5: Dulles Airport Terminal by
Eero Saarinen. Image by MWAA.

Figure 2.6: Heddal stave church in Norway.
Image by John Erlandsen. License: CC BY
SA 3.0

The advanced software has positively influenced the conceptual work. Continuous generating
and analysing concepts facilitate effective design exploration and optimisation. An enhanced and
efficient structural form during the conceptual design enables the possibility to reduce material
quantities, hence costs and resources (Mueller, 2014, p. 21). Thus, the conceptual phase has the
potential to reduce the environmental impact of the building industry - one of the most significant
challenges ahead.

2.3 Computational Design

The methods involving computational design have developed alongside its adoption. The different
approaches enable complex design, and as Figure 2.7 illustrates, the terms overlap each other,
which has led to confusion and inconsistent use of the terms. In the article Computational design
in architecture: Defining parametric, generative and algorithmic design, literature from various
authors is reviewed to analyse, compare and discuss the different computational design terms. It
suggests an improved taxonomy on which the definitions in the following subsections are based.

6

Figure 2.7: Representing the overlapping of the terms regarding computational design. Image by
Inês Caetano. License: CC BY-NC-N.

2.3.1 Parametric Design

Parametric designs is defined as "...a design approach based on the use of parameters to describe
sets of designs". Accordingly, it is a design that depends on its parameters to modify and generate
solutions. These parameters representing geometric properties are either fixed (constraints) or
variables (parameters). Hence, a restricted design domain occurs for the model to fluctuate within.

2.3.2 Generative Design

Generative design is defined as "... a design approach that uses algorithms to generate designs".
Moreover, the approach is based on algorithmic or ruled-based processes that generate numerous
realistic, complex design proposals (Caetano et al., 2020). Using rule-based systems, or shape
grammars, permits design generation beyond parametric limitations (Mueller, 2014, p. 83).

2.3.3 Algorithm Design

Litterateur has an inconsistent definition of algorithm design due to overlapping parametric and
generative design. However, the article defines it as "...a generative design approach characterised
by an identifiable correlation between the algorithm and its outcome".

2.4 Optimisation

Design space in computational design contains all possible solutions to a problem system. Op-
timisation is a numerical method based on an algorithm to identify the most favourable solution
within a given design space. However, the optimised solutions are constrained due to the problem
formulation.

There are different types of structural optimisation: size, shape, and topology. Size optimisation
decides the cross-section based on predetermined geometry and element configuration, whereas
shape optimisation determines the overall structural form (Mueller, 2014, pp. 35–38). The last

7

class, typology optimisation, aims to maximise the structural performance by generating the op-
timal connective arrangement of elements in a structure. This type can also be combined with size
and shape optimisation. These different optimisation types are illustrated in Figure 2.8

Figure 2.8: Comparative illustration of size, shape and topology optimisation (Gebisa & Lemu,
2017). License: CC BY 3.0.

As a practical approach, physical models have been used to explore structural forms. Antoni Gaudi
was one of the first to implement the method in conceptual structural design when designing
the Santa Coloma church (Popovic Larsen, 2016, pp. 84–88). He achieved the most efficient
structural form for the particular load case using graphic statics and inverting funicular models. His
architecture reflects his inspiration by materials, geometry and configuration of forces, resulting in
several impressive buildings with a high complexity of form; the private residence churches, Park
Quell, and the unfinished Sagrada Familia. Today, these forms can be achieved through a digital
form-finding process. Even though several methods exist, the process’ essence is the same: to find
the best shape related to the design goals.

Work performed before the computational era pushed the limits of materials. Currently, other
parameters influence the complexity of generating environmental and sustainable design. As a
result of higher demands for newer constructions than previously, further requirements emerge to
satisfy aspects such as climatic conditions and material quantities. Respectively it is necessary to
perform a multi-objective optimisation (MOO) to connect multiple parameters to obtain the best
possible solution (Popovic Larsen, 2016, p. 101). In conceptual studies, parametric design and
MOO are often utilised to conduct the form-finding process and structural optimisation.

A recent construction which has reduced material usage by performing structural analysis optim-
isation is the innovative pedestrian bridge Striatus. The 3D-printed pedestrian bridge was designed
by the architecture firm Zaha Hadid (Figure 2.9). The bridge is made from hollow concrete wedges
(Figure 2.10), where members are held together by gravity and compression (‘Striatus 3D concrete
printed masonry bridge’, n.d.). By combining ancient building knowledge with computational
design, both reinforcement and mortar have been eliminated.

8

Figure 2.9: Striatus bridge assembled and in use. Im-
age by naaro

Figure 2.10: The hollow
wedge shows the reduc-
tion of concrete. Image by
Alessandro Dell’Endice.

9

10

3 Shape Grammar

This section first introduces shape grammar as an approach to generate design and its historical
evolution. Thereby, Functional Grammar: An Introduction published by William J. Mitchell
(J. Mitchell, n.d.) and labelled shape are defined. In addition, the software tools used for this
thesis to demonstrate the advantage of shape grammar are presented.

3.1 Defining Shape Grammar

As mentioned earlier, the architect typically defines a design space, and then the engineer has a
restricted domain to work within. In comparison, shape grammar involves geometric operations
and transformations to generate design beyond this topology set by the architect. These geometry
modifications are based on a set of rules applied recursively, replacing subshapes with new shapes
(see Figure 3.1). Hence, it contributes to a diverse and wide range of design options. It is both a
descriptive and generative approach (‘Introduction’, n.d.). The rules themselves describe potential
forms to generate, and the rules generate the designs. This design generation involves operations
such as addition and subtraction and spatial transformations - shifting, mirroring and rotating - to
the shape. Shapes are defined by points, lines, planes or volumes.

Shape Grammar is a spatial algorithm that treats shapes as nonatomic entities (‘Introduction’,
n.d.). That means that the designer has the liberty to decompose and recompose them as wanted.
Another aspect of shape grammar is that it is nondeterministic. The user may have several rules
to choose from, how to apply them, and when they are applied in the computation process affects
the output.

3.2 The Evolution of Shape Grammar

A world-class structural engineer is capable of brainstorming a range of creative concepts within
a typology or system and then, by intuition, estimating their performance (Mueller, 2014, p. 80).
However, it is not a process that can guarantee the omission of bias and human errors, and this
vulnerability makes computational operations valuable to explore beyond topological boundaries.
Additionally, computational operations enable a comparison of designs across typologies.

After Stiny first proposed shape grammar as a strategy to generate unlimited and unexpected
design ideas, Koning and Eizenberg presented a grammatical study of Frank Lloyd Wright’s prairie
house. A study that emphasising the significance of a rule-based approach (Mueller, 2014, pp. 83–
84). Figure 3.1 shows the potential of how simple rules can generate increasingly diverse and
complicated forms.

11

Figure 3.1: A selection of the possible rules applied in the grammatical study of Frank Lloyd
Wright prairie house (Koning & Eizenberg, 1981).

Furthermore, William J. Mitchell introduced functional grammar, see Figure 3.2. The approach
includes rules which consider engineering and fabrication knowledge. He meant that these re-
quirements were necessary conditions for a solution to a design problem. Together with Cagan, he
combined grammar with performance goals. Resulting in the computational technique, shape an-
nealing; a stochastic simulated annealing optimisation process to generate approximate optimum
rule-based shapes (Mueller, 2014, p. 86).

Figure 3.2: Mitchell was the first to use rules application. The images shows a small section of
the rules proposed (J. Mitchell, n.d.).

Cagan then teamed up with Shea to further developed the shape annealing approach (Mueller,
2014, p. 86). They applied the method to truss structures and achieved a wide range of high-
performing designs within a limited problem domain. It demonstrated that shape annealing is
most suitable after the conceptual design, once the structural typology is set.

Geyer’s recent progress within functional grammar involved combining it with multidisciplinary
optimisation, see Figure 3.3. His study of a planar gravity and lateral frame for a large hall resulted
in trans-typological designs. Even though the approach does not take full advantage of grammars
due to slightly flexible rules, the optimisation makes the approach valuable for comparing prede-
termined designs after the conceptual phase.

12

Figure 3.3: Sample of rules and a structure due to multidisciplinary optimisation of functional
grammar (Geyer, 2008).

In a later study, Caitlin Mueller introduces the term trans-typology grammar. Her approach in-
volves three types of computational classes: shapes, grammars and analysis engines (Mueller,
2014, p. 88). A shape class contains data or properties that include geometric information, as well
as internal organisation and hierarchy. While a grammar class contains a list of rules that can be
applied to and modifies particular geometric objects. The analysis class can provide a performance
score based on a particular geometric object’s properties.

3.3 Functional Grammar

In 1991 William J. Mitchell published a study about Functional Grammar. The previous section
gave a short introduction to his concept. However, a more in-depth embroider is necessary to
understand the essence of this thesis. Therefore the following sections concerns the rules and his
terms terminals and markers.

3.3.1 Terminals and Markers

Mitchell operates with the terms terminal vocabulary Vt and marker vocabulary Vm (J. Mitchell,
n.d.). He points out that they could be differentiated through a labelling scheme. However, that
labels not gives a clear distinction between the two. He defines markers as following:

"Markers have interface requirements and functions. The interface requirements are
represented diagrammatically by boundaries and connection points, details of the ele-
ment‘s shape and internal organisation are left unspecified. (Thus a supporting ele-
ment marker might be described by the end points of its central axis, a room marker
by its outer boundaries, and so on.) The functions are presented by input and output
parameters, plus partial specifications of the mappings from inputs to outputs. Typic-
ally, such as partial specification is a mathematical expression containing terms with
unknown values."

13

While the definition of terminals is:

"Terminals has known geometry and behaviours. (That is, it can be drawn in complete
detail, and the expression mapping from input to outputs do not contain terms with
unknown values.) The functional description of a terminal represents empirical know-
ledge of how this type of element actually behaves. This knowledge may be complete
or incomplete, approximate or accurate, correct or incorrect. It can be substantiated
or disproved in the usual ways - by building and testing a prototype, for example. "

3.3.2 Rules

Functional grammar is a rule-based approach, either specified as a top-down refinement, bottom-
up assembly or a combination of them both (J. Mitchell, n.d.). Although the determination of the
design is controlled differently, both rules convey the same knowledge. For instance, in Figure 3.4
the beam converts a point load into two point loads at each beam end and then to the columns,
which transfers these loads to the ground. Thus, a bottom-up design begins with the known (ter-
minals) and determines a subsystem’s assembly with the desired behaviour. Instead of beginning
the process with terminals, top-down rules start with a combination of markers. Hence, a general
goal including constraint of geometry, interfaces, inputs and outputs of the initial shape in Figure
3.5 results in an assembly of columns and a beam. For top-down refinement, there is a special case,
the termination rule. Those rules replace markers with terminals or combinations of terminals.

Figure 3.4: A bottom-up assembly rule. Image by William J. Mitchell.

Figure 3.5: A top-down refinement rule. Image by William J. Mitchell.

As rules are applied, the initial structural shape is modified due to geometric operations and trans-
formations, and structural properties. Recursive rule application leads to an infinite number of
sequences to conclude unique designs.

14

3.4 Labelled Shapes

Even though Mitchell omits the use of labelled shapes, both Stiny and Mueller adopt it to define the
language of shapes directly in terms of labelled and parameterised labelled shapes. A state label
enables control of the order of the various rules that can be applied to a structural shape (Mueller,
2014, pp. 90–91). As Mueller specifies in the trans-typology structural grammar approach, a
structural shape always has a particular state. When a rule can be applied depends on the state
of the current structural shape, and when it is applied, it changes the state of the structural shape,
which affects what rules can be subsequently applied. However, it can also remain in its current
state. In short, a rule is restricted to either one or more specific states that dictate the following
shape, rules and state. A state can be related to several rules and vice versa. Further, a shape can
return to a previous state.

Stiny has the following precise interpretation of labelled shapes when he defines shape grammar
(Stiny, 1980):

• R is a finite set of shape rules of the form α → β , where α is a labelled shape
in (S, L)+ and β is a labelled shape in (S, L)∗

• I is a labelled shape in (S, L)+ called the initial shape

Likewise, this thesis combines labelled shapes with Mitchell’s theory of functional grammar. The
states are specified in Figure 3.7 and Table 4.3. Establishing these state labels is valuable since
it creates a general order for rules to be applied. Although, the implementation of state labels is
simplified compared to Mueller’s complexity of relations and actions. That is, the order depends
on the states for the given rules. Each rule is related to a specific state and is restricted to a
particular consecutive rule.

3.5 Software Tools

In this thesis, the following software has been adopted for geometric design generation, in addition
to structural analysis and optimisation operations.

Rhinoceros 7

Rhinoceros 3D, also known as Rhino, is developed by Robert McNeel Associates (Associates,
givenun=0, n.d.). It is a Computer-Aided-Design (CAD) software developed to produce complex
geometry. The geometric design in Rhino is done manually, which makes it less adaptable to
changes.

15

Grasshopper

Grasshopper is a visual programming language connected to Rhinoceros as its visual studio (Net-
work, n.d.), see Figure 3.6. It is a parametric software that allows easy real-time geometry ma-
nipulation through changing parameters. The language is based on dragging components into
the canvas and connecting them through wires. A component receives input from the previous
component, performing functional operations and then distributing outputs. Then the algorithm
will automatically transform into a digital geometric model in Rhino. In addition, the software
allows downloading plug-ins or packages for a more sufficient and compatible design. Further,
the scripting of additional plug-ins enables complex projects.

Figure 3.6: A box created in Grasshopper (right) and automatically viewed in Rhino (left).

Karamba 3D

Karamba 3D is a parametric structural engineering tool that can be downloaded and integrated
into Grasshopper (‘Karamba3D – parametric engineering’, n.d.). The plug-in easily combines
parametric design with finite element analysis (FEA) and optimisation. It provides accurate calcu-
lations of spatial trusses, frames and shells. For this thesis, Karamba will be adopted to evaluate
the structural performance of the structure.

Octopus

Octopus is a MOO tool that allows searching for many goals at once and introduces the Pareto
principle for multiple goals (‘Octopus’, 2012). The Octopus component can connect to multiple
parameters or genes, which can either be NumberSliders or GenePool components. Octopus will
then explore possible solutions by varying the genes within the individual range settings. These
genes sets the design space. The phenotype is the solution mesh from the parametric modelling.
Octopus expect both a number parameter and a text parameter. The number parameter contains
the numeric objective values, that is, the fitness values of the solution. It requires a minimum of

16

two, and the maximum is theoretically unlimited. The text parameter includes textual objectives
descriptions, that is, short names describing the objective values. Constraints can be ensured by
implementing a boolean parameter. Octopus expects a "true" value for valid solutions.

Visual Studios and C#

Visual Studio is an integrated development environment (IDE) from Microsoft, a code editor for C
Sharp (C#) development (‘Visual Studio’, n.d.). C# is an object-oriented programming language,
and the software will be used to develop Grasshopper components to enable structural grammar
operations.

Simple Grammar

Simple Grammar is a plug-in developed by Sverre Magnus Haakonsen for an ongoing project
within shape grammars at Conceptual Structural Design Group (CSDG), Department of Structural
Engineering, NTNU. The corresponding Visual Studio project contains both classes and compon-
ents related to shape grammar (Haakonsen & Izumi, 2022). The UML diagram in Figure 3.7
presents the required classes and their relationships.

Figure 3.7: UML diagram for SimpleGrammar.

The following existing component is adapted in this thesis.

17

GrammarInterpreter
The rule application depends on the GrammarInterpreter component. As figure 3.8 shows, the
component has the Simple Shape (initial geometry) and Rules as input, and outputs the Modified
Shape. This output is an external class, thus not Rhino geometry. Hence, assembling the model
requires an additional code before it is displayed in Rhino.

Figure 3.8: This component modify the Simple Shape due to applied rules.

18

4 Digital Implementation of Functional Grammar

The first part of this section undertakes the functional grammar proposed by William J. Mitchell
by transforming his theory into Grasshopper components. The study examines the top-down re-
finement rule, which was defined in Section 3.3.2. Further, the concept is illustrated by showing
the step by step process behind one structural configuration, including a volumetric model. The
volumetric model is further described in the last sub-section.

4.1 Mitchell Rules

This section will focus on the different rules developed to transform the initial geometry into
its final and modified form. The subsections will describe the function of each Mitchell Rule
component which inherits the properties from abstract class SH_Rule in SimpleGrammar. This
relationship is shown in Figure 4.1, including details behind each class. Other classes and their
properties and methods that have had an impact on the codes are displayed in Figure 3.7.

Figure 4.1: UML diagram for Mitchell Rules.

19

To differentiate between the two framework’s terminologies, will the developed rule components
be referred to as "Mitchell Rule #", while the rules from functional grammar by J. Mitchell with
only "Rule #". Table 4.1 provides an overview of this relation, as well as a short description of
the plug-in components. Since the Rules are merged into fewer Mitchell Rules, there is necessary
with a numerical value to represent the different structures. The structural elements and their input
value to select and generate the design is presented in Table 4.2. In some cases, the name includes a
number representing the input value to generate the corresponding structure. Those cases without
a number have only one corresponding structure.

Table 4.1: The table illustrates the relationship between the developed components and the rules
proposed by J. Mitchell.

Functional Gram-
mar by William J.
Mitchell

Component name Description of the
component

Mitchell
Rule 1

Deconstruct volume
into surfaces.

Rule 1

Mitchell
Rule 2

Generates
substructure.

Rule 2

Rule 3

Rule 3

Rule 26

Mitchell
Rule 3

Generates primary
roof structure.

Rule 27

Rule 28

Rule 29

Rule 9

Mitchell
Rule 4

Generates
secondary roof
structure.

Rule 10

Rule 11

Rule 12

Rule 13

Rule 14

Rule 15

Rule 15 and 20

Mitchell
Rule 5

Generates lateral
stability.

Rule 16 and 21

Rule 17 and 22

Rule 18 and 23

Rule 19 and 24

Gathering the Rules that belong to the same stage of the process into one component, for instance,
deciding the primary roof structure or the bracing, reduces the amount of Mitchell Rules. Having
one component that includes several structural elements makes the model more adaptable when
the designer wants to change the structure. Rather than replacing components, the designer only

20

adjusts the parameters, hence the design. It contributes to a more user-friendly interface and is less
time-consuming.

Instead of operating with volumes as William J. Mitchell, this study is based on mainly nodes
and lines. Processing these geometric properties simplifies the geometry, making it adaptable for
both a visual and analytical model. This is preferable when working with functional grammar.
This inequality is also noticeable in Table 4.1 where Rule five to eight is not listed since they are
volume operations that get simplified through the use of lines. Likewise, for Rule twentynine and
thirty, which is incorporated in Mitchell Rule 5.

Table 4.2: The table presents the different structural elements proposed by J. Mitchell. The ele-
ments’ names in the plug-in are listed in column two.

Functional Grammar by J. Mitchell Corresponding name and input
value

Substructure and level roof system Substructure 0

Substructure and layered roof system Substructure 1

Substructure and pitched roof system Substructure 2

Substructure and bowed roof system Substructure 3

Truss Primary Roof Structure 0

Beam Primary Roof Structure 1

Pitched Truss Primary Roof Structure

Bowed Trusses Primary Roof Structure

Pitched Trusses Secondary Roof Structure 0

Bowed Truss Secondary Roof Structure 1

Beams Secondary Roof Structure 2

Flat Trusses Secondary Roof Structure 3

Joists Secondary Roof Structure

Joists Secondary Roof Structure

Diagonal brace Lateral Stability 0

Cross braces Lateral Stability 1

Knee brace Lateral Stability 2

Shear wall Lateral Stability 3

None Lateral Stability 4

As mentioned in Section 3.4, labelled shapes are adapted in this thesis. The order for rules to be
applied coincides with the order in Table 4.1. Furthermore, the state labels for the Mitchell Rules
are specified in Table 4.3.

21

Mitchell Rule # State Label
1 α

2 β

3 γ

4 δ

5 ε

Table 4.3: State labels for Mitchell Rules.

Geometry

The initial volume is constructed in Rhino and referenced to a brep container in Grasshopper. The
dimensions of the box illustrated in Figure 4.2 set the width, length and minimum height. When
rules are applied to GrammarInterpreter, the geometry gets modified based on the instructions
from the rules. However, for the initial shape to be responsive to these modifications, it needs to
be converted into a SimpleShape class before it acts as an input. This was accomplished through
the code in Listing 1, which was written in Grasshopper‘s C# component.

Figure 4.2: The initial geometry before rule application.

1 Brep b = RhinoGeometry;
2

3 SH_SimpleShape ss = new SH_SimpleShape();
4

5 ss.Elements["Solid"] = new List<SH_Element>();
6 SH_Solid s = new SH_Solid();
7 s.Brep = b;
8 s.elementName = "Brep";
9 ss.Elements["Solid"].Add(s);

10

11 SimpleShape = ss;

Listing 1: The code converts Rhino geometry into Simple Shape geometry.

22

Mitchell Rule 1

The component displayed in Figure 4.3 requires no additional input since it only processes the
SimpleShape through the GrammarInterpreter. The initial box gets deconstructed into six sur-
faces as this rule (MRule1) is applied. Each surface is thereby assigned an element name and
stored in SimpleShape. SimpleShape in Figure 3.7 shows that SH_SimpleShape store a property
named Elements. That is a dictionary which stores a list of SH_Elements as values, with the key
"Surface". A SH_Element has the element name and geometry as properties. By evaluating the Z
component of the normal vector for each surface, their element name is either set as top, longest
wall, shortest wall or bottom. The shortest walls are equivalent to the transversal walls of the box,
and the longest walls are the longitudinal walls.

Even though the component does not correspond to a specific Rule in functional grammar (J. Mitchell,
n.d.), it produces necessary elements for further rules to be based on. The element names contrib-
ute to the correct selection of surfaces to modify in Mitchell Rule 2.

Figure 4.3: Mitchell Rule 1 (MRule1) deconstruct the volume into surfaces.

Mitchell Rule 2

The Mitchell Rule 2 (MRule2) component in Figure 4.4 addresses Rule one to eight. However,
Mitchell originally converts the surfaces into volumes rather than lines and nodes that this de-
veloped component will generate. The rationale for this is to simplify further modifications and
later structural analysis.

23

Figure 4.4: This component generate lines and nodes for each possible substructure.

The component has an input named Number of Substructure, which requires a number between
zero and three. Based on this number, the GrammarInterpreter generate the corresponding sub-
structure (shown in Figure 4.5 and Table 4.2). It produces a set of lines and nodes that further
rules will depend on. Through the input Height the incline of the pitched roof of substructure 2 is
decided, likewise for substructure 3 where it determines the height of the bowed roof. In addition,
this substructure requires a discretization of the arch. Thus, the input Count is added to control the
number of segments the arch is divided into. If the number is odd, the code converts it to an even
number by adding one. This applies to all developed components that include "Count".

Default values are set as zero for the substructure, one for the height and six for the count. Sub-
structure 0 and 1 have similar outputs, except for the element name, which is linked to the sub-
structure number. Subsequent rules will generate different structural outcomes for these two.

Figure 4.5: The substructures identified by J. Mitchell. From the top, substructure 0 is followed
by substructure 1, substructure 2 and at the bottom is substructure 3. Image by William J. Mitchell.

24

The different objects are stored in the Elements dictionary, but with the key now set as "Line". The
lines correspond to columns, transversal and longitudinal beams implied by the element name. In
addition, each object has an id and two nodes for line construction. For substructures 0 and 1,
there will be eight nodes, while substructure 2 has additional two nodes (top nodes for the pitched
roof). The additionally amount of nodes for substructure 3 depends on the value for Count.

Further, at this stage, the name of the material and cross-section are selected, hence the inputs
Material and Cross-Section. Their default values are respectively "timber_C20" and "200x200"
[mm x mm]. These properties are added to all subsequent generated elements.

Mitchell Rule 3

Figure 4.6 shows Mitchell Rule 3 (MRule3) determines the primary roof structure, that is, Rule
twenty-five to twenty-eight. However, the configurations have some limitations since the sub-
structure from MRule2 omits some combinations. For instance, the bowed roof, equivalent to sub-
structure number 3, dictates that the primary roof structure must be a bowed truss. Even though
Mitchell only proposed four structures, there is a huge variety of possible truss systems in reality.

Figure 4.6: Primary Roof Structure are constructed when this component is applied to Grammar-
Interpreter.

The component has three inputs; Number of Primary Roof Structure, Beam Height and Count.
The election of the primary roof structure is relevant for substructures 0 and 1, likewise for Beam
Height. The last input determines the number of segments for the truss system for all four sub-
structures. The default value is set as zero for the primary roof structure, while the default value
for height and count is equivalent to one and four.

Mitchell Rule 4

The component Mitchell Rule 4 (MRule4) in Figure 4.7 addresses the election of the secondary
roof structure. Initially, there are six secondary roof structures stated as Rule nine to fourteen, but
the feasible selection depends on the substructure and primary roof structure. Like previous, this
process is applied through input with the name Number of Secondary Roof Structure. Additional
inputs are secondary truss Height for pitched and bowed structures and Count which decides the

25

number of secondary structures. There is also an input called Amount of Secondary Roof Structure
which represents the number of joists and beams as the secondary roof structure. Zero, one, six and
two are respectively the default value for the secondary roof structure, height, count and amount
of secondary roof structure.

Figure 4.7: Mitchell Rule 4 modify the current shape by adding secondary roof structure.

Mitchell Rule 5

Rules fifthteen to twentyfour manage primary and secondary lateral stability and are merged into
one component, Mitchell Rule 5 (MRule5) showed in Figure 4.8. Number of Lateral Stability
selects sort of bracing. In addition, the component includes an input Number of Wall for which
wall to brace. Both default values are set to zero. Wall zero and one correspond to the transversal
walls, while two and three are the longitudinal walls. To be able for multiple walls to be braced,
the inputs take in a list of values. The last input Distance Corner is only applicable for knee
braces (Lateral Stability 2), and it decides the distance from the top corner that the knee brace will
intersect with the top beam and column.

Figure 4.8: The component adds lateral stability to the structure. All four walls can be braced.

The shear wall is modelled as a surface to match the necessary input in Karamba. Different
solutions for modelling the knee braces have been evaluated. Since shape grammar involves design
generation, the bracing has been modelled as a part of the component. That implies that the column
and beam intersecting with the bracing element get cut into two elements.

26

The selection of lateral stability affects the feasible material options for the columns. For instance,
only masonry columns are sufficient if no lateral stability is chosen, i.e. Lateral Stability = 4.
Hence, this component also restricts the bracing options based on the columns’ material.

4.2 Additional Plug-ins

There are developed two components to extract the necessary elements to be viewed in Rhino.
One generates the geometry for the structural analysis, while the other converts the geometry into
a volumetric model.

CreateGeometry

As mentioned previous, the modified shape from GrammarInterpreter is an external class called
SimpleShape. Therefore the geometry will not be displayed in the Rhino viewport when generated.
The CreateGeometry component in Figure 4.9 solves this by converting the SimpleShape geometry
into Rhino geometry - Lines, Surfaces, and Points that are equivalent to the output "Support".
These three geometric properties are necessary for structural analysis in Karamba.

Figure 4.9: CreateGeometry convert and supply with necessary geometry.

CreateVolume

To generate a volumetric model, the CreateVolume in Figure 4.10 had been developed. The single
input is the Simple Shape from the GrammarInterpreter which contains information about the
cross-section and material, as well as the geometric elements. Based on these properties, the
component generates volumes, which are breps displayed in Rhino.

27

Figure 4.10: CreateVolume constructs the model into a volume based on the stored element data.

4.3 Structural Configurations

The flow chart in Figure 4.11 illustrates a structural configuration produced by applying rules
to the initial geometry. The initial geometry gets deconstructed into six surfaces when applying
MRule1. Further, the pitched roof, Substructure = 2, and its height equal to 1.5 meters are applied
by MRule2. This choice of substructure will narrow down selection further. MRule3 request an
input value for Count to decide the number of segments for the truss system. This integer is set
to six and serves as the lower limit for the number of joists. When applied, the quantity can be
regulated in MRule4, which adds a secondary roof structure. For this particular structure, the
number of the secondary roof structure is three, which means that each segment from the primary
roof structure is divided into a division of three. Lastly, lateral stability is generated twice and
chosen both times are the cross-bracing - Lateral Stability = 1 and longitudinal wall.

Additional example configurations are to be found in Appendix A.

28

M
itc

he
ll

R
ul

e
1

M
itc

he
ll

R
ul

e
2

Su
bs

tr
uc

tu
re

=
2

M
itc

he
ll

R
ul

e
3

M
itc

he
ll

R
ul

e
4

N
um

be
ro

fs
ec

on
da

ry
ro

of
st

ru
ct

ur
e

=
3

M
itc

he
ll

R
ul

e
5

L
at

er
al

St
ab

ili
ty

=
1

C
re

at
eV

ol
um

e

Figure 4.11: Illustration of the digital modification process that generates the same example con-
figuration as Mitchell referred to.

29

4.4 Volumetric Geometry

Since functional grammar should fulfil architectural purposes in addition to structural ones, each
SH_Line was assigned a cross-section and material when constructed. The volumes generated are
based on this data.

Substructure 0 and 1 have the same structural model due to simplification. However, the visual
model has some distinct differences in beam-column connections. Substructure 0 has a levelled
roof system with a primary overhang, while substructure 1 has a layered roof system with primary
and secondary overhang. This difference is illustrated in Figure 4.12

Figure 4.12: The figure illustrates the volumetric differences between substructure 0 and 1. The
figure to the right shows the levelled roof system for substructure 0, while to the left is the layered
roof system for substructure 1.

Figure 4.13 show the entire structure as a volume after Mitchell Rule 2 is applied.

(a) Substructure 1 (b) Substructure 1

Figure 4.13: The volumes for substructure 0 and 1 after applying Mitchell Rule 2. The beam-
column connection differs from the two substructures.

30

5 Structural Analysis

By connecting shape grammar to a structural analysis software like Karamba, the potential of func-
tional grammar as a design strategy is exploited in the conceptual phase. Hence, this chapter will
focus on establishing an analytical model. First, the loads acting on the structure are introduced,
and these loads are relevant when the following sub-section establishes the Karamba model used
to investigate the structural behaviour.

5.1 Loads

Self Weight

Karamba 3D automatically calculates the self-weight for the structure, and it will vary with the
type of material and construction. The self-weight from the joints is neglected.

Live Load

The designed model contains a roof structure, bracing and columns without additional floors.
Hence, the live load only includes maintenance work on the roof, which will be neglected at this
design stage.

Snow Load

The snow load can be calculated according to NS-EN 1991-1-3, where factors for the roof design
and location affect the value. Table NA.4.1(901) presents the characteristic value for snow load at
terrain for all counties in Norway. For instance, Trondheim could be used as a reference, which
entails a snow load equal to 3.5 kN/m2.

Wind Load

According to NS-EN 1991-1-4, the wind load depends on several factors. For example, the design
of the roof, location, et cetera. However, the structure in this thesis has no intended place. There-
fore it is conservative to assume the wind load to be 0.7 kN/m2, without no further advanced
calculations.

5.2 Establishing Analytical Model

Karamba is adopted to investigate the structural performance of the geometric outcome. This
section focus on establishing the model to perform the FE-analysis. It is necessary to define the
different structural elements like shells and beams, material, cross-section, loads and supports.
These properties are assembled into a model, and a second-order analysis is performed.

31

5.2.1 Structural Elements

The shape gets generated by the GrammarInterpreter and outputs the structural properties as
SimpleShape Class. The component C# Sort structural elements separates the parts into beams,
bars, columns, bracing and shear wall. Hence, the material and cross-section of the elements may
differ from each other. Furthermore, as both Figure 5.1 and Appendix B.1 show, their element
names are collected into ID-lists to serve as identifiers for the Line to Beam (Karamba 3D)-and
Mesh to Shell (Karamba 3D)-components. These components convert the geometry into Karamba-
geometry and include a drop-down menu Options to adjust their properties. The input-option
"Bending" from the drop-down menu allows to switch off the bending stiffness of members. This
behaviour is desired for members that only transfer axial forces, like vertical and diagonal mem-
bers in a truss system and bracing. Hence, the value is set to "false" to achieve this property.
Another solution to achieve it would be to model pinned joints.

Figure 5.1: C# Sort structural elements sorts and delivers the structural members and their ID.

5.2.2 Material and Cross-section

Each structural element classification have its material and cross-section component assigned with
the components Material Selection (Karamba3D) and Cross-Section Selection (Karamba3D). The
material component are connected to the cross-section, and the cross-section to one of the struc-
tural element components presented in Figure 5.2.

The material is chosen with the Material Selection (Karamba3D)-component, which have a drop-
down menu with give quick access to materials. Steel, concrete, glulam timber and aluminium are
some of the options within Family. The Name depends on the chosen family, for example, "S355"
is an alternative for steel.

32

Figure 5.2: Defining structural elements with Line to Beam (Karamba 3D)-component and Mesh
to Shell (Karamba 3D)-component. Further, they are connected to Material Selection (Kara-
mba3D) and Cross Section (Karamba3D) that assign material and cross-section to the elements.

The selected materials that have been adopted from the Karamba component are listed in Table 5.1
below. Glulam (glued laminated timber) is chosen since it is stronger and more rigid than solid
timber due to the lamella effect. The greatest tensile forces occur at the top and bottom of the
beam, and consequently, these lamellas have a higher strength class.

Material Name Material Family
Steel S355
Concrete C35/45
GlulamTimber GL32c

Table 5.1: Material from Karamba is used for the analysis. The material properties are assigned
by Karamba.

33

There have been operated with different cross-sections for different materials. Other than default
values, the standard dimensions [mm] of glulam are presented below in Table 5.2.

Width: 90, 115, 140
Height: 90, 115, 135, 180, 225, 270, 315, 360, 405, 450, 495, 540, 585, 630

Table 5.2: Standard dimensions for glulam (‘Standard limtre trykkimpregnert’, n.d.).

The relevant steel profiles is based on the standard dimensions in Stålkonstruksjoner - Profiler og
formler (Larsen et al., 1997). The profiles for all materials correspond to the alternatives listed
in the cross-section menu included in Cross-Section (Karamba)-component. Table 5.3 presents a
summary of profiles and dimensions applicable for the materials in addition to the default values.

Cross-Section

Steel Glulam Concrete

Member Profile Dim.
[cm]

Profile Dim.
[cmXcm]

Profile Dim.
[cmXcm]

Beams IPE Default Trapezoid 11.5x11.5 Trapezoid 30x30

Bars HFRHS 5 Trapezoid 9x9 Trapezoid -

Columns HFRHS 10 Trapezoid 11.5x11.5 Trapezoid 20x20

Bracing HFRHS 5 Trapezoid Default Trapezoid -

Shear Wall - - - - Shell
Const

10 cm

Table 5.3: Cross-section applied to members. Profile corresponds to the included cross-section
menu in Karamba.

5.2.3 Supports

The supports have been collected from the CreateGeometry by extracting the points that are loc-
ated in World XY-plane with Z-coordinate equal to zero. These support points correspond to the
endpoints of the columns that are in contact with the ground. The support conditions are defined
through the Support (Karamba)-component, which has six degrees of freedom, three translational
(Tx, Ty, Tz) and three rotational (Rx, Ry, Rz). As Figure 5.3 indicates are all translational dofs
assumed fixed, in addition to Rx and Ry, to prevent torsion and moment.

34

(a) Support conditions are set by the Support
(Karamba)-component.

(b) Support condition displayed in Rhino

Figure 5.3: Support condition for the structures.

5.2.4 Loads

The loading for this conceptual study is self-weight, snow load and wind load. How the loads are
constructed is shown in Figure 5.4. With the Load (Kamarba3D)-component, the type of load is
chosen as MeshLoad Constant and is globally projected for the snow load case while orientation
is set as globally for the wind load. Wind load is assigned as load case zero, and snow load is load
case one. Vec inputs the surface-load vector [kN/m2] and the ElemIds adds the identifiers to which
elements the loads are applied to. Further, the component receives a mesh that the surface load
acts on and converts it into line loads.

Figure 5.4: The algorithm in Grasshopper to add loads to the analytical model.

35

Snow Load
In addition to self-weight, snow load is added as vertical loading. The C# script Elements applied
Vertical Load is developed to collect the correct structural elements. Those elements coincide with
the top part of the secondary structure, that is, elements in the longitudinal axis. Based on their
element names assigned during the application of Mitchell rules, the necessary element IDs are
collected. No duplicate lines are ensured by the Remove Duplicate Lines (Karamba 3D). If there
occurs any duplicate line, the index of the deleted item is used to eliminate the corresponding
element ID. After that the data is fed into the ElementIds. The mesh is constructed based on the
Elements extracted by the C# code. There should be one mesh between each adjacent line to
achieve accurate loading values independent of the roof shape and elements. Therefore these lines
have been lofted, thereby deconstructed. Then, the faces are split into surfaces based on the lines
before the final meshes are constructed and fed into input Mesh.

Wind Load
For the wind load, a cluster has been constructed. The cluster generates the mesh and load vector
based on which surface from the initial box to apply the loading. The surface is controlled by the
index input, while the U Count and V Count determine the quads of the mesh. In addition, the load
value is also taken in as an input. The entire algorithm for the cluster is presented in Figure 5.5.
Since loads act on a surface from the initial box, the wind is not accounted for when the structure
reaches above the original height.

Figure 5.5: The cluster constructed for the wind load. The output Load is the load vector, which
is determined by the load value - input Load set by the user - multiplied by negative one to achieve
the correct vector direction. In addition, it is determined by the surface selected with index that
decides which surface of Brep Box to apply the loading.

The C# script Elements applied Horizontal Load is developed to access the correct structural
elements to load. The inputs are StructuralElements that obtain geometry from the GrammarInt-
erpreter component, and LoadedMesh, that is the mesh the load are applied to in the Load (Kara-
mba3D)-component. The structural elements that are located on the mesh are then collected. In
this load situation, the loading act on one of the longitudinal walls.

Figure 5.6 shows in which directions the two load cases are applied; positive x-direction for wind
load and negative z-direction for snow load.

36

Figure 5.6: Load direction. Vertical load on the roof and horizontal load acting on one of the
longitudinal walls (positive x-direction).

5.2.5 Assemble Model And Structural Analysis

The AssembleModel-component collects necessary information - structural elements, supports,
load, cross-section and material - to run an FE-analysis with Karamba. A second-order analysis
is completed with the AnalyzeThll (Karamba3D)-component and connected to the Model View
(Karamba3D)-component (see Figure 5.7). Further, the component is joined with the components
Beam View (Karamba3D) and Shell View (Karamba3D), which controls the display options. This
concerns rendering of such as cross-section, displacement and utilisation. Other results are given
by the Utilization of Elements (Karamba3D)-component, which returns the utilisation for mem-
bers, and the Buckling Modes (Karamba3D)-component, which calculates the buckling modes and
returns the buckling factors.

37

Figure 5.7: Illustration of how the Karamba model is assembled and analysed.

38

6 Exploration with Shape Grammar

The Karamba model established in the previous section is now used to investigate the structural
performances of particular configurations generated from the developed Mitchell Rules. Besides
that, a rough price estimation, CO2 emission and an architectural model are established and will
impact the total evaluation of the different shapes. This adds an extra dimension to shape grammar.
Further, these shapes are evaluated and compared based on the given results.

The advantage of shape grammars is to rapidly explore and evaluate configurations by changing the
parameters. Section 6.3 demonstrates the potential through a manual exploration of structures that
also gets analysed. The subsequent section concerns a MOO based on minimising displacement,
price estimation and CO2 equivalents for both glulam and steel structures.

6.1 Price Estimation

A rough estimation of the price has been calculated to get an overview of the price alternatives.
The assumed price is not fixed since it will fluctuate within countries, seasons, et cetera. However,
it is used to establish an estimation to indicate how the price can affect the choice of structure and
the broad potential of shape grammar.

The costs correlate with the volume - the bigger the volume, the higher the costs. Although, as
Figure 6.1 indicates, the volume and price are calculated in separate codes since later calculations
are also based on the volume. It takes in three inputs; Elements, Material and CrossSections.
Elements include all structural geometry - lines and surfaces, while their corresponding material
properties are obtained from the second input. Whereas the last input value represents the area
of cross-sections for lines, it corresponds to the thickness of the surfaces. In addition to the total
volume, a dictionary named Volumes gets generated. It stores the volumes of each material sep-
arately together with their gamma value. This dictionary provides the necessary information to
input in later components.

Figure 6.1: The computed total volume [m3] is used to calculate a price estimation [NOK] and a
prediction for CO2 equivalents [kgCO2eq].

39

The total price for a particular structure is calculated based on the information stored in the dic-
tionary Volumes from C# Calculated Volume and assumed prices. The price of concrete is assumed
1400 NOK per m3, while the timber and steel prices is based on the mass. Hence, both the steel
and timber price are assumed 40 NOK per kg. The output is delivered in Norwegian kroners
[NOK].

6.2 CO2 Emission

Another aspect of shape grammar is how an estimation of the CO2 equivalents can be integrated
and evaluated. A highly relevant operation and value for future design approach and shape gener-
ation aware of the environmental challenges ahead. Likewise as price estimation, it is based on the
information fed by Volumes. Table 6.1 presents the utilised life cycle analysis (LCA) coefficients
(‘ecoinveent’, n.d.). Coefficient for A1-A3 are related to production of material.

Material A1-A3 Units
kgCO2eq

Concrete (ready-mix) 238.2 /m3

Steel (profile) 1 /kg
Timber (glulam) 44 /m3

Table 6.1: Life cycle analysis (LCA) coefficients used to calculate a prediction for CO2 emission.

6.3 Manual Exploration of Shape Grammar

A manual selection of various structures that are analysed are illustrated in Figure 6.2 with cor-
responding description in Table 6.2. There are combinations where the structural performance are
both checked for steel and timber, while others are composite structures of steel and concrete. The
initial dimensions of the building are: a column height equal to three meters, longitudinal side
is five meters and transversal side has length of four meters. These dimensions are displayed in
Figure 6.2a and Figure 6.2b are applicable to all configurations. The cross-sections, profiles and
material utilised are presented in Table 5.3 and Table 5.1.

40

Configuration Material Roof Structure Bracing

1 Steel Pitched truss roof
(Substructure = 2)

Cross-bracing
(Lateral stability = 1)

2 Glulam Pitched truss roof
(Substructure = 2)

Cross-bracing
(Lateral stability = 1)

3 Steel Bowed truss roof
(Substructure = 3)

Knee braces
(Lateral stability = 2)

4 Glulam Bowed truss roof
(Substructure = 3)

Knee braces
(Lateral stability = 2)

5 Steel Flat trusses as primary and sec-
ondary roof structure
(Primary roof structure = 0,
Secondary roof structure = 3)

Cross-bracing
(Lateral stability = 1)

6 Glulam Flat trusses as primary and sec-
ondary roof structure
(Primary roof structure = 0, roof
structure = 3)

Cross-bracing
(Lateral stability = 1)

7 Steel columns and
bracing + concrete
beams

Beams as primary and secondary
roof structure
(Primary roof structure = 1,
Secondary roof structure = 2)

Diagonal bracing
(Lateral stability = 0)

8 Concrete Beams as primary and secondary
roof structure
(Primary roof structure = 1,
Secondary roof structure = 2)

Shear walls
(Lateral stability = 3)

Table 6.2: Description of the configurations manually chosen.

41

(a) Configuration # 1 - steel framework. (b) Configuration # 2 - timber framework.

(c) Configuration # 3 - steel framework. (d) Configuration # 4 - timber framework.

(e) Configuration # 5 - steel framework. (f) Configuration # 6 - timber framework.

(g) Configuration # 7 - steel columns and bra-
cing & concrete beams.

(h) Configuration # 8 - Concrete

Figure 6.2: The selection of structural configuration that are analysed.

42

6.3.1 Results

Below in Table 6.3 are the results for the structures in Figure 6.2 presented. These values are
extracted from the established Karamba models and C# scripts, and are gathered under the header
Results in Grasshopper.

Configuration Displacement
Load Case 0

Displacement
Load Case 1

Buckling Maximum
Utilisation

Total
Volume

Price
Estimation

CO2
Equivalents

[cm] [cm] [kN/m3] [m3] [NOK] [kgCO2eq]

1 1.726 0.952 28.166 0.382 0.231 20087 2008.736

2 3.774 2.668 11.335 0.376 1.781 9075 78.344

3 1.447 1.627 13.148 0.518 0.196 15679 1567.857

4 3.248 4.665 4.821 0.346 1.346 6862 59.234

5 2.063 0.122 17.398 0.459 0.157 12565 1256.544

6 4.454 0.222 10.119 0.136 1.159 5907 50.995

7 6.826 0.312 4.903 1.7452 5 4549 992.265

8 0.020 0.148 509.680 1.195 4.770 4770 1136.214

Table 6.3: Results for the configurations from the FE-analyse with Karamba, including calculation
of total volume, price estimation and CO2 equivalents.

6.3.2 Architectural Expression of Configurations

In addition to the structural performance, price estimation and prediction of CO2 equivalents, the
architectural aspect affect the choice of structure. Thus, a visual representation has been construc-
ted to evaluate the importance of expression. The models are presented in Figure 6.3 and have
been added material colour and cross-section to visualise the architectural language.

43

(a) Configuration # 1 - steel framework. (b) Configuration # 2 - timber framework.

(c) Configuration # 3 - steel framework. (d) Configuration # 4 - timber framework.

(e) Configuration # 5 - steel framework. (f) Configuration # 6 - timber framework.

(g) Configuration # 7 - steel columns & concrete
beams.

(h) Configuration # 8 - concrete.

Figure 6.3: 3D architectural model of the configurations with material and cross-section added.

44

6.3.3 Interpretation of Results

The manual exploration results were presented in Section 6.3.1 Section 6.3.2 and are in this section
evaluated, compared and discussed.

• Steel structures (configuration 1, 3 and 5) displacement results for both load cases are small.
The same configurations with glulam as material remain with approximately two times
higher displacements. Except for the structures involving bowed roofs, which achieved
greater horizontal than vertical displacement. This is expected knowing the advantages of
an arch and how it transfers forces.

Configuration 8 accomplished minimal displacements for both load cases. Due to three
shear walls, the structure achieves sufficient stiffness to resist actions. The two cross-braced
walls for configuration 7 are located on the longitudinal side. Since they are perpendicular
to the load direction, the structure does not achieve equally good horizontal displacement
results. Anyway, as a rule of thumb, ten centimetres displacement is acceptable for a con-
ceptual study. This criterion is fulfilled for all configurations.

• The buckling loading factor is greater than one for all configurations. Thus, no buckling is
predicted, and the applied loads are less than the estimated critical loads.

• In the conceptual phase, the aim is to achieve utilisation near one, to indicate if it is real-
isable or not. The value is well within this requirement for steel and timber structures,
implying that the materials’ properties can be better utilised by changing the configurations.
Maximum utilisation for steel and timber structures has reached less than approximately
half of the members’ capacity. Even though configuration 8 has a max utilisation equal to
1.195, it achieved good displacement results, and the configuration is assumed achievable.
For configuration 7 the utilisation is quite high and has high horizontal displacement.

The intention of including volume, price and CO2 calculations is to present the broad potential of
shape grammars. The result is not realistic without an exact and advanced calculation process, but
it provides enough information for discussion. The interpretation of the results is done below but
has a greater impact when discussing the results based on user preferences.

• Common for timber and concrete structures is a volume higher than steel structures. As the
models imply, a more slender design with steel is possible due to its material properties and
fabrication method. This is best shown through the truss system.

• The timber and steel price was both assumed to be 40 NOK per kg. With identical con-
figurations analysed and knowing that timber is a light-weighted material, the results are
obvious: much higher price for steel structures. In comparison, the designs consisting of
concrete accomplish a relatively low cost.

• Compared to glulam systems, steel systems have much higher CO2 equivalents, whereas
structures involving concrete are approximate to steel emissions.

45

• During a manual exploration, the user generates architecturally desirable shapes that need
to be controlled structurally and with the consumers’ additional important aspects. Hence,
the models in Figure 6.3 are aesthetically pleasant. Although, configuration 7 could be
enhanced.

For the structures analysed, timber scored high on price and CO2. In other words, glulam achieves
a low environmental footprint and low costs, while the steel framework has potential for improve-
ment. They have approximately equal utilisation, but the load cases induce lower displacements
for steel structures. Therefore, reducing either the number of elements, adjusting the configuration,
or the cross-sections will increase the utilisation of steel members. These changes will most likely
positively affect the CO2 equivalent and price, and the deviation between steel and timber de-
creases. Alternatively, unlike steel structures, configurations of timber need to be advanced. Thus,
the displacement gets reduced, and the price and CO2 equivalents increases. With improved con-
figurations, structures would reach higher utilisation and affect the architectural language. Taking
advantage of the materials’ properties would likely lead to more slender steel structures.

The architectural aspect is not as straightforward to evaluate since aesthetics is an individual pref-
erence. Which configuration and the importance of architecture also depend on how the consumer
validates and weights the different elements. For instance, a person with a strict budget would
prioritise a sufficient shape with the lowest price. In contrast, a person with much engagement to-
wards the environment and no economical restriction would most likely choose another structure.
This customisation to fit each person’s desires is one advantage of functional grammar, and it is
practical for design exploration in the early stage.

The configurations impact the result; different materials are exploited through different composi-
tions. The various configurations are feasible for different loading conditions and scales of struc-
ture. Steel achieves great structural performance for this initial shape, the given load cases, and
the chosen configurations. However, a MOO for both materials is performed in the next chapter to
get a better comparison.

46

6.4 Optimisation of the Design

This section aims to optimise the shape using Octopus with respect to multiple objectives. The
loads accounted for in the analysis are presented in Section 5.1, that is, self-weight, wind load and
snow load. Both the material properties and the cross-section are fixed during the optimisation
(see Table 5.1 and Table 5.3). Two optimisations will be performed: one with timber and one with
steel. Lastly, the results from the MOO are then retrieved and compared with the configurations in
Section 6.3.

6.4.1 Optimisation Approach with Octopus

The goal is to optimise in terms of structural factors, price and CO2 equivalents. The objective
values and the constraints are as follows::

Displacements Aim to minimise the displacement, which entails a
decrease in moments and normal forces.

Price estimation It is favourable to design a sufficient construction
that is also competitive. Hence the structure is op-
timised to minimise the price.

CO2 equivalents A suitable objective to calculate and minimise when
knowing the environmental challenges this planet
faces.

Buckling factor It is necessary to achieve a buckling load factor >
1, then buckling is not predicted. Through the C#
Buckling Constrain, corresponding script in List-
ing 3, this requirement is satisfied when the optim-
isation is performed.

Utilisation The requirement is utilisation < 1. This is taken into
account through constructing C# Utilization Con-
strain for the Octopus-solver. The related script is
displayed in Listing 2.

Maximum displacement includes two values - one for each load case. Therefore the optimisation
is based on the maximum of these two to ensure a valid optimisation. It is not optimised with
respect to material volume since it correlates with the price. Additionally, it also affects the CO2

emission. Therefore, by evaluating those two objectives, material volume is considered indirectly.

47

1 // Access input
2 List<double> utilization = utilization;
3

4 // Solve
5 double maxutilization = utilization.Max();
6 bool criteraFeedback = new bool();
7

8 if (maxutilization <= 1)
9 {

10 criteraFeedback = true;
11 }
12 else
13 {
14 criteraFeedback = false;
15 }
16

17 // Output
18 Requirement = criteraFeedback;

Listing 2: This script apply to component C# Utilization Constrain and checks if the requirement
for utilisation is fulfilled, if not it returns false.

1 // Access Input
2 double bucklingFactor = BucklingLoadFactors;
3

4 // Solve
5 bool criteraFeedback = new bool();
6 if (BucklingLoadFactors >= 1)
7 {
8 criteraFeedback = true;
9 }

10 else
11 {
12 criteraFeedback = false;
13 }
14

15 // Output
16 Requirement = criteraFeedback;

Listing 3: This script apply to component C# Buckling Constrain and checks if the requirement
for buckling is fulfilled, if not it returns false.

To initialise Octopus it is necessary with a valid configuration, this is set with the parameters in
Figure 6.4 and the validation given is from Karamba. There are fifthteen parameters/genomes
presented, which are connected to the various Mitchell Rules and contribute to the geometric
modifications. Similarly to parameters used in the manually exploration. However, items such
as material, cross-section and wall number are omitted. As seen in Figure 6.4, a pink wire at-
tached to the variables connects them to the Octopus component. Octopus will generate different
configuration within the individual domain of these variables.

48

Figure 6.4: The parameters marked with dark pink are the genomes used for MOO with Octopus.

The optimisation process generates a set of solutions within the design space and arranges them
in a 3D population field. One axis in the 3D population field represents one of the objectives,
hence the three axes names "Displacement", "Price Estimation", and "CO2 Emission". Due to
high values for price and CO2 equivalents, their axis went from highest to lowest, making the
results difficult to interpret. Hence the values from the Karamba analysis are multiplied with
0.0001 (steel) or 0.001 (timber) before being added as objective values. Achieving values of the
same size as a displacement for those two objectives made the population field more readable.

The optimisation is operated with the default settings. Accurate results are accomplished by run-
ning the optimisation for several generations. Therefore, both optimisations were stopped at six
generations. Figure C.1 and Figure C.7 display the set-up values in Appendix C.

Figure 6.5 illustrates the optimisation process to find the most feasible shape with the given load
case. Based on the parameters and the initial shape, a structure is generated and fed into the
Karamba model. Karamba calculates the displacement, buckling and utilisation and outputs the
solution mesh. The requirements are checked, and the solution is thrown away if they are not
satisfied. In addition, the optimisation seeks minimum displacement, price and CO2 equivalents.

49

Parameters

Shape
Grammar

Initial Simple
Shape

Structural
Analysis with

Karamba

Solution
Mesh

UtilisationDisplacement Buckling
Geometry

& Material
Properties

Calculate
Volume

Price
Estimation

CO2

Equivalents

Objectives

Constraints

Optimisation
with Octopus

YES

NO

True False

Solution
Thrown Away

Optimised Shape Placed
in Population Field

Figure 6.5: Flow chart of the optimisation process. Octopus receives solution mesh, parameters,
validation from constraints, and the objectives CO2 equivalents, price estimation and displace-
ment.

See Appendix D for the Grasshopper-file, and Appendix E for the video demonstrating the concept,
including the optimisation process.

50

6.4.2 Results

The population field in Figure 6.6 and Figure 6.7 shows the shapes at the Pareto-front compared
to each other for respectively glulam and steel. All solutions at the Pareto-front are equally good.
That is, no solution is better in all criteria. For instance, a solution with better price estimation has
worse displacement and CO2 results and is not located at the Pareto front. That solution would
be dominating since the Pareto optimal solutions are non-dominating. The configurations at the
Pareto front are exported from Octopus, and the files containing the objective and parameter results
are merged in Excel, where they are further evaluated. See Appendix C.2 and Appendix C.5 for
file explanation and results.

A detailed result orientation is presented in Appendix C. Retrieved from that data, Table 6.4
presents three shapes per material that represent the lowest value of each objective for both mater-
ials. Further, the table includes a configuration for each material representing an example of the
designer’s preference. These configurations are marked with yellow in Figure 6.6 and Figure 6.7.

Figure 6.6: The 3D population field result from the MOO with glulam. The yellow-marked
structures correspond to the results in Table 6.4.

51

Figure 6.7: The 3D population field result from the MOO with Steel. The yellow-marked struc-
tures correspond to the results in Table 6.4.

Configuration Displacement
Load Case 0

Displacement
Load Case 1

Buckling Utilisation Total
Volume

Price
Estimation

CO2
Equivalents

[cm] [cm] [kN/m3] [m3] [NOK] [kgCO2eq]

Glulam I 0.123 0.026 87.921 0.271 2.127 10839 93.574

Glulam II 3.545 0.757 6.618 0.927 0.790 4025 34.749

Glulam III 3.545 0.757 6.618 0.927 0.790 4025 34.749

Glulam IV 0.142 0.098 5.328 0.774 0.840 4282 36.965

Steel I 0.186 0.195 10.519 0.260 7.688 615173 61517.271

Steel II 0.606 - 566.386 0.255 0.095 7622 762.205

Steel III 0.606 - 566.386 0.255 0.095 76225 762.205

Steel IV 0.425 0.407 27.802 0.177 0.559 44741 4474.075

Table 6.4: Results from MOO for both steel and glulam. The shapes listed represent the minimum
value for one of the objectives. The name including I represents the configuration with the lowest
displacement, II lowest price, while III is the configuration with the lowest CO2 prediction. Con-
figurations IV is chosen from a designer’s perspective.

6.4.3 Architectural Expression of Configurations

Figure 6.8 shows the models corresponding to the stated results in Table 6.4. Material colour is
added to obtain an architectural expression.

52

(a) Glulam I (b) Steel I

(c) Glulam II (d) Steel II

(e) Glulam III (f) Steel III

(g) Glulam IV - Designers preference (h) Steel IV - Designers preference

Figure 6.8: Shapes from the MOO for both glulam and steel.

53

6.4.4 Interpretation of Results

Some observations regarding the results from the MOO presented in Section 6.4.2 are in this
section mentioned and discussed.

• Since the buckling and utilisation requirements were constraints during the optimisation
process, they are both automatically fulfilled for all configurations. That means that all
structures have sufficient capacity, and no buckling is predicted.

• Almost all steel configurations have three or four braced walls, which are logical considering
structural stability.

• One solution is located further from the centre in the population field for steel than Steel
II/III. However, an error was detected when this configuration was reinstated in Grasshop-
per. The component calculating the volume failed to run; hence the solution was omitted.
Even though the solution was invalid for the evaluation, the actual shape is feasible. This
conclusion is supported by the fact that the error message that appeared occurred during the
volume calculation and therefore is independent of the structural performance.

• The solutions indicate a linear correlation between the price and CO2 equivalents, which
results from both depending on material volume and has simple estimations.

• Common for the majority of the generated proposals is a high density of the secondary
structure. This entails that each point load transferred to the primary structure gets reduced.
However, it contributes to higher material usage, which results in a higher price and self-
weight.

• Neither of the shapes constructed with glulam in Figure 6.8 has no particularly positive
architectural expression. The roof structure got quite an extensional roof height, and since
the wind load is not affected by this height, it does not contribute to larger internal forces. If
the roof height was taken into account when loads were applied, higher roof height would
imply larger forces and would only be favourable to increase to a certain extent.

• Steel II/III achieve a slender structure, likewise for Steel I, despite a compact bowed roof
and secondary roof structure.

• Instead of minimising the displacements, it could be implemented into Octopus as a con-
straint. For instance, a requirement of maximum of ten centimetres displacement could
entail additional desirable solutions. The same effect could also appear with a constraint on
price or CO2 equivalents.

The shapes generated from the optimisation fail to achieve a great architectural language. Even
though the elements are structurally arranged, they accomplish a disorder when it comes to the
expression. Despite the moderate architecture, the process produced unique solutions.

The configuration named designers’ preference would vary with the designers and their opinion.
The designers’ preference for glulam consists of beams as primary roof structure and bowed roof
as secondary roof structure, and is chosen due to an improved roof height compared to Glulam

54

I and II/III. All walls are braced and include several types, which entail a chaotic expression,
whereas Glulam II/III achieve a greater braced facade with one cross-braced wall. Glulam IV is
preferred rather than II/II due to lower price and CO2 equivalents and a greater roof system. That
indicates that the designer validates these aspects higher than a better bracing system. The same
applies to Glulam I; a better bracing system and less displacement are downgraded.

The MOO involving steel generated a solution close to one of the manual configurations. The
designers’ preference has a resemblance to Configuration 1 in Section 6.3; pitched roof and its
design and two cross-braced walls. However, it has an extra wall braced with knee braces. Instead
of cross-braced longitudinal walls, Steel IV has the shorter sides braced to resist movement due
to wind load - load case 0. Another inequality is the amount of secondary roof structure that is
much higher for the optimised shape. The optimised shape has better structural performance, but
the price and CO2 equivalent are more than double what is calculated for Configuration 1.

As assumed, steel realised slimmer structures than timber. Unlike glulam, where the generated
configuration in most cases includes concrete shear walls, steel structures manage to achieve suf-
ficient lateral stability on their own.

6.5 Discussion and Remarks

There have been some modifications to simplify the model and calculations and limit the scope
of this thesis. However, it entails inaccuracy in the results. The following sources of errors are
detected:

• When the Karamba model was established, the members were sorted into beams, bars (ver-
tical and diagonal truss members), columns, and shear walls. Hence, the members within
the same classification have the same properties. Arranging them into more specific groups
would generate higher accuracy in the analysis. For example, particular members in a truss
contribute differently and require different cross-sections, which is common practice.

• The knee braces are modelled to transfer only axial forces. This was done since all bracing
types were assembled into one group with the same properties, which was necessary for the
MOO. However, in reality, they would create a stiff corner - fixed connections and transfer
moment. This could be solved when an independent Karamba model is established, which
is further elaborated in Section 7.

• In general, all loads are simplified. There have not been performed calculations to detect the
most unfavourable load combination since the focus has been to demonstrate the usefulness
of shape grammars. When wind load is applied, the additional height from the roof is not
included, and hence the wind load is lower than what has been computed. This has already
been discussed when interpreting the optimisation results; the additional roof height should
indicate greater loading to achieve rational results.

Furthermore, the roof form has not affected the snow or wind load, which means the char-
acteristic load had not been multiplied with factors to consider the shape of the roof, its
characteristics, et cetera.

55

• The Utilization of Elements component calculates members’ utilisation according to NS-EN
1993-1-1. That is Eurocode 3 for steel structures; thus, glulam and concrete results have the
wrong material factors.

In addition to the following improvements can be made to accomplish enhanced results:

• In Section 4.4 the differences between substructure 0 and 1 were stated. Even though they
have been analysed with the exact same structural system, the load would have an eccentri-
city for Substructure 0 in reality.

• As Steel II and Steel III proves, it is necessary with limitations to achieve feasible struc-
tures. That is limitations regarding minimum distance for knee braces and truss members.
Additionally, a condition considering the angle of diagonal members should be added.

• The MOO showed that it is necessary with several constraints linked to each rule and action
to manage realistic configurations. For instance, the amount of secondary roof structure
should be limited, and this limitation should depend on which substructure and primary
roof structure are chosen.

• Even though the MOO minimised the displacements, it would be beneficial to minimise dis-
placements with respect to mass since higher self-weight cause higher displacement. That
is, minimising mass multiplied with displacement.

• The verticals in the bowed truss system are not perpendicular to the bottom beam. This
could be improved, or another system could be created.

• For the shape grammars to be adaptable to all proportions of a box, an algorithm that takes
column placements and quantity into account should be developed.

• The price estimation and CO2 prediction were highly simplified. A detailed analysis would
incorporate the price of connections, transport, labour, et cetera.

56

7 Further Work

As this thesis illustrates, there is a wide range of aspects to evaluate within functional grammar.
Further research to expand this study will involve a separate Karamba model/plug-ins directly
connected to the Mitchell Rules and their inputs. Increasing the complexity and flexibility of the
algorithm and process can ensure higher accuracy and a time-efficient evaluation. As for now,
the data for material and cross-section is manually attached to Karamba-component to analyse
the structure. However, an independent analysis engine with input data from the Mitchell Rules
would accelerate the result orientation. MRule2 illustrates this potential, where the given name
and cross-section are applied to subsequently generated elements. An advanced approach would
distinguish between the different elements’ structural properties and analyse based on this given
input. Whereas now, the cross-section and material input in shape grammar are insignificant for
the structural analysis with Karamba.

Moreover, a score could be added to rate each configuration concerning the users’ preferences.
That would enhance the user interface - for instance, multiplying each aspect with an individual
coefficient to account for the consumers’ prioritisation. The fabrication process could also be inter-
esting to check for the different structures. Any other aspects that are favourable to consider during
a design process could be integrated with shape grammar to compare different configurations.

Concerning shape grammar in general, it is necessary and desirable to develop rules independent
of structures. By making the rules flexible and reusable for various initial shapes, the usefulness
of the concept increases. The design exploration could go beyond the typology when an algorithm
with flexible rules is created. However, it would require further development of software and
computational design to achieve advanced models.

57

58

8 Conclusion

This exploration of shape grammar with parametric approaches has captured the essence and po-
tential of early involvement of structural performance. By implementing William J. Mitchell’s
theory about functional grammar into a digital approach, a design generation was constructed.
The idea behind rule application is to investigate different shapes effortlessly and rapidly based on
a few parameters. This design approach integrates structural performance with design exploration,
bridging the gap between architects and engineers and their separate software tools. It lets the user
interact and control the design through computational software.

A manual design generation was completed to prove functional grammar’s power. An advantage
of the approach is immediate feedback for desired shapes. It was efficient when structures were
evaluated and compared. Unlike the MOO, manual generation accomplished great architectural
language since the designer determined the shape. The price estimation and the CO2 equivalent
prediction represent an excerpt of possible aspects to integrate with shape grammar. The signific-
ance of feature preference when selecting a structure is illustrated by implementing those aspects.
Further, the design of a feasible configuration depends on load cases, material and cross-section.

This thesis has researched a relatively new and unexplored topic within the conceptual design.
Therefore, collecting relevant data and theories about the concept has been challenging. There are
limited studies published surrounding shape and functional grammar. However, with increased
attention to its potential, and focus on developing the design approach in the coming years, rule
application and functional grammar will increasingly impact future conceptual design. It will be
interesting to follow the development of the field in the future.

59

60

Bibliography

10 things to do at london’s st pancras [TripActions]. (n.d.). Retrieved 27th May 2022, from https:
//tripactions.com/blog/10-things-to-do-at-st-pancras

Addis, W. (2015). Building: 3000 years of design engineering and construction. Phaidon Press,
Inc.

Associates, R. M., givenun=0. (n.d.). Rhinoceros 3d [Www.rhino3d.com]. Retrieved 6th June
2022, from https://www.rhino3d.com/

Caetano, I., Santos, L. & Leitão, A. (2020). Computational design in architecture: Defining para-
metric, generative, and algorithmic design. Frontiers of Architectural Research, 9(2), 287–
300. https://doi.org/10.1016/j.foar.2019.12.008

Ecoinveent [Ecoinvent]. (n.d.). Retrieved 27th May 2022, from https://ecoinvent.org/
The future of structural engineering will survive the high-tech revolution [Redshift EN]. (2016,

September 14). Retrieved 20th January 2022, from https : / / redshift . autodesk . com/
future-of-structural-engineering/

Gebisa, A. & Lemu, H. (2017). A case study on topology optimized design for additive manufac-
turing. IOP Conference Series: Materials Science and Engineering, 276, 012026. https:
//doi.org/10.1088/1757-899X/276/1/012026

Geyer, P. (2008). Multidisciplinary grammars supporting design optimization of buildings. Re-
search in Engineering Design, 18, 197–216. https://doi.org/10.1007/s00163-007-0038-
6

Haakonsen, S. & Izumi, B. (2022). SimpleShapeGrammar (Version 1.0.1). https://doi.org/10.
5281/zenodo.1234

Introduction. (n.d.). Retrieved 22nd April 2022, from http://www.mit.edu/~tknight/IJDC/
page_introduction.htm

J. Mitchell, W. (n.d.). Functional grammars: An introduction.
Karamba3d – parametric engineering. (n.d.). Retrieved 4th June 2022, from https : / / www .

karamba3d.com/
Koning, H. & Eizenberg, J. (1981). The language of the prairie: Frank lloyd wright’s prairie

houses. Environment and Planning B: Planning and Design, 8, 295–323.
Larsen, P. K., Clausen, A. H. & Aalberg, A. (1997). Stålkonstruksjoner: Profiler og formler

(2nd ed.). Tapir Akademisk Forlag.
Mueller, C. T. (2014, May 2). Computational exploration of the structural design space.
Network, S. D. c. t. N. (n.d.). Grasshopper. Retrieved 6th June 2022, from https : / / www .

grasshopper3d.com/
Octopus [Food4rhino]. (2012, December 6). Retrieved 5th June 2022, from https://www.food4rhino.

com/en/app/octopus
Popovic Larsen, O. (2016). Conceptual structural design: Bridging the gap between architects

and engineers, second edition. [OCLC: 1096811847]. ICE Publishing.
Standard limtre trykkimpregnert [Moelven]. (n.d.). Retrieved 21st May 2022, from https://www.

moelven.com/no/no/limtre/standar-limtre-trykkimpregnert/
Stiny, G. (1980). Introduction to shape and shape grammars. Environment and Planning B: Plan-

ning and Design, 7(3), 343–351. https://doi.org/10.1068/b070343

61

https://tripactions.com/blog/10-things-to-do-at-st-pancras
https://tripactions.com/blog/10-things-to-do-at-st-pancras
https://www.rhino3d.com/
https://doi.org/10.1016/j.foar.2019.12.008
https://ecoinvent.org/
https://redshift.autodesk.com/future-of-structural-engineering/
https://redshift.autodesk.com/future-of-structural-engineering/
https://doi.org/10.1088/1757-899X/276/1/012026
https://doi.org/10.1088/1757-899X/276/1/012026
https://doi.org/10.1007/s00163-007-0038-6
https://doi.org/10.1007/s00163-007-0038-6
https://doi.org/10.5281/zenodo.1234
https://doi.org/10.5281/zenodo.1234
http://www.mit.edu/~tknight/IJDC/page_introduction.htm
http://www.mit.edu/~tknight/IJDC/page_introduction.htm
https://www.karamba3d.com/
https://www.karamba3d.com/
https://www.grasshopper3d.com/
https://www.grasshopper3d.com/
https://www.food4rhino.com/en/app/octopus
https://www.food4rhino.com/en/app/octopus
https://www.moelven.com/no/no/limtre/standar-limtre-trykkimpregnert/
https://www.moelven.com/no/no/limtre/standar-limtre-trykkimpregnert/
https://doi.org/10.1068/b070343

Striatus 3d concrete printed masonry bridge. (n.d.). Retrieved 15th November 2021, from https:
//www.striatusbridge.com/

Talebi, S. (2014). Exploring advantages and challenges of adaptation and implementation of bim
in project life cycle.

Visual studio: IDE and code editor for software developers and teams [Visual studio]. (n.d.). Re-
trieved 6th June 2022, from https://visualstudio.microsoft.com

62

https://www.striatusbridge.com/
https://www.striatusbridge.com/
https://visualstudio.microsoft.com

Appendix

A Configurations

A.1 Configuration I

M
itc

he
ll

R
ul

e
1

M
itc

he
ll

R
ul

e
2

Su
bs

tr
uc

tu
re

=
0

M
itc

he
ll

R
ul

e
3

Pr
im

ar
y

ro
of

st
ru

ct
ur

e
=

0

M
itc

he
ll

R
ul

e
4

Se
co

nd
ar

y
ro

of
st

ru
ct

ur
e

=
3

M
itc

he
ll

R
ul

e
5

L
at

er
al

St
ab

ili
ty

=
0

C
re

at
eV

ol
um

e

63

A.2 Configuration II

M
itc

he
ll

R
ul

e
1

M
itc

he
ll

R
ul

e
2

Su
bs

tr
uc

tu
re

=
0

M
itc

he
ll

R
ul

e
3

Pr
im

ar
y

ro
of

st
ru

ct
ur

e
=

0

M
itc

he
ll

R
ul

e
4

Se
co

nd
ar

y
ro

of
st

ru
ct

ur
e

=
1

M
itc

he
ll

R
ul

e
5

L
at

er
al

St
ab

ili
ty

=
2

C
re

at
eV

ol
um

e

64

A.3 Configuration III

M
itc

he
ll

R
ul

e
1

M
itc

he
ll

R
ul

e
2

Su
bs

tr
uc

tu
re

=
0

M
itc

he
ll

R
ul

e
3

Pr
im

ar
y

ro
of

st
ru

ct
ur

e
=

1

M
itc

he
ll

R
ul

e
4

Se
co

nd
ar

y
ro

of
st

ru
ct

ur
e

=
3

M
itc

he
ll

R
ul

e
5

L
at

er
al

St
ab

ili
ty

=
3

C
re

at
eV

ol
um

e

65

B C# Scripts

The script in Appendix B.1 shows the methodology, other script is found in Appendix D.

B.1 C# Sort structural elements

1 // Input
2 var _ss = (SH_SimpleShape) StructuralElements;
3

4 //Solve
5 //Access columns
6 var col = from c in _ss.Elements["Line"]
7 where c.elementName.Contains("Column")
8 select c;
9

10 List <Line> columns = new List<Line>();
11 List <String> columnIDs = new List<String>();
12 foreach (SH_Line c in col)
13 {
14 Curve crv = c.NurbsCurve;
15 Line cLine = new Line(crv.PointAtStart, crv.PointAtEnd);
16 columns.Add(cLine); // Convert to Rhino geometry
17 columnIDs.Add(c.elementName);
18 }
19

20 // Access shear wall (= surface, therefore single output)
21 var shearW = from sWall in _ss.Elements["Surface"]
22 where sWall.elementName.Contains("ShearWall")
23 select sWall;
24

25 List <Surface> shearWall = new List<Surface>();
26 List <String> shearWallIDs = new List<String>();
27 foreach (SH_Surface s in shearW)
28 {
29 shearWall.Add(s.elementSurface); // Convert to Rhino geometry
30 shearWallIDs.Add(s.elementName);
31 }
32

33 // Access bracing
34 var brace = from b in _ss.Elements["Line"]
35 where b.elementName.Contains("Brace")
36 select b;
37

38 List <Line> bracing = new List<Line>();
39 List <String> bracingIDs = new List<String>();
40 foreach (SH_Line b in brace)
41 {
42 Curve bCrv = b.NurbsCurve;
43 Line bLine = new Line(bCrv.PointAtStart, bCrv.PointAtEnd);
44 bracing.Add(bLine); // Convert to Rhino geometry
45 bracingIDs.Add(b.elementName);
46 }
47

48 //Access bars
49 List <Line> bars = new List<Line>();
50 List <String> barIDs = new List<String>();
51 var keys = new HashSet<string>(){"dTruss","vTruss"};
52 foreach (string key in keys)

66

53 {
54 var bar = from b in _ss.Elements["Line"]
55 where b.elementName.Contains(key)
56 select b;
57

58 foreach (SH_Line b in bar)
59 {
60 Curve bCrv = b.NurbsCurve;
61 Line bLine = new Line(bCrv.PointAtStart, bCrv.PointAtEnd);
62 bars.Add(bLine); // Convert to Rhino geometry
63 barIDs.Add(b.elementName);
64 }
65 }
66

67 //Access all beams
68 var beamElement = from b in _ss.Elements["Line"]
69 where b.elementName.Contains("Mitchell")
70 select b;
71

72 List <Line> beamElements = new List<Line>();
73 List <String> beamIDs = new List<String>();
74 foreach (SH_Line b in beamElement)
75 {
76 Curve bCrv = b.NurbsCurve;
77 Line bLine = new Line(bCrv.PointAtStart, bCrv.PointAtEnd);
78 beamElements.Add(bLine); // Convert to Rhino geometry
79 beamIDs.Add(b.elementName);
80 }
81

82 // Beams
83 List<Line> beams = beamElements.Except(bars).ToList();
84 foreach (string id in barIDs)
85 {
86 if (beamIDs.Contains(id) == true)
87 {
88 beamIDs.Remove(id);
89 }
90 }
91

92 // Output
93 Beams = beams;
94 BeamIDs = beamIDs;
95 Bars = bars;
96 BarIDs = barIDs;
97 Columns = columns;
98 ColumnIDs = columnIDs;
99 Bracing = bracing;

100 BracingIDs = bracingIDs;
101 ShearWall = shearWall;
102 ShearWallIDs = shearWallIDs;

67

C Optimisation Results

C.1 Optimisation Set-up and Population Field Results for Steel

Figure C.1: Displays the population field and the optimisation set-up.

68

Figure C.2: The transparent shapes represent Elite configuration, whereas the red is the Pareto-
front solutions.

Figure C.3: Close up of population field to give an indication of configurations generated.

69

C.2 Objective and Parameter Results from MOO Steel

The MOO results were exported as txt-files. However, they were imported into Excel and conver-
ted to make them understandable. The results are attached as ZIP-file, file named C.2. SteelOp-
timisationResults.

Column one stores the objectives. Row one represents the lowest displacement, row two the price
estimation and row three the CO2 equivalents. Price and CO2 values need to be multiplied by
1000 to get the actual value. Then they coincides with the results in Appendix C.3. A collection
of numbers represent one configuration. The parameters in column two are a percentage of the
individuals’ parameter domain.

The order of the results depends on when they were generated. Thus, they are not sorted and
do not match the locations in the population field. The red marked values belong to the invalid
configuration, while those marked with green correspond to the evaluated configurations. The
yellow-marked values belong to the designer’s preferred shape.

C.3 Results for Steel Configuration

(a) Parameter graph (b) Results.

Figure C.4: Results for the configuration with the lowest value for price and CO2 equivalents.

70

(a) Parameter graph (b) Results

Figure C.5: Results for the configuration with the lowest displacement.

(a) Parameter graph (b) Results

Figure C.6: Results for the configuration chosen from the designer.

71

C.4 Optimization Set-up and Population Field Results for Glulam

Figure C.7: Displays the population field and the optimisation set-up.

72

Figure C.8: The transparent shapes represent Elite configuration, whereas the red is the Pareto-
front solutions.

Figure C.9: Close up of population field to give an indication of configurations generated.

73

C.5 Objective And Parameter Results from MOO Glulam

The document-explanation in Appendix C.2 applies for glulam results as well. Although, instead
of multiplying the price and CO2 values with 1000, it needs to be multiplied by 100 to coincide
with the results in Appendix C.6.

The results are attached as ZIP-file, file named C.5. GlulamOptimisationResults.

C.6 Results for Glulam Configurations

(a) Parameter graph (b) Results.

Figure C.10: Results for the configuration with the lowest value for price and CO2 equivalents.

(a) Parameter graph (b) Results

Figure C.11: Results for the configuration with the lowest displacement.

74

(a) Parameter graph (b) Results

Figure C.12: Results for the configuration chosen from the designer.

75

D Grasshopper

Grasshopper file is attached as a ZIP-file.

76

E Video

Video demonstrating functional grammar is attached as a ZIP-file.

77

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f E

ng
in

ee
rin

g
D

ep
ar

tm
en

t o
f S

tr
uc

tu
ra

l E
ng

in
ee

rin
g

Kristiane Snarvold Sletten

Adopting Functional Grammar in
Conceptual Design

Design Exploration in a Parametric Environment

Master’s thesis in Civil and Environmental Engineering
Supervisor: Nils Erik Anders Rønnquist
Co-supervisor: Sverre Magnus Haakonsen
June 2022

M
as

te
r’s

 th
es

is

	Preface
	Abstract
	Sammendrag
	Introduction
	Background
	Architects and Engineers
	Conceptual Design
	Computational Design
	Optimisation

	Shape Grammar
	Defining Shape Grammar
	The Evolution of Shape Grammar
	Functional Grammar
	Labelled Shapes
	Software Tools

	Digital Implementation of Functional Grammar
	Mitchell Rules
	Additional Plug-ins
	Structural Configurations
	Volumetric Geometry

	Structural Analysis
	Loads
	Establishing Analytical Model

	Exploration with Shape Grammar
	Price Estimation
	CO2 Emission
	Manual Exploration of Shape Grammar
	Optimisation of the Design
	Discussion and Remarks

	Further Work
	Conclusion
	Bibliography
	Appendix
	Configurations
	C# Scripts
	Optimisation Results
	Grasshopper
	Video

