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Abstract

When fluid flows across a structure, unwanted vortices can develop. In the
hydropower industry, this is a major problem that can be generated in guide
vanes that transverse into the runner, causing vibrations. Though there
are several different vortices that can be found in a hydropower plant, this
present work investigates von Kármán vortex shedding. Growing energy
demand requires a wider operation range of the hydropower plants resulting
in higher dynamic loads. Turbine blades are manufactured thinner to reduce
costs. As a result, catastrophic structural failures have been reported.

The purpose of this present work is to investigate the fluid structure inter-
action, to develop a better understanding on the vortex induced vibrations
and structural failures. A three-dimensional circular cascade of eight blades
is prepared and simulated for a range of velocities to investigate the fluid flow
and vortex shedding. Monitored pressure values exhibited oscillation, which
indicated vortex shedding. However, further analysis indicated that this was
not the case. Modal analysis has been carried out to evaluate the natural
frequencies of the eigenmodes, with also an acoustic analysis to account for
hydrodynamic damping, by representing the surrounding fluid with an acous-
tic domain. A harmonic response has been investigated using Macro-Fiber
Composite piezoelectric patches to excite the blades at desired frequencies.
This was to investigate the frequencies at which frequency lock-in may be
expected to occur and thus an indication of which frequency range to avoid.
The first bending mode with air and the fifth bending mode in water, both
at the trailing edge yielded the greatest amplitude. Moreover, a one-way
Fluid-Structure Interaction (FSI) has been carried out to investigate hydro-
dynamic effects. The blade was prescribed with a motion of the first mode
shape, and damping ratio was numerically determined. This analysis indi-
cated negligible damping due to very low amplitudes in the deformation, and



no vortex shedding was observed. A two-way FSI analysis has been carried
out to investigate how the fluid flow and vortex shedding interacts with the
structure. The model successfully simulated the flow field for a relatively
high time step, yielding similar results to one-way FSI and the transient
CFD simulations. However, it quickly became unstable for when the time
step was reduced. Also, structural analysis showed high stress regions near
hub and shroud close to the trailing edge.

ii
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Sammendrag

N̊ar væske strømmer over en struktur, kan det utvikles uønskede virvler. I
vannkraftindustrien er dette et stort problem som kan genereres i ledeskovler,
der virvler g̊ar p̊a tvers inn i løperen og for̊arsaker vibrasjoner. Selv om det
er flere forskjellige virvler som kan bli observert, undersøker dette n̊aværende
arbeidet von Kármán virvelavgivelse. Økende energibehov krever et bredere
driftsomr̊ade for vannkraftverkene, noe som resulterer i høyere dynamiske
belastninger. I tillegg produseres turbinblader tynnere for å redusere kost-
nadene. Som et resultat har katastrofale strukturelle feil blitt rapportert.

Hensikten med dette n̊aværende arbeidet er å undersøke fluid-struktur
interaksjonen, for å utvikle en bedre forst̊aelse av virvelinduserte vibrasjoner
og strukturelle feil. En tredimensjonal sirkulær kaskade med åtte blader er
forberedt og simulert for en rekke hastigheter for å undersøke strømningen
og virvelavgivelsen. Overv̊akede trykkverdier viste oscillasjoner, noe som
indikerte virvelavgivelse. Videre analyse tydet imidlertid p̊a at dette ikke
var tilfelle.

Modal analyse har blitt utført for å evaluere de naturlige frekvensene til
modusformer, med ogs̊a en akustisk analyse for å ta hensyn til hydrody-
namisk demping, ved å representere det omgivende fluidet med et akustisk
domene. En harmonisk respons har blitt undersøkt ved å bruke Macro-
Fiber Composite (MFC) piezoelektriske patcher for å eksitere bladene ved
ønskede frekvenser. Dette var for å undersøke hvilke frekvenser det kan
forventes at frekvensinnl̊asing vil skje og dermed en indikasjon p̊a hvilket
frekvensomr̊ade som bør unng̊as. Den første bøyemodusen med luft og den
femte bøyemodusen i vann, begge ved bakkanten, ga størst amplitude. I til-
legg er det utført en enveis fluid-struktur interaksjon (FSI) for å undersøke
hydrodynamiske effekter. Bladet ble foreskrevet med en bevegelse av den
første modusformen, og dempingsforholdet ble numerisk bestemt. Denne



analysen indikerte ubetydelig demping p̊a grunn av svært lave amplituder i
deformasjonen, og det ble ikke observert virvelavgivelse.

En toveis FSI-analyse er utført for å undersøke hvordan væskestrøm-
men og virvelavgivelsen samhandler med strukturen. Modellen har simulert
strømningsfeltet for et relativt høyt tidstrinn, og ga resultater som ligner p̊a
enveis FSI og de forbig̊aende CFD-simuleringene. Det ble imidlertid raskt
ustabilt for n̊ar tidstrinnet ble redusert. Strukturelle analyser viste ogs̊a
omr̊ader med høy spenning nær nav og deksel nær bakkanten.

iv
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Chapter 1

Introduction

Climate change is one of the greater threats facing the world today. Not
only in the form of more extreme weather; it also affects global politics, the
economy and quality of life. There is an increased pressure worldwide to
reduce fossil energy sources, and transition to more green energy. Intermit-
tent power production from renewable energy sources, such as wind power
and solar power, is not stable enough alone to provide electricity for a grow-
ing demand for clean energy [4]. Hydropower can produce energy quickly,
and water may be stored in reservoirs for when power demand is high. Hy-
dropower is also one of the oldest sources of renewable energy, has been well
researched and is considered to be stable. One type of hydraulic turbine, the
Francis turbine, has efficiency greater than 90% [5].

However, for hydropower to be in synergy with other power sources and
demand, the power outputs of turbines have to be adjusted constantly. This
means the turbines have to operate over a wide range, outside of the designed
operating point. These fluctuations result in higher dynamic loads. At the
same time, it has become common for turbine blades to be made in a more
lightweight material and thinner design. This is to reduce material cost
and increase hydraulic efficiency, thereby leaving turbine blades to be more
susceptible to cyclic stress, resulting in catastrophic failure in blades due to
fatigue cracking [6]. This motivates for a better understanding of the fluid
flow around the hydraulic turbine blades and the effect fluid flow has on the
structure.

The interaction between fluid flow and structure is called Fluid Struc-
ture Interaction (FSI). Fatigue and failure of blades may be attributed to
this interaction, especially when the structure vibrates close to its natural
frequency, causing a resonance phenomenon. During resonance, deformation
amplitude and induced loads may be extreme. This is a common problem



1. Introduction

Figure 1.1: Clouds reveal vortex shedding pattern as wind hits one of the Juan
Fernandez Island [2]

occurring in many fields of engineering, such as bridges. A common example
of this phenomenon is the Tacoma Bridge, which collapsed due to oscillations
a frequency matching a torsion bending mode.

Vortex induced vibration is a fluid phenomenon, a characteristic flow
feature observed in the wake. Figure 1.1 illustrates clouds forming a von
Kármán vortex street as wind flows across an island. An article by Griffin
et al. [7] attempts to describe the von Kármán vortex shedding phenomena.
Shear layers are separated on the upper and lower surface, whilst the velocity
gradients in the shear layer cause them to roll into vortex pairs [7]. The
article investigated flow over bluff bodies, and suggested that at one point,
a vortex will grow in sufficient strength such that it will pull the adjacent
vortex across the wake, so that the vortices now have opposite directions in
circulation. Due to this, the adjacent vortex will cut free the first vortex.
Now, the vortex that has been cut free is shed downstream. This process is
repeated and thus an oscillating shedding of vortices occurs. When a vortex
is shed, an opposing force acts on the body due to the difference in pressure
across the vortex. As the pressure is oscillating, the forces on the blade
oscillate, thereby causing vibrations.

The load from flow past the blades is dynamic and may cause the struc-
ture to vibrate. Vibrations have two important aspects; the eigenmode and

2



natural frequency. In simpler terms, eigenmodes can be explained as a unique
deformation shape characteristic to a vibrating structure. Each eigenmode
has its own eigenfrequency, widely known as natural frequency. When a sinu-
soidal load is applied to the structure, eigenmodes may be excited, resulting
in a greater deformation of the structure. Eigenmodes are dependent on
characteristics such as surrounding fluid, constraints, material of structure
and shape. This means that the natural frequency will depend on the same
factors.

When the frequency of the dynamic load is in the proximity of the struc-
ture’s natural frequency, a resonance phenomenon occurs. Amplitudes may
then reach high values and cause structural failure over time. All mechanical
systems have some sort of resistance, and so do all materials, such that there
is an internal damping. In terms of vibrations, the resistance and internal
damping may contribute to preventing catastrophic failure. Damping and
resonance is another important parameter for investigating structural vibra-
tions. For fluid flow, the effect of surrounding fluid dominates the damping
effects compared to internal damping of materials [8]. This type of damping
is called hydrodynamic damping. It is important to understand the shedding
frequency of the blades to avoid resonance. This has been investigated by
conducting simulations with computational fluid dynamics (CFD) of a circu-
lar blade cascade. Turbine blades are in rotation during operation, however
this would complicate the simulations. Therefore, the blades are assumed
stationary while the water flows past. Hydraulic turbine blades and their
trailing edge geometry play a great role in vortex shedding characteristics,
such as frequency and amplitude. Therefore, it is important to perform
isolated studies to be able to study the parameters of interest.

Investigation of a rotating system would be too demanding, both numer-
ically and experimentally. Bergan et al. [9] suggested a non-rotating axial
turbine with an inner and outer tube which would be connected to the blades.
Water flow would be in the axial direction, along the tubes. The test rig is
a good way to reduce the complexity of the curved geometry of Francis run-
ner blade, which then allows for experimental testing that allows for better
understanding and further design improvements. This simplification of the
geometry is important as instrumentation should not interfere and disturb
the flow field.

3
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1.1 Objective

The master thesis is a continuation of the project work carried out during
Autumn 2021. As a continuation, the numerical modelling will be of the
blade cascade will be done with accurate verification and validation. A
literature study will conducted, amongst other, on fluid-structure interaction
in hydro turbines, blade flutter, flow separation, trailing edge vortex, stress
and strain, fatigue, resonance, mode-shapes and hydrodynamic damping.
Moreover, a numerical model identical to the experimental setup, which is
under preparation in the Waterpower Laboratory, will be created. The flow
field in the blade cascade will be investigated, using both one-way and two-
way fluid-structure interactions. Modal and harmonic analysis will also be
performed.

The following sections are party reused and modified: 2, 3.2, 3.5 3.8
and 3.9. Some parts of chapter 4 will also be in resemblance as similar
methodology was implemented.

4



Chapter 2

Literature review

In this section, previous work on the study of fluid-structure interaction on
turbine blades will be summarized. Aspects such as vortex shedding and
induced vibration, hydrodynamic damping, structural analysis, modal and
harmonic analysis will be of focus. Firstly, literature on vortex shedding
is presented, before lock-in and natural frequency is discussed. Literature
on hydrodynamic effects in numerical simulations is presented, and finally
one-way FSI and two-way FSI is presented.

Sick et al. [10] investigated von Kármán vortex shedding at stay vanes
where a validation study was performed on a NACA009 profile, comparing
numerical and experimental data. Their main findings was that the vortex
structure is resolved well, but not grid independent, when using two million
cells. Amplitude of pressure pulsation was found to be highly dependant on
the numerical mesh and turbulence model, while the numerically predicted
shedding frequency was well predicted and independent on both mesh and
turbulence model. Furthermore, boundary layers and vortex shedding region
require extremely high grid resolution.

Heskestad and Olberts [11] investigated the effect of trailing edge geome-
try on vortex induced vibrations on hydraulic turbine blades. The separation
points are said to be close to each other, near the vertices of the triangle of
the trailing edge. The net effect of this was a reduced vortex strength and
excitation force, though an increased shedding frequency was found. For the
same trailing edge geometry as the current study, no vortex shedding was ob-
served, due to the separation points being close to each other. Furthermore,
they conclude that the vortex strength is a function of distance between
separation points, degree of shielding and vortex shedding frequency.

Bergan et al. [9] performed experiments on a submerged, double fixed hy-
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drofoil for both a single hydrofoil and a linear cascade with three hydrofoils.
A square test section was used for both configurations at the Waterpower
Laboratory, NTNU. Two geometries of trailing edge was considered, where
the ”F1” as described in the paper is a similar geometry as in this present
thesis, but the trailing edge thickness is slightly smaller in the present study.
Above lock-in velocities, a linear trend was observed for where damping ra-
tio was increasing, which was fairly consistent with earlier investigations. A
discontinuity was observed near lock-in region with a sudden jump in both
natural frequency and damping ratio for velocities greater than at lock-in
region. Additionally, before lock-in velocity, the damping ratio seems to
have a small slope but may considered as close to constant. Furthermore,
the difference in scale of hydrofoil investigated in experimental work could
affect the damping factor. The linear cascade with three hydrofoils showed
similar behaviour, but there was a great level of uncertainty whether this
would translate to radial cascade or increased number of blades.

Coutu et al. [12] investigated the hydrodynamic damping of three differ-
ent hydrofoils with fixed ends, in flowing water. The hydrofoils were excited
using Macro Fiber Composites (MFCs) set near the trailing edges to maxi-
mize excitation of the first bending mode shape, while keeping the influence
of the flow to a minimum. A frequency response function near the first mode
of vibration was found, such that the natural frequency and damping ratio
could be found. For increasing velocity, Coutu et al. state that it is not
clear if the natural frequency varies, because the variations are small enough
to stay within the error interval. On the other hand, with increasing ve-
locity, a clear trend of increased damping was observed. At resonance, the
amplification factor was significantly reduced with an increase in damping.
Furthermore, only one mode shape of the structure was investigated, as it is
the shape which results in faster failure.

Liang et al. [13] conducted numerical studies on a Finite Element Method
model to investigate the influence of water on a model Francis runner. The
paper exhibited good agreement between experimental and numerically es-
timated eigenfrequencies and the mode shapes, though the numerically esti-
mated values were overpredicted. Moreover, a harmonic response was con-
ducted on the model using dynamic pressure load from an unsteady CFD
simulation. The paper states that there is still a gap in how well the infor-
mation may be translated to a more realistic scale.

Tengs et al. [14] performed a one-way coupled FSI analysis of one blade
using the same geometry as in the current study. The blade was given a pre-
scribed frequency and amplitude determined by a modal analysis, and the

6



focus was on investigating hydrodynamic effects at different velocities. Hy-
drodynamic damping was found to be a function of flow velocity only, though
for small deflections. A region of constant damping was found before lock-in
region, while damping was found to be linearly increasing after lock-in. The
author states an investigation needs to be done where the configuration is in
closer resemblance of a Francis turbine, such as with a circular cascade.

Liaghat et al. [15] conducted a two-way FSI analysis in order to investi-
gate vibration and damping of an oscillating hydrofoil for different flow veloc-
ities. The main observations are that maximum amplitude of the vibration
of hydrofoil and response frequency of hydrofoil, decrease with increasing
flow velocity. Only the first mode was investigated. Furthermore, a linear
relationship is reported between damping ratio and flow velocity. This is in
agreement with Tengs [14] for velocities above lock-in region. Additionally,
higher velocities required finer mesh resolution of the fluid.

Several studies on FSI analysis have been conducted on submerged hy-
drofoils, however there are no studies on a circular blade cascade with eight
blades. Despite no vortex shedding being observed in the experimental work
by Heskestad and Olberts for the similar trailing edge geometry, it is still
important to ensure this in a CFD simulation. This thesis aims to investigate
the aforementioned configuration, vortex shedding, hydrodynamic damping,
structural and vibrational analysis.

7
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Chapter 3

Theory

The following section presents relevant theory which serves as a background in-

formation required to understand the physics and numerical modelling used, but to

also understand and explain results and observations from the simulations. Firstly,

an overview of the concept of fluid structure interaction is explained, along with

the algorithm of two-way fluid structure interaction. Vortex formation and lock-in

theory is then presented, before turbulence modelling in computational fluid dynam-

ics is presented. Furthermore, failure due to fatigue is addressed before numerical

structural mechanics theory is presented. Governing equations are then presented,

for structural, modal and harmonic response analysis. Moreover, a section on hy-

drodynamic damping is presented where the added mass effect and damping ratio

is explained, before an explanation of how this damping may be addressed in the

numerical simulations.

3.1 Fluid-structure interaction

Fluid-Structure Interaction (FSI) is a broad term denoting the interaction
between fluids and the structures. It is a good way to understand how the
two components act on each other Benra et al. [3]. There are 3 ways to couple
the fluid and structural systems. One way coupling consists of a CFD code
and FEM code, to solve one domain first. Information is passed from this
domain to the second domain and solved. This involves no feedback between
domains. An example is pressure load from CFD simulation imported as a
load in a FEM simulation. One-way coupling is the most prevalent way
of FSI-analysis. Two-way FSI transfers information between the fluid and
structural domain, hence the name, and there is also coupling iterations for
the transfer of information. System Coupling is a tool inside ANSYS used to
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Figure 3.1: Flow chart of a two-way FSI process [3]

couple the domains. Fully coupled system is used for non-viscous flow. This
is not relevant to this paper and the reader is recommended to read Benra
et al. for a more in-depth explanation of coupling in a FSI-analysis.

The process for a two-way coupled FSI is shown in 3.1. Within one time
step, a converged fluid flow field is required to generate forces acting on the
structure. These forces are then interpolated onto the mesh of the structural
domain. A converged solution with the applied load is then required to
output structural displacement. This displacement is then interpolated on
the fluid mesh. As the fluid and structural domains are strongly coupled
in blade deformation, stagger iterations are used to iterate the interpolation
such that the changes in the force and displacement are below the set criteria.
The next time step may then be launched. This is an iterative implicit
process as the coupling iterations are used rather than for explicit where
only one iteration is used to solve the information transfer between the two
domains. These cases of implicit and explicit methods is not the same as for
the solver used but rather the formulation of the discretization of transient
terms.

3.2 Vorticity

Vorticity is the curl of velocity, and is associated with a rotating motion
of fluid. The vorticity vector is defined as

ζ = ∇× u (3.1)

10



3.2. Vorticity

and rate of rotation vector is defined as

ω =
1

2
ζ (3.2)

The vector describes the rotating motion of a fluid particle. Regions with
zero vorticity is called irrotational flow, whilst regions with nonzero vorticity
is called rotational flow. For a uniform flow over a blunt body, the flow far
away is irrotational while the flow inside the boundary layer is considered
rotational flow. The components of the vorticity vector is a sum of rate of
rotation of two perpendicular fluid lines [16]. To understand the dynamics
of vorticity, one can derive the equation for rate of change of vorticity by
applying curl-operation on the Navier-Stokes equation. For incompressible,
viscous flow with no body forces, the equation is as follows

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+ µ∇2ω (3.3)

where the terms are:

• ∂ω
∂t is the change in rate due to transient vorticity field.

• (u · ∇)ω describes the rate of change due to convection.

• (ω ·∇)u describes stretching and tilting of fluid particle due to velocity
gradients.

• µ∇2ω is viscous diffusion of vorticity.

Considering flow in two-dimensional along a flat plate, the velocity profile of
the boundary layer has one vorticity component perpendicular to the two-
dimensional x-y axis.

ζ =
∂v

∂x
− ∂u

∂y
≈ −∂u

∂y
(3.4)

When this is substituted into shear stress relation for Newtonian fluid, it
gives:

τx,y = µ
∂u

∂y
= −µωz (3.5)

The boundary layer equation may be expressed as,

u
∂u

∂x
+ v

∂u

∂y
=

−1

ρ

∂p

∂x
+ ν

∂

∂y
(
∂u

∂y
) (3.6)

11



3. Theory

Considering the boundary layer equation at y = 0, applying the no-slip
condition, such that velocity is zero, and substituting in equation 3.5. This
gives,

1

ρ

∂p

∂x
= µ

∂2u

∂y2

∣∣∣∣
y=0

= −µ∂ωz

∂y

∣∣∣∣
y=0

(3.7)

It can be seen from equation 3.7 that vorticity develops from applying the
no-slip condition at the wall, and it is diffused normal to the wall due to
adverse pressure gradient in streamwise direction. This means for greater
adverse pressure gradient, the fluid particle rotates clockwise at a greater
rate.

Flow separation occurs due to adverse pressure gradients in the bound-
ary layer. When τwall = 0, flow separation occurs. Shear layers develop at
the separation points that roll up and form vortices in the wake [16]. These
alternate in forming at separation points at upper and lower side of objects,
at a frequency called shedding frequency. The pattern formed by the alter-
nating shedding in the wake is called a von Kármán street. When a vortex
is shed, a reaction force is exerted on the object in the transverse direction.
The direction is alternated accordingly to where the vortex is shed. This al-
ternating force causes the object to vibrate. The vortex shedding frequency,
fs is determined by

fs = St
U

L
(3.8)

where St is the non-dimensional Strouhal number, U is freestream velocity
and L is characteristic length of object. Vortex shedding can be found in
many areas of hydraulic machinery, such as at the trailing edges of runner
blades, guide vanes and stay vanes.

Specifically for Francis turbine blades, Brekke [17] provided an empir-
ical formula for determining shedding frequency for different trailing edge
geometries. It is given by,

fs = 190
B

100

U

t+ δv
(3.9)

where B is a constant determined by geometry of trailing edge. U is the
freestream velocity, 190

100 is the Strouhal number, t is thickness of trailing
edge and δv is the virtual boundary layer thickness. Virtual boundary layer
thickness is given by the equation,

δv = 0.643
1

8

0.37c

Re
1
5

(3.10)
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3.3. Secondary flow

The empirical formula for shedding frequency is derived from research on
simplified hydrofoils, where upstream of trailing edge is rectangular in shape.
Blades in hydraulic machinery are more complex than this, in addition to
only being two-dimensional. Therefore, these empirical formulas should be
with caution and compare values to numerical or experimental data.

Lock-in is a phenomena that occur when shedding frequency in the flow
matches the natural frequency of the structure, notably over a range of
operating velocities. For this region, the Strouhal equation is no more valid.
If the shedding frequency matches the eigenfrequency, and the structure is
not excited on the node, resonance phenomena may occur. This may result in
high vibration amplitudes causing cracks and eventually bring the structure
to failure [14]. Pre-mature failure has been reported for turbines in which
lock-in occur. Due to the presence of lock-in, the behaviour of hydrodynamic
damping is affected. The damping ratio is near to constant under lock-
in velocity but is linearly increasing for greater velocities. Therefore it is
important to study hydrodynamic damping with respect to the lock-in region
and velocity.

Lock-in velocity may be estimated by using Brekke’s empirical equation
for when shedding frequency is equal to eigenfrequency:

vli = fs
100(t+ δv)

190B
, (3.11)

where vli is the lock-in velocity, fs = fn.

3.3 Secondary flow

In addition to von Kármán vortex shedding, there is a wide range of other
secondary flow structures that may be observed in a turbine passage. These
vortex structures have been studied and researched since it is a source of
pressure loss. According to Butler and Sharma [18], secondary flow losses
account for 30-50% of total pressure loss, which justifies the importance of
the research on this.

Although there has been presented several different models of secondary
flows throughout the years, the most fundamental flow phenomenon such as
horseshoe vortex and passage vortex have an established model and will be
presented.

These vortex structures appear in highly loaded turbine cascade with a
low aspect ratio. For hydraulic axial turbines, these secondary flow struc-
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3. Theory

tures may not appear as clearly in the passage since hydraulic turbines op-
erate with a high aspect ratio and large chord length. However, the physics
behind the vortex development and interactions is the same and will be
presented as similar vortex structures may be observed in the present work.

The horseshoe vortex is a well known phenomena in fluid dynamics. This
phenomena occur in the boundary layer flow around an obstacle [19]. This
case, the obstacle is the blade. As the flow approaches the leading edge,
the three-dimensional boundary layer separate due to an adverse pressure
gradient. The flow is convected around the blade, rolling and wrapping itself
around the blade such that the structure resembles a horseshoe.

3.4 CFD

Computational fluid dynamics is a powerful tool which utilizes numerical
simulation to analyze systems that involve fluid flow and heat transfer, and
the associated phenomenon such as chemical reactions. ANSYS CFX uses
the finite volume method, a formulation of finite difference [20]. This is used
to discretize the governing equations of fluid flow. A numerical grid, namely
a mesh, represents the fluid domain, where each cell expresses conservation
properties of equations. The accuracy in numerically solving the equations is
mainly due to number of elements. A fine mesh, containing a large amount
of elements, would capture large gradients better than a mesh containing less
elements. However, too many elements results in increased computational
time, and therefore the optimal mesh is fine in areas of large gradients while
areas of smaller changes have coarser mesh.

3.5 Turbulence modelling

Turbulence is a complex subject and is not fully understood, but has some
characteristics that is understood. It is an irregular flow with fluctuating
velocity and pressure, in both space and time. Hence, it is often characterized
as chaotic. It is a transient, three-dimensional phenomenon at high Reynolds
numbers [21]. In contrast to turbulent flow, there is laminar flow with a low
Reynolds number. Reynolds number is a non-dimensional quantity expressed
as:

Re =
ρUL

µ
(3.12)
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3.5. Turbulence modelling

where the equation is a ratio between inertial and viscous forces. U is char-
acteristic velocity, L is the characteristic length scale of the mean flow and ν
is the kinematic viscosity. The reader is referred to [21] for an introduction
into turbulent flows.

Reynolds decomposition is a technique applied to separate the fluctuating
and mean parameters of a turbulent flow. These flow variables can be veloc-
ity components, pressure, temperature and density. In a statistically steady
flow, every variable may be written as a sum of two terms: a time-averaged
term and a fluctuating term, which fluctuates around the time-averaged [21].
This may be exemplified as,

ϕ(xi, t) = Φ(xi) + ϕ′(xi, t) (3.13)

where Φ is the mean or time-averaged part of ϕ, and ϕ′ is the fluctuation.
Φ is averaged as

Φ(xi, t) = lim
T→∞

1

T

∫ T

0

ϕ(xi,t)dt (3.14)

where t is time. For unsteady flows, it is not possible to use time-averaging
as above, so ensemble averaging may be used instead to express Φ as:

Φ(xi, t) = lim
T→∞

=
1

N

N∑
n=1

ϕ(xi, t) (3.15)

where N is the number of ensemble members. This number must be
large enough in order to eliminate fluctuating effects. Einstein notation
may be used for shorter notation. Applying Reynolds decomposition to
the continuity equation and Navier-Stokes equations yields the Reynolds-
Average Navier-Stokes equations, denoted as RANS equations. The velocity
components and pressure may be expressed as:

u = U + u′ v = V + v′ w =W + w′ p = P + p′. (3.16)

As mentioned above, time averaging eliminated the fluctuating parts such
that the time averaged continuity equation becomes:

∇(U) = 0 (3.17)
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and time-averaged Navier-Stokes equations for the x, y and z components
become

∂U

∂t
+∇(UU) =

−1

ρ

(
∂P

∂x
+ ν∇2(U)

+
[
− ∂(u′2)

∂x
− ∂(u′v′)

∂y
− ∂(u′w′)

∂z

]) (3.18)

∂V

∂t
+∇(VU) =

−1

ρ

(
∂P

∂y
+ ν∇2(V )

+
[
− ∂(v′2)

∂x
− ∂(v′u′)

∂y
− ∂(v′w′)

∂z

]) (3.19)

∂W

∂t
+∇(WU) =

−1

ρ

(
∂P

∂z
+ ν∇2(W )

+
[
− ∂(w′2)

∂x
− ∂(w′u′)

∂y
− ∂(w′v′)

∂z

]) (3.20)

This has resulted in new terms, which appear in the squared brackets.
They represent the turbulent stresses in the RANS equation, where they also
are called Reynolds stresses. They may be written using tensor notation as:

ρu′iu
′
j (3.21)

These additional stresses result in an unclosed set of momentum equa-
tions, as there are more variables than equations. Therefore, turbulence
models are used to model these Reynolds stresses in order to close the set of
equations.

RANS models are considered to be the norm for general applications due
to the computational resources not being as costly [20]. The most validated
and tested models are the two-equation models k − ϵ, k − ω and SSTk − ω.
The k− ϵ model consists of an equation for turbulent kinetic energy, k, and
dissipation rate of turbulent energy, ϵ. The k−ω model consists of an equa-
tion for k and turbulence frequency ω = ϵ

k . Menter’s shear stress transport
(SST) k − ω model is a combination of the two previously mentioned two-
equation models [22]. k−ω model is used for near-wall regions as it handles
adverse pressure gradients near boundary layers well, whilst k − ϵ model is
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3.5. Turbulence modelling

used for fully turbulent regions far away from the wall. This allows for using
the advantages of both of these models. The weakness of the k−ω model is in
solving fully turbulent free-stream regions and the weakness of k−ϵ model is
adverse pressure gradients at boundary layers near walls [20]. Furthermore,
the Reynolds stresses are computed with the Boussinesq expression:

− ρu′iu
′
j = 2µTSij −

2

3
ρkδij = µT (

∂Ui

∂xj
+
∂Uj

∂xi
)− 2

3
ρkδij (3.22)

Sij =
1

2
(
∂Ui

∂xj
+
∂Uj

∂xi
) (3.23)

where µT is the eddy viscosity, δij is the Kronecker delta and Sij is the mean
rate of strain. The turbulent kinetic energy is modelled by the equation:

∂ρk

∂t
+∇ · (ρkU) = ∇ · [(µ+

µT

σk
)∇(k)] + Pk − β∗ρkω (3.24)

Pk = 2µTSijSij −
2

3
ρ
∂Ui

∂xj
δij (3.25)

Pk is a term for turbulent kinetic energy production, commonly termed as
a production term. The other transport equation comes from the relationship
ω = ϵ

k , substituted into the ϵ transport equation such that the ω transport
equation is described as:

∂ρω

∂t
+∇(ρωU) =∇ ·

[
(µ+

µT

σω,1
∇ω)

]
+ γ2

(
2ρSijSij

− 2

3
ρ
∂Ui

∂xj
δij

)
− β2ρω

2 + 2
ρ

σω,2ω

∂k

∂xk

∂ω

∂xk

(3.26)

σk, σω,1, σω,2, γ2, β and β∗ are model constants. Several modifications have
been implemented since it was introduced by Menter in 1993 [22], to improve
performance. One of the improvements is the implementation of blending
function to have a smooth transition between the two models for when solv-
ing the respective regions.
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3. Theory

3.6 Structural mechanics

Structural failure is as mentioned earlier a problem in the hydropower
industry, as much as in most other industries. Structural failure can be
sorted into two types: failure due to static load and dynamic load. Although
static loads exceeding the yield strength of material is a significant problem,
it is rare in turbines. On the other hand, dynamic loads are the dominant
problem where fatigue is relevant. Fatigue is a consequence of repeated cyclic
loads. The magnitude of stress in the cyclic stress is normally low, but it
is rather the number of cycles that brings the structure to failure. Plastic
deformation is when a load exceeds yield strength. The pressure loads in
the fluid flow, which fluctuate, may be integrated such that it corresponds
to the cyclic stresses in the material.

If a system is exposed to several number of stress conditions, this accu-
mulated damage may be estimated by Miner-Palmgren rule, given by the
eq.

k∑
i=1

ni
Ni

= C (3.27)

where ni is the number of stress cycles at load i and Ni is the number of
stress cycles to failure at load i. At C = 1, the material failure is assumed
to occur.

Governing equations that are used in structural mechanics will be pre-
sented in the later sections.

Finite element method, or FEM, is used to solve more complex structural
analysis problems. It was developed in the 1960s by different scientists, while
the first book to be published was in 1967 by Zienkiewicz. As the name
may indicate, the method divides the structure into finite elements that is
connected at a finite number of nodes. This may be visualized as a network
nodes connected by springs. The springs are edges of the elements while the
nodes are the masses within the FEM. Loads are applied on the nodes, and
material properties determine the stiffness and damping of the springs. The
load will put stresses on the springs and deflect according to their stiffness.

Governing equations and boundary conditions may be used to describe
the motion. FEM approximates the equation of motion and boundary con-
ditions as a set of algebraic equations that can be solved numerically. For
complex structures, a large number of elements should be used to have an
accurate result and to discretize the governing equations. This would be
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3.7. Vibration of systems

troublesome by hand and would require computers to solve this.

In a structural analysis, stress and strain due to external loads is inter-
esting to investigate. Stress due to flow field is a bigger concern than the
strain as it is usually negligibly low. When evaluating the stress tensors,
one must evaluate the nine components in that makes up a stress matrix.
This would require nine different plots to evaluate. Equivalent stress allows
one to look at one value. One equivalent stress is the von Mises stress σv.
This value may be used to determine material failure. Assume a matrix
containing stress components in directions x, y and z:σxx σxy σxz

σyx σyy σyz
σzz σzy σzz

 (3.28)

von Mises stress may then be calculated by:

σv =

√
(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6(σxy + σyz + σzx)2

2
(3.29)

3.7 Vibration of systems

Stationary regions of a vibrating structure are called nodes. This is rel-
evant for the resonance phenomena. Resonance occur when the eigenfre-
quency and load frequency matches, but it is also necessary for the load
to be places away from the node to excite the corresponding eigenmode.
For disc-like structures such as turbines, this concept may be generalized to
Nodal diameters (ND), where the mode shapes contain lines of zero displace-
ment. If n NDs are present, the motion may be described as in the form
of a cos θ where a is a function of radial and axial coordinates. For n = 0,
the motion is axisymmetric. For n > 0, there are two independent modes of
vibration at each natural frequency that correspond to the cosine and sine
mode shapes. For axisymmetric structures, the angular position of the node
lines are determined by the location of load excitation.

3.8 Modal Analysis

As mentioned earlier, mechanical vibrations involve two main parame-
ters, eigenmodes and natural frequencies. An undamped structure with no
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external load may be described by the equation of motion, in matrix notation
as [23]:

Mẍ+Kx = 0 (3.30)

where x is a vector containing all degrees of freedom . M is the mass matrix,
containing the mass of the structure. K is the spring-constant acting as
dampers. For a linear system, free vibrations are in harmonic form:

x = ujcos(ωjt) (3.31)

where uj is the eigenvector or eigenmode, representing deformed vibrating
shape for jth natural frequency ωj . Introducing equation 3.31, the equation
of motion may be rewritten as

(K − ω2
jM)uj = 0 (3.32)

Considering non-trivial solutions to this equation, the eigenvalue problem
becomes:

|K − ω2
jM | = 0 (3.33)

The solution of this equation, for n DOFs gives n eigenvalues, values of
ω2. This may then be used to solve for eigenvector, or eigenmodes uj .
Furthermore, natural frequencies can then be calculated using

fj =
ωj

2π
(3.34)

3.9 Harmonic Analysis

Harmonic analysis is used to determine a steady-state response of a linear
structure to sinusoidal loads [23]. Revisiting equation of motion, it may be
rewritten in a more general form:

Mẍ+ Cẋ+Kx = F (3.35)

In this more general equation, F is a vector containing external forces at
every DOF. C is a damping matrix containing information on the damping
effects. An assumption is made that loads and displacements vary sinu-
soidally at the same frequency but at different phase. A complex notation
would be more fitting to use:

x = ax(cosϕ+ isinϕ)eiΩt (3.36)
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3.9. Harmonic Analysis

F = aF (cosψ + isinψ)eiΩt = (F1 + iF2)e
iΩt (3.37)

where amplitude is denoted by a, while ϕ and ψ is the phase of the DOFs
and loads respectively. The general can now be rewritten as

[K − Ω2M + iΩC](x1 + ix2) = F1 + iF2 (3.38)

which may be solved to find the DOFs vectors (x1 + ix2) The solution is
steady state and in the frequency domain rather than time-domain.

Piezoelectric Macrofiber Composites (MFCs) have been extensively used,
in experiments to provide excitation at specific frequencies. This allows for
measurements when damping is large. This experimental method has been
previously used by Couthu et al. and more. In order to account for this setup,
it has been included in the numerical modelling. The direct piezoelectric
effect is when mechanical stresses arise due to an external load exerted on
the piezoelectric body induce a corresponding electric voltage. The inverse
piezoelectric effect is when an electric voltage is applied to a piezoelectric
body resulting in the geometry to deform. If the body is constrained, reaction
forces act on the body. The governing equations for elastic and electric
properties are, in matrix notation:

[D] = [d]T + [ϵ]TE (3.39)

[S] = [s]ET + dE (3.40)

D is the electric flux density, or also known as dielectric displacement. T
is mechanical stress, E is the electric field, S is strain, d is the piezoelectric
charge coefficient, ϵT is dielectric permittivity (constant T) and sE is the
elastic coefficient for a constant E.

Previous experiments at the Waterpower Laboratory have used patches
from the P-876 series from PI, which is made of the piezoelectric material
PIC-255. These exhibit a d31 effect such that the deformation occur per-
pendicular to the electric field. The material properties of the piezoeletric
PIC-255 are given later in chapter 4.3, where properties are from the pro-
ducer except for the Poisson ratio which was found in Krommer et al. [24].
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3.10 Hydrodynamic damping

Hydrodynamic damping is the viscous damping due to presence of water
surrounding the structure, contributing to reducing the frequency at which
the blade vibrate at [8]. Adding to the concept of spring-mass system from
chapter 3.5, the damping may be considered as an added mass effect. In air,
the natural frequency is given by

fn,air =

√
k

m
(3.41)

where the important relation is the relationship of natural frequency being
proportional to square root of the reciprocal of mass. As the mass of sur-
rounding fluid is considered as added mass m′ that is being accelerated with
the body. Natural frequency for submerged structure may be written as

fn,water =

√
k

m+m′ (3.42)

This is the added mass effect, and as the denominator, total mass, has in-
creased, natural frequency is reduced with the presence of surrounding wa-
ter [23]. This reduction may be expressed through a ratio called Frequency
Reduction Ratio (FRR), which compares it to with no surrounding water.

FRR = 1− fn,water

fn,air
(3.43)

Recall that a second order oscillating system may be described as the
following:

Mẍ+ Cẋ+Kx = F (3.44)

The dot notation represents the time derivative. The structural deflection
is assumed to follow a periodic with amplitude x0 and frequency ω. The
damping ratio for the second order system is defined as

ζ = C(2Mω)−1 (3.45)

Assuming linear behaviour, the structural deflection may be decomposed
into a sum of different modes which vibrates at its natural frequency. As
W =

∫
Fdx, one can impose superposition and integrate the left-hand side

of the second order equation. Only the first order term will give a non-zero
value. For a vibration period, this gives W = Cπωq20 . Additionally, the
hydrodynamic work onto the fluid may be defined as:
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W = −
∫ T

0

∫
A

p · ẋndAdt (3.46)

where the force has been rewritten as
∫
pdA, T is one period, p is fluid

pressure and ẋn. Combining these variations of hydrodynamic work gives
the hydrodynamic damping ratio definition;

ζ =
W

2πMω2q20
(3.47)

Where the denominator is used to normalize the work, ω is the natural
frequency and q0 is the maximum displacement of the blade.

Hydrodynamic fluttering is an phenomena which denotes an unstable vi-
bration of a system and a negative damping effect. This means, for certain
cases of requirements, the fluid flow would transfer energy to the hydro-
foil blade, rather than absorbing energy as is the case for hydrodynamic
damping. By assuming an harmonic motion for the blade, blade veloc-
ity and similarly for the force though with a phase angle ∆ϕ such that
F = F0sin(ωt + ∆ϕ). Combining this with the equation for work, and
solving the integral work one period gives that work may be rewritten as:

W = ωx0F0sin(∆ϕ) (3.48)

From this equation, it can be observed that the phase difference ∆ϕ is
the controlling variable. This means a negative phase difference indicates
the surrounding water is absorbing energy and thus damping the vibration.
A positive phase difference would indicate the structure to absorb energy -
this would be the case of fluttering. Despite this, all simulations are assumed
to expect damping.

3.11 Acoustic analysis

Acoustic analysis is about understanding how information propagates
through a medium, such as water [14]. This may be modeled by use of the
Helmholtz equation,

∇2p′ − 1

c2
d2p′

dt2
+∇ ·

[4µ
3
∇(∇ · v′)

]
= 0 (3.49)
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where p′ and v′ are pressure and velocity fluctuations respectively, c is
the speed of sound in the medium, µ is dynamic viscosity of medium. This
equation can be written in matrix form, and coupled with the second-order
general equation of motion:(

− ω2

[
Ms 0
Mfs Ma

]
+ iω

[
Cs 0
0 Ca

] [
Ks Kfs
0 Ka

])[
u
p

]
=

[
Fs

Fa

]
(3.50)

This equation solves for acoustic pressure propagation in the acoustic do-
main, and structural deformation and most importantly, also the interaction
between the acoustic and structural domain such as the added mass effect.
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Chapter 4

Numerical setup

Numerical setup describes the modelling approach taken for the simulations. Firstly,

the fluid model is considered, describing the geometry and mesh used. The y+ val-

ues is evaluated, before prescribed boundary conditions and numerical schemes are

presented. There is a focus on the time step such that vortex shedding is captured.

A mesh discretization study with the calculated parameters are shown. The chap-

ter then describes the numerical model used in the FEM solver, along with mesh

used for the various cases. A short explanation on piezoelectric patches is given.

The numerical setup, including solvers and constrains, used is presented before the

acoustic model is described. A mesh sensitivity study is presented for the FEM

model. Furthermore, the FSI setup is described for both 1-way and 2-way FSI,

along with description of how this is conducted within CFX. Preliminary simula-

tions are also discussed as some input parameters are case sensitive and must be

adjusted.

4.1 Fluid model description

The numerical simulations are based on the blade geometry designed
for Francis-99 project. It is a symmetric hydrofoil without camber. The
thickness of TE is kept at 3.8 mm, 270 mm chord length. The leading edge
is defined by an ellipse of 12 mm minor axis and 32 mm major axis. The
span length is 115 mm. Moreover, 10% the trailing edge is cut off such that
there are no two sides forming a sharp edge, causing singularities. This is a
simplification that has been done to simplify the meshing procedure.

Moreover, there is a radius of around 20 mm near the trailing edge before
the two surfaces meet. Upper and lower surface of the trailing edge forms a



4. Numerical setup

Figure 4.1: 3D model of the test rig. Figure 4.2: Numerical model of blade
cascade.

Figure 4.3: Overview of CFD mesh.

30◦ angle. The blades were made using a 3D CAD software, and manipulated
in order to import into a meshing software. Small features, i.e. bolts and
holes, and the pockets for the strain gauge sensors were filled in order to
simplify the model.

The mesh was created in ANSYS Turbogrid, which automatically creates
a high-quality structured H-grid mesh, consisting of hexahedral elements.
To use this tool, one can either define a geometry by use of CAD or pro-
file points. This thesis used profile points, by creating curve points for the
hub, shroud, and blade profile. The curve files contain coordinate points
that define the aforementioned geometries. Configurations of one and eight
blades have been created, where the one blade configuration use axisymmet-
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Figure 4.4: Close-up image of blade passage.

ric cyclic symmetry, represented as periodic boundary condition, allowing
for significantly lower number of elements and computational time. Only
the one-way FSI damping simulations were carried out using this periodic
interface condition, whilst the rest use the full eight-blade configuration.
Turbogrid produce a mesh for one flow passage in a radial blade cascade, as
shown in figure 4.3.

To reduce errors propagating from poor boundary conditions, the length
of the domain was made long without using too many elements. It is recom-
mended that the length from leading edge to inlet, is at least 10 times the
pipe diameter [16]. This is to maintain a developed velocity profile which
corresponds to the set inlet boundary condition. This was however not done,
as it meant a greater number of elements, thus greater computational time
and poor element quality. The length from trailing edge to outlet is also
required to be long enough to capture the behaviour at the wake. In a tur-
bulent flow, physical variables vary the most around the boundary layer.
This is why it is important with a fine mesh near this region, to capture the
physics. The y+ in the wake region is in the interval of 21.2 to 22.3, 22 by
the trailing edge at hub and shroud sides, and maximum 95 at the leading
edge by the hub. This means the viscous sub-layer is not fully resolved as
this requires a y+ = 1. The values mentioned indicate the flow is in the
buffer layer and log-law region, where both viscous and turbulent stresses
are of similar magnitude. This may be regarded as a a source of numerical
error. However, this is a fine balance between computational time and low
y+ value. A mesh which fully resolves the viscous layer would potentially
result in extended computational time, whilst also increase the risk of mesh
folding when conducting two-way FSI simulations. Length from the inlet to
the leading edge of the blades was set to 771.4 mm and 836 mm downstream
from trailing edge to the outlet, such that the total domain is 1607.4 mm
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4. Numerical setup

Figure 4.5: Mesh zoomed in at trailing edge.

long from inlet to outlet.

4.2 Boundary conditions and mesh discretization study

CFX-Pre was used to set boundary conditions, physical and material
properties. For the eight-blade configuration the duplication took place in
CFX-Pre, and it was able to both transform and ”glue” the mesh such that a
conformal mesh was produced. The transient simulations were conducted in
order to identify at which velocity oscillations due to vortex shedding would
be observed. This would be useful for prescribing boundary conditions for
the two-way FSI simulation. Velocities between 2 and 13 ms−1 was tested.
In addition to the boundary conditions in table 4.1, a maximum of 3 and
minimum of 1 coefficient loops were used. At 13 ms−1, the Reynolds number
is 3 485 600.

The outlet pressure was set to 0 Pa, relative to atmospheric pressure as
reference. The wall conditions are set as smooth walls, where the shroud is
with the no-slip condition. The hub is different, as only the section where
the blades are attached has the no-slip condition. The extended hub surface,
upstream and downstream of the blades, is set to a free-slip condition. A
turbulence intensity of 5% is used. k-ω SST turbulence model is chosen,
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4.2. Boundary conditions and mesh discretization study

Table 4.1: Selected boundary conditions and other parameters for the transient
simulation.

Parameter Setting
Transient scheme Second Order Backward Euler
Advection scheme High Resolution

Turbulence numerics First Order
Inlet velocity U = [2, 13] ms−1

Outlet pressure relative pressure: 0 Pa
Turbulence model k − ω SST

Convergence criteria (RMS) 10−4

Figure 4.6: Numerical setup in CFX.

as the steady state simulation was also set to this, and previous numerical
investigations, such as Tengs et al. [14]. However, it may be an option to
use SST-SAS turbulence model, as this resolves a wider range of turbulent
structures in the wake by introducing a length scale equal to that of the
vortices downstream. Default wall function were used.

To resolve vortex shedding, a small enough time step must be chosen. It
is recommended to use 100 time steps during one vortex shedding period,
as recommended in Vu et al. [25]. This also requires a sufficiently fine mesh
to capture the shedding. Empirical relations were used to find an estimate
for vortex shedding frequency. Firstly is the traditional Strouhal shedding
frequency, fs. Equation (3.9) is more specific for Francis turbines and it ad-
dresses the trailing edge geometry. This present study assumes the Strouhal
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4. Numerical setup

Table 4.2: Selected time steps for the different velocities.

Velocity [ms−1] ∆ t · 10−5 [s]
2 6.69
4 3.32
6 2.20
8 1.65
9 1.46
10 1.32
11 1.20
12 1.10
13 1.01

number to be St = 0.22, a commonly used value [26]. In order to have 100
periods of vortex shedding, time steps were chosen for the different inlet
velocities. This gives the time step to be determined by 1

100·fs .

Root-mean square (RMS) courant number for the numerical domain were
kept well below 0, while the maximum was found to be 0.66. On the blades,
the largest Courant number was found to be 0.65 at the leading edge and
0.08 just ahead of the trailing edge. As CFX is an implicit solver, it is not
required to have a Courant number below 1 for stability.

For the temporal discretization in the transient simulations, a Second
Order Backward Euler scheme was used. High resolution was used for the
advection scheme and the turbulence numerics. For the advection schemes,
the high resolution varies its blend factor between 0 and 1 such that the
scheme switches between first order and second order schemes based on the
local solution field to enforce boundedness criterion. For high gradient areas,
a blend will be closer to first order to prevent undershoots, overshoots and
maintain robustness. This may cause numerical diffusion and thus lower
accuracy. For low gradient areas, the blend will be closer to second order for
accuracy. Turbulence numerics is set to first order.

To determine an estimate of discretization error, a mesh independence
study was conducted, in accordance to the guidelines presented in the article
”Procedure for Estimation and Reporting of Uncertainty Due to Discretiza-
tion in CFD Applications” by Celik et al. [1]. This section describes the
procedure of the study and the results from it. Mesh independence study
was performed on a one-blade configuration in order to save computational
time, such that number of elements would be reduced by a factor of 8. Inlet
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4.2. Boundary conditions and mesh discretization study

Table 4.3: Table of calculated values from mesh independence study using
procedure by Celik et al. [1].

Parameter Max. streamwise velocity
N1, N2, N3 983 339, 402 004, 169 332
h1, h2, h3 2.038, 2.746, 3.6629

r21 1.347
r32 1.334
ϕ1 6.623
ϕ2 6.635
ϕ3 6.641
ϕ32 6.6286
ϕ21 6.6106
p 2.235

GCI32 0.00001%
GCI21 0.00009%

velocity was set to 6 ms−1 and outlet pressure was 0 Pa. As the article
describes, three significantly different meshes are to be selected and simula-
tions to be run on them. Taking the initial mesh as coarse, a medium and
fine mesh was created. This was done by adjusting the global growth rate
factor in ANSYS Turbogrid. It is recommended to use a refinement factor
of 1.5, however a factor of 1.3 was considered sufficient.

The meshes are referred to as 1, 2 and 3 for the fine, medium and coarse
mesh respectively. N is denoted as number of elements, r is the refinement
factor, ϕ is the variable of interest, p is the apparent order of the method.
ϕext is the extrapolated variable of interest, ea is approximated error, and
GCI denotes the grid convergence index.

It is important to choose a variable which captures critical aspects of the
physics and considered significant to the simulation study, and is commonly
seen in literature. This is chosen as the spatially averaged velocity profile in
the wake. The velocity profiles were obtained by averaging the streamwise
velocity w at the position z = 0.15 mm downstream of the trailing edge.

Both GCI percentages are very low, which suggests there is little to be
gained by choosing the finer mesh. The extrapolated values of ϕ suggest that
the finest mesh should be chosen. However, the difference in extrapolated
and calculated values are assumed to be of little significance, such that the
medium mesh was deemed appropriate to use. Furthermore, the apparent
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4. Numerical setup

Figure 4.7: Mesh model used in FEM solver. Figure 4.8: Zoomed in on
piezoelectric patch.

order, p is at 2.235. Ideally, this should be around 1.5 for CFX, though it
may be argued that the calculated p is still a reasonable value.

4.3 Structural model

The structural domain consists of 8 hydrofoils, a hub, a shroud and piezo-
electric patches placed on both surfaces of each blade. There are no bolts
connecting the hydrofoils to the hub, such that it is held in place by ten-
sion as the blades are slid and fit into place. Moreover, strain gauges are
placed near the trailing edge and leading edge as the stress is expected to
be greatest. These sensors are neglected in the numerical model used in this
thesis. The mesh consists of 1 533 054 nodes and a global element size of
12 mm. The core of the hub consists of hexahedral elements whilst the part
connected to the hydrofoils consists of tetrahedral elements and is set to be
minimum 5 mm. The shroud consists of hexahedral elements only and have
the minimum and maximum element size set to 5 and 12 mm. The model
has hexahedral elements in an attempt to reduce computational resources.
This is done by using MultiZone, as this uses an algorithm to partition the
geometry such that a structured hexahedral mesh is generated. The hydro-
foils are set to 4 mm, while regions close to the hub, shroud and piezo patch
is set to 3 mm. Moreover, the trailing edge have smaller element sizes as
these are high stress areas. The piezo patches have an element sizing of 3
mm. With 4 degrees of freedom at each node, there are 6 132 216 degrees of
freedom in total.
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4.3. Structural model

Table 4.4: Table of material properties for the piezoelectric material.

Parameter Notation Value
Density [kg3m−3] ρ 7800

Relative permittivity at constant strain [-]
ϵ11 = ϵ22

ϵ33

926
794

Young’s moduli [MPa]
E1 = E2

E3

62344
52438

Shear moduli [MPa]
G13 = G23

G12

21295
23020

Poisson’s ratio [-]
ν13 = ν23

ν12

0.46
0.35

Piezoelectric strain coefficients [m V−1]
d31
d33
d15

-1.909E−10
4.085E−10

5.731E−10

Piezoelectric patches consist of several layers, such as electrode, piezoce-
ramic layer and insulators. However, the MFC patches have been modelled
as single layer in Ansys’s FEM solver. It is assumed as a homogeneous piezo-
electric material. The piezoelectric patches are modelled with a tetrahedral
mesh and the mesh consists of SOLID227 elements. This element type is for
tetrahedral elements, and have ten nodes with up to six DOF per node that
allows for electromechanical coupling. For piezoelectric simulations, three
DOFs are for displacement in x, y, and z direction whilst the fourth DOF
is voltage. As also observed in the table 4.4 , the material properties are
the same along the x and y axis. A voltage may be applied to one of the
flat surfaces while the other is grounded. This allows for the polarization
vector to be normal to the blades. In the experimental setup, these patches
are glued in place using epoxy glue. The model used for this paper neglects
epoxy glue and uses a model with a cavity in the hydrofoil where the piezo
patches are placed inside.

As the material is not a part of the standard library of materials, mate-
rial properties were defined using a script of commands, which is shown in
Appendix C. Relative permittivity is defined under constant strain, Young’s
moduli, Shear moduli, Poisson’s ratio and strain coefficients are defined for
all directions of the piezoelectric patch.

33



4. Numerical setup

4.4 Modal analysis and harmonic response

For the modal and harmonic analysis, fixed supports and the material
was set similarily to the structural analysis. No pre-stress is used. For the
solver type, the PCG Block Lanczos method is used to solve the symmetric
eigenvalue problem at hand, as it is commonly used for vary large symmetric
problems containing more than 500 000 degrees of freedom [27]. The modal
analysis was limited to find 41 modes, such that this yields up to 5 eigen-
modes and its different Nodal Diameters. The modal analysis does not need
a load as it only solves the eigenvalues and eigenmodes.

The harmonic response does require a load, which is where the piezoelec-
tric patches are excited. The piezoelectric patches are excited using MAPDL
code appended in appendix. A frequency sweep is done at the range 1600
Hz to 4200 Hz, based on results of the modal analysis. This allows for an
investigation of the frequency response at the proximity of significant eigen-
frequencies, using harmonic response analysis. It is also important to stress
the necessity of considering the phase angle, as this is also a requirement for
the resonance phenomena. For the harmonic response, the mode superposi-
tion method is applied as only a frequency varying load is applied [27] and
modal decomposition is used to reduce computational effort [14]. Moreover,
sine/cosine mode shapes are observed in pairs such that the eigenfrequencies
nearly coincide with each other, but with different positions for the nodes
for different pairs.

4.5 Acoustic model

The acoustic model neglects the shroud, and in place includes an enclo-
sure which represents the water that is in contact with the blades and thus
inside the test section. This acoustic domain is set to be 1.4 times longer
than chord length in flow direction. The density and speed of sound in water
are the necessary parameters, as seen in equation (3.49). A fixed constraint
is placed on the shroud-end of the hydrofoil. A fluid-solid interface is used
to ensure shared nodes at where the fluid and structure is in contact. A sim-
ilar mesh strategy is used for the acoustic model as for the model without
acoustic elements. The enclosure that consists of tetrahedral elements only
and has an element size of 12 mm. The total number of nodes is 945 258
and the global element size is set to 8 mm. The hydrofoil and piezo patch
are set to 4 mm. Moreover, the solver type is set to fully damped due to the
surrounding water. The number of degrees of freedom is four at each node,
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4.6. Mesh dependency test

which gives 3 781 032 degrees of freedom.

The acoustic modal and harmonic response analysis use a similar model
as to the analysis done in air. However, as mentioned above, the shroud is
substituted with fixed constraint and enclosure. This problem now becomes
an unsymmetric eigenvalue problem due to the coupling of acoustic and
structural. The full damped method is used to calculate the mode shapes
and its frequencies as damping effects due to the surrounding water is of
interest. This was set by default by using Ansys Workbench, however, it
is also possible to use QR damped method that is faster and more efficient
in calculating than the damped method [27]. For the harmonic response, a
full harmonic analysis method is used as it accommodates for unsymmetric
matrices. Variational Technology is set to program controlled, such that the
most efficient method is chosen.

4.6 Mesh dependency test

A mesh dependency test was conducted for the structural models, one for
with and without an acoustic domain. Five meshes with increasing number
of nodes were used, and the eigenfrequency was the parameter of choice as
this is mesh sensitive. A strict procedure was not followed as for the CFD
mesh. This was mainly because the meshing strategy did not allow for an
easy adjustment of number of nodes as several parameters were adjusted to
increase or decrease the number of nodes. For the model without acoustic
elements, one can see a slight improvement for the medium coarse mesh and
the finest mesh, where an increase of approximately 0.11% is seen. This
justifies the use of a medium coarse mesh, which consists of 1 113 857 nodes.

This is the case for the model with acoustic elements too. While increas-
ing the node count, the natural frequencies seem to converge to one value,
indicating that the values are mesh independent. This may be seen in figure
4.10. However, as there is only a slight discrepancy of 0.15% to the finest
mesh, the the medium coarse mesh is chosen, consisting of 898 524 nodes.

4.7 FSI setup

For a FSI simulation, the deformation of the flow field is a problem that
needs to be considered. Pressure loads due to the flow results in deformations
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Figure 4.9: Mesh dependency test in air
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Figure 4.10: Mesh dependency test in water

36



4.7. FSI setup

on the blades that the CFD mesh must adapt to. Both a sufficient numerical
mesh and mesh stiffness is required to compute the mesh displacements.
This is relevant for both one-way FSI and two-way FSI simulations, where
mesh motion is involved. With vortex shedding and especially the lock-in
phenomena, it represents a strong coupling between the mentioned fields,
where the structural deflection may be the dominant factor in the shedding
mechanism.

In a CFD analysis, boundaries are stationary such that this must be
specified in CFX [28]. This is done by setting the ‘Mesh Deformation’ option
in CFX to ‘Region of Motion Specified’, so that the CFD mesh may adapt
to the deflections that are transferred from the structural domain. Mesh
motion is handled by a model called ‘Displacement diffusion’ which diffuses
the displacement of the boundaries onto mesh nodes as:

∇ · (Γdisp∆δ) = 0 (4.1)

Γdisp is the mesh stiffness, δ is the relative displacement relative to pre-
vious mesh location. This equation is solved at the start of each time step.
Mesh stiffness is case sensitive variable that needs to be tuned. Regions of
interest, such as the boundary layer and the trailing edge more specifically,
require high stiffness as this is where the mesh displacement may be high.
Small cell volumes, such as inflation layers in the boundary layer, or cells
with aspect ratio are sensitive to mesh deformations. There are four op-
tions, where two of them are ”increase near small volumes” and ”increase
near boundaries”. Another option is a blend between these, and a fourth
option is a specific value of mesh stiffness. Increase near small volumes
lets cells with larger control volumes absorb more mesh motion such that
the sensitive small volumes are not deformed, and no additional equations
are required. Increase near boundaries increase the stiffness near boundaries
such as inlet, outlet, walls such that the interior mesh will absorb more mesh
motion. However, this does require an additional equation to be solved. For
both these two options, a stiffness coefficient Cstiff is used and an increase
results in an exponential increase in the rate of stiffness across the mesh.
By default it is set to 2. Blended distance and small volumes option is case
adaptive which reduced the need for tuning as it combines the two options
using weight factors. Moreover, a mean control volume is used to calculate
the stiffness.

37



4. Numerical setup

Table 4.5: Selected boundary conditions and other parameters for the transient
one-way FSI

Parameter Setting
Transient scheme Second Order Backward Euler
Advection scheme High Resolution

Turbulence numerics First Order
Inlet velocity U = 13 ms−1

Outlet pressure relative pressure: 0 Pa
Turbulence model k − ω SST

Convergence criteria (RMS) 10−4

Stiffness coefficient 2
Time step size, ∆t 5.335·10−6 s

4.8 One-way FSI: Hydrodynamic damping

The first one-way FSI simulation is to determine the damping effects due
to the presence of water. Using modal analysis, the mode shapes and the
oscillatory motion may be prescribed onto the blades in CFX as a mesh mo-
tion with periodic displacement. CFX is used to determine the work done
by the blade on the surrounding water whilst modal analysis provides the
rest of the information. Moreover, the maximum deflection amplitude was
set in advance to 0.02% of blade chord length, i.e 0.054 mm as the chord
length. This was necessary to prescribe the motion in CFX. Work is calcu-
lated within CFX by using an built-in feature called aerodynamic damping
monitor, by combining and discretizing equations (3.46) and (3.47). This
monitors the integral above that is normalized by 2πω2q20 [28]. Moreover,
this is carried out for 100 periods to reduce uncertainties. A transient blade
row setup is required to use aerodynamic damping monitor. To diffuse the
mesh deformation, the displacement is set to be relative to initial mesh and
mesh stiffness option to increase near small volumes with a default stiffness
coefficient, Cstiff = 2.

The time step is based on the eigenfrequency of the blade at 1874.4 Hz,
and it is ensured 100 oscillations per period. This gives a time step size

∆t =
1

100 · fshedding
= 5.335 · 10−6s (4.2)

Due to this low time step, the single-blade configuration was used with peri-
odic boundary condition in order to ease the computational costs. In addi-
tion to solving the fluid flow equations, mesh displacement is involved such
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4.9. Two-way FSI

that it is more demanding to solve. The simulation was initialized with a
converged transient simulation at a time step of ∆t = 1 · 10−5s. This was to
minimize transient start up errors, such as backflow near the outlet, which
would result in a simulation crash. The RMS Courant number is 0.06 and
max at 0.47.

4.9 Two-way FSI

A two-way FSI analysis was conducted using Ansys CFX and Ansys Me-
chanical coupled through System Coupling. In Mechanical, the FSI-interface
is defined in the model, while the blade surfaces are defined in CFX such
that System Coupling may recognize this. Furthermore, in CFX-Pre, the
mesh motion of the blades are defined by the deformation calculated and
transferred from Ansys Mechanical. The deformations are thought to seize
control of the shedding mechanism, similarily to the one-way FSI simulation
but not to the same extent as the oscillation frequency is lower.

A two-way FSI is known to be very unstable. As mesh deforms, the
elements of high aspect ratio or small control volume may be significantly
deformed resulting in a negative cell volume. This results in mesh folding
and the CFD-solver to crash. This may be worsened by the onset of a
presumed vortex shedding, as in the one-way FSI simulation. By tuning
the stiffness coefficient and Under Relaxation Factor (URF), a simulation
crash may be prevented or delayed. As mentioned previously, increased
stiffness coefficient increases the rate at which stiffness is distributed over
the mesh and thus the diffusion of deformation [28]. URF is commonly
applied on forces, and partitions the force distribution that is transferred
between CFX and Mechanical. This is to give the mesh more time to adapt
to the deformation by applying an interpolated force. Assume a load Φn

i at

time step n and cell i. The updated load Φ
n+ 1

2
i will then be:

Φ
n+ 1

2
i = Φ0

i + α(Φn+1
i − Φn

i ) (4.3)

where α is the URF and Φn+1
i is the predicted load at next time step. URF

helps with stabilizing the solution but at the cost of convergence time.

From a transient CFD simulations, it was observed that vortex shedding
was observed at a frequency of 199.6 Hz, although hand calculations calcu-
lated the 5th harmonic frequency. The amplitudes corresponding to the first
harmonic was significantly higher than the other harmonics and so that it is
the deciding factor for the time step size. Based on the shedding frequency
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and ensuring 100 samples per period, a time step was chosen to be:

∆t =
1

100 · fs
= 5 · 10−5s. (4.4)

To initialize the flow field, a solver input file with a converged transient
solution was used to initialize a 2-way FSI simulation with a time step of
10−3 until the residuals and monitor values converge. This was then used to
initialize a simulation with the time step of 5 · 10−5.
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Chapter 5

Results and discussions

In this chapter, the results are presented in the same order as how the numerical

methods section was set up: transient CFD simulations, modal and harmonic re-

sponse analysis, followed by one-way and two-way FSI. The CFD simulations were

presumed to exhibit vortex shedding and this velocity was used for the FSI simula-

tions. Modal analysis showed eigenfrequencies and mode shapes, which was used in

the one-way FSI and for the harmonic response analysis. This harmonic response

used piezoelectric patches to excite the blades at desired frequencies to investigate

the deformations. Lastly, results from the FSI simulations are discussed, before a

comparison on flow fields is made.

5.1 Unsteady CFD simulations

In order to run a two-way FSI simulations, several transient CFD simula-
tions were run for varying velocities to see which result in vortex shedding to
be observed. At 13 ms−1, the monitor points placed 15 mm downstream of
trailing edge exhibited oscillations for velocity and pressure whilst the nor-
mal force on the blade in perpendicular direction showed similar frequency of
oscillations. However, at lower velocities, this was not the case. The normal
force on the blade oscillated given enough time while pressure and velocity
did not oscillate, suggesting no vortex shedding present.

FFT was used on the fluctuating monitored values to identify which fre-
quencies were dominant and at which amplitudes. Several harmonics were
observed, where the first at 199.9 Hz gave the largest amplitude, albeit an
amplitude of only 0.49 Pa. Two other harmonics were observed as 2nd and
4th harmonics, at 396.5 Hz and 789.9 Hz corresponding to amplitudes of
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Figure 5.1: FFT of velocity fluctuations showing

1.82·10−2 Pa and 9.5·10−3 Pa. The Strouhal shedding frequency relation
predicted a shedding frequency of 752.4 Hz. This seems to have estimated
the 4th harmonic, with a deviation of 4.7%. Brekke’s empirical formula (3.9)
was more accurate at estimating a frequency of 989.7 Hz, which seems to be
the 5th harmonic with deviation of only 0.02%.

Although there was a match between the estimated shedding frequencies
using empirical equations, and the harmonics of the shedding frequency from
CFD simulation, the amplitudes were very low. Therefore it was necessary
to further post-process these results. CFD-Post was used to visualize regions
where vortex core are present in the flow field. Albeit the vortex structures
can be captured and visualized, they are only qualitative such that there
are no outputs of numerical quantities. There are several ways to this, but
this case a Vortex Core Region ’Location’ is used with the Q-criterion as the
method. The method is case sensitive such that this thesis has picked the
one which shows the vortex structures clearly. The Q-criterion is described
as the second invariant of the velocity gradient tensor. Q is defined as

Q =
1

2
||Ω||2 − ||S||2 (5.1)

where Ω and S are the antisymmetric and symmetric components represent-
ing rates of rotation and strain [29]. This seems to filter out vortex structures
that may arise due to the strain tensors near the boundary layers of the walls
and blades. A vortical structure may be observed just downstream of the
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5.1. Unsteady CFD simulations

Figure 5.2: Pressure contour showing stagnation points and separation points.

trailing edge, mid-way of the span of the blade in figure 5.3 for Q = 0. These
structures do not resemble von Karmán vortex street that have the charac-
teristic alternating structures. There seems to be two structures on each side.
A possible cause is that the mesh is not refined well enough to capture each
alternating structure, such that it has been diffused, or blended into a sin-
gle structure instead of alternating structures. As mentioned in chapter 4.1,
the mesh was optimized given time constraints and computational resources.
Therefore, a too fine mesh would be too demanding for FSI simulations.

One can also argue that the observed structures and the oscillating mon-
itor values are due to a numerical instability that arise at a high enough
velocity. Near the boundary layer and walls, mesh elements have high as-
pect ratio. Another plausible is that that flow is separated near trailing
edge and the vortex cores dissipate quickly, such that the structures blend
together. Heskestad and Olberts [11] observed similar behaviour for the
corresponding trailing edge shape in their experimental work. This was ex-
plained by a delayed separation of the shear layers, such that the separation
point is near the trailing edge inclination. Further, it was stated that due
to separation points being close to each other, their respective velocity fields
overlap and destroy each other. Translating this into practice, this means
vortex shedding has been avoided, which is a favourable outcome.

Moreover, it may be observed vortical structures that resemble horseshoe
vortices near the hub and shroud at the two trailing edge sides, though this
is more clearly seen at the shroud side. There is also the possibility that it
is not horseshoe vortices but rather discrepencies from the mesh due to the
transition between small cell regions and large cell regions.
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Figure 5.3: Isosurface of vortical structures identified by Q-criterion method. No
von Kármán vortex street is present.

The pressure distribution is similar for the the transient and steady state
simulations. A stagnation pressure is clearly exhibited at the leading edge
at a magnitude of 95.6 kPa. The areas of high magnitude of pressure seem
to be dominantly on the leading edge side, which is expected. Moreover,
a negative pressure gradient can be observed near the point of separation
close to the trailing edge, and vortex cores can be identified at this point of
separation.

In order to eliminate the argument of a too coarse mesh, an unsteady CFD
simulation was run using one blade and periodic interfaces, with number of
elements to be 2.2 million, which is roughly 5.5 times more than what was
used previously. However similar vortical structures were observed such that
it may be fair to state that no vortex structures are observed for the range
of velocities tested. Returning to the two possible causes, it seems it is more
likely for the oscillating monitor values to arise due to numerical instabilities
at the given velocity.

Nonetheless, it is interesting to see why an instability was present at 13
ms−1. As there is still some uncertainty to the matter, it is necessary to
verify this experimentally.
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5.2. Modal analysis

(a) Mode 1 0ND with bending at
TE.

(b) Mode 2 0ND with bending at
LE.

(c) Mode 3 1ND with hub moving
along nodal diameter.

Figure 5.4: Mode shapes observed with air.

5.2 Modal analysis

The natural frequency of the structure with air was found using modal
analysis. Both quantitative and qualitative studies are presented. The dis-
placement in modal analysis is not a true value, but rather an indication of
which eigenmodes that may yield the greatest displacements. The shapes
are seen in figure 5.4 and 5.5. The most common and studied mode shape is
the first bending mode, usually found as the first mode. This is a bending
of the trailing edge, which is where the fatigue cracks tend to form over long
exposure to cyclic stresses [14]. However, up to 5 modes have been inves-
tigated as the requirement for resonance phenomena is both frequency and
phase angle. As mentioned in 3, pairs of mode shapes, with different modal
position, can be described as the sine-mode and cosine-mode.

First mode is a bending mode at the trailing edge, observed at 1699 Hz
at 0ND and the blades bend in the same direction. There is a slight rotation
at the hub in z-axis direction, such that a deformation is also present at
leading edge. 3 pairs of sine/cosine modes are observed representing 1ND,
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5. Results and discussions

(a) Mode 4 0ND with hub moving
along z-axis

(b) Mode 5 0ND with bending at
TE.

Figure 5.5: Mode shapes observed with air.

2ND and 3ND, where the two neighboring blades are bending towards each
other. Finally, the last ND of the first mode is similar to the 0ND where
there is some rotation at the hub. This too gives a slight deformation at the
leading edge, and is observed at 1980.6 Hz.

Next mode shape observed is a pair of the second eigenmode but for 1ND,
at 2881.5 Hz. The bending has shifted to the leading edge and bending in the
same direction. 2ND mode shapes are not bending in the same direction, but
it is also observed slight deformation at one of the blades that supposedly
is a node. This could be due to a numerical error that was not considered
when conducting the sensitivity test. Moving further in the frequency range
for the second eigenmode, a triplet is observed at 2939 Hz. At 3151.1 Hz,
the first 0ND is observed with a rotation of the hub, again at z-axis, and a
slight deformation at the trailing edge. Moving on, the next observed mode
shape is a 1ND at 3661.3 Hz where the hub is flexed in the direction of the
nodal diameter and deformation is at the trailing edge. Only the part of the
hub near the trailing edge is flexed. This results in 2 half-waves deformation
shape, especially at the hub’s most flexed position. The fourth observed
mode shape is similar to the third, with the hub flexed in the direction of
the normal diameter but the largest amplitudes are now observed at the
leading edge.

The fifth eigenmode observed is a single mode where the hub is moving
in z-axis direction such that the largest deformation is along the hub. This
is observed at 4076 Hz.

The acoustic modal analysis shows a first mode as a bending mode at
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5.2. Modal analysis

the trailing edge, where 0ND at 700.7 Hz, shows the bending of blades to
be opposite in direction, compared to neighboring blades. Two sine/cosine
pairs are observed at 1ND and 2ND respectively where the deflection is in
the opposing directions. The final sine/cosine pair is of 1ND and deflections
in the same direction. Finally, 0ND is observed again at 885.6 Hz where the
blades are deflected in the same direction.

The acoustic modal analysis is expected to report lower frequencies as
hydrodynamic damping is now considered. This was also observed in [13],
however the numerically obtained frequency reduction ratio (FRF) reported
was higher than found in literature. Comparing the 0ND of first eigenmode,
a FRR of 0.59 is found.

The pattern of deflection of blades was observed for investigated modes
- first 0ND and two sine/cosine pairs deflected in opposite to neighboring
blades whilst the last pair and final 0ND have blades deflected in the same
direction. The deflection in opposite directions is a pattern that is not ob-
served in Francis turbines, which raises a question of whether this is a nu-
merical error, or if this is coupled to a limitation in the simplification of the
sine/cosine blade shape of a Francis turbine blade.

The second mode shape is a bending mode at the leading edge where the
zeroth nodal diameter is observed at 1141 Hz. The second 0ND, is observed
after the first 2 sine/cosine pairs, which is different to what was seen in the
first mode. Here, there is also a rotation of the hub such that there are 2
half-waves at the leading edge. Finally a sine/cosine pair is seen observed.
Moreover, this mode is also observed with air but only one 0ND was observed
with air. Considering the 0ND of second modes in water and with air, a FRR
of 0.6 is observed.

The third eigenmode is observed at 1693.2 Hz where there is motion
in z-axis direction and greatest deflection at the leading edge. This mode
shape is observed with air as well, but was observed as the fifth eigenmode.
Comparing this and the fifth mode with air gives a FRR of 0.58.

A fourth eigenmode, ND0, is observed at a frequency at 1910.4 Hz. 3 half
waves are observed, while the greatest deflection is at the trailing edge. At
0ND, a rotation at the hub is seen again. Both 1ND and 2ND is observed,
but 1ND was difficult to differentiate from 0ND as there was still some,
though small, deformation seen on blades acting as nodes. Looking at higher
frequencies, it seems to go back to a pair of 1ND, unil a 0ND is observed
again. Similar to previous 0ND pairs, this last has blades deflecting in the
same direction. The hub is also rotating, resulting in a mode shape that
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5. Results and discussions

(a) Mode 1 0ND with TE bending. (b) Mode 2 0ND with LE bending.

(c) Mode 3 1ND with hub moving
in z-axis direction.

(d) Mode 4 0ND with bending at
TE.

(e) Mode 5 0ND with bending at
TE.

Figure 5.6: 5 Mode shapes observed with water
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5.2. Modal analysis

shifts the deformation peaks near the trailing edge. The peak closest to the
trailing edge is shifted away, closer to the shroud whilst the other is shifted
closer to the hub. This mode shape was not observed for air for the set range
of modes investigated and thus it is not appropriate to compare the FRR for
this mode.

The fifth and final mode is a mode shape that resembles a cosine curve,
across the chord length. The deformation is greatest at leading edge, and
0ND is observed at 2199.2 Hz. However, after one pair of 1ND, another 0ND
is observed but the deformation shape is similar to what was observed in the
fourth mode, and deflection is greatest at the trailing edge. The mode shape
at the next frequency pair is then back to what was observed in the fifth
mode. This behaviour was not observed with air.

Different eigenmodes are observed when comparing air and water as the
surrounding environment. This is also observed by Bergan et al [9]. The
largest difference that was observed was the different order of mode shapes
occurring. Secondly, the direction of deflection was different, as for the modal
analysis with air showed deflection of blades in same direction. This was only
the case for the last pair observed in acoustic modal analysis, except for a
few exception such as the axial mode. While a flexion mode was observed
with air, where the hub was flexed and moving similar to a pendulum, this
mode shape was not found in the range of mode shapes in the acoustic case.
This could have been found if the range of modes was extended further.
Similar to what was observed in [30], the order of modes found differed for
in water and with air. As the frequency increased, classifying the mode
shapes became more difficult. The shapes became more complex with more
half-waves present. This trend applies for both with air and with water.

An uncertainty linked to the mesh could explain the discrepancies found
in the complexity of classifying mode shapes and the agreement between
with air and in water. Liang et al. performed a mesh sensitivty study on
natural frequencies, but for several other mode shapes and nodal diameters.
This present study has only looked at 1ND of the bending mode at trailing
edge. Although the literature found the different modes to converge well and
at similar rates, there were bigger differences for tetrahedral mesh, which is
used in the present study.
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5. Results and discussions

Figure 5.7: Total deformation at 1860 Hz and -179.6◦, with no surrounding water.

5.3 Harmonic response

A frequency response plot and a phase response plot is produced for
the blades. One of each plot is made for each blade. This is because the
directional deformation should be relative to the orientation of the blades
and not the global coordinate system. However, one frequency and phase
response plot is made for all 8 blades together too. For the 8 different
frequency response plots, it differs between maximum amplitude at 1860 Hz
and 2900 Hz. For the frequency response plot of all 8 blades, it is at 1860
Hz. This frequency and corresponding phase, -179.6◦, is used to calculate
total deformation yielding a maximum deflection of 7.27 · 10−3 mm. This
frequency is in the proximity of the eigenfrequency of first eigenmode, 1ND.

A second critical frequency seems to be at 2900 Hz and 0.6◦ with a total
deformation of 1.44 · 10−3 mm, but at the leading edge. This does not seem
to be as critical compared to the first eigenmode, which is in agreement of
that it is the more important mode shape as often mentioned in literature.

Similar to the harmonic response, frequency responses for both all blades
and each blade has been made. The acoustic harmonic response shows that
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5.3. Harmonic response

Figure 5.8: Total deformation at 2900 Hz and 0.6◦, with surrounding water.

the critical eigenmode is in fact the second eigenmode, as the frequency re-
sponse plot shows the largest peak in deflection and a phase angle of −179.8◦.
The total deformation is 3.55 · 10−2 mm, which is greater than what is seen
with air. The mode shape is the 5th eigenmode with greatest deformations
at trailing edge. Another peak was observed, although at a lower amplitude,
at 885 Hz corresponding to the first mode shape. This was at an amplitude
of 6.2 · 10−3 mm. For the case with air, it was the first bending mode that
was the critical mode shape and corresponding frequency, but that is not
the case for in water. However, it is still a bending at the trailing edge that
is deemed critical, which was expected. It is noteworthy that the ampli-
tude response is greater for the submerged case, which initially seems odd.
One explanation for this could simply be that fluttering is actually observed
rather than damping. Recalling damping vs. fluttering, a positive phase
angle indicates that the structure is absorbing energy from the water.

Though harmonic response has been done for small-scale Francis runners
and linear blade cascades of similar geometry as present work, the circular
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5. Results and discussions

cascade is not found in literature. However, a comparison to numerical
analysis done on a model Francis runner shows similar order of magnitude.
However, this is not enough to verify the results, but it can be of guidance
for experimental work that should be conducted, to investigate if the similar
mode shapes and frequencies were found to be critical.

5.4 Two-way FSI

Unsteady 2-way FSI is highly unstable, it was necessary to simulate sev-
eral preliminary simulations to set up simulations properly. However, the
small time step resulted in a crash after only a few iterations. This instabil-
ity was related to the numerical time step size and mesh deformation that
gave a negative cell volume. When decreasing the time step, CFX reported
100% back-flow at the outlet, suggesting that either the flow grid was not
initialized well or the numerical grid was unable to adapt to the mesh de-
formation. As described in chapter 3, a large timestep was used to initialize
the simulation until a converged solution was attained. Moreover, values
for URF, the stiffness of the dynamic mesh and total number of stagger
iterations were adjusted to work around the numerical instabilities.

The mapping of the two meshes had a minimum value of 82% and a
maximum of 99%. Although the lowest value is in an acceptable value,
it may contribute to the problem of displacement to not converging. An
acceptable mesh mapping is considered to be around 75%.

The large timestep was based on the 5 samples of one shedding period,
fs = 1 · 10−3, which is not enough to capture the vortex shedding well. This
could be a reason for the simulation to converge well, as the instability was
not captured. Moreover, a small timestep leads to an accumulation of errors.
As the temporal discretization use a second order accurate scheme, this
may reinforce this argument. It was also observed that the data transfer of
displacement and its mesh motion struggled to converge. Decreased timestep
seems to capture the onset of vortex shedding while also accumulating the
disretization errors. This could explain the instability and simulation crash.
This onset of instability was reflected in the pressure values monitored 15
mm downstream of trailing edge, as seen in figure 5.9. This may also be
observed in contour plots of pressure at two different times, where figure
5.10, shows a converged solution with the stagnation points and separation
areas that was also observed in figure 5.1. However, these characteristics are
not observed in figure 5.11 such that it is fair to assume the solution has
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Figure 5.9: Monitored pressure 15 mm downstream of TE. Oscillations onset for
smallest timestep.

diverged due to the instability, causing the simulation to crash.

The maximum equivalent stress value observed was at the trailing edge
at 1.13 · 105 Pa. A high stress regions is found near the trailing edge close to
the hub and shroud, where it was expected to be concentrated. Moreover,
it is also observed a relatively high stress region at the mid-span close to
the trailing edge. Additionally, the maximum displacement was at the TE
mid-span, as expected. This was at a magnitude of 2.14 · 10−7 mm. The
displacement pattern seem to resemble the first eigenmode that was observed
in the modal analysis, which was a bend at the trailing edge.

The model worked well for a timestep of 10−3 since the RMS Courant
number was constant throughout and stayed at 1.49, while the residuals
were oscillating below convergence criteria. Since vortex shedding was not
observed for the 2-way FSI simulation, it is fair to assume that this timestep
is acceptable, seeing as it showed similar pressure values, pressure field and
velocity field to the CFD simulation. CFD mesh is already a structured
hexahedral mesh but do not need to be as small in the wake region since
vortex shedding is not present. The cells in this region are relatively small
compared to the deflection so that instabilities would occur in these regions.
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5. Results and discussions

Figure 5.10: Pressure contour at
time = 0.18035s. ∆t = 10−3s.

Figure 5.11: Pressure contour at time =
0.1852s. ∆t = 5 · 10−5s.

Figure 5.12: Maximum stress observed near trailing edge.
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Figure 5.13: FFT applied on velocity fluctuations measured 15 mm downstream
of trailing edge

5.5 One-way FSI

Similar to the two-way FSI, mesh folding was observed but not to the
same extent. The instability may be due to the time step as well as it had
a much lower time step, at 1/feigenfrequency and 100 sample periods. The
mesh stiffness was modelled with higher stiffness near small volumes and a
coefficient of 2. Based on monitor points at the same location as the above
cases, a different shedding frequency was observed to what was observed in
the unsteady CFD analysis. FFT was applied on these values, as seen in
figure 5.13. With a 5.1% deviation, this showed a frequency of 186.9 Hz, a
tenth of the frequency prescribed on the blade. This is however at a very
small peak, while the largest peak is namely at the prescribed frequency of
blade motion with a much larger amplitude. This may suggest that the first
peak is only a form of noise, such that the largest peak is actually the first
harmonic at which the blade is vibrating at. Furthermore, as seen in figure
5.14 for Q = 10−5, the vortical structures in the wake of the blade resemble
what was observed in the transient CFD simulations. A greater value is used
here for Q than in section 5.1 to reduce noise in form of vortical structures.
These structures suggest that despite the structural deformations, vortex
shedding is not present. It could be because the deflections are not significant
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5. Results and discussions

Figure 5.14: Q-criterion used to identify vortical structures downstream of
trailing edge.

enough provoke vortex shedding, such that the findings of Heskestad and
Olberts still applies for the case of a vibrating blade.

Finally, the damping ratio that was showed a ratio of ζ = 2 · 10−20 which
indicates no damping and small vibration amplitude. Looking at this in
the context of the results from harmonic response, the deflections are very
small. Deflection velocity of the blade is reduced as the deflection is reduced,
as blade velocity is given by

q̇ = ωq0cos(ωt). (5.2)

This means less work is done by the blade on the surrounding water, such
that the damping ratio is as low as calculated. Moreover, the maximum
deflection amplitude was tested to see if this had any effect on the damping
ratio. Increasing the maximum to 1% of the chord length resulted in a
damping ratio in the order of magnitude of 10−17 which is greater than for
0.02% of chord length in maximum amplitude, yet still significantly low.
There is a possibility that a better model should be made to evaluate the
damping ratio.

When comparing to experimental data, this value may be difficult to
replicate exactly as an assumed maximum deflection amplitude is set as a
constant in the numerical simulation.

Figure 5.15 shows the velocity profiles of the three different cases at
15 mm downstream of the trailing edge, where the length scale has been
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Figure 5.15: Velocity profiles 15 mm downstream of TE

non-dimensionalized using trailing edge thickness t and flow velocity is non-
dimensionalized by bulk flow velocity. There seems to be a good agreement
between the transient CFD and 2-way FSI simulation but not so much with
the 1-way FSI. One reason could be due to the 1-way FSI using only one
blade while the other two use a full 8-blade model. Since a periodic interface
is used, the other 7 blades are modelled such that there is expected some
numerical errors due to this modelling approach. Another reason is that the
blade is in fact vibrating, although very small amplitudes, but enough to
affect the flow field. Once again, it is interesting to investigate this experi-
mentally to determine if the numerical simulations capture the behaviour.
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Chapter 6

Conclusions

In this thesis, CFD simulations were conducted on eight-bladed circular
blade cascade to find the lowest velocity with vortex shedding. This was
to be used for input parameters for 1-way FSI and 2-way FSI simulations.
Moreover, modal and harmonic response analyses were conducted to find
eigenfrequency, evaluate the hydrodynamic damping and the response when
excited by a piezoelectric patch. 1-way FSI used blade motion from modal
analysis.

From the unsteady CFD simulations, pressure fluctuations were observed
at monitoring points indicating von Kármán vortex shedding for 13 ms−1.
However, post-processing showed vortical structures that did not resemble
the characteristic alternating pattern of von Kármán vortex shedding. A
much finer mesh was tested to investigate whether the mesh was too coarse
but yielded similar results. The findings are however in agreement with
experimental literature, and is a favourable outcome for designing a Franics
runner.

Modal analysis and modal acoustic analysis exhibited similarities in mode
shape but also a few different mode shapes for the investigated frequency
range. Added mass effect was successfully modelled as there was a favourable
FRR. This was expected and also found in literature. However, the FRR
done on model Francis runners were lower, but it is uncertain whether it is
possible to compare between test rigs and a more complex model, as stated
in Liang et al. [13].

A harmonic response analysis was conducted with air and water. The
blades were excited using piezoelectric patches. Two different trailing edge
bending mode shapes were observed to be critical. A strange observation was
made, that the harmonic response in water yielded greater deformation at its



6. Conclusions

trailing edge compared to in air. This interaction is however not understood
properly. Moreover, the phase angle at which the two frequencies varied,
as the one with air had a phase angle of −179◦ while it was 179◦ for when
submerged in water. This was not in agreement with Liang et al. [13].

One-way FSI simulation used the motion of the first mode shape pre-
scribed onto the blades in the CFD solver to simulate the flow field with
a vibrating blade and to calculate damping ratio. FFT analysis on mon-
itor points showed a frequency peak which matched the frequency of the
prescribed motion. Similar to the CFD simulation, no vortex shedding was
observed. The damping ratio was very low, though it increased when the
prescribed maximum amplitude increased. This indicates that the small
blade motion is the cause for this low ratio.

At the largest time step, the two-way FSI simulation showed similar
pressure values and pressure contour plots were similar to 1-way FSI and
transient CFD simulations. However, when the time step was reduced, in-
stabilities were onset such that the simulation was about to crash. Moreover,
the velocity profile downstream of the trailing edge matched well with each
other. Though two-way FSI may be a more precise modelling approach,
it may not be worthwhile in terms of how computationally costly it is, es-
pecially when time step is lowered. The structural analysis exhibited high
stress regions near the trailing edge close to the hub and shroud, which was as
expected. The deformation induced by the flow resembled the first bending
mode shape.

The numerical simulations indicate that the design has been successful at
mitigating von Kármán vortices. This is to be validated through experimen-
tal work in the future. The numerical results in this study have contributed
to shed light on the fluid-structure interaction that is often observed in hy-
draulic turbines. More importantly, it facilitates for experimental studies on
the blade cascade and as a foundation for future numerical studies on the
circular blade cascade.
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Chapter 7

Future work

For further work, it would be interesting to investigate a better model for
the 2-way FSI. A more appropriate mesh model may ease the instabilities
and allow for enough iterations that yields a converged solution. It would
be interesting to test this model for the range of velocites that was planned
for.

The 1-way FSI should have the mesh motion that corresponds to the
critical mode shape and frequency from the harmonic response analysis.
This would hopefully give a greater damping ratio. Moreover, it would be
interesting to see a relationship with how increasing inlet velocity would
affect the damping ratio.

Finally, higher velocities would be interesting to investigate, although
this could be a too high Reynolds number, especially when it could result
in cavitation. On the other hand, it would be useful information to know at
what velocities cavitation is observed.
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Appendix B – MATLAB code for FFT

close all

clear

clc

%cd ’Monitor Point Output’/

MP1 = readtable(’vel_1fsi.csv’); %read exported file from solver CFX

iter = MP1{:,1}; %iteration number

phi_Fluct = MP1{:,2}; %2nd column, where Pfluct data is

L = length(phi_Fluct); %length of vector

dt = 5.3449E-06;%1-way FSI

Fs = (1/dt); %sample frequency = 1/dt

f = Fs*(0:(L/2))/L; %frequency interval

Y=fft(detrend(phi_Fluct)); %assign fft of pfluct to Y

P2 = abs(Y/L); %convert to one-sided spectrum

P1 = P2(1:L/2+1); %

P1(2:end-1) = 2*P1(2:end-1);

%%

MP2 = readtable(’vel_cfd.csv’);

iter2 = MP2{:,1};

phi = MP2{:,2};

len = length(phi);

time = 1E-5;

freq = 1/time;

fi = freq*(0:(len/2))/len;

Y2 = fft(detrend(phi));



q2 = abs(Y2/len);

q1 = q2(1:len/2+1);

q1(2:end-1) = 2*q1(2:end-1);

%%

figure(1)

plot(f,P1,’k’)

title(’FFT of velocity from 1-way FSI’,’interpreter’, ’latex’)

xlabel(’Frequency [Hz]’,’interpreter’, ’latex’)

ylabel(’Amplitude [ms$^{-1}$]’,’interpreter’, ’latex’)

set(gca,’XLim’, [0 50000]);

figure(2)

plot(fi,q1,’k’)

title(’FFT of velocity from transient CFD at 13ms$^{-1}$’,’interpreter’, ’latex’)

xlabel(’Frequency [Hz]’,’interpreter’, ’latex’)

ylabel(’Amplitude [ms$^{-1}$]’,’interpreter’, ’latex’)

set(gca,’XLim’, [0 10000]);

%{

function [Amp f] = FFTpwelch(x,Fs, varargin)

nfft = length(x);

k = length(varargin);

if isempty(varargin)

window = hanninf(nfft);

noverlap = 0.5*nfft;

elseif k ==1

in = varargin{1};

estimateF = 1/in(1)*Fs;

if length(in) == 2

segmentsize=round(estimateF*in(2));

else

segmentsize=round(estimateF*10);

end

window = hanning(segmentsize);

noverlap = 0.5*segmentsize;

elseif k==2

window = varargin {2};

noverlap = 0.5* length ( window );
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else k ==3;

window = varargin {2};

noverlap = varargin {3}* length ( window );

end

windowp = window;

noverlap2 = noverlap;

probability = 0.95;

[pxx ,f, pxxc ] = pwelch (x,window , noverlap ,nfft ,Fs ,’ ConfidenceLevel ’,probability );

S1=sum ( window );

S2=sum ( window .^2) ;

ENBW =Fs *( S2 /( S1 ^2) ); % Power spectrum

Amp = sqrt (pxx )* sqrt (2) ;

end

%}
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Appendix C - Ansys codes

C.1 Ansys code for material properties and mesh type

!material properties and mesh

et,MATID,SOLID227,1001

!226 for hex, 227 for tetra

mp,perx,MATID,926 d

mp,pery,MATID,926

mp,perz,MATID,794

tb,piez,MATID

tbdata, 5, 11.9 ! e15

tbdata, 10, 11.9 ! e24

tbdata, 13, -7.5 ! e31

tbdata, 14, -7.5 ! e32

tbdata, 15, 13.7 ! e33

C.2 Voltage load application

!d - dieletric

!Hydrofoil 1

d, HF1_POS1, VOLT, 1 !positive side of MPC

d, HF1_NEG1,VOLT,0 !negative side (grounded) of MPC



d, HF1_POS2, VOLT, 1

d, HF1_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 2

d, HF2_POS1, VOLT, 1 !positive side of MPC

d, HF2_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF2_POS2, VOLT, 1

d, HF2_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 3

d, HF3_POS1, VOLT, 1 !positive side of MPC

d, HF3_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF3_POS2, VOLT, 1

d, HF3_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 4

d, HF4_POS1, VOLT, 1 !positive side of MPC

d, HF4_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF4_POS2, VOLT, 1

d, HF4_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 5

d, HF5_POS1, VOLT, 1 !positive side of MPC

d, HF5_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF5_POS2, VOLT, 1

d, HF5_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 6

d, HF6_POS1, VOLT, 1 !positive side of MPC

d, HF6_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF6_POS2, VOLT, 1

d, HF6_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 7

d, HF7_POS1, VOLT, 1 !positive side of MPC
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d, HF7_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF7_POS2, VOLT, 1

d, HF7_NEG2,VOLT,0

!d - dieletric

!Hydrofoil 1

d, HF8_POS1, VOLT, 1 !positive side of MPC

d, HF8_NEG1,VOLT,0 !negative side (grounded) of MPC

d, HF8_POS2, VOLT, 1

d, HF8_NEG2,VOLT,0
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