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Abstract

This thesis considers two different approaches for analyzing curves. In
the first approach, we apply deep Q-networks as a method to find an opti-
mal reparametrization between two curves. This reparametrization is neces-
sary when comparing curves in the context of shape analysis. The resulting
optimization procedure has a linear time complexity but does not always
converge.

Secondly, we use normalizing flows as a way to cluster and interpolate
data. We propose a clustering method based on normalizing flows and the
expectation-maximization algorithm. Using this clustering method on mo-
tion capture data we cluster walking and running motions perfectly into
separate clusters. We also test interpolation with normalizing flows on mo-
tion capture data. The interpolation method produces new data with a high
estimated probability, we observe no significant visual difference from linear
interpolation.



Sammendrag

Denne oppgaven tar for seg to forskjellige tilnserminger for & analysere
kurver. I den forste tilnsermingen anvender vi dype g-nettverk for a finne
en optimal reparametrisering mellom to kurver. Denne reparametriseringen
er ngdvendig for & sammenligne kurver med metoder fra formanalyse. Den
pafslgende optimeringsprosedyren har lineser tidskompleksitet, men konver-
gerer ikke alltid.

I den andre tilnszermingen, bruker vi normaliserende flyt & interpolere og
klyngeanalysere data. Vi foreslar en klyngeanalysemetode basert pa normali-
serende flyt og forventning-maksimering. Ved bruk av denne klyngeanalyse-
metoden pa data fra bevegelsesopptak klarer vi & gruppere gabevegelser og
lgpebevegelser i to separate grupper. Vi anvender ogsa normaliserende flyt til
a interpolere data fra bevegelsesopptak. Interpolasjonen genererer nye data
som har en hgy estimert sannsynlighet, men det er ingen stor visuell forskjell
fra lineser interpolasjon.
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Chapter 1

Introduction

In this text, we will consider two approaches for comparing curves. The first
approach uses the framework of shape analysis. One of the first to define
shapes as geometric objects in the quotient space with respect to a trans-
formation was Kendall|38|. He defined shapes as geometric objects modulo
rotation and dilatation, with the corresponding pre-shape space defined as
the original space the objects belonged to. Kendall mainly worked with
shapes as finite collections of points, but today shape analysis has also been
extended to the study of shapes as continuous objects on infinite-dimensional
Riemannian manifolds. For an overview of the use of different Riemannian
metrics, we refer to |4, 53, 55|

For our applications, we will only consider the space of curves with some
regularity conditions, using the square root velocity transform (SRVT). This
transform was first introduced by Srivastava et al. [74] and has been applied
to many other problems [47, |37, |50} |46| |49]. Importantly the SRVT and the
Riemannian structure that follows has been used to cluster and interpolate
curves [22|. Additionally [14] where able to cluster walking, running, and
jumping motions using an SRVT adapted for lie groups Furthermore, the
SRVT framework has also been used to close open curves [13].

To obtain geodesics and distances on the shape space, we first need to
find an optimal reparametrization of the curves. Algorithms for finding this
reparametrization can be grouped into two categories; gradient-based algo-
rithms |74} 75, 5] and dynamic programming [70, 5]. One drawback of dy-
namic programming algorithms is that the algorithms need to iterate over all
feasible pairs of the considered discrete times. Thus dynamic programming
can be costly for the reparametrization of an interval with many discrete
times. As an alternative to the dynamic programming approach we, there-
fore, formulate the reparametrization problem as a deterministic Markov de-
cision process (MDP). In this framework, we can apply reinforcement learn-
ing algorithms. These algorithms only seek to provide approximate solutions
without searching in the entire space for solutions. In particular, deep Q-
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networks[56| is an algorithm that has been successfully applied the MDP for
playing games with discrete action spaces. Although, there are alternatives
for continuous actions spaces |51, [72|. Therefore we test deep Q-networks to
find an optimal reparametrization for curves defined by test examples, and
curves generated by motion capture data.

A different perspective on the analysis of curves is through normalizing
flows. A normalizing flow is an invertible mapping from observable data to
a space equipped with the normal distribution. Tabak and Vanden-Eijnden
[78] where the first to construct a flow transporting data to the normal
distribution in a way that maximizes the likelihood of the data. A later
paper [77], then proposes a method of constructing a normalizing flow by
the composition of parametric functions. The parameters of these maps are
then selected to maximize the likelihood of the observed data.

The two main problems when constructing normalizing flows is that each
of the functions composing the flow needs to be both injective, and enable
fast computation of the Jacobian determinant. Dinh, Sohl-Dickstein, and
Bengio|19] proposed two popular strategies they call coupling layers, and
multiscale architected. Using this flow architecture they demonstrate realis-
tic sampling and interpolation of high-dimensional image data. Since then
there have been many different successful flow models, and we refer to |61} |42]
for an overview. In our experiments, we use invertible residual networks|16},
7] and continuous normalizing flows [51} [29]. These models do not restrict
the structure of the Jacobian and thus permit more expressive models.

Normalizing flows have been successfully applied in the context of tem-
poral data. For instance, normalizing flows have been used to efficiently
generate audio samples 58], video samples [45] and controllable human mo-
tion [32]. Common to all these approaches is that the generation of new data
is predicated on a state that was determined when generating old data, or
the old data itself.

Our approach to temporal data, like human motion, is different from the
approaches described. We disregard the time component of the data and
consider the entire motion as one data point. This allows us to interpolate
and cluster sequences of data in the same manner as with data without
a temporal component. This strategy is motivated by the success of shape
analysis in analyzing unparametrized curves. Moreover, when clustering data
we will use the expectation maximization algorithm [18] in a way heavily
inspired by Agnelli et al.[1].

In Chapter [2| we introduce shape analysis and define the shape space we
will be working with. We will closely follow the explanation used by the spe-
cialization project |2, Chapter 2| preceding this thesis. Here we also explain
briefly how the shape analysis provides a method for cluster and interpolat-

For the audio generation model [58| this is technically not true, but this model was
trained to mimic an autoregressive model for which it is true[59].
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ing curves, independent of reparametrization. Moreover, we explain how the
SRVT imposes a structure pre-shape space, and how that structure results
in an optimization problem when analyzing each pair of curves. Then, since
we will be working with human motion data in the next chapter we also
explain an extension of the SRVT to curves in Lie groups [13].

In chapter [3] we first introduce the Markov decision process and how it
relates to reinforcement learning. We then explain some reinforcement learn-
ing optimization algorithms. Thereafter, we show that the reparametriza-
tion problem is a Markov decision process, and we can solve it using the
algorithms previously described. In this section, we also deliver some small
alterations to deep Q-networks that can be made four our problem. Finally,
we show the results of experiments comparing the performance of deep Q-
networks and dynamic programming.

In Chapter [{4] introduce the concept of normalizing flows and comment
on their expressiveness. Then we define the Kullback-Leibler divergence and
show how a normalizing flow can be found by minimizing this divergence.
Then we define the two normalizing flow models we will be working with;
invertible residual networks and continuous normalizing flows. Additionally,
we explain how normalizing flows can be used to cluster and interpolate
data. We then show clustering and interpolation on test examples and data
motion capture data. Finally, we finish the chapter discussing these results.

In Chapter [5| we give some concluding remark about the methods used
in this thesis. We also provide some ideas for further work in the application
of reinforcement learning for reparametrization, and for the application of
normalizing flows in the context of shape analysis.



Chapter 2

Shape analysis

2.1 Definitions and motivation

To start the exploration of the curves we will be working with we follow
the approach by Turaga et al. [82]. First we define the the space of of all
immersions from the interval I = [0, 1] to R%

P :=Imm(I,RY) = {c e C®°(,RY) : d(t) A0V t € I}.

This space P is generally called the pre-shape space. We will restrict ourselves
to the study of open curves. However, analysis of closed curves Imm(S', R%)
and surfaces Imm(I x I,R?) has also been investigated with the shape anal-
ysis framework [4].

We would like to study curves independent on their parametrization.
More precisely, we define the space of all reparametrizations ¢ as the group
of orientation preserving diffeomorphisms of 1

Difft (I) = {¢ € C°(I, 1) : p(0) = 0,p(1) = 1, (t) >0V t € I}.
The group action
Y : Diff (1) x P — P, (¢,c) = cog
also defines the shape space S as the quotient space under this group action,
S :=P / Diff*(I).

The space S is not manifold, but an orbifold [4]. The elements of S will be
called shapes shapes.

2.2 Distance on shape space

Distance is a very useful structure that we would like to impose on the shape
shape. A distance function (or pseudometricﬂ) is a natural measure of sim-

! A pseudometric d : X x X — R™ satisfies all the axioms of a metric expect d(z,y) = 0
does not imply =z = y.
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ilarity with we could use to cluster shapes independent of parametrization.
To find a pseudometric on ds on S we start with a pseudometric P that is
reparametrization invariant. That is, dp : P x P — (0, 00) has the property
that for all ¢1,c9 € P

dp(ci,c2) = dp(crop,ca0¢p) Vy € Diff'.

A reparametrization invariant pseudometric on P is not enough to define
a pseudometric on S directly. Instead, a pseudometric on § is given by

ds([c1],[e2]) == inf dp(cr,c20¢),
peDIfFt (1)t
where [c1] and [co] are the shapes with representatives ¢; and cy. Therefore
we impose a Riemannian metric on P.
We then require that the Riemannian metric is reparametrization invari-

ant. More specifically, a Riemannian metric G such that for all ¢ € P and
h,k € T,P = C>(I,R%)

Ge(h,k) = Geop(ho g, ko) Ve € Difft (I)*.

Moreover, a reparametrization invariant Riemannian metric will induce a
reparametrization invariant pseudometric on P given by the length of the
shortest path E|

1
d = inf G (t),'(t)) dt. 2.1
rene) = int G0 0.0) 2.1)

7(0)=c1
v(1)=c2

Therefore, pseudometric on S can be constructed by . Furthermore, if
this shortest path exist then it also gives us a natural way to interpolate
between curves.

An obvious metric on P is the L? metric given by

Go(h, k) = /I (h, k)€ (1) d,

where |c/(t)] is the length of the vector ¢/(t). However, as shown in [53| and
[54] the L? metric induces a vanishing distance on shape space S. This means
that for any ¢, co € P we can construct curves v € C*°([0, 1], P) starting at
c1 ending at cg o @ of arbitrary short length. Therefore we conclude that the
L? metric is useless for comparing shapes, and must find another metric.

21f it exists
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2.3 The square root velocity transform

We now restrict our attention to the space of curves starting at the iden-
tity Py := {c € P : ¢(0) = 0}. A metric on P, will then by imposed by
transforming the curves with a diffeomorphism to another Riemannian man-
ifold, then compute the corresponding pullback metric on P. A popular such
transformation, first introduced in |74], is the square root velocity transform
(SRVT)

C/
Vel
The SRVT has several properties which we will not prove. Instead, we

refer to |11}, 6]. Firstly, the SRVT is invariant under translation and therefore

not injective on P. It will however, be a diffeomorphism between P, and
C>=(I,R?\ {0})|11][Theorem 1|. Between these spaces, the SRVT also has
an inverse of the form

R:P — C®(I,R*\ {0}), ¢~ (2.2)

-1 = t T T)dr
R <q>(t>—/0q< )la(7)] dr,

where |g(7)| is the length of the vector ¢(7). Furthermore, imposing the
L? inner product on (C*(I,R%),(-,-)2) produces an inner product space.
Thus, the SRVT imposes a pullback distance metric

dp, (c1,¢2) = [|R(c1) — R(ca)l| 2
and a pullback Riemannian metric,
Ge(h,k) = (T.R(h), T.R(k)) 2

on P,. Moreover, as explained in [13], G will be a first order Sobolev metric,
defined by the arc length integral

1
Ge(h k) = /<DshL,D;k> + 4 (Dsh, v){Dsk, v) ds,
I
where ds = |¢|dt, v = Dyc = & is the curve of unit length tangents of

Ic/]
¢, and Dsh = Dgh — (Dgh,v)v is the projection of Dsh onto the space of
curves pointwise orthogonal to v. Also, as before, |¢/| denotes the pointwise
length of .
The space C>®(I,R?\ {0}) is a non-convex subset of a inner product
space. Moreover, for a convex subset U of inner product space (V, (., .)), the
shortest path between two vectors vi,vy € U is the line

p(t) = vit +v2(1 —t).
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Therefore, when the square root velocity (SRV) form of two curves R(cy), R(c2)
belong to the same convex subset of C>(I,R%\ {0}), then the shortest path
between them will be the line

n(t) = R(c2)t + R(c1)(1 —t).
Therefore, the geodesic from ¢; to ¢y is given by
(1) = R [R(e2)t + R(e1)(1 — 1)),

and the length of v will be the equal to dp, (., ,). For curves which have
an SRV form not connected by a line in C(I,R%\ {0}) (e. g. ¢1 = —c2)
the situation is more complicated. Either the geodesic of the metric G will
not exist (i.e there is no 7 that making the the infimum a max in Equation
(2.1)), or the geodesic distance will not correspond to the distance dp, .

When d > 3, we can make lines in C°°(I,R?) smoothly into paths in
C>=(I,R?\ {0}) by arbitrary small perturbations [6][Section 2.1]. Thus, the
distance given by dp, will be the geodesic distance of G. However, when
d < 2, these smooth perturbations are not always possible, and dp, will not
always agree with the geodesic distances induced by G. As a solution for
d < 2, Bruveris |11][Section 2.2] proposes geodesic completions of P,. Also,
for a treaty of geodesic completions of Sobolev metrics in general, we refer
to |12].

To extend the Riemannian geometry of P to the shape space we use the
fact that the SRVT has the equivariance property [13|

R(cog) =+/¢'R(c)op ¥ peDifft,ceP.

Therefore, by [6, Theorem 3.1], the metrics G and dp, are reparametrization
invariant, and a reparametrization invariant pseudometric can be extended
to i := {[c] € S : ¢(0) = 0} by (2.2). Importantly, finding the distance
and geodesic between two shapes [c1], [c2] € S« has thusly been reduced to
finding a reparametrization ¢ € Diff*(I) that minimizes

|Rer) = V& R(ez) o ¢ (2.3)

2’

Thus, when analyzing curves we need to find an optimal reparametrization
between the curves.

An optimal solution to the reparametrization problem above will not
necessarily exist in Difft(I). Examples of a pair of curves with an optimal
reparametrization outside Diff* (I) can be found in [82, p.11] and |89} Section
3.2]. One problem is that an optimal reparametrization might have vanishing
derivatives. Thus, the optimal solution is not guaranteed to be a diffeomor-
phism. Still, there are metrics on P for which an optimal diffeomorphism is
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guaranteed, as shown in [4]. Alternatively, Bruveris |11] expands the search

to
~ absolutely continuous

v:I—=1:~0)=0,~(1)=1,

7' > 0 almost everywhere

r

The existence problem is then remedied by showing that for curves c1,co €
C?(I,R?) there exists optimal reparametrizations %, ¢ € T that minimizes

dp, (c10 @1, 0 p2).

However, in this thesis, we will only consider the reparametrization problem
given by Equation (12.3)).

2.4 Shape analysis on Lie groups

In computer graphics, a common model of representing human motion is
skeletal animation. This model represents one instance of human motion as
a rooted tree, such that each edge represents a bone and each node represents
the joint between the bones. Moreover, each node is given a local coordinate
system related to its parent node via rotation and translation. Thus, the
global position of any node can be computed iteratively by composing the
transformations connecting the node to the root. Furthermore, rotation and
translation can be represented using the matrix group SE(3). Therefore each
instance of human motion will in skeletal animation be given as an element
in the joint space

J = SE(3)",

where d is the number of bones in the model.
Furthermore, one second of skeletal animation will be given as a time
curve ¢ € P, where

P :=Imm(I,G) ={ce C®(I,G): (t) A0V t € I}.

This will be the pre-shape space used when using shape analysis on Lie
groups. Additionally, all human bones have fixed lengths. Therefore trans-
formations between all bones can be represented as rotation matrices in
SO(3). Thus, the joint space of a rigid human skeleton will be the Lie group
SO(3)%.

To analyze curves in this Lie group we use use an extension to the SRVT
introduced by Celledoni, Eslitzbichler, and Schmeding [13]. This SRVT is
defined by
6" (c)

VI @

R:P—C®(I,g\{0}), R:=
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where g is the Lie algebra of G and §" is the right logarithmic derivative
as defined in [43][p. 404]. For our purposes, we note by [57][p.72] that for
subgroups of GL(n) the right logarithmic derivative is given by

where ¢/(t) is the matrix given by the time derivative of ¢ at ¢, and ¢(¢) ! is
the matrix inverse of ¢(¢). Futhermore, R is translation invariant [13||Lemam
3.6], meaning that for the right translation given by Ry, (g2) = g1 - 92, we
have

R(c) =R(Rgoc) YgeG,ceP.

Thus, we define as before the space of curves staring at the identityﬂ P =
{c€P:c(0) =e}.

Celledoni, Eslitzbichler, and Schmeding also proved that R has many of
the same properties as the SRVT defined in [74]. Firstly, by [13]|Theorem
3.16], for dim g > 2, the function

dp.(c1,c2) = [[R(c1) — R(c2)| 12,

will be a metric on P, and corresponds to the geodesic distance induced
by the elastic metric given in [13||[Theorem 3.11]. Moreover, since R is
reparametrization equivariant, by |13|[Lemma 3.6|, then dp, defines a well
defined distance function on S / Diff (1) by (2.2).

In a practical setting the continuous curve ¢ may only be known at dis-
crete times (¢;)7,. Then a continuos curve ¢ can be constructed by interpo-
lating along geodesics in SO(3) between each ¢(t;) and ¢(t;+1), 0 <i<n—1
[71]. Then, by [13|[p. 23], the SRV form of ¢ will be the piecewise constant
curve

_ i
(I(t) = ﬂ[ti,ti ) > (24)
Vil
where
= IOg(CiJrlC;'F)
’ tis1 —t;

and log is the Lie group logarithm.

3For Lie groups GL(N) the identity e is the matrix identity I,,. However for R™ as a
Lie group the identity is 0.



Chapter 3

Reparametrization with deep
Q-networks

When analyzing unparametrized curves in the shape analysis framework, one
has to solve an optimization problem for each unordered pair of considered
curves. Specifically, for a pair of curves ¢y, ca € Imm(I, R%) we need to find
a diffeomorphism ¢ € Diff* () that minimizes Equation (2.3). Since this
problem must be solved for each pair of curves, the optimization procedure
must be efficient. Finding an optimal reparametrization has previously been
solved using a dynamic programming algorithm, but this algorithm comes
with a high computation cost. This chapter shows that the reparametrization
problem is a deterministic Markov decision process (MDP). Additionally,
we explore different reinforcement learning algorithms that find an optimal
policy for MDP.

3.1 Markov decision processes

Before describing dynamic programming as a method to find an optimal
reparametrization, we first introduce the formalism of a Markov decision
process (MDP). A dynamic programming method can be applied directly
to problems without the MDP framework. However, reinforcement learning
algorithms like deep Q-learning are created to solve MDPs.

There are many versions of MDPs |65, Chapter 1], but we will use a
deterministic version from |23, Chapter 3|. Essential to all MDPs is the ex-
istence of states, actions, and rewards. An MDP models a system where an
actor moves between states while taking actions that determine the reward
received for each movement. The MDP framework can be used to model
stochastic movements between states. However, we restrict ourselves to de-
terministic MDPs. Since we are interested in minimizing Equation
rather than maximizing rewards, we will modify the definition of MDP to fit
the minimization goal.

13
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Definition 3.1.1 (Deterministic Markov decision process). A deterministic
Markov decision process is tuple (S, A,T,C). Where S is the state space,
A is the action space, T : S x A — S is the transition function mapping
previous state and actions to new states, and C : S x A — R* is the cost
received when for each state-action pair.

Moreover, many optimization algorithms require that the state space
S and action space A are finite sets. However, some algorithms work on
continuous action and state spaces |88, Chapter 7|[51} |72].

Remark. When working with a Markov process [79] instead of a determin-
istic process, we need to make two modifications of the deterministic MDP.
Firstly, The transition function T is now a function T : Sx AxS — R, such
that T'(s,a,.) is the probability distribution of the next state given previous
state s € S and action a € A. Secondly, the cost function C' : Sx AxS — RT
s mow a function of both the previous and successive state.

When working with Markov decision processes it is useful to define poli-
cies and value functions. A policy is a mapping

T:8 = A,

that determines the action taken for each state s € S. The associated value
function for 7 is defined by the recurrence relation

VTS =Rt V™(s) =4V™(s') + C(s,a), (3.1)

where s’ = T(s,a) is the next step when taking action a = 7(s) given
by policy m, and v € [0,1] is a constant that discounts future value. If
no discounting is done v = 1. Then for V™ in Equation (3.1) to be well
defined we also need to define the value of V™ (senq) for one or more end
states Senq. A Markov decision process with end states is called a finite
horizon process. Furthermore, if future value is not discounted, then the
transformation function 7" must not allow revisiting the same state; which
in our case will be true. Finally, we define the optimal value function
V*:S = RT V*(s)=minV"(s),
mell
where IT is the space of all policies II = {7 : § — A}.
An important property of the optimal value function V* is that it is the
only function that satisfies the Bellman equation
V(s) = min [yV(T'(s, a)) + R(s, a)], (3.2)
for all s € §. Thus if V* is known, the value of an optimal policy, a policy
7* such that V™ = V*, can be computed by

m*(s) = arferiin [YV*(T'(s,a)) + C(s,a)]. (3.3)
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For a value function V' this policy is called the greedy policy. The greedy
policy can also be generalized to include multiple steps. As defined by Efroni
et al. [21] a h-greedy policy with respect to a value function V' is a policy
so that for a state sq

h—1

7h(Sp) = argmin  min Z C(st,ap) + ’th(sh) Siv1 = T(84,a;).
ao€A al,e..,ap_1€A =0

(3.4)

Another central value function in the MDP model is the optimal action-

value function ). For deterministic MDPs the optimal action-value function
Q* can be defined as the function that satisfies the recurrence relation

Qi Sx A-RY Q(s,a) = minyQ"(T(s,0), ) + C(s,a), (35)

for all non final states s € S and actions a € A. For final states sepq we define
Q*(Send; @) = V*(Send). In other words, Q*(s,a) is the final cost the agent
achieves if at state s the agent takes action a, then choosing the optimal
action at all later states. Therefore, if Q* satisfies then an optimal
value function will be given by

V*(s) = min Q* .
() = minQ*(s, a)
The Q-function also defines a greedy strategy similarly to Equation (3.3]).
Substituting
Q" (s,a) = C(s,a) + V" (T'(s,a)), (3.6)

into Equation (3.3]) yields the greedy policy 7 with respect ot an action-value
function @
mo(s) = argmin Q(s, a). (3.7)
acA

Similarly, the h-greedy policy for an action-value function @) and state sq is

h—1
7mh(sg) = argmin  min ZC(Shat) + Vh_lQ(Sh—l, an1)
apeA ai,...,ap_2€A =0

(3.8)

sip1 = T'(si,a5).

3.2 Value iteration

Value iteration is a classical way of computing V* for discrete action and state
spaces and was developed by Bellman [8|. Together with policy iteration 34|,
it is one of the two central dynamic programming algorithms for solving
discrete MDPs. They are both guaranteed to converge to an optimal policy
for finite horizon problems.
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Finite horizon value iteration assumes two reasonable properties about
the MDP it is applied to. Firstly that each state s; € S is indexed with
a known time ¢t € Z. For each time t we will denote the space of states
index by time t as S;. Secondly, for temporal indexing to have any meaning
we require that if ¢ > ¢ then for s; € S; and sy € Sy there is no action
a € A such that s; = T'(sy,a). Using this temporal indexing, value iteration
computes the value of the optimal value function V* backwards in time as
described in Algorithm [1} Since value iteration computes the values of V*
exactly for each state it iterates over, the time complexity of the algorithm

will be O(|S||Al).

Algorithm 1 Finite horizon value iteration
initialize V(s ) = 0 Vsiy, € Sty
fori+ N—1to1ldo
for all s; € S, do
V(st) < mingea [V(T(s¢,a)) + C(se, a)]
end for
end for

3.3 Q-learning

Q-learning is an algorithm in a family of algorithms called reinforcement
learning. Algorithms in the reinforcement learning framework are made for
the general problem where an agent learns how to act in an environment
by receiving rewards [88, Chapter 1]. However, specific reinforcement learn-
ing algorithms require more concrete assumptions about the agent and the
environment. In particular, a MDP is the most common assumption, but
other models are also possible [73]. In contrast to dynamic programming al-
gorithms, reinforcement learning algorithms generally need not assume any
knowledge about the MDP itself; in other words, they are model-free. In
addition, reinforcement learning algorithms do not guarantee convergence to
an optimal solution to their problem. Therefore, they do not need to visit
all states to arrive at a solution like dynamic programming. Instead, these
algorithms provide an approximate solution to the problem.

The Q-learning algorithm |86] is a temporal-difference (TD) method for
estimating the optimal action-value function *. Common to all TD algo-
rithms is that they sequentially update estimates based on other estimates
and observing how the environment reacts to actions |76, Chapter 6.]. In
particular, Q-learning updates it estimates of * by moving between states
and selecting actions based on the current estimate ). One popular policy
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for selecting actions is an e-greedy policy. An e-greedy is a policy

{a ~U(A), with probability e
Te(s) =

*(s), else,

where 7* is a greedy policy. Based on the previous state-action pair (s, a)
the Q-learning algorithm then updates it current estimate of the table @ by

Q(s,a) + (1 —a)Q(s,a) + « [C(s, a) + yarpeiﬁQ(T(s,a),a') ,

where « is a parameter 0 < « < 1. Finally, we note that Q-learning does
converge to a solution with an optimal greedy policy for discrete MDP as
long as all states-action pares are repeatedly sampled [85].

3.4 Deep Q-learning

After Watkins introduced Q-learning, there have been multiple adaptions
of the algorithms using function approximations (Jy as an estimate for Q*
[23, Chapter 4.]. Central to the algorithms we will explore is the use of
replay memory |52]. Instead of updating @y based on the last experiences
(s,a,C(s,a),T(s,a)), the last Nyeplay are stored in database called replay
memory. Then Qg is updated based on a mini-batch sample from the replay
memory. Mini-batches reduce each update’s variance of ) while covering a
larger portion of the state and action space.

Riedmiller [66] parametrized the Qg-function as neural networks. How-
ever, instead of taking state-action pairs as inputs, the network inputs the
state then computes a separate output for each action in the action space.
This approach enables efficient computation of the maximum of all actions
and continuous state spaces. Training the network then amounts to sam-
pling mini-batches (sg, ag, ck, s’ )]kvij““ from replay memory and minimizing
the cost function

Nbatch
LO)= > (Qolsk,ar) — Yi)?, (3.9)
k=0
where Y}, is the target
Yi = c(sk, ar) + v min Qy, (s}, a’) (3.10)
a’'eA

One problem with using nonlinear function approximators in Q-learning
is that we are not guaranteed to converge to a final solution [81} 66} 9]. To
combat this possible divergence Mnih et al. [56] separated generation of tar-
gets and optimization into two different neural networks (Qy and Qg—, which
they call a deep Q-network (DQN). More specifically, the target function Qo-
is used to compute the targets Y; by Equation and @y is optimized
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with respect to the cost function £ . Then the target Q is updated
by 8~ < 0 every C iterations. Using a deep Q-network, Mnih et al. then
demonstrated experimentally increased stability on Atari games. A version
their algorithm for deterministic MDPs is described in Algorithm [2]

Algorithm 2 Deterministic deep Q learning

Require: Function (Qy with parameters
Require: Function Qg—l with parameters 6~ = 0
Require: Initialized replay memory D
for episode «+ 1 to NV do
S < Sstart
while s # sepg do
Select action a according to some strategy (e.g. e-greedy)
s,e=T(s,a),C(s,a)
Store experience (s, a,c,s’) in replay memory D
Sample Nypateh samples (sg, ag, ¢, s,) from D
for k < 1 to Npaten do
if s} = send then
Y, + ¢k
else )
Y, <= ¢ 4+ ymaxqea Qp- (S, ar)
end if
end for
Do one optimization step of £(#) given by w.r.t 0
Every C' steps 6~ < 0
s+ s
end while
end for

3.5 Dynamic programming principle for reparametriza-
tion

Before formulating reparametrization as an MDP we show that finding the
optimal reparametrization fulfills a dynamic programming principle (DPP)
[8, Chapter 3|. We begin by defining the optimal value function

1
V*(to,z0) := inf |R(c1) — R(ca 0 )|* dt,
@eDIffT (1) Jt,
(to)=z0

where R is the SRV transform, ¢, zg € [0,1] and I = [0, 1]. Moreover, V* is
a value function for optimal reparametrization since by definition we have

V*(0,0) = dp,(c1, c2).
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Now we expanding V* for a intermediate time ¢’ € [to, 1] we get the following
dynamic programming principle

t/

V*(to,z0) = inf V*(t'p(t)) + / |R(c1) — R(cg o @) 2 dt| . (3.11)
@eDIfft (1) to
¢(to)=xo

One possible strategy would be to apply a continuous time dynamic pro-
gramming algorithm directly on Equation (3.11]), however this approach will
not be used in this text.

3.6 Reparametrization as a MDP

To formulate reparametrization as a discrete MDP we follow a discretization
method inspired by Sebastian, Klein, and Kimia [70]. They do not use
the MDP formalism but use dynamic programming to solve a discretized
version of Equation (3.11). The method first discretizes the interval I into
Z = {70,...,78}. Then we define our state space as S = Z x Z, and our
action space as A = Zg X Zg, where d < N is a natural number called depth
of the action space. Then the transition function 7" has the natural form

T((7i,75), (A%, AF)) = (Timin(N,i+Ad)s Tmin(N,j+A5))-

Now, each path trough the grid S starting at s; = (0,0) and ending at
Send = (1,1) will represent a reparametrization that linearly interpolates the
two points representing successive states. More precisely, for a sequence of
states S = (t1,x1), (t2,x2), ..., (tar, tar) the reparametrization pg associated
with the sequence S is defined as

M-—1
ps(t) = Z ﬂ[ti,ti-‘-l]lsnsz‘“(t)v

=1

where [, is the affine function interpolating points s;, s;11 given by

Sit1

Tir1 — T
l5i75i+1 (t) = y(t - ti) + ;.

tit1 — 1

Similarly, a policy m will determine a unique path S™ = sgart, 55, 55, ..., Send
iteratively by
sigr = T(s7,m(s7)) if 8 # Send.

Thus each policy also defines a piecewise linear reparametrization ¢, = @pgr.
Furthermore, if we define our cost function C' as

t/
C((t’ l’), a) = /t |R(Cl) - R(CQ © ‘p(t,x),(t’,;t’))‘Q dr, T((xv t)a CL) = (t,a xl)v
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and V (Seng) = 0, then

1
V™ (sutart) = / R(c1) — Rlcz 0 o) dr.
0

Thus minimizing V™ (Sgart) is equivalent to minimizing (2.3)) in restricted
search space {p,|m € II}. Moreover if we know the optimal value function
V*, then we can find an optimal reparametrization via Equation (3.3)).

3.7 Reparametrization with deep Q-networks

Formulating the reparametrization problem as an MDP we enable the use of
various reinforcement learning algorithms. The algorithm proposed by Se-
bastian, Klein, and Kimia [70] can be seen as an adaption of value iteration
on reparametrization as a MDP. The required time indexing is fulfilled by
using the original time of the curve. Although, value iteration is guaran-
teed to arrive at an optimal solution it has time complexity O(|S||.A|). As
previously explained, another algorithm is deep Q-learning. Using DQN we
can find an approximately optimal reparametrization with time complexity
O(|Z| E Nbatch ), where E is the predetermined number of episodes used and
Npatch is the mini-batch size. However, in opposition to value iteration, there
are no guarantees for convergence to an optimal policy 7*.

In the reparametrization problem, we can compute C' and T'. Therefore,
we modify the deep Q learning algorithm to use this knowledge about the
MDP. Instead of choosing actions with an e-greedy policy, we choose actions
with an e-2-greedy policy. More specifically, for a state s we choose the an
action according to

{a ~U(A), with probability e
Te(s) =

m2($), else,

where 79 is the h-greedy policy (3.8)) with respect Qe_ and h = 2. This
adaption does however, come with an increased computation cost and a
time complexity O(|Z|E(Nbatch + |A]))-

3.8 Experiments

In this section we compare deep Q-networks (DQN) with the value iteration
algorithm [70] to find an optimal reparametrization for three different pair of
curves c1, c3 and their SRV form ¢ and r. We also compare our results with a
greedy strategy; an algorithm that solves a problem using the locally optimal
strategy. For our deterministic MDP, a greedy strategy is the strategy that
for each state s € S selects the action

a = argmin C(s, a).
acA
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For all three curve pairs, we discretize the problem to a discretize MDP as

outlined in Section Then optimization with (DQN) is performed using

the SRV transformed curves ¢, r with different parameters. The parameters

we varied were: the use of the 2-greedy policy, the values of €, C, Npatch, NVreplay
and the parameters used for optimization of 7 (6). We also test different dis-

crete times N, but we will use the same action space with a depth of d = 4.

Finally, for each algorithm’s computed policy, we compare the total received

cost V7™(0,0). This value is the approximated distance given by Equation

(2.3). For the (DQN) iterations, we will also compare the value of L(0),

which we will denote as Q loss.

3.8.1 Experiment 1

In this experiment we compare two cures that are reparametrizations of
each other. The SRV form of the two curves r, ¢ are shown in Figure [3.I] and
defined by

r(t) = 7w[—2sin(2nt), 4 cos(4nt)]T,

and its reparametrization ¢ = \/¢'q o ¥, where

_ log(20t 4 1)  tanh(20(t —0.5))
vt = 21og(21) 4 tanh(10)

These curves were also considered in |67, Section 4.2.6].
The curves where then linearly interlated in N = 32 equidistant times.

20 o \ 10

/ ,

1/ \ d 5
10 /‘, 5 4 X

/1 - { 3\

/X S ,/ \\
0 ¢ N 0 / \

\ ,/, ‘\
-10 - 3
-20 \ -10
N
50 -25 00 25 50 75 100 125 6 4 2 0 2 2 6
(a) ¢ (b) r

Figure 3.1: The trajectories of curves ¢ and r defined in Experiment

The results of comparing algorithms on the curves ¢, r with different pa-
rameters for N = 32 discrete times are shown in Figure[3.2] For a comparison
of the best solution using DQN compared to value iteration, see Figure [3.3]
Additionally, a comparison of the convergence history for the best and worst
runs using DQN is shown in Figure[3:4] We also performed experiments with
different N. The resulting cost for each run is shown in Figure [3.5
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Figure 3.2: The result using DQN in Experiment [If with N = 32 discrete times for
144 different runs. For each run we compare the final cost and the final Q-loss. 42
of out the 216 models performed better than the greedy strategy.
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Figure 3.3: Optimal path and value function for the best deep Q learning result,
and the result of value iteration. This figure shows the result of the iteration with
the lowest final cost for Experiment [T with N = 32 discrete times. The color
corresponds to he value function V' at each point in figure.
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Figure 3.4: Figure shows how the Q loss and associated total cost evolves with
each episode of the DQN algorithm. The left(right) figure shows the history of the
iteration concluding in the best (worst) final cost for Experiment [I| with NV = 32
discrete times.
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Figure 3.5: The final cost (computed distance) with DQN compared to dynamic
programming and the greedy strategy for different number N of discrete times.
Deep Q-learning was performed 108 times for each N with 2-greedy strategy, but
other parameters where varied.
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3.8.2 Experiment 2

In this experiment we considered two curves that are not reparametrizations
of each other. Their SRV forms are shown in Figure [3.6] and given by

q(t) = [cos(t),sin(t)], r(t) =10,1].

The corresponding optimal reparametrization problem of the two curves has
an analytical solution computed in |89, A.1| and given by

_ sin(27?)

p(t) =t 5.

0.8 Ve \

0.6 / \

044 ] \

I’ \
0.2 f i
| |
|

0.0

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 -0.04 -0.02 0.00 0.02 0.04

(a) g (b)

Figure 3.6: The trajectories of curves ¢ and r defined in Experiment

The results of comparing algorithms on the curves ¢, r with different pa-
rameters for N = 32 discrete times are shown in Figure[3.2] The parameters
we varied were: the use of the 2-greedy policy, the values of €, Npaten, and
the optimization parameters. The results of these experiments using N = 32
discrete times are shown in Figure[3.7] For a comparison of the best solution
using deep Q-learning compared to value iteration, see Figure[3.8] Addition-
ally, a comparison of the convergence history for the best and worst runs
using deep Q-learning is shown in Figure [3.9
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Figure 3.7: The result using DQN in Experiment [2f with N = 32 discrete times for

216 different runs. For each run we compare the final cost and the final Q-loss. 123
out of the 216 runs performed better than the greedy strategy.
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Figure 3.8: Optimal path and value function for the best DQN result, and the result
of value iteration. This figure shows the result of the iteration with the lowest final
cost for Experiment 2] with N = 32 discrete times. The color corresponds to he
value function V' at each point in figure.
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Figure 3.9: Figure shows how the Q loss and associated total cost evolves with
each episode of the DQN algorithm. The left(right) figure shows the history of the
iteration concluding in the best (worst) final cost for Experiment [2| with NV = 32
discrete times.



CHAPTER 3. REPARAMETRIZATION WITH DEEP Q-NETWORKS27

3.8.3 Experiment 3

In this experiment, we consider two discrete curves generated by motion
capture data from the CMU Graphics Lab Motion Capture Database [48].
The first curve is a brisk walk generated by Subject 7, and the second is a
walk with a turn generated by Subject 38. The curves are then transformed
using into their a SRV forms ¢, with NV = 78 discrete times.

The results of comparing algorithms on the curves ¢, r with different pa-
rameters are shown in Figure For a comparison of the best solution
using deep Q-learning compared to value iteration, see Figure 3.11] Addi-
tionally, a comparison of the convergence history for the best and worst runs
using deep Q-learning is shown in Figure [3.12

3.9 Discussion

As seen in figures and a decrease in in the final Q loss £(6)
does in general lead to a lover total cost. Similarly, as seen in figures

3.9 and the most successful iterations of DQN lower the Q-loss and the
total cost at at the same time, while unsuccessful iterations fail to converge
to any value for Q. Moreover, as seen in Figure [3.5] DQN is able to make
successively better reparametrizations as N increases. This indicates that
using function approximators like DQN to find a good reparametrization is
possible.

On the other hand, the use of DQN for the reparametrization problem
does include a lot of instability as a solution strategy. In all our experiments,
only around half of the runs using DQN resulted in a reparametrization bet-
ter than the greedy policy. Including the e-2-greedy policy improves stability,
but does not guarantee a better solution than the greedy strategy. It is pos-
sible that picking better parameters would lead to more stable results, but
we have not been successful in finding a set of parameters that consistently
outperforms the greedy strategy for different curve pairs and problem sizes
N. In addition, even through the time complexity fot the DQN algorithm is
linear in the size of state space, the runtime of the algorithm is noticeably
longer than dynamic programming even for problems as large as N = 120.
Therefore, a good approximation using dynamic programming can more re-
liably be achieved by restricting the problem size.
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Figure 3.10: The result using (DQN) in Experiment |3| for 108 different runs. For
each run we compare the final cost and the final Q-loss. Out of the 108 runs 59
performed better than the greedy strategy.
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Figure 3.11: Optimal path and value function for the best deep Q learning result,
and the result of value iteration. This figure shows the result of the iteration with
the lowest final cost for Experiment [3] The color corresponds to he value function
V' at each point in figure.
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Figure 3.12: Figure shows how the Q loss and associated total cost evolves with
each episode of the DQN algorithm. The left(right) figure shows the history of the
iteration concluding in the best (worst) final cost for Experiment



Chapter 4

Normalizing flows

Normalizing flow are generative models for estimating the unknown proba-
bility distribution of a random variable X using a known random variable Z.
More formally, we have a probability space (X, Ax, P~X) where PX = law(X)
is the unknown probability distribution of X. The goal is to estimate PX
by introducing a known probability space (Z, Az, pPZ ) and a latent random
variable Z such that law(Z) = PZ. Then, the distribution PZ is transformed
into PX by a measurable function T : Z, — X such that T.PZ = PX_ Here
T.PZ denotes the pushforward probability measure defined by

T.PZ(A) = P4(T7YA)) ¥V Aec Ay.

Normalizing flows usually rely on a more specific set of assumptions
than mappings between probability spaces in general. Firstly, it is assumed
that T is invertible. Moreover, we will only work with Z = X = R? and
Az = Ay = B(R?), the Borel o-algebra on R%. However, normalizing flows
have been applied to discrete spaces 33| [80], and Riemannian manifolds
[24][84]. We will also need to assume that PZ is absolutely continuous with
respect to the Lebesgue measure so that the probability density px of PX
exists. Finally, we let the latent variable Z be the standard gaussian vari-
able NV(0, I,,) and structure T" as a composition of multiple transformations
Tyno...olp0Ty. Thus, we arrive at the reason for the name normalizing flow;
the function 7! defines a flow that transforms the normal distribution into
a more complicated PX.

4.1 Transport maps

Before going on with the specific theory of normalizing flows, we first elabo-
rate on the properties of mappings between two probability spaces (Z, Zx, P?)
and (X, Ay, PX). In this general setting, normalizing flows are related to
transportation theory. Specifically, a measurable function T': Z — X such

30
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that T, PZ = PX is called a transport map [83]. In general, an injective trans-
port map is not guaranteed to exist and is not unique P#-almost surely. For
instance, consider a transport map from the normal distribution A(0,1) to
the Dirac measure § on R. Then T = 0 almost everywhere, which is not
an injective function. Furthermore, if PZ is a symmetric distribution on R,
then the invertible functions T' and 7"(x) := T'(—x) are different transport
maps.

Under some assumptions, a transport map does exist. For instance, a
bijective transport map between two Polish spaces (complete, separable,
and metrizable) with the Borel o-algebra and with no atoms (points with
nonzero probability) does exist |83, Chapter 1|. Another case of interest
is when, when Z = X = R? and PX and P? are absolutely continuous
with respect to the Lebesgue measure. Indeed, with this setup, an invertible
transport map can be explicitly constructed |41}, |68]. This map is named the
Knothe-Rosenblatt transport and guarantees that the Jacobian matrix DT
is triangular.

For our applications, we need to be able to calculate the probability
density pp(z) of T,P?, where PZ is a probability with density px and Z =
X =R?% When T is injective and differentiable almost everywhere then by
[83, Theorem 11.1] a formula for pr(Z) is given by the Jacobian equation

pr(z)(T) = pz(T~(2) Tp-1(z), (4.1)
where AT(B ()
. 1 T r\L
Jr-1(x) = }det(DT (37))‘ - }1_% (B, (2))]
is the Jacobian determinant of 7! at z, with B,(z) and A denoting a ball
of radius r and the Lebesgue measure respectively.
Finally, consider the case in which T is a Lipschitz continuous flow T = ¢
of a time-dependent vector field

£: R xR — R%

Then the probability density p; of T, PZ is the time-t solution to the mass
conservation equation

Dp V- (p6) =0, (42)

with boundary condition py = pz, the probability density of P#[83].

4.2 Minimizing the Kullback-Leibler divergence

One strategy to find a transformation T is to select a function 7" that mini-
mizes the cost L, where L is the difference between the probability distribu-
tions PX and T, PZ.

L(T) = D(PX, T, P?)
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Although there are many alternative methods to measure the difference D
|61, Section 2.3.4], a usual choice for such a function is the Kullback-Leibler
divergence [44].

Definition 4.2.1 (Kullback-Leibler divergence). For two probability mea-
sures P and @ on a measure space (2, A), P absolutely continuous with
respect to Q (P < Q), the Kullbak-Leibler divergence is given by

dP
Dk (P =Ep |log —
ku(PIQ) =B [tog 5 |
where % denotes the Radon-Nikodym derivative of P with respect to Q. If
P is not absolutely continuous with respect to Q, then Dk (P||Q) := occ.

Remark. KL-divergence is sometimes defined differently for discrete and
continuous probability distributions. However, by [30, Lemma 5.2.3] we get
a unified definition for all feasible probability distributions. The definition
we use s also the one given by the authors Kullback and Leibler.

The Radon-Nikodym derivative of P with respect to Q) is the Q-almost
surely unique nonnegative random variable such that

EQ |:]1Agg:| :P(A) VAe A,

for two o-finite measures P and Q, P < Q [69, Theorem 5.4]. Moreover, if
P <« Q < p for a o-finite measure p, then

dP  dPdQ
dp  dQdp’
Furthermore, since both the Lebesque measure on R and the counting mea-

sure are o-finite, then using the chain rule above we have

dP  pp
dQ  pq’
where pp and pg are the probability densities of P and Q) respectively.
In the case when P is not absolutely continuous with respect to QQ then
there is a set A € A such P(A) > 0 and Q(A) = 0. Therefore the Radon-
Nikodym derivative is not defined but

P(A) _
Q4)

Therefore we define Dkr,(P||Q) := oo in this case.

log
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KL-divergence has some interesting properties. Firstly, it is always non-
negative. To see this we use Jensen’s inequality:

dP dQ dqQ
Ep |[log—| =Ep |—log—=| > —logE =0.
p |low G| = Br |10z 53] = ~1oxEr | 52
Moreover, equality follows only when P = () P—almost surely. KL diver-
gence is not symmetric and thus, not a distance function. The asymmetry
leads to two ways to measure the discrepancy between PX and T,PZ. The
first one is forward KL-divergence

Dki.(PX|| T.P?) = ~E [log prz)(X)] - H(PY), (43)

where H(PX) = E[~logpx(X)] is the constant entropy of PX. Forward
KL-divergence can be utilized in the situation where we do not know the
distribution P¥X, but we can draw samples from it. Therefore, if we have
samples {z;}™, = D from the probability distribution PX, then a Monte
Carlo estimate for the expectation for forward KL-divergence is

DxL(PX|| T.P?) ~ = "log [prz)(x:)] + H. (4.4)
=1

Minimizing this expression is also equivalent to maximizing the log-likelihood
of the samples D. The relation to log-likelihood motivates the use of forward
KL-divergence as a cost function for the optimization problem we will intro-
duce in the next section.

On the other hand, if we cannot sample from P¥, but we can evaluate
the probability mass function px, then we can still estimate the reverse
KL-divergence.

Dxr(ToP?|| P*) = E [log prz)(T(Z)) — logpx (T(2))] -

An estimate is found by generating a sample {z;}"; from PZ. Then a Monte
Carlo estimate for reverse KL-divergence is

m

Dy (T P?|| PX) = [log pr(z) (T (2i) — log px (T(2:))] -
i=1

4.3 Discrete time normalizing flows

Normalizing flows in discrete time are models where the transformation T is
composed of N simpler transformations

T:TNO...OTQOTl. (45)
Then for each discrete time k the a update is defined as

2z = Ti(2p—1)-
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‘ Ti(z0) Ti(2k-1) Tt (2) Tn(zn-1)
—, 2D ... 2 Zhgl oo MU =z

Z’ Ty o..0Ti(Z) "

Figure 4.1: Example of how T transforms the random variable Z. Figure inspired
by [87]

Thus, as shown in Figure f.I] the random variable Z is iteratively trans-
formed into X.

Most applications of normalizing flows adds additional constraints on
T. Firstly T must be invertible and have an inverse that is efficient to
compute. Secondly, T" must allow for efficient computation of the Jacobian
determinant. To be precise, T' is often supposed to be a diffeomorphism..
Furthermore, if T' is composed of constituent transformations {Tk}{gvzl as in
Equation and T} € Diff(R") for all 1 < i < N. Then we can compute
the logarithm of the Jacobian determinant of T efficient with the formula

N
log Jr-1(z) = =Y _log T, (2k-1), (4.6)
k=1

where z;, = Tk_+11 o Tk_+12 0---0 Tﬁl(az) such that zy =z € R".

We now find a transformation 7' that minimizes KL-divergence. One
common optimization strategy is select T" among a set of functions {Tjy}sco
parametrized by a set © to which we can apply an optimization algorithm.
Moreover, we do not know PX but we have samples {z'}4, drawn from it.
Thus by equations and , we must minimize the cost function

L:05R, LO)=-Y [1og p2(T; (@) +log T ()|, (47)
i=1
Moreover, using the relation in Equation (4.6)), £ can be computed as de-
scribed in Algorithm [3]

Remark. Note that the algorithm above computes the Jacobian of the in-
verse flow T. It is possible to compute Dy, using the Jacobian of T~ since
log |det Jp(T~!(z))| = —log |det Jp-1(z)]

4.3.1 Invertible residual neural networks

There are a lot of different models that have been used to construct the map
T |42} 61]. Most of these models restrict the structure of the Jacobian matrix.
For instance, autoregressive flows [60| restrict the Jacobian to be triangular.
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Algorithm 3 Forward propagation for normalizing flows

Require: Samples {2/}, drawn according to P~
Initialize Dy, = 0
for i+ 1 to M do
z 1
for k< N to 1 do
DKL — DKL — IOg ka—l (Z)
2T, 1 (z)
end for
D1, <= Dx1, —logpz(2)
end for

However, this restriction also limits the expressiveness of the function. One of
the models we consider in this text will be invertible residual neural networks.
Invertible residual networks |7] are invertible functions composed of layers

T, =id + g,
where g is a network block with a forms similar to
gi=ooWlo---oooW}

for a sigmoidal function o and linear transformations I/Vf . Next, if g; is a
contraction, then by the Banach fixed-point theorem [31| Tfl is injective
with an inverse that can be calculated by fixed point iteration. Therefore,
if o and W} are contractive, then the mapping T~ is injective and has an
inverse that is computable by fixed point iteration. Therefore, we select o to
be a contractive function (e.g. ReLU, tanh), and scale each transformation

W/ using an estimate of its spectral norm &7

I
W/ = :

Wi ) L&l if L<é)
WZ] else

with L < 1. In particular the spectral norm of a matrix W can be computed
by power iteration [27] on W*W. However, as noted by [28|, since power
iteration calculates an underestimate of the spectral norm 6 < [|[W|,, we
cannot guarantee that Wf is a contraction.

We also need to compute the Jacobian determinant of each layer T;. Since
calculating the determinant has time complexity O(d®). A direct method
for calculating the Jacobian determinant is unpractical for high-dimensional
data. Chen et al.[16] instead uses the fact that g; is a contraction to derive

the formula o D* t21( Das k
Ir-—1(x) = Z _ 1FIE:( sl ' )
k=

1
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However, this formula still requires O(kd®) operations, but by using Hutchin-
son’s trace estimator [35], we estimate each trace using O(d?) computations.
Hutchinson’s trace estimator uses a random variable e satisfying Ele] = 0
and Cov[e] = I;. Then for a matrix A € R%*4

tr{A} =E [ETAE] . (4.9)

Moreover, if the sum (4.8) is truncated at a fixed at a fixed term K,
then the estimate for J,-1(x) is biased. Therefore, [16] suggests using an
estimate the infinite unbiassedly in finite time. Let N be a random variable

with support on the positive integers with probability distribution PY. Then
by [16, Theorem)|

Jp-1(z) =E

7

N .
J
2 PV({us k})] /

k=1

where ji is the k-th term of the sum (4.8)). Thus the is unbiassedly com-
putable by selecting the number of terms to include through a geometric
distribution, and weighing each term appropriately.

4.4 Continuous normalizing flows

A continuous normalizing flow is a model where the transport map T is
defined by the flow ¢, of a continuous-time dynamical system. More specif-
ically, we define a ODE
(t) = f(z(t),t)
z (to) = Z20-
Then using the ODE we define T' as the flow from time £ to ;

T'(20) = ¢1,(20)-

The ODE formulation provides us with the properties we need to define
a normalizing flow. Firstly, if fy is continuous and Lipschitz in its first
argument, then by Picard-Lindel6f theorem [3| then, the solution z(t) exists
and is unique. In addition, the flow ¢; of the system is bi—LipschitzE Since
x = T(2p) is unique, we can compute both T and 7! using the relation

(4.10)

t1
x=2zy+ f(z(t),t) dt.
to
Futhermore, since T is bi-Lipschitz, the Jacobian equation (4.1) deter-
mined the probability density pp(z). In this case there are two strategies for
computing py(zy. Firstly, we could use [15, Theorem 1] to compute the time

' A bi-Lipschitz function is an Lipschitz function with an inverse that is also Lipschitz.
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derivative of Jacobian at each time ¢. However, as Chen et al.[15] also notes,
the probability p(z(t),t) of z(t) = ¢¢(z0) is given by a the mass conservation
equation with vector field £ = f. The characteristic lines of this PDE
are given by

Sp(a(0),0) = - p((0), D)0 + 5 p(=(0).1)

= %p(z(t),t)f(z(t),t) — V- [p(z(t), 2) f(2(t),1)]

= —p(2(1),0)V - f(2(t),1).

Thus we are able to compute the probability p(z(t1),t1) = pr(z)(20) by
integrating along this characteristic. For our purpose we are interested in
the log-probability, which by the the differentiation formula for the logarithm
is given by

d p(z(t), 1)

—1 t),t) = ———V. t),t) = —tr (Df(z(t),1)). (4.11
G l0epe(0).0) = ~P T - fy(a(0).0) = (D ((0).1) . (411)
Also, as suggested by Grathwohl et al.|29], we can also apply the Hutchin-
son’s trace estimator (4.9) when dealing with high-dimensional data. Finally,
the probability density of PZ and T, PX is given by integrating the equations

(T10) ana (L1T)

95 Y O 5 Y R

which can be computed using a normal ODE solver.

The continuous nature of our system also allows us to optimize a cost
function using the adjoint equation. If we have a cost £ that is dependent
on z(t1), and a vector field fy is parametrized by 6 € ©. Then, as remarked
by Chen et al.|15], the gradient of the cost function can be computed by
integrating backwards via the adjoint state ODE

1) = ~alt)" £ fo(=(0).)

d
t1))=—L
o) = T
Then the gradient of £ can be computed by the integral
d i1 T 0
—L = t) — t),t)dt
I RECIE YA ORD

Moreover, when optimizing the mapping 7" in the normalizing flow model we
have to include both terms from Equation for the parametrized vector
field fy. Then we can use the loss function given by KL-divergence (4.4)).
Thus, we can calculate probabilities and optimize the model by integrating
ODEs.
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4.5 Sampling and interpolation

Having an approximate probability distribution on the space X allows us to
sample from the probability space by generating samples. By Equation ,
if we choose a sample in z € Z with a high probability, and if the Jacobian
determinant Jr(z) is large, then the probability of our sample T'(z) will also
have a high probability. However, the Jacobian need not be small, in a high
dimensional setting the a small volume increase in each direction of the space
can lead to a very large Jacobian determinant Jr(z) and thus a very small
value of pp(z)(T'(2)).

Using normalizing flows we are also able to interpolate in the latent space
Z rather than in the feature space X" as seen in [40|. For two points x1,xs €
X the interpolating path given by linear interpolation in the latent space is
given by

v(t) =TT Ya) + (1 — )T (x9)) te€[0,1]

Moreover, since the normal distribution is a concave function, then if the
Jacobian determinant is constant along the path, then

priz)(v(t)) > min{ppz(x1),pz(r)(22)} Yt € [0,1].

Thus, if we use latent space interpolation to interpolate two points with a
high probability density, then we would expect each point along the path v
to have a high probability density as well.

Using this interpolation technique enables the generation of new data
based on existing data points. Additionally, using multiple samples from the
feature we can construct interpolation surfaces of arbitrary. One example of
this interpolation is shown in [19], where they generate new pictures based
on a nonlinear surface in the latent space interpolating old pictures.

4.6 Clustering with normalizing flows

To cluster data we follow the approach by |1]. We define a hidden discrete
random variable C' taking values in C and with a probability distribution
PCsuch that law(C') = PZ. Then for each of the sampled data we for each
value k € C' we define a normalizing flow T}, : X — X as before. Using the
set of normalizing flows we define a new mapping

T:ZxK—>XxK, T(zk)="Tiz) xk.

Thus, we can define a joint probability distribution on X x K by using the
pushforward probability 7,(P? @ P®), where P? ® P is the probability
distribution on Z x K so that Z and C are independent [36, Theorem 10.3].
Moreover, each map T}, defines the conditional probability density pz, (z)(X)
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of X given C' = k. Using this conditional probability density we get an
expression for the proabily density of T, (P? ® PY) given by

prz.o) (@, k) = pr.z)(@)pc(k),

where pc is the probability density of PC.

4.6.1 Expectation maximization

In a similar approach to |1] we will utilize the expectation maximization
(EM) algorithm [18] to determine each of the maps {Tj}rex. Agnelli et
al. define a flow that minimizes the KL-divergence, then taking EM steps
in the flow direction. However, we will apply the EM algorithm directly
by minimizing the KL-divergence between the true probability P(X¢) and
T.(P? @ PY). We start by using the definition of conditional expectation
[36, Definition 23.4] and Equation

Dx(PXO|| To(PZ @ PO)) = —E [E [log prz.0y(X, C)| X]] — H(PX)
]

) |
= —E [E [log pr,.(2)(X)|X]]
~E[E [logpe(C)|X]] - H(PXO),

to get an expression for the KL-divergence where H (P(X’C)) is the entropy
of PC) We also note that — [E [logpc(C')|XH — H(PX:)) does not
depend on 7.

Remark. For a discrete random random variable C and a measurable func-
tion f: X x K — R, by [36, Definition 23.1] conditional expectation is given
by
E[f(X,C)|X] =) pepx(k, X)f(X, k),
ke
where po|x 1s the conditional probability density of C given X . In addition, if

we have samples {xi}i]io from the probability distribution PX, then a Monte
Carlo estimate of the expectation can be used as in Equation (4.4]).

Since we cannot observe C', we are not able to minimize the KL-divergence
directly. Instead, we follow the expectation step in the EM procedure, and
make a guess po|x ~ Pc|x using Bayes’ theorem [36, Theorem 3.5]

, pr, (z)pc(c)
peix(dz) = : (4.13)
| Sex pr(@)pc (k)
Then in the mazximization step, we find the map T that maximize the nega-
tive KL-divergence using the estimate pc|x. Since only the first term in the
expression for KL-divergence depends on {T}}, ¢ we only need minimize
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this first term. Thus, while using the constant approximation pcix ~ pc|x
the maximization step involved finding {7} }, s that maximizes

E > pepx (k1X)log pr, 2)(X) | - (4.14)
kek

The expectation and maximization step is then repeated until convergence.

Two modifications can be made to the EM algorithm. Firstly by finding
{T} } ek maximizing can lead to a very difficult optimization problem.
Thus, in each maximization step, we perform one step of an optimization
algorithm instead. Secondly, as noted by [1], for each data point z € X we
can have different prior distributions P,L»C. Thus if we have labels for some of
the data points we can use these when calculating po|x. For unlabeled data
points, we are still able to choose a guess PiC. This leads to a semi-supervised
learning algorithm where we can utilize both labeled and unlabeled training
points.

4.6.2 KL-divergence of the marginal distribution

The probability distribution 7, (PZ ® P®) also defines a marginal probability
on the space X with density

px(z) =) pr(zlk)pc (k).

kek

Thus we would also like the EM algorithm to minimize the KL-divergence
Dx1.(px|| px). Using a proof adapted from |25, Section 4.2.1] we show that
the KL-divergence of the marginal distribution does decrease with each step
of the EM algorithm.

Proposition 4.6.1. Let p and p' denote two successive probability densities
generated by the EM algorithm on the space X X K. Moreover, let px be the
marginal probability of p for a step of the EM algorithm. Then each step of
the EM algorithm decreasing , also decreases D (px|| px), -

Proof. Let po)x, ﬁlc\  denote the conditional probability densities of p and
P respectively. Then, since the maximization step maximizes (4.14]) we have

B By lo i c(X1C) - logixc(XI0) x| 20
Moreover by appling the logarithm to Bayes’ theorem we have the relation

log px () — log Py (x) = log px|c(]c) — log py o (x|c)
—log po)x (clz) +log P x (c|2).-
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Now using the two relations above and Jensen inequality for conditional
expectation [36, Theorem 23.9] we calculate

Dxwi(px|| px) — Dxi(px|| px) = E [log px (X) — log px (X)]

<E[E, - logqu(c\X)+logpcx<c|x>]XH

e[

Poix (ClX)
4.6.3 Clustering performance and variable selection

=E [logEy [1]X]] =0

When the dimensions of the feature space X gets large, clustering with nor-
malizing flows becomes both computationally and conceptually harder. To
remedy the problem in high dimensions |1] proposes a method for variable
selection. They suggest clustering each dimension of the problem separately,
then choosing the dimensions that enable the "best" clustering.

The performance of a clustering given by the conditional probably density
Pc|x can also be related to KL-divergence. In this approach we formulate a
new probably density p on X x K by

p(z, k) = poix (k|x)px (z),

where px is the true probability density of X. Then the KL-divergence
between the estimated probability density p and p is given by

Dxwi(p || p) = H(p, p|X) — H(p|X), (4.15)

where
H(p,p|X) = —E [E [log pe|x (C|X)|X]] , (4.16)

is the conditional cross entropy of p and p given X, and

H(p|X) = —E [E [log pc|x (C|X)|X]]

is the conditional entropy of p given X.

Thus, if the true conditional probability density pc|x is available, then,
a measure of how well p supports a clustering pc|x is given by the negative
conditional cross-entropy —H (p,p|X). The reason for using this quantity
is that the conditional entropy of p given X H(p|X) does not depend on
Px|c- Thus, minimizing KL-divergence with respect to pojx is equivalent
to minimizing H (p, p|X). On the other hand, if pg|x is not available, then
we use the maximum value of —H (p, p|X) for all probability densities p. By
Equation (4.15) —H (p, p|X) achieves a maximum when p = p. Thus, when
pe|x is not available we estimate —H (p, p|X) by the negative conditional
entropy of p given X H (p|X).



CHAPTER 4. NORMALIZING FLOWS 42

4.7 Experiments

In this section, we will interpolate and cluster test examples and real motion
capture data from the CMU Graphics Lab Motion Capture Database. As
seen in Section [2.4] human motion on the interval I can be seen as a curve
I — SO(3)?. In this section, we will not use the SRV form of the curve.
Instead, for each of the d joints in the human body we parametrize the
rotation matrix M € SO(3) with Euler angles ¢, 6 and £ |26, Section 4.4]. In
addition, we will disregard the position and rotation of the body relative to
the room. Then accounting for the fact that not all joints have three degrees
of freedom, the total number of angles in each frame of human motion is 44.
Thus for each captured frame of human motion, we have to store a vector in
R4,

In these experiments, all datasets were standardized before interpolation
or clustering was performed. Moreover for all experiments using continuous
normalizing flows we used a neural network [17] as an autonomous vector
field, and RK5(4) [20] as the numerical integration Algorithm. For more
information about implementation and parameters, see Appendix A.2.

4.7.1 Interpolation

In these experiments, we trained normalizing flows to approximate the dis-
tribution of three different datasets. Then we choose two samples and per-
formed latent and feature space interpolation. Then, the probability densi-
ties of each point in the resulting paths were compared to each other.

Moons

The dataset used in this experiment is the moons dataset from [63] with noise
parameter of 0.05. We used a model with four continuous normalizing flow
blocks with time derivatives given by neural networks. The resulting paths
and probabilities are shown in [4.2]

Human motion frames

In this experiment, we used a normalizing flow with invertible residual net-
works. We picked 65 walking motions and 44 running motions with a total of
31858 frames. Feature and latent space interpolation was then done between
one walking frame and one running frame. The result of the interpolation
can be seen in Figure [4.3

Human motion

In this experiment, we used a normalizing flow with invertible residual net-
works with two dimensional convolution layers. We picked 65 walking mo-
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Figure 4.2: Figures shows the interpolated paths (a) and probability density at each
point of the paths as given by pr(z) (b). The paths where generated by feature
space interpolation and latent space interpolation between the two endpoints.

tions with 120 frames each. Thus each data point = fed to the network was
a matrix z € R20%4 Feature and latent space interpolation was then done
between one two walking frames. The result of the interpolation can be seen

in Figure [4.4]

4.7.2 Clustering

In these experiments, we test the clustering algorithm on four different
datasets. In the cases where unsupervised clustering is not successful, we
also attempt semi-supervised clustering with some labeled points.

Moons and circles

The first test dataset we attempt to cluster is the moons dataset with a noise
parameter of 0.05. The result for this dataset can be seen in Figure [£.5] The
second dataset we attempt to cluster is the circles dataset from with a
noise parameter of 0.01. The result of both supervised and semi-supervised
clustering for the circles dataset is shown in Figure [4.0]

Human motion frames

In this experiment, we selected 65 walking motions and 44 running with a
total of 31858 frames. We attempted to cluster all of these frames into two
classes, but we did not get good results using all 44 FEuler angles simultane-
ously. Instead, we first performed variable selection by choosing the angles
that allow for best data clustering, in the same manner as Agnelli et al.
suggests. We clustered each angle separately for each of the 44 angles, pro-
ducing 44 conditional probability densities pc|x. We then selected the five
angles that produced the negative highest conditional entropy of p given X.
Using these five angles we clustered the walking and running frames into
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Figure 4.3: Linear interpolation in feature and latent space between one walking
frame and one running frame. The probability density of each path with respect
to the probability pp(zy is shown in (c). The video showing each interpolation can
bee seen by scanning the QR~codes, (a) and (b).

two classes as shown in Table For two of the angles, we also show the
marginal probability densities of pr, and pr, in Figure 4.7

We also investigate whether providing labels to 10% of the training data
improves the resulting classification. Using the same five Euler angles as
before we performed semi-supervised classification, with the result shown in

Table .2

Class 1 2
Walk frames 5259 (21%) 19512 (79%)
Run frames 6883 (97%) 204 (3%)

Table 4.1: Table shows the classification of running and walking frames for unsu-
pervised clustering. The number of frames in each class is shown, separately for
frames from walking movements and running movements.

Human motions

In this final experiment, we attempt to cluster motion into two classes. We
consider one second of 65 running motions and 44 running motions with 10


https://raw.githubusercontent.com/alexarntzen/shapeflow/main/videos/latent_interpolation_frame.mp4
https://raw.githubusercontent.com/alexarntzen/shapeflow/main/videos/feature_interpolation_frame.mp4
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(a) Latent space interpolation (b) Feature space interpolation
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(c) Probability densities

Figure 4.4: Linear interpolation in feature and latent space between two walking
motions. Since each motion is a sequence of frames, the interpolated path is shown
as a sequence of movies that can bee seen by scanning the QR codes (a) and (b).
The probability density of each path with respect to the probability pp(z) is shown
in (c).

frames per second. We will also only look at the Euler angles chosen by
the previous experiment clustering frames of human motion. Thus, each
data point ' is a matrix z¢ € R!*5. Moreover, to reduce the number of
parameters in the model we will use a CNF with the time derivative given by
a convolutional neural network. The resulting classification into two classes
is shown in Table 4.3

4.8 Discussion

From the test experiments on the moons and cirlces datasets, we can see
that continuous normalizing flows can learn distributions quite well. Fur-
thermore, linear interpolation in the latent space does produce paths that
have a higher probability than feature space interpolation with the proba-
bility density Pr(Z). However, the benefits of this interpolation on data
from motion capture are not noticeably different from normal feature space
interpolation.

As shown in Figure [4.0] clustering with the EM algorithm does not al-
ways produce the clusters that humans would expect. However, by using
some labeled data we classified each circle in the circles dataset correctly.


https://raw.githubusercontent.com/alexarntzen/shapeflow/main/videos/latent_interpolation_motion.mp4
https://raw.githubusercontent.com/alexarntzen/shapeflow/main/videos/feature_interpolation_motion.mp4

CHAPTER 4. NORMALIZING FLOWS 46

Figure 4.5: Figure shows unsupervised clustering (right) using the unlabeled train-
ing points (left) from the moons dataset . The background colors shows the decision
border for the clustering. The blue cross and orange dots are samples from the two
conditional distributions produced by each normalizing flow.

Class 1 2
Walk frames 21259 (86%) 3512 (14 %)
Run frames 288 (4%) 6799 (96 %)

Table 4.2: Table shows the classification of running and walking frames for semi-
unsupervised clustering, where 10 % of the training points where labeled. The
number of frames in each class is shown, separately for frames from walking move-
ments and running movements.

Moreover, we were also able to cluster walking and running frames some-
what correctly. In this regard, it is worth noting that a lot of frames from
the running dataset do look like people walking. Finally, as seen in Table
[4.3] we were able to cluster walking and running motions correctly without
any labels.
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Figure 4.6: Figure shows unsupervised clustering (top) using the unlabeled training
points (top left), compared to to semi-supervised clustering (bottom) using both
unlabeled and labeled training points (left) from the circles dataset. The back-
ground colors shows the decision border for the clustering. The blue cross and
orange dots are samples from the two conditional distributions produced by each
normalizing flow.

Class 1 2
Walk motions 0 65
Run motion 44 0

Table 4.3: Table shows the classification of running and walking frames for unsu-
pervised clustering. The number of frames in each class is shown, separately for
frames from walking movements and running movements.
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Figure 4.7: Figure shows two of the five Euler angeles use to cluster frames, these
two angles are the ones that subjectively showed two clusters the best. The points
depicted are the two angles for each training point colored by the class they belong
to. Shows the marginal distribution of each of the normalizing flow on each of the
two angles. Calculated by sampling from the normaling flows then averaging over
each of the angles not displayed. from the, i. e. a Monte Carlo estimate.



Chapter 5

Conclusion

In this thesis, we have discussed two different approaches for comparing
curves. In the first approach, an adapted version of deep Q-networks was
tested in order to compute an optimal reparametrization. This algorithm
did have a linear time complexity with respect to the size of the state space.
However, in our tests the algorithm was unreliable, converging to a solution
better than the greedy solution in less than half of all our tests. There-
fore, even though the alterations we made did make the algorithm more
stable, deep Q-networks are not a practical approach for finding optimal
reparametrizations.

Normalizing flows were also tested as a method for interpolation and
clustering. Using latent space interpolation on human motions and frames
of human motions, we were able to create interpolated points with a higher
computed probability density than feature space interpolation. Thus we
were able to generate new walking motions the model had not seen before.
However, when viewing the resulting motions there was no visible improve-
ment from normal feature space interpolation. Furthermore, the proposed
clustering algorithm did cluster 78% of walking and running frames into the
right cluster. Furthermore, when the clustering method was applied to one
second of motion capture data, it was able to cluster all walking motions and
running motions into separate clusters. Thus normalizing flows provides an
alternative method of clustering motions compared to dynamic programming
and SRVT [14]. Moreover, the normalizing flow approach can also cluster
new motions without computing the distance to all other motions.

For further work on using reinforcement learning for optimal reparametriza-
tion, there are a lot of algorithms that can be tried. Firstly, one question
is whether there would be an improvement if an algorithm used a continu-
ous action space instead of a discrete one, for instance, deterministic policy
gradient algorithms [72].

For further work on normalizing flows, we also have some suggestions.
Firstly, the expressiveness of many normalizing flows, including continuous

49
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normalizing flows, is still an open question. Furthermore, it would be in-
teresting if a better latent space interpolation method could be constructed
by selecting a path more deliberately than just interpolating in a straight
line. For instance, a path that maximized the average probability density
of each point would arguably be better, but finding this path is not ness-
esearly easy. Finally, a more vague question is whether normalizing flows
could learn to recognize reparametrizations of the same data. Since humans
easily recognize running motions regardless of the frame rate, the idea is not
impossible.
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Appendix A

Implementation details

A.1 Deep Q-learning

The code used in the experiments related to deep Q-learning can be found
at https://github.com/alexarntzen/neural-reparam. The optimization
procedure and neural network implementation were done with the PyTorch
[62] library. The networks were initialized with the PyTorch default distri-
bution, and the optimization method used was Adam [39]. Moreover, to
enable further experiments, this code also contains an implementation of
reparametrization MDPs using the Gym framework [10].

A.2 Normalizing flows

The code used in the experiments related to normalizing flows can be found
at https://github.com/alexarntzen/shapeflow. The optimization pro-
cedure and neural network implementation were done with the PyTorch [62]
library. The networks were initialized with the PyTorch default distribution,
and the optimization method used was Adam [39]. The invertible ResNets
used in this thesis used code originally written for [16]. Continuos normal-
izing flows used the Neural ODE solver package TorchDyn|64], which is an
extension of code written for [15].
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