
Department of Engineering Cybernetics

Multibody Flow Networks

John Eivind Rømma Helset

Supervisor: Sverre Hendseth Jun 06, 2022

I would like to thank the academic necromancy of Ellen Beate Hove, without whom I would not have been able to
finish my degree.

Abstract

The decision making process of hydropower production planning is supported by a suite of computations, many of
which involve a watercourse model. Models of tunnel system flow used in this context commonly assume that each
tunnel system is inhabitated by a single body of water. Furthermore that tunnel system networks conform to some fixed
topology. These assumptions can, for some computations, lead to inadequate results.

Continuous models based on differential algebraic equations enables a modeller to describe flow through tunnel
networks without the assumption of a fixed topology. The hybrid system theoretical framework of hybrid automata,
whose continuous dynamics are described in terms of differential algebraic equations, enables a modeller to directly
describe arbitrary distributions of waterbodies in tunnel networks; to model a multibody flow network. This in turn
enables more complex patterns of flow between the reservoirs connected to a tunnel network.

A multibody flow network model can be constructed at a high enough level of detail to serve as a basis for tunnel system
flow models in the computational models used in the context of hydrowpower production planning. This would be a
more efficient construction, than constructing every computational model independently.

In this report the modelling framework of hybrid automata is refined into two new frameworks: structured discrete
automata, and structured hybrid automata. These frameworks are tailored to the construction of hybrid automata, with
a high level of discrete detail, such as a multibody flow network. The framework of structured discrete automata is then
used to construct a discrete model of a multibody flow network. This model can be used as a basis for constructing a
hybrid model, in the form of a structured hybrid automaton, of a multibody flow network.

Sammendrag

Produksjonsplanlegging av vannkraft er understøtta av forskjellige beregninger. Mange av beregningsmodellene legger
til grunn en modell av et vassdrag. Modellene som brukes av tunnellsystem er ofte lagd med en antagelse om at en
enkelt vannkropp har tilhold i tunnellen, samt at tunnellsystemet har en spesifikk topologisk struktur.

Kontinuerlige modeller basert på differensial-algebraiske likningssett lar derimot en modellmaker beskrive flyt gjen-
nom generelle tunnellnettverk, uten en del topologiske antagelser. Det hybrid-system-teoreriske rammeverket, hybride
tilstandsmaskiner, hvis kontinuerlige dynamikk er representert av differensial-algebraiske likningssett, lar en modell-
maker direkte beskrive vilkårlige fordelinger av flere vannkropper i et tunnellsystem. Modellen kan derfor representere
mer komplekse flytmønster mellom magasinene som er tilkobla tunnellnettverket.

En flerkropps-flyt-nettverk-modell kan settes opp på et høyt detaljnivå, og brukes til å sette opp resten av beregnings-
modellene som brukes innafor feltet. Dette er en mer effektiv måte å sette opp modeller på, enn å sette opp hver modell
isolert.

I denne rapporten blir rammeverket til den hybride tilstandsmaskinen raffinert til to nye modelleringsrammeverk, kalt
strukturerte diskret og hybride tilstandsmaskiner. Disse er skreddersydd for konstruksjon av hybride modeller, som har
et høyt diskret detaljnivå, som for eksempel et flerkropps-flyt-nettverk. Rammeverket blir så brukt til å sette opp en
diskret modell av et flerkropps-flyt-nettverk, som kan brukes som utgangspunkt for oppsett av en hybrid modell.

CONTENTS

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Goals . 6
1.3 Contribution . 6

2 Background 9
2.1 Related Modelling . 9
2.2 Differential Algebraic Equations . 12
2.3 Hybrid System Theory . 16

3 Results 31
3.1 Structured Discrete Automata . 31
3.2 Structured Hybrid Automata . 40
3.3 Logical Description of a Flow Network . 48
3.4 Discrete Flow Network Model . 53

4 Discussion 69
4.1 Modelling Framework and Modelling Experience . 69
4.2 Implementation Experience . 70
4.3 Future work . 71

5 Conclusion 75

A Notation 77

B Discrete Model Diagrams 79
B.1 Diagrams For Filling The Simple Network Top Down . 79
B.2 Diagrams For Draining The Simple Network Top Down . 85

C External Content 91

D Glossary 93

Bibliography 95

Index 99

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 Context and Motivation

1.1.1 The Tunnel Systems of a Hydropower Producing Watercourse

A hydropower producing watercourse is a complex system that can be represented in terms of multiple connected
subsystems consisting of reservoirs, catchments of rainwater and snowmelt, river systems, and tunnel systems. The
tunnel systems of such a watercourse are networks of gates, tunnels, units, and valves, where a unit is either a generator
or a pump. An example of a hydropower producing watercourse based on the Novle and Røldal hydropower plants is
shown as a diagram in Fig. 1.1.

Tunnel system

River system
River system

Legend

Catchment Reservoir

Tunnel Unit

River Sea

Fig. 1.1: Example hydropower producing topology based on the Novle and Røldal hydropower plants.

A tunnel system can encompass multiple hydropower plants, be connected to multiple catchments, reservoirs and river-
systems, and contain multiple waterbodies. These waterbodies can be used independently for production. Consider,
for example, a water column resting on the closed left-most unit in Fig. 1.1, while the right-most unit is producing from
one or both of the reservoirs connected to its upstream tunnel system.

This report is partly a result of my previous work with existing models of such systems in the context of production
planning. These models are often built on two simplifying assumptions. The first assumption is that the topology of
the system conforms to a given topological structure. In particular that the tunnel system is turnip-like (see Fig. 1.2).
A turnip-like system can be decomposed into an upstream tunnel-tree (the leaves of the turnip), a plant DAG (the root
of the turnip), and a downstream river or reservoir. The leaf vertices of the tree are reservoirs. The DAG has a single
source and sink, and consists of trash racks, penstocks, units, and draft-tubes.

1

Multibody Flow Networks

Fig. 1.2: Rendition of a turnip.

An example of a turnip-plant is shown in Fig. 1.3. The upstream tunnel-tree has two reservoirs, the plant has 2 units,
and there is a single river downstream. The system in Fig. 1.1 however does not conform to this topological structure.
It is difficult to find a topological mould that is generally applicable due to the variety of hydropower plant topologies.

2 Chapter 1. Introduction

Multibody Flow Networks

Tunnel system

Fig. 1.3: Turnip-like hydropower plant (see legend in Fig. 1.1).

The second assumption is that the tunnel system is fully submerged; that there is one waterbody per tunnel system.
The distribution of waterbodies in a tunnel system shape the patterns of flow, and the patterns of flow determine the
directions of waterbody growth and recession, that in turn cause waterbodies to merge and split. The two scenarios
shown in Fig. 1.4 and Fig. 1.5 illustrate the problem of assuming a fixed waterbody distribution. In the former scenario
both reservoirs affect the dynamics of the waterbody in the tunnel system. In the latter scenario only the left-most
reservoir does. This effect is compounded by large tunnels which are often found in complex tunnel systems. In
[KSS07], a review of hydropower plant models, submersion is not included as a qualitative feature as all the reviewed
models assume a fully submerged tunnel system.

Computations based on a fixed topology, or a fixed distribution of waterbodies and fixed patterns of flow, might produce
misleading results. This can in turn lead to the implementation of ad-hoc solutions without a formal model. A formal
model is an effective form of communication, and an ad-hoc solution will, in comparison, make a computation more
difficult to communicate, understand, correctly implement, use, and maintain.

Fig. 1.4: Wet gate configuration.

1.1. Context and Motivation 3

Multibody Flow Networks

Fig. 1.5: Dry gate configuration.

1.1.2 Modelling and Computation

A mathematical simulation is a coded description of an experiment with a reference (pointer) to the
model to which this experiment is to be applied.
- Cellier, [GC91]

The process of modelling concerns itself with the extraction of knowledge from the physical plant to be
simulated, organizing that knowledge appropriately, and representing it in some unambiguous fashion.
We call the end product of the modelling cycle the model of the system to be simulated.
- Cellier, [CK06]

Modelling and simulation for Cellier, as described and visualised in Figure 1.4 of [CK06], are coded descriptions
of experiments; Cellier considers the simulation in isolation. In [GC91] and [CK06] a simulation, or mathematical
simulation, is used in a general sense. In this report the word computation is used instead, since simulation has a more
specific meaning in the context of production planning.

Technical labour processes often involve multiple interrelated computations. The models of these computations might
represent the same system, be formalised in the same theoretical framework, be subcomputations of one another, and
so on. To effectively communicate, design, implement, and maintain the totality of computational software needed to
support such a labour process one should build on the mental model of Cellier to represent relations between multiple
computations, models, and systems; a model of models.

In Fig. 1.6 the construction of model, as it appears in [CK06], has been deconstructed into a stepwise process involving
multiple systems and computations. What was previously a singular model has become a modelling phase. Models ma-
terialising on its left side are immediate products of system modelling. These models are constructed using expressive
and flexible frameworks, are open and composable, and are constructed at a high enough level of detail to eventually
lend their clean, formal hands to any computation that needs them. These left-sided models will be referred to as system
models. Models about to exit on the right side of the modelling phase are products of a series of stepwise left-to-right
transformations. These models are constructed using computationally tractable frameworks, highly specialised and
closed, ready to get their hands dirty in some particular computation. These right-sided models will be referred to
as computational models. The people who construct the models on the left side might differ from those constructing
the models on the right side, who again might differ from those that implement and maintain the computations, or

4 Chapter 1. Introduction

Multibody Flow Networks

those that use the computations or work with the actual systems. This underlines the need for clear and unambiguous
communication; which in this context and in this report is taken to be synonymous with formal modelling.

The DAE and HA formalisms are examples of expressive frameworks for continuous and hybrid system modelling
respectively. A relevant application of DAE is the modelling of general flow networks described in terms of graphs
in [JT14]. A HA can model temporary flow paths in the same manner that an MLD is used in [OM10]. Temporary
flow paths can be used to model waterbody distributions and arbitrary flow patterns in tunnel systems. Together these
frameworks seem well-suited for constructing a watercourse system model that obviates the assumptions of fixed tunnel
system topology and fixed waterbody distribution. These assumptions might still need to make their reappearance as
the system model is transformed to one of the many computational models that involve a watercourse.

Systems Models Computations

System ModelModelling

System ModelModelling

Model
Simplification

Model

Composition

Composition

ComputationCompilation

Computation
Compilation

Fig. 1.6: Systems, Models, and Computations.

1.1.3 Computations of Hydropower Production Planning

The planning of hydropower production involves several computations that aid the decision making process of pro-
duction planners; inflow forecasting, historical inflow estimation, planning, plan simulation, and more. A potential
organisation of the construction of their computational models is illustrated in Fig. 1.7. The watercourse model is a
reoccurring component and is involved directly in several computational models, albeit at different levels of detail.
Reusing a watercourse system model for each of these constructions is more efficient than constructing independent
watercourse models.

The corresponding computations of Fig. 1.7 can be described in terms of input and output. Simulation of production
plans, roughly speaking, takes as input an inflow forecast, a set of production plans for the plants in the watercourse and
computes the trajectories of reservoir-levels, the aggregate movement of water, as well as the production and consump-
tion of power. To model the aggregate movement of water it must be able to represent temporary flow paths caused by
flooding or bypassing from reservoirs, similar to the wastewater model of [OM10]. It must also be able to represent
arbitrary flow-patterns through tunnel systems, as discussed in The Tunnel Systems of a Hydropower Producing Water-
course, and this is where current models often fall short. Estimation of historical inflow takes historical measurements
of water levels, consumption and production of power as input, and produces an estimate of historical inflow as output.
This is done by computing a steady-state tunnel system flow that matches the historical production and consumption,
and then computing the historical inflow based on the mass-balance of reservoirs. Production planning takes, roughly
speaking, inflow and price forecasts as inputs and computes an economically efficient production plan for the water-
course for a given period as output(see for example [Skj19]). The watercourse models of historical inflow estimation
and production planning can be constructed by doing further simplification of the one used for simulation.

1.1. Context and Motivation 5

Multibody Flow Networks

Models

Market
Production
Planning

Watercourse

Plan
Simulation

Historical Inflow
Estimation

Inflow
Forecasting

Fig. 1.7: Interrelated Models used in Hydropower Production Planning.

1.2 Goals

The overarching question of this report is how to effectively organise the construction, implementation, use and main-
tenance of a suite of computations supporting a technical labour process. It is assumed that an efficient construction
of these computational models is done through left-to-right transformations of system models. This report focuses on
the left side of Fig. 1.6; on the construction of system models and system modelling frameworks. Particular attention
will be given to their potential for practical computation. Practical computation is a useful modelling tool for directly
testing, debugging, verifying and experimenting with designs. The particular system and labour process that frames
this question is that of a hydropower producing watercourse and the associated production planning.

The goal of this report is to construct a system model of a hydropower producing watercourse in a suitable system
modelling framework, that can serve as a basis for the efficient construction of the associated computational models,
and meet the challenges of topological complexity and waterbody distribution. Such a system model would be efficient
both in the conceptual sense of constructing several computational models by applying different transforms to the same
system models, and also in the sense of constructing models that can be implemented directly which reaps the benefits
of the unambiguous communicative power a formal model, all the way from modeller to megawatt hour.

1.3 Contribution

This report has two contributions that I would like to highlight. Firstly it proposes a new modelling framework called
structured automata consisting of structured discrete automata and structured hybrid automata. This hybrid system the-
oretical framework is yet another take on the hybrid automaton. It is tailored to the construction of hybrid automata with
a high level of discrete detail. The execution of a structured hybrid automaton is a formalisation of the event detecting
approach to the simulation of a hybrid system, lifting the process of constructing discrete events from continuous roots
into the formal definition of a hybrid execution. Models constructed in this framework, and the construction of execu-
tions of those models, can be directly represented even as the set of discrete states grows large. Direct representation
and computation is a useful tool for debugging, testing, and exploring system models. This new modelling framework
and the algorithms described for constructing executions, was implemented in [RH22]. This implementation was used
during the course of this report to construct executions, generate figures, and to assist in system modelling. It is another
simulator capable of handling variable structure systems in the same vein as [Zim10] and [CN21].

The framework of structured discrete automata was used to define the discrete part of a new hybrid system theoretical
model called a multibody flow network. This model combines the flow networks of [JMT15] with the hybrid system
theoretical approach to temporary flow paths of [OM10], and is shown to be deterministic and zenofree. A discrete
multibody flow network can represent arbitrary distributions of waterbodies and patterns of flow in a network of valves
and pipes. It also detects discrete events representing the movement, collisions, and separations of waterbodies. This

6 Chapter 1. Introduction

Multibody Flow Networks

discrete model is a base on which the continuous dynamics and continuous actions of a hybrid multibody flow model
can be constructed.

1.3. Contribution 7

Multibody Flow Networks

8 Chapter 1. Introduction

CHAPTER

TWO

BACKGROUND

The background is divided into three parts. The first part, Related Modelling, reviews existing models that are inter-
esting, similar, or relevant to the model worked towards in Results. The second part, Differential Algebraic Equations,
introduces the framework that is used to represent continuous dynamics of a HA in Hybrid System Theory, as well as
in Results. The third part, Hybrid System Theory, provides an overview of some hybrid system theoretical frameworks,
and in particular the hybrid automaton, which will be used in Results. The simulation of the HA defined in Example (HA
Flower System) was done with using the hybrid system theoretical framework defined and implemented in Structured
Hybrid Automata.

2.1 Related Modelling

2.1.1 Hydropower Plant Models

The computational models found in the context of production planning of hydropower production are often 0-
dimensional in the sense of [Yan19]; their units (and the other elements of the tunnel system) are modelled as vertices
or edges in a graph, and their variables are defined in terms of said graph. The structure of the graph is often constrained
according to some typical hydropower plant taxonomy, usually some variation of the turnip-like structure discussed in
The Tunnel Systems of a Hydropower Producing Watercourse. [KSS07] classifies hydropower plant models in terms
of the complexity of their continuous dynamics (linearity and elasticity of water columns), as well as the types of
components that make up the plant (whether or not the topology includes surge tanks), and assumes a fixed topology.

Short-term Hydro Optimisation

An example of a computational model of a hydropower plant is found in [Skj19], which contains a computational
model for short-term optimisation of production plans. The computational model is an optimisation problem (a MILP)
defined in terms of the discretised steady-state dynamics of the tunnel system. This report is not concerned with
economic optimisation or optimal control, only the representation of the topological structure of the tunnel system is of
interest. This model assumes turnip-like topology, and separates the tunnel system of the plant from the tunnel system
of the upstream reservoir-tree. Plants are considered in isolation, and their tunnel systems are divided into 4 parts, as
seen in Fig. 2.1. These are the main tunnel, the penstocks, the units and the outlet. It is assumed that the graph of the
hydropower plant has exactly one sink and one source, and that the topology can be decomposed in an upstream and
downstream tree, whose leaves are the units of the plant. The two resulting computational models of the reservoir-tree
and the plant are later combined to construct the computational model of the entire tunnel system. The two separate
models are solved in turn, until a satisfactory output from both are achieved. It is also assumed that there is a single
body of water in the entire tunnel system.

9

Multibody Flow Networks

Main tunnel
Penstocks

Units

Outlet

Fig. 2.1: Fixed plant topology with 4 parts.

2.1.2 Wastewater Control

In [OM10] wastewater systems are represented in terms of a typed directed graph which serves as the basis for construct-
ing a hybrid system theoretical model, in particular an MLD. The wastewater system is decomposed into subsystems,
some of which are modelled with hybrid dynamics. The MLD is then used as a basis for MPC. Ocampo’s wastewater
model leveraged hybrid dynamics to model what is called “temporary flow paths”, [OM10]:

“The presence of intense precipitation causes some sewer mains and virtual tanks to surpass their limits.
When this happens, any excess above the maximum volume flows to another tank downstream. In this
way, temporary flow paths are triggered that depend on the system state and inputs. Since this behaviour
is observed in most parts of the sewer network, a modelling methodology is needed that can consider and
incorporate overflows and other logical dynamics”

The modelling approach of [OM10] was one of the initial inspirations of the one planned in this report, even though this
report will use another hybrid system theoretical framework. The focus in this report is on modelling multiple bodies
of water in the tunnel systems of a hydropower producing watercourse. These bodies can also been seen as defining
temporary flow paths between the reservoirs and rivers that are connected to the tunnel system. One would need to
model the same type of flood behaviour in reservoirs when constructing a model of an entire watercourse, which is
needed in by some of the computations of production planning.

As mentioned the hybrid subsystems of [OM10] are defined in terms of the vertices of a graph. There is a one-to-
one mapping between subsystem and vertex. The discrete dynamics of a particular subsystem only affects its own
continuous dynamics. In this report however, the discrete and continuous description of the system is not overlapping.
There is no one-to-one mapping between the elements of the graph and a hybrid subsystem. Instead there is a one-to-
many mapping between elements and discrete variables, and similar for continuous variables. The discrete variables
associated with the elements of the graph, together, define the discrete dynamics of the entire tunnel system. The
discrete state in turn determines the continuous dynamics of the entire tunnel system. The inclusion or exclusion of
a particular continuous relation can be dependent on the discrete valuation of more than one discrete variable, even
though the discrete variables involved in such a computation are, topologically speaking, close to each other.

10 Chapter 2. Background

Multibody Flow Networks

2.1.3 Flow Networks

[JT14] presents a unified modelling approach for what they term flow networks. It abstracts from the specific content of
the flow. A flow can be a current, water, gas, blood and so on. It represents the system in terms of a directed graph, and
then defines the dynamics that govern the systems with reference to this graph. It also introduces switching elements,
vertices in the flow network that are able to break or connect flow; elements that can be modeled as hybrid subsystems
like in [OM10]. The approach taken in [JT14] is similar to the one taken here, even though this report focuses specifi-
cally on water-networks. The model presented here introduces two orthogonal refinements of the models in [JT14], in
particular it introduces the discrete representation of the direction of flow, as well as multibody versus single-bodied
flow networks. The model in [JT14] is described in terms of DAE, this report instead intends to develop the model
within a hybrid system theoretical framework where only the continuous dynamics of the model are represented in
terms of a DAE.

2.1.4 Water Networks

[JMT15] establishes global unique solvability for a what is called a quasi-stationary water network:

We assume the water network to be dominated by laminar flows, which allows us to consider the water
motion as a one-dimensional flow along the length of the pipes. Furthermore we assume a network with
significant time-dependent changes of flow, but without hydraulic shocks.

The modelling approach is similar to the one in [JT14]. The continuous dynamics of this model are similar to the ones
worked towards in this report. In [JT14] the ports of the model are pressure and demand nodes. The pressure at pressure
nodes and flow through demand nodes are exogenous variables. This report only considers pressure nodes, which
here are modeled both in terms of discrete and continuous variables describing discrete submersion and continuous
pressure. When simulating a full hydropower producing watercourse it is often useful to model demand nodes. In
particular catchment flow can enter a hydropower through tunnel inserts, and this flow is sometimes modeled by inflow
forecasting. When waterbodies in the tunnel system are explicitly modelled, the need for demand nodes disappears.
Instead the demand node can be modelled as a minuscule reservoir outside of the tunnel system, and in the event that
the tunnel is full, the catchment flow would flood. The results established in [JMT15] would be useful for defining and
analysing the continuous dynamics worked towards in this report.

2.1. Related Modelling 11

Multibody Flow Networks

2.2 Differential Algebraic Equations

A differential algebraic equation (DAE) is a collection of differential relations and algebraic constraints. As mentioned
in Modelling and Computation the DAE framework is well suited for systems modelling, and in the words of Stephen
L. Campbell, [Cam15]:

One major reason given for the usefulness of DAEs is that they are the initial way that many complex
systems are most naturally modeled. This is especially true in chemical, electrical, and mechanical
engineering and with models formed by interconnecting various submodels.

DAEs have seen application in modelling chemical processes, electrical circuits, multibody systems and more ([Dao14],
[Ria13], [Arn17], [JT14]). Considering the similarities between the 0-dimensional tunnel networks of hydropower
production planning and circuit modelling, and that the goal of the report is to model multiple bodies of water moving
through these networks, and finally that the model is simply a subcomponent of the larger watercourse system, the DAE
would seem like good fit. Here I give a short introduction, and restate the definitions needed for the definition of the
hybrid automaton, which is discussed in Hybrid System Theory. See [Bre96] or [Kun06] for a thorough treatment of
DAEs, or [Sim17] for a historical tour. I will follow [HBG+05] and use 𝑥𝑑 to refer to the differential variables, and 𝑥𝑎
to refer to the algebraic variables.

Definition 2.2.1 (Differential Algebraic Equations):

A system of differential algebraic equations is a set of equations:

𝐹 (𝑡, 𝑥, �̇�) = 0

Where:

• 𝐹 : I× D𝑥 × D�̇� → C𝑚

• I ⊆ R is a (compact) interval;

• D𝑥,D�̇� ⊆ C𝑛 are open;

• 𝑚,𝑛 ∈ N.

The definition in [Kun06] of the DAE in its most general form was restated in Definition 2.2.1 (Differential Algebraic
Equations), and is a daunting formalism. A DAE can be classified according to its to its shape as in Definition 2.2.2
(The regularity of a DAE). Note that the definition of regularity used in this report is a superficial classification, and
does not imply anything about the solvability. In [Kun06] regularity is defined in opposition to singularity which is a
much more useful classification. DAEs can also be classified according to the structure and complexity of 𝐹 . Some
common forms are tabulated in Table 2.1, which was reproduced from [CastelloGrinoBasanez98]. A DAE that was
real, regular, nonlinear, semi-explicit and linear in its derivative, and would take the form of equation (2.1).

�̇�𝑑 = 𝑓(𝑡, 𝑥𝑑, �̇�𝑑, 𝑥𝑎)

0 = 𝑔(𝑡, 𝑥𝑑, 𝑥𝑎)
(2.1)

Definition 2.2.2 (The regularity of a DAE)

A DAE is regular if 𝑚 = 𝑛, and irregular otherwise.

Before even doing a computation, it is interesting to know whether or not the computation can be expected to give
a sensible result. An important quality of a DAEs in this regard is its solvability, which is treated in for example
[Bre96] and [Kun06]. A solvable DAE guarantees that a solution exists, and it is up to the computation to find it.
Unique solvability guarantees that the solution is unambiguous. The approach taken in this report is one of practical
computation in the context of system modelling, and Cellier’s perspective on “The Solvability Issue” in [CK06] bears
repeating:

To us, solvability is a non–issue. It is the typical worry of a mathematician who puts the mathematical
formulation first, and then tries to interpret the ramifications of that formulation. . . . Saying that a DAE
is unsolvable is equivalent to saying that the phenomenon described by it is “defying causality” in the

12 Chapter 2. Background

Multibody Flow Networks

sense that the outcome of an experiment is non–deterministic, which in turn is almost equivalent to
saying that the phenomenon is non–physical.

This does not detract from the usefulness of solvability. It would be ideal to build models that are uniquely solvable by
construction, but this still needs to be shown, and accidents happen. Perhaps the modeller has made some unfortunate
modelling decision, like choosing an ill-suited set of variables, as is the case in the pendulum model discussed in
[CK06]. Diagnosing unsolvable or ambiguous models as often, and as early as possible is particularly useful in a
context of system modelling whose framewroks make it easy to accidentally formulate a non-physical model. Kunkel’s
definition of solvability in [Kun06] is reproduced here in Definition 2.2.3 (The solvability of a DAE), where a problem
is solvable if it has at least one solution. In [Bre96] solvability implies uniqueness of solution. The latter definition
might be more in line with Cellier’s remark. Solvability is tied to the initial value problem, which imposes an initial
constraint on 𝑥:

𝑥(𝑡0) = 𝑥0 (2.2)

Definition 2.2.3 (The solvability of a DAE):

Let 𝐶𝑘(I,C𝑛) denote the vector space of all 𝑘-times continuously differentiable functions from the real
interval I into the complex vector space C𝑛.

• A function is called a solution of Definition 2.2.1 (Differential Algebraic Equations) if the DAE is
satisfied pointwise.

• The function 𝑥 ∈ 𝐶1(I,C𝑛) is called a solution of the initial value problem with initial conditions
𝑥0, if it furthermore satisfies equation (2.2).

• An initial condition is called consistent with 𝐹 , if the associated initial value problem has at least
one solution.

Table 2.1: Morphology of common forms of DAE
Linear Semi explicit Constant

�̇�𝑑 +𝐵11𝑥𝑑 +𝐵12𝑥𝑎 =
𝑓1(𝑡)

𝐵21𝑥𝑑 +𝐵22(𝑡)𝑥𝑎 =
𝑓2(𝑡)

Variable time

�̇�𝑑 +𝐵11(𝑡)𝑥𝑑 +
𝐵12(𝑡)𝑥𝑎 = 𝑓1(𝑡)

𝐵21(𝑡)𝑥𝑑 +𝐵22(𝑡)𝑥𝑎 =
𝑓2(𝑡)

Fully implicit Constant 𝐴�̇�+𝐵𝑥 = 𝑓(𝑡)
Variable time 𝐴(𝑡)�̇�+𝐵(𝑡)𝑥 = 𝑓(𝑡)

Nonlinear Semi explicit General

𝑓(𝑡, 𝑥𝑑, 𝑥𝑎, 𝑥𝑑) = 0

0 = 𝑔(𝑡, 𝑥𝑑, 𝑥𝑎)

Linear derivative

�̇�𝑑 = 𝑓(𝑡, 𝑥𝑑, 𝑥𝑎)

0 = 𝑔(𝑡, 𝑥𝑑, 𝑥𝑎)

Fully implicit General 𝑓(𝑡, �̇�, 𝑥) = 0
Linear derivative 𝐴(𝑡, 𝑥)�̇�+ 𝑓(𝑡, 𝑥) = 0

2.2. Differential Algebraic Equations 13

Multibody Flow Networks

The solvability of a DAE can be investigated in terms “the indices” of a DAE, like the differentiation index, perturbation
index, tractability index and more (see [Gea90] for a through treatment of indices). Kunkel remarks on the plethora of
these classifiers in [Kun06]:

Unfortunately, the simultaneous development of the theory in many different research groups has led to a
large number of slightly different existence and uniqueness results, particularly based on different
concepts of the so-called index. The general idea of all these index concepts is to measure the degree of
smoothness of the problem that is needed to obtain existence and uniqueness results.

An index is an indicator of how difficult a DAE is to solve. In this report only the differentiation will briefly be
discussed, as the computational software used specifies the requirements on input DAEs, for certain computations,
in terms of such an index. In particular the computation of consistent initial conditions in [HBG+05] is restricted to
semi-explicit index-one models.

Definition 2.2.4 (The Differentiation Index of a DAE):

The minimum number of times that all or part of Definition 2.2.1 (Differential Algebraic Equations) must
be differentiated, with respect to 𝑡, in order to determine �̇� as a continuous function of 𝑥 and 𝑡, is the
index of the DAE. An index 0 model is called an implicit ODE, and the ODE-form of a DAE, is called the
underlying ODE of the DAE.

Example 2.2.1 (The Differentiation Index of a DAE)

Consider a regular DAE with 𝑛 = 3, and:

𝐹 =

⎧⎪⎨⎪⎩
�̇�0 − 𝑓(𝑥1, 𝑥2)

�̇�1 − 𝑔(𝑥0)

𝑥1 − 𝑥2

It is not possible to determine �̇� as a function of 𝑥 and 𝑡, as �̇�2 does not appear in any of the 3 equations;
𝜕𝐹
𝜕�̇� is singular. Differentiating the last equation yields, �̇�1 + �̇�2 = 0, this new 𝜕𝐹

𝜕�̇� is no longer singular.
The DAE can be formulated as an ODE with simple algebraic manipulation:

�̇�0 = 𝑓(𝑥1, 𝑥2)

�̇�1 = 𝑔(𝑥0)

�̇�2 = −𝑔(𝑥0)

The differentiation index of 𝐹 was thus 1.

2.2.1 Simulation of a DAE

While a DAE is an expressive formalism, and as such is less computationally tractable than more specialised formalisms,
practical computation is doable and there exists open-source computational software for this purpose. One example is
IDA in SUNDIALS from [HBG+05], which solves the initial value problem of a regular DAE. When formulating the
initial value problem for a DAE, one must ensure that the initial values satisfy the algebraic constraints of the model,
[PAN88]:

The initial values for variables in mixed Differential-Algebraic (DAE) systems must satisfy not only the
original equations in the system but also their differentials with respect to time.

And the problem of finding such values is called the consistent initialisation problem, [BLG91]:

. . . given specified information about the initial state of the problem that is sufficient to specify a unique
solution to a DAE, determine the complete initial vector (𝑥(𝑡0), �̇�(𝑡0)) corresponding to this unique
solution.

IDA can compute consistent initial conditions for semi-explicit index-one models based on an initial guess; it computes
�̇�𝑑(𝑡0) and 𝑥𝑎(𝑡0), given 𝑥𝑑(𝑡0) and a guess 𝑥𝑎(𝑡0). This capability makes practical computation more ergonomic, in

14 Chapter 2. Background

Multibody Flow Networks

particular when one is working with HA whose initial value problems involves zero or more DAE initial value problems.
There also exists algorithmic techniques for transforming DAEs into ODEs, see for example [OE17] or [CK06]. The
ODE can in turn be solved by one of the many open-source software packages available for ODEs.

2.2. Differential Algebraic Equations 15

Multibody Flow Networks

2.3 Hybrid System Theory

Hybrid system theoretical models are, roughly speaking, models with both continuous and discrete dynamics, whose
trajectories are interleavings of continuous and discrete trajectories. The continuous dynamics are at any point in
continuous time determined by the discrete state, and the discrete dynamics are in turn driven by the evolution of the
continuous state. Here I give a brief introduction to some hybrid system theoretical frameworks, and the definitions
necessary for the subsequent modelling. See [Sch00] or [LLL09] for a more comprehensive introduction to hybrid
system theory.

2.3.1 Mixed Logical Dynamical Systems

First consider the Mixed Logical Dynamical (MLD) from [BM99]:

Definition 2.3.1 (Mixed Logical Dynamical System):

𝑥(𝑡+ 1) = 𝐴𝑡𝑥(𝑡) +𝐵1𝑡𝑢(𝑡) +𝐵2𝑡𝛿(𝑡) +𝐵3𝑡𝑧(𝑡)

𝑦(𝑡) = 𝐶𝑡𝑥(𝑡) +𝐷1𝑡𝑢(𝑡) +𝐷2𝑡𝛿(𝑡) +𝐷3𝑡𝑧(𝑡)

𝐸2𝑡𝛿(𝑡) + 𝐸3𝑡𝑧(𝑡) ≤ 𝐸1𝑡𝑢(𝑡) + 𝐸4𝑡𝑥(𝑡) + 𝐸5𝑡

• where 𝑡 ∈ Z, 𝑥 =

[︂
𝑥𝑐
𝑥𝑙

]︂
, 𝑥𝑐 ∈ R𝑛𝑐 , 𝑥𝑙 ∈ B𝑛𝑙 , 𝑛 ≜ 𝑛𝑐 + 𝑛𝑙 is the state of the system;

• and 𝑦 =

[︂
𝑦𝑐
𝑦𝑙

]︂
, 𝑦𝑐 ∈ R𝑝𝑐 , 𝑦𝑙 ∈ {0, 1}𝑝𝑙 , 𝑝 ≜ 𝑝𝑐 + 𝑝𝑙, is the output vector;

• and 𝑢 =

[︂
𝑢𝑐
𝑢𝑙

]︂
, 𝑢𝑐 ∈ R𝑚𝑐 , 𝑢𝑙 ∈ {0, 1}𝑚𝑙 , 𝑚 ≜ 𝑚𝑐 +𝑚𝑙 is the command input.

• 𝛿 ∈ {0, 1}𝑟𝑙 and 𝑧 ∈ R𝑟
𝑐 represent respectively auxiliary logical and continuous variables.

The MLD is a discretised-time framework specified with an eye on computational tractability:

We restrict the dynamics to be linear and discrete-time in order to obtain computationally tractable
control schemes. . .
- [BM99]

Nevertheless, the discrete variables of the framework can be separated into discrete and discretised continuous variables
that express discrete and continuous relations. The discrete dynamics of the system models logical relations with
algebraic equalities and inequalities (see equations 2a through 2f, and 4a through 4e in [BM99]). This representation
is computationally tractable, but it is not conceptually efficient.

Consider the relation [𝑓(𝑥) ≤ 0] → [𝛿 = 1], where [𝑓(𝑥) ≤ 0] is the assertion that 𝑓(𝑥) ≤ 0, and similar for [𝛿 = 1].
It is a very direct expression of a logical relation. In a MLD model it would be represented as 𝑓(𝑥) ≤ 𝜖 + (𝑚 − 𝜖)𝛿,
where 𝜖 is some small tolerance, and𝑚 ≜ min𝑥∈𝒳 𝑓(𝑥) for some bounded set 𝒳 assumed to contain 𝑥. This is a more
indirect representation, and it is also coupled to the actual computation, through 𝜖 which is the machine epsilon. An
MLD trades computational tractability for conceptual efficiency, which is only natural for a computational model.

16 Chapter 2. Background

Multibody Flow Networks

2.3.2 Piecewise Affine Systems

A closely related modelling framework is the PWAs, a continuous time-variant of which is found in [RJ00]. Its definition
is restated in Definition 2.3.2 (Piecewise Affine System). This is another computationally tractable model, for which
one for example can do stability analysis and optimal control. In addition it is shown that the framework can be used to
approximate smooth non-linear models up to arbitrary precision. This would be an example of the left-to-right model
transformation discussed in Modelling and Computation. Here the logical description of the system takes the form
of matrices, representing polyhedral cells that partition the state space. Each partition has its own continuous linear
dynamics. The polyhedral cells are also an indirect way of expressing logical relations. In Example (PWA Flower
System) below, the logical relation [𝑥0 + 𝑥1 ≤ 0] ∧ [−𝑥0 + 𝑥1 ≤ 0], is represented by the matrix:[︂

1 1 0
−1 1 0

]︂
This is, again, a rather indirect representation. It is a computational detail, and not an essential aspect of the underlying
logic, but it is a suitable representation for this particular computational model.

Definition 2.3.2 (Piecewise Affine System):

A piecewise affine system is a set of affine systems:{︃
�̇� = 𝑎𝑖 +𝐴𝑖𝑥+𝐵𝑖𝑢

𝑦 = 𝑐𝑖 + 𝐶𝑖𝑥+𝐷𝑖𝑢
for 𝑥 ∈ 𝑋𝑖

• where {𝑋𝑖}𝑖∈𝐼 ⊆ R𝑛 partitions the state space into a a number of closed (possibly unbounded)
polyhedral cells denoted by an index set 𝐼 ,

• and represented in terms of matrices �̄�𝑖 =
[︀
𝐸𝑖 𝑒𝑖

]︀
, 𝐹𝑖 =

[︀
𝐹𝑖 𝑓𝑖

]︀
;

• such that �̄�𝑖�̄� ≥ 0 where 𝑥 ∈ 𝑋𝑖, 𝑖 ∈ 𝐼;

• and 𝐹𝑖�̄� = 𝐹𝑗 �̄� where 𝑥 ∈ 𝑋𝑖 ∩𝑋𝑗 , 𝑖, 𝑗 ∈ 𝐼 , and �̄� =

[︂
𝑥
1

]︂
.

Example (PWA Flower System)

Here the PWA flower system from Example 1 in [Hed99] is restated. The flower system cuts the two-
dimensional state space into 4 polytopes:

𝐺0 =

[︂
1 1 0
−1 1 0

]︂
𝐺1 =

[︂
1 −1 0
1 1 0

]︂ 𝐺2 =

[︂
−1 −1 0
1 −1 0

]︂
𝐺3 =

[︂
−1 1 0
−1 −1 0

]︂
The dynamics of the system is specified as:

�̇� = 𝐴𝑖𝑥

𝐴0 =

[︂
−0.1 1
−5 −0.1

]︂
𝐴1 =

[︂
−0.1 5
−1 −0.1

]︂

𝑖 =

{︃
𝑥 ∈ 𝑋0 ∪𝑋2 → 0

𝑥 ∈ 𝑋1 ∪𝑋3 → 1

The cell defined by 𝐺0 is shown in Fig. 2.2, and the phase plot of the dynamics 𝐴1 is shown in Fig. 2.3.

2.3. Hybrid System Theory 17

Multibody Flow Networks

Fig. 2.2: Shaded polyhedron defined by the two inequalities of 𝐺0, 𝑥0 + 𝑥1 ≤ 0 and −𝑥0 + 𝑥1 ≤ 0.

18 Chapter 2. Background

Multibody Flow Networks

Fig. 2.3: Phase plot of the dynamics of �̇� = 𝐴1𝑥, active in 𝑋1 and 𝑋3

2.3.3 Hybrid Automata

The Hybrid Automaton (HA) is an expressive hybrid system theoretical modelling framework which lets a modeller
directly describe complex discrete dynamics and changes between different modes of behavior in a direct manner. See
[KGG+09] for an introduction, or [SHS21] and [AGH+19] for some recent applications. In short, the HA, annotates
the states and transitions of the finite state automaton from discrete system theory with continuous constraints, actions,
and dynamics. Here, unlike the MLD and the PWA, the expressiveness and directness of the framework is paid for in
computational tractability, [DSHLP09]:

The choice of a modeling framework is a trade-off between two conflicting criteria: the modeling power
and the decisive power. The modeling power indicates the size of the class of systems allowing a
reformulation in terms of the chosen model description. The decisive power is the ability to prove
quantitative and qualitative properties of individual systems in the framework. A model structure that is
too broad (like the hybrid automaton) cannot reveal specific properties of a particular element in the
model class.

In the same manner that the DAE is a natural continuous model for complex systems, the HA is a natural hybrid model
for complex systems. A system being initially modeled as a HA does not preclude the construction of simpler, more
computationally tractable models, through the left-to-right model transformations. The focus in this report is more on
modelling more than computation. The modelling framework needs to efficiently express models on the left side of
Fig. 1.6 and serve as a basis for constructing other models. In this context modelling power becomes more important,
and the qualities of frameworks like the HA come into focus.

There are multiple variants of the HA which differ in for example the specificity of its continuous dynamics (contrast

2.3. Hybrid System Theory 19

Multibody Flow Networks

for example [Sch00] with [LLL09]), or how the transitions are modeled. At its most general, the continuous dynamics
are specified in terms of a DAE. The HA from [ZJLS01] is reproduced in Definition 2.3.3 (Hybrid Automaton).

Definition 2.3.3 (Hybrid Automaton):

A hybrid automaton 𝐻 is a collection 𝐻 = (𝑄,𝑋, 𝐼𝑛𝑖𝑡, 𝑓,𝐷,𝐸,𝐺,𝑅), where

• 𝑄 is a finite collection of discrete variables;

• 𝑋 is a finite collection of continuous variables with 𝑋 = R𝑁 ;

• 𝐼𝑛𝑖𝑡 ⊆ 𝑄×𝑋 is a set of initial states;

• 𝑓 : 𝑄×𝑋 → 𝑋 is a vector field;

• 𝐷 : 𝑄→ 𝒫(𝑋) is a map assigning to each 𝑞 ∈ 𝑄 a subset 𝑋 called the domain of 𝑞;

• 𝐸 ⊂ 𝑄×𝑄 is a set of edges;

• 𝐺 : 𝐸 → 𝒫(𝑋) is a map assigning to each edge 𝑒 ∈ 𝐸 a subset of 𝑋 called the guard of 𝑒; and

• 𝑅→ 𝐸 ×𝑋 → 𝒫(𝑋) is a reset map, assigning to each edge 𝑒 ∈ 𝐸 and each 𝑥 ∈ 𝑋 a subset of 𝑋

Executions of a Hybrid Automaton

The execution of a HA is similar to the concept of a solution of a DAE discussed in Differential Algebraic Equations.
The executions of a hybrid automaton are interleavings of discrete executions and continuous solutions (which in this
report also will be referred to as executions). Continuous executions are constructed until the continuous state leaves
the domain of the current discrete state 𝑞, 𝐷(𝑞), and / or enters the edge of a guard 𝐺(𝑒), 𝑒 ∈ 𝐸(𝑞). This event marks
the start of a discrete execution. This discrete execution happens instantaneously in continuous time. The final state
of the discrete execution marks the start of a new continuous execution. The discrete state is sometimes referred to
as the “mode” of the hybrid system, and the construction of a discrete execution is referred to as “the mode selection
problem” in [Sch00]:

The problem of finding the next discrete state is called the mode selection problem.

The definitions of time trajectory and execution from [ZJLS01] are reproduced here in Definition 2.3.4 (Hybrid Time
Trajectory) and Definition 2.3.5 (Hybrid Execution).

Definition 2.3.4 (Hybrid Time Trajectory):

A hybrid time trajectory is a finite or infinite sequence of intervals 𝜏 = {𝐼𝑖}𝑁𝑖=0, such that:

• 𝐼𝑖 = [𝜏𝑖, 𝜏
′
𝑖] for all 0 ≤ 𝑖 < 𝑁 ,

• if 𝑁 <∞ then either 𝐼𝑁 = [𝜏𝑁 , 𝜏
′
𝑁] or 𝐼𝑁 = [𝜏𝑁 , 𝜏

′
𝑁),

• 𝜏𝑖 ≤ 𝜏 ′𝑖 for all 𝑖 and 𝜏 ′ = 𝜏𝑖+1 for all 0 ≤ 𝑖 < 𝑁 .

Definition 2.3.5 (Hybrid Execution):

An execution of a hybrid automaton 𝐻 is a collection 𝜒 = (𝜏, 𝑞, 𝑥) where 𝜏 is a hybrid time trajectory,
𝑞 : ⟨𝜏⟩⊤Q is a map, and 𝑥 = {𝑥𝑖 : 𝑖 ∈ ⟨𝜏⟩} is a collection of 𝐶1 maps 𝑥𝑖 : 𝐼𝑖 → X such that:

• (𝑞(0), 𝑥0(0)) ∈ 𝐼𝑛𝑖𝑡

• for all 𝑖 ∈ ⟨𝜏⟩ and for all 𝑡 ∈ 𝐼𝑖, �̇�𝑖(𝑡) = 𝑓(𝑞(𝑖), 𝑥𝑖(𝑡)) and for all 𝑡 ∈ [𝜏𝑖, 𝜏
′
𝑖), 𝑥𝑖(𝑡) ∈ 𝐷(𝑞(𝑖)),

• for all 𝑖 ∈ ⟨𝜏⟩, 𝑒 = (𝑞(𝑖), 𝑞(𝑖+ 1)) ∈ 𝐸, 𝑥𝑖(𝜏 ′𝑖) ∈ 𝐺(𝑒), and 𝑥𝑖+1(𝜏𝑖+1) ∈ 𝑅(𝑒, 𝑥𝑖(𝜏 ′𝑖)).

ℰ𝑀 , ℰ*, and ℰ∞ denotes the set of all maximal, finite and infinite executions respectively. ℰ denotes the
set of all executions of 𝑥0, 𝑞0 ∈ 𝐼𝑛𝑖𝑡.

20 Chapter 2. Background

Multibody Flow Networks

Definition 2.3.5 (Hybrid Execution) sets the stage for the definition of some useful qualitative properties of a HA. These
properties are similar to the concept of solvability of a DAE and are important in the context of practical computation,
as they can be used to determine whether or not an execution will be unique and finite. Before continuing on, a simple
example will demonstrate the execution of a HA:

Example (HA Flower System)

Here Example (PWA Flower System) is formulated and simulated as a HA. The cell 𝑋0 ∪𝑋2 is expressed
by the relation 𝑥20 ≤ 𝑥21, and 𝑋1 ∪ 𝑋3 by the relation 𝑥21 ≤ 𝑥20. Assuming 𝐴𝑖 is defined as before, the
system on HA form is:

• 𝑄 =
[︀
𝑞0
]︀

taking values in Q ∈ {0, 1}

• 𝑋 =

[︂
𝑥0
𝑥1

]︂
taking values in X ≜ R2.

• 𝐼𝑛𝑖𝑡 = Q× X.

• 𝑓(𝑞) =

{︃
[𝑞0 = 0] → 𝐴0𝑥

[𝑞0 = 1] → 𝐴1𝑥

• 𝐷(𝑞) =

{︃
[𝑞0 = 0] → {𝑥 ∈ X | 𝑥20 ≤ 𝑥21}
[𝑞0 = 1] → {𝑥 ∈ X | 𝑥21 ≤ 𝑥20}

• 𝐸 = {(
[︀
0
]︀
,
[︀
1
]︀
), (

[︀
1
]︀
,
[︀
0
]︀
)}

• 𝐺(𝑒) = {𝑥 ∈ 𝑋 | 𝑥20 = 𝑥21}

• 𝑅(𝑒) = ∅

Snapshots of an execution starting out at 𝑥 =

[︂
1
0

]︂
for this HA is shown in the figures Fig. 2.4, Fig. 2.5 and

Fig. 2.6. The start, as well as the states, of transitions are marked with a small circle. The rays 𝑥0 = 𝑥1 and
−𝑥0 = 𝑥1 are drawn in dashed green and pink, and the phase plane of the current continuous dynamics
are drawn in the background.

2.3. Hybrid System Theory 21

Multibody Flow Networks

Fig. 2.4: The initial state of an execution of the HA flower system, at 𝑡 = 0.00, 𝑥 =

[︂
1.00
0.00

]︂
, in state 𝑞 =

[︀
0
]︀
.

22 Chapter 2. Background

Multibody Flow Networks

Fig. 2.5: The eventual state of an execution of the HA flower system, 𝑥 =

[︂
−0.56
0.25

]︂
, at 𝑡 = 2.43, in 𝑞 =

[︀
0
]︀
.

2.3. Hybrid System Theory 23

Multibody Flow Networks

Fig. 2.6: The eventual state of an execution of the HA flower system, 𝑥 =

[︂
0.03
0.09

]︂
, at 𝑡 = 24.14, in 𝑞 =

[︀
1
]︀
.

Determinism of a Hybrid Automaton

Since a hybrid model combines continuous and discrete dynamics into hybrid dynamics, it also combines the potentials
for continuous and discrete nondeterminism. Not only continuous and discrete nondeterminism in isolation, but also
nondeterminism between the discrete and the continuous; hybrid nondeterminism. The discrete form of determinism
in is described in [Hop79] in the context of automata theory:

The term “deterministic” refers to the fact that on each input there is one and only one state to which the
automaton can transition from its current state. In contrast, “nondeterministic” finite automata, the
subject of Section 2.3, can be in several states at once.

A deterministic finite automaton in [Hop79] is a 5-tuple𝐴 = (𝑄,Σ, 𝛿, 𝑞0, 𝐹). A similar automaton can be constructed
by considering the discrete components of the HA. Discrete nondeterminism happens during the construction of a
hybrid execution whenever:

∃𝑒0, 𝑒1 ∈ 𝐸 × 𝐸 | 𝑒0 ̸= 𝑒1 ∧ 𝑥(𝑡) ∈ 𝐺(𝑒0) ∩𝐺(𝑒1)

The continuous form of determinism is equivalent to uniqueness of solution. Hybrid nondeterminism, then, is the
ambiguity between the continued construction of the current continuous execution, or the beginning of a new discrete
execution, by taking some discrete transition 𝑒, where 𝑥 ∈ 𝐺(𝑒). It is an ambiguity between the continuous and discrete
dynamics of a hybrid model. The union of these three forms of determinism is captured in [LJS+03] using the set of
all executions ℰ from Definition 2.3.5 (Hybrid Execution).

24 Chapter 2. Background

Multibody Flow Networks

Definition 2.3.6 (Deterministic Hybrid Automaton):

A hybrid automaton𝐻 is called deterministic if ℰ𝑀 (𝑞0, 𝑥0) contains at most one element for all (𝑞0, 𝑥0) ∈
𝐼𝑛𝑖𝑡.

Zenoness of a Hybrid Automaton

The definition of the hybrid execution includes infinite executions, and automata that generates such executions are
called nonblocking.

Definition 2.3.7 (Blocking Hybrid Automaton):

A hybrid automaton 𝐻 is called nonblocking if ℰ∞(𝑞0, 𝑥0) is non empty for all (𝑞0, 𝑥0) ∈ 𝐼𝑛𝑖𝑡.

An execution can be infinite without progressing in continuous time. This is property called zenoness, and is described
for example in [DSHLP09]:

Zeno behaviour is the phenomenon that for a dynamical system an infinite number of events occur in a
finite length time-interval.

[ZJLS01] defines it in terms of hybrid execution:

An execution is finite if 𝜏 is a finite sequence ending with a compact interval, it is called infinite if 𝜏 is
either an infinite sequence or if 𝜏∞(𝒳) = ∞, and it is called Zeno if it is infinite but 𝜏∞(𝒳) <∞. The
execution time of a Zeno execution is also called the Zeno time.

The definition of zenoness from [ZJLS01] is reproduced in Definition 2.3.8 (Zeno Hybrid Automaton).

Definition 2.3.8 (Zeno Hybrid Automaton):

A hybrid automaton 𝐻 is Zeno if there exists (𝑞0, 𝑥0) ∈ 𝐼𝑛𝑖𝑡 such that all executions in ℰ∞(𝑞0, 𝑥0) are
Zeno.

Zenoness causes hybrid executions to get “stuck” in an infinite discrete execution that renders the “mode selection
problem” of Schaft unsolvable, [Sch00]:

. . . it may happen that a cycling between different modes occurs (“livelock”), and the simulator does not
return to a situation in which motion according to some continuous dynamics is generated, so that
effectively the simulation stops.

It is important to note that Zeno behaviour can be a consequence of both modelling and / or computation. It is not
a property of the system being modelled. In this sense it is similar to the solvability issue of a DAE discussed in
Differential Algebraic Equations, and is another “non-issue” in the words of Cellier. However, it does have negative
implications for practical computation and analysis. It might stall computations, and give false negatives for reachability
and stability problems. Establishing that a hybrid system is zenoless is a useful result, and is something that modellers
need to strive for, and robust computations need to account for, [Sch00]:

In such situations the simulation software should provide a warning to the user, and if it is difficult to
make a definitive choice between several possibilities perhaps the solver should even work out all
reasonable options in parallel.

2.3. Hybrid System Theory 25

Multibody Flow Networks

Simulation of Hybrid Automata

A model is not always perfectly constructed ex nihilo, and is rather the intermediate result of a modelling process
involving both modelling and computation. During the construction of hybrid models with a high level of discrete
detail, one needs tooling to verify, test, and explore designs. Campbell’s observations about DAEs can similarly be
applied to HAs, [Cam95]:

Being able to do engineering design and computer simulation directly on these original equations would
lead to faster simulation and design, permit easier model variation, and allow for more complex models.

A modelling framework should thus be directly usable for practical computation, even though the completed model
might not necessarily be used as a computational model. Perhaps it will only serve as a basis for constructing other
computational models. The HA, like the DAE, is an expressive formalism, that does admit practical computation.
See [Zim10] for an overview of existing software solutions of variable structure or hybrid systems. [Sch00] discusses
approaches to the simulation of a hybrid system, such as a HA. One of these approaches is smoothing:

In this method, one tries to replace the hybrid model by a smooth model which is in some sense close to
it. For instance, diodes in an electrical network may be described as ideal diodes (possibly plus some
other elements), which will give rise to regime-switching dynamics, or as strongly nonlinear resistors,
which gives rise to smooth dynamics.

Smoothing can be seen as a right-to-left model transformation of the type discussed in Modelling and Computation.
However, to smooth a model, one first needs a model to smooth. [Sch00] also discusses a more direct approach that
seems apt in the light of Campbell’s observation. This is called the event tracking method:

The idea is to simulate the motion in some given mode using a time-stepping method until an event is
detected, either by some external signal (a discrete input, such as the turning of a switch) or by violation
of some constraints on the continuous state. If such an event occurs, a search is made to find accurately
the time of the event and the corresponding state values, and then the integration is restarted from the
new initial time and initial condition in the “correct” mode; possibly a search has to be performed to find
the correct mode.

What is here called “the correct mode” is in Definition 2.3.3 (Hybrid Automaton) the vector-field 𝑓(𝑞). Events happen
when the continuous state of the system, 𝑥, leaves the domain, 𝐷(𝑞), or, when 𝑥 enters the guard of an edge, 𝐺(𝑒). As
mentioned in Differential Algebraic Equations, there exists open-source computation software for working with DAEs
directly. Some of these, like [HBG+05], include root-finding capabilities. These capabilities can be used to drive the
event detection algorithms. A root does not necessarily constitute an event, as the guards of an HA is defined in terms
of subsets, and the continuous trajectory might have to produce several zero-crossings to enter, or leave, a subset. Zero-
crossing and event detection also poses their own set of technical challenges, but these will be left aside in this report
(see [ZYM08] for an in-depth treatment).

After detecting an event and computing a new DAE, the continuous integration must be restarted. A DAE can contain
algebraic constraints, which complicate the consistent initialisation problem. The execution of a HA will need to find
consistent initial values for every continuous execution in the hybrid execution, [Sch00]:

In the context of hybrid systems, start-up procedures for DAE solvers should receive particular attention
since re-initializations are expected to occur frequently.

When transitioning from one discrete state to another, 𝑞0 → 𝑞1, and thus from one continuous dynamic to another, the
continuous state might need to be subjected to the resets 𝑅(𝑒, 𝑥) of Definition 2.3.3 (Hybrid Automaton). Let 𝑥0 and
𝑥1, and 𝐹 0 and 𝐹 1 denote the continuous state and dynamics before and after a transition. It is not necessarily the case
that 𝐹 0(𝑥0) = 0 will imply 𝐹 1(𝑥0) = 0. Even with the help of software to find 𝑥1𝑎 and �̇�1𝑑, as discussed in Simulation
of a DAE, one still needs to compute 𝑥1𝑑 according to the reset map. This computation might induce zenoness in HA
that are zenoless by Definition 2.3.8 (Zeno Hybrid Automaton), [Sch00]:

Theoretically, the state after the jump should satisfy certain constraints exactly; finite word length effects
however will cause small deviations in the order of the machine precision. Such deviations may cause an
interaction with the mode selection module; in particular it may appear that a certain constraint is
violated so that a new event is detected.

26 Chapter 2. Background

Multibody Flow Networks

[And94] provides an informative high-level description of such an event tracking, or event detecting, simulation al-
gorithm of a hybrid system in Omola (which also, mutatis mutandis, works for HAs), and illustrates it in Figure 5.10
which is reconstructed in Fig. 2.7.

Another interesting algorithm, that refines the “Solve DAE problem” block of Fig. 2.7, is found in [Zim13], where
Zimmer presents the Sol-framework. This is a framework for working with models of variable (mathematical) struc-
ture, such as a HA. Zimmer introduces the notion of a dynamic DAE processor (DDP) whose function is to turn an
implicit DAE into an explicit ODE, as discussed in Differential Algebraic Equations. This is done during, not before,
the construction of the execution. Such an approach is essential when working with HAs of high levels of discrete
detail. The number of potential DAEs makes the cost of dealing with all of them eagerly, before the construction of an
execution, prohibitive compared to the added cost and complexity of dealing with them lazily and on demand during
the construction. The lazy approach can be combined JIT-compilation-schemes to generate efficient executable code,
see [CN21] for a recent report using LLVM ([LA04]).

2.3. Hybrid System Theory 27

Multibody Flow Networks

Begin

Find consistent initial values

Check invariants

Any events?

Solve DAE problem and
advance time until final
time or discrete event.

no

Fire event.
 yes

Final time?

no

End

yes

Fig. 2.7: The simulation algorithm for Omola Hybrid Models

28 Chapter 2. Background

Multibody Flow Networks

Parsing

Preprocessing

Instantiation
and Flattening

Evaluation

Dynamic DAE
Processing

Time
Integration

Event
Handling

Fig. 2.8: Dynamic processing of Sol

2.3. Hybrid System Theory 29

Multibody Flow Networks

30 Chapter 2. Background

CHAPTER

THREE

RESULTS

The results are divided in two parts. The first part is about modelling frameworks and consists of Structured Discrete
Automata and Structured Hybrid Automata. Here the HA framework is decomposed and refined into what is called a
structured discrete automaton (SDA) and a structured hybrid automaton (SHA). This separates the discrete dynamics
from the hybrid dynamics of the HA, so that one can construct and reason about the discrete aspects of the automaton
in isolation. These re-definitions more directly lend themselves to practical computations for automata with a high
level of discrete detail. The second part is about modelling and consists of Logical Description of a Flow Network and
Discrete Flow Network Model. It gives a logical description of a tunnel-network in terms of a DAG, and sets out a
discrete model in the form of a structured discrete automaton, which could form the basis of a SHA model of the tunnel
systems of a watercourse.

3.1 Structured Discrete Automata

3.1.1 Definition of a Structured Discrete Automaton

[Hop79] defines a discrete automaton in terms of states, input symbols, start state, final state and a transition function,
reproduced in equation (3.1).

𝐴 ≜ (𝑄,Σ, 𝛿, 𝑞0, 𝐹) (3.1)

The HA from Definition 2.3.3 (Hybrid Automaton) was defined in terms of the set of valid states 𝐼𝑛𝑖𝑡. Initial and accept-
ing states will not be a part of the definition of a SDA, and are instead considered to be parameters of the computational
problems in which the model appears. The symbols of the DA in Hopcroft are not required to generate an execution
of a HA or a SDA, so these are also dropped. However, annotating transitions with symbols might still be useful for
modelling purposes, and symbols make their re-appearance in the construction of the discrete model in Discrete Flow
Network Model.

The transitions of a HA was defined in terms of edges, 𝐸 ⊂ Q×Q, guards,𝐺 : 𝐸 → P(𝑋) and resets,𝑅→ 𝐸×𝑋 →
P(𝑋). The guards and resets pertain only to the continuous dynamics of the automaton. For highly detailed discrete
automata Q is a large set, which makes it difficult to directly represent𝐸 in a computation. Direct computation is useful
for testing and debugging during the construction of a model. A more structured definition of a discrete automaton,
that is designed to be a starting point for constructing hybrid automata with a high level of discrete detail, is suggested
in Definition 3.1.1 (Structured Discrete Automaton).

31

Multibody Flow Networks

Definition 3.1.1 (Structured Discrete Automaton):

A structured discrete automaton (SDA) is a pair 𝐴 ≜ (𝑄,𝐸):

1. where 𝑄 a finite collection of 𝑁 discrete variables, taking values in Q ⊆ Z𝑁 ;

• with derivatives �̇� taking values in Q̇ ⊆ Z𝑁 ;

2. and 𝐸 ⊂ F×G is a finite collection of 𝑀 transitions;

• where F is the set of transition equations, 𝑓 : Ψ → Z with Ψ ≜ I×Q× Q̇;

• and G is the set of transition guards 𝑔 : ϒ → B with ϒ ≜ I×Q and I ⊆ Z.

The sets ϒ and Ψ are called the states and solutions of 𝐴 respectively.

The SDA has a global set of transitions instead of the source, symbol, and target triplet of [Hop79], or a mapping from
the set of states, as in for example [Sch00]. Each transition is a tuple of an equation and a guard. This decouples
the set of transitions from the set of states, and the SDA can be represented directly even for highly detailed discrete
dynamics. The guard functions of Definition 2.3.3 (Hybrid Automaton) are lowered into the discrete automaton, and
made dependent on an independent discrete variable representing discrete time, 𝑡 ∈ I. Explicitly representing discrete
time enables the construction of models whose determinism (Definition 2.3.6 (Deterministic Hybrid Automaton)) and
zenoness (Definition 2.3.8 (Zeno Hybrid Automaton)) are easier to reason about. The transition guards are in this
report assumed to be logical expressions over the discrete variables and boolean literals ⊤, ⊥. These are composed
by a subset of the operators used in [BM99] from Mixed Logical Dynamical Systems: conjunction, ∧, disjunction ∨,
complement, ¬, as well as algebraic statements, or assertions, [𝑎 = 𝑏], [𝑎 < 𝑏], and [𝑎 ≤ 𝑏]. The guards of the HA
are functions of continuous variables, but the guards of the SDA are functions of discrete variables. This ensures the
complete separation of the SDA from the SHA. The relations between discrete variables and continuous roots will be
dealt with during the definition of a SHA. For now recall that the MLD of Bemporad in Mixed Logical Dynamical
Systems used the syntax [𝑓(𝑥) > 0] ↔ [𝛿 = 1] to bridge a (discretised) continuous relation with a discrete variable.

A transition, 𝑒 ≜ (𝑓, 𝑔), is active in 𝜐 ∈ Υ when 𝑔(𝜐) = ⊤, and inactive when 𝑔(𝜐) = ⊥. The active transitions of
𝜐 are denoted 𝐸⊤(𝜐) and the inactive guards are denoted 𝐸⊥(𝜐). The active and inactive transition guards, 𝐺, and
equations, 𝐹 are denoted in a similar manner. 𝐸 and 𝐹 will be used as shorthand for 𝐸⊤ and 𝐹⊤ respectively. The
active equations form a system of 𝑚 discrete differential algebraic equations (3.2), which determine 𝑞, or 𝜓, in 𝜐.

𝐹 (𝜓) = 0 (3.2)

It is not necessarily the case that 𝑁 = 𝑚 or 𝑀 = 𝑚, and it might not determine, or uniquely determine 𝜓. Equation
(3.2) might for example be underdetermined. This is dealt with by defining the solutions to𝐹 to be the set of 𝑞 ∈ Q̇ such
that𝐹 (𝑡, 𝑞, 𝑞) = 0where 𝑞𝑖 = 0 if 𝜕𝐹

𝜕𝑞𝑖
= 0. If 𝑞𝑖 is not determined then 𝑞𝑖 should remain constant. Equation (3.2) might

also be overdetermined. The significance of an overdetermined system of equations is here one of nondeterminism; a
bifurcation point in the construction of the execution of a SDA. If 𝐹 contains both 𝑞𝑖 − 1 = 0 and 𝑞𝑖 + 1 = 0, the
execution has two potential branches to continue along. A similar source of nondeterminism is systems of equations
that admit multiple solutions. The equation 𝑞2𝑖 − 1 = 0 has the same branches as the previous pair of overdetermining
equations. A SDA that can produce bifurcating transition equations is nondeterministic. In this report nondeterminism
caused by overdetermination will be put aside, and determinism will only be discussed with respect to the solvability
and unique solvability of 𝐹 . This is captured in Definition 3.1.2 (Discrete Derivatives).

32 Chapter 3. Results

Multibody Flow Networks

Definition 3.1.2 (Discrete Derivatives):

Let 𝐴 be a SDA, 𝜐 ∈ ϒ be a state of 𝐴, and 𝐹 ≜ 𝐹⊤(𝜐) be the active equations of this state.

The discrete derivatives of 𝐴 at 𝜐 is a map Q̇ : ϒ → P(Q̇):

1. where Q̇(𝜐) are the elements 𝑞 ∈ Q̇ that satisfy 𝐹 (𝑡, 𝑞, 𝑞) = 0;

2. and 𝑞𝑖 ≜ 0 for any 𝑞𝑖 such that 𝜕𝐹
𝜕𝑞𝑖

= 0

3.1.2 Executions of a Structured Discrete Automaton

The structured discrete counterparts of Definition 2.3.4 (Hybrid Time Trajectory) and Definition 2.3.5 (Hybrid Execu-
tion) are reworked into Definition 3.1.3 (Discrete execution). The set of maximal executions, ℰ𝑀 has been dropped,
since an execution here instead is maximal by definition. The time trajectory has been inlined into the definition of the
execution.

Definition 3.1.3 (Discrete Execution)

Let 𝐴 be a SDA.

An execution of 𝐴 is a tuple 𝛿 ≜ (𝑞0):

1. with initial state 𝑞0 ∈ Q;

2. and time trajectory 𝑇 ⊆ I, which is an interval with min(𝑇) ≜ 0;

3. and state trajectory 𝑞 : I → Q, which is a map:

𝑞(𝑖) ≜

{︃
[𝑖 = 0] → 𝑞0

[𝑖 ̸= 0] → 𝑞(𝑖− 1) + 𝑞𝑖−1

where 𝑞𝑗 ∈ Q̇(𝜐𝑗) from Definition 3.1.2 (Discrete Derivatives);

4. and if ∃𝑡 ∈ 𝑇 | 𝑞𝑡 = 0 then 𝑡𝑚 ≜ 𝑡 and 𝑇 ≜ [𝑡0, 𝑡𝑚], else 𝑡𝑚 ≜ ∞ and 𝑇 ≜ [𝑡0, 𝑡𝑚).

ℰ(𝑞0) denotes union of all executions of 𝐴 starting from 𝑞0. ℰ*(𝑞0), and ℰ∞(𝑞0) denotes the set of all
finite and infinite executions respectively. 𝑇𝑚 is used to denote a time trajectory whose last element is 𝑡𝑚.

The ticker and delay automata of Example 3.1.1 (Ticker Automaton) and Example 3.1.2 (Delay Automaton) demonstrate
the SDA and its execution. The delay automaton demonstrates how the independent variable can be utilized in a guard
to sequence a transition.

Example 3.1.1 (Ticker Automaton)

A ticker automaton is an automaton 𝐴:

• with 𝑄 ≜ {𝑞0} and 𝑞 ∈ |𝑍| < 2;

• and 𝐸 ≜ {(𝑞0 − 1,⊤)}.

An execution of this automaton can be seen in Fig. 3.1.

3.1. Structured Discrete Automata 33

Multibody Flow Networks

Fig. 3.1: The execution 𝛿 ≜ (
[︀
0
]︀
) over 𝑇9 of the simple ticker automaton in Example 3.1.1 (Ticker Automaton).

Example 3.1.2 (Delay Automaton)

Guards and equations are functions of the independent variable 𝑡 and transitions can thus be sequenced in
time. This is demonstrated with a delay automaton 𝐴:

• with 𝑄 ≜ {𝑞0} where 𝑞0 ∈ 𝑍 < 2,

• and 𝐸 ≜ {(𝑞0 − 1, [𝑡 ≥ 1])}

The transition 𝑒0 will only be active when 𝑡 ≥ 0. An execution of this automaton can be seen in Fig. 3.2.

34 Chapter 3. Results

Multibody Flow Networks

Fig. 3.2: The execution 𝛿 ≜ (
[︀
1
]︀
) over 𝑇4 of the delay automaton in Example 3.1.2 (Delay Automaton). Note that this

execution does not satisfy the 4th point of Definition 3.1.1 (Structured Discrete Automaton), and indeed this constraint
was suspended to cleanly demonstrate the delay automaton.

One of the techniques used in the construction of the discrete model in Discrete Flow Network Model is “counting
variables” which is preemptively demonstrated here. A counting variable tracks the sum of some expression over
the other variables of an automaton, and an example of such a variable is demonstrated in Example 3.1.3 (Counting
Automaton).

Example 3.1.3 (Counting Automaton)

A counting automaton is an automaton 𝐴:

• with 𝑄 ≜ {𝑞0, 𝑞1 . . .} with |𝑄| > 1, 𝑞0 ∈ 𝑍 < |𝑄| − 1, and 𝑞𝑖 ∈ 𝑍 < 2,

• and 𝐸 ≜ {𝑒0}, where 𝑓0, and 𝑔0 are functions:

𝑓0(𝜐) ≜ 𝑞0 − (𝑞0 −
∑︁
𝑞∈𝑄+

𝑞)

𝑔0(𝜐) ≜ [(𝑞0 −
∑︁
𝑞∈𝑄+

𝑞) ̸= 0]

• with 𝑄+ ≜ 𝑄 ∖ {𝑞0}

The variable 𝑞0 tracks the number of non-zero variables in 𝑄+. An execution of this automaton can be
seen in Fig. 3.3.

3.1. Structured Discrete Automata 35

Multibody Flow Networks

Fig. 3.3: The execution 𝛿 ≜ (
[︀
0 1 0 1

]︀𝑇
) of the automaton over 𝑇2 from Example 3.1.3 (Counting Automaton),

with |𝑄| = 4.

Determinism of a Structured Discrete Automaton

As discussed in Definition of a Structured Discrete Automaton the determinism of a SDA is dependent on the solvability
of equation (3.2). Nondeterminism is caused by ambiguity, and three separate sources of ambiguity were identified. One
is underdetermination, which was dealt with in Definition 3.1.2 (Discrete Derivatives). The second is due to a particular
f, and thus the 𝐹 s that include it, having multiple solutions. And the third is due to the potential for an overdetermined
𝐹 . An overdetermined 𝐹 might have no solutions if the overdetermining equations are not redundant. The latter
two cases were both be interpreted as bifurcations, branching the execution into several potential constructions. The
former branches the executions on the solutions of 𝐹 , and the latter branches the executions on the maximal non-
overdetermined subsets of 𝐹 . Overdetermination was set aside, and determinism will be defined in terms of solvability,
thus excluding overdetermination that leads to unsolvable 𝐹 s. Solvability and determinism of a SDA are defined in
Definition 3.1.4 (Discrete Solvability) and Definition 3.1.5 (Discrete Determinism). These are the structured discrete
counterparts of Definition 2.2.3 (The solvability of a DAE) and Definition 2.3.6 (Deterministic Hybrid Automaton).

36 Chapter 3. Results

Multibody Flow Networks

Definition 3.1.4 (Discrete Solvability)

A structured discrete automaton is:

1. locally solvable for 𝜐 ≜ (𝑡, 𝑞) if 𝐹 (𝑡, 𝑞, 𝑞) = 0 is solvable.

2. locally solvable for Υ ⊂ ϒ if it is locally solvable ∀𝜐 ∈ Υ.

3. globally solvable if it is locally solvable ∀𝜐 ∈ ϒ.

It is uniquely solvable in each of these three cases if the solutions to 𝐹 (𝑡, 𝑞, 𝑞) are unique.

Definition 3.1.5 (Discrete Determinism)

A structured discrete automaton is:

1. locally deterministic for 𝑞 if is uniquely locally solvable for 𝑞.

2. locally deterministic for 𝑄 ⊂ Q if is uniquely locally solvable ∀𝑞 ∈ 𝑄.

3. globally deterministic if it is uniquely globally solvable.

Two automata which demonstrate unsolvability and nondeterminism are defined in Example 3.1.4 (Unsolvable Automa-
ton) and Example 3.1.5 (Nondeterministic Automaton).

Example 3.1.4 (Unsolvable Automaton)

An example of an unsolvable automaton is 𝐴:

• with 𝑄 ≜ {𝑞0} with 𝑞0 ∈ 𝑍 < 2,

• and 𝐸 ≜ {(𝑞0 − 1,⊤), (𝑞0, [𝑡 > 0])}.

For any 𝑞, when 𝑡 > 0, 𝑓1 is included in 𝐹 and 𝑞0 becomes overdetermined. 𝑓0 and 𝑓1 are not mutually
redundant, 𝐹 has no solution, and |Q̇(𝑡, 𝑞)| = 0. In this report overdetermination was set aside, and the
combination of this automaton and initial state has no execution.

Example 3.1.5 (Nondeterministic Automaton)

An example of a nondeterministic automaton is 𝐴:

• with 𝑄 ≜ {𝑞0} with 𝑞0 ∈ 𝑍 < 2,

• and 𝐸 ≜ {(𝑞0 − 𝑞20 ,⊤)}.

For 𝑞 ≜ [1], 𝑓0 has two solutions; 𝑞0 = 1, and 𝑞0 = −1. Thus |Q̇(𝑡, 𝑞)| = 2, and the execution, 𝛿 ≜ ([1])
is nondeterministic. It is locally deterministic at 𝑞 ≜ [0].

Zenoness of a Structured Discrete Automaton

Zenoness is defined in terms of the execution of the automaton in Definition 3.1.6 (Discrete Zenoness), just as in
Definition 2.3.8 (Zeno Hybrid Automaton).

Definition 3.1.6 (Discrete Zenoness)

A structured discrete automaton is:

1. locally zeno for 𝑞 ∈ Q if ℰ∞(𝑞) ̸= ∅.

2. locally zeno for 𝑄 ⊂ Q if it is locally zeno ∀𝑞 ∈ 𝑄.

3. globally zeno if it is locally zeno ∀𝑞 ∈ Q.

An automaton that is not zeno is called a zenoless automaton.

3.1. Structured Discrete Automata 37

Multibody Flow Networks

The counting automata of Example 3.1.3 (Counting Automaton) is the only zenoless example automata defined so far.
The sum of a set of variables that converges will also converge, and so an automaton composed only of constant and
counting variables will be zenoless.

3.1.3 Simulation of Structured Discrete Automata

The SDA and an algorithm for constructing the execution of a globally deterministic SDA was implemented in [RH22].
It was implemented as a C++ library with Python bindings. The algorithm, illustrated in Fig. 3.4, was implemented
using an event-based coroutine. It was used to generate the executions in Example 3.1.1 (Ticker Automaton), Example
3.1.2 (Delay Automaton), and Example 3.1.3 (Counting Automaton) as well as the executions in Discrete Flow Network
Model.

38 Chapter 3. Results

Multibody Flow Networks

Begin

Await start
continuation

Compute guards
and derivative

Zero
derivative?

Integrate state

Await step
continuation

no

Await stop
continuation

 yes

End

Fig. 3.4: An event-based coroutine for simulating a Structured Discrete Automata

3.1. Structured Discrete Automata 39

Multibody Flow Networks

3.2 Structured Hybrid Automata

3.2.1 Definition of a Structured Hybrid Automaton

The HA from Definition 2.3.3 (Hybrid Automaton) is reconstructed as a SHA in Definition 3.2.1 (Structured Hybrid
Automaton). The discrete parts of its definition is defined in terms of a SDA from Definition 3.1.1 (Structured Discrete
Automaton),

Definition 3.2.1 (Structured Hybrid Automaton):

Let I ⊆ R be a compact interval, 𝐴𝐷 ≜ (𝑄,𝐸) be a SDA from Definition 3.1.1 (Structured Discrete
Automaton) with states ϒ𝐷.

A structured hybrid automaton (SHA) is a tuple 𝐴 ≜ (𝐴𝐷, 𝑋, 𝑈, 𝑉,𝑊):

1. where 𝑋 is a finite collection of 𝑁 continuous variables taking values in X;

• with derivatives �̇� taking values in Ẋ;

• and where X, Ẋ ⊆ C𝑁 are open sets;

• and where ϒ𝐶 ≜ I× X, ϒ ≜ Q×ϒ𝐶 , and Ψ𝐶 ≜ I× X× Ẋ;

2. where 𝑈 ⊂ F×G is a finite collection of 𝑀 activities;

• where F is the set of activity equations 𝑓 : Ψ𝐶 → C;

• and G is the set of activity guards 𝑔 : Q → B;

3. where 𝑉 ⊂ 𝑋 × Ĥ× Ĝ is a finite collection of 𝑃 actions;

• where Ĥ is the set of action functions ℎ̂ : Ψ𝐶 → C;

• and Ĝ is the set of action guards 𝑔 : ϒ𝐷 → B;

• where ϒ𝐷 are the states of 𝐴𝐷;

4. where 𝑊 ⊂ 𝑄× Ȟ× Ǧ is a finite collection of 𝑂 roots;

• where Ȟ is the set of root functions ℎ̌ : Ψ𝐶 → C;

• and Ǧ is the set of root guards 𝑔 : Q → B;

• and if 𝑤0, 𝑤1 ∈𝑊 then 𝑞0 = 𝑞1 =⇒ 𝑤0 = 𝑤1.

The sets ϒ𝐶 and Ψ𝐶 are called the continuous states and continuous solutions of 𝐴 respectively, and the
set ϒ is called the states of 𝐴.

The continuous dynamics of the SHA is a DAE defined in line with Definition 2.2.1 (Differential Algebraic Equations).
The domain of the HA, 𝐷(𝑞), has been dropped, as it is redundant and introduces additional complexity to Definition
2.3.6 (Deterministic Hybrid Automaton). As discussed in Determinism of a Hybrid Automaton, if it is the case that
𝑥 ∈ 𝐷(𝑞) ∩ 𝐺(𝑒), the construction of the hybrid execution could either continue constructing the current continuous
execution, or start constructing a new discrete execution. This is in addition to the ambiguity caused by 𝑥 ∈ 𝐺(𝑒0) ∩
𝐺(𝑒1) with 𝑒0 ̸= 𝑒1, where the construction could branch into either transition. The former ambiguity is redundant,
because the domain is, after all, just another subset. A modeller could always construct a transition whose guard is
𝑋/𝐷(𝑞). Finally, one has to deal with the case where 𝑥 is about to leave 𝐷(𝑞), but ∄𝑒 such that 𝑥 ∈ 𝐺(𝑒). Instead of
having different types of bifurcations, the domain is dropped, leaving only the ambiguity of 𝑥 ∈ 𝐺(𝑒0) ∩𝐺(𝑒1).

The continuous dynamics, which was represented as a vector field in Definition 2.3.3 (Hybrid Automaton), has been
structured into a set of tuples of equation and guard, just like the discrete dynamics in Definition 3.1.1 (Structured
Discrete Automaton). The SHA can be represented directly in a computation with a large Q as this set is decoupled
from the definition of the continuous dynamics. The guards of the activities, 𝑔 ∈ G, are assumed to be of the same
form as the guards of a SDA. The active and inactive activities are defined in the same manner as the transitions of a

40 Chapter 3. Results

Multibody Flow Networks

SDA. Thus an activity is active in a discrete state if 𝑔(𝑞) = ⊤. 𝐺 is used as a shorthand for 𝐺⊤ and similarly for 𝐹 .
The active activity equations form a system of 𝑚 differential algebraic equations (3.3), which determine �̇�, or 𝜓𝐶 , in
𝑞.

𝐹 (𝜓𝐶) = 0 (3.3)

The resets of Definition 2.3.3 (Hybrid Automaton) are here called the actions of the automaton. The actions have been
structured into tuples of variable, function, and guard. The same notation used for active and inactive activities is used
to denote the active and inactive actions. �̂� and �̂� deontes the action variables and functions active in 𝜐𝐷. For the sake
of simplicity it will be assumed that ∄(𝜐𝐷, 𝑣0, 𝑣1) ∈ ϒ𝐷 × 𝑉 × 𝑉 such that 𝑣0 ̸= 𝑣1 and 𝑥0 = 𝑥1.

Roots are a new addition to the hybrid automaton. The guards of the SDA are functions of Υ𝐷. The SHA needs to
mediate the continuous and discrete dynamics of the automaton. This is done in a similar way to how the relation
[𝑓(𝑥) > 0] ↔ [𝛿 = 1] from the MLDs of [BM99] bridged a (discretised) continuous relation with a discrete relation.
The introduction of roots, and their function in the execution of the automaton, is a formalisation of the event detecting
approach to the simulation of a hybrid system discussed in Simulation of Hybrid Automata. For the sake of simplicity
it was assumed in the definition of Definition 3.2.1 (Structured Hybrid Automaton) that there are no two roots referring
to the same discrete variable. The same notation used for active and inactive activities is used to denote the active and
inactive roots. 𝑞 and �̌� denotes the root variables and functions active in 𝑞.

3.2.2 Executions of a Structured Hybrid Automaton

The execution of a SHA is an interleaving of continuous and discrete executions. Two types of specifically hybrid
executions are used to mediate between the continuous and the discrete executions. The action execution deals with the
application of actions to the continuous state after a discrete execution has converged. The root execution deals with
the transformation of continuous roots into discrete state. These four types of executions are termed subexecutions,
and are the components from which an execution of a SHA is constructed. The discrete, action, continuous, and root
subexecutions are denoted 𝛿𝐷, 𝛿𝑈 , 𝛿𝐶 , and 𝛿𝑊 respectively. The length of a subexecution is defined as:

|𝛿| ≜ max(𝑇)−min(𝑇) (3.4)

Where 𝑇 is the discrete or continuous time trajectory of the subexecution. An infinite subexecution has |𝛿| = ∞, a
finite subexecution has |𝛿| ≠ ∞, an empty discrete subexecution has |𝛿𝐷| = 1, and a non-empty discrete subexecution
has |𝛿𝐷| > 1.

Before defining the root and continuous subexecutions, a helper function is constructed in Definition 3.2.2 (Root Func-
tion) which maps the sign of the root functions of a SHA to discrete values. This definition does not account for root
functions that are identically zero. This is a simplification in line with IDA from [HBG+05], which is the software used
in this report for simulating DAEs, [HSB+20]:

However, if an exact zero of any 𝑔𝑖 is found at a point 𝑡, ida computes 𝑔 at 𝑡+ 𝛿 for a small increment 𝛿,
slightly further in the direction of integration, and if any 𝑔𝑖(𝑡+ 𝛿) = 0, ida stops and reports an error.

3.2. Structured Hybrid Automata 41

Multibody Flow Networks

Definition 3.2.2 (Root Function):

Let 𝐴 be a SHA.

The root function is a map 𝐹 : Q×Ψ𝐶 → Q:

1. whose elements 𝑓𝑖 : Ψ → Q𝑖 is defined as:

𝑓𝑖 ≜

{︃
∃𝑞𝑗 ∈ 𝑞|𝑞𝑖 = 𝑞𝑗 → 𝑟𝑗(𝜓

𝐶)

∄𝑞𝑗 ∈ 𝑞|𝑞𝑖 = 𝑞𝑗 → 𝑞𝑖

• where 𝑅 : Ψ𝐶 → B𝑜 is a map:

𝑟𝑖 ≜

{︃
[ℎ̌𝑖(𝜓) > 0] ∨ ([ℎ̌𝑖(𝜓) = 0] ∧ [˙̌ℎ𝑖(𝜓) > 0]) → ⊤
[ℎ̌𝑖(𝜓) < 0] ∨ ([ℎ̌𝑖(𝜓) = 0] ∧ [˙̌ℎ𝑖(𝜓) < 0]) → ⊥

• and where �̌� and �̌�(𝜓𝐶) are the 𝑜 active root variables and functions, with �̌� ≜ �̌�⊤(𝑞) and
�̌� : Ψ → C𝑜.

The root subexecution in Definition 3.2.3 (Root Subexecution) transfers the continuous roots detected at some contin-
uous solution, 𝜓𝐶

0 , to the current discrete state, 𝑞0. It is a fixed size subexecution in two steps.

Definition 3.2.3 (Root Subexecution):

Let 𝐴 be a SHA.

A root subexecution is a tuple 𝛿 ≜ (𝑞0, 𝜓
𝐶
0):

1. with initial state 𝑞0 ∈ Q, and 𝜓𝐶
0 ∈ ≩𝐶 ;

2. and time trajectory I ≜ Z < 2;

3. and state trajectory 𝑞 : I → Q, which is a map:

𝑞(𝑖) ≜

{︃
[𝑖 = 0] → 𝑞0

[𝑖 = 1] → 𝐹 (𝑞0, 𝜓
𝐶
0)

• where 𝐹 is the root function from Definition 3.2.2 (Root Function).

The execution of a SHA will generate several DAE initial value problems. The continuous subexecution in Definition
3.2.4 (Continuous Subexecution) restates the solution to such a problem from Definition 2.2.3 (The solvability of a
DAE). This solutions defined to end on the detection of a root. If a continuous subexecution ends with one or more
roots, the next subexecution will be a root subexecution to process these roots. There is no longer any ambiguity between
the continued construction of the continuous subexecution and the construction of a new discrete subexecution, as was
the case in a HA when 𝑥 ∈ 𝐷(𝑞)∩𝐺(𝑒). A continuous root of a SHA always ends the current continuous subexecution.

42 Chapter 3. Results

Multibody Flow Networks

Definition 3.2.4 (Continuous Subexecution):

Let 𝐴 be a SHA, and 𝐶𝑘(I,X) denote the vector space of all 𝑘-times continuously differentiable functions
from the real interval I into the vector space X.

A continuous subexecution is a tuple 𝛿 ≜ (𝜐0):

1. with initial state 𝜐0 ≜ (𝑞0, 𝑡0, 𝑥0) ∈ ϒ;

2. and time trajectory 𝑇 ⊆ I, which is an interval with min(𝑇) ≜ 𝑡0;

3. and state trajectory 𝑥 ∈ 𝐶1(𝑇,X) which is a solution of the DAE initial value problem (𝐹, 𝑡0, 𝑥0),

• where 𝐹 ≜ 𝐹⊤(𝑞0) are the active activity equations of 𝑞0;

4. and if ∃𝑡𝑚 ∈ 𝑇 such that 𝐹 (𝑞0, 𝜓(𝑡0)) ̸= 𝐹 (𝑞0, 𝜓(𝑡𝑚)), then 𝑇 ≜ [𝑡0, 𝑡𝑚], else 𝑡𝑚 ≜ ∞ and
𝑇 ≜ [𝑡0, 𝑡𝑚);

• where 𝜓𝐶(𝑡) ≜ (𝑡, 𝑥(𝑡), �̇�(𝑡)) is the solution of 𝑥 at 𝑡;

• and where 𝐹 ≜ 𝐹⊤(𝑞0) is the root function from Definition 3.2.2 (Root Function).

The detection of a root is one of the potential discrete events discussed in Simulation of Hybrid Automata. The corre-
sponding change in discrete state, which was captured by Definition 3.2.3 (Root Subexecution), is followed by a mode
selection problem. The mode selection problem is here called a discrete subexecution. The discrete subexecution
needs to propagate the continuous state of the hybrid execution. The discrete execution from Definition 3.1.3 (Discrete
execution) is extended with continuous state in Definition 3.2.5 (Discrete Subexecution). A discrete subexecution is
otherwise identical to a discrete execution. For a discrete subexecution it will always be the case that there exists an
earlier subexecution that defines some continuous state trajectory. The discrete subexecution simply passes this along.

Definition 3.2.5 (Discrete Subexecution):

Let 𝐴 be a SHA.

A discrete subexecution is a tuple 𝛿 ≜ (𝜐0) with:

1. initial state 𝜐0 ≜ (𝑞0, 𝑡0, 𝑥0) ∈ ϒ;

2. and that is otherwise equivalent to the discrete execution 𝛿𝐷 ≜ (𝑞0) in Definition 3.1.3 (Discrete
execution).

At the end of a discrete subexecution the SHA might apply a set of actions to the continuous stat. This is done to, for
example, ensure the satisfaction of the algebraic constraints of the new active activity equations. This application is
captured in a helper function in Definition 3.2.6 (Action Function).

Definition 3.2.6 (Action Function):

Let 𝐴 be a SHA.

The continuous action function is a map 𝐹 : Q×Ψ𝐶 → X:

1. whose elements 𝑓𝑖 : ≩𝐶 → C are maps:

𝑓𝑖(𝜓
𝐶) ≜

{︃
∃�̂�𝑗 ∈ �̂�|𝑥𝑖 = �̂�𝑗 → ℎ̂𝑗(𝜓

𝐶)

∄�̂�𝑗 ∈ �̂�|𝑥𝑖 = �̂�𝑗 → 𝑥𝑖

where �̂� and �̂�(𝜓𝐶) are the 𝑝 active action variables and functions, with �̂� ≜ �̂�⊤(𝑞) and �̂� : Ψ →
C𝑝.

The action subexecution of 𝜐 applies the active actions to the continuous state, using the action function in Definition
3.2.6 (Action Function), and then recomputes the discrete state based on the new continuous state, using the root function
in Definition 3.2.2 (Root Function). The root function was defined in terms of a continuous solution 𝜓𝐶 ∈ Ψ𝐶 , which
requires the computation of a continuous solution from 𝜐. This is captured in Definition 3.2.7 (Implicit Continuous
Solution).

3.2. Structured Hybrid Automata 43

Multibody Flow Networks

Definition 3.2.7 (Implicit Continuous Solution):

Let 𝐴 be a SHA.

The implicit continuous solution of 𝜐0 ≜ (𝑞0, 𝑡0, 𝑥0) ∈ ϒ is 𝜑 : ϒ → Ψ𝐶 , which is a map:

• where 𝜑(𝜐0) ≜ (𝑡0, 𝑥(𝑡0), �̇�(𝑡0)) is a solution of 𝑥 at 𝑡0,

• and where 𝑥 is a solution to the DAE initial value problem (𝐹, 𝑡0, 𝑥0);

• and where 𝐹 ≜ 𝐹⊤(𝑞0) are the active activity equations of 𝑞0.

The action subexecution is a fixed size subexecution in two steps. It might require consistent initialisation of the contin-
uous state to correctly compute the next discrete state. Consistent initialisation was discussed in Simulation of a DAE
and is also relevant to the continuous subexecution. It is still a matter of ergonomics, as the modeller could instead be
required to ensure that actions result in a continuous state consistent with the new continuous dynamics. The modeller
could also be required to specify an initial continuous state that is consistent with the initial continuous dynamics.
Ergonomic practical computation requires consistent initialisation to be done, when possible, by the implementation,
for both continuous and action subexecutions.

Definition 3.2.8 (Action Subexecution):

Let 𝐴 be a SHA.

An action subexecution is a tuple 𝛿 ≜ (𝜐0):

1. with initial state 𝜐0 ≜ (𝑞0, 𝑡0, 𝑥0) ∈ ϒ;

2. and time trajectory I ≜ Z < 2;

3. and continuous state trajectory 𝑥 : I → X, which is a map:

𝑥(𝑖) ≜

{︃
[𝑖 = 0] → 𝑥0

[𝑖 = 1] → 𝐹 (𝑞0, 𝜓
𝐶
0)

• where 𝜓𝐶
0 ≜ 𝜑(𝜐0) is the implicit continuous solution of 𝜐0 from Definition 3.2.7 (Implicit

Continuous Solution);

4. and discrete state trajectory 𝑞 : I → Q, which is a map:

𝑞(𝑖) ≜

{︃
[𝑖 = 0] → 𝑞0

[𝑖 = 1] → 𝐹 (𝑞0, 𝜓
𝐶
1)

• where 𝜓𝐶
1 ≜ 𝜑(𝜐′0) is the implicit continuous solution of 𝜐′0 ≜ (𝑞0, 𝑡0, 𝑥(1)) from Definition

3.2.7 (Implicit Continuous Solution);

• and 𝑥 is the continuous state trajectory defined above.

The execution of a SHA is a sequence of subexecutions of a particular structure. A finite continuous subexecution will
be followed by a root subexecution, an empty discrete subexecution will be followed by a continuous subexecution, and
so on. This structure is shown on diagram form in Fig. 3.5.

44 Chapter 3. Results

Multibody Flow Networks

Root
Subexecution

Discrete
Subexecution

Continuous
Subexecution

 |δ| ≠ ∞

Action
Subexecution

 1 < |δ| < ∞

|δ| = 1

Fig. 3.5: The execution of a Structured Hybrid Automaton

The execution of a SHA is finally stated in Definition 3.2.9 (Hybrid Execution). Note that since |𝛿𝑈 | = 2 and |𝛿𝑊 | = 2;
it is never the case that a root or action subexecution is the last subexecution in such an execution.

3.2. Structured Hybrid Automata 45

Multibody Flow Networks

Definition 3.2.9 (Hybrid Execution):

Let 𝐴 be a SHA.

A hybrid execution is a tuple 𝜔 ≜ (𝜐0,∆):

1. with initial state 𝜐0 ∈ ϒ;

2. and subexecutions ∆ ≜ {𝛿0, . . .}, with initial subexecution 𝛿𝑊0 ≜ (𝑞0, 𝜓
𝐶
0):

• where 𝑞0 is the initial discrete state of 𝜐0;

• and where 𝜓𝐶
0 ≜ 𝜑(𝜐0) is the implicit continuous solution of 𝜐0 from Definition 3.2.7 (Implicit

Continuous Solution);

3. and time trajectory 𝐼 ⊆ Z, which is a sequence with min(𝐼) ≜ 0:

• and if ∃𝑖 ∈ 𝐼 such that |𝛿𝑖| = ∞, then 𝑖𝑚 ≜ 𝑖 and 𝐼 ≜ [𝑖0, 𝑖𝑚];

• else 𝑖𝑚 ≜ ∞ and 𝐼 ≜ [𝑖0, 𝑖𝑚);

4. and ∀𝛿𝐶𝑖 ≜ (𝑞𝑖,0, 𝑡𝑖,0, 𝑥𝑖,0) ∈ ∆, where 𝑖 ̸= 𝑖𝑚, there ∃𝛿𝑊𝑖+1 ≜ (𝑞𝑖,0, 𝜓
𝐶
𝑖,𝑚) ∈ ∆:

• where 𝜓𝐶
𝑖,𝑚 ≜ (𝑡𝑖,𝑚, 𝑥(𝑡𝑖,𝑚), �̇�(𝑡𝑖,𝑚)) is the solution of 𝑥 at 𝑡𝑖,𝑚 ≜ max(𝑇);

• and where 𝑥 and 𝑇 are the continuous state and time trajectories of 𝛿𝐶𝑖 ;

5. and ∀𝛿𝑊𝑖 ≜ (𝑞𝑖,0, 𝜓
𝐶
𝑖,0) ∈ ∆ there ∃𝛿𝐷𝑖+1 ≜ (𝑞𝑖,𝑚, 𝑡𝑖,0, 𝑥𝑖,0) ∈ ∆:

• where 𝑞𝑖,𝑚 ≜ 𝑞(𝑡𝑖,𝑚) is the state of 𝑞 at 𝑡𝑖,𝑚 ≜ max(𝑇);

• and where 𝑞 and 𝑇 is the discrete state and time trajectories of 𝛿𝑊𝑖 ;

• and where 𝑡𝑖,0 and 𝑥𝑖,0 is the state of 𝜓𝐶
𝑖,0 ≜ (𝑡𝑖,0, 𝑥𝑖,0, �̇�𝑖,0);

6. and ∀𝛿𝐷𝑖 ≜ (𝑞𝑖,0, 𝑡𝑖,0, 𝑥𝑖,0) ∈ ∆, where 𝑖 ̸= 𝑖𝑚 ∧ |𝛿𝐷𝑖 | ≠ 1, there ∃𝛿𝑉𝑖+1 ≜ (𝑞𝑖,𝑚, 𝑡𝑖,0, 𝑥𝑖,0) ∈ ∆:

• where 𝑞𝑖,𝑚 ≜ 𝑞(𝑡𝐷𝑚) is the state of 𝑞 at 𝑡𝐷𝑖,𝑚 ≜ max(𝑇);

• and where 𝑞 and 𝑇 is the discrete state and time trajectories of 𝛿𝐷𝑖 ;

7. and ∀𝛿𝑉𝑖 ≜ (𝑞𝑖,0, 𝑡𝑖,0, 𝑥𝑖,0) ∈ ∆ there ∃𝛿𝐷𝑖+1 ≜ (𝑞𝑖,𝑚, 𝑡𝑖,0, 𝑥𝑖,𝑚) ∈ ∆:

• where 𝑞𝑖,𝑚 ≜ 𝑞(𝑡𝑖,𝑚) and 𝑥𝑖,𝑚 ≜ 𝑥(𝑡𝑖,𝑚) is the state of 𝑞 and 𝑥 at 𝑡𝑖,𝑚 ≜ max(𝑇);

• and where 𝑞, 𝑥, and 𝑇 are the discrete state, continuous state, and time trajectories of 𝛿𝑉𝑡 ;

3.2.3 Simulation of Structured Hybrid Automata

Here the simulation algorithms of Omola and Sol are revisited in light of the execution of a SHA.

This execution is a formalisation of the event detecting approach to the simulation of hybrid systems. It can be mapped
to the blocks of the event detecting simulation algorithm described in Fig. 2.7. The “Solve DAE problem” block corre-
sponds to the continuous subexecutions. Final time was dropped from the definition of the continuous subexecutions,
and all executions in this report are maximal by definition. The root and discrete subexecution covers the “Check In-
variants” and “Any events” blocks, and the action subexecution covers the “Fire Event” and “Find Consistent Initial
Values” block.

In the dynamic processing algorithm of Sol, the DDP transforms DAEs to ODEs. This is done in response to changes
in the continuous dynamics of the model. This is a relatively expensive procedure compared to integration, and one
that should be avoided if possible. The execution of a SHA formalises the notion of potential structural change. Any
discrete subexecution with state trajectory 𝑞, with activity guards 𝐺(𝑞0) ̸= 𝐺(𝑞𝑚), is a potential structural change.
The execution of a SHA identifies the moments the DDP needs to be run. This is only in the case of a continuous
subexecution, or an action subexecution with a non-empty action set. In the former case it needs to run because a

46 Chapter 3. Results

Multibody Flow Networks

continuous subexecution is about to be constructed. In the latter case it needs to run because the action subexecution
needs the implicit solution of the current state defined in Definition 3.2.7 (Implicit Continuous Solution). This gives a
modeller and algorithm a better chance of synchronising structural changes of the continuous dynamics.

3.2. Structured Hybrid Automata 47

Multibody Flow Networks

3.3 Logical Description of a Flow Network

A flow network is here described logically in terms of a DAG of valves and pipes (see [Die16] for an introduction to
DAGs and graph theory). This network can contain multiple bodies of water. The valve can represent both gates and
actual valves, and each valve is potentially connected to an outside system. For a hydropower plant, gates would typically
be connected to a reservoir in a real system and valves internal to its tunnel system would have no external connection.
Openings between valves and pipes, and between valves and the outside system, are assumed to be closeable. The
elements of the graph are annotated with auxiliary logical entities, called components. This serve as a frame of reference
for the variables of the discrete and continuous model. The flow network representation was implemented in [RH22],
and the diagrams below were programatically generated.

3.3.1 Flow Network Graph

The flow network is described by a DAG, 𝐺 ≜ (𝑉,𝐸). Its vertices, 𝑉 , and edges, 𝐸, represent valves and pipes
respectively. The directions of the graph are denoted 𝐷 ≜ 𝑍 < 2, where 𝑑0 is in, and 𝑑1 is out. The complement
of a direction is denoted 𝑑′. These definitions are made with hydropower producing watercourses in mind. These
watercourses admit a natural direction along the flow of water, and the edges are assumed to point downstream.

Definition 3.3.1 (Flow Network Graph):

A flow network graph is a directed graph 𝐺 ≜ (𝐶0, 𝐶1), where:

• 𝐶0, 𝐶1 are the valves and pipes of the network respectively.

Example 3.3.1 (Basic Flow Network)

The simplest possible, non-trivial system is the graph:

𝐺0 ≜ ({𝑐00, 𝑐01}, {(𝑐00, 𝑐01)})

A diagram of the system can be seen in Fig. 3.6.

48 Chapter 3. Results

Multibody Flow Networks

Fig. 3.6: Diagram of the system 𝐺0 in Example 3.3.1 (Basic Flow Network) annotated with labels of valves and pipes.
Edge directions are not drawn, as they all go from top to bottom in the diagrams of this report.

3.3. Logical Description of a Flow Network 49

Multibody Flow Networks

3.3.2 Flow Network Components

For the purposes of the subsequent modelling the elements of the network are annotated with components. Each element
is a component in its own right, and the valves and pipes are termed the primary components of the network. The other
components are termed auxiliary components. Each valve, 𝑐0𝑖 is associated with an outside source, called a tub, 𝑐0,0𝑖 .
Each pipe, 𝑐1𝑖 , is associated with a midpipe, 𝑐1,0𝑖 , two halfpipes, 𝑐1,1𝑖,𝑗 , and two endpipes, 𝑐1,2𝑖,𝑗 , where 𝑗 ∈ 𝐷. The halfpipe
and endpipe 𝑐0,𝑘𝑖,0 is physically located incident to the source of the corresponding pipe, and 𝑐0,𝑘𝑖,1 is incident to its target.
The union of valves, tubs, pipes, midpipes, halfpipes, and endpipes are called the components of the system, and are
tabulated in Table 3.1. The auxiliary components of 𝐺0 are illustrated in Fig. 3.7.

Table 3.1: Flow Network Components
Name Symbol Domain Count
Valve 𝑐0𝑖 𝑍0

𝑐 = Z < |𝑉 | 𝑁0
𝑐 = |𝑉 |

Tub 𝑐0,0𝑖 𝑍0,0
𝑐 = 𝑍0

𝑐 𝑁0,0
𝑐 = 𝑁0

𝑐

Pipe 𝑐1𝑖 𝑍1
𝑐 = Z < |𝐸| 𝑁1

𝑐 = |𝐸|
Midpipe 𝑐1,0𝑖 𝑍1,0

𝑐 = 𝑍1
𝑐 𝑁1,0

𝑐 = 𝑁1
𝑐

Halfpipe 𝑐1,1𝑖,𝑗 𝑍1,1
𝑐 = 𝑍1

𝑐 ×𝐷 𝑁1,1
𝑐 = 2 ·𝑁1

𝑐

Endpipe 𝑐1,2𝑖,𝑗 𝑍1,2
𝑐 = 𝑍1

𝑐 ×𝐷 𝑁1,2
𝑐 = 2 ·𝑁1

𝑐

Fig. 3.7: Diagram of the tubs, midpipes, halfpipes, and endpipes of 𝐺0.

50 Chapter 3. Results

Multibody Flow Networks

Definition 3.3.2 (Flow Network Components):

The components of a flow network, 𝐺 ≜ (𝐶0, 𝐶1) is a tuple 𝐶(𝐺) ≜ (𝐶0, 𝐶1, 𝐶0,0, 𝐶1,0, 𝐶1,1, 𝐶1,2):

• where 𝐶0,0 ≜ {𝑐0,0𝑖 | 𝑖 ∈ 𝑍 < |𝐶0|};

• and 𝐶1,0 ≜ {𝑐1,0𝑖 | 𝑖 ∈ 𝑍 < |𝐶1|};

• and 𝐶1,1 ≜ {𝑐1,1𝑖,𝑗 | (𝑖, 𝑗) ∈ 𝑍 < |𝐶1| ×𝐷};

• and 𝐶1,2 ≜ {𝑐1,2𝑖,𝑗 | (𝑖, 𝑗) ∈ 𝑍 < |𝐶1| ×𝐷}.

Flow Network Incidence

During the definition of the discrete model, discrete expressions and equations will need to refer to groups of variables
associated with components that are topologically near each other. The necessary incidence relations are preemptively
defined below.

Definition 3.3.3 (Incident Valves):

• The incident valves of a pipe component 𝑐k0 ≜ (𝑐00, 𝑐
0
1) is the set Πk

0 ≜ {𝑐00, 𝑐01}.

• The directed incident valve of a pipe or midpipe 𝑐k0 ≜ (𝑐00, 𝑐
0
1) is denoted 𝜋k

𝑑|1(𝑐
k
0) ≜ 𝑐0𝑑, where 𝑑 ∈ 𝐷.

• The incident (singular) valve of an halfpipe or endpipe, 𝑐1,𝑘𝑖,𝑗 is 𝜋1,𝑘
𝑗|0 (𝑐

1,𝑘
𝑖).

Definition 3.3.4 (Incident Pipes):

• The directed incident pipe or midpipe of a valve 𝑐0𝑖 is defined as 𝜋0
𝑑|k(𝑐

0
𝑖) ≜ {𝑐k𝑗 ∈ 𝐶k | 𝜋k

𝑑′|0(𝑐
k
𝑗) ≜ 𝑐0𝑖 }, where

𝑑 ∈ 𝐷.

• The directed incident halfpipes or endpipes of a valve 𝑐0𝑖 is defined as 𝜋0
𝑑|k(𝑐

0
𝑖) ≜ {𝑐k𝑗,𝑑′ ∈ 𝐶k | 𝜋k

𝑑′|0(𝑐
k
𝑗,𝑑′) ≜

𝑐0𝑖 }, where 𝑑 ∈ 𝐷.

• The incident pipes, midpipes, halfpipes or endpipes of valve is the union Π0
k(𝑐

0
𝑖) ≜

⋃︁
𝑑∈𝐷

𝜋0
𝑑|k(𝑐

0
𝑖).

Example 3.3.2 (Incident Pipes)

For the system, 𝐺1 ≜ ({𝑐01, 𝑐01, 𝑐02, 𝑐03}, {(𝑐00, 𝑐01), (𝑐01, 𝑐02), (𝑐01, 𝑐03)}), shown in Fig. 3.8, the incident end-
pipes of 𝑐01 are {𝑐1,20,1, 𝑐

1,2
1,0, 𝑐

1,2
1,0}, or with indices instead of subscripts: {𝑐51, 𝑐52, 𝑐54}

Definition 3.3.4 (Incident Tubs):

The incident tubs of a valve 𝑐0𝑖 is 𝜋0
0,0(𝑐

0
𝑖) ≜ 𝑐0,0𝑖 . Conversely the incident valve of a tub 𝑐0,0𝑖 is 𝜋0,0

0 (𝑐0,0𝑖) ≜
𝑐0𝑖 .

Definition 3.3.5 (Incident Components):

The incident components of a valve 𝑐0𝑖 is Π0(𝑐0𝑖) ≜ {𝜋0
0,0(𝑐

0
𝑖)}

⋃︀
Π0

1,2(𝑐
0
𝑖).

Example 3.3.3 (Incident Components)

For the system, 𝐺0, shown in Fig. 3.7, the incident components of 𝑐01 is the set {𝑐0,01 }
⋃︀
{𝑐1,20,1}.

3.3. Logical Description of a Flow Network 51

Multibody Flow Networks

Fig. 3.8: Diagram of the system defined by 𝐺1, with labeled pipes and valves.

52 Chapter 3. Results

Multibody Flow Networks

3.4 Discrete Flow Network Model

The discrete model constructed here describes arbitrary distributions of waterbodies, and patterns of flow, in a network
of pipes and valves. It is a discrete model of a multibody flow network constructed using the SDA framework defined
in Structured Discrete Automata. The construction is done with a SHA model of a multibody flow network in mind. It
is assumed that the continuous dynamics of the waterbodies of this SHA are inelastic.

3.4.1 Discrete Domains, Variables and States

The set of discrete domains of the variables in the model is Q𝑧 ⊂ Z, with 𝑧 ∈ 𝑍. Each domain and its members are
associated with a particular semantic: volumes, flow, and so on. The domains are tabulated in Table 3.2. The variables
are defined in terms of sets, 𝑄w, where 𝑊 = {w . . .}. 𝑧w ∈ 𝑍 refers to the corresponding domain index of a variable
𝑞wi , and 𝑍w denotes the corresponding domain. The variables of the automaton is union in equation (3.5), and the
domain of the automaton the product in equation (3.6) ⋃︁

w∈𝑊

𝑄w
(3.5)

Q =
∏︁

w∈𝑊

Q𝑧w

(3.6)

Every discrete variable is associated with a system component from Logical Description of a Flow Network. More
than one discrete variable can be associated with a component. The subscripts of each variable refer to the subscripts
of the corresponding component. If variables of type𝑄w are associated with halfpipes, then the discrete variable 𝑞wi is
associated with the halfpipe 𝑐1,1i . 𝑐w denotes the corresponding type of the component of a discrete variable, and 𝐶w

denotes the set of such components. The sets of discrete variables are tabulated in Table 3.4 through Table 3.7. These
variables are split into two groups. The first group consists of variables representing waterbodies. This group consists
of volumes, joints, flows, and control variables. The second group of variables detect events. This group consists of
logic and event variables. The cardinalities of |𝑄| and |Q| are defined in equation (3.7) and equation (3.8).

|𝑄| =
∑︁
w∈𝑊

|𝐶w| = 14|𝑉 |+ 25|𝐸| (3.7)

|Q| =
∏︁

w∈𝑊

|𝑍w||𝐶
w| = 214|𝑉 | · 225|𝐸|) (3.8)

For the simplest, non-trivial network, as seen in Fig. 3.6, there is 214·2 · 225·1 = 9007199254740992 different discrete
states, which underlines the rationale of Definition 3.1.1 (Structured Discrete Automaton).

Table 3.2: Discrete Domains
Domain
Semantic Notation Members Count

Volume Q0

{︃
0 → dry
1 → wet

|Q𝑧| = 2
Joint Q1

Flow Q2

{︃
0 → non-negative
1 → non-positive

Logic Q3

{︃
0 → bot
1 → top

Event Q4

{︃
0 → none
1 → detected

Control Q5

{︃
0 → off
1 → on

3.4. Discrete Flow Network Model 53

Multibody Flow Networks

Table 3.3: Discrete Valve Variables
Discrete Valve Variables
Domain Semantic Description Notation
Q1 Joint Joint 𝑞0,0𝑖

Q4 Event Seeding 𝑞0,1𝑖

Colliding 𝑞0,2𝑖

Receding 𝑞0,3𝑖

Table 3.4: Discrete Tub Variables
Discrete Tub Variables
Domain Semantic Description Notation
Q0 Volume Volume 𝑞0,0,0𝑖

Q1 Joint Joint 𝑞0,0,1𝑖

Q2 Flow Flow 𝑞0,0,2𝑖

Q3 Logic Source 𝑞0,0,3𝑖

Q4 Event Branching 𝑞0,0,4𝑖

Seeding 𝑞0,0,5𝑖

Cutting 𝑞0,0,6𝑖

Receding 𝑞0,0,7𝑖

Q5 Control Leg Control 𝑞0,0,8𝑖

Flow Control 𝑞0,0,9𝑖

Table 3.5: Discrete Midpipe Variables
Discrete Midpipe Variables
Domain Semantic Description Notation
Q1 Joint Joint 𝑞1,0,0𝑖

Q4 Event Branching 𝑞1,0,1𝑖

Colliding 𝑞1,0,2𝑖

Receding 𝑞1,0,3𝑖

Q5 Control Joint Control 𝑞1,0,4𝑖

Table 3.6: Discrete Halfpipe Variables
Discrete Halfpipe Variables
Domain Semantic Description Notation
Q1 Volume Leg 𝑞1,1,0𝑖,𝑗

Q3 Control Leg Control 𝑞1,1,1𝑖,𝑗

54 Chapter 3. Results

Multibody Flow Networks

Table 3.7: Discrete Endpipe Variables
Discrete Endpipe Variables
Domain Semantic Description Notation
Q1 Joint Joint 𝑞1,2,0𝑖,𝑗

Q2 Flow Flow 𝑞1,2,1𝑖,𝑗

Q3 Logic Source 𝑞1,2,3𝑖,𝑗

Q4 Event Branching 𝑞1,2,4𝑖,𝑗

Seeding 𝑞1,2,5𝑖,𝑗

Receding 𝑞1,2,6𝑖,𝑗

Cutting 𝑞1,2,7𝑖,𝑗

Q5 Control Flow Control 𝑞1,2,8𝑖,𝑗

Discrete Waterbody Variables

The control variables correspond to the discrete half of the roots of in Definition 3.1.1 (Structured Discrete Automaton).
This is the mechanism whereby the discretisation of continuous roots propagate into the discrete automaton and drive
the discrete dynamics. Control variables are in this automaton modelled as impulses that are cleared out after the first
timestep.

Volume variables describe which halfpipes and tubs are part of some waterbody. A waterbody is composed by volume
variables called legs. The joint variables connect legs together. Even if both legs of a halfpipe are wet they are only part
of the same waterbody if the midpipe joint is wet. Similarly, for the valve joints and the legs of the incident components
(Definition 3.3.5 (Incident Components)). Flow variables of wet legs describe the direction of flow. In a hybrid model
the corresponding flow control variables might track the sign of the continuous flow. The flow variables of dry legs
will limit the seeding of waterbodies. Perhaps the outside pressure of a dry tub is high enough to prevent a waterbody
internal to the pipe network from entering the tub. It might even be about to push water away from the valve, potentially
cutting a waterbody into several pieces.

To visualise the discrete state of the model, discrete state diagrams will be used. These annotate the network diagrams
of Logical Description of a Flow Network, like Fig. 3.6, with discrete variables in some particular state. These diagrams
are also programatically generated with [RH22]. Variables of a particular component is drawn on top of the component.
Blue coloring indicates wet volumes, joints or active sources, while white coloring means dry. The arrows indicate the
value of the directions of flow. Non-negative states point downwards. Note that non-negative flow in a tub variable
means the tub is not draining.

Consider for example a structured discrete automaton,𝐴0, of the system𝐺0 from Example 3.3.1 (Basic Flow Network)
in the discrete state, 𝑞0, as visualised in Fig. 3.9. Water is entering the pipe from both valves, but the pipe is not yet
filled, as can be seen by the white coloring of the midpipe. The blue, downward pointing triangles of each tub indicates
that both tubs are sources, and are not draining water from the connected waterbody. In a hybrid simulation, during
the course of the construction of a continuous trajectory, the pipe would eventually fill. This would cause a root to be
detected for [𝑉𝑚𝑎𝑥 − (𝑉 1,1

0,0 + 𝑉 1,1
0,1) < 0], where 𝑉 1,1

0,𝑗 is the continuous variable of the volume in the halfpipe. The
hybrid execution would break out of the continuous subexecution, and construct a discrete subexecution, 𝛿𝐷. The final
state of 𝛿𝐷, 𝑞(𝑡𝑚), would eventually be used to construct the next continuous subexecution.

The initial state 𝑞(𝑡0) of this discrete trajectory would have the midpipe joint control variable set high, 𝑞1,00 = 1,
to indicate that the pipe has just been filled. This would cause a collision event to be detected at the midpipe, and
a action subexecution would apply actions to ensure that the new set of algebraic constraints are satisfied. For an
inelastic continuous model, this might mean computing new values for the flows in the system. After the collision, the
flow through 𝑐0,00 must now be equal the flow through 𝑐0,01 . The eventual discrete state of an inelastic collision, 𝑞1, is
visualised in Fig. 3.9. The midpipe joint variable is here wet and colored blue.

3.4. Discrete Flow Network Model 55

Multibody Flow Networks

Fig. 3.9: Visualisation of 𝑞0 for 𝐴0 before collision. Water is entering the network from both valves.

56 Chapter 3. Results

Multibody Flow Networks

Fig. 3.10: Visualisation of 𝑞1 for 𝐴0 after collision. Water is flowing through the network from the top valve to the
bottom valve.

Discrete Event Detecting Variables

The logic and event variables together detect events during the course of an execution. Event variables are set high
whenever an event is detected. An event might spuriously be detected during the construction of an execution, but
disappear before the execution is complete. Only the final state of a discrete execution determines which events were
detected. The events detected in the previous executions be set high in the first timestep of the next discrete execution.
All event variables are equipped with an initial transition that resets detected events. This mechanism structures the
execution. In the initial step of an execution, reactions to the previously detected events are computed. In the eventual
steps these reactions propagate and new events will be detected.

Source variables are logic variables that describe whether or not the incident component of a valve (Definition 3.3.5

3.4. Discrete Flow Network Model 57

Multibody Flow Networks

(Incident Components)) is supplying water to the valve. The count of these variables is used to determine whether a dry
valve is about to become wet, or whether a wet valve is about to become dry. This counting principle was illustrated in
Example 3.1.3 (Counting Automaton). In Fig. 3.9 both tubs are sourcing their valve and their flow triangles are shaded
blue. Neither halfpipe is sourcing and so their flow triangles are shaded white. After the collision Fig. 3.10 the flow
through the lower halfpipe and valve have changed sign. The lower tub is no longer a source to the valve, instead the
lower halfpipe has become a source.

Event variables come in five types. Branching and seeding describe the imminent expansion of a waterbody. Branch
events are detected when a waterbody is about to expand into a valve, or a midpipe. This might cause water to flow
into dry halfpipes and tubs. This is represented by seed events. Receding events capture the drying up of wet tubs and
halfpipes. This might cause water to stop flowing into wet halfpipes and tubs. This is represented by cutting events.
Collision events describe when a waterbody branches into an already wet valve, or when more than one waterbody
branches into a dry valve or midpipe.

Lets revisit the example in Fig. 3.9. This is a collision of two waterbodies, and a collision event was detected. This
detection would happen in two steps. First, because the midpipe joint control variable was set high in the initial state,
𝑞0, the transition that guards the branching event would evaluate to true, and in the next discrete state, 𝑞2, the branching
event variable for the midpipe would go high, as seen in Fig. 3.11. Branching is highlighted in dark yellow. A collision
event would then be detected as both halfpipes are already wet. In the next state, 𝑞3, the midpipe collision event would
also go high, as seen in Fig. 3.12.

58 Chapter 3. Results

Multibody Flow Networks

Fig. 3.11: Visualisation of 𝑞2 for 𝐴0. The pipe has become completely full, and a midpipe branching event has been
detected.

3.4. Discrete Flow Network Model 59

Multibody Flow Networks

Fig. 3.12: Visualisation of 𝑞3 for 𝐴0. A midpipe collision event has been detected, as the midpipe was branching, and
both sides of the midpipe were wet.

Speeding happens only in and around valves, and not midpipes. All dry incident components of a valve can potentially
be seeded. A common scenario is when the tub of a completely dry network suddenly becomes wet. Perhaps a gate
was opened, and power production is about to start. The waterbody in the tub branches into the valve, and causes the
valve and endpipe 𝑐1,20,0 to seed. The resulting end-state, 𝑞4, is visualised in Fig. 3.13. Branching events are colored in
dark orange, and seeding events in bright orange.

60 Chapter 3. Results

Multibody Flow Networks

Fig. 3.13: Visualisation of 𝑞4 for 𝐴0.

Receding events are controlled with the halfpipe and tub leg control variables, and would be controlled by continuous
dynamics. A wet tub recedes, for example, when the water level in the tub sinks below the valve. Recall that valves
also represent gates. A wet halfpipe recedes when its volume goes to zero. If a recession causes the number of sources
in a valve to be zero it causes a cutting event in any other wet leg incident to the valve. A hybrid model would then set
the flows into these legs, or tubs, to zero.

3.4. Discrete Flow Network Model 61

Multibody Flow Networks

3.4.2 Discrete Transitions

The symbols of the discrete automaton in [Hop79] were dropped in Definition 3.1.1 (Structured Discrete Automaton),
yet are still useful to describe the dynamics of the model. Every transition is associated with a symbol. The symbols of
the discrete model are grouped into |𝑍| different sets, 𝑆𝑧 = {𝑠𝑧𝑦 . . .}, each uniquely associated with a discrete domain.
The set of the symbols, or the alphabet, of the discrete model, is the union in equation (3.9), and the symbols are
tabulated in table Table 3.8.

𝑆 =
⋃︁
𝑧∈𝑍

𝑆𝑧
(3.9)

Table 3.8: Discrete Symbols
Symbols
Semantic Notation Count

Volume 𝑆0 =

{︃
𝑠00 → seed
𝑠01 → reap

|𝑆0| = 2

Joint 𝑆𝑧 =
{︁
𝑠𝑧0 → flip |𝑆𝑧| = 1

Flow
Logic
Event
Control

A transition, 𝑒w,𝑗
i , will be defined in terms of a variable, 𝑞wi and a symbol, 𝑠𝑗 ∈ 𝑆𝑧w . The transition equations, 𝑓 , of

every transition 𝑒w,𝑗
i is defined in equation (3.10). If the top level expression of a transition guard is a disjunction, as

in equation (3.10), the 𝐾 operands of the disjunction are called guard alternatives denoted ℎw,𝑗,𝑘. The transitions of
the automaton is the union in equation (3.12).

𝑓(𝑞) ≜ 𝑞wi = 1 (3.10)

𝑔w,𝑗
i (𝑞) =

⋀︁
𝑘∈𝐾

ℎw,𝑗,𝑘
i (𝑞) (3.11)

𝐸 =
⋃︁

w∈𝑊

𝑄× 𝑆zw

(3.12)

The number of transitions, |𝐸| for the simplest, non-trivial network,𝐺0 is 57, which is tiny compared to the size of the
discrete domain. This again, underlines the rationale of Definition 3.1.1 (Structured Discrete Automaton).

Discrete Control, Flow and Event Reset Guards

The guards of both control and flow is determined by the control variables. As mentioned in Discrete Waterbody
Variables, control variables are reset in the first timestep. Let w denote the superscript of a control variable:

𝑔w,0
i ≜ [𝑡 = 0] ∧ [𝑞wi = 1]

Flow is flipped in reaction to a high flow control variable. Let w0 denote the superscripts of a flow variable, and let
w1 denote the corresponding superscript of the flow control variable, then:

𝑔w0,𝑗
i ≜ [𝑞w1,0

i = 1]

Events are reset in the first timestep.

ℎw,0
i ≜ [𝑡 = 0] ∧ [𝑞wi = 1]

Every event variable transition has a reset guard alternative in addition to the alternatives that detect the event and clear
out spurious detections. These will be treated in turn below.

62 Chapter 3. Results

Multibody Flow Networks

Discrete Source Guards

The tub source guard has two alternatives. The first one changes a false variable to true if the tub leg is wet and the tub
flow is positive. Recall that a positive tub flow means the tub is not draining water from the pipe network. The second
changes a true variable to false whenever the tub leg is dry, or the tub flow is negative. The guards of the endpipe
source variables are specified in the same manner, with respect to the halfpipe leg and endpipe flow. However, the flow
through the endpipe is not necessarily sourcing if the flow is positive, as was the case with the tub. It depends on which
endpipe it is. The sourcing flow constant, 𝑙, is defined in equation (3.13) to compute the sourcing flow for any source.

𝑙wi ≜

{︃
w = (0, 0, 3) → 1

w = (1, 2, 1) ∧ i = (𝑖, 𝑗) → ¬𝑗
(3.13)

Let w0, w1, w2 denote the superscripts of the source, tub and flow variables respectively, with subscript i. Let the
sourcing flow be 𝑙 = 𝑙wi . The two alternatives of a source guard are then:

ℎw1

i ≜ [𝑞w0

i = 0] ∧ [𝑞w1

i = 1] ∧ [𝑞w2

i = 𝑙]

ℎw0,0,1
i ≜ [𝑞w0

i = 1] ∧ ¬([𝑞w1

i = 1] ∧ [𝑞w2

i = 𝑙])

Discrete Leg Guards

A tub leg is seeded and reaped via the tub leg control. This control would be set high or low by a hybrid model when
a waterbody external to the system connects or disconnects from the valve.

𝑔0,0,0,𝑗i ≜ [𝑞0,0,0i = 𝑗] ∧ [𝑞0,0,9i = 1]

Halfpipe legs are wetted whenever some wet incident valve starts pushing water into it, or when the opposite halfpipe
has completely filled the pipe. A halfpipe leg variable can be seeded either from its incident valve or through the
midpipe. It is reaped in reaction to its endpipe receding or when the halfpipe leg control is set high:

𝑔1,1,0,0𝑖,𝑗 ≜ [𝑡 = 0] ∧ [𝑞1,1,0𝑖,𝑗 = 0] ∧ ([𝑞1,2,5𝑖,𝑗 = 1] ∨ [𝑞1,0,1𝑖 = 1])

𝑔1,1,0,1𝑖,𝑗 ≜ [𝑡 = 0] ∧ [𝑞1,1,0𝑖,𝑗 = 1] ∧ ([𝑞1,0,3𝑖,𝑗 = 1] ∨ [𝑞0,0,9𝑖 = 1])

Discrete Joint Guards

Tub joints wet whenever the corresponding tub is either seeding or branching. They dry when the tub is either cutting or
receding. Similarly the endpipe joint wets when the endpipe is either seeding or branching, and dries when the endpipe
is either cutting or receding:

ℎ0,0,1,0i ≜ [𝑡 = 0] ∧ [𝑞0,0,1i = 0] ∧ ([𝑞0,0,4i = 1] ∨ [𝑞0,0,5i = 1])

ℎ0,0,1,1i ≜ [𝑡 = 0] ∧ [𝑞0,0,1i = 1] ∧ ([𝑞0,0,6i = 1] ∨ [𝑞0,0,7i = 1])

ℎ1,2,0,0,0i ≜ [𝑡 = 0] ∧ [𝑞1,2,0i = 0] ∧ ([𝑞1,2,4i = 1] ∨ [𝑞1,2,5i = 1])

ℎ1,2,0,0,1i ≜ [𝑡 = 0] ∧ [𝑞1,2,0i = 0] ∧ ([𝑞1,2,6i = 1] ∨ [𝑞1,2,7i = 1])

The valve joint variable wets in response to a seeding event, and dries in response to a receding event:

ℎ0,0,0,0i ≜ [𝑡 = 0] ∧ [𝑞0,0i = 0] ∧ [𝑞0,2i = 1]

ℎ0,0,0,1i ≜ [𝑡 = 0] ∧ [𝑞0,0i = 1] ∧ [𝑞0,4i = 1]

The midpipe joint variable wets in reaction to a branching event and dries in reaction to a recession event:

ℎ1,0,0,0,0i ≜ [𝑡 = 0] ∧ [𝑞1,0,0i = 0] ∧ [𝑞1,0,1i = 1]

ℎ1,0,0,0,1i ≜ [𝑡 = 0] ∧ [𝑞1,0,0i = 1] ∧ [𝑞1,0,3i = 1]

3.4. Discrete Flow Network Model 63

Multibody Flow Networks

Discrete Branching Event Guards

A midpipe branching event is detected when for a dry midpipe joint when the joint control variable is high. This control
variable would be set high by a root of the SHA when the volume of the halfpipes fill the entire pipe:

ℎ1,0,1,0,1i ≜ [𝑞1,0,0i = 0] ∧ [𝑞1,0,4i = 1]

A tub branching event is detected when a wet tub with flow into the network branches into a dry tub joint:

ℎ0,0,4,0,1i ≜ [𝑞0,0,4i = 0] ∧ [𝑞0,0,0i = 1] ∧ [𝑞0,0,2i = 1] ∧ [𝑞0,0,1i = 0]

An endpipe branching event is detected in a dry endpipe joint when the corresponding halfpipe is part of a waterbody
about to enter its incident valve. Let 𝑙 = 𝑙1,2,0i denote the sourcing flow from equation (3.13), the guard alternative is
then:

ℎ1,2,4,0,1i ≜ [𝑞1,2,4i = 0] ∧ [𝑞1,2,0i = 0] ∧ [𝑞1,0,0i = 1] ∧ [𝑞1,2,1i = 𝑙]

Discrete Seeding Event Guards

Seeding happens as a result of branching. When a waterbody branches into a dry valve it is seeded. This might cause
the dry tubs and endpipes incident to the valve to be seeded as well. The seeding of a valve is defined in terms of a
branching count, 𝑏, in equation (3.16). Seeding is detected in a dry valve with a positive branching count, and the event
is disabled if the branching count goes to zero:

ℎ0,1,0,0i ≜ [𝑞0,1i = 0] ∧ [𝑞0,0i = 0] ∧ [𝑏0,0i > 1]

ℎ0,1,0,1i ≜ [𝑞0,1i = 1] ∧ [𝑏0,0i = 0]

Let j denote the subscript of the incident valve of a tub or endpipe. Let 𝑙 = 𝑙wi denote the sourcing flow from equation
(3.13). The guard alternatives of seeding event detection for tubs and endpipes is then defined in equation (3.14). In
addition a seeding event in a tub is disabled if a branching event is detected. This alternative is defined in equation
(3.15).

ℎ0,0,5,0,1i ≜ [𝑞0,0,5i = 0] ∧ [𝑞0,0,1i = 0] ∧ [𝑞0,0,2i = ¬𝑙] ∧ [𝑞0,0,4i = 0] ∧ [𝑞0,1j = 1]

ℎ1,2,5,0,1i ≜ [𝑞1,2,5i = 0] ∧ [𝑞1,2,0i = 0] ∧ [𝑞1,2,1i = ¬𝑙] ∧ [𝑞1,1,1i = 0] ∧ ([𝑞0,1j = 1] ∨ [𝑞0,0,1j = 1])
(3.14)

ℎ0,0,5,0,2i ≜ [𝑞0,0,5i = 1] ∧ [𝑞0,0,4i = 1] (3.15)

Discrete Collision Event Guards

Valve collisions are defined in terms of a counter called the branching count. Let𝐵w
i denote the incident branching event

variables of a valve variable 𝑞wi , where the incident components are defined in Definition 3.3.5 (Incident Components).
The branching count of a valve variable is defined in equation (3.16).

𝑏wi ≜
∑︁

𝑞∈𝐵w
i

[𝑞 = 1] (3.16)

A valve collision is detected when a wet valve has a positive branching count, or when the branching count is greater
than one. It is disabled when either a wet valve has zero branching count, or when the collision count is less than one.
This guard is a tracking guard, similar to the automaton in Example 3.1.3 (Counting Automaton).

ℎ0,2,0,1i ≜ [𝑞0,2i = 0] ∧ (([𝑞0,0i = 1] ∧ [𝑏0,0i > 1]) ∨ ([𝑞0,0i = 0] ∧ [𝑏0,0i > 2]))

ℎ0,2,0,1i ≜ [𝑞0,2i = 1] ∧ ¬(([𝑞0,0i = 1] ∧ [𝑏0,0i > 1]) ∨ ([𝑞0,0i = 0] ∧ [𝑏0,0i > 2]))

A midpipe collision happens if a branching has been detected, and there is a waterbody in each halfpipe. This is the
case when each halfpipe has either a wet halfpipe leg, or a seeding endpipe on each side.

ℎ1,0,2,0,1i ≜ [𝑞1,0,1i = 1] ∧ ([𝑞1,1,0i,0 = 1] ∨ [𝑞1,2,5i,0 = 1]) ∧ ([𝑞1,1,0i,1 = 1] ∨ [𝑞1,2,5i,1 = 1])

64 Chapter 3. Results

Multibody Flow Networks

Discrete Cutting Event Guards

Cutting events detect the severing of a waterbody. A tub or endpipe is cut whenever it is sourcing its incident valve,
and its leg control is set high. Let w0, w1, w2 denote the cutting event, control and source variables respectively. Then
both ℎ0,0,6,0,1 and ℎ1,2,7,0,1i are defined as:

ℎw0

i ≜ [𝑡 = 0] ∧ [𝑞w0 = 0] ∧ [𝑞w1

i = 1] ∧ [𝑞w2

i = 1]

Discrete Receding Event Guards

Tubs, valves, midpipes, and endpipes all recede when the waterbodies that inhabit them are about to leave. Recession
spreads from valves and midpipes. Receding events will be defined in terms of a source count, 𝑠. This is defined in a
similar manner to the branching count in equation (3.16). Let 𝑆w

i denote the incident source event variables of a valve
variable 𝑞wi . The incident components are defined as in Definition 3.3.5 (Incident Components). The source count of
a valve variable is then defined in equation (3.17).

𝑠wi ≜
∑︁
𝑞∈𝑆w

i

[𝑞 = 1] (3.17)

Receding is detected in wet valves with zero source count:

ℎ0,3,0,1i ≜ [𝑞0,3i = 1] ∧ [𝑠0,0i = 0]

A tub recedes when its incident valve is receding. This variable tracks the valve recession and if the valve at some later
point stops receding then the tub will no longer recede:

ℎ0,0,7,0,1i0
≜ [𝑞0,0,7i0

= 0] ∧ [𝑞0,0,6i0
= 0] ∧ [𝑞0,4i1

= 1]

ℎ0,0,7,0,2i0
≜ [𝑡 ̸= 0] ∧ [𝑞0,0,7i0

= 1] ∧ ¬[𝑞0,4i1
= 1]

A midpipe receding event is detected when any of its endpipes are receding. In this scenario the pipe is about to go
from fully to partially submerged; the valve supplying water to the pipe has just run dry. This is a tracking event, and
only done in eventual timesteps, based on events detected in the current execution.

ℎ1,0,3,0,1i ≜ [𝑡 ̸= 0] ∧ [𝑞1,0,3 = 0] ∧ ([𝑞1,2,6i,0 = 1] ∨ [𝑞1,2,6i,0 = 1])

ℎ1,0,3,0,2i ≜ [𝑡 ̸= 0] ∧ [𝑞1,0,3 = 1] ∧ ¬([𝑞1,2,6i,0 = 1] ∨ [𝑞1,2,6i,0 = 1])

The endpipe recede variable tracks the recession of its valve, but is disabled in the event of a cutting:

ℎ1,2,6,0,1i ≜ [𝑞1,2,6i = 0] ∧ [𝑞1,2,7i = 0] ∧ [𝑞0,3j = 1]

ℎ1,2,6,0,2i ≜ [𝑡 ̸= 0] ∧ [𝑞1,2,6i = 1] ∧ [𝑞0,3j = 0]

3.4.3 Determinism Of The Discrete Model

Recall from Determinism of a Structured Discrete Automaton that the determinism of a SDA was defined in terms of
the solvability of the active set of transitions, 𝐹⊤ for some 𝜐. The transitions of the model were defined in terms of
variables and symbols in equation (3.12). For a given variable 𝑞wi there were |𝑆𝑧w | transitions, one per domain symbol.
Lets denote this set 𝐸w

i . Each transition equation in this set is on the form 𝑓 ≜ 𝑞wi = 1, and the transition guards in
this set are mutually exclusive. This means that if 𝑗0, 𝑗1 ∈ 𝑆𝑧w for some variable 𝑞wi , then:

𝑔w,𝑗0
i (𝜐) =⇒ ¬𝑔w,𝑗1

i (𝜐) (3.18)

As a consequence, ∀𝑞 ∈ Q, 𝐹 ≜ 𝐹⊤(𝜐) will be on the form ˙̄𝑞 = 𝐹 (𝜐), and ∄𝑘0, 𝑘1 ∈ |𝐹⊤(𝑞)| such that 𝑞𝑘0
, and

𝑞𝑘1 are the same variables. That would contradict equation (3.18). Therefore the automaton is globally deterministic.
Here, because the right hand side is a constant one, even if such 𝑘0 and 𝑘1 existed, 𝐹 would still be uniquely solvable
as one of them is a redundant equation. However, the more interesting result is that an automaton constructed in this
manner, is globally deterministic for any right hand side 𝑓(𝜐).

3.4. Discrete Flow Network Model 65

Multibody Flow Networks

3.4.4 Zenolessness Of The Discrete Model

Eventually it will be the case that ∄(𝑓, 𝑔) ∈ 𝐸 such that 𝑔(𝜐) = ⊤; eventual 𝐹⊤(𝜐) = ∅, and the execution will
stop. The zenolessness of the model is showed by exhaustion. Every variable will eventually converge, and since every
variable converges the model is zenoless.

The guards in Discrete Control, Flow and Event Reset Guards are only potentially active in 𝑡 = 0. In addition any
guard reacting to a detected event is constrained to the first timestep. These guards are termed event reacting guards.
As discussed in Discrete Control, Flow and Event Reset Guards, the detected events from the last discrete execution
are active in the first timestep. execution.

The guards in Discrete Leg Guards are either conjoined to an active control variable, which converges to zero after
one step, or are event reacting. All the guards in Discrete Joint Guards, Discrete Cutting Event Guards and Discrete
Cutting Event Guards are also event reacting.

The Discrete Source Guards are logic variables defined in terms of the leg and flow of a tub, or halfpipe, and endpipe.
Because the leg and flow will converge after the first timestep, the source variables will also converge. The equation
(3.17) will, thus, also converge.

The guard of the midpipe branching event in Discrete Branching Event Guards is conjoined with a control variable
being high, and thus the midpipe branching event will converge in the first timestep. Tub branching events conjoins
a tub leg, tub flow, and valve joint, which all converge in the first timestep. Thus tub branching events also converge.
Similarly endpipe branching events conjoins a halfpipe leg, endpipe flow, and valve joint which all converge in the
first timestep. Thus all branching events converge. This means that the branching count in equation (3.16) will also
converge.

Finally the guards of Discrete Seeding Event Guards and Discrete Collision Event Guards are all defined in terms of
convergent branching counts and variables. The guards of Discrete Receding Event Guards are all defined in terms
of a convergent source count and convergent variables. Thus all these guards and the variables whose transitions they
guard also converge. And since every variable converges, the model is zenoless.

3.4.5 Implementing The Discrete Model

The discrete model was implemented in [RH22]. Structured discrete automata were constructed, and executions gener-
ated for a sample of initial value problems. The sequence of discrete simulations mirror the expected discrete subexe-
cutions that a hybrid execution of a hypothetical SHA would produce. The events detected in these sequences would be
instrumented by a SHA with actions to ensure that the continuous state would satisfy the next continuous subexecution.
In the diagrams of these executions, 𝑞𝑖,𝑗 will be used denote the 𝑗th state of the 𝑖th discrete subexecution. Similarly for
the discrete time trajectories and 𝑡𝑖,𝑗 .

The initial state of the first execution in each of these sequences, 𝑞0,0 is known a priori, and the initial state of the 𝑖th
execution, 𝑞𝑖,0, is the final state of the 𝑖− 1th execution, 𝑞𝑖−1,𝑚, sometimes modified with certain control variables set
to one. These control variables are roots of the SHA and would be computed by the root subexecution.

The sequences are visualised with programatically drawn state diagrams using [RH22]. Control variables are not drawn.

66 Chapter 3. Results

Multibody Flow Networks

Filling The Simple Network Top Down

In this sequence the simple system in Example 3.3.1 (Basic Flow Network) is filled from top down. The discrete model
starts dry and empty in 𝑞0,0, with the upstream tub leg control variable set high. The executions eventually fill the
pipe network from top to bottom, detecting branching and seeding events in the process. The sequence of 𝑞0,0, 𝑞𝑖,𝑚 is
visualised in the figures Fig. 2.1 through Fig. 2.6 in Diagrams For Filling The Simple Network Top Down.

Draining The Simple Network Top Down

In this sequence the simple system in Example 3.3.1 (Basic Flow Network) starts out filled, just like it ended in Filling
The Simple Network Top Down. The tub control of 𝑐0,00,0 is set high, indicating that the tub has just run dry. The sequence
eventually drains the pipe network from top to bottom, detecting cutting and receding events in the process. Continuous
flow and volume variables of the receding components would for example be set to zero. The sequence of 𝑞0,0, 𝑞𝑖,𝑚 is
visualised in the figures Fig. 2.7 through Fig. 2.11 in Diagrams For Draining The Simple Network Top Down.

3.4. Discrete Flow Network Model 67

Multibody Flow Networks

68 Chapter 3. Results

CHAPTER

FOUR

DISCUSSION

The overarching question of the report, as set out in Goals, was the organisation of computations and in particular the
construction of a suite of interrelated computational models supporting a technical labour process. It was assumed that
construction of computational models through left-to-right transformations of system models was an efficient way to
do this. Practical computation was highlighted as a useful system modelling tool. The framing of the report was one
of hydropower production planning, and the goal was to construct a system model of a watercourse. The DAE and HA
were identified as suitable system modelling frameworks for this construction. The HA enables the combination of the
DAE flow networks in [JT14] with the hybrid system theoretical approach to the modelling of temporary flow paths of
[OM10]. The former meets the challenges of topological complexity and the latter meets the challenges of complex
waterbody distributions and transient patterns of flow. These two challenges were assumed to be main obstacles to
the direct implementation of a satisfactory computational model for simulation, and the cause of ad-hoc solutions in
computational software. It was assumed that direct implementation was preferable to ad-hoc solutions.

4.1 Modelling Framework and Modelling Experience

This report is a snapshot of a work in progress - the construction of a new hybrid system theoretical model called a
multibody flow network. This model pushes the envelope of hybrid automata in terms of discrete detail. The tooling
required to support such a complex construction, the tooling that enables practical computation with hybrid automata, is
an area of active research ([Zim10], [KM18], [CN21]). During the construction of the discrete part of this model there
was a definite need for practical computation to debug, verify, and test designs - and the lack of a directly representable
model made it difficult. The modelling frameworks set out in Structured Discrete Automata and Structured Hybrid
Automata was a response to that problem. The observation in [Cam95] will be repeated for a second time:

Being able to do engineering design and computer simulation directly on these original equations would
lead to faster simulation and design, permit easier model variation, and allow for more complex models.

The discrete and hybrid structured automata were designed with an eye on direct computation in the face of highly
detailed discrete dynamics. The separation of the hybrid automaton into a discrete and hybrid part enabled the definition
and analysis of the discrete aspects of the model to be done separately from the hybrid construction. Defining the
transition guards as functions of discrete time made it easier to construct a model whose zenoness could be reasoned
about. The execution of a SHA formalises the event detecting approach described in Simulation of Hybrid Automata and
enables a direct implementation of its construction. Future work in this direction is outlined in Iterating on Structured
Automata.

The discrete multibody flow network defined in Discrete Flow Network Model is the discrete part of a hybrid multibody
flow network model. It can represent arbitrary distributions of waterbodies and patterns of flow in a network of valves
and pipes and is a basis for the continuous dynamics of a SHA. It can detect the discrete events a SHA would need
to handle the changing continuous algebraic constraints of a multibody flow network. In this respect, it is a sufficient
basis for the construction of the SHA. Executions of the discrete model were successfully constructed and illustrated
using an implementation of the algorithm in An event-based coroutine for simulating a Structured Discrete Automata.
The discrete model was shown to be deterministic and zenofree, which are useful results in the context of practical
computation. However, it does fall short of being a satisfactory basis for the construction of a system model of a

69

Multibody Flow Networks

tunnel network in the context hydropower production planning. It thus falls even shorter of being a system model for a
hydropower producing watercourse. The latter was set out as an explicit goal in Goals, and has not been met. There is
still some way to go before such a model can be constructed. This will be addressed in Iterating the Discrete Model,
Constructing the Hybrid Model, Constructing a Watercourse Model, and Controlling a Watercourse Model.

4.2 Implementation Experience

The implementation of these frameworks were, like [Zim10], written in C++. In this report a library-based approach
was taken. This sidesteps the issue of designing a modelling language, which is a common approach when it comes to
the design of computational software for hybrid systems. Both [Zim10] and [CN21] take a language-based approach and
discuss previous language-based solutions. A dedicated modelling language has the potential for ergonomic and elegant
model definitions in a way that is hard to replicate, even with a well-designed library API . However, in an operative
context, like the one assumed in this report (see Fig. 1.7), no computation or model transformation can assume to have
a monopoly on the representation of a system model. Its representation needs to be accessible for a plethora of different
computations and applications. A textual representation, in the form of a modelling language designed for humans,
is not a practical data format in this setting. General purpose data formats designed for programmatic consumption,
supported across a variety of multi-purpose languages, is likely to be used instead.

A library for an existing multi-purpose programming language, alternatively combined with bindings in an existing
scripting language, lets the modeller take advantage of an already existing ecosystem of tooling and packages. A
language and ecosystem that the modeller is, likely, already somewhat comfortable with. This makes practical compu-
tation more ergonomic and flexible without the need for intermediate formats to define models and store computational
results. There is no contradiction between programmatic and language-based construction, but the benefits of the latter
do not seem to be worth the effort in this setting, and here, a library-based approach is more pragmatic.

Structured hybrid automata were defined in terms of structured discrete automata. As a result the implementation of the
latter and the construction of its execution could be directly reused by the implementation of the former. The algorithms
for constructing executions were implemented as event-based coroutines. The construction of the continuous executions
were implemented using the root finding DAE-solver IDA from [HBG+05]. The library was fitted with Python bindings.
The events of a construction are coroutine suspension points, the events are derived directly from the defintions of the
executions. This in turn means that the constructions are suspendable. This enable fast iteration as a construction can
be suspended according to experiment-specific logic.

Python has a rich ecosystem of data analysis and visualisation tools which can be used directly during the course of such
a construction. A modeller is able to define an event continuation in Python that can suspend the construction and / or
inspect its current state. The state of the construction includes access to a symbolic representation of the constructions
components. This is a consequence of the modelling framework being directly implemented. The computational
software itself needs a direct symbolic representation of these components to construct the execution. The discrete
diagrams seen in Discrete Flow Network Model and Discrete Model Diagrams were programmatically generated in
this manner by combining the logical description of the system, with the state of the construction, and rendering these
with Python packages [P+22] and [N+22]. The visualisation of complex discrete states in diagram form was of great
help during the construction of the discrete model. The simulations, and associated diagrams ,of Example (HA Flower
System) were also generated in a similar manner using the Python package [Hun07]. Another useful tool was the
rendering of the currently active set of transitions, activities, actions, and roots in LaTeX for debugging purposes
during the course of an execution.

Coroutines is a new addition to C++ (see [BXHP21] for a recent application) and can not be considered to be a
production-ready feature yet. The implementation turned out more difficult than it had to be, as the compiler kept
running into internal compiler errors. Nevertheless, being able to suspend the construction of an execution is a useful
quality in the context of practical computation. Further work in this direction is described in Iterating on Structured
Automata.

70 Chapter 4. Discussion

Multibody Flow Networks

4.3 Future work

4.3.1 Iterating on Structured Automata

This is the initial iteration of structured automata. There are no doubt errors, both in definitions and implementation,
which need to be worked out. In addition this report left out the definition of determinism and zenoness of the SHA,
which are important qualities in the context of practical computation and system modelling. Even though a SDA is
zenoless, the hybrid execution can still get stuck in a sequence of discrete executions. This potential zenoness is
inherent to the Definition 3.2.9 (Hybrid Execution), and made obvious in Fig. 3.5.

In Structured Discrete Automata the case of an overdetermined set of transition equations was set aside. Definition 3.1.3
(Discrete execution) was constructed in terms of solvable transition equations. An overdetermined set of transition
equations has an obvious interpretation; that of nondeterminism. A more powerful definition of the execution of a SDA
would also include executions that bifurcate as a result of overdetermination. This would be needed be able to represent
𝑥 ∈ 𝐷(𝑞)∩𝐺(𝑒) as 𝑥 ∈ 𝐺(𝑒0)∩𝐺(𝑒1). The convergence of a discrete execution was defined with respect to 𝑞 instead
of 𝐺⊤, which is less ergonomic in the case one wants to construct a non-blocking automaton, as it requires a slightly
more complex discrete dynamics than one defined in terms of 𝐺⊤.

In Structured Hybrid Automata the actions were defined in terms of a variable, function, and guard. It was assumed
that no two actions could be active at the same time, for the same variable. A more powerful definition would use an
implicit equation instead of a variable and function. This would be similar to the definitions of the continuous dynamics
of the SHA or discrete dynamics of the SDA. This creates potential for ambiguity and bifurcation, but it is a necessary
generalization to efficiently represent the actions required by a SHA of a multibody flow network. In particular it would
be required when handling collisions between inelastic waterbodies. These collisions require solving affine and acausal
systems of equations, constructed based on the current discrete state. It was also assumed that no two roots referred
to the same discrete variable. This is an unnecessary simplification, but a more powerful definition will again create
potential for ambiguity and bifurcation.

The discrete multibody flow network model was manually shown to be zenofree and deterministic by considering
the convergence of guards, variables and counting variables. This is a tedious and fragile approach which should be
improved. The manual approach suggests an algorithmic solution for SDAs like the discrete multibody flow network.
In this case determinism could be sufficiently checked, for example, by checking mutual exclusivity of the transition
guards of a variable, combined with uniqueness of solution of the corresponding transition equations.

Structured automata are designed for systems modelling, and only need to enable practical computation as a modelling
tool. However, the computations of production planning (Computations of Hydropower Production Planning) are done
in an operative setting with highly varied hardware, and a high degree of regularity. Computational input varies only
slightly in two consecutive computations. This is an interesting context for investigating the efficient computational
architecture of hybrid systems. A JIT -compilation based approach, as demonstrated in [CN21], can simplify the soft-
ware distribution model, and at the same time generate efficient executable code in the face of hardware variation. The
high degree of regularity of computations provides interesting possibilities with regards to memoisation of causalised
& compiled continuous dynamics in commonly inhabited discrete states of hybrid executions. This would come at the
cost of the JIT -compilation itself, as well as the added complexity of distributing a JIT -compilation framework.

The construction of the executions of a nondeterministic SDA or SHA will need to handle bifurcation points. The initial
implementation took the liberty of assuming that the automata were deterministic. Zenoness of a Hybrid Automaton
quoted Schaft discussing the handling of such a bifurcation [Sch00]:

In such situations the simulation software should provide a warning to the user, and if it is difficult to
make a definitive choice between several possibilities perhaps the solver should even work out all
reasonable options in parallel.

Implementation approaches to the construction of nondeterministic executions of structured automata is a very inter-
esting problem, particularly in the light of the implementation strategy in this report. The frame of a C++ coroutine
does not, currently, have value-semantics. It is an opaque object, and there is no simple way to copy the entire state of
a coroutine if the members of the frame are not trivial. However, if coroutine frames had value-semantics, such that a

4.3. Future work 71

Multibody Flow Networks

coroutine frame was copyable if all its members were copyable, it would become trivial to implement bifurcations. The
current coroutine-frame of an execution, suspended at a bifurcation event could be copied, and each copy instructed to
follow a different execution.

4.3.2 Iterating the Discrete Model

The discrete model in Discrete Flow Network Model has a shortcoming as it does not model valve openings. The
modelling of valve openings is crucial for an accurate representation of a watercourse, and a necessary addition before
constructing a watercourse system model that meets the demands of Goals. The upside is that the logical description
of the flow network system already can facilitate the opening and closing of valves on an per-incident component basis
(Definition 3.3.5 (Incident Components)) by adding suitable discrete endpipe and tub variables. In addition it would
greatly increase the expressive power of the model.

Nor is this iteration of the discrete model likely to be a minimal expression of its discrete dynamics, and might have both
redundancies and errors. The sequencing of transitions were done in a coarse manner, and the guards of the transitions
were designed to be mutually exclusive so that it would become easier to reason about determinism and zenoness.
Perhaps there is potential for relaxation and improvement. One such example would be to make the tracking variables
function as PD-regulators instead of P-regulators. This would ensure faster convergence of the discrete state. On the
other hand it would also cause a 𝐹⊤(𝜐) that was linear in 𝑞 to have a more complex structure, and impose sequencing
on its computation.

Nor is the proposed discrete model able to support elastic waterbodies. Consider again the discrete sequence of Fig.
3.9 and Fig. 3.10. Here waterbodies were assumed to be inelastic, and so the endpipe flow variables of the pipe would
be aligned during the course of collision resolution. In the case of an elastic waterbody, the flow directions would
remain the same until the pressure of the water column in the pipe eventually flips one or both of the continuous flows.
Now imagine the scenario where, at the point of collision, both valves recede. The waterbody in the pipe would float
midair, as it were. To model this state discretely, one might need to add a midpipe volume or droplet variable. This
is not required for being an adequate model for the computations of hydropower production planning, where only the
aggregate movement of water, on a scale much larger than the volume of a pipe, is of interest.

Finally, there is an issue with discrete “droplets”. Small waterbodies might become stuck in the pipe network. A
waterbody can only move through a pipe if it is big enough to fill the entire pipe, even though it can always retreat back
into the valve. In the case where gravity is pulling water into the pipe network from a tub, and the tub runs dry, or the
valve is shut before the emergent waterbody is large enough to fill a pipe, it will simply get stuck. It will stay there until
the tub starts feeding it water again, or it is merged with another waterbody from below. The scale of droplets is also
too small to cause much concern in this context.

4.3.3 Constructing the Hybrid Model

The discrete multibody flow network is the point of departure for a hybrid multibody flow network. The addition
of opening and closing of valves will require the consideration of over- and underdetermined continuous dynamics.
Consider for example a pipe that is fully submerged but closed at both ends. A construction of the continuous dynamics
of a SHA, based only on local information, might add two algebraic constraints - one for each end of the pipe. For an
inelastic body of water, where the flow into a submerged pipe is equal to the flow out of a submerged pipe, this will lead
to an overdetermined system of equations with redundant algebraic constraints. Similarly, with no connected valves,
the equations governing the pressure in model with quasi-stationary continuous dynamics will be underdetermined.
This underdetermination is not just a transient consequence of symbolic processing, as in [Zim13], it is the persistent
continuous dynamics of the system which last until one of the valves are opened. Elastic waterbodies would have
consequences on the discrete model as mentioned in Iterating the Discrete Model.

The computational software used to solve the consistent initialisation problem and to construct the continuous execution
in this report is based on regular DAEs, and use a DAE index that is not suitable for over- and underdetermined systems,
[Kun06]:

72 Chapter 4. Discussion

Multibody Flow Networks

Although the concept of the differentiation index is widely used, it has a major drawback, since it is not
suited for over- and underdetermined systems. The reason for this is that it is based on a solvability
concept that requires unique solvability.

The unique and global solvability result of [JMT15] requires at least one demand and pressure node connected to the
network. The problem of over- and underdetermination of the DAEs, generated during the construction of an execution
of a hybrid automaton, will likely become a point of focus for the construction of the hybrid model.

Another problem that needs to be dealt with is that of continuous actions. The discrete model detects branching, colli-
sions, separations, and recessions. Recessions and separations are easy enough to deal with; they simply require setting
the corresponding continuous flow variables to zero. Collisions and branching require more careful consideration. In
particular, the collision of two inelastic waterbodies requires solving an affine system of algebraic equations of flow.
This system of equations must be constructed based on the discrete state at the point of collision. The challenges of
event detection and zero-crossing, described in [ZYM08], poses yet another problem; is it even feasible to simulate a
model with such a high level of discrete detail?

4.3.4 Constructing a Watercourse Model

A SHA of a multibody flow network is one of many system models that make up a watercourse. Constructing a system
model of an entire hydropower producing watercourse was the goal set out in Goals. Models of reservoirs, catchments,
river systems, and power production remains to be constructed. These systems, in the context of production planning,
are not required to be modelled at a high level of discrete detail, and are trivial constructions in comparison to the one
in Discrete Flow Network Model. With a SHA of a watercourse in hand, the watercourse models, of the associated
computational models, could then be constructed through suitable left-to-right transformations.

4.3.5 Controlling a Watercourse Model

Optimal control is a cornerstone computation in the context of production planning. The question of control is even
relevant for plan simulations. It is not always the case that the production planning computation of Computations of
Hydropower Production Planning computes plans detailed enough for simulation. The plan might be computed for a
lumped group of units, whereas the simulation treats each unit separately, which requires the plan simulation itself to
deal with the problem of optimal control.

This might lead to ad-hoc solutions in simulation software, which faces the problems described in The Tunnel Systems
of a Hydropower Producing Watercourse. Some producers do not do production planning per se, and rely only on this
limited planning functionality in the plan simulation; maiming two very different animals with one stone. [OM10]
formulates an MPC problem based on a hybrid model for wastewater systems. Treating the limited planning that the
plan simulation does as a wastewater system, and simply limiting the flood, while softly satisfying production plans
might be a good starting point for constructing a formal model of this limited form of planning. An MLD similar to the
one used in [OM10] could be constructed by applying left-to-right model transformations of a watercourse SHA.

4.3. Future work 73

Multibody Flow Networks

74 Chapter 4. Discussion

CHAPTER

FIVE

CONCLUSION

Practical computation is an important tool for construction of hybrid automata with a high level of discrete detail.
Structured automata is a modelling framework designed with such constructions in mind. It decomposes the hybrid
automata into a structured discrete automaton and structured hybrid automaton. The transition guards of a structured
discrete automaton are dependent on the discrete time of an execution which enables the sequencing of transitions in
time, which makes it easier to reason about the zenoness of a model. The execution of a structured hybrid automaton
is a formalisation of the event detecting approach to simulating hybrid systems and in particular makes the relation
between a continuous root and a discrete event explicit. It is a step in the direction of a more formalised approach to
the simulation of a hybrid automaton.

A multibody flow network is a new hybrid system theoretical model combining the continuous dynamics of the flow
networks of [JT14] with the temporary flow paths [OM10] to support arbitrary distributions of waterbodies and arbitrary
flow paths in a tunnel network. Its discrete part was implemented and simulated as a structured discrete automaton, and
shown to be deterministic and zenofree. The discrete multibody flow network is able to represent arbitrary distributions
of waterbodies and patterns of flow in a network of pipes and valves, and detects the branching, splitting, colliding,
and receding of waterbodies as discrete events. It is a discrete base from which a structured hybrid automaton of a
multibody flow network can be constructed.

Structured automata, the construction of their executions, and the discrete multibody flow network, was implemented
in [RH22]. Both the framework and the construction of executions were implemented as C++ libraries with Python
bindings. The construction of the executions were implemented as event-based coroutines. These events are derived
directly from the definition of the execution of the automaton. Because the construction of the execution was imple-
mented in a direct manner, the implementation of the construction needed a symbolic representation of every single
component of its formal definition. In the continuation of an event the modeller gets direct access to this symbolic
representation in the current state of the construction of an execution. The combination of this access, suspendable
constructions, and bindings in a scripting language made it easy to debug and test designs. It also enabled the program-
matic construction of diagrams that helped visualise complex discrete dynamics. This framework and implementation
approach is well-suited to support the construction of hybrid automata with practical computation.

75

Multibody Flow Networks

76 Chapter 5. Conclusion

APPENDIX

A

NOTATION

Below is a collection of notational conventions that are considered idiosyncratic and thus are defined explicitly.

Definition

A definition is denoted 𝐴 ≜ 𝐵, while a relation is denoted 𝐴 = 𝐵.

Powersets

Powersets are denoted with P.

Index sets

{𝑁, . . . ,𝑀 − 1} is denoted 𝑁 ≤ Z < 𝑀 , if 𝑁 is omitted it is taken to be zero. ℬ is defined as the set
ℬ = Z < 2. If a natural number is used where a set expected it is taken to mean an equivalent index set.
𝑥 ∈ 5 thus means 𝑥 ∈ 𝑍 < 5.

Structured and Unstructured Super and Subscripts

Symbols with structured super and subscript 𝑥𝑖...𝑗... where 𝑖𝑘 ∈ Z < 𝑁𝑘 and 𝑗𝑘 ∈ Z < 𝑀𝑘 are alternatively
written with an unstructured 𝑥ij, with i defined as:

i =
∑︁
𝑘0

(
∏︁
𝑘1

𝑁𝑘1
) · 𝑖𝑘0

• with 𝐼 = {𝑖 . . .};

• and with 𝐾0 = 𝑍 < |𝐼|, and 𝑘0 ∈ 𝐾0;

• and with 𝐾1(𝑘0) = 𝑘0 < 𝑍 ≤ |𝐾|, and 𝑘1 ∈ 𝐾1(𝑘0);

• and with 𝑁|𝐼| = 1.

and similarly for j and 𝑀 .

77

Multibody Flow Networks

78 Appendix A. Notation

APPENDIX

B

DISCRETE MODEL DIAGRAMS

B.1 Diagrams For Filling The Simple Network Top Down

Fig. 2.1: State diagram for 𝐺0 at 𝑡0,0, with the tub leg control variable set high.

79

Multibody Flow Networks

Fig. 2.2: State diagram for 𝐺0 at 𝑡0,𝑚. Here the tub 𝑐0,10 has become a source, as can be seen by the flow-arrow being
drawn in light blue. A branching event has been detected for the tub, and seeding events has been detected for the valve
and incident endpipe.

80 Appendix B. Discrete Model Diagrams

Multibody Flow Networks

Fig. 2.3: State diagram for𝐺0 at 𝑡1,𝑚. This execution had no control signals set high. The discrete execution converged
after the newly formed waterbody has entered the halfpipe 𝑐1,10,0.

B.1. Diagrams For Filling The Simple Network Top Down 81

Multibody Flow Networks

Fig. 2.4: State diagram for𝐺0 at 𝑡2,𝑚. Here the midpipe joint control 𝑞1,00 , is set high, which indicates that the combined
volume of halfpipes 𝑐1,10,𝑗 has filled the pipe. The execution converges by detecting a midpipe branch event.

82 Appendix B. Discrete Model Diagrams

Multibody Flow Networks

Fig. 2.5: State diagram for 𝐺0 at 𝑡3,𝑚. This execution has no control signals set high, and is simply processing the
events detected in 𝜏3. The waterbody fills the pipe, and the endpipe 𝑐1,20,1 has become a source for the valve 𝑐01, as
indicated by the light blue shading of the flow triangle. A branch event has been detected for the endpipe, and seding
events have been detected for the valve and tub.

B.1. Diagrams For Filling The Simple Network Top Down 83

Multibody Flow Networks

Fig. 2.6: State diagram for 𝐺0 at 𝑡4,𝑚. This execution has no control signals set high, and is simply processing the
events detected in 𝜏4. The waterbody has now completely filled the network and water is in freefall into the tub 𝑐0,01 .

84 Appendix B. Discrete Model Diagrams

Multibody Flow Networks

B.2 Diagrams For Draining The Simple Network Top Down

Fig. 2.7: State diagram for 𝐺0 at 𝑡0,0, with the tub leg control variable set high. The upstream tub is about to run dry.

B.2. Diagrams For Draining The Simple Network Top Down 85

Multibody Flow Networks

Fig. 2.8: State diagram for 𝐺0 at 𝑡1,𝑚. Here a tub cutting has been detected, as a consequence, the valve, upstream
endpipe, and midpipe are receding.

86 Appendix B. Discrete Model Diagrams

Multibody Flow Networks

Fig. 2.9: State diagram for 𝐺0 at 𝑡2,𝑚, with the downstream halfpipe leg control variable set high. The upstream tub,
valve, and halfpipe have all run dry, and the downstream halfpipe is about to recede.

B.2. Diagrams For Draining The Simple Network Top Down 87

Multibody Flow Networks

Fig. 2.10: State diagram for 𝐺0 at 𝑡3,𝑚. The downstream halfpipe has receded, and and the downstream endpipe has
been cut. The source count of the valve is 0, and the valve and the tub are now receding.

88 Appendix B. Discrete Model Diagrams

Multibody Flow Networks

Fig. 2.11: State diagram for 𝐺0 at 𝑡4,0. The network has finally run dry. Note that the tub leg is still wet, but the tub
flow is negative. The pressure inside the valve network is preventing the waterbody from entering.

B.2. Diagrams For Draining The Simple Network Top Down 89

Multibody Flow Networks

90 Appendix B. Discrete Model Diagrams

APPENDIX

C

EXTERNAL CONTENT

The implementation of the modelling frameworks of SDA, SHA, as well as the construction of their executions were
implemented as a C++ library with python bindings in [RH22]. This is a git repository hosted on GitLab. The discrete
model of a multibody flow network is implemented in the same repository on the models-multibody_loss_network
branch. The following attached python-scripts used this library to generate the executions and diagrams used in this
report:

• ha_flower_figures.py

• pwa_flower_figures.py

• discrete_model_simulation_figures.py

• discrete_model_state_figures.py

• structured_da_figures.py

Some snippets from ha_flower_figures.py used to generate the figures in Example (HA Flower System) are shown in
Symbolic representation of A, Constructing the SDA, Constructing the SHA, and Constructing the initial value problem..

Listing 3.1: Symbolic representation of 𝐴

1 A = [[[program.negation(epsilon), program.multiplication([alpha,omega])],
2 [program.negation(omega), program.negation(epsilon)]],
3 [[program.negation(epsilon), omega],
4 [program.multiplication([program.negation(alpha), omega]), program.

→˓negation(epsilon)]]]

Listing 3.2: Constructing the SDA

1 dautomaton = dautomatons.BasicAutomaton(
2 variables = dvariables,
3 transitions = [
4 dautomatons.Transition(
5 variable = 0,
6 difference = program.one(),
7 guard = program.conjunction([program.complement(W[i]),region[i]])
8) for i in regions
9])

91

https://gitlab.com/jehelset/hysj/-/tree/models-multibody_loss_network

Multibody Flow Networks

Listing 3.3: Constructing the SHA

1 hautomaton = hautomatons.BasicAutomaton(
2 discrete_automaton = dautomaton,
3 continuous_variables = cvariables,
4 activities = [
5 hautomatons.Activity(
6 equation = equations[i][j],
7 guard = W[i]
8) for i,j in product(regions,variables)
9],

10 actions = [])

Listing 3.4: Constructing the initial value problem.

1 problem = hsimulators.Problem(
2 program = program,
3 automaton = hautomaton,
4 state = hsolvers.BasicState(
5 discrete = dsolvers.BasicState(
6 independent = 0,
7 dependent = [locations[0], [0]]),
8 continuous = csolvers.BasicValuation(
9 independent = t_begin,

10 dependent = initial_continuous_state).to_state()),
11 solver = hsolvers.BasicSolver(
12 discrete = dsolvers.BasicSolver(),
13 continuous = csolvers.BasicSolver(
14 config = csolvers.BasicConfig(
15 tolerance = csolvers.BasicTolerance(relative = 1.0e-2,absolute = 1.0e-3),
16 step = csolvers.BasicSolver.fixed_step(step = t_delta),
17 stop = t_end))))

Listing 3.5: Constructing a hybrid trajectory.

1 solution = hsimulators.solve(problem = problem,control = lambda xs,xe:(xs,hsimulators.
→˓make_event(xe)))

2 trajectories = []
3 while xframe := solution():
4 xsolution,xevent = xframe
5 match xevent.tag:
6 case dsimulators.init:
7 trajectories.append((xevent.state,[]))
8 case dsimulators.stop:
9 trajectories.append((xevent.state,[]))

10 case csimulators.step | csimulators.start | csimulators.root:
11 trajectories[-1][-1].append(xevent.state.to_valuation(problem.automaton.

→˓continuous_variables))
12 case csimulators.stop:
13 break
14 case _:
15 pass

92 Appendix C. External Content

APPENDIX

D

GLOSSARY

API
Application Programming Interface

DA
Discrete Automaton

DAG
Directed Acyclic Graph

DAE
Differential Algebraic Equation

DDP
Dynamic Differential Algebraic Equation Processor

HA
Hybrid Automaton

JIT
Just In Time

MILP
Mixed integer linear programming.

MLD
Mixed Logical-Dynamical System, see [LLL09] for more.

MPC
Model Predictive Control

ODE
Ordinary Differential Equation

PWA
Piecewise Affine

SDA
Structured Discrete Automaton

SHA
Structured Hybrid Automaton

93

Multibody Flow Networks

94 Appendix D. Glossary

BIBLIOGRAPHY

[AGH+19] Rajeev Alur, Mirco Giacobbe, Thomas A. Henzinger, Kim G. Larsen, and Marius Mikučionis. Continuous-
time models for system design and analysis. In Computing and Software Science, Lecture Notes in Computer
Science, pages 452–477. Springer International Publishing, Cham, 2019.

[And94] Mats Andersson. Object-oriented modeling and simulation of hybrid systems. 1994.

[Arn17] Martin Arnold. Dae aspects of multibody system dynamics. In Surveys in Differential-Algebraic Equations
IV, Differential-Algebraic Equations Forum, 41–106. 2017.

[BLG91] L. R. Petzold B. Leimkuhler and C. W. Gear. Approximation methods for the consistent initialization of
differential-algebraic equations. SIAM Journal on Numerical Analysis vol. 28 iss. 1, feb 1991.

[BXHP21] Bruce Belson, Wei Xiang, Jason Holdsworth, and Bronson Philippa. C++20 coroutines
on microcontrollers—what we learned. IEEE Embedded Systems Letters, 13(1):9–12, 2021.
doi:10.1109/LES.2020.2973397.

[BM99] Alberto Bemporad and Manfred Morari. Control of systems integrating logic, dynamics, and constraints.
Automatica (Oxford), 35(3):407–427, 1999.

[Bre96] Kathryn Eleda Brenan. Numerical solution of initial-value problems in differential-algebraic equations.
1996.

[Cam15] Stephen L Campbell. The flexibility of dae formulations. In Surveys in Differential-Algebraic Equations III,
Differential-Algebraic Equations Forum, pages 1–59. Springer International Publishing, Cham, 2015.

[Cam95] Stephen L. Campbell. Linearization of daes along trajectories. Zeitschrift für angewandte Mathematik und
Physik, 46(1):70–84, 1995.

[CastelloGrinoBasanez98] Ramón Costa Castelló, Robert Griñó, and Luis Basañez. Dae methods in constrained
robotics system simulation. In Computación y Sistemas, Computación y Sistemas. 1998.

[CK06] François E Cellier and Ernesto Kofman. Continuous System Simulation. Springer US, Boston, MA, 2006.
ISBN 9780387261027.

[CN21] Guerric Chupin and Henrik Nilsson. Modular compilation for a hybrid non-causal modelling language.
Electronics (Basel), 10(7):814, 2021.

[Dao14] Prodromos Daoutidis. Daes in model reduction of chemical processes: an overview. In Surveys in
Differential-Algebraic Equations II, Differential-Algebraic Equations Forum, pages 69–102. Springer In-
ternational Publishing, 2014.

[DSHLP09] B De Schutter, W. P. M. H Heemels, J Lunze, and C Prieur. Survey of modeling, analysis, and control of
hybrid systems. In Handbook of Hybrid Systems Control, pages 31–56. Cambridge University Press, 2009.

[Die16] Reinhard Diestel. Graph Theory: 5th Electronic Edition. Springer, Berlin, 2016. ISBN 3662536218.

95

https://doi.org/10.1109/LES.2020.2973397

Multibody Flow Networks

[Gea90] C. W. Gear. Differential algebraic equations, indices, and integral algebraic equations. SIAM Journal on
Numerical Analysis vol. 27 iss. 6, dec 1990.

[GC91] Jurgen Greifeneder and Francois E Cellier. Continuous System Modeling. Springer, 1991. ISBN
9780387975023.

[Hed99] Sven Hedlund. Computational methods for hybrid systems. 1999. Licentiate Thesis. URL: https://lup.lub.
lu.se/search/files/4499784/8566368.pdf.

[HSB+20] Hindmarsh, Alan, Radu Serban, Cody Balos, Gardner David, Woodward Carol, and Reynolds Daniel. User
Documentation for IDA. Lawrence Livermore National Laboratory, 2020.

[HBG+05] Alan Hindmarsh, Peter Brown, Keith Grant, Steven Lee, Radu Serban, Dan Shumaker, and Carol Wood-
ward. Sundials: suite of nonlinear and differential/algebraic equation solvers. ACM transactions on mathe-
matical software, 31(3):363–396, 2005.

[Hop79] John E Hopcroft. Introduction to automata theory, languages, and computation. 1979.

[Hun07] J. D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95,
2007. doi:10.1109/MCSE.2007.55.

[JMT15] Lennart Jansen, Michael Matthes, and Caren Tischendorf. Global unique solvability for
memristive circuit daes of index 1. International Journal of Circuit Theory and Appli-
cations, 43(1):73–93, 2015. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.1927,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cta.1927, doi:https://doi.org/10.1002/cta.1927.

[JT14] Lennart Jansen and Caren Tischendorf. A unified (p)dae modeling approach for flow networks. In Progress
in Differential-Algebraic Equations, Differential-Algebraic Equations Forum, pages 127–151. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[KSS07] Nand Kishor, R.P Saini, and S.P Singh. A review on hydropower plant models and control. Renewable and
Sustainable Energy Reviews, 11(5):776–796, 2007.

[KGG+09] S Kowalewski, M Garavello, H Guéguen, G Herberich, R Langerak, B Piccoli, J. W Polderman, and
C Weise. Hybrid automata. In Handbook of Hybrid Systems Control, pages 57–86. Cambridge University
Press, 2009.

[Kun06] Peter Kunkel. Differential-algebraic equations : analysis and numerical solution. 2006.

[KM18] Peter Kunkel and Volker Mehrmann. Regular solutions of dae hybrid systems and regularization techniques.
BIT, 58(4):1049–1077, 2018.

[LA04] Chris Lattner and Vikram Adve. LLVM: a compilation framework for lifelong program analysis and trans-
formation. In CGO, 75–88. San Jose, CA, USA, Mar 2004.

[LLL09] Jan Lunze and Françoise Lamnabhi-Lagarrigue. Handbook of Hybrid Systems Control: Theory, Tools, Ap-
plications. Cambridge University Press, 2009. ISBN 9780521765053.

[LJS+03] J Lygeros, K.H Johansson, S.N Simic, Jun Zhang, and S.S Sastry. Dynamical properties of hybrid automata.
IEEE transactions on automatic control, 48(1):2–17, 2003.

[N+22] Stephen North and others. Graphviz. https://gitlab.com/graphviz/graphviz, 2022.

[OM10] Carlos Ocampo-Martinez. Model predictive control of wastewater systems. 2010.

[OE17] Marting Otter and Hilding Elmqvist. Transformation of differential algebraic array equations to index one
form. In Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May 15-17,
2017. Linköping University Electronic Press, July 2017.

[P+22] Keith Packard and others. cairo. https://gitlab.freedesktop.org/cairo/cairo, 2022.

[PAN88] C. C PANTELIDES. The consistent initialization of differential-algebraic systems. SIAM journal on scien-
tific and statistical computing, 9(2):213–231, 1988.

96 Bibliography

https://lup.lub.lu.se/search/files/4499784/8566368.pdf
https://lup.lub.lu.se/search/files/4499784/8566368.pdf
https://doi.org/10.1109/MCSE.2007.55
https://onlinelibrary.wiley.com/doi/abs/10.1002/cta.1927
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cta.1927
https://doi.org/https://doi.org/10.1002/cta.1927
https://gitlab.com/graphviz/graphviz
https://gitlab.freedesktop.org/cairo/cairo

Multibody Flow Networks

[RJ00] A Rantzer and M Johansson. Piecewise linear quadratic optimal control. IEEE transactions on automatic
control, 45(4):629–637, 2000.

[Ria13] Ricardo Riaza. Daes in circuit modelling: a survey. 2013.

[RH22] John Eivind Rømma Helset. hysj. https://gitlab.com/jehelset/hysj, 2022.

[Sch00] A.J. van der Schaft. An introduction to hybrid dynamical systems. 2000.

[Sim17] Bernd Simeon. On the history of differential-algebraic equations: a retrospective with personal side trips.
In Surveys in Differential-Algebraic Equations IV, Differential-Algebraic Equations Forum, pages 1–39.
Springer International Publishing, Cham, 2017.

[Skj19] Hans Ivar Skjelbred. Unit-based short-term hydro scheduling in competitive electricity markers. 2019.

[SHS21] Miriam Garc\'ıa Soto, Thomas A. Henzinger, and Christian Schilling. Synthesis of hybrid automata with
affine dynamics from time-series data. In Proceedings of the 24th International Conference on Hybrid Sys-
tems: Computation and Control. ACM, may 2021. URL: https://doi.org/10.1145%2F3447928.3456704,
doi:10.1145/3447928.3456704.

[Yan19] Weijia Yang. Hydropower Plants and Power Systems: Dynamic Processes and Control for Stable and Effi-
cient Operation. Springer Theses. Springer International Publishing, 2019. ISBN 978-3-030-17241-1.

[ZYM08] Fu Zhang, Murali Yeddanapudi, and Pieter J Mosterman. Zero-crossing location and detection algorithms
for hybrid system simulation. IFAC Proceedings Volumes, 41(2):7967–7972, 2008.

[ZJLS01] Jun Zhang, Karl Henrik Johansson, John Lygeros, and Shankar Sastry. Zeno hybrid systems. International
journal of robust and nonlinear control, 11(5):435–451, 2001.

[Zim10] Dirk Zimmer. Equation-based modeling of variable-structure systems. 2010.

[Zim13] Dirk Zimmer. A new framework for the simulation of equation-based models with variable structure. Sim-
ulation (San Diego, Calif.), 89(8):935–963, 2013.

Bibliography 97

https://gitlab.com/jehelset/hysj
https://doi.org/10.1145%2F3447928.3456704
https://doi.org/10.1145/3447928.3456704

Multibody Flow Networks

98 Bibliography

INDEX

A
API, 93

D
DA, 93
DAE, 93
DAG, 93
DDP, 93

H
HA, 93

J
JIT, 93

M
MILP, 93
MLD, 93
MPC, 93

O
ODE, 93

P
PWA, 93

S
SDA, 93
SHA, 93

99

	Introduction
	Context and Motivation
	The Tunnel Systems of a Hydropower Producing Watercourse
	Modelling and Computation
	Computations of Hydropower Production Planning

	Goals
	Contribution

	Background
	Related Modelling
	Hydropower Plant Models
	Short-term Hydro Optimisation

	Wastewater Control
	Flow Networks
	Water Networks

	Differential Algebraic Equations
	Simulation of a DAE

	Hybrid System Theory
	Mixed Logical Dynamical Systems
	Piecewise Affine Systems
	Hybrid Automata
	Executions of a Hybrid Automaton
	Determinism of a Hybrid Automaton
	Zenoness of a Hybrid Automaton

	Simulation of Hybrid Automata

	Results
	Structured Discrete Automata
	Definition of a Structured Discrete Automaton
	Executions of a Structured Discrete Automaton
	Determinism of a Structured Discrete Automaton
	Zenoness of a Structured Discrete Automaton

	Simulation of Structured Discrete Automata

	Structured Hybrid Automata
	Definition of a Structured Hybrid Automaton
	Executions of a Structured Hybrid Automaton
	Simulation of Structured Hybrid Automata

	Logical Description of a Flow Network
	Flow Network Graph
	Flow Network Components
	Flow Network Incidence

	Discrete Flow Network Model
	Discrete Domains, Variables and States
	Discrete Waterbody Variables
	Discrete Event Detecting Variables

	Discrete Transitions
	Discrete Control, Flow and Event Reset Guards
	Discrete Source Guards
	Discrete Leg Guards
	Discrete Joint Guards
	Discrete Branching Event Guards
	Discrete Seeding Event Guards
	Discrete Collision Event Guards
	Discrete Cutting Event Guards
	Discrete Receding Event Guards

	Determinism Of The Discrete Model
	Zenolessness Of The Discrete Model
	Implementing The Discrete Model
	Filling The Simple Network Top Down
	Draining The Simple Network Top Down

	Discussion
	Modelling Framework and Modelling Experience
	Implementation Experience
	Future work
	Iterating on Structured Automata
	Iterating the Discrete Model
	Constructing the Hybrid Model
	Constructing a Watercourse Model
	Controlling a Watercourse Model

	Conclusion
	Notation
	Discrete Model Diagrams
	Diagrams For Filling The Simple Network Top Down
	Diagrams For Draining The Simple Network Top Down

	External Content
	Glossary
	Bibliography
	Index

