
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Kristoffer Chi Rong Jin

Deep-learning algorithms for
estimation of fish-population
parameters from video data

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Eleni Kelasidi and Espen Eilertsen
June 2022M

as
te

r’s
 th

es
is

Kristoffer Chi Rong Jin

Deep-learning algorithms for
estimation of fish-population
parameters from video data

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Eleni Kelasidi and Espen Eilertsen
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Engineering Cybernetics

i

Preface

This master thesis is written as the final part of the master’s programme in Cybernetics and Robotics at the
Norwegian University of Science and Technology (NTNU) in collaboration with SINTEFOcean. The thesis
is a continuation of the pre-project submitted in the fall semester 2021 [1].

I want to thank my supervisor fromNTNU, Annette Stahl and my co-supervisors from SINTEFOcean,
Eleni Kelasidi and Espen Eilertsen, for guiding me towards a solution to solve the problem at hand. I also
want to thank the engineers at NTNU ITK lab who provided me with the necessary equipment to perform
experiments in their lab. Furthermore, I am grateful that SINTEF Ocean let me capture image footage from
live fish in their lab.

Kristoffer Chi Rong Jin
Trondheim, 9th June 2022

ii

Abstract

This thesis presents amethod to estimate the distance and speed of the fish by using two deep learningmeth-
ods and a stereo camera in collaborationwith SINTEFOcean. Stereo images are captured by the camera and
rectified to establish the epipolar geometry. YOLOv5, an object detection network, is applied to the images
to detect the fish. This network is trained on two different datasets. After detecting the fish, a pretrained
network, Superglue, which outperforms traditional matching methods such as SIFT and ORB, is utilized to
establish point correspondences within the bounding boxes robustly. The point correspondences are used to
reconstruct the 3D world point by triangulation. The 3D points are used to compute the Euclidean distance
and speed.

An experimental test is created in a controlled environment to validate the distance measurement. It is
seen from the validation that themethod produces good results. After validating the distancemeasurements,
the method is tested with live fish in a more realistic environment. It shows promising results on fish that
swims alone, despite no ground truth available to measure the performance.

This thesis also conducts a literature review focusing visual tracking. A tracking method should be in-
corporated into the suggested method to track the fish over an image sequence robustly.

iii

Sammendrag

Denne hovedoppgaven presenterer en metode for å estimere distansen og hastigheten til fisk ved å bruke to
dyplæring metoder og et stereoskopisk kamera i samarbeid med SINTEF Ocean. Stereobilder er fanget av
kameraet og rettet opp for å etablere epipolar geometri. YOLOv5, et objekt deteksjon nettverk, er brukt på
bildene for å detektere fisk. Dette nettverket er trent på to forskjellige datasett. Etter å ha detektert fisken
blir et forhåndstrent nerual nettverk, Superglue, tatt i bruk for å etablere punktkorrespondanser innenfor
avgrensningsboksene på en en robust måte. Superglue er tatt ibruk ettersom den har vist seg å utkonkurerer
tradisjonelle metoder som SIFT og ORB. Punktkorrespondansene er brukt til å rekonstruere 3D punktene
ved hjelp av triangulering. 3D punktene er brukt for å regne ut den euklidiske distansen og hastigheten.

Et eksperiment er gjennomført i et kontrollert miljø for å validere distanse målingen. I valideringen
er det observert at metoden produserer gode resultater. Etter valideringen er metoden testet i et mer real-
istisk miljø med ekte fisk. Den viser lovende resultater på fisk som svømmer alene, selv om det ikke er noe
referansemåling tilgjengelig for å måle ytelsen.

Denne hovedoppgaven gjennomfører også et literaturstudie med fokus på visuell sporing. En sporings-
metode burde bli innarbeidet i den foreslåtte metoden for å spore fisken over en bildesekvens på en robust
måte.

iv

CONTENTS

Preface i

Abstract ii

Sammendrag iii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Thesis outline . 3

2 Literature review 5
2.1 Visual tracking . 5

2.1.1 Optical flow . 5
2.1.2 Indirect methods . 7

2.2 Machine learning-based methods . 8
2.2.1 Deep learning for detection . 8
2.2.2 Deep learning for feature extraction and motion prediction 10

2.3 Selecting the best tracking approach . 13

3 Photogrammetry 15
3.1 Camera model . 15
3.2 Camera calibration . 18

3.2.1 Plane based calibration . 18
3.2.2 Homography estimation . 18
3.2.3 Intrinsic matrix . 20
3.2.4 Extrinsic matrix . 21
3.2.5 Rotation matrix approximation . 22

3.3 Stereo camera geometry . 22
3.4 Calibration a stereo camera setup . 24
3.5 Essential matrix . 24
3.6 Epipolar geometry . 25
3.7 Rectification . 26
3.8 Triangulation . 26

4 Data acquisition 29
4.1 Camera specifications . 29

v

5 Calibration results 33
5.1 Calibration results from NTNU ITK lab . 34
5.2 Calibration results from SINTEF . 35

6 Deep learning 37
6.1 Neural networks . 37
6.2 Convolutional neural networks . 38
6.3 Object detection . 39
6.4 YOLOv5 . 40
6.5 Creating the datasets . 40

6.5.1 SINTEF dataset . 42
6.5.2 NTNU ITK Lab dataset . 43

6.6 Training the network . 43
6.7 Detection results . 44
6.8 Superglue . 49

7 Method and experimental results 57
7.1 Overview of procedure . 57
7.2 Validation with distance measurement . 59
7.3 Experiments on dataset from SINTEF . 61

8 Conclusion and future work 69

References 70

A Python script for data acquisition 77

CHAPTER 1
INTRODUCTION

This chapter starts to introduce the motivation behind this thesis. After the motivation is presented, the
main objectives for the thesis are listed. The final section in this chapter shows how this thesis is structured.

1.1 Motivation

This master’s thesis was done in cooperation with SINTEF Ocean, a department in the Norwegian research
institute. SINTEF Ocean conducts research and innovation related to ocean space for national and interna-
tional industries 1. The work of this thesis is a contribution to the RACE Fish-Machine Interaction project.
RACE is a project to shift productionmethods frommanual operations to amore automated approach using
smart sensors in combination with mathematical models and autonomous systems [2]. However, immature
technology can lead to fatal consequences, loss and damage in fish farms, which are unacceptable when in-
teracting with live fish. Hence, intelligent solutions like this must be researched and tested properly before
being used in production. Figure 1.1.1 shows an illustration of the goal of the project where intelligent sys-
tems can operate in the fish farms.

Figure 1.1.1: An illustration of the goal of the RACE project. It suggests how the fish-machine interaction
can look like [2].

1SINTEF Ocean website

1

https://www.sintef.no/en/ocean/

2 CHAPTER 1. INTRODUCTION

Aquaculture is an essential contributor to the production of seafood for human consumption. In 2016, a
record high of 171 million tons of fish was output by the global fishery, where 88 % were consumed directly
by people [3]. These numbers make aquaculture extremely important for building a world free from hunger.
However, with an increasing population, the demand from the world fisheries will continue to increase [3].

Current fish farms are primarily driven by manual operations and close human interactions with the
process and fish cage structures. It may be problematic in situations like exposed areas where the environ-
ment can be challenging. Hence, it is essential to explore new technology that can contribute to reducing the
need for human interactions [4].

Researchers have proposed a concept called Precision Fish Farming (PFF). The concept aims to improve
the farmer’s ability to monitor, control and document biological processes in fish farms [5]. By realizing this
concept in fish farms, they can become more automated. Before PFF can be achieved, two core areas need
to be addressed.

The first area is safety and risk management. Current fish farms are operating at the safety limit with
the available technology and management systems [6]. Difficult weather conditions, sub-optimal human-
technology interaction, and many organizational aspects are known risks. These factors contribute to a
greater demand for better operator skills and the ability to take necessary actions to avoid equipment failure,
fish escaping or occupational accidents.

The second area is fish behaviour and welfare. Fish welfare is essential in any aquaculture operation and
is the primary focus of the RACE project. To perform operations such as feeding, de-lousing and harvest-
ing/sampling in a way that prioritizes fish welfare, it is necessary to both detect and understand the different
behaviours of fish and how they correlate with welfare [7] [4].

Researchers have suggested solutions that incorporate sensor technology, such as Doppler velocity log
[8] or laser [9] into remotely operated underwater vehicles. However, these solutions focus on finding holes
in the fish cage nets. According to [10], the swim speed of the fish can be connected tomultiplewelfare issues.
Currently, there are no tools available which can measure fish welfare. Cameras already exist in fish cages
and are relatively cheap, which can be further developed to incorporate computer vision methods directly
to the video stream [5]. Hence, this thesis aims to research a tool to measure the fish welfare by estimating
the distance and speed of the fish by using a stereo camera, which incorporates deep learning and computer
vision methods.

1.2 Objectives

RACE Fish-Machine Interaction project has the primary object to findmethods to identify changes in beha-
viour of the fish by using smart sensors and to develop newmethods formodelling and control for underwa-
ter vehicles, which allows autonomous operations in fish farms by also considering interactions of live fish
with the used technology. By achieving this, the overall impact on the fish during complex operations can be
greatly reduced. This thesis aims to experiment the use of camera sensors and deep learning algorithms to
estimate fish behaviour changes. A solution like this can be incorporated in ROVs to according to the meas-
urements provided by the cameras. As this thesis is an continuation of [1], the focus will be on the following
objectives:

1. Perform a literature review of tracking method and the possibility to incorporate such solutions into
a stereo system

2. Prepare an experimental setup to validate the methods

3. Compute the distance and velocity by using deep learning and computer vision methods on stereo
images

4. Validate the accuracy of the proposed method with ground truth data

5. Test the suggested method on live fish data

CHAPTER 1. INTRODUCTION 3

1.3 Thesis outline

This thesis consists of 8 chapters. Chapter 2 conducts a literature review on tracking methods using cam-
era sensors. Chapter 3 presents general theory about photogrammetry, such as the camera model, camera
calibration and epipolar geometry. Chapter 4 shows the procedure behind the data acquisition and the rel-
evant camera specifications. Chapter 5 continues this by presenting the calibration results gathered from
the selected environments. Chapter 6 presents deep learning theory related to neural networks along with
the deep learning methods that are used in the methodology. The chapter also presents the preparation of
training data for the deep learning method. Chapter 7 presents the proposed method to solve this task at
hand by showing results from applying the method on the gathered data. Chapter 8 concludes this thesis
and suggests future work.

4 CHAPTER 1. INTRODUCTION

CHAPTER2
LITERATURE REVIEW

This chapter presents a literature review on methods related to visual tracking. It starts with a short intro-
duction to visual tracking and the challenges in visual tracking. After the introduction, methods that use
optical flow for tracking are presented, followed by approaches that utilize indirect methods for tracking.
Finally, tracking methods which use deep learning are presented, and then the chapter is concluded with a
section which summarizes the advantages and disadvantages behind the three techniques, which should be
considered when choosing a tracking method.

2.1 Visual tracking

Object tracking is an essential task within computer vision. It enables video cameras to capture moving
objects by tracking them from frame to frame. Tracking can be defined as the problem of estimating the tra-
jectory of an object in the image plane as it moves around a scene in the image plane [11]. It can prove helpful
when calculating the speed of objects with video data [12, 13]. Depending on the tracking domain, trackers
can provide object-centric information, such as an object’s orientation, area, or shape. Object tracking can
be a challenging task due to:

• Loss of information

• Noise in the images

• Complex object motion

• Nonrigid or articulated nature of objects

• Occlusion

• Complex object shape

• Illumination changes [14]

2.1.1 Optical flow

A common way to determine the motion between a sequence of images is to compute an independent es-
timate at each pixel, often called the optical method [15, p.578]. The motion can also be referred to as the
displacements of intensity patterns [16]. Optical flow techniques typically consider two constraints for mo-
tion estimation, data conservation and spatial coherence. Data conservation is derived from observing that
objects in the scene usually persist in time. Hence, the pixel intensity of a small area in two consecutive
images remains the same, even though its position changes.

5

6 CHAPTER 2. LITERATURE REVIEW

Other successful methods within optical flow were introduced as global and local gradient-based ap-
proaches. These can also be categorized as sparse and dense methods. Global methods are focused on cal-
culating the dense vector fields, while local methods calculate the sparse vector fields [17]. One of the first
successful methods solved the optical flow problem by introducing a global constraint that applies a soft
spatial coherence which forces the partial derivatives of neighbouring motion vectors to be minimal [18].
The method from [19] proposed to use a strong spatial coherence instead, which is a local constraint that
expects the motion in a small region to be constant. However, these methods are based on assumptions
which may be violated in real-world applications. According to [20], violations of these constraints lead to
gross measurement errors that are known as outliers. The two previous methods penalize the minimization
in a quadratic way and cannot handle outliers robustly. To robustly handle outliers, [21] proposed a robust
estimation framework exploiting the Lorentzian robust norm.

Most state-of-the-art global methods to solve the optical problem utilize robust estimation frameworks.
Compared to global methods, most local methods are based on least square optimization. These meth-
ods have the advantage of being excellent in terms of runtime. A method proposed by [22] builds on the
Lucas-Kanade method [23] and increases its robustness by using the Hampel norm. This extension prevents
violations of the constraints established in the optical flow problem mentioned previously and provides
excellent feature tracking performance while slightly increasing computational complexity compared to
Lucas-Kanade. However, this method proves to be inefficient in illumination changes and/or larger mo-
tions. Hence, [24] builds upon these limitations and exploits an illumination model to deal with varying
illumination and a prediction step based on a perspective global motion model that increases the robust-
ness of long-range motions. The performance of the method is compared against [22] and pyramidal Lucas
Kanade [25], an overall improved version of [23] on popular benchmarking datasets like KITTI [26], Middle-
bury [27] and SIntel [28]. It is also compared against itself without the global motion model to demonstrate
the impact of the global motion model. The former provides excellent results compared to the other meth-
ods. Although the method is a local method, it shows excellent results in calculating sparse motion fields but
also competes with the global methods when calculating dense motion fields. OpenCV 1, an open-source
library for computer vision, has implemented this optical flow method in their database, which enables the
possibility to implement this in the programming languages Python or C++. Figure 2.1.1 shows an example
of the optical flow with and without the illumination model.

Figure 2.1.1: The two top images is the raw image and the ground truth. While the bottom left and right are
the motion field without and with the illumination model [24].

The method presented in [29] incorporates stereo vision with an extended version of Lucas-Kanade to
establish 3D trajectories. The classical Lucas-Kanade method is extended by integrating geometric con-
straints with epipolar constraint, which enforces tracked patches to remain on the epipolar lines, and mag-
nification constrain, which links the disparity of the tracked patches to the apparent size of these patches.

A popular method specifically made for dense motion fields is the method presented by [30]. First, it ap-
proximates each neighbourhood of two frames by quadratic polynomials. This is performed efficiently using
the polynomial expansion transform. Furthermore, a method to estimate displacement fields is derived and
results in a robust algorithm for dense motion fields. It provides significantly better results compared to

1OpenCV GitHub

https://github.com/opencv/opencv

CHAPTER 2. LITERATURE REVIEW 7

the other methods. However, the main weakness of the algorithm is the slowly varying displacement field,
causing discontinues to be smoothed out. This can be improved by combining the algorithm with a simul-
taneous segmentation procedure [31]. Themethod by [32] also suggests a dense optical flowmethod by using
dense inverse search. It consists of three parts. First, perform an inverse search for patch correspondences.
Secondly, a dense displacement field is established through patch aggregation along with multiple scales,
and then a variational refinement is performed. The approach is inspired by inverse compositional image
alignment [33] and provides the same accuracy as other state-of-the-art methods, but the inference speed is
significantly higher. Another advantage is that OpenCV has incorporated this in their code base, making it
possible to implement it in programming languages like C++ or Python. However, this method only works
for 2D trajectories, which is unsuitable for a stereo camera. It needs to be extended in the same way as in
[29] to be able to establish 3D trajectories.

After the establishment of Flownet [34], deep learning approaches for optical flow became more popu-
lar. Flownet consists of two architectural lines, FlowNetS and FlowNetC, which operate like an hourglass-
shaped neural network architecture that consists of an encoder and decoder, where the most significant
difference is in the encoder part. However, issues with small displacements and noisy artefacts in estim-
ating flow fields motivated [35] to develop Flownet 2.0, which inherited the advantages of the predecessor
while improving the limitations with small displacements and noisy artefacts. These improvements gave a
significant performance advantage on real-world applications and provided state-of-the-art results.

2.1.2 Indirect methods

Another approach to track objects in a sequence of images is to find point correspondences between the
images where the motion between the frames is expected to be small [15, p.452]. The process of establish-
ing point correspondences can be divided into three stages. The first stage establishes the interest points
at distinctive locations in the image, such as corners, blobs and T-junctions. In this case, the most valuable
information is the repeatability of an interest point. The repeatability describes the reliability of a detector
in finding the identical interest points from different viewing perspectives. In the next stage, the neighbour-
hood of each interest point is expressed by a feature vector. This descriptor must be distinctive and robust
to variations in the images. At last, the descriptor vectors are matched between a sequence of images. The
matching process is based on the distance between the vectors. Popular examples of these kinds of feature
detectors and descriptors are Scale-Invariant Feature Transform (SIFT) [36], Speeded-Up Robust Features
(SURF) [37] and oFAST and rBRIEF (ORB) [38].

A method proposed by [39], object tracking is performed by using SIFT to identify matching features
between consecutive frames in combination with particle filtering. The purpose of particle filtering is to
combine particles at a particular position into an individual particle. A weight is given to the particle, re-
flecting the number of particles required to form it. The method is tested on surveillance cameras and out-
performs the other tested methods, which are found in [39]. However, it suffers from occlusion and great
illumination changes, which may be solved by using a multi-view camera setup. A multi-view camera will
also enable the possibility of 3D tracking. In [40], a similar approach is also suggested. Instead of using SIFT
feature matching, the latter use SURF to find matching features between a sequence of images. The method
performs a performance comparison with other methods where SIFT is one of the best competitors. SURF
outperforms SIFT on bigger objects, while on smaller objects, the performance is similar for all compared
methods due to lack of feature points. The computational time with SURF is about 40ms less than SIFT.
The speed makes SURF slightly better than SIFT for real-time applications in terms of speed and accuracy.
Figure 2.1.2 shows an example of their tracking method deployed on a sequence of images.

8 CHAPTER 2. LITERATURE REVIEW

Figure 2.1.2: An example of the tracker from [40] deployed on a sequence of images.

The method proposed by [41] uses SIFT features for multiple vehicle detection and tracking. After find-
ing the SIFT features, matching is conducted, and RANSAC is used to remove outlier matches. This pro-
cedure provides an image alignment to search for the region with the highest sum of absolute differences.
By following this process for a sequence of images, moving vehicles are successfully tracked with the pro-
posed method. It proves to be significantly faster than the other compared methods [42] in the paper. The
method provides robustness in traffic scenes with variations in illumination, shadows and camera dither-
ing. The runtime is the only comparison between the methods, making it suitable for real-time applications.
However, there is no evaluation of accuracy between the methods.

There are also methods like [43, 44] that combine both feature matching and optical flow to improve
the estimation of dense trajectories. In [43], a combination of feature matching and optical flow makes it
possible to add the camera motion into account. The suggested method improves the performance of the
trajectory estimation as the camera motion can correct them. The camera motion is calculated by first ex-
tracting feature points between consecutive frames with SURF descriptors and optical flow. After matching,
RANSAC is used to remove outliers. The proposed method provides excellent results. The approach from
[44] uses FAST algorithm to detect corners as the initial position, then matches this with the next frame.
After achieving this information, pyramidal Lucas Kanade is exploited to estimate the optical flow.

2.2 Machine learning-based methods

The last approach for visual tracking is the use of machine learning. There are different ways of utilizing
machine learning to track objects of interest. Some deploy deep learning in the detection part, and others
use deep learning for feature extraction and motion prediction. These subjects will be presented further in
this section.

2.2.1 Deep learning for detection

A method suggested by [45] presents a method for deepwater animals where they use machine learning in
the detection part. It can be categorized as an algorithm that performs tracking-by-detection. By using
RetinaNet [46] to detect objects on both cameras, bounding boxes are drawn around objects of interest. A
correlation between the bounding boxes in both cameras is found by calculating the intersection over union
(IoU), which represents the overlapping area between the bounding boxes. The higher IoU score, the higher
likelihood that a bounding box pair have detected the same object. The score is an input to a 3D tracker,
consisting of an unscented Kalman Filter and the Hungarian algorithm and can determine the 3D positions
of the detected objects. This information is shared with a supervisor module which determines whether the
detected objects match the target class of interest and modifies the vehicle behaviour. The overview of the
method is shown in figure 2.2.1 The presented method is promising since it is already deployed in an un-
derwater environment and utilizes a stereo setup to construct 3D positions of detected objects. In addition,
behaviour control is also implemented, which is relevant for the RACE project. However, the method does
not show results with 3D information and its accuracy. Another method that uses IoU is [47]. It operates
with high speed and competitive accuracy results. The method uses Mask R-CNN [48] and CompACT [49]
as detectors to perform IoU tracking. However, a problem with regular IoU tracking systems is the number

CHAPTER 2. LITERATURE REVIEW 9

of track fragmentations and ID switches. Hence, the method proposes to perform single-object tracking
when no object detection is available, which provides more robust tracking while maintaining a high speed.

Figure 2.2.1: The flowchart of the proposed method in [45].

ThepopularmethodSimpleOnline andRealtimeTracking (SORT) suggested by [50] exploits the tracking-
by-detection principle in combination with Kalman Filter and the Hungarian algorithm. It provides signi-
ficantly faster performance compared to state-of-the-art trackers. The key factor in the method is detection
quality, which can substantially increase performance accuracy. The suggested approach gives the user free-
dom to choose a detection algorithm suitable for the specific application. An example of this is shown in
[51] where SORT is deployed with YOLOv2 to track and estimate the vehicle speed frommonocular camera
footage.

Convolutional neural networks (CNNs) arewidely used for feature extraction. CNNs are based on subtle
modifications of these networks. An example is a further improvement of the previously mentioned SORT
algorithm. In [52], they extend the SORT algorithm by incorporating a custom residual CNN,which extracts
appearance information. By adding appearance information to the algorithm, SORT can track objects for
longer periods of occlusions and results in a reduced number of identity changes. Identity changes happen
when the objects get occluded for a short time and then reappear as a new object for the model. The ex-
tension provides a significantly higher reduction in identity switches but adds an extra layer of complexity.
Both tracking methods provide competitive results for real-time applications and may be possible to use in
different environments. However, these are built around the benchmark dataset MOT16 [53]. Hence us-
ing this algorithm on custom datasets can be time consuming as datasets with the same format need to be
created. Figure 2.2.2 shows an example of [52] deployed on the MOT16 dataset.

10 CHAPTER 2. LITERATURE REVIEW

Figure 2.2.2: A sample of [52] on the MOT16 dataset. It provides a bounding box around each object of
interest attached with an ID.

2.2.2 Deep learning for feature extraction andmotion prediction

Another approach to incorporating deep learning into their framework is using Siamese networks. These
are CNNs trained with loss functions that combine information from different images to learn the features
that best differentiate examples from various objects. A simple example of a Siamese network is illustrated
in figure 2.2.3

Figure 2.2.3: An illustration of how a siamese network works [54].

The presented method from [55] is based on similarity learning. It learns a function that compares an
exemplar image to a candidate image of the same size and returns a high score if the two images represent
the same object and a low score otherwise. By utilizing a fully-convolutional network [56], instead of a
candidate image of the same size, a candidate image with a higher image can be used as input. This approach
allows the algorithm to use a bigger image as a search area and computes the similarity for a more extensive

CHAPTER 2. LITERATURE REVIEW 11

area. The network is tested against various methods with a competitive accuracy and significantly higher
speed. Inspired by the former, [57] extended the method by adding a Region Proposal Network (RPN).
This extension includes a regression and classification branch that significantly improves the method. It
outperforms the state-of-the-art trackers in VOT2015 [58] in every category. Figure 2.2.4 shows a test of the
tracker on samples from a benchmarking dataset.

Figure 2.2.4: The proposed method SiamRPN compared against two other approaches [57]

Despite the significant performance of Siamese-based trackers, they underperform during complicated
situations, especially when there are distractors. An attempt to solve this issue is suggested by [59]. By adding
two efficient modules, a relation detector (RD) and a refinement module (RM), a significant improvement
is obtained. The RD performs in a meta learning way to obtain a learning ability to filter distractors from
the scene. The RM integrates the RD into the Siamese framework efficiently to generate accurate tracking
results. To improve the robustness of the tracker, a training strategy that also learns to distinguish different
objects is introduced. The proposed method provides state-of-the-art performance on the benchmarking
dataset VOT 2017 [60] and outperforms other state-of-the-art methods.

Siamese networks also suffer from significant limitations. The first issue is that Siamese trackers utilize
the target appearance when inferring the model. This approach completely ignores the background appear-
ance information, which is vital for separating the target from similar objects in the scene. An example of this
is shown in figure 2.2.5. The second problem is that the similarity measure is not always reliable for objects
that are excluded from the training set, resulting in poor generalization. The last thing to mention is the
Siamese formulation that does not provide a good model update strategy. Hence, state-of-the-art methods
exploit simple template averaging. These limitations are addressed by [61], which introduces an alternat-
ive tracking architecture. The method is inspired by discriminative online learning procedures that use a
discriminative learning loss by applying an iterative optimization process.

12 CHAPTER 2. LITERATURE REVIEW

Figure 2.2.5: Themiddle and right image shows confidencemaps of the target object shown in the left image
with red box. The red box represent the target model. In the middle image a Siamese approach is used, while
the right image shows the suggested approach [61].

Somemethods utilize stereo vision in addition to deep learning to track objects. By using a stereo setup,
3D information such as distance and speed can be extracted directly from the objects [62]. The paper [63]
proposes amethod that performs 3D box inference by using 2D object detection and viewpoint classification
that can provide object reprojection contour and occlusion mask for feature extraction. The feature extrac-
tion is achieved using ORB and combines this with an epipolar line search for stereo matching. This process
serves as the semantic measurement model for the bundle adjustment. The bundle adjustment approach
contributes to tightly coupling the semantic and feature measurements to track the objects continuously.
Since themethod computes the camera pose, it is robust in dynamic environments. It outperforms the state-
of-the-art method ORB combined with simultaneous localization and mapping, also called ORB-SLAM2,
while providing 3D information such as speed and distance of objects. It also shows competitive results com-
pared to the method suggested by [64]. These advantages make it a good candidate for solving the problems
in this thesis. The code is not open-source, which means it can be time-consuming to implement manually
and performs tests on the KITTI dataset. The dataset requires a specific setup of the data, such that it can be
challenging to obtain the data required to use this suggested method.

Themethod proposed by [65] combines 2Dobject detections and stereo depthmeasurements to improve
image-based tracking with a precise 3D localization. The object detections provide object class information,
while the stereo depth contributes to locating objects in world coordinates. This information is fed to a
Kalman filter which keeps an image and a world space estimate. These estimates are coupled to secure the
consistency of a track. This couplingmakes it possible to track distant objects and continue these trackswith
more precise information in the close range with a smooth transition between the modalities. The method
is tested against the KITTI dataset and provides competitive results. It is constructed in a way which makes
it easily expandable for other features. This method seems to be a possible candidate as a stereo tracking
method but is limited to the KITTI dataset, similar to the previous method.

Another contribution to this task is [66] which performs a fusion of different inputs to perform stereo
tracking. Their method, MOTSFusion is a two-stage algorithm and begins with creating short tracklets by
utilizing the 2D motion consistency of segmentation masks under an optical flow wrap, then fuses these
tracklets using depth and ego-motion estimates into dynamic 3D object reconstructions. After perform-
ing these operations, the transformation required for these reconstructions is then used to estimate the 3D
motion of the object tracklets. They are merged into longer tracks if they undergo consistent 3D motion
and use the extrapolated positions to fill in missing detections. The proposed method outperforms previous

CHAPTER 2. LITERATURE REVIEW 13

state-of-the-art methods and provides tracking and depth information. Because of this, the method can be
extended to provide the speed of each tracked object. The downside of this method is that it is built around
the KITTI dataset, just like the previous methods.

2.3 Selecting the best tracking approach

Three different approaches for tracking have now been reviewed. The possible methods to solve the track-
ing problem are the stereo tracking methods. They have incorporated depth, object detection and tracking
together. However, they require a lot of data to give good results. Optical flow is widely used for motion
estimation and can be incorporated with object detection methods. Dense and sparse methods are suitable
for estimating the motion field between a sequence of images. It is tightly connected to the indirect meth-
ods since they are often used to establish initial displacements or object detectors. However, optical flow is
2D-based, whichmay not work as intended in a stereo setup. An alternative to feature matching is the use of
deep-learning detectors. The deep learning methods are currently state-of-the-art but require a high quant-
ity of labelled data to reach the best performance. However, the issues mentioned in section 2.1 can result in
bad tracking results. Many of the reviewed methods are applied to cars and may have issues translating to
an underwater environment. It would be interesting to see how many of these methods work underwater.

14 CHAPTER 2. LITERATURE REVIEW

CHAPTER3
PHOTOGRAMMETRY

Photogrammetry is defined as the art, science and technology of obtaining reliable information about physical objects
and the environment through processes of recording, measuring, and interpreting photographic images and patterns of
recorded radiant electromagnetic energy and other phenomena [67]. The purpose of image capturing is to project
3D world data into the 2D image plane. In other words, one dimension of information is lost during the
capturing. This dimension describes the depth of the scene. The lost dimension can be reconstructed using
triangulation, which is explained later in this chapter. This chapter will cover the following topics within
photogrammetry: camera model, camera calibration, stereo camera geometry, stereo camera calibration,
essentialmatrix, epipolar geometry, rectification and triangulation. Themajority of the theory in this section
is based on the twobooks [15] and [68]. The theory in this chapter is essential for the proposedmethod, which
is shown later in section 7.1.

3.1 Camera model

A common representation of a camera is the pinhole model. It is the most specialized and simplest camera
model [68, p.153]. Themodel describes howobjects in the realworld are projected onto the image plane. This
projection process is called true 3D perspective [15, p.53]. It is most commonly used in computer graphics
and computer vision, as itmore accuratelymodels the behaviour of real cameras. The centre of the projection
is the origin of a Euclidean coordinate system, and let 𝑧 = 𝑓 , which is called the image plane or focal plane.
With the pinhole camera model, a world coordinate 𝑿 = (𝑋,𝑌, 𝑍)𝑇 is projected to the point in the image
plane where a line joining the point 𝑿 to the centre of projection meets the image plane. This is illustrated
on the left of figure 3.1.1. By using similar triangles, the world point (𝑋,𝑌, 𝑍)𝑇 is projected onto the image
plane as (𝑓 𝑋

𝑍
, 𝑓 𝑌

𝑍
, 𝑓). By ignoring the third dimension, the projection can be given as

(𝑋,𝑌, 𝑍)𝑇 =⇒ (𝑓 𝑋
𝑍
, 𝑓
𝑌

𝑍
) . (3.1.1)

With a homogeneous coordinate representation, the projection has a simpler linear form:
𝑋

𝑌

𝑍

1

 =⇒

𝑓 𝑋

𝑓 𝑌

𝑍

 =

𝑓𝑥 0 0 0
0 𝑓𝑦 0 0
0 0 1 0

𝑋

𝑌

𝑍

1

 (3.1.2)

where 𝑓𝑥 and 𝑓𝑦 are the focal length in x and y-direction. The matrix can be written as a diagonal matrix
diag(𝑓𝑥 , 𝑓𝑦, 1) multiplied with a 3× 4matrix, which consists of the identity matrix and a zero column vector.

From now on, the notation 𝑿 represents the world point in homogeneous 4-vector (𝑋,𝑌, 𝑍, 1)𝑇 , 𝒙
represents the image point in homogeneous 3-vector and 𝑷 is the 3 × 4 homogeneous camera projection
matrix. Equation (3.1.2) can then be rewritten as

15

16 CHAPTER 3. PHOTOGRAMMETRY

Figure 3.1.1: An illustration of the pinhole camera geometry [68, p.154].

𝒙 = 𝑷𝑿 . (3.1.3)

Equation (3.1.3) describes the camera matrix for the pinhole model of central projection as

𝑷 = 𝑑𝑖𝑎𝑔(𝑓 , 𝑓 , 1) [𝑰 | 0] . (3.1.4)

Equation (3.1.1) assumes that the origin of coordinates in the image plane is at the principal point. In
reality, this may not be the case. A new mapping shown in equation (3.1.5) is introduced to compensate for
the offset of the principal point.

(𝑋,𝑌, 𝑍)𝑇 =⇒ (𝑓 𝑋
𝑍

+ 𝑐𝑥 , 𝑓
𝑌

𝑍
+ 𝑐𝑦)𝑇 (3.1.5)

where (𝑐𝑥 , 𝑐𝑦) are the coordinates of the camera. Similar to equation (3.1.2), equation (3.1.5) can be expressed
in a simpler form with homogeneous coordinates

𝑋

𝑌

𝑍

1

 =⇒

𝑓 𝑋 + 𝑍𝑐𝑥
𝑓 𝑌 + 𝑍𝑐𝑦

𝑍

 =

𝑓𝑥 0 𝑐𝑥 0
0 𝑓𝑦 𝑐𝑦 0
0 0 1 0

𝑋

𝑌

𝑍

1

 . (3.1.6)

The matrix in this expression can be referred as the camera intrinsics and can be written as

𝑲 =

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 . (3.1.7)

This representation is one of several ways to represent the intrinsic matrix. How to find the parameters
in the camera matrix is explained later in this chapter. This is done by camera calibration 5. Another way of
representing the intrinsic matrix is

𝑲 =

𝑓𝑥 𝑠 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 , (3.1.8)

which contains one extra variable 𝑠 that encodes any possible skewbetween the sensor axes, due to the sensor
not being mounted perpendicular to the optical axis.

By formulating 𝑲 as in equation 3.1.7, equation (3.1.6) can be expressed in more concise form

𝒙 = 𝑲 [𝑰 | 0]𝑿𝒄𝒂𝒎 (3.1.9)

where matrix 𝑲 is the camera calibration matrix and 𝑿𝒄𝒂𝒎 is the world point. It is assumed that the world
point is located at the origin of a Euclidean cooridnate system with principal axis of the camera pointing

CHAPTER 3. PHOTOGRAMMETRY 17

straight down the z-axis, and the point𝑿𝒄𝒂𝒎 is expressed in this coordinate system. This coordinate system
can be called the camera coordinate frame.

In general, points in space will be described in a coordinate frame known as the world coordinate space.
The two coordinate frames are related by a rotation and translation, which are called the camera extrinsics.
This is illustrated in figure 3.1.2. If 𝑿 represents an inhomogeneous 3-vector that represents a point in the
world coordinate frame. Then𝒙 represents the samepoint in the camera coordinate frame. A transformation
from world to camera coordinate frame may be expressed as

𝑿𝒄𝒂𝒎 = 𝑹 (𝑿 − 𝑪) (3.1.10)

where 𝑪 is the coordinates of the camera centre expressed in the world frame, and 𝑹 is a rotation matrix
representing the orientation of the camera frame. With a homogeneous representation, this equation can be
written as

𝑿𝑐𝑎𝑚 =

[
𝑹 −𝑹𝑪
0 1

]
𝑋

𝑌

𝑍

1

 =
[
𝑹 −𝑹𝑪
0 1

]
𝑿 (3.1.11)

Figure 3.1.2: The transformation between world and camera coordinate frames [68].

Inserting equation (3.1.10) into equation (3.1.11) leads to equation (3.1.12)

𝒙 = 𝑲𝑹 [𝑰 | − 𝑪]𝑿 (3.1.12)

where 𝑿 is expressed in the world coordinate frame. This is the general mapping given by the pinhole
camera.

In general, it is convenient to notmake the camera centre explicit, and rather describe theworld to image
transformation as 𝑿𝑐𝑎𝑚 = 𝑹𝑿 + 𝒕 . Expressing the transformation like this will give equation (??), which
expresses the camera matrix as

𝑷 = 𝑲 [𝑹 | 𝒕] (3.1.13)

where 𝒕 = −𝑹𝑪 .

18 CHAPTER 3. PHOTOGRAMMETRY

3.2 Camera calibration

Camera calibration is the process of finding the unknownparameters of the pinhole cameramodel presented
in the previous section. A common approach to performing the calibration process is to use Zhang’s method
[69] which will be presented in this section. The theory in this section is also taken from [70].

3.2.1 Plane based calibration

The idea behind Zhang’s method is to present a set of pictures of a planar surface for the camera. This
planar surface is commonly a checkerboard with known square dimensions. During the calibration process,
it is important that either the camera or the checkerboard is fixed in space. For the calibration process in
this thesis, the camera is chosen to be fixed. The camera characteristics are similar for all images, only the
orientation and position, 𝑹 and 𝒕 of the checkerboard varies. Since the size and structure of the checkerboard
are known, it is possible to define a coordinate system on the checkerboard that describes where each corner
is located in the real world. The origin of the world frame is defined as the upper left corner of the plane, the
directions of 𝑋 and 𝑌 move right and down, respectively, and 𝑍 is orthogonal to the plane. Based on this,
Zhang’s method assumes that the plane is on 𝑍 = 0 on the world coordinate system. This shows that any
point on the plane has the coordinates

_

𝑥

𝑦

1

 = 𝑲 [𝑹 | 𝒕]

𝑋

𝑌

0
1

 (3.2.1)

where𝑹 =
[
𝒓1 𝒓2 𝒓3

]
and_ is an arbitrary scalar. Since𝑍 is always zero, equation (3.2.1) can be simplified

as

_

𝑥

𝑦

1

 = 𝑲 [𝒓1 𝒓2 𝒓3 | 𝒕]

𝑋

𝑌

1

 . (3.2.2)

Defining𝐻 = 𝑲 [𝒓1 𝒓2 𝒓3 | 𝒕] gives the following equation

_

𝑥

𝑦

1

 = 𝑯

𝑋

𝑌

1

 (3.2.3)

where𝑯 ∈ R describes the homographymatrix that maps points from the checkerboard to the correspond-
ing pixel points in the image plane.

3.2.2 Homography estimation

The camera calibration technique is dependent on a homography estimation. Let the homography matrix
𝑯 be expressed as

𝑯 =

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

𝑋

𝑌

1

 . (3.2.4)

Equation 3.2.3 can be derived as

_

𝑥

𝑦

1

 =

ℎ11 ℎ12 ℎ13
ℎ21 ℎ22 ℎ23
ℎ31 ℎ32 ℎ33

𝑋

𝑌

1

 . (3.2.5)

CHAPTER 3. PHOTOGRAMMETRY 19

By dividing equation (3.2.5) with _, the pixel coordinates x and y can be mapped into imhomogeneous
coordinates

𝑥 =
ℎ11𝑋 + ℎ12𝑌 + ℎ13
ℎ31𝑋 + ℎ32𝑌 + ℎ33

(3.2.6)

𝑦 =
ℎ21𝑋 + ℎ22𝑌 + ℎ23
ℎ31𝑋 + ℎ32𝑌 + ℎ33

(3.2.7)

where

_ = ℎ31𝑋 + ℎ32𝑌 + ℎ33. (3.2.8)

The goal is to solve for 𝑯 . Arranging equation (3.2.6) and (3.2.7) gives the following equations

𝒂𝑇𝑥𝒉 = 0 (3.2.9)

𝒂𝑇𝑦𝒉 = 0 (3.2.10)

where

𝒉 =
[
ℎ11 ℎ12 ℎ13 ℎ21 ℎ22 ℎ23 ℎ31 ℎ32 ℎ33

]𝑇 (3.2.11)

𝒂𝒙 =
[
−𝑋 −𝑌 −1 0 0 0 𝑥𝑋 𝑥𝑌 𝑥

]𝑇 (3.2.12)

𝒂𝒚 =
[
0 0 0 −𝑋 −𝑌 −1 𝑦𝑋 𝑦𝑌 𝑦

]𝑇
. (3.2.13)

Given a set of corresponding points, a set of linear equations can be formed and solved as a linear system

𝑨𝒉 = 0, 𝒉 ≠ 0 (3.2.14)

𝑨 =

𝒂𝑇
𝑥1

𝒂𝑇
𝑦1

.

.

𝒂𝑇𝑥𝑚
𝒂𝑇𝑦𝑚

, 𝑚 ≥ 4 (3.2.15)

where m is the number of correspondences. The homography matrix 𝑯 has 8 degrees of freedom and is
defined up to scale, given a minimum of 4 correspondences. This linear system can be solved by using linear
least squares method and singular value decomposition (SVD). The sum of squared error can be defined as

𝑓 (𝒉) = 1

2
𝒉𝑇𝑨𝑇𝑨𝒉 (3.2.16)

𝑑 𝑓

𝑑𝒉
= 0 =

1

2
(𝑨𝑇𝑨 + (𝑨𝑇𝑨)𝑇)𝒉 (3.2.17)

0 = 𝑨𝑇𝑨𝒉. (3.2.18)

The SVD is defined as

𝑨 = 𝑼Σ𝑽𝑇 (3.2.19)

20 CHAPTER 3. PHOTOGRAMMETRY

where 𝑨 ∈ R𝑚𝑥𝑛 , 𝑼 ∈ R𝑚𝑥𝑚 , 𝑼𝑼𝑇 = 𝑰𝑚 and the eigenvectors of 𝑨𝑨𝑇 make up the columns of 𝑼 . The
columns of 𝑼 are the left singular vectors of𝑨. 𝑽 ∈ R𝑛𝑥𝑛 , 𝑽𝑽𝑇 = 𝑰𝑛 and the eigenvectors of𝑨𝑇𝑨make up
the columns of 𝑽 .

∑ ∈ R𝑚𝑥𝑛 is a rectangular diagonal matrix. It has elements along the diagonal which are
square root of the eigenvalues of both 𝑨𝑇𝑨 and 𝑨𝑨𝑇 in descending order. A more detailed explanation of
the SVD can be found in [71, p.66-67].

3.2.3 Intrinsic matrix

Now that the homography matrix is known, the intrinsic matrix 𝑲 can now be calculated. For every camera
position, there is a projection transformation𝑯 = _𝑲

[
𝑹 𝒕

]
. The projection transformation can bewritten

in column form, which is shown in equation (3.2.20).

_𝑲−1

𝒉1
𝒉2
𝒉3

𝑇

=

𝒓1
𝒓2
𝒕

𝑇

(3.2.20)

Equation (3.2.20) can be broken up and provide 3 equations

_𝑲−1𝒉1 = 𝒓1 (3.2.21)

_𝑲−1𝒉2 = 𝒓2 (3.2.22)

_𝑲−1𝒉3 = 𝒕 . (3.2.23)

The rotation matrix 𝑹 has unit vectors in the columns and it is orthogonal, such that

| |𝒓𝑖 | | = 1, (𝒓1)𝑇 𝒓2 = 0, 𝑖 = 1, 2. (3.2.24)

By exploiting these properties, two constraints for the intrinsic matrix can be introduced given one
homography

𝒉𝑇1 (𝑲𝑲𝑇)−1𝒉2 = 0 (3.2.25)

𝒉𝑇1 (𝑲𝑲𝑇)−1𝒉1 = 𝒉𝑇2 (𝑲𝑲𝑇)−1𝒉2. (3.2.26)

Let

𝑩 = (𝑲𝑲𝑇)−1 =

𝐵11 𝐵12 𝐵13
𝐵12 𝐵22 𝐵23
𝐵13 𝐵23 𝐵33

 (3.2.27)

𝐵11 𝐵12 𝐵13
𝐵12 𝐵22 𝐵23
𝐵13 𝐵23 𝐵33

 =

1
𝑓 2𝑥

− 𝑠
𝛼2𝛽

𝑐𝑦𝛾−𝑐𝑥 𝑓𝑦
𝑓 2𝑥 𝑓𝑦

− 𝑠

𝑓 2𝑥 𝑓𝑦

𝑠2

𝑓 2𝑥 𝑓 2𝑦
+ 1

𝑓 2𝑥

𝑠 (𝑓𝑦𝑠−𝑐𝑥 𝑓𝑦)
𝑓 2𝑥 𝑓 2𝑦

− 𝑐𝑦

𝑓 2𝑦

𝑐𝑦𝑠−𝑐𝑥𝛽
𝑓 2𝑥 𝑓𝑦

𝑠 (𝑐𝑦𝑠−𝑐𝑥 𝑓𝑦)
𝑓 2𝑥 𝑓 2𝑦

− 𝑐𝑦

𝑓 2𝑦

(𝑐𝑦𝑠−𝑐𝑥 𝑓𝑦)2
𝑓 2𝑥 𝑓 2𝑦

+ 𝑐2𝑦

𝑓 2𝑦
+ 1

. (3.2.28)

From the equation, it is observable that 𝑩 is symmetric and is defined by a 6D vector[
𝐵11 𝐵12 𝐵22 𝐵13 𝐵23 𝐵33

]𝑇 (3.2.29)

Let the 𝑖𝑡ℎ column vector of 𝑯 be 𝒉𝑖 =
[
ℎ𝑖1 ℎ𝑖2 ℎ𝑖3

]
. This results in the following equation

𝒉𝑇𝑖 𝑩𝒉 𝑗 = 𝒗𝑇𝑖 𝑗𝒃 (3.2.30)

CHAPTER 3. PHOTOGRAMMETRY 21

with

𝒗𝑖 𝑗 =[
ℎ𝑖1ℎ 𝑗1 ℎ𝑖1ℎ 𝑗2 + ℎ𝑖2ℎ 𝑗1 ℎ𝑖2ℎ 𝑗2 ℎ𝑖3ℎ 𝑗1 + ℎ𝑖1ℎ 𝑗3 ℎ𝑖3ℎ 𝑗2 ℎ𝑖2ℎ 𝑗3 + ℎ𝑖2ℎ 𝑗3 ℎ𝑖3ℎ 𝑗3

]𝑇
.

(3.2.31)

Hence, the two constraints shown in equation (3.2.25) and (3.2.26) can be rewritten as two homogeneous
equations [

𝒗𝑇12
(𝒗11 − 𝒗22)𝑇

]
𝒃 = 0. (3.2.32)

If there are 𝑛 images of the checkerboard taken, then equation (3.2.32) can be stacked to form a matrix

𝑽𝒃 = 0, 𝑽 ∈ R2𝑛×6. (3.2.33)

When 𝑛 ≥ 3, a unique solution for 𝒃 can be found. This is solved the same way as for the homography
matrix.

Once 𝒃 is estimated, the intrinsics parameters for the camera matrix shown in equation (3.1.8) can be
uniquely extracted from matrix 𝑩.

𝑐𝑦 =
𝐵12𝐵13 − 𝐵11𝐵23
𝐵11𝐵22 − 𝐵212

(3.2.34)

_ =
𝐵33 − 𝐵213 + 𝑐𝑥 (𝐵12𝐵13 − 𝐵11𝐵23)

𝐵11
(3.2.35)

𝑓𝑥 =

√︄
_

𝐵11
(3.2.36)

𝑓𝑦 =

√︄
_𝐵11

𝐵11𝐵22 − 𝐵212
(3.2.37)

𝑠 = −
𝐵12 𝑓

2
𝑥 𝑓𝑦

_
(3.2.38)

𝑐𝑥 = _
𝑐𝑦

𝑓𝑥
− 𝐵13 𝑓

2
𝑥

_
(3.2.39)

3.2.4 Extrinsic matrix

When the camera matrix 𝑲 is found, the extrinsic parameters can be computed for each homography. From
equations (3.2.21) - (3.2.23), the following equations can be derived

𝒓1 = _𝑨
−1ℎ1 (3.2.40)

𝒓2 = _𝑨
−1ℎ2 (3.2.41)

𝒓3 = 𝒓1 × 𝒓2 (3.2.42)

𝒕 = _𝑨−1ℎ3 (3.2.43)

where

22 CHAPTER 3. PHOTOGRAMMETRY

_ =
1

| |𝑨−1ℎ1 | |
=

1

| |𝑨−1ℎ2 | |
(3.2.44)

and the extrinsic matrix is expressed as [
𝑹 𝒕

]
=
[
𝒓1 𝒓2 𝒓3 𝒕

]
. (3.2.45)

3.2.5 Rotation matrix approximation

Noise can appear, which can cause the estimated parameters of the rotation matrix 𝑹 to not satisfy the
properties of a rotationmatrix. Hence, 𝑹 needs to be estimated such that it meets the conditions of a rotation
matrix. Let

𝑸 =
[
𝒓1 𝒓2 𝒓3

]
(3.2.46)

The goal is to find the best 𝑹 to approximate 𝑸 . This can be accomplished by minimizing the Frobenius
norm of the difference 𝑹 − 𝑸 .

min
𝑹

| |𝑹 − 𝑸 | |2𝐹 𝑠 .𝑡 𝑹𝑇𝑹 = 𝑰 (3.2.47)

| |𝑹 − 𝑸 | |2𝐹 = 𝑇𝑟 ((𝑹 − 𝑸)𝑇 (𝑹 − 𝑸)) (3.2.48)

| |𝑹 − 𝑸 | |2𝐹 = 𝑇𝑟 (𝑹𝑇𝑹) +𝑇𝑟 (𝑸𝑇𝑸) − 2𝑇𝑟 (𝑹𝑇𝑸) (3.2.49)

| |𝑹 − 𝑸 | |2𝐹 = 3 +𝑇𝑟 (𝑸𝑇𝑸) − 2𝑇𝑟 (𝑹𝑇𝑸) (3.2.50)

where 𝚺 = 𝑑𝑖𝑎𝑔(𝜎1, 𝜎2, 𝜎3). Minimizing equation (3.2.47) is equivalent to maximizing𝑇𝑟 (𝑹𝑇𝑸). By com-
puting the SVD of 𝑸 = 𝑼𝚺𝑽𝑻 , the following expression is obtained

𝑇𝑟 (𝑹𝑇𝑸) = 𝑇𝑟 (𝑹𝑇𝑼𝚺𝑽𝑻) = 𝑇𝑟 (𝑽𝑇𝑹𝑇𝑼𝚺) . (3.2.51)

The manipulation of equation (3.2.51) is possible because the trace is invariant under cyclic permuta-
tions. Let 𝒁 = 𝑽𝑇𝑹𝑇𝑼 . This can be inserted into equation (3.2.51).

𝑇𝑟 (𝑽𝑇𝑹𝑇𝑼𝚺) = 𝑇𝑟 (𝒁𝚺 =

3∑︁
𝑖=1

𝑧𝑖𝑖𝜎𝑖 ≤
3∑︁

𝑖=1

𝜎𝑖 (3.2.52)

From equation (3.2.52) it can be seen that the optimal solution is 𝒁 = 𝑰 , which gives a rotation matrix
defined as

𝑹 = 𝑼𝑽𝑇 (3.2.53)

which is the solution of equation (3.2.47).

3.3 Stereo camera geometry

By introducing a stereo vision system, it is possible to reconstruct the third dimension, which represents the
depth. The concept of stereo vision systems is to simulate the human eyes, looking at the same points from
different angles. It is also possible to use a monocular camera setup to solve the depth problem. However,
monocular cameras suffer from a single depth-translation scale ambiguity issue, which is a problem for
objects in motion [72]. Figure 3.3.1 shows an example of how a stereo camera setup can look like. It consists
of two cameras with a known distance between them, which is called the baseline.

CHAPTER 3. PHOTOGRAMMETRY 23

Figure 3.3.1: An illustration of the stereo camera setup used in this thesis. It has two cameras which are
synchronized and powered through a router which is connected to a PC.

24 CHAPTER 3. PHOTOGRAMMETRY

3.4 Calibration a stereo camera setup

Two cameras are mounted in parallel in a stereo camera setup, both fixed in space relative to each other.
This can be seen in figure 3.3.1. The calibration process of a stereo camera is similar to section 3.2. When
calibrating the stereo camera, the checkerboard used for calibration must be visible for both cameras. The
checkerboard is used to estimate the rigid transformation between the cameras. For a stereo camera, the set
of corresponding points for the left and the right camera can be defined as

𝒙𝑙𝑖 𝑗 = 𝑲 𝑙
𝑖

[
𝑹𝑙
𝑖 𝒕𝑙𝑖

]
𝑿 𝑙

𝑖 (3.4.1)

𝒙𝑟𝑖 𝑗 = 𝑲𝑟
𝑖

[
𝑟𝑹𝑟

𝑖 𝒕𝑟𝑖
]
𝑿𝑟

𝑖 , 𝑖, 𝑗 ∈𝑚,𝑛 (3.4.2)

where𝑚 is the number of test images and 𝑛 is the number of correspondences. Equation (3.4.1) and (3.4.2)
are the parameters and image points for left and right camera. In figure 3.4.1 an illustration of the stereo
camera geometry is shown.

Figure 3.4.1: An illustration of a typical stereo camera geometry where two cameras are looking at the same
point.

3.5 Essential matrix

Consider figure 3.4.1, which illustrates a 3Dworld point𝑿 being viewed from two cameras where the relat-
ive position can be transformed by a rotation 𝑹 and a translation 𝒕 . Since the camera positions are unknown,
without loss of generality, the left camera can be set to have a rotation 𝑹 = 𝑰 and 𝒕 = 0.

A 3D point 𝑿0 = 𝑑0𝑥0 is observed in the left image at location 𝑥0 with a distance 𝑑0, which is mapped
into the right image by the transformation

𝑑1𝒙1 = 𝑋1 = 𝑹𝑿0 + 𝑡 = 𝑹 (𝑑0𝒙0) + 𝑡 (3.5.1)

where 𝑥 𝑗 = 𝑲−1
𝑗 𝑥 𝑗 are the ray direction vectors. Taking the cross product of both sides with 𝒕 to remove it

gives the following equation

𝑑1 [𝒕]×𝒙1 = 𝑑0 [𝒕]×𝑹𝒙0. (3.5.2)

CHAPTER 3. PHOTOGRAMMETRY 25

Taking the dot product of both sides with 𝑥1 results in

𝑑0𝑥
𝑇
1 ([𝒕]×𝑹)𝒙0 = 𝑑1𝑥

𝑇
1 [𝒕]×𝒙1 = 0, (3.5.3)

since the [𝑡]× is skew symmetric and returns 0 when multiplying with the same vector.
This gives the epipolar constraint

𝒙𝑇1𝑬𝒙0 = 0 (3.5.4)

where

𝑬 = [𝒕]×𝑹 (3.5.5)

is defined as the essential matrix.
The essential matrix can be estimated by using the eight-point algorithm. Given𝑛 ≥ 8 correspondences,

it is possible to calculate an estimate of 𝑬 up to scale for the values in 𝑬 by using SVD. Recall equation (3.2.19).
Assuming matrix𝑨 is solved with SVD, 𝑬 can be found by extracting the elements in the last column of 𝑽𝑇 .

3.6 Epipolar geometry

The epipolar geometry is often motivated when searching for corresponding points between two frames.
This geometry reduces the number of potential correspondences and speeds up the correspondence search
by reducing the search problem from being 2D to 1D [15, p.754] [68, p.239]. Figure 3.6.1 illustrates how pixel
𝒙𝑙 in one image projects to an epipolar line segment in the other image. The segment is bounded at one end
by the world point 𝑿 and at the other end by the projection of the origin of the left camera into the right
camera. This is known as the epipole 𝒆1. If the epipolar line is projected in the second image back to the
reference image, another epipolar line segment is obtained and bounded by the other corresponding epipole
𝒆0. By extending these two epipoles to infinity, a pair of corresponding epipolar lines construct the epipolar
plane shown in figure 3.6.1, which is the yellow area in the figure. The epipolar plane passes through both
camera origins and the world point𝑿 .

Figure 3.6.1: The epipolar geometry of a stereo camera setup. It illustrates the two corresponding epipolar
lines and the epipolar plane.

26 CHAPTER 3. PHOTOGRAMMETRY

3.7 Rectification

As shown in section 3.5, the epipolar geometry can implicitly be computed by using the eight-point algorithm
to estimate the essential matrix. After this geometry has been calculated, the epipolar line corresponding to
one pixel in one image can be used to limit the search for point correspondences in the other image.

A more efficient method to establish the epipolar geometry is first to rectify the image pair so that the
corresponding horizontal scanlines are epipolar lines. This is obtained by transforming the image pair such
that corresponding points lie on the same horizontal line, which reduces the point correspondence search
from 2D to 1D since the points should lie on the y-coordinate. An example of a rectified image pair is shown
in figure 3.7.1.

Figure 3.7.1: The original unrectified image pair is shown on the top. The two bottom images shows the
rectified image pair with the epipolar lines displayed in different colors.

Rectifying two images can be done by first rotating both cameras such that they are looking perpendic-
ular to the line joining the origins of the two cameras. Since there is a degree of freedom in the tilt, the least
number of rotations should be used. The next step is to determine the twist around the camera axes. This is
achieved when the camera y-axis is perpendicular to the camera centre line. It ensures that corresponding
epipolar lines are horizontal and that the disparity for points further away from the camera is closer to zero.
The final step is to re-scale the images to compensate for different focal lengths. However, in this thesis, this
is not required as the two cameras used are identical.

3.8 Triangulation

Triangulation can be used to reconstruct the 3D point from point correspondences. With the point corres-
pondences available, the disparity can be calculated. The baseline and focal length of a stereo camera setup
are assumed to be known. This information can be combined with the disparity to reconstruct the 3Dworld
point with the equations

𝑋 =
𝑥𝑙 − 𝑥𝑟
𝑓

∗ 𝑍, (3.8.1)

CHAPTER 3. PHOTOGRAMMETRY 27

𝑌 =
𝑦𝑙 − 𝑦𝑟
𝑓

∗ 𝑍, (3.8.2)

𝑍 =
𝑓 ∗ 𝑏
𝑥𝑙 − 𝑥𝑟

. (3.8.3)

where 𝑏 is the baseline between the cameras and (𝑥𝑙 , 𝑦𝑙), (𝑥𝑟 , 𝑦𝑟) are the pixel coordinates of left and right
image.

After reconstructing the world points from the point correspondences, the 3D points can be used to
determine the distance to an object by calculating the Euclidean distance

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
√
𝑋 2 + 𝑌 2 + 𝑍2. (3.8.4)

With the distance established, the velocity can be computed by

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑟𝑒𝑣) ∗ 𝐹𝑃𝑆 (3.8.5)

where 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑐𝑢𝑟𝑟 and 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝𝑟𝑒𝑣 are the distances of the object in current and previous image. FPS is
how many frames the camera can capture in one second. This is found in the camera specifications.

28 CHAPTER 3. PHOTOGRAMMETRY

CHAPTER4
DATA ACQUISITION

In this thesis, there were no stereo images available for testing. Data acquisition was necessary to gather
stereo images from different environment. In this section the camera used in the thesis is presented along
with the necessary software to capture images simultaneously.

4.1 Camera specifications

The experimental data was gathered with a stereoscopic camera built by previous master students [73]. It
is equipped with two FLIR Blackfly GigE cameras with a baseline of 230 mm and an inertial measurement
unit (IMU). The IMU is not relevant for this thesis. An image of the Flir Blackfly GigE camera 1 and the
technical specifications are shown in figure 4.1.1 and table 4.1.1. The whole setup of the stereo camera is
displayed in figure 4.1.2. It is powered by an Ethernet connection from the attached router. It has global
shutter which gives complete control over highly sensitive sensors and the possibility for external hardware
triggering or software triggering. The benefit of global shutter is that the whole image will be taken at once,
while rolling shutter cameras capture one line at a time. Two GPIO pins are attached with the cameras to
enable synchronized image capturing.

Figure 4.1.1: The Flir Blackfly GigE used in the camera setup 1.

1Link to camera
2Software for the cameras

29

https://www.edmundoptics.com/p/bfly-pge-13s2c-cs-13-blackflyreg-poe-gige-color-camera/30325/
https://flir.app.boxcn.net/v/SpinnakerSDK?pn=Spinnaker+SDK&vn=Spinnaker_SDK

30 CHAPTER 4. DATA ACQUISITION

Parameter Value
Product number BFLY-PGE-13S2C-CS
Resolution 1288 x 964
Frame rate 30
Readout Method Global shutter
Triggering External and Software 2

Synchronization GPIO pins
Meta-data Timestamp, image count, image parameters
Sensor Sony ICX445
Sensor Format 1/3"
Lens Focal Length 1.28𝑚𝑚
Field of View 125 °
Distortion < 3 %
Pixel size 3.75 `𝑚

Table 4.1.1: Specifications for Blackfly GigE [73]

Figure 4.1.2: An image of the stereo setup.

CHAPTER 4. DATA ACQUISITION 31

To capture the images, software triggering was used. The producers have created a software develop-
ment kit (SDK) that allows freedom for the user. It is possible to use their own program Spinnaker 2, which
provides a graphical user interface to control the cameras. In addition to their program, documented Py-
thon scripts were also created which allowed users to incorporate data acquisition into their own Python
program. This script can be found in Appendix A.

Image data was captured from two different environments, one in the NTNU ITK Lab, and one at SIN-
TEF Ocean. The images from NTNU ITK lab represent a controlled environment, more suitable for valid-
ation purposes. The data from SINTEF represent a more realistic scene of the fish cages that can be used to
evaluate the performance of the method in such environments. In figure 4.1.3, image samples can be seen
from left and right camera.

Figure 4.1.3: The images on top shows an example of an image pair taken at SINTEFOcean. On the bottom,
an image pair from the NTNU ITK Lab is shown.

32 CHAPTER 4. DATA ACQUISITION

CHAPTER5
CALIBRATION RESULTS

Camera calibration must be done to extract camera parameters and to minimize the reprojection error.
Since data was gathered in different environments, camera calibration also needs to be performed in the
same environments. This chapter will present the calibration process and results, which uses theory related
to sections 3.2 and 3.4.

To calibrate the camera, calibration images with a checkerboard needs to be taken in the different en-
vironments. These images can be processed in a calibration tool in order to extract the camera parameters.
OpenCV andMATLAB are two options that can be used to perform camera calibration. In this thesis MAT-
LAB’s calibration tool was used. MATLAB provide a user friendly interface and a great visualization tool to
show the calibration results. They have two similar toolboxes for camera calibration, one for single camera
and one for stereo camera. The calibration process started with the stereo camera to find the accepted cal-
ibration image pairs. After finding the image pairs, they were split into left and right images to calibrate the
left and right camera individually. Figure 5.0.1 shows an image of the calibration tool.

Figure 5.0.1: MATLAB calibration tool.

An advantage of using MATLAB is that it has a function to remove outliers depending on the threshold
of mean error in pixels. The threshold can be adjusted, and MATLAB will automatically select images with

33

34 CHAPTER 5. CALIBRATION RESULTS

a higher mean error than the threshold. These images can be removed, and perform a recalibration of the
camera if desired. A figure of this function is shown in figure 5.0.2. After adjusting the threshold and recal-
ibrating the camera, MATLAB generates a script to extract the camera intrinsics.

Figure 5.0.2: Tool to remove outliers depending on which threshold is set.

After calibrating the cameras individually, the image pairs were used in the stereo calibration tool. This
would calibrate the camera to provide the extrinsic matrix. The left camera is assumed to be the reference
camera in these results. This means that the left camera will have 𝑹 = 𝑰 and 𝒕 = 0. The calibration results
are listed in sections 5.1 and 5.2

5.1 Calibration results fromNTNU ITK lab

At the NTNU ITK lab, 54 images of a checkerboard with 24mm square size were used to calibrate the cam-
eras. Equation (5.1.1) and (5.1.2) shows the left and right intrinsic matrix, and equations (5.1.3) and (5.1.4)
denotes the rotation and translation from the reference camera.

𝑲 𝑙𝑒 𝑓 𝑡 =

338.20 0.00 634.71
0.00 337.85 511.30
0.00 0.00 1.00

 (5.1.1)

𝑲𝑟𝑖𝑔ℎ𝑡 =

352.03 0.00 632.25
0.00 352.35 489.13
0.00 0.00 1.00

 (5.1.2)

𝑹 =

0.9473 −0.3133 −0.0673
0.3139 0.9494 −0.0022
0.0646 −0.0191 0.9977

 (5.1.3)

𝒕 =

−239.78
34.30
−51.54

 (5.1.4)

CHAPTER 5. CALIBRATION RESULTS 35

5.2 Calibration results from SINTEF

In the calibration process at SINTEF, 51 imageswere used alongwith a checkerboardwith 30mmsquare size
to calibrate the cameras. Equations (5.2.1) and (5.2.2) shows the left and right intrinsic matrix, and equations
(5.2.3) and (5.2.4) denotes the rotation and translation from the reference camera.

𝑲 𝑙𝑒 𝑓 𝑡 =

335.02 0.00 634.23
0.00 334.61 513.80
0.00 0.00 1.00

 (5.2.1)

𝑲𝑟𝑖𝑔ℎ𝑡 =

363.83 0.00 628.77
0.00 364.17 488.85
0.00 0.00 1.00

 (5.2.2)

𝑹 =

0.9471 −0.3105 −0.0811
0.3139 0.9494 −0.0024
0.0779 −0.0230 0.9967

 (5.2.3)

𝒕 =

−213.15
34.79
−51.37

 (5.2.4)

In [15, p.58], it is suggested that the focal length and camera center is calculated as equation (5.2.5)

𝑓 =
𝑊

2
[𝑡𝑎𝑛(\𝐻

2
)]−1, (𝑐𝑥 , 𝑐𝑦) = (𝑊

2
,
𝐻

2
) . (5.2.5)

where \𝐻 is the field of view,𝑊 is the width of the image and𝐻 is the height of the image.
Inserting the camera values from table 4.1.1 gives equations (5.2.6) and (5.2.7).

𝑓 =
1288

2
[𝑡𝑎𝑛(125

◦

2
)]−1, (𝑐𝑥 , 𝑐𝑦) = (1288

2
,
964

2
), (5.2.6)

𝑓 = 335.24, (𝑐𝑥 , 𝑐𝑦) = (644, 482) . (5.2.7)

There are some differences between these values and the calibration results. The focal length of the left
camera seems to be quite similar, while the right camera has a slight difference in the focal length. This can
result from the right camera being calibrated slightly worse than the reference camera, or it can be a natural
issue in the product itself. The error is not significant, which makes it sufficient for experimental tests. It is
expected to have some offset since it is an estimation of the camera parameters. A similar case can be seen
in the camera centre.

36 CHAPTER 5. CALIBRATION RESULTS

CHAPTER6
DEEP LEARNING

6.1 Neural networks

Artificial Neural Networks (ANNs), which are also called neural networks, have been widely used in areas
of human interests [74]. They are based on the biological neural network of the human brain. The core idea
behind neural networks came from cognitive science, where a considerable number of computational units
are connected to show intelligent behaviours [75]. One type of such network is the multilayered perceptron
network. They consist of a system of neurons or nodes [76]. Figure 6.1.1 shows an example of a neural
network with one hidden layer.

Input
layer

Hidden
layer

Output
layer

Input 1

Input 2

Input 3

Input 4

Input 5

Ouput

Figure 6.1.1: An example of a neural network.

These networks are modelled to represent a nonlinear mapping between an input vector and an output
vector. The neurons are connected by weights and output signals, consisting of the sum of inputs to the
neuron. These are modified by a simple nonlinear transfer function, also known as an activation function.
A commonly used activation function is the Rectified Linear Units [15, p.272].

With a suitable set of weights and activation functions, a neural network is able to approximate any
smooth, measurable function between the input layer and output layer [77]. These weights can be obtained

37

38 CHAPTER 6. DEEP LEARNING

Figure 6.1.2: A figure of a fully-connected deep neural network with 5 hidden layers [79].

through training. A set of training data is required to train a neural network. It consists of a series of input and
associated output vectors. When training a neural network, it is repeatedly presented with training data and
adjusts theweights accordingly until the desired input-output is obtained. A commonway to train a network
is supervised learning. In the training process, the output for a given input may not equal the desired output.
An error signal is established as the difference between the expected and actual output. Supervised training
uses this error signal to adjust the weights in the network such that the overall error is minimized.

A deep neural network (DNN) is an extension of the neural network. They consist of multiple hidden
layers, which increases the complexity of the model. It allows the network to transform the input data using
different functions that represent the data in a hierarchical way [78]. Figure 6.1.2 shows an example of a
fully-connected deep neural network. A fully-connected network can be recognized when every node is
connected in the previous and next layer.

One advantage of utilizing DNNs is the automatic feature extraction from raw data. In a DNN, the
numerous layers are connected to each other. The connection allows the extraction of high level features
that are formed by the composition of lower level features [78]. Figure 6.1.3 shows how the DNN extracts
features from an image to detect faces.

Figure 6.1.3: An example of how features from an image are found [80].

6.2 Convolutional neural networks

Convolutional neural networks are one of the most successful types of neural networks [75]. They are
primarily used to solve challenging image-driven recognition problems [81]. According to [82], CNNs have
the advantage of being able to merge the feature extraction and feature classification processes into a single
learning body. Classification is a computer vision problem to decide if a class is present in an image. This
helps CNNs to learn to optimize features during the training phase directly from the raw input. CNNs have

CHAPTER 6. DEEP LEARNING 39

a network structure with sparsely-connected nodes with tied weights, which means that they can process
large inputs in a computationally efficient way. Another advantage is that CNNs can adapt to different input
sizes and are immune to small transformations in the input data, including distortion, translation, scaling
and skewing.

Each neuron in a CNN is built up by 2D planes for weights, called the kernel, and input and output,
known as the feature map. The neurons have 2D planes because images have two dimensions. Figure 6.2.1
shows an illustration of the basic building blocks of a CNN that classifies a 24×24 grayscale image into two
categories. It starts with the image being fed to the input layer of the CNN. An interconnection feeds the
first convolutional layer assigned by a weighting filter𝑤 with a kernel size (𝐾𝑥 , 𝐾𝑦) = (4, 4). Each neuron
in the first convolution layer performs a linear convolution between the image and the corresponding filter
to create the input feature map of the neuron. This feature map is passed through the activation function
to generate the output feature map of the neuron of the convolution neuron. The size of the output feature
map is decided by subsampling factors chosen to be 𝑆𝑥 , 𝑆𝑦 = 3 in this example. Each neuron’s feature map
is established in the pooling layer by breaking down the output feature map of the previous neuron of the
convolutional layer. In the figure, 7×7 featuremaps are created in the first pooling layer. After this, the same
process is repeated, and the outputs of the second pooling layer are the inputs of the fully-connected layers.
In the second convolutional and pooling layer, the kernel size is chosen to be identical, while the subsample
factors are 𝑆𝑥 = 𝑆𝑦 = 4. The scalar outputs are forwarded through the fully-connected and output layers to
produce the classification results [82].

Figure 6.2.1: The illustration of the process in a CNN architecture [82].

6.3 Object detection

Classification is one of the computer vision tasks that deep learning tries to solve. Another task, which is
essential in this thesis, is the detection problem. The idea behind object detection is to locate and classify
objects. Rectangular bounding boxes are drawn around the detected object and classifies the object. It is
closely related to the classification problem. An example of classification and object detection can be seen in
figure 6.3.1b.

Object detection methods can be divided into two types of detectors: single-stage and two-stage. The
two-stage detectors typically incorporate aRegionProposalNetwork (RPN) in the first stage. It generates re-
gion of interests, which are forwarded to the second stage for object classification and bounding box regres-
sion. Examples of state-of-the-art two-stage detectors are region-based CNN, such as Faster region-based
R-CNN [84] or Mask R-CNN [48]. Such models can reach the highest accuracy rates because of the RPN,
with the downside of being slower. The single-stage detectors, such as Scaled-YOLOv4 [85], and RetinaNet
[46], treat object detection as a regression task by taking an image as input and learn the class probabilities
and bounding box coordinates. Compared to the two-stage detectors, these models reach lower accuracy
rates but significantly faster computational speed. Single-stage detectors are more suitable for real-time
applications because of their speed [86].

40 CHAPTER 6. DEEP LEARNING

(a) Classification (b) Object detection

Figure 6.3.1: 6.3.1a shows an example of classification, while object detection is shown in 6.3.1b. The dif-
ference is that in object detection draws a bounding box for each object with the corresponding class, while
classification does not account for the amount of objects [83].

6.4 YOLOv5

YOLOv5 1, a model from the You only look once (YOLO) network family will be used to solve the detection
problem in this thesis. It is a state-of-the-art object detection architecture. The network has enormous
community support, making it easy to use and incorporate. YOLOv5 is not an extension of Scaled-YOLOv4
[85], which is created by another author, but an improvement of YOLOv3 [87], which outperformed state-
of-the-art methods like RetinaNet [46], Single-shotSSD [88] and Region-based fully convolutional networks
(R-FCN) [89].

6.5 Creating the datasets

A training set from both environments needed to be created to test YOLOv5 on the data acquired from the
two environments. The network is trained in a supervised manner, which requires the training set to have
labels to tell how correct the prediction of the network is. A simple labelling tool 2 was used to label the data.
The training data for YOLOv5 needs to be structured in away such that the images have a corresponding text
file, which contains the information about the object class and the bounding box coordinates. Figure 6.5.1
shows the labelling tool, figure 6.5.2 shows how the file structure needs to be setup and table 6.5.1 shows an
example of the text file that is generated from the labelling tool.

class x-coordinate y-coordinate width height
0 0.244922 0.447226 0.107031 0.228687

Table 6.5.1: Content of the textfiles. The first number indicates which class it is, in this example there is
only 1 object class. The rest of the numbers are the x- and y coordinates, and the width and height of the
bounding box

1YOLOv5 GitHub
2Labelling tool

https://github.com/ultralytics/yolov5
https://github.com/developer0hye/Yolo_Label

CHAPTER 6. DEEP LEARNING 41

Figure 6.5.1: The labelling tool used to label the training data. It draws bounding box around the objects of
interests and generates a textfile information about the class and location of the bounding box.

Figure 6.5.2: The file structure of the training data.

42 CHAPTER 6. DEEP LEARNING

6.5.1 SINTEF dataset

The data from SINTEF containedmultiple fish swimming around in a pool. Because of time limit, a number
between one and five fish was labelled. Manual data labelling can be very time consuming. Figure 6.5.3
shows samples from the labelled training data. Fish that were "alone" were the focus during the labelling
process. Fish with other fish close to them were avoided because it would create labels overlapping with
other fish. The overlapping may cause the detection network to learn from incorrect features and perform
poorly. Examples of fish being close to each other can be seen on the left side of figure 6.5.3a - 6.5.3c. In
addition to the fish being alone, labelling different orientations and distances of the fish makes the detection
network more robust. A total of 1778 images were first rectified to establish the epipolar geometry, then
labelled as training data in the SINTEF dataset.

(a) (b)

(c) (d)

(e) (f)

Figure 6.5.3: 6.5.3a - 6.5.3c and 6.5.3d - 6.5.3f shows samples of labelled images from left and right.

CHAPTER 6. DEEP LEARNING 43

6.5.2 NTNU ITK Lab dataset

Labelling the data from the NTNU ITK Lab was a more manageable task as there was only one object in the
scene. The object was a 3D printed ellipse, which was supposed to resemble a fish. A similar procedure was
followed when labelling the data. Different orientations and distances of the object were labelled to make
it able to detect the object in different situations. In this dataset, a total of 1317 images were rectified and
labelled.

(a) (b)

(c) (d)

(e) (f)

Figure 6.5.4: 6.5.3a - 6.5.3c and 6.5.3d - 6.5.3f shows samples of labelled images from left and right.

6.6 Training the network

YOLOv5 offers five different model sizes for the user to choose from. A larger model size means better
accuracy with the drawback of being more complex and having lower speed. A smaller model size provides

44 CHAPTER 6. DEEP LEARNING

higher speed, lower complexity and lower accuracy. Figure 6.6.1 compares the speed and accuracy of the
different model sizes. With a Graphical Processing Unit (GPU) available, the difference in speed is reduced
to only a millisecond, which is acceptable in a real-time application. GEFORCE RTX 3090 was used to
train and test YOLOv5l, the second largest model size. The GPU significantly reduces the training time
and inference time. YOLOv5l was chosen as it performed faster than the largest model while maintaining a
comparable accuracy.

The network’s performance is evaluated with the metric mean average precision (mAP) [90], which is
a popular metric to evaluate the performance of object detection networks. From the labelled data, 1778
images were used to train the network in the SINTEF environment, while 1317 images were used in the
NTNU lab environment.

Figure 6.6.1: Comparison of YOLOv5 model sizes and EfficientDet [91].

6.7 Detection results

Figure 6.7.1 - 6.7.2 shows the detection results on rectified images from the data gathered in section 4. They
are presented with the left image to make the results easier to see for the reader. The left image is presen-
ted first in the image pair, then the right image. YOLOv5 draws a bounding box around the object with a
confidence. In figure 6.7.1 and 6.7.1, the network is able to detect the object in different distances. There
is only one object in the scene, making it less complicated for the network to detect the object with a high
confidence. The results reflect that the number of images in the training set is sufficient for this scenario.

Figure 6.7.2 and 6.7.2 shows detection results in an environment with multiple objects. Out of the many
objects, only a couple of them is detected. The detection reflects the data labelling process since a maximum
of five fish were labelled, focusing on fish that were "alone". Despite the limitation, the network can detect
most fish with varying confidence. This means that the training set was not large enough to make the net-
work produce results with high confidence. More representations of the fish should have been included in
the training set. One example where the network struggles to distinguish between two fish can be seen in
figure 6.7.2c. The network manages to draw an individual bounding box around the two fish. However, it
also draws an additional bounding box around both fish since it believes it is one fish. It is worth noting that
the two correct bounding boxes have a confidence of 0.70 and 0.68, however, the extra bounding box has a
confidence of 0.43. It does not perform as well as on the previous dataset because of the extra objects in the
scene and the fish have a more complex behavior.

CHAPTER 6. DEEP LEARNING 45

(a)

(b)

(c)

(d)

Figure 6.7.1: YOLOv5 applied on dataset from the lab at NTNU.

46 CHAPTER 6. DEEP LEARNING

(e)

(f)

Figure 6.7.1: Detection results on dataset from the lab at NTNU.

CHAPTER 6. DEEP LEARNING 47

(a)

(b)

(c)

Figure 6.7.2: Detection results on dataset from SINTEF.

48 CHAPTER 6. DEEP LEARNING

(d)

(e)

(f)

Figure 6.7.2: Detection results on dataset from SINTEF.

CHAPTER 6. DEEP LEARNING 49

6.8 Superglue

The object detection network solves the detection problem. Point correspondences must be established to
perform triangulation and calculate the distance and the velocity of the detected fish. These correspondences
were established by using a pretrained model of Superglue 3 [92]. Superglue is a neural network which
matches two sets of local features. It finds point correspondences while rejecting non-matchable points
at the same time. Superglue assigns the matches by estimating a differentiable optimal transport problem,
whose costs are predicted by a graph neural network [93].

Superglue was pretrained on a dataset provided by the authors, such that training data was unnecessary
for the model. It was compared against two popular traditional feature matching methods, ORB [38] and
SIFT [36]. Figure 6.8.1 - 6.8.3 shows examples that demonstrate the performance of ORB, SIFT and Su-
perglue. These examples are taken from different distances in the NTNU ITK lab to see how the methods
perform when the object becomes smaller. The images are divided into left and right, where the first is left
and the second is right, to make the feature matching more visible for the reader. The matching results also
show matches from the whole scene. However, the main focus is the matching results on the ellipse object.

From the results, it is observable that Superglue outperforms the two selected methods. ORB struggles
to find many matches, but it finds one correct match in all scenarios. SIFT finds significantly more matches
but fails to find correct matches reliably. Similar to ORB, it finds one matching point on the left side of the
object in figure 6.8.1 and 6.8.2. However, it seems that it mostly matches points outside the object. This
observation is most noticeable in figure 6.8.2c where a light-blue point looks like it is located on the edge
of the object, while figure 6.8.2d shows that it is a match to the environment. In figure 6.8.3, SIFT fails to
match any point within the object, which makes it unreliable to use as a matching method. Looking at the
results from Superglue, it not only manages to establish multiple matches but also matches them correctly,
including the ones outside the object. In every scenario, Superglue robustly finds multiple matches on the
ellipse object, proving that it is the best candidate.

3SuperGlue GitHub

https://github.com/magicleap/SuperGluePretrainedNetwork

50 CHAPTER 6. DEEP LEARNING

(a) ORB left

(b) ORB right

(c) SIFT left

(d) SIFT right

Figure 6.8.1: Starting from the top, the images are illustrating matching results from ORB and SIFT on a
75cm distance.

CHAPTER 6. DEEP LEARNING 51

(e) Superglue left

(f) Superglue right

Figure 6.8.1: Results from Superglue matching on 75 cm distance.

(a) ORB left

(b) ORB right

Figure 6.8.2: Results from ORB matching on a 100 cm distance.

52 CHAPTER 6. DEEP LEARNING

(c) SIFT left

(d) SIFT right

(e) Superglue left

(f) Superglue right

Figure 6.8.2: Starting from the top, the figure is showing results fromSIFT and Supergluematching at 100cm
distance.

CHAPTER 6. DEEP LEARNING 53

(a) ORB left

(b) ORB right

(c) SIFT left

(d) SIFT right

Figure 6.8.3: Starting from the top, the images are illustratingmatching results fromORB and SIFT on a 150
cm distance.

54 CHAPTER 6. DEEP LEARNING

(e) Superglue left

(f) Superglue right

Figure 6.8.3: Results from Superglue matching on 150 cm distance.

CHAPTER 6. DEEP LEARNING 55

Two examples of feature matching with Superglue are shown in figure 6.8.4. It extracts features from
all over the scene, making it difficult to evaluate the feature matching performance. Performing feature
matching on the dataset fromSINTEFmakes it challenging to viewwhether the points are correctlymatched
or not. This is because the point correspondences are drawn with a line between the image pair. Hence,
the performance of Superglue is purely based on the matching results from the NTNU ITK lab dataset. It
provides a clear view of the matched points because of the reduced amount of objects in the scene.

(a)

(b)

Figure 6.8.4: Superglue feature matching applied on two image pairs from the SINTEF dataset.

56 CHAPTER 6. DEEP LEARNING

CHAPTER7
METHOD AND EXPERIMENTAL RESULTS

This chapter starts to give an overview of the suggested method. After providing the overview, detection
results from the training of YOLOv5 are presented. This is followed by a validation of the distance meas-
urement, validated on the NTNU ITK Lab dataset. Lastly, experimental tests on live fish footage from the
SINTEF show the distance and velocity measurement results.

7.1 Overview of procedure

The flowchart of the suggested method is illustrated in figure 7.1.1.
The stereo camera starts by capturing an image sequence from the scene. Assuming that the cameras

are calibrated, these images are rectified usingMATLAB. After rectifying the images, YOLOv5 is applied on
both left and right image sequences to detect the fish. When YOLOv5 has finished the detection, it draws
bounding boxes around each detected fish. Superglue performs feature matching and draws a line between
thematching points in the image pairs. The bounding boxes are used as a criterion to avoid includingmatches
from other objects in the scene. If the point correspondences lie within the left and right bounding box, these
matching points are used in the triangulation process to calculate the 3D coordinates. After calculating all the
3D points belonging to the detected fish, the average of the 3D points is computed, and then the Euclidean
distance is calculated by using equation (3.8.4). After the distance is computed, the velocity can be calculated
by taking the distance of the current image minus the previous image over a sequence of images.

57

58 CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS

Figure 7.1.1: The flowchart of the suggested method

CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS 59

7.2 Validation with distance measurement

A testing setup was created in the NTNU ITK lab to validate the distance measurement accuracy. It was
not possible to have ground truth available in the dataset from SINTEF. Hence, the NTNU ITK lab was
used as a performance test. Ground truth was created using a long aluminium plate, measured and marked
with different distances from 25 cm to 175 cm. Figure 7.2.1 shows the detection of the object, attached with
the distance measurement, and table 7.2.1 shows an overview of the results with the error percentage. The
objectmight have someoffset from the ground truth since the objectwasmanually held fromabove thewater.
Another factor that can cause an error in themeasurement is the number of point correspondences detected.
This is because the distance is calculated based on the average of the 3D points. The distances 50 cm to 175
cm has an error of sub 10%, which is sufficient. However, 25 cm has a significantly higher error percentage
than the other distances. A figure of the feature matching result is attached in figure 7.2.2 to evaluate the
possible error in this scenario. In the top image, Superglue finds two correct matches located on the top and
right sides of the object. Since the object is outside the area of the right camera, it fails to find features on the
left side of the object. Below, the left and the right image shows the bounding box predictions. The matches
are both located within the bounding boxes, which means they are included in the distance computation.
Based on this, it should give a lower error percentage. However, it can be challenging to see whether the
object is placed correctly on the measured ground truth when submerging objects. The possible explanation
for the significant error may be that the object was located further away from the ground truth, leading to
an incorrect measurement due to human error.

(a) A measurement of 34.6 cm at 25 cm (b) A measurement of 45.1 cm at 50 cm

(c) A measurement of 78.8 cm at 75 cm (d) A measurement of 96.9 cm at 100 cm

(e) A measurement of 133.7 cm at 125 cm (f) A measurement of 147.5 cm at 150 cm

(g) A measurement of 158.6 cm at 175 cm

Figure 7.2.1: Results of distance measurement seen from left camera. The bounding boxes have been cus-
tomized such that they display the distance instead of the confidence generated by YOLOv5.

60 CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS

Table 7.2.1: Table showing the results between ground truth and measured distance.

Ground truth Measured distance Error
0.250𝑚 0.346𝑚 ±38.4%
0.500𝑚 0.451𝑚 ±9.80%
0.750𝑚 0.788𝑚 ±5.06%
1.000𝑚 0.969𝑚 ±3.10%
1.250𝑚 1.337𝑚 ±6.96%
1.500𝑚 1.475𝑚 ±1.67%
1.750𝑚 1.586𝑚 ±9.37%

Figure 7.2.2: Result of detection and feature extraction on 25 cm distance.

CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS 61

7.3 Experiments on dataset from SINTEF

The suggested method was applied to the dataset from SINTEF. It was noticed during the experimental
tests that YOLO failed to detect the fish when the image sequence was too long. The failed detection could
be a result of the complex movement of the fish and a small training dataset. Hence, the image sequence
consisted of ten images, limited to one fish. Each image sequence is reduced to two images in the visualization
since they occupy a lot of paper space. The large image size is necessary in order for the distance and speed
measurements in the images to be legible for the reader. The first image of the sequence is presented along
with the final image in the sequence. The first image initializes the fish with the distance of the fish, and the
second image contains information on the velocity from the previous to the current image number.

In figure 7.3.1, the fish was faced toward the camera and moved in the same direction during the whole
sequence. The detection network drew a good bounding box around the detected fish. The bounding box
did not overlap with other objects with features, which means that it included the correct matches. Based
on the direction it was swimming, the distance of the fish should decrease over time. The measurements are
shown in figure 7.3.2. It shows the distance and the speed of the fish over the sequence. Considering that the
validation from table 7.2.1 shows that therewas some error in themeasurements, the distance has some small
spikes, similar to the other experiments. An explanation could be that the feature matching mainly found
matches from the tail and the head. The fish have a certain length, and since the distance was calculated by
the average of all 3D points detected, there can be errors in the measurements. The head and tail were often
matched during the experiments, while in some samples, only the head or tail was matched. Despite this,
the graph shows a decreasing trend at the end of the sequence. The method provided good results in this
sequence even though there was no ground truth available to verify this. Assuming that the distance was
correct, the fish showed a varying speed throughout the sequence.

(a) Image 560

62 CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS

(b) Image 569

Figure 7.3.1: Images 560 - 569 showing the detection from the left camera. The figure shows the distance to
the fish in the first image of the sequence, then shows the speed from image 568 to 569.

(a) Distance estimated from image 560 - 569 (b) Speed estimated from image 560 - 569

Figure 7.3.2: Measurements from image 560 - 569

CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS 63

The image sequence in figure 7.3.3 shows a fish that swims sideways. The detection was successful as
it did not contain other objects of interest, such that outlier matches were not included in the calculations.
Since the fish was swimming sideways, the distance to the fish should stay the same. Figure 7.3.4 shows the
distance and speed of the fish. The distance measurement varies slightly. It seems correct as the distance in
the first and last images was approximately the same. An idea would be to increase the number of images to
get a clear view of whether the distance changes or not.

(a) Image 2282

(b) Image 2291

Figure 7.3.3: Images 2282 - 2291 showing the detection from the left camera. The figure shows the distance
to the fish in the first image of the sequence, then shows the speed from image 2290 to 2291

64 CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS

(a) Distance estimated from image 2282 - 2291 (b) Speed estimated from image 2282 - 2291

Figure 7.3.4: Measurements from image 2282 - 2291

CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS 65

Figure 7.3.5 shows results from image 2322 to 2330, which contains nine images instead of ten images.
Superglue failed to extractmatches from the detected fish in the last image pair during this test. To extract the
values outputted by the method on a sequence of images was time consuming. Because of this, the sequence
was included in the experiment results. It still shows valuable information about the method. The explan-
ation might be that Superglue was pretrained in a different environment. Considering this, it still provided
good results. The detected fish started in one direction but turned and swam away from the camera during
the sequence. Based on this, the distance of the fish increased over time. In figure 7.3.5b, the drawn bounding
box slightly overlapped with another fish in the background. It might be possible that some outlier matches
are included in the measurement. There are no larger changes in the distance measurements compared to
the previous sequences. Figure 7.3.6a shows the distance measurement over time, which shows a positive
trend with the increased distance in the last image. The speed from frame to frame is shown in figure 7.3.6b.
Similar to previous sequences, extra images should have been included to view the distance changes better.

(a) Image 2322

(b) Image 2330

Figure 7.3.5: Images 2322 - 2230 showing the detection from the left camera. The figure shows the distance
to the fish in the first image of the sequence, then shows the speed from image 2329 to 2330

66 CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS

(a) Distance estimated from image 2322 - 2330 (b) Speed estimated from image 2322 - 2330

Figure 7.3.6: Measurements from image 2322 - 2330

CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS 67

The last image sequence shown in figure 7.3.7 detected a fish that swam sideways and slightly towards the
camera. The network drew a bounding box overlappingwith a fish in the background. However, the distance
measurements found in figure 7.3.8a show that the overlap did not interfere with the measurements. This
means that the correctmatcheswere included in the computations. Since the fish is swimming slightly closer
to the camera, the distance decreases slightly over time, which is shown in figure 7.3.8a. Figure 7.3.8b shows
the speed of the fish over the sequence of images. According to the graph, the fish stays in the same place at
the end of the sequence.

(a) Image 2478

(b) Image 2487

Figure 7.3.7: Images 2478 - 2487 showing the detection from the left camera. The figure shows the distance
to the fish in the first image of the sequence, then the speed from image 2486 to 2487

68 CHAPTER 7. METHOD AND EXPERIMENTAL RESULTS

(a) Distance estimated from image 2478 - 2487 (b) Speed estimated from image 2478 - 2487

Figure 7.3.8: Measurements from image 2478 - 2487

CHAPTER8
CONCLUSION AND FUTUREWORK

This thesis aimed to explore the usage of camera sensors, computer vision techniques and deep learning al-
gorithms to measure fish-population parameters, such as distance and swim speed. The main contribution
of this thesis is a proposed method for approximating the distance and speed of fish by applying YOLOv5
to detect the fish and Superglue to establish point correspondences on video captured by a stereo camera.
These point correspondences are used for triangulation to reconstruct the 3D points used to calculate the
Euclidean coordinates. The average of these coordinates was used to calculate the distance and speed of the
object. YOLOv5 was trained on 1778 images, which was enough to establish good bounding boxes around
the fish but with varying confidence. A pretrained Superglue produced significantly better results than the
traditional methods: ORB and SIFT. The left and right bounding boxes were used as a criterion to remove
outlier point correspondences, which contributes to robustly measuring distance and speed with minimal
noise from other objects of interest. The distance measurement was validated with ground truth available
in a controlled environment. It gave promising results on a single object with sub 10% error with the ex-
ception of one measurement, which most likely was due to a human error. After the validation, the method
was tested on image sequences in a more realistic environment containing multiple fish. These image se-
quences contained ten images because YOLO lost detection when the image sequence was too long. The
experimental test gave spiky numbers on the distance and speed measurements, which is to be expected
when the validation showed errors in the measurements. Another reason that could contribute to the spiky
results was the feature matching. The feature matching sometimes matched the head and the tail, while in
some cases, it matched only the head or the tail of the fish, which might have caused the distance and speed
measurements to vary. Considering that the image sequences contained ten images, the proposed approach
gave promising results as the measurements followed the movement of the fish to some extent. The length
of the image sequences should be increased in future work to get a better overview of how the algorithm
follows the fish for a more extended period. The lost detections can be solved by increasing the training
dataset, which trains the detection network to learn from many representations of the fish.

Furthermore, the detection networkwas trained to detect the entire fish. This was because the fish could
be distorted or blurred, which made it difficult to see the texture of the fish. Another idea for future work
would be to train the detector to detect either the head or the tail of the fish. This may contribute to more
robust distance, and speed measurements since the matches from the tail or head might be lost in some
scenarios.

Finally, a tracking method should be implemented in future work. It is essential if this method were to
be incorporated into a ROV. A tracking algorithmwill contribute to automatically detecting the same object
over a sequence of images. In future work, a tracking method should be handpicked based on the literature
review that was conducted in this thesis. Deep learning approaches for tracking should be considered as they
are state-of-the-art. A downside of deep learning methods is that they require a lot of data to give the best
performance. If deep learningmethods are problematic to incorporate into the proposedmethod, traditional
algorithms, such as optical flow or indirect methods, can also be good alternatives. However, traditional

69

70 CHAPTER 8. CONCLUSION AND FUTUREWORK

approaches for tracking might struggle in underwater environments because of the noisy images.

BIBLIOGRAPHY

[1] K. C. R. Jin, “Specialization project: Deep-learning algorithms for estimation of fish-population para-
meters from sonar- and video data,” 2021.

[2] E. Kelasidi, “Race fish-machine interaction,” 05 2020. [Online]. Available: https://www.sintef.no/
prosjekter/2020/race-fish-machine-interaction/

[3] X. Yang, S. Zhang, J. Liu, Q. Gao, S. Dong, and C. Zhou, “Deep learning for smart fish farming: applic-
ations, opportunities and challenges,” Reviews in Aquaculture, vol. 13, no. 1, pp. 66–90, 2021.

[4] H. V. Bjelland, M. Føre, P. Lader, D. Kristiansen, I. M. Holmen, A. Fredheim, E. I. Grøtli, D. E. Fathi,
F. Oppedal, I. B. Utne et al., “Exposed aquaculture in norway,” inOCEANS 2015-MTS/IEEE Washington.
IEEE, 2015, pp. 1–10.

[5] M. Føre, K. Frank, T. Norton, E. Svendsen, J. A. Alfredsen, T. Dempster, H. Eguiraun, W. Watson,
A. Stahl, L.M. Sunde et al., “Precision fish farming: Anew framework to improve production in aquacul-
ture,” biosystems engineering, vol. 173, pp. 176–193, 2018.

[6] H. Aasjord and I. Geving, “Accidents in norwegian fisheries and some other comparable norwegian
industries,” in Proc. IFISH4. Fourth International Fishing Industry Safety & Health Conference, 2009.

[7] F. Oppedal, T. Dempster, and L. H. Stien, “Environmental drivers of atlantic salmon behaviour in sea-
cages: a review,” Aquaculture, vol. 311, no. 1-4, pp. 1–18, 2011.

[8] H. B. Amundsen,W. Caharija, andK. Y. Pettersen, “Autonomous rov inspections of aquaculture net pens
using dvl,” IEEE Journal of Oceanic Engineering, vol. 47, no. 1, pp. 1–19, 2021.

[9] M. Bjerkeng, T. Kirkhus, W. Caharija, J. T Thielemann, H. B Amundsen, S. Johan Ohrem, and E. In-
gar Grøtli, “Rov navigation in a fish cage with laser-camera triangulation,” Journal of Marine Science and
Engineering, vol. 9, no. 1, p. 79, 2021.

[10] C. Noble, K. Gismervik, M. H. Iversen, J. Kolarevic, J. Nilsson, L. H. Stien, and J. F. Turnbull, “Welfare
indicators for farmed rainbow trout: tools for assessing fish welfare,” 2020. [Online]. Available:
https://www.fhf.no/prosjekter/prosjektbasen/901157

[11] A. Dutta, A. Mondal, N. Dey, S. Sen, L. Moraru, and A. E. Hassanien, “Vision tracking: a survey of the
state-of-the-art,” SN Computer Science, vol. 1, no. 1, pp. 1–19, 2020.

[12] S. Hua, M. Kapoor, and D. C. Anastasiu, “Vehicle tracking and speed estimation from traffic videos,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2018, pp.
153–160.

71

https://www.sintef.no/prosjekter/2020/race-fish-machine-interaction/
https://www.sintef.no/prosjekter/2020/race-fish-machine-interaction/
https://www.fhf.no/prosjekter/prosjektbasen/901157

72 BIBLIOGRAPHY

[13] X. Qimin, L. Xu, W. Mingming, L. Bin, and S. Xianghui, “A methodology of vehicle speed estimation
based on optical flow,” in Proceedings of 2014 IEEE International Conference on Service Operations and
Logistics, and Informatics. IEEE, 2014, pp. 33–37.

[14] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm computing surveys (CSUR), vol. 38,
no. 4, pp. 13–es, 2006.

[15] R. Szeliski, Computer vision: algorithms and applications 2nd edition. Springer Science & Business
Media, 2021. [Online]. Available: https://szeliski.org/Book/

[16] D. Fortun, P. Bouthemy, and C. Kervrann, “Optical flow modeling and computation: A survey,” Com-
puter Vision and Image Understanding, vol. 134, pp. 1–21, 2015.

[17] T. Senst, J. Geistert, I. Keller, and T. Sikora, “Robust local optical flow estimation using bilinear equa-
tions for sparse motion estimation,” in 2013 IEEE International Conference on Image Processing. IEEE,
2013, pp. 2499–2503.

[18] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelligence, vol. 17, no. 1-3, pp.
185–203, 1981.

[19] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an application to stereo
vision.” Vancouver, British Columbia, 1981.

[20] M. J. Black and P. Anandan, “A framework for the robust estimation of optical flow,” in 1993 (4th) Inter-
national Conference on Computer Vision. IEEE, 1993, pp. 231–236.

[21] ——, “The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields,” Com-
puter vision and image understanding, vol. 63, no. 1, pp. 75–104, 1996.

[22] T. Senst, V. Eiselein, and T. Sikora, “Robust local optical flow for feature tracking,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 9, pp. 1377–1387, 2012.

[23] C. Tomasi and T. Kanade, “Detection and tracking of point,” Int J Comput Vis, vol. 9, pp. 137–154, 1991.

[24] T. Senst, J. Geistert, and T. Sikora, “Robust local optical flow: Long-rangemotions and varying illumin-
ations,” in 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016, pp. 4478–4482.

[25] J.-Y. Bouguet et al., “Pyramidal implementation of the affine lucas kanade feature tracker description of
the algorithm,” Intel corporation, vol. 5, no. 1-10, p. 4, 2001.

[26] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the kitti vision benchmark
suite,” in 2012 IEEE conference on computer vision and pattern recognition. IEEE, 2012, pp. 3354–3361.

[27] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A database and evaluation meth-
odology for optical flow,” International journal of computer vision, vol. 92, no. 1, pp. 1–31, 2011.

[28] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open source movie for optical flow
evaluation,” in European conference on computer vision. Springer, 2012, pp. 611–625.

[29] J. Morat, F. Devernay, and S. Cornou, “Tracking with stereo-vision system for low speed following
applications,” in 2007 IEEE Intelligent Vehicles Symposium. IEEE, 2007, pp. 955–961.

[30] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in Scandinavian confer-
ence on Image analysis. Springer, 2003, pp. 363–370.

[31] G. Farneback, “Very high accuracy velocity estimation using orientation tensors, parametric motion,
and simultaneous segmentation of the motion field,” in Proceedings Eighth IEEE International Conference
on Computer Vision. ICCV 2001, vol. 1. IEEE, 2001, pp. 171–177.

https://szeliski.org/Book/

BIBLIOGRAPHY 73

[32] T. Kroeger, R. Timofte, D. Dai, and L. V. Gool, “Fast optical flow using dense inverse search,” inEuropean
Conference on Computer Vision. Springer, 2016, pp. 471–488.

[33] S. Baker and I. Matthews, “Equivalence and efficiency of image alignment algorithms,” in Proceedings of
the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1.
IEEE, 2001, pp. I–I.

[34] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D. Cremers,
and T. Brox, “Flownet: Learning optical flow with convolutional networks,” in Proceedings of the IEEE
international conference on computer vision, 2015, pp. 2758–2766.

[35] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0: Evolution of optical
flow estimation with deep networks,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 2462–2470.

[36] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of the seventh IEEE
international conference on computer vision, vol. 2. Ieee, 1999, pp. 1150–1157.

[37] H. Bay, T. Tuytelaars, and L. V. Gool, “Surf: Speeded up robust features,” in European conference on
computer vision. Springer, 2006, pp. 404–417.

[38] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient alternative to sift or surf,” in 2011
International conference on computer vision. Ieee, 2011, pp. 2564–2571.

[39] T. Gao, G. Li, S. Lian, and J. Zhang, “Tracking video objects with feature points based particle filtering,”
Multimedia Tools and Applications, vol. 58, no. 1, pp. 1–21, 2012.

[40] X. Lu, T. Izumi, L. Teng, and L. Wang, “Particle filter vehicle tracking based on surf feature matching,”
IEEJ Journal of Industry Applications, vol. 3, no. 2, pp. 182–191, 2014.

[41] K. Mu, F. Hui, and X. Zhao, “Multiple vehicle detection and tracking in highway traffic surveillance
video based on sift feature matching,” Journal of Information Processing Systems, vol. 12, no. 2, pp. 183–
195, 2016.

[42] J. Arróspide, L. Salgado, andM. Nieto, “Vehicle detection and tracking using homography-based plane
rectification and particle filtering,” in 2010 IEEE Intelligent Vehicles Symposium. IEEE, 2010, pp. 150–
155.

[43] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Proceedings of the IEEE
international conference on computer vision, 2013, pp. 3551–3558.

[44] H. Zhang, L. Xiao, and G. Xu, “A novel tracking method based on improved fast corner detection and
pyramid lk optical flow,” in 2020 Chinese Control and Decision Conference (CCDC). IEEE, 2020, pp.
1871–1876.

[45] K. Katija, P. L. Roberts, J. Daniels, A. Lapides, K. Barnard, M. Risi, B. Y. Ranaan, B. G. Woodward, and
J. Takahashi, “Visual tracking of deepwater animals using machine learning-controlled robotic under-
water vehicles,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision,
2021, pp. 860–869.

[46] T.-Y. Lin, P. Goyal, R. Girshick, K.He, and P.Dollár, “Focal loss for dense object detection,” in Proceedings
of the IEEE international conference on computer vision, 2017, pp. 2980–2988.

[47] E. Bochinski, T. Senst, and T. Sikora, “Extending iou basedmulti-object tracking by visual information,”
in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE,
2018, pp. 1–6.

74 BIBLIOGRAPHY

[48] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2961–2969.

[49] Z. Cai, M. Saberian, and N. Vasconcelos, “Learning complexity-aware cascades for deep pedestrian
detection,” in Proceedings of the IEEE international conference on computer vision, 2015, pp. 3361–3369.

[50] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online and realtime tracking,” in 2016 IEEE
international conference on image processing (ICIP). IEEE, 2016, pp. 3464–3468.

[51] D. Bell, W. Xiao, and P. James, “Accurate vehicle speed estimation from monocular camera footage,” in
XXIV ISPRS Congress. Newcastle University, 2020.

[52] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime tracking with a deep association met-
ric,” in 2017 IEEE international conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[53] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler, “Mot16: A benchmark for multi-object track-
ing,” arXiv preprint arXiv:1603.00831, 2016.

[54] G. Ciaparrone, F. L. Sánchez, S. Tabik, L. Troiano, R. Tagliaferri, and F. Herrera, “Deep learning in video
multi-object tracking: A survey,”Neurocomputing, vol. 381, pp. 61–88, 2020.

[55] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr, “Fully-convolutional siamese net-
works for object tracking,” in European conference on computer vision. Springer, 2016, pp. 850–865.

[56] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431–3440.

[57] B. Li, J. Yan,W.Wu, Z. Zhu, andX. Hu, “High performance visual trackingwith siamese region proposal
network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8971–
8980.

[58] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager, G. Ne-
behay, and R. Pflugfelder, “The visual object tracking vot2015 challenge results,” in Proceedings of the
IEEE international conference on computer vision workshops, 2015, pp. 1–23.

[59] S. Cheng, B. Zhong, G. Li, X. Liu, Z. Tang, X. Li, and J. Wang, “Learning to filter: Siamese relation
network for robust tracking,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 4421–4431.

[60] M. Kristan, A. Leonardis, J. Matas, M. Felsberg, R. Pflugfelder, L. ˇCehovin Zajc, T. Vojir, G. Hager,
A. Lukezic, A. Eldesokey et al., “The visual object tracking vot2017 challenge results,” in Proceedings of
the IEEE international conference on computer vision workshops, 2017, pp. 1949–1972.

[61] G. Bhat, M. Danelljan, L. V. Gool, and R. Timofte, “Learning discriminative model prediction for track-
ing,” in Proceedings of the IEEE/CVF international conference on computer vision, 2019, pp. 6182–6191.

[62] M. A. Mahammed, A. I. Melhum, and F. A. Kochery, “Object distance measurement by stereo vision,”
International Journal of Science and Applied Information Technology (IJSAIT), vol. 2, no. 2, pp. 05–08, 2013.

[63] P. Li, T. Qin et al., “Stereo vision-based semantic 3d object and ego-motion tracking for autonomous
driving,” in Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 646–661.

[64] X. Chen, K. Kundu, Y. Zhu, A. G. Berneshawi, H. Ma, S. Fidler, and R. Urtasun, “3d object proposals for
accurate object class detection,” in Advances in Neural Information Processing Systems. Citeseer, 2015,
pp. 424–432.

BIBLIOGRAPHY 75

[65] A. Osep, W. Mehner, M. Mathias, and B. Leibe, “Combined image-and world-space tracking in traffic
scenes,” in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
1988–1995.

[66] J. Luiten, T. Fischer, and B. Leibe, “Track to reconstruct and reconstruct to track,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 1803–1810, 2020.

[67] J. S. Aber, I. Marzolff, and J. Ries, Small-format aerial photography: Principles, techniques and geoscience
applications. Elsevier, 2010.

[68] R. Hartley and A. Zisserman, Multiple view geometry in computer vision. Cambridge university press,
2003.

[69] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on pattern analysis and
machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[70] J. J. Høklie, “Master thesis: Passive depth estimation using stereo vision, an experimental study,” 2017.

[71] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,Numerical recipes 3rd edition: The art of
scientific computing. Cambridge university press, 2007.

[72] H. Zhan, C. S. Weerasekera, J.-W. Bian, and I. Reid, “Visual odometry revisited: What should be learnt?”
in 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 4203–4210.

[73] M. Engebretsen, K. Gjerden, Ø. Utbjoe, and Våge, “Master thesis: Autonomous navigation, mapping,
and exploration for underwater robots,” 2020.

[74] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art
in artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, 2018.

[75] S.-J. Lee, T. Chen, L. Yu, and C.-H. Lai, “Image classification based on the boost convolutional neural
network,” IEEE Access, vol. 6, pp. 12 755–12 768, 2018.

[76] M. W. Gardner and S. Dorling, “Artificial neural networks (the multilayer perceptron)—a review of
applications in the atmospheric sciences,” Atmospheric environment, vol. 32, no. 14-15, pp. 2627–2636,
1998.

[77] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approxim-
ators,”Neural networks, vol. 2, no. 5, pp. 359–366, 1989.

[78] A. Kamilaris and F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Computers and elec-
tronics in agriculture, vol. 147, pp. 70–90, 2018.

[79] “Tikz - neural networks,” https://tikz.net/neural_networks/, accessed: 05.05.2022.

[80] “Deep learning vs. machine learning – the essential differences you need to know!” https:
//www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/,
accessed: 05.05.2022.

[81] K. O’Shea and R. Nash, “An introduction to convolutional neural networks,” arXiv preprint
arXiv:1511.08458, 2015.

[82] S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1d convolutional neural
networks and applications: A survey,”Mechanical systems and signal processing, vol. 151, p. 107398, 2021.

[83] Y. Xiao, Z. Tian, J. Yu, Y. Zhang, S. Liu, S. Du, and X. Lan, “A review of object detection based on deep
learning,”Multimedia Tools and Applications, vol. 79, no. 33, pp. 23 729–23 791, 2020.

https://tikz.net/neural_networks/
https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/
https://www.analyticsvidhya.com/blog/2017/04/comparison-between-deep-learning-machine-learning/

76 BIBLIOGRAPHY

[84] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” Advances in neural information processing systems, vol. 28, 2015.

[85] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Scaled-yolov4: Scaling cross stage partial network,” in
Proceedings of the IEEE/cvf conference on computer vision and pattern recognition, 2021, pp. 13 029–13 038.

[86] P. Soviany and R. T. Ionescu, “Optimizing the trade-off between single-stage and two-stage deep ob-
ject detectors using image difficulty prediction,” in 2018 20th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2018, pp. 209–214.

[87] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” arXiv, 2018.

[88] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “Ssd: Single shot multibox
detector,” in European conference on computer vision. Springer, 2016, pp. 21–37.

[89] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: Object detection via region-based fully convolutional networks,”
Advances in neural information processing systems, vol. 29, 2016.

[90] M. Everingham, S. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual
object classes challenge: A retrospective,” International journal of computer vision, vol. 111, no. 1, pp.
98–136, 2015.

[91] G. Jocher, “Yolov5,” https://github.com/ultralytics/yolov5, 2022.

[92] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Superglue: Learning feature matching
with graph neural networks,” in Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2020, pp. 4938–4947.

[93] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network
model,” IEEE transactions on neural networks, vol. 20, no. 1, pp. 61–80, 2008.

https://github.com/ultralytics/yolov5

APPENDIXA
PYTHON SCRIPT FOR DATA ACQUISITION

1 # ==
2 # Copyright (c) 2001 -2021 FLIR Systems , Inc. All Rights Reserved.
3

4 # This software is the confidential and proprietary information of FLIR
5 # Integrated Imaging Solutions , Inc. (" Confidential Information "). You
6 # shall not disclose such Confidential Information and shall use it only in
7 # accordance with the terms of the license agreement you entered into
8 # with FLIR Integrated Imaging Solutions , Inc. (FLIR).
9 #
10 # FLIR MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT THE SUITABILITY OF THE
11 # SOFTWARE , EITHER EXPRESSED OR IMPLIED , INCLUDING , BUT NOT LIMITED TO , THE
12 # IMPLIED WARRANTIES OF MERCHANTABILITY , FITNESS FOR A PARTICULAR
13 # PURPOSE , OR NON -INFRINGEMENT. FLIR SHALL NOT BE LIABLE FOR ANY DAMAGES
14 # SUFFERED BY LICENSEE AS A RESULT OF USING , MODIFYING OR DISTRIBUTING
15 # THIS SOFTWARE OR ITS DERIVATIVES.
16 # ==
17 #
18 # AcquisitionMultipleCamera.py shows how to capture images from
19 # multiple cameras simultaneously. It relies on information provided in the
20 # Enumeration , Acquisition , and NodeMapInfo examples.
21 #
22 # This example reads similarly to the Acquisition example ,
23 # except that loops are used to allow for simultaneous acquisitions.
24

25 import os
26 import PySpin
27 import sys
28

29 NUM_IMAGES = 5000 # number of images to grab
30

31 def acquire_images(cam_list):
32 """
33 This function acquires and saves 10 images from each device.
34

35 :param cam_list: List of cameras
36 :type cam_list: CameraList
37 :return: True if successful , False otherwise.
38 :rtype: bool
39 """
40

41 print(’*** IMAGE ACQUISITION ***\n’)
42 try:
43 result = True
44

77

78 APPENDIX A. PYTHON SCRIPT FOR DATA ACQUISITION

45 # Prepare each camera to acquire images
46 #
47 # *** NOTES ***
48 # For pseudo -simultaneous streaming , each camera is prepared as if it
49 # were just one , but in a loop. Notice that cameras are selected with
50 # an index. We demonstrate pseduo -simultaneous streaming because true
51 # simultaneous streaming would require multiple process or threads ,
52 # which is too complex for an example.
53 #
54

55 for i, cam in enumerate(cam_list):
56

57 # Set acquisition mode to continuous
58 node_acquisition_mode = PySpin.CEnumerationPtr(cam.GetNodeMap ().

GetNode(’AcquisitionMode ’))
59 if not PySpin.IsAvailable(node_acquisition_mode) or not PySpin.

IsWritable(node_acquisition_mode):
60 print(’Unable to set acquisition mode to continuous (node

retrieval; camera %d). Aborting ... \n’ % i)
61 return False
62

63 node_acquisition_mode_continuous = node_acquisition_mode.
GetEntryByName(’Continuous ’)

64 if not PySpin.IsAvailable(node_acquisition_mode_continuous) or not
PySpin.IsReadable(

65 node_acquisition_mode_continuous):
66 print(’Unable to set acquisition mode to continuous (entry \’

continuous\’ retrieval %d). \
67 Aborting ... \n’ % i)
68 return False
69

70 acquisition_mode_continuous = node_acquisition_mode_continuous.
GetValue ()

71

72 node_acquisition_mode.SetIntValue(acquisition_mode_continuous)
73

74 print(’Camera %d acquisition mode set to continuous ...’ % i)
75

76 # Begin acquiring images
77 cam.BeginAcquisition ()
78

79 print(’Camera %d started acquiring images ...’ % i)
80

81 print()
82

83 # Retrieve , convert , and save images for each camera
84 #
85 # *** NOTES ***
86 # In order to work with simultaneous camera streams , nested loops are
87 # needed. It is important that the inner loop be the one iterating
88 # through the cameras; otherwise , all images will be grabbed from a
89 # single camera before grabbing any images from another.
90 for n in range(NUM_IMAGES):
91 for i, cam in enumerate(cam_list):
92 try:
93 # Retrieve device serial number for filename
94 node_device_serial_number = PySpin.CStringPtr(cam.

GetTLDeviceNodeMap ().GetNode(’DeviceSerialNumber ’))
95

96 if PySpin.IsAvailable(node_device_serial_number) and PySpin
.IsReadable(node_device_serial_number):

97 device_serial_number = node_device_serial_number.
GetValue ()

APPENDIX A. PYTHON SCRIPT FOR DATA ACQUISITION 79

98 print(’Camera %d serial number set to %s...’ % (i,
device_serial_number))

99

100 # Retrieve next received image and ensure image completion
101 image_result = cam.GetNextImage (1000)
102

103 if image_result.IsIncomplete ():
104 print(’Image incomplete with image status %d ... \n’ %

image_result.GetImageStatus ())
105 else:
106 # Print image information
107 width = image_result.GetWidth ()
108 height = image_result.GetHeight ()
109 print(’Camera %d grabbed image %d, width = %d, height =

%d’ % (i, n, width , height))
110

111 # Convert image to mono 8
112 image_converted = image_result.Convert(PySpin.

PixelFormat_RGB8 , PySpin.HQ_LINEAR) # Changed Mono8 -> RBG8
113

114 # Create a unique filename
115 if device_serial_number:
116 filename = ’AcquisitionMultipleCamera -%s-%d.png’ %

(device_serial_number , n)
117 else:
118 filename = ’AcquisitionMultipleCamera -%d-%d.png’ %

(i, n)
119

120 # Save image
121 image_converted.Save(filename)
122 print(’Image saved at %s’ % filename)
123

124 # Release image
125 image_result.Release ()
126 print()
127

128 except PySpin.SpinnakerException as ex:
129 print(’Error: %s’ % ex)
130 result = False
131

132 # End acquisition for each camera
133 #
134 # *** NOTES ***
135 # Notice that what is usually a one -step process is now two steps
136 # because of the additional step of selecting the camera. It is worth
137 # repeating that camera selection needs to be done once per loop.
138 #
139 # It is possible to interact with cameras through the camera list with
140 # GetByIndex (); this is an alternative to retrieving cameras as
141 # CameraPtr objects that can be quick and easy for small tasks.
142 for cam in cam_list:
143

144 # End acquisition
145 cam.EndAcquisition ()
146

147 except PySpin.SpinnakerException as ex:
148 print(’Error: %s’ % ex)
149 result = False
150

151 return result
152

153

154 def print_device_info(nodemap , cam_num):

80 APPENDIX A. PYTHON SCRIPT FOR DATA ACQUISITION

155 """
156 This function prints the device information of the camera from the

transport
157 layer; please see NodeMapInfo example for more in-depth comments on

printing
158 device information from the nodemap.
159

160 :param nodemap: Transport layer device nodemap.
161 :param cam_num: Camera number.
162 :type nodemap: INodeMap
163 :type cam_num: int
164 :returns: True if successful , False otherwise.
165 :rtype: bool
166 """
167

168 print(’Printing device information for camera %d... \n’ % cam_num)
169

170 try:
171 result = True
172 node_device_information = PySpin.CCategoryPtr(nodemap.GetNode(’

DeviceInformation ’))
173

174 if PySpin.IsAvailable(node_device_information) and PySpin.IsReadable(
node_device_information):

175 features = node_device_information.GetFeatures ()
176 for feature in features:
177 node_feature = PySpin.CValuePtr(feature)
178 print(’%s: %s’ % (node_feature.GetName (),
179 node_feature.ToString () if PySpin.IsReadable(

node_feature) else ’Node not readable ’))
180

181 else:
182 print(’Device control information not available.’)
183 print()
184

185 except PySpin.SpinnakerException as ex:
186 print(’Error: %s’ % ex)
187 return False
188

189 return result
190

191 def run_multiple_cameras(cam_list):
192 """
193 This function acts as the body of the example; please see NodeMapInfo

example
194 for more in-depth comments on setting up cameras.
195

196 :param cam_list: List of cameras
197 :type cam_list: CameraList
198 :return: True if successful , False otherwise.
199 :rtype: bool
200 """
201 try:
202 result = True
203

204 # Retrieve transport layer nodemaps and print device information for
205 # each camera
206 # *** NOTES ***
207 # This example retrieves information from the transport layer nodemap
208 # twice: once to print device information and once to grab the device
209 # serial number. Rather than caching the nodem#ap , each nodemap is
210 # retrieved both times as needed.
211 print(’*** DEVICE INFORMATION ***\n’)

APPENDIX A. PYTHON SCRIPT FOR DATA ACQUISITION 81

212

213 for i, cam in enumerate(cam_list):
214

215 # Retrieve TL device nodemap
216 nodemap_tldevice = cam.GetTLDeviceNodeMap ()
217

218 # Print device information
219 result &= print_device_info(nodemap_tldevice , i)
220

221 # Initialize each camera
222 #
223 # *** NOTES ***
224 # You may notice that the steps in this function have more loops with
225 # less steps per loop; this contrasts the AcquireImages () function
226 # which has less loops but more steps per loop. This is done for
227 # demonstrative purposes as both work equally well.
228 #
229 # *** LATER ***
230 # Each camera needs to be deinitialized once all images have been
231 # acquired.
232 for i, cam in enumerate(cam_list):
233

234 # Initialize camera
235 cam.Init()
236

237 # Acquire images on all cameras
238 result &= acquire_images(cam_list)
239

240 # Deinitialize each camera
241 #
242 # *** NOTES ***
243 # Again , each camera must be deinitialized separately by first
244 # selecting the camera and then deinitializing it.
245 for cam in cam_list:
246

247 # Deinitialize camera
248 cam.DeInit ()
249

250 # Release reference to camera
251 # NOTE: Unlike the C++ examples , we cannot rely on pointer objects

being automatically
252 # cleaned up when going out of scope.
253 # The usage of del is preferred to assigning the variable to None.
254 del cam
255

256 except PySpin.SpinnakerException as ex:
257 print(’Error: %s’ % ex)
258 result = False
259

260 return result
261

262

263 def main():
264 """
265 Example entry point; please see Enumeration example for more in -depth
266 comments on preparing and cleaning up the system.
267

268 :return: True if successful , False otherwise.
269 :rtype: bool
270 """
271

272 # Since this application saves images in the current folder
273 # we must ensure that we have permission to write to this folder.

82 APPENDIX A. PYTHON SCRIPT FOR DATA ACQUISITION

274 # If we do not have permission , fail right away.
275 try:
276 test_file = open(’test.txt’, ’w+’)
277 except IOError:
278 print(’Unable to write to current directory. Please check permissions.’

)
279 input(’Press Enter to exit ...’)
280 return False
281

282 test_file.close ()
283 os.remove(test_file.name)
284

285 result = True
286

287 # Retrieve singleton reference to system object
288 system = PySpin.System.GetInstance ()
289

290 # Get current library version
291 version = system.GetLibraryVersion ()
292 print(’Library version: %d.%d.%d.%d’ % (version.major , version.minor ,

version.type , version.build))
293

294 # Retrieve list of cameras from the system
295 cam_list = system.GetCameras ()
296

297 num_cameras = cam_list.GetSize ()
298

299 print(’Number of cameras detected: %d’ % num_cameras)
300

301 # Finish if there are no cameras
302 if num_cameras == 0:
303

304 # Clear camera list before releasing system
305 cam_list.Clear()
306

307 # Release system instance
308 system.ReleaseInstance ()
309

310 print(’Not enough cameras!’)
311 input(’Done! Press Enter to exit ...’)
312 return False
313

314 # Run example on all cameras
315 print(’Running example for all cameras ...’)
316

317 result = run_multiple_cameras(cam_list)
318

319 print(’Example complete ... \n’)
320

321 # Clear camera list before releasing system
322 cam_list.Clear()
323

324 # Release system instance
325 system.ReleaseInstance ()
326

327 input(’Done! Press Enter to exit ...’)
328 return result
329

330 if __name__ == ’__main__ ’:
331 if main():
332 sys.exit (0)
333 else:
334 sys.exit (1)

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f E
ng

in
ee

rin
g

Cy
be

rn
et

ic
s

Kristoffer Chi Rong Jin

Deep-learning algorithms for
estimation of fish-population
parameters from video data

Master’s thesis in Cybernetics and Robotics
Supervisor: Annette Stahl
Co-supervisor: Eleni Kelasidi and Espen Eilertsen
June 2022M

as
te

r’s
 th

es
is

	Preface
	Abstract
	Sammendrag
	Introduction
	Motivation
	Objectives
	Thesis outline

	Literature review
	Visual tracking
	Optical flow
	Indirect methods

	Machine learning-based methods
	Deep learning for detection
	Deep learning for feature extraction and motion prediction

	Selecting the best tracking approach

	Photogrammetry
	Camera model
	Camera calibration
	Plane based calibration
	Homography estimation
	Intrinsic matrix
	Extrinsic matrix
	Rotation matrix approximation

	Stereo camera geometry
	Calibration a stereo camera setup
	Essential matrix
	Epipolar geometry
	Rectification
	Triangulation

	Data acquisition
	Camera specifications

	Calibration results
	Calibration results from NTNU ITK lab
	Calibration results from SINTEF

	Deep learning
	Neural networks
	Convolutional neural networks
	Object detection
	YOLOv5
	Creating the datasets
	SINTEF dataset
	NTNU ITK Lab dataset

	Training the network
	Detection results
	Superglue

	Method and experimental results
	Overview of procedure
	Validation with distance measurement
	Experiments on dataset from SINTEF

	Conclusion and future work
	References
	Python script for data acquisition

