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Abstract

The electrification of society and the increased power generation from highly vari-
able, intermittent and distributed Renewable Energy Resources (RES) can cause
imbalance, instability, and congestions in the transmission- and distribution sys-
tem. The electricity system requires distributed and smart power flexibility. A
promising means for such flexibility is Battery Energy Storage Systems (BESS).
BESS can provide multiple power flexibility services to all stakeholders in the
electricity system; the power producers, the power consumers and “pro-sumers”,
the Distribution System Operators (DSO), and the Transmission System Operators
(TSO). Typically, BESS have been deployed for only one or two flexibility services.
In this thesis, however, a concept is developed for BESS to provide multiple ser-
vices to several of the stakeholders. Moreover, the concept integrates and controls
a fleet of distributed units to achieve the desired temporal and spatial flexibility.

The work includes the development of a modular system model for distributed
batteries and an agent-based control concept. The hierarchical, agent-based con-
trol system provides energy arbitrage, peak-shaving, and reserve market services.
The distributed agents derive BESS service scheduling based on their consumption
forecasting and various statistical analysis. A Central Controller (CC) is included
to act as an aggregator and market maker between the agents. The CC enables
the individual BESS agents to trade services between themselves. Through a re-
scheduling of services, the distributed BESS can jointly enhance the provision of
total power response to the electricity system and increase the operational prof-
itability. In addition to the development and analysis of the modular model and
control concept, a Python-based simulator has been developed. The analyses show
that the proposed concept with the distributed agent-based BESS enables each
BESS to provide multiple grid services. Moreover, it is shown that the coopera-
tion via a central coordinator enables each BESS to re-prioritise between local
flexibility needs and regional flexibility needs based on updated forecasting. The
proposed distributed agent-based BESS concept optimises hence the support for
both temporal imbalances between total generation and consumption of electri-
city, as well as for spatial congestions in the grid. As an example, the proposed
concept enables a battery system to decide when it should be used for provid-
ing more power to an overloaded transformer or EV charging station, or when to
generate revenues from reserve markets to stabilize the frequency of the grid.
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Sammendrag

Med elektrifiseringen av samfunnet og økt kraftproduksjon fra svært variable, in-
termitterende og distribuerte fornybare energiressurser kan forårsake ubalanse,
ustabilitet og overbelastninger i transmissions- og distribusjonssystemet. Elektris-
itetssystemet trenger distribuert og smart kraftfleksibilitet. Et lovende middel for
slik fleksibilitet er batterisystemer. Batterisystemer kan tilby flere strømfleksib-
ilitetstjenester til alle interessenter i elektrisitetssystemet; kraftprodusentene, kraft-
forbrukerne og «pro-sumers», distribusjonssystemoperatørene, og transmisjonssys-
temoperatørene. Vanligvis har batterisystemer blitt brukt for bare én eller to fleks-
ibilitetstjenester. I denne oppgaven er det imidlertid utviklet et konsept for at
batterisystemer skal levere flere tjenester til flere av interessentene. Dessuten in-
tegrerer og kontrollerer konseptet en flåte av distribuerte enheter for å oppnå
ønsket fleksibilitet.

Arbeidet omfatter utvikling av en modulær systemmodell for distribuerte bat-
terier og et agentbasert kontrollkonsept. Det hierarkiske, agentbaserte kontroll-
systemet gir energiarbitrage, peak-shaving og reservemarkedstjenester. De dis-
tribuerte agentene utleder tjenesteplanlegging basert på deres forbruksprognoser
og ulike statistiske analyser. En sentral kontroller er inkludert for at batteri-agentene
skal handle tjenester seg imellom. Gjennom en omlegging av tjenester kan de dis-
tribuerte batterisystemene i fellesskap øke leveringen av total effektrespons til
elektrisitetssystemet og øke lønnsomheten. I tillegg til utvikling og analyse av
den modulære modellen og kontrollkonseptet, er det utviklet en Python-basert
simulator. Analysene viser at det foreslåtte konseptet med den distribuerte agent-
baserte BESS gjør at hvert batterisystem kan tilby flere nettjenester. Videre vises
det at samarbeidet via en sentral koordinator gjør at hvert batterisystem kan
omprioriteres mellom lokale fleksibilitetsbehov og regionale fleksibilitetsbehov
basert på oppdaterte prognoser. Det foreslåtte distribuerte agentbaserte-konseptet
optimerer derfor støtten for både tidsmessige ubalanser mellom total produksjon
og forbruk av elektrisitet, så vel som for overbelastninger i nettet. Som et eksem-
pel lar det foreslåtte konseptet et batterisystem bestemme når det skal brukes til
å gi mer strøm til en overbelastet transformator eller el-ladestasjon, eller når det
skal generere inntekter fra reservemarkeder for å stabilisere frekvensen til nettet.

iv



Preface

This thesis is written as a part of the TET4900 - Electric Power Engineering and
Smart Grids coarse at NTNU, spring 2022. The master thesis is a continuation of
the specialization report written in fall 2021 [1].

I would like to thank my supervisor, Associate Professor Jayaprakash Rajasekharan,
for his insight and inspiration during this thesis. I would like to thank my co-
supervisor, Professor Magnus Korpås, for constructive feedback and help with the
thesis. I would also like to thank Ole Jakob Sørdalen at Pixii AS and Lede AS for
providing power consumption data and for providing valuable insights.

v



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Energy- and ancillary services from BESS . . . . . . . . . . . . . . . . 5

2.1.1 Energy arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Peak-shaving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Frequency control and reserve markets . . . . . . . . . . . . . 7
2.1.4 Battery degradation as a factor in operation cost . . . . . . . 7

2.2 Power consumption forecasting . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Optimization and control . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Multi-Agent based energy management . . . . . . . . . . . . . . . . . 10

3 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Battery Energy Storage Systems (BESS) . . . . . . . . . . . . . . . . . 11

3.1.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.2 Battery degradation as a factor in operation costs . . . . . . . 12

3.2 Power consumption forecasting . . . . . . . . . . . . . . . . . . . . . . 12
3.2.1 Long Short Term Memory . . . . . . . . . . . . . . . . . . . . . 13
3.2.2 Facebook Prophet . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Peak-shaving and energy arbitrage . . . . . . . . . . . . . . . . . . . . 14
3.3.1 Monthly maximum power tariff . . . . . . . . . . . . . . . . . . 14

3.4 Reserve markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.1 Frequency Containment Reserves - FCR . . . . . . . . . . . . . 17
3.4.2 Fast Frequency Reserves - FFR . . . . . . . . . . . . . . . . . . . 17

vi



Contents vii

3.4.3 Bidding on the reserve markets . . . . . . . . . . . . . . . . . . 18
3.5 Optimization and control . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Battery integration for grid service participation . . . . . . . . . . . . 25
4.3 Grid services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4 Data usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.5.1 Battery assumption . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5.2 Market assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 Prophet consumption forecasting . . . . . . . . . . . . . . . . . . . . . 30
4.8 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.8.1 Stage 1 optimization: Job scheduling . . . . . . . . . . . . . . 33
4.8.2 Stage 2 optimization: SOC planning . . . . . . . . . . . . . . . 36
4.8.3 Stage 3 optimization: Agent job rescheduling and trading . . 39

4.9 Simulation interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.9.1 Subplot 1: Market prices . . . . . . . . . . . . . . . . . . . . . . 43
4.9.2 Subplot 2: Job schedule and power consumption forecast . . 43
4.9.3 Subplot 3: SOC planning . . . . . . . . . . . . . . . . . . . . . . 44
4.9.4 Subplot 4: Local market trading . . . . . . . . . . . . . . . . . . 44

4.10 Simulation scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10.1 Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.10.2 Scenario 1: Additional large consumers . . . . . . . . . . . . . 45
4.10.3 Scenario 2: C-rating change . . . . . . . . . . . . . . . . . . . . 45
4.10.4 Scenario 3: FFR removed . . . . . . . . . . . . . . . . . . . . . . 45
4.10.5 Scenario 4: 2021 energy prices . . . . . . . . . . . . . . . . . . 45

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1 Prophet consumption forecasting . . . . . . . . . . . . . . . . . . . . . 47
5.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1 Peak-shaving optimization . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Cost of flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Scenario presentation description . . . . . . . . . . . . . . . . . . . . . 52
5.4 Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Scenario 1: Additional large consumers . . . . . . . . . . . . . . . . . 56
5.6 Scenario 2: C-rating change . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.7 Scenario 3: FFR removed . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.8 Scenario 4: 2021 energy prices . . . . . . . . . . . . . . . . . . . . . . . 59

6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1 Results discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.1.1 Prophet forecasting . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.2 Base case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.3 Scenario 1: Additional large consumers . . . . . . . . . . . . . 63
6.1.4 Scenario 2: C-rating change . . . . . . . . . . . . . . . . . . . . 63



Contents viii

6.1.5 Scenario 3: FFR removed . . . . . . . . . . . . . . . . . . . . . . 64
6.1.6 Scenario 4: 2021 energy prices . . . . . . . . . . . . . . . . . . 64

6.2 Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Figures

3.1 Categories of machine learning forecasting methods . . . . . . . . . . 12
3.2 LSTM time-step cell structure. Figure inspired by [34]. . . . . . . . . 14
3.3 Peak-shaving with capacity step bounds . . . . . . . . . . . . . . . . . 16
3.4 Bidding and market clearing times for energy- and reserve markets. 19

4.1 Simplistic battery and agent flow chart. . . . . . . . . . . . . . . . . . 23
4.2 Communication link between battery agents. . . . . . . . . . . . . . . 24
4.3 Battery integration with consumer and grid operators. . . . . . . . . 25
4.4 Model flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 48 hour Prophet forecast, commercial building 1. . . . . . . . . . . . 30
4.6 Forecast deviation with Gaussian function, commercial building 1. . 32
4.7 Optimization stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 Minimum SOC allocation for peak-shaving and energy arbitrage

service optimization using consumption forecast and prediction in-
terval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.9 SOC planning for energy arbitrage service optimization with min-
imum SOC constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.10 1 hour forecast improvement using Autoregression for local market
service trading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 Supply and demand market clearing process. . . . . . . . . . . . . . . 41
4.12 Simulation GUI for commercial building 1. . . . . . . . . . . . . . . . 43

5.1 Forecast deviation from actual values, Commercial building 1. . . . 48
5.2 Forecast deviation from actual values, Commercial building 2. . . . 48
5.3 Flexibility cost from cheapest to most expensive. . . . . . . . . . . . . 52

ix



Tables

2.1 BESS application services [4]. . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Prices with monthly maximum power tariff at Lede AS [38] . . . . . 15
3.2 Reserve markets bidding restrictions . . . . . . . . . . . . . . . . . . . 18
3.3 Conventional and intelligent search optimization methods [44] . . . 21

4.1 Data used and their sources. . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Total probability [%] of consumption being under each capacity

step for the entire month, commercial building 1 and 2. . . . . . . . 35

5.1 MAPE, MAE and MSE of 10 consumers using the Prophet algorithm. 47
5.2 Probability [%] of consumption being under each capacity step for

10 time steps, commercial building 2. . . . . . . . . . . . . . . . . . . 49
5.3 Total probability [%] of consumption being under each capacity

step for an entire month, commercial building 1 and 2. . . . . . . . 50
5.4 Reserve market bid compared to consumption forecast and under

50kW capacity level probability for 10 hours, commercial building
1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Reserve market bid compared to consumption forecast and under
50kW capacity level probability for 10 hours, commercial building
2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

x



Abbreviations

ACO Ant Colony Optimization

aFRR automatic Frequency Restoration Reserve

BESS Battery Energy Storage Systems

BMS Battery Management System

CC Central Controller

CCS Centralized Control System

CNN Convolutional Neural Networks

CNP Contract Net Protocol

DAM Day-Ahead-Market

DBS DC-Bus Signaling

DCL Digital Communication Link

DER Distributed Energy Resources

DG Distributed Generation

DOD Depth Of Discharge

DSO Distribution System Operator

EFR Enhanced Frequency Response

EMD Empirical Mode Decomposition

FCR Frequency Containment Reserves

FCR-D Frequency Containment Reserves for Disturbances

FCR-N Frequency Containment Reserves for Normal operation

FFR Fast Frequency Reserves

xi



Tables xii

FL Fuzzy Logic

GA Genetic Algorithm

GAM Generalized Additive Model

HS Harmony Search

KDE Kernel Density Estimator

LP Linear Programming

LSTM Long Short-Term Memory

MAPE Mean Absolute Percentage Error

MAPSO Multi-Agent Particle Swarm Optimization

MAS Multi-Agent System

MILP Mixed-Integer Linear Programming

MINLP Mixed Integer Non-Linear Programming

NLP Non-Linear Programming

OPF Optimal power flow

pdfs probability density functions

PEV Plug-in Electric Vehicles

PSO Particle Swarm Optimization

PV Photovoltaic

RES Renewable Energy Resources

RKOM Regulatory power options market

RNN Recurrent Neural Network

SOC State Of Charge

SVR Support Vector Regression

TSO Transmission System Operator

XGBoost Extreme Gradient Boosting



Chapter 1

Introduction

1.1 Background

Political and social discourse is becoming increasingly environmentally oriented.
The EU aims to reduce greenhouse emissions by 55% within 2030 and achieve
climate neutrality by 2050 [2]. Significant investments towards emission intens-
ive sectors are being made by governments to reduce pollution. The production of
electrical energy is CO2 intensive has therefore been targeted with governmental
incentives for an energy transition towards Renewable Energy Sources (RES). Ad-
vancements in technology has improved the cost-effectiveness of solar and wind
utilization. Solar photovoltaic (PV) and wind power generation costs have seen a
downward trend in recent years, increasing RES utilization investments. Recent
geopolitical developments in Europe has reiterated the need for energy independ-
ence and the need for having an economy less exposed to fossil fuel supply chain
issues. A large issue with PV and wind power generation is the intermittency of
production and low inertia. Intermittent power generation can cause discrepan-
cies in the generation and consumption balance. A low inertia power system offers
low resistance when disturbances are introduced and can in a worst case scenario
cause continental blackouts. Ancillary reserve markets have been implemented
by the Transmission System Operator (TSO) to acquire sufficient reserve power
capacity.

The Electrical Vehicle (EV) penetration in Norway is the highest in the world per
capita [2]. 54% of all new cars sold are electric, resulting in a total 12% of the
car park being electric. Without incentives, consumers tend to charge EV’s during
peak consumption hours. This causes congestion risks in parts of the distribution
systems that is not designed for large loads. Distribution System Operators (DSO)
in Norway have planned to create incentives to consumers to reduce peak power
consumption by implementing a monthly maximum power tariff that rewards low
consumption peaks.

1



Chapter 1: Introduction 2

The implementation of BESS into grid operations has become increasingly cost
effective with the reduction of BESS costs. Battery systems provide flexibility at
a rapid pace compared to traditional flexibility providers. The analysis of battery
systems in grid utilization is therefore worth exploring.

1.2 Motivation

There are dangers that persist in the power system. The power system is sus-
ceptible to harsh weather, frequency disturbances, geopolitical events, congestion,
continent wide blackouts, and much more. Many problems in a modernised power
grid can be solved with fast and reactive systems, and with good communication
and control. Battery systems can provide society with energy security and reliabil-
ity when implemented right. With the flexibility of battery systems, multiple grid
services could be provided at different time slots or at the same time. The digit-
alization and automation of battery systems can help society create a robust and
efficient electricity system. The research of BESS in grid utilization could there-
fore contribute to societal changes that ultimately increases social welfare.

When considering the practicality and feasibility of a technical solution, it is im-
portant to examine the socioeconomic values of society. The value of the technical
solution is directly related to the social or economic value it can provide society.
Businesses in western capitalist countries are constantly working to cut costs and
increase profits. Therefore, creating a technical solution that serves the interests
of a business could provide the business with good investment opportunities.

The challenge of providing multiple grid services is the planning and scheduling
of services that the battery system can provide when subjected to stochastic and
unpredictable data. The energy- and flexibility markets are structured to require
participation bids many hours or days ahead of the activation time. This causes
challenges for BESS that need to predict the values of the services ahead of time
using stochastic data. Agent-based modelling is a promising field of study that
give battery systems the ability to communicate and trade market obligations.
This could relieve the battery system of the burden of participating in the wrong
service if the forecast deviates.

1.3 Research question

The master thesis aims to answer the following research questions:

• Can a control model be implemented for distributed BESS to provide mul-
tiple grid services?

◦ Which grid services can distributed BESS provide?
◦ How can agent-based modeling be utilized to control BESS?
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To answer the research question, the master thesis aims to:

• Identify relevant services that BESS can provide, and the market driven eco-
nomic incentives.
• Study the characteristics of energy arbitrage, peak-shaving and reserve mar-

ket participation services and research the constraints in the FFR-, FCR-, en-
ergy markets and the utility tariffs that are relevant for these applications.
• Research power consumption forecasting and optimization methods to de-

termine service priority for distributed BESS.
• Develop a model that acts as a proof of concept for the feasibility of distrib-

uted BESS providing multiple grid services. Implement the Prophet forecast-
ing algorithm and utilize forecasts to optimize service allocation 48 hour
ahead. Create a central control system that performs market clearing and
promotes agent cooperation to increase flexibility.
• Evaluate the flexibility of the proposed model on several scenarios and de-

termine the operational feasibility of the implemented model.

1.4 Contribution of the thesis

In this thesis a model was developed that demonstrated the feasibility of provid-
ing multiple grid services using distributed battery systems. The model acts as a
proof of concept and gives insights into potential commercial applications. The
model gives insight into how grid service participation can be implemented into a
modular and scalable system, and how varying battery and market characteristics
change the service prioritization and revenue streams.

The thesis contributes with a method of implementing agent based programming
in the power system. The model proved the ability of agents to cooperate to in-
crease system flexibility and revenue. The model also utilizes the stochasticity of
power consumption to solve optimization problems connected to service schedul-
ing.

The most important contributions of the thesis is the creation of a model that:

• Demonstrates the feasibility of BESS providing multiple grid services.
• Demonstrates that agent-based modelling can be used to increase BESS co-

operation, flexibility and revenue.

1.5 Thesis outline

The master thesis is a continuation of a specialisation report written in the fall of
2021 [1]. Therefore, several sections are taken from the specialisation report. Es-
pecially Chapter 2 and 3 is inspired by the specialization report [1]. The literature
review chapter is found in Chapter 2. The literature review gives historical and
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theoretical insight into previous work on the thesis subject. Chapter 3 includes
theory on important and relevant concepts to give the theoretical background for
the thesis. The model implementation and design is presented in Chapter 4. The
results from the model are presented in Chapter 5. The discussion of the thesis is
found in Chapter 6. Finally, the conclusion and future work is presented in Chapter
7.



Chapter 2

Literature Review

A thorough literature review is necessary to give insight into relevant research
topics for this master thesis. The literature review will therefore analyze previous
research of how BESS can provide consumers and the power grid with essential
services. Previous work on standardized integration with and without agent-based
modeling techniques is important to analyze the relevance and efficiency of differ-
ent optimization solutions. The literature presented in this chapter gives insight
into different aspects of the project objective, and it is therefore important to crit-
ically assess the work to be able to apply the best solutions to this thesis.

2.1 Energy- and ancillary services from BESS

There is an increase in popularity towards utility-scale BESS due to instantaneous
ramping, short response time and the operational flexibility [3]. A study of BESS
applications by [4] found possible utilization services given in table 2.1.

The siting and sizing of distributed storage systems is important to optimize the
cost-effectiveness of a BESS when providing the services mentioned in table 2.1.
[5] proposes a three-stage method of determining near-optimal siting and sizing
of the distributed storage systems. The method uses Mixed-Integer Linear Pro-
gramming (MILP) to determine unknown variables in segmented stages. In this
thesis the siting of the BESS are assumed to be optimal to focus on specific ser-
vices: energy arbitrage, peak-shaving and frequency support.

Integrating BESS with unpredictable renewable energy sources has operational
advantages. The Tehachapi wind energy storage project [6] installed 8MW/32MWh
with 13 specified operational uses, including energy arbitrage and frequency reg-
ulation. The area in which the BESS is installed is known to have insufficient trans-
mission capacity, resulting in wind curtailment contingencies. The BESS aims to
reduce the probability of wind curtailment by discharging when wind power out-
put is more than 80% in preparation of a contingency. In normal operation, the
BESS will charge and discharge based on a periodic dispatch profile.

5
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Table 2.1: BESS application services [4].

Applications Description
Congestion sup-
port

Reduce load and generation peaks.

Voltage support Ensure power quality.
Frequency support Ensure balance between production and consumption by

participation in reserve markets.
Loss minimization Control power flow to reduce losses in distribution grid.
Redundancy Increase power system redundancy. Provides backup

power redundancy.
Energy arbitrage Purchase power at cheap prices and sell at expensive

prices. Could also increase self-consumption of local pro-
duction.

Peak-shaving Reduce power-based utility tariff costs by reducing peak
consumption.

2.1.1 Energy arbitrage

A useful application of BESS is energy arbitrage. The Battery Management System
(BMS) can exploit the energy price fluctuations in the power market to buy power
in periods when energy is cheap and sell when energy is expensive. This is also
known as time of use optimization. Comprehensive studies have been performed
to optimize energy arbitrage on the power market during periods with volatile
changes in power prices. [7] tested an energy arbitrage model with PV on power
markets in New York, Ontario and Queensland. The results showed that revenue
and profitability was highly dependant by high variations in energy prices and the
volatility. [8] proposed a method of time domain arbitrage opportunities for grid
level battery storage in the Day-Ahead-Market (DAM) with the possibility of cor-
rections in the real-time-market. The research found that longer lasting batteries
generate lower profits due to the longer time it takes to charge/discharge when
considering investment costs.

The research conducted in [7] and [8] explored the feasibility of energy arbitrage
and energy storage, but excluded discussions regarding combining energy arbit-
rage with other services. The lack of feasibility performing energy arbitrage as the
primary service has been thoroughly researched. BESS allow for quick response
time and provide the grid with unique capabilities and flexibility. Energy arbitrage
should therefore act as a supplementary service and not a primary service.

2.1.2 Peak-shaving

Peak-shaving is an important service to prevent congestion on the distribution
grid. [9] developed a peak-shaving method with integrated feed-in PV power and
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BESS. The method deployed a regression-based Box Jenkins forecasting algorithm
to determine when the battery would need to shave the feed-in PV power. Re-
gardless of a high Mean Absolute Percentage Error (MAPE) of almost 39%, the al-
gorithm managed to perform peak-shaving. The strategy of peak-shaving feed-in
PV power can be combined with reducing peak load, while also increasing self-
consumption.

2.1.3 Frequency control and reserve markets

The Nordic power system has several reserve markets to ensure that the balance
of production and consumption is at all time balanced. [10] proposed a model
where 75% of the revenue is from the energy market and 25% is from the re-
serve market. [11] proposed a control algorithm to provide the UK transmission
network operator with Enhanced Frequency Response (EFR), which is the faster
frequency response service in the UK.

Adding a constraint on the revenue share between the energy- and reserve market
as was done in [10] can reduce total revenue and is not optimal.

2.1.4 Battery degradation as a factor in operation cost

Battery degradation is an important factor in investment analysis and in calculat-
ing operation costs. [5] has assumed that the operating cost of battery cycling is
negligible and assumes a fixed lifespan of 20 years. This assumption is not valid
since frequent cycling expedites the degradation of battery cells [12]. Battery de-
gradation dependencies are complex and difficult to model. To reduce complexity,
[3] made the following assumptions:

• The effect of ambient temperature is neglected.
• The effect of charge/discharge rate is neglected.
• The maximum and minimum limits of State Of Charge (SOC) results in the

degradation effect of deep and shallow charging/discharging being neg-
lected.
• The rate of degradation is equal when charging and discharging.

[13] reduces degradation in distributed battery systems in a microgrid by either
charging or discharging all the batteries at a given time. This reduces circulating
currents and thus, degradation.

2.2 Power consumption forecasting

For a system with distributed battery systems with multiple functions it is import-
ant to develop a model that forecasts power consumption. Research on forecast-
ing time-series stochastic data presents strategical variations. Different applica-
tions require higher accuracy on either short-term and long-term forecasting. The
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probability density functions (pdfs) of prices in [8] and [14] are determined us-
ing a quantile-copula Kernel Density Estimator (KDE). [15] analyses the accur-
acy of the Prophet algorithm and how it compares to the ARIMA algorithm. The
Prophet algorithm uses factors like season, time, weather and electricity price
in the prediction model and [15] claims it has better accuracy than the ARIMA
algorithm in consumption prediction. The Prophet algorithm provides an estim-
ation method that incorporates long-term time variant trends, but is not entirely
reliable in predicting the short-term variations in power consumption. [16] de-
veloped a hybrid model consisting of Convolutional Neural Networks (CNN) and
M-BDLSTM which outperformed CNN, Long Short-Term Memory (LSTM) and in-
tegrated CNN-LSTM models. The model trained using 60 minutes of historical
data to forecast the next 60 minutes with a one-minute sampling rate. LSTM re-
quires greater computational power, but also has a greater ability of learning from
long-term sequence dependencies than CNN. [17] proposed a decomposition ac-
cumulation principle combined with Empirical Mode Decomposition (EMD) and
Extreme Gradient Boosting (XGBoost) algorithm to forecast month ahead con-
sumption using hourly data points. The EMD-XGBoost algorithm was tested on
seven years with data and outperformed conventional forecasting methods in
most forecasted months. [18] proposed a Support Vector Regression (SVR), mul-
tiple load forecasting method based on particle swarm optimization. The model
forecasted 15 minutes using one month as test data. SVR is a robust, super-
vised, regression-based forecasting method that focuses on risk minimization. [18]
found that the SVR based forecasting method was better suited to minimizing
structural risk than traditional neural networks.

Applied methods of sequential stochastic data forecasting researched in [15] and
[17] is long-term and the emphasis on accurate data forecasting succeeding the
cut-off period is not a priority. Forecasting methods researched in [14], [8], [18]
and [16] provide short-term predictions, and are optimized to analyze short-term
data trends, but do not account for seasonal and weekly consumption trends. XG-
Boost uses a lookback period to indicate correlation between data, meaning that
XGBoost is highly dependent on seasonal trends. The forecasting accuracy is sig-
nificantly reduced if consumption data is volatile and unpredictable compared to
short-term regression-based methods. Despite the proposed model presented in
[17] outperforming the conventional forecasting methods, there was one month
where the model underperformed compared to the other methods. This repres-
ents a weakness in the implemented model.

2.3 Optimization and control

Effective optimization and control strategies for distributed BESSs are vital to
provide necessary services. [19] identified three communicative control principles
for microgrids; decentralized control, centralized control and distributed control.
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While the stabilization obligations of a islanded microgrid are fundamentally dif-
ferent than grid-connected DERs, the communication strategies are transferable.
The traditional, decentralized control strategy, DC-Bus Signaling (DBS), was used
in a hybrid renewable nanogrid [20]. With DBS the units operate independently
and a failure in a node will not inherently hinder functionality. The case study
presented integrated wind power, PV, a diesel generator and a battery bank. The
simulations showed the feasibility of the DBS to schedule storage and nonrenew-
able backup generation in a DC nanogrid. [21] proposed a hierarchical, four-
layer, centralized control architecture for a grid-connected, hybrid microgrid. The
four layers in the hierachical structure are: local controllers of power electronics,
coordination of components for optimized power distribution, grid synchroniza-
tion/power flow/stability, and data analysis on system status. The proposed con-
trol system performed optimal power sharing. [22] proposed a multiagent based
distributed control model to minimize operation costs of a microgrid. The com-
munication links were established between direct neighbors of the distributed
generation agents and simulation results confirmed a reduced operational cost.

The research presented in [20], [21] and [22] is conducted in the framework
of micro- or nanogrids. Decentralized-, centralized, and distributed control in
microgrids are viable solutions, but the weaknesses with the control strategies
become more prevalent in systems needing scalability, operational security and
low computational complexity as is explained in section 3.5. A hybrid approach
between the strategies can mitigate the challenges.

The proposed optimization method in [23] utilizes a mixed integer linear pro-
gramming (MILP) problem for the power market in Ontario, USA, to maximize
revenue in a cryogenic energy storage system (CESS) using the day-ahead/week-
ahead and real-time electricity markets. A scenario-based stochastic model with a
linear quantity-only bidding model and a MILP price-quantity bidding model was
developed in [8]. The model is useful to determine price scenarios in the DAM
and the Real-Time Market (RTM). The model does not incorporate battery de-
gradation as a result of battery cycling, SOC and Depth Of Discharge (DOD) as a
constraint in the optimization problem. Battery degradation affects the lifetime of
the battery system and is therefore an important consideration when maximizing
profits. Robust optimization is a variant of traditional LP and MILP, and typically
employs an uncertainty set that includes the worst-case scenarios [24]. Robust
optimization has been used in [25] and has proven to yield better results when
processing uncertain power prices than deterministic approaches.

The optimization of power arbitrage in [19]-[22] does not consider the possibility
of participating in other ancillary services or markets. This undermines the flex-
ibility and potential provided by battery systems. Linear programming techniques
are computationally efficient but are constrained to not allow nonlinear effects.
Linearization of nonlinear effects are therefore necessary to reduce computational
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complexity.

2.4 Multi-Agent based energy management

Major advantages with multi-agent systems is the ability to distribute computa-
tional burden to local agents which can optimize the decision making process
for the individual entity. [26] attributed agents to individual energy producers,
storage units and loads to ensure sufficient energy supply in a microgrid. The
agents communicate with a microgrid central controller using Contract Net Pro-
tocol (CNP). In the CNP procedure the agents acquire data from the central con-
troller. The agents use artificial intelligent algorithms to determine the bids that
would maximize benefits for the agent/entity. The central controller then activ-
ates the cheapest production units to satisfy the demand. If there is insufficient
aggregated power available, the central controller will either force generation or
perform load-shedding. [27] uses a strategy of Multi-Agent Particle Swarm Op-
timization (MAPSO) for power flow in large scale distributed BESS. The proposed
model is designed to control the power flow and keep the SOC of each BESS at a
proper level. Simulations on data from a wind power station was used to validate
the method. MAPSO can be useful to solve non-linear optimization problems but
does not necessarily find the optimal solution.

[27] and [26] have used energy flow models, meaning the models are based on
techno-economic analysis and power flow balance. [13] implements a dynamic
model, which focuses on the power electronics as well as the power flow. [13]
presents a non-linear sliding mode control model for SOC balancing in a mi-
crogrid with distributed battery systems. The model ensures that all the batteries
are either charging or discharging to remove circulating currents and reducing
degradation. Whilst the primary control is a standard V-I droop control used for
decentralized load sharing, the secondary control level regulates the average BESS
output voltage and ensures accurate current sharing between the BESSs.

Processing stochastic data has embedded randomness and there are therefore con-
trol systems in need of agents with capabilities of making decisions in systems
with uncertainty. [26] and [28] uses fuzzy logic with "degrees of truth" rather
than boolean logic in their artificial intelligence algorithms to determine when to
charge/discharge based on the SOC and to protect the battery against deep dis-
charge. The method is useful to establish a probability of the agent performing a
certain action.

Cooperation between agents is important to increase flexibility and profitability.
Using a Bayesian Nash Equilibrium game-theoretic based bidding strategy has
been researched in [29]. The agents used information about other demand re-
sponse aggregators to create bids to maximize personal profits.
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Theory

The theory being presented in this chapter will act as supporting material for the
model presented in chapter 4.

3.1 Battery Energy Storage Systems (BESS)

Increased distributed stationary storage can be valuable to help alleviate chal-
lenges that occur when integrating Plug-in Electric Vehicles (PEV) and RES [4].
BESS can be a cost effective alternative to building new transmission lines or in-
creasing transformer capacity. There are several technical difficulties that arise
with DER as described in Chapter 3. Batteries can help solve some of the chal-
lenges by providing voltage support, producing/consuming reactive power and
improving power quality. The characteristics of BESS allow it to participate in
ancillary services, energy markets and reserve markets. The battery can act as a
generator or load depending on the SOC [24].

Round trip efficiency is an important metric in determination of charge/discharge
scheduling and energy arbitrage. Round trip efficiency is the percentage of stored
energy that can later be retrieved. The higher round trip efficiency, the less energy
loss in the storage process. Tesla Powerwall 2, which is a battery system used for
commercial applications with a rated 5kW/14kWh, has a specified 90% round trip
efficiency [30].

3.1.1 Flexibility

A key term in power systems is "flexibility". The definition of flexibility in power
systems varies depending on the specific part of the power system being discussed
and the literature [31]. In the context of this project, flexibility is the ability of the
battery system to provide the services through market price signals. The stakehold-
ers in the electricity system has the ability to indirectly activate services provided
by the battery system by increasing the asking price in the relevant market. The

11
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battery system will therefore provide the stakeholders with operational flexibility.
The relevant price signals sent by the DSO is the utility tariff, which can be ad-
justed over time if peak demand is not substantially reduced. The relevant price
signals sent by the DSO are the reserve market prices.

3.1.2 Battery degradation as a factor in operation costs

Minimizing operational costs is an important factor when making market bids that
reflect the marginal operating cost of the BESS [10]. The rate of battery degrad-
ation is dependant of several factors[3].

• DOD
• Charge and discharge rate
• Ambient temperature
• Battery maintenance procedures

For this thesis, these factors are not a factor in an optimization problem. Degrad-
ation is reflected in the total lifetime of the battery system, which is assumed to
be 12 years. [32] finds a minimum of 22% and maximum of 80% DoD to be the
optimum bounds to minimize lifetime cost and life cycle CO2 emissions.

3.2 Power consumption forecasting

Time series forecasting has been a vital part of business planning in a modern and
competitive environment. Forecasting is therefore widely researched in statist-
ics, econometrics, time series analysis and in machine learning applications. This
thesis will only research some of the previously discussed forecasting methods.
The forecasting models discussed in section 2.2 represent different categories of
statistical analysis and machine learning. Figure 3.1 describes the subcategories
in machine learning that the forecasting models fall under.

Figure 3.1: Categories of machine learning forecasting methods

There are advantages and disadvantages with each forecasting method, and a
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deeper understanding of the underlying properties of the forecasting methods is
necessary to get an accurate short-term and long-term prediction. The properties
of LSTM and Facebook Prophet are discussed in the subsequent sections.

3.2.1 Long Short Term Memory

LSTM is researched in this thesis, but is ultimately not used in the developed
model presented in Chapter 4 due to sub-optimal results from the developed LSTM
model.

LSTM was proposed in 1997 by Hochreiter and Schmidhuber[33]. LSTM is used in
the field of deep learning and uses a Recurrent Neural Network (RNN) structure
[34][35]. LSTM is designed to be accurate with both short-term and long-term
sequential time-series problems. Information is memorized through cell states, in-
put gate sigmoid functions, forget gates, output gates and add sum operation with
tanh function to reduce the probability of gradient disappearance and explosion
[35]. LSTM aims to solve the vanishing gradient problem that the traditional RNN
method suffers from. The gradient is the parameter used to update a neural net-
works weight. RNN is not as computationally complex as the evolved LSTM, but
suffers from a diminishing gradient when the gradient backpropagates through
time, thus leading to short-term memory. The structure of the cells in the LSTM
model is presented in figure 3.2 where the red circles indicate a sigmoid function
and the blue circles indicate a tanh-function. The cell takes in information of the
input information, the previous hidden state and the previous cell state. The for-
get gate decides which input data should be kept and which should be forgotten.
The information passes through a sigmoid function that gives the data a value
between 1 (keep) and 0 (forget). The closer the data is to 1, the more likely the
information will be kept. The input gate is the regulatory gate that creates a new
cell state. The output state decides the hidden state that should be carried over to
the next time-step. LSTM is a comprehensive and widely used forecasting strategy
that produces viable results in power consumption forecasting [35]. Due to LSTM
being more computationally complex than traditional RNN, the frequency of fore-
casting needs to be evaluated.
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Figure 3.2: LSTM time-step cell structure. Figure inspired by [34].

3.2.2 Facebook Prophet

Prophet is a forecasting model designed by Facebook to primarily forecast sales
and business expectations [36]. The model is designed with adjustable parameters
that allow for human tuning. Prophet has three main model components; trend,
seasonality and holidays. The model also encompasses an error term, εt , which
is assumed to be normally distributed. The specifications of the Prophet model is
similar to the Generalized Additive Model (GAM) from 1987 [37]. The Prophet
model uses time as a regressor with the possibility of using several linear and non-
linear functions of time as components. The model incorporates trend changes by
automatically defining changepoints, which can also be manually specified by an
analyst for incoming catalysts. Though Prophet successfully observes trends, the
method lacks in the ability to predict short-term outcomes after the cutoff period.
The model is meant for data with clear and quantifiable trends. Power consump-
tion on a per-user-basis can be volatile and unpredictable, and consumption can
therefore have a large discrepancy compared to the overall trend. The preliminary
results in section 5.1 of the Prophet forecasting method show the model creating
a prediction based on hourly consumption, season and trend.

3.3 Peak-shaving and energy arbitrage

3.3.1 Monthly maximum power tariff

In the context of BESS, peak-shaving refers to actively reducing demand by inject-
ing battery stored power into the distribution system in periods with high power
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demand from the user. The DSO will get a lower reading from the electricity meter
than they would have received without peak-shaving. The opposite is true when
the BESS is charging. The observed consumption will be higher. Using BESS to
peak-shave is presently a useful service for large scale businesses that have a
power-based utility tariff and for DSOs that wish to reduce grid expansion costs.
A large portion of electricity costs are charged by the DSO for the grid services
provided. Distribution lines have a maximum capacity limit, and it is therefore im-
portant for the DSO to either contain peak power distribution within the bounds
or upgrade the distribution capacity. Large consumers therefore have a maximum
power tariff to incentivize lowering the maximum peak demand. Peak-shaving as
a service has an economic directly for the consumer and indirectly for the DSO.
In 2022 several DSOs in Norway are planning to implement a maximum power
utility tariff for households. The utility invoice will consist of a fixed cost and an
energy cost. The fixed cost will be decided by which step the maximum hourly
power consumption during a month falls under in table 3.1. For most households
the fixed price increases every 5kW interval.

Capacity step Price including VAT (kr/month)
0-5 kW 266.25
5-10 kW 478.75
10-15 kW 691.25
15-20 kW 905.00
20-25 kW 1117.50
25-50 kW 1755.00
50-75 kW 2818.75
75-100 kW 3882.50
100-150 kW 5477.50
150-200 kW 7605.00
200- kW 10795.00
Energy fee Price including VAT (kr/kWh)
Energy winter (nov-mar) 0.16
Reduction night (22:00-06:00) -0.08
Energy summer (apr-oct) 0.135
Reduction night (22:00-06:00) -0.0675
Public taxes Price including VAT (kr/kWh)
Energy tax (jan-mar) 0.1114
Energy tax (apr-des) 0.1926
Energifond tax 0.0125

Table 3.1: Prices with monthly maximum power tariff at Lede AS [38]

A well functioning BESS can predict the maximum consumption during a month
and will inject power to keep the net consumption within a certain capacity step
[9]. Currently businesses with over 100,000kWh yearly consumption get charged
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Figure 3.3: Peak-shaving with capacity step bounds

a rate for the highest consumption peak in kr/kW/month [39]. Given the volatile
and stochastic nature of power consumption, timing peak consumption is difficult.
BESS control systems risk miscalculating the peak, causing the BESS to either dis-
charge when the consumption is close to the peak or discharging too early and
depleting the stored energy before the consumption peak has reduced. With 5kW
steps, the control system needs to predict which step the consumption will fall un-
der and try to restrict consumption beneath the upper bound of that step. Figure
3.3 represents the control mechanism restricting consumption within the 10kW
upper limit. If the control system succeeds in restricting consumption at 10kW for
the entire month, the fixed price will be 478.75kr as is shown in table 3.1. Char-
ging of the battery cells is performed when consumption is low and energy prices
are low to utilize energy arbitrage. Energy arbitrage utilizes varying energy prices
through the day to charge when prices are low and discharge when energy prices
are high. Energy arbitrage is a vital part of the optimization problem to maximize
profits. Energy arbitrage and peak shaving services often work in tandem to min-
imize losses and maximize profits.

The ability of the BESS to keep the consumption under 10kW in figure 3.3 is
dependant on the power and energy characteristics being sufficient. A battery with
power and energy characteristics of 3kW/6kWh can reduce the peak by maximum
3kW and the integral under the power curve above 10kW can maximum be 6kWh.
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3.4 Reserve markets

Statnett is the transmission system operator of the Norwegian power system. Stat-
nett is responsible for the balance between production and consumption, which
can be observed in the system frequency. The power system is continuously sub-
jected disturbances that may interfere with the power balance [40]. To ensure
stable operations Statnett has created primary, secondary and tertiary power re-
serves that are acquired through markets. The price is determined by the highest
accepted bid (Pay as Clear) and the volume of accepted bids is determined by
agreed goals set by the TSO regarding frequency quality levels.

3.4.1 Frequency Containment Reserves - FCR

The FCR market acquires the primary reserves needed to stabilize system fre-
quency. The activation of the reserves is entirely automatic. The market is sep-
arated into reserves for normal operation (FCR-N) and reserves for operational
disturbances (FCR-D). For this thesis, only the FCR-D will be relevant, so for now
on when FCR is mentioned it is referring to FCR-D. The FCR market is split into
two time slots. The FCR D-2 market acquires reserves two days ahead of activ-
ation. The FCR D-1 market acquires reserves one day ahead of activation. The
accepted reserve power is automatically activated when there is a ±0.1Hz devi-
ation from the ideal 50Hz [41].

FCR D-1 bids need to be sent before 18:00 the day prior to the bid reservation.
FCR D-2 bids need to be sent before 17:30 two days in advance of the bid reserva-
tion. The time at which the prices are published is not specified in the guidelines
for the FCR markets. It is therefore assumed for this project that participants in
the FCR markets get informed on the closing price an hour after bids have been
submitted, as is the practice for the FFR markets.

The FCR D-2 market has only been active since the start of 2021. The power
consumption data in this master thesis dates back to 2019. To make a worthy
simulation on future market conditions the model will create fictitious FCR D-2
market prices dating back to 2019. Since the FCR D-2 prices closely follow the FCR
D-1 prices in 2021, the model will create FCR D-2 prices that are proportionally
dependant on the FCR D-1 prices. The average FCR D-2 price is found to be 1.59
larger than the average FCR D-1 price for 2021. The FCR D-2 prices for 2019-2020
will therefore be 1.59 larger than the corresponding FCR D-1 prices.

3.4.2 Fast Frequency Reserves - FFR

The fast frequency reserves market is intended for fast activation in scenarios with
large power system failures that cause a frequency drop to bellow 49.0 Hz. The
main source of electric power in Norway comes from hydro installations [42].
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Hydroelectric production provides the power system with high inertia, making
the power system resistant to power failures. Hydro reserves are being preserved
during the nights in the summer due to low energy prices. In the summer, in-
ternational power imports and wind energy cover a larger portion of the energy
demand, leaving the power system with low inertia and thus, vulnerable to dis-
turbances.

The FFR market has not been fully developed, but a demonstration of the mar-
ket was run in 2021 with a total of 119MW power was reserved in the needed
hours. The FFR market was reserved for hours between 22:00 and 07:00 in the
days between 3. May and 3. October. There were two categories in the demon-
stration of the market, "FFR Profil" and "FFR Flex". The market categories decided
the flexibility of the market participants. The decided closing prices of the mar-
kets were 11.13 and 49.19 £/MW/h [43]. For this project the FFR market will
simulate normal market conditions, where the closing price will be an average
between the two mentioned category prices of 30.19 £/MW/h. This will be the
fixed price between the hours of 22:00 and 07:00 in the days from 3. May and 3.
October. All other hours the price will be 0 £/MW/h.

To simulate an active market, the bid times for this market will be assumed to be
the same as the FCR D-1 market and bids will need to be sent at 18:00 the day
prior to the bid reservation. The information on the market closing price for the
subsequent day will be received at 19:00, an hour after bids have been sent.

3.4.3 Bidding on the reserve markets

Table 3.2: Reserve markets bidding restrictions

Reserve market Bid time Bid acceptance time
FCR-N, D-1 18:00 19:00
FCR-N, D-2 17:30 18:30
FFR 18:00 19:00

The FCR-N market demands a minimum bidding volume of 1MW and that the
bidding volume is rounded. 1MW, 2MW and 5MW are valid volumes in the bid-
ding process. 1.4MW is not a valid bidding volume. Statnett allows for distributed
systems to aggregated the bid volumes and provide one total bid to the specific
market. The bidding times on the different markets can be summed up in Figure
3.4.
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Figure 3.4: Bidding and market clearing times for energy- and reserve markets.

3.5 Optimization and control

There are three main communication strategies deployed on microgrids and with
distributed batteries [19].

• Decentralized control - communication links do not exist and power lines is
the only mode of communication.
• Centralized control - distributed batteries send data to a centralized aggreg-

ator via a digital communication link. The data is processed and feedback
commands are sent back.
• Distributed control - digital communication links are implemented between

units and control strategies are processed locally.

Decentralized control gives units independent and local control [20]. Decentral-
ized control provide operational security since the units are independent from
other units. It also mitigates cyber security risks since control signals are pro-
cessed locally without connection to a central controller. Decentralized control
removes the possibility of communication between units which reduces the ability
to cooperate and therefore reduces system flexibility. Centralized control utilizes
a central controller that processes all relevant information and provides all the
units with control signals. This strategy gives the central controller full overview
and therefore the ability to provide the grid with optimal power dispatch. The
main challenges with centralized control is the lack of scalability and security.
In centralized control each distributed unit has unknown variables that need to
be decided with an optimization formulation. When the power dispatch of one
unit is dependant on the unknown variables of all the other units, expanding the
system with more units can create a large computational burden for the central
controller. Centralized control is dependant on the central controller always being
functional and connected to each unit. A fault in the central controller can cause
a system-wide failure. Distributed control is a control principle with no central
controller and the units only communicate amongst themselves through dedic-
ated Digital Communication Links (DCLs) [19]. Distributed control allows for full
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functionality in the case of a node failure. This control strategy allows for direct
cooperation between distributed units, which greatly increases system flexibility.
A challenge in distributed control is the increased complexity when expanding the
network with more units (nodes). An increase in the number of units, increases
the number of DCLs exponentially. There are also technological difficulties creat-
ing DCLs between units. The units need data transmission capabilities to establish
a DCL. The unit could connect via the internet or with a transmitter with substan-
tial bandwidth and amplification.

Optimization of the operating system is determined by what the objective function
is, the constraints on the system, the accuracy of forecasting and the efficiency in
agent cooperation. [44] reviewed literature on the optimization techniques that
have been used for integration of Distributed Generation (DG) from RES. The
methods were divided into conventional methods and intelligent search meth-
ods. Artificial intelligence and heuristic methods are considered intelligent search
methods. Heuristic methods consist of algorithms that speed up the process of
finding near optimal solutions. Heuristic methods are simplistic, but lack accuracy
and precision[44]. A brief overview of existing optimization methods is presented
in table 3.3.
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Conventional opt. meth-
ods

Description

Linear Programming (LP) Solve a mathematical problem with linear re-
quirements for maximizing or minimizing the ob-
jective function.

Non-Linear Programming
(NLP)

Solve a mathematical problem with non-linear
requirements for maximizing or minimizing the
objective function.

Mixed Integer Linear Pro-
gramming (MILP)

LP but some variables are discrete and some are
continuous.

Mixed Integer Non-Linear
Programming (MINLP)

NLP but some variables are discrete and some are
continuous. Very difficult to solve.

Optimal power flow (OPF) Finds optimum economic operating cost while
considering the impact of the transmission and
distribution system.

Fuzzy Logic (FL) Rejecting Boolean values (0 or 1) and allocating
a value between 0 and 1, modelling uncertainty
and indicating level of association of each com-
ponent.

Intelligent search methods Description
Genetic Algorithm (GA) Maximizes "fitness" based on principles of natural

selection and genetics.
Tabu Search (TS) Finds the solution space while using adaptive

memory and responsive exploration.
Particle Swarm Optimiza-
tion (PSO)

Particles are created that evaluate and share their
fitness level neighboring particles to iteratively
acquire the optimal solution. Possibility of only
finding local minima

Ant Colony Optimization
(ACO)

Particles share their path towards the optimal
solution, initialized by random solutions.

Harmony Search (HS) Optimization based on music theory on achieving
better harmony

Table 3.3: Conventional and intelligent search optimization methods [44]
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Methodology

The method chapter in this thesis gives a detailed explanation of a Python de-
veloped control model to be implemented in distributed battery systems to provide
multiple grid services. An explanation of the background and integration of BESS
in grid operations is provided to give validity to the developed model. The use
of BESS in grid operations is not a new phenomenon, but as the energy system
becomes more renewable and market driven, the possibility of increasing profits
and flexibility become apparent. The model developed in this thesis therefore acts
as a proof of concept. The concept being that increasing profitability of BESS in
grid operations is not only possible, but is a viable strategy to increasing revenue
and cutting costs, whilst also increasing the services provided to society.

4.1 Background

In the model developed there are owners of battery systems which will provide the
business, the DSO and the TSO with services. The model is designed to maximize
economic gains and minimize cost to the owners of the battery systems. This is
why the developed model will be using agent based modeling. Each battery system
has allocated an agent which acts as the brain of the battery system. The agent
is designed to work in the self interest of the battery owners. The agent will also
work in the self interest of the battery owners by indirectly cooperating with other
agents through a central controller to further increase profits. A simplistic flow
chart of the relationship between the battery systems, agents, central controller
and the public markets is shown in Figure 4.1.

22
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Figure 4.1: Simplistic battery and agent flow chart.

Essentially, the agents will make the decision on how the battery should be util-
ized. The central controller is designed to be a communication hub between the
agents through market mechanisms. While there is a central controller, the com-
munication between the agents happens in a distributed way. The central control-
ler helps facilitate the communication between the agents and the central control-
ler does not make decisions on behalf of any agent. The batteries are therefore
distributed, but only needs one digital communication link, which is between an
agent and the central controller. This is an important aspect in the model. This
design establishes individuality for battery owners while also being scalable. The
distributed communication design used in this model is shown in Figure 4.2.
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Figure 4.2: Communication link between battery agents.

The communication design in this model employ different aspects of a centralized
and decentralized design. The blue nodes indicate an agent that simply collects
data but does not process it or make decisions. The red nodes indicate an agent
that processes data and makes decision. The green node is a communication hub,
where the agents can cooperate without establishing a direct DCL.

The agents in this model make decisions locally. This allows them to optimize their
decision making without outside influence. A disconnection of the communication
link to the central controller still allows the agent to make control decisions for
the battery, but without the capability of cooperating with other agents. Tradi-
tional centralized systems lose all operational capabilities on a node if it loses
connection to the central controller. The communication design in this model is
also considering the increasing need for better cyber security solutions. When the
decision making and data processing happens locally, it is difficult for an infilt-
ration into the entire system. Hacking one agent provides information on only
that agent. Hacking the central controller provides the information that is being
transferred through the digital communication links. In Section 4.8.3 it will be-
come apparent that the information that is being transferred through the DCL’s
are bids, which is difficult to decrypt into useful information. The major advantage
of not using a traditional decentralized communication system is that traditional
decentralized communication systems establish many DCL’s, which could become
computational heavy and makes the model less scalable. The design in this model
allows for scalability since an increase in the number of agents increases the total
computational time linearly instead of exponentially.
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4.2 Battery integration for grid service participation

To get an understanding of how the battery system can perform multiple grid ser-
vices it is important that the battery system is integrated correctly into the power
system. The battery system will be integrated with a consumer behind the elec-
tric power meter. This will allow the battery to manipulate the observed power
consumption by the DSO by injecting power or charging power using the battery.
Pixii AS uses battery systems for implementation in buildings and businesses. The
energy rating on their battery systems are calculated to be approximately 25% of
the consumers maximum consumption. Their battery systems also have a C-rating
0.5, meaning that the power rating will be 12.5% of the historically maximum con-
sumption of the business or building. The same principle will be used in this thesis.
The battery system is therefore sized according to the size of the consumption. A
consumer with large power consumption will have a large battery. A consumer
with a small amount of power consumption will have a small battery. Figure 4.3
presents the relationship between the consumer, the battery system, the distribu-
tion grid and the transmission grid.

Figure 4.3: Battery integration with consumer and grid operators.

The DSO is the operator for the distribution grid and the TSO is the operator for
the transmission grid. Using this relationship the observed power registered by
the DSO is calculated using Equation 4.1.

Pobserved
t = P load

t − P bat ter y
t (4.1)

When the battery discharges, the observed load by the DSO becomes lower. When
the battery charges, the observed load by the DSO becomes higher.
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4.3 Grid services

As established in Section 2.1, there are many services BESS can provide the energy
system. For this thesis, the battery systems will provide three services; Energy ar-
bitrage, peak-shaving and reserve market participation. These three services have
direct economic value since they are either market based or have direct costs at-
tributed to them. It is therefore possible to quantify a value to providing these
services.

• Energy arbitrage - The battery system will buy energy in the day ahead mar-
ket when the price is cheap and sell energy when the energy is expensive.
This creates a revenue stream for the battery owner.
• Peak-shaving - Reduce power tariff costs by reducing the observed load. Us-

ing the battery system to injecting power during periods where the battery
owner has high consumption could reduce the observed load. Reducing the
observed load could reduce the power tariff costs imposed by the DSO in
conjuncture with the costs in Table 3.1. If the battery system assists the bat-
tery owner in reducing the maximum observable load to a lower capacity
step, the monthly power tariff costs are reduced.
• Reserve market participation - Participate in reserve market (FCR D-1, FCR

D-2 and FFR) bidding to supply the TSO with backup power reserves.

While the model is designed to increase the profitability for the battery owners,
the battery system provides increased value to society when providing multiple
services. Energy arbitrage helps stabilize prices, such that the price difference
between on-peak and off-peak hours are lower. Peak-shaving helps reduce peak
demand in the distribution system, which could help the DSO reduce grid invest-
ments to combat power congestion. Reserve market participation helps the TSO
stabilize the power balance, which helps reduce the probability of a blackout event
in the power grid. The incentives to provide these services are both economical but
also to improve the operational flexibility of the power system. Both the energy
arbitrage and reserve market participation is directly market driven. The agents
can bid capacity on the different markets in conjunctions with the rules and reg-
ulations described in Section 3.4 and 3.3. The peak-shaving services reduces the
monthly utility tariff, so the value of the services is analysed by looking at what
the utility tariff would be with or without the battery system.

4.4 Data usage

Developing a model for distributed BESS for multiple grid services requires data.
The data will be used to backtest the model to simulate real world applications.
The data consists of power consumption data for different users with different
consumption characteristics, and market data. The consumption data is hourly
consumption data and the duration of the data varies between 1-3 years, between
the start of 2019 and end of 2021. The data that is be used to develop and test



Chapter 4: Methodology 27

the model are shown in Table 4.1.

Base case, Consumption data Source Avg. consumption [kW]
Commercial building 1 Pixii AS 35.3
Commercial building 2 Pixii AS 27.4
Aggregated area 1-50 Lede AS 15-60
Scenario 1, Consumption data Source Avg. consumption [kW]
Factory Pixii AS 3667
Condominium Pixii AS 114.9
Store 1 Pixii AS 261.4
Store 2 Pixii AS 279.1
Market data Source Avg. market price
Day ahead energy price Nord Pool 38.7 EUR/MWh
FCR D-1 price Statnett 6.6 EUR/MW
FCR D-2 price Statnett 10.5 EUR/MW
FFR price Statnett 8.2 EUR/MW
Utility tariff Source
Power tariff table Lede AS Table 3.1

Table 4.1: Data used and their sources.

The consumption data for Scenario 1 will be added to the simulation data set when
running a specific scenario. This is explained more in detail in Section 4.10.2.

All consumption data provided in this thesis is anonymous. The consumption data
from Lede AS is a data set of 960 households. Since this thesis is analysing the use
of battery systems in medium scale consumers, the consumption from the house-
holds have been aggregated in groups of 20. This is to simulate a condominium or
a collective investment. The consumption data for the households were structured
geographically, so the aggregated households are geographically close. Testing the
model with these aggregated consumers is useful for DSO’s since using battery sys-
tems in certain geographic areas is becoming increasingly relevant when trying to
peak-shave the load of the aggregated consumers instead of increasing grid invest-
ments. When considering the aggregated areas as individual consumers, there are
in total 50 consumers. There are therefore 50 individual agents in the model.

The model is designed to address the needs of different consumers with different
consumption patterns. With the relevant data, the battery system could be con-
nected to an overloaded transformers or EV charging stations. The battery sys-
tem would provide peak-shaving services when power consumption is high and
provide reserve market participation when power consumption is low.
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4.5 Assumptions

A theoretical model needs to make several assumptions. Assumptions have to be
made to simplify the model without reducing the integrity of the results.

4.5.1 Battery assumption

• The battery energy rating in kWh is 25% of the historical hourly maximum
power consumption for the specific agent.
• The battery power rating in kW is 12.5% of the historical hourly maximum

power demand for the specific agent.
• The SOC is always between 20% and 80% in support of the optimal opera-

tional range found in [32].
• Battery degradation is not a factor in energy cycling calculations. Battery

degradation is instead a factor of time, where the total lifetime of operation
is assumed to be 12 years.
• The round trip efficiency of the batteries is 90%.
• The base case C-rating is 0.5. A C-rating of 0.5 means that the battery energy

storage rating (kWh) is twice as large as the battery power rating (kW).

4.5.2 Market assumptions

• The future market prices are known. The prediction of market prices are
outside the scope of this thesis.
• Activation in the reserve markets are rare and are short in duration. A min-

imum of 20% SOC is sufficient to always participate in the reserve markets.
• The agents or central controller can trade energy instantaneously on the

day-ahead market. This can realistically be achieved through agreements
with other energy providers that have large bids already approved by Nord-
pool.
• The bids on the reserve market are not necessarily a minimum of 1MW, as

Statnett requires.
• Bids on the reserve market all happen at midnight the day before activation,

or two days ahead for the FCR D-2 market.
• The volume of the bids on the markets are not sufficiently large enough to

move the price when clearing.
• The TSO allows the battery system to charge and discharge energy irre-

spective of reserve market participation. If the battery systems is activated
in the reserve markets, the battery system will discharge at maximum power
capacity.
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4.6 Model description

This section describes the model flowchart presented in Figure 4.1 in more detail.
A flowchart illustration the main components and the technical and commercial
signals is shown in Figure 4.4.

Figure 4.4: Model flowchart.

The model is divided into four segments. The battery segment collects consump-
tion from the battery owner and SOC data from the battery. The agent segment
performs forecasting, job scheduling and optimization. It is in the agent segment
where most of the calculations and optimization is done. It is in the central control-
ler segment where agents can communicate with each other by trading services
and obligations.
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4.7 Prophet consumption forecasting

The background and theory to the Facebook Prophet forecasting algorithm is
presented in Section 3.2.2. To adhere to the requirements by the reserve markets
and day ahead market, the bids to participate on the markets have to be sent a spe-
cific time prior to the activation day as shown in Figure 3.4. The model therefore
needs to perform job scheduling (service scheduling) in the optimization process.
To find the value of each service, the model needs to perform consumption fore-
casting. The forecast is especially important to determine when the battery system
needs to perform peak-shaving services by injecting power and reducing the ob-
servable load.

The Prophet algorithm is a versatile forecasting tool with plug and play capabil-
ities. The Prophet forecasting algorithm is attuned to highly time-dependent and
seasonal data, which consumption data often is. For the peak-shaving services it is
more relevant to know the probability of the consumption surpassing a certain ca-
pacity step, because surpassing the capacity step would result in a higher monthly
utility tariff. Since consumption data is stochastic, finding the characteristics of
the forecasting deviation gives valuable insight into the consumption character-
istics. The deviation is determined using a probability input and the characteristics
of the historic consumption patterns. The probability is used in the optimization
problem to determine if the BESS should provide peak-shaving services. Figure
4.5 shows an example of a 48 hour forecast.
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Figure 4.5: 48 hour Prophet forecast, commercial building 1.

The Prophet algorithm does not directly provide the capability of calculating the
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probability of each forecasted data point being under a certain value. A possible
approach to calculate the probability is to assume that the deviation between the
forecasted values and the actual values has historically had a Gaussian distribu-
tion. Using statistical analysis, the probabilities of exceeding a capacity step can
be found for each consumption data point. The Prophet algorithm provides ex-
pected forecasted values, ŷ , and the upper expected deviation values, ȳ , given
a 95% accuracy. 95% is equivalent to a z-score of 1.96. Equation 4.3 shows the
relationship between the variables.

σi =
ȳi − ŷi

Zi
(4.2)

where Zi is the z-score of 1.96. When the standard deviation, σi , is calculated,
a new z-score can be calculated using the maximum capacity step that the con-
sumption should be under.

Zi,new =
x̄ − yi

σi
(4.3)

where x̄ is the maximum power level. The new z-score is converted into a prob-
ability score using a Python dictionary that provides a standard normal table.
Performing this process for each forecasted hour provides a series of probabilities
for the consumption surpassing one of the maximum power levels. This process
assumes that the forecasting error is normally distributed. A normally distributed
forecasting error is unrealistic for many load profiles. The stochastic character-
istics in power consumption can cause large power consumption spikes that are
difficult to predict. The forecast could therefore have a high number of larger er-
rors that cause the errors to not follow a normal distribution. The randomness
of power consumption is reduced when aggregating over a larger area but the
reduction is not significant enough to justify using the above method. Using the
historical forecasts and actual values, a proposed method is to map out the per-
centage forecasted error compared with the actual values. Mapping the error with
1% increments provides the error distribution. An example of the error distribu-
tion with the Gaussian distribution function is shown in Figure 4.6.
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Figure 4.6: Forecast deviation with Gaussian function, commercial building 1.

Using the method of determining probability of exceeding a capacity level us-
ing the error deviation is not completely accurate for each data point. The con-
sumption forecast can be overdamped or underdamped, which can lead to the
forecast missing predictions in periods where the consumption rapidly increases
or decreases. The rapid consumption swings are typically trend correlated and
therefore occur at certain hours of the day.

4.8 Optimization

The optimization of multiple battery systems for multiple grid services is inher-
ently complex and has a large number of dependant variables. In computational
complexity theory, the optimization problem in this thesis to maximize revenue
and minimize costs follows the NP classification (nondeterministic polynomial
time), since the set of problems can be solved in polynomial time by a non-
deterministic Turing machine. The stochastic nature of energy consumption and
market pricing makes an optimal solution in an optimization problem impossible,
but this model will utilize statistical analysis to create a good approximation to
the optimal solution.

The objective with the optimization is to maximizing revenue and minimize costs.
The decision on the service the battery will provide each hour is pertinent to max-
imizing revenue and minimizing costs.



Chapter 4: Methodology 33

Figure 4.7: Optimization stages.

4.8.1 Stage 1 optimization: Job scheduling

The first stage of the optimization is a job scheduling problem. The job scheduling
optimization is designed to allocate the time of the individual batteries to perform
certain services for every hour, 48 hours ahead. The services allocated in this stage
are FCR D-1, FCR D-2, FFR and peak-shaving participation. The objective function
aims to maximizing profits during each hour, 48 hours ahead. For the objective
function to maximize profits, each service has to have a known value for perform-
ing the service. Since market prices are assumed to be known for this project, the
value of the reserve market participation can be derived from Equation 4.4.

V FCR−D1
t = Pmax · C FCR−D1

t (4.4a)
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V FCR−D2
t = Pmax · C FCR−D2

t (4.4b)

V F FR
t = Pmax · C F FR

t (4.4c)

where Pmax is the power rating provided by the agents battery system, C FCR−D1
t ,

C FCR−D2
t , C F FR

t , V FCR−D1
t , V FCR−D2

t and V F FR
t is the price and value at hour t for

participation in the specific reserve markets. Note that the value of reserve market
participation is proportional to the power rating of the battery system. Different
agents will therefore experience different values to reserve market participation
services depending on battery size. Although, the reserve market prices are the
same for all the agents, which means that the agents that will provide reserve
market capacity will all participate in the same reserve market at a certain hour.
The importance of this fact will become apparent in Section 4.8.3.

Calculating the value of peak-shaving participation is less trivial because the value
is proportional to the future power consumption, which is stochastic. The value of
the peak-shaving service can therefore not be deterministic, but needs to be ana-
lyzed using a probabilistic approach. The method of determining the value of the
peak-shaving service in this project is to look at the direct costs of not providing
the service. As explained in Section 3.3.1, if the power consumption of an agent
exceeds a capacity step at a single hour in the month, the utility tariff increases
by an amount specified in Table 3.1. The model therefore has to determine three
important metrics; the Gaussian distribution of the forecasting error, the monthly
capacity step at which the battery system realistically can peak-shave and the cost
of entering a higher capacity step. The capacity step, ᾱm, at which the battery
system can peak-shave also has to be calculated using a probabilistic approach.
Different strategies of determining the monthly capacity step is discussed in Sec-
tion 6.2.1. The different strategies could have benefits depending on the charac-
teristics of the consumption profile. To determine ᾱm, the agent needs to know
the probability of the consumption breaching a capacity step during the month,
P(β̄m), and if it is possible for the battery system to peak-shave to a lower capa-
city step. If the model assumes that the consumption every hour is independent of
the consumption in other hours, the probability of a capacity step being breached
during a month is a product of the probability of the capacity step being breached
each hour. In statistical terms, the model could assume that the events, hourly
capacity step breach probability, are independent as shown in Equation 4.5 and
the monthly capacity step breach probability can be calculated.

P(β̄1 ∩ β̄2 ∩ ...∩ β̄n−1 ∩ β̄n) = P(β̄m) = P(β̄1) · P(β̄2) · ... · P(β̄n−1) · P(β̄n) (4.5)

where n is the total number of hours in the month. Using Equation 4.5 to calculate
the probability of breaching every capacity step will yield an array of β̄m. Table
4.2 shows a table of the probability of the consumption being under each capacity
step for an entire month, (1− β̄m).
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Capacity step[kW] Com. building 1 [%] Com. building 2 [%]
5 0 0
10 0 0
15 0 0
20 0 0
25 0 2.46 ∗ 10−102

50 2.12 ∗ 10−9 1.27 ∗ 10−6

75 93.25 5.28
100 100 26.98
150 100 56.96
200 100 72.38

Table 4.2: Total probability [%] of consumption being under each capacity step
for the entire month, commercial building 1 and 2.

The method of finding the probability of breaching a capacity step described in
Equation 4.5 assumes that the power consumption every hour is an independ-
ent event and that error distribution for every hour is the same. Both of these
assumptions are not completely accurate. The power consumption one hour is
highly correlated with the consumption in previous hours due to increased or de-
creased activity for the day. The MAPE error distribution of the forecast is larger
when the consumption is lower because the same absolute error would have a lar-
ger percentage impact. Therefore, the average Gaussian distribution of the error is
not entirely accurate representation for every hour of the day. The values in Table
5.3 are therefore not the actual probability of being under certain capacity levels.
The values do, although, give an accurate indication of how many consumption
data points are close to the specific capacity step. By testing, the model found that
a realistic monthly capacity step can be determined when the total probability of
breaching the capacity step is under 10−50%.

When the monthly capacity step that the agent wants to peak-shave at is determ-
ined, the Gaussian error distribution and cost of a higher capacity step can be used
to derive the formula for the value of the peak-shaving service.

P(X ≤ ᾱm) =

∫ ᾱm

−∞
f (pt) dpt =

1

σ
p

2π

∫ ᾱt

−∞
e
−

1
2
(
pt −µ
σ

)2

dpt (4.6a)

V shave
t = C cap ∗ P(X ≤ ᾱm) = C cap · (1− P(β̄t)) (4.6b)

where ᾱm is the monthly capacity step, µ is the error distribution mean, σ is the
standard deviation and C cap is the cost of entering a higher capacity step.



Chapter 4: Methodology 36

4.8.2 Stage 2 optimization: SOC planning

The second stage of the agent optimization aims to plan the SOC 24 hours ahead,
specifically to allocate sufficient capacity to peak-shaving services and to perform
energy arbitrage. As the model assumes that the minimum of 20% SOC is suffi-
cient power to always participate in the reserve markets, the only SOC restrictions
on performing energy arbitrage is the need to have sufficient power reserves to
perform peak-shaving. In an optimization problem it is therefore necessary to re-
strict the minimum SOC at hours where the consumption has a high probability
of exceeding the monthly capacity step.

The first step is to determine the needed SOC to perform peak-shaving. Since the
power consumption is stochastic, the Gaussian error distribution of the forecast
is therefore utilized to find the upper confidence interval. In forecasting, the con-
fidence interval is often referred to as the prediction interval. In this model the
base case upper prediction interval, P̂up, is set at 99.5%, meaning that 99.5% of
consumption is going to be under the prediction interval. If the prediction interval
exceeds the monthly capacity step the model will allocate energy to reduce peak
consumption. The upper prediction interval is the leading factor to deciding what
the minimum SOC should be to secure sufficient energy for peak-shaving services.
If the upper prediction interval is set to a very high level, the agent would restrict
the minimum SOC to a high level for more hours of the day to ensure peak-shaving
capabilities. Restricting the minimum SOC to a high level would also give the bat-
tery agent less freedom to perform energy arbitrage since the minimum SOC acts
as a constraint on the energy trading capabilities. In the stage 2 optimization
the model first finds the needed energy for peak-shaving for each hour, 24 hours
ahead, starting at midnight.

Ed
t = P̂up

t − ᾱm ∀t ∈ T24 (4.7)

where Ed
t is the needed energy for peak-shaving given a 99.5% upper prediction

interval. Ed
t can be negative, which will be used in Equation 4.8 to lower the min-

imum SOC before there is a need for peak-shaving.

The minimum SOC planning needs to consider the battery power rating, the total
energy capacity and the needed energy for previous and subsequent hours. The
minimum SOC planning consists of iterating backwards from the last hour to the
first and adding the power demand to the minimum SOC based on the needed
energy in the subsequent hours. The hours prior to the period of peak-shaving
could also have a minimum SOC that is higher than the base case of 20% since
the agent needs to be able to charge the battery without breaching the monthly
capacity step and be charging within the power rating of the battery system. The
concept can be observed in Figure 4.8. The minimum SOC can be calculated as
seen in Equation 4.8.
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SOCmin
t += SOCmin

t+1 +
Ed

t

pmax
∀t ∈ {24, ..., 1} (4.8)

subject to:

Ed
t <= pmax

0.2<= SOCmin
t <= 0.8

Figure 4.8: Minimum SOC allocation for peak-shaving and energy arbitrage
service optimization using consumption forecast and prediction interval.

Figure 4.8 shows the principle of determining the minimum SOC to act as a con-
straint in an optimization problem for allocating energy for peak-shaving service.
Take note that only the upper forecast interval is breaching the monthly capacity
step. If the forecast is correct in the prediction the minimum SOC would be at
0.2 the entire time in Figure 4.8. Since forecasts are stochastic and the costs of
breaching the monthly capacity step are so high, the model will allocate energy
using the upper forecasting interval rather than using the true consumption fore-
cast. The clear advantage of this strategy is that it uses the forecasting error to
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ensure peak-shaving capabilities despite deviations from the forecast. The disad-
vantage is that the minimum SOC constraint restricts the freedom of the agent
to trade energy to a larger degree, and hence reduces energy arbitrage revenue.
The upper prediction interval of 99.5% is therefore tunable and can be adjusted
to maximize revenue for a specific agent.

When performing energy arbitrage, the optimization to maximize profits becomes
more complex when there are varying SOC bounds. Figure 4.9 shows the relation-
ship between the day ahead energy prices and a 24 hour, optimal SOC plan given
SOC bounds.

Figure 4.9: SOC planning for energy arbitrage service optimization with
minimum SOC constraints.

To plan the optimal SOC 24 hours ahead, there are several variables that need to
be determined. First, the model gives a buy- and sell value to the prices on the
day ahead market. There is an assumed 5.13% base case loss on both the charge-
and discharge operation. Hence, the prices on the day ahead markets need to vary
by more than 5% from the price mean for energy arbitrage to be profitable. The
value of buying and selling energy can be calculated.

V E,in
t = pin

t · (
C E,avg

48

C loss
− C E

t )
(4.9a)

V E,out
t = pout

t · (C
loss · C E

t − C E,avg
48 ) (4.9b)

subject to:

pin
t <= pmax

pout
t <= pmax

SOCmin
t <= pout

t <= 0.8 pin
t <= pmax

(4.9c)
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where C E,avg
48 is the average price, 48 hours ahead, C E

t is the price on the day ahead
market, C loss is the loss constant of 1.05, pin

t and pout
t is the available power to

charge and discharge given SOC bounds. Equation 4.9a uses the average energy
price the next 48 hours as a reference to know the value of energy in the future
so the agent knows whether to sell, charge or be idle. The model uses the average
energy price the next 48 hours because the model assumes the user consumption
has daily consumption variations, so the agent will have possibilities to charge
and discharge at lease once during the 48 hours. The SOC planning is only 24
hours ahead (D-1) while the energy price average is 48 hours ahead (D-2). This
allows the agent to plan the energy arbitrage more precisely. If the energy prices
in D-1 are lower than the energy prices in D-2, the agent will buy more energy in
D-1 and will sell more energy in D-2. The SOC planning will likely result in the
SOC being high at the end of D-1 in anticipation of higher prices. The opposite
happens if the prices in D-2 are lower than the prices in D-1.

An LP optimization strategy is implemented to optimize buying and selling on the
day ahead energy market. The optimization problem can be described as follows:

Maximize : V E,in
1 · x buy

1 + V E,out
1 · x sel l

1 + ...+ V E,in
24 · x

buy
24 + V E,out

24 · x sel l
24

Sub ject to : SOC star t + x buy
1 − x sel l

1 ≤SOCmax

SOC star t + x buy
1 − x sel l

1 + x buy
2 − x sel l

2 ≤SOCmax

...

SOC star t + x buy
1 − x sel l

1 + ...+ x buy
24 − x sel l

24 ≤SOCmax

SOC star t + x sel l
1 − x buy

1 ≤SOCmin
1

SOC star t + x sel l
1 − x buy

1 + x sel l
1 − x buy

1 ≤SOCmin
2

...

SOC star t + x sel l
1 − x buy

1 + ...+ x sel l
24 − x buy

24 ≤SOCmin
24

x buy
1 ≥ 0, x sel l

1 ≥ 0, ... , x buy
24 ≥ 0, x sel l

24 ≥ 0

where x buy
t and x sel l

t are the buy and sell volumes. Since the value of buying
energy, V E,in

t , is directly contrary to the value of selling energy, V E,out
t , and the LP

will therefore not buy and sell at the same hour. Solving the LP problem results
in a 24 hour ahead plan of the SOC to optimally buy and sell energy.

4.8.3 Stage 3 optimization: Agent job rescheduling and trading

The stage 3 optimization circumvents the restrictive rules on the reserve mar-
kets by trading peak-shaving and reserve market services between the agents on
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a self-developed local market. The trading on the local market is performed every
hour. The agents therefore have an opportunity to adjust their consumption fore-
cast and re-evaluate the value of the services. The main function of the stage 3
optimization is to increase agent profits by increasing flexibility and cooperation
between the distributed agents. For the agents to trade services, there needs to be
a change in circumstances that changes the value of the service being provided
by the agents. For every hour ahead, the optimization needs to evaluate a new
value of the peak-shaving service. The new value of the peak-shaving service is
determined by evaluating the deviation between the actual consumption and the
forecasted consumption for previous hours. This is used to update the forecast to
increase accuracy. The model uses autoregression on the residual errors to correct
the predictions.

Figure 4.10: 1 hour forecast improvement using Autoregression for local
market service trading.

Figure 4.10 describes the workflow and the process of updating the consumption
forecast every hour and perform market service trading between the agents. The
"if hour = 00" indicates that the time has reached 12AM and therefore enters a
new day with the need for a new 24 hour Prophet forecast. The "if minute = 00"
indicates the start of a new hour and therefore the need for a 1 hour autoregression
forecast. The autoregression is calculated using the process described in Equation
4.10.

ϵt =
Pt − P̂t

Pt
(4.10a)

ϵt+1 = b0 · ϵt + b1 · ϵt−1 + ...+ bn · ϵt−n (4.10b)

P̂auto
t+1 = ϵt+1 · P̂

Proph
t+1 (4.10c)

where ϵ is the residual error and P̂ is the forecasted consumption. In principle,
autoregression analyses the error between historical predicted and actual con-
sumption values to provide an improved forecast based on weighted error coeffi-
cients. Using the ’statsmodels’ Python library for autoregression, the coefficients,
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bn, are calculated. Since the consumption the last hour is the most accurate in-
dicator of future consumption, b0 is the highest weighted coefficient. The hourly
ahead forecast increases the forecasting accuracy significantly since forecasting
one hour ahead is more predictable than forecasting 24 hours ahead.

Every agent uses their updated, 1 hour forecast, P̂auto
t+1 , to calculate the new value

of the possible services they can provide. The value of the peak-shaving service
has not changed since the reserve market prices for the hour and the agent battery
power rating is constant. As mentioned in 4.8.1, every agent that is participating
in the reserve market at a certain hour is participating in the same market. This
is useful in the market clearing process where there will be only supply and de-
mand. In this model, energy arbitrage services happens independently and is in
this thesis not tradable between agents. The agents battery system is assumed
to always be able to provide the energy that is bid on the day-ahead market as
planned in the stage 2 optimization. The agents that are trading in the local mar-
ket will therefore only be trading the peak-shaving and reserve market service
obligations. The trading of the services happens using a traditional supply and
demand curve, where the intersection between the curves decides the clearing
price and the traded volume. Figure 4.11 shows an example of a market clearing
event.

Figure 4.11: Supply and demand market clearing process.

The ask price and offer price in Figure 4.11 are the demand and supply bids,
respectively. Figure 4.11 shows a common strategy in energy markets for determ-
ining the market clearing price based on a free market where there are market
participants supplying a service and there are market participants demanding a
service. The model will be using the "price as clear" methodology, which allows
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agents to enter their marginal cost bids and reduces the need for tactical bidding
from the agents. Using the principles presented in Figure 4.11, the model imple-
ments a trading strategy between the agents using a supply and demand structure.
The service being supplied and demanded is as follows:

• Demand - Due to an increase in power consumption compared to the fore-
cast, an agent that is providing reserve market services the next hour is ask-
ing (demanding) other agents to relieve them of their obligations to the TSO
by providing power reserves. The agent is willing to pay a certain amount
for another agent to relieve them of their obligations, so they themselves
can provide peak-shaving services.
• Supply - An agent that is providing peak-shaving services the next hour can

supply other agents with the service of relieving their obligations to the TSO
by providing power reserves.

The agents that supply create a bid regardless if the updated forecast is higher or
lower than the original forecast. For a large enough compensation, the agents are
willing to perform trades. The bids on the local market are calculated by updating
the peak-shaving values, V shave,new

t , of every agent using Equation 4.6b and using
the value of reserve market participation.

V res
t = max(V F FR

t , V FCR−D1
t , V FCR−D1

t ) (4.11a)

Sa
t =

(

0 if SOCt = SOCmin
t

2·V shave,new
t −V res

t
Pmax

otherwise
(4.11b)

Da
t =

V shave,new
t

Pmax
(4.11c)

where Sa
t and Da

t is the supply and demand bids, respectively. The supply bid is set
to 0 when the SOC is at the minimum bound, because the battery system is incap-
able of peak-shaving when the SOC is at minimum charge. The market clearing
price is set at the intersection between the supply and demand curve. This max-
imizes social welfare which is desired in free markets. If the supply and demand
curves do not intersect, there will be no market clearing price and therefore no
trades will be executed.

4.9 Simulation interface

To verify the results, a Graphical User Interface (GUI) has been implemented in
the model to visualize the simulations. The GUI is used as a visual tool to analyse
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the model output data and verify the feasibility of the results. The interface shows
four subplots that provide useful information on the results in the optimization
process. A GIF showing the first 72 hours of the base case simulation animation
can be found using this hyperlink: Click here

Or follow this link:
https://studntnu-my.sharepoint.com/:f:/g/personal/abrahaps_ntnu_no/
EiOJs1ZjhrxMrtKvj60oTaABSMfPzg2tFYEZTdRe30fn4Q?e=nvq7J1

Figure 4.12 shows a screenshot of the simulation. To get a larger figure of the GUI
follow the same link as above.
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Figure 4.12: Simulation GUI for commercial building 1.

The vertical, dotted red line indicates the time now.

4.9.1 Subplot 1: Market prices

The first subplot shows the market prices of the day ahead market, FCR D-1, FCR
D-2 and FFR markets. The day ahead prices are given in EUR/MWh and the other
markets are given in EUR/MW. As mentioned, this thesis assumes that the market
prices are known. The dotted lines show the prices that are not yet cleared. This
can be observed by looking at the FCR D-2 market that gets cleared a day before
the other markets.

4.9.2 Subplot 2: Job schedule and power consumption forecast

The second subplot shows the job scheduling, the recorded consumption and the
forecasted consumption of the specific battery owner. The recorded consumption

https://studntnu-my.sharepoint.com/:f:/g/personal/abrahaps_ntnu_no/EiOJs1ZjhrxMrtKvj60oTaABSMfPzg2tFYEZTdRe30fn4Q?e=nvq7J1
https://studntnu-my.sharepoint.com/:f:/g/personal/abrahaps_ntnu_no/EiOJs1ZjhrxMrtKvj60oTaABSMfPzg2tFYEZTdRe30fn4Q?e=nvq7J1
https://studntnu-my.sharepoint.com/:f:/g/personal/abrahaps_ntnu_no/EiOJs1ZjhrxMrtKvj60oTaABSMfPzg2tFYEZTdRe30fn4Q?e=nvq7J1
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is in a solid, blue line. The time slots are shaded in different colors representing
the service that is being provided.

• Red - Peak-shaving service allocation.
• Purple - FFR service allocation.
• Orange - FCR D-1 service allocation.
• Green - FCR D-2 service allocation.

Notice how the agent wants to perform peak-shaving services when the consump-
tion forecast is high and wants to perform reserve market participation at hours
where the consumption is expected to be low. The job scheduling in subplot 2 in
Figure 4.12 shows that two days ahead only two hours are allocated to the FCR
D-2 market. This is because the agent expects other services to have more value
that day, so only the D-2 service needs to be allocated at that time if it is expected
to be the most profitable. There is a red dot that is after the time now line. This
dot indicates the updated, one hour forecast described in Section 4.8.3.

4.9.3 Subplot 3: SOC planning

The third subplot shows the planned SOC with the minimum SOC of the specific
battery system. This subplot shows when the battery system has allocated energy
to peak-shaving by increasing the minimum SOC bound. In Figure 4.12, through
the optimization process, the agent has kept the SOC high to adhere to the min-
imum SOC bound. After the minimum SOC bound is reduced again, the agent
decides to sell energy when the price is high and buy energy before the end of the
day because the energy price is below the average energy price.

4.9.4 Subplot 4: Local market trading

The fourth subplot shows the trade of services between agents. As described in
Section 4.8.3, the services are represented in a supply and demand curve. The
clearing price and clearing volume is shown by a dotted green line and is at the
intersection between the supply and demand curves. All the agents on the left side
of the vertical green line has traded services with each other.

4.10 Simulation scenarios

The simulations are run for an entire year to determine the revenue stream from
the different services. The market data from 2019 is used for the simulations, since
there is more consumption data from 2019. The simulations will therefore become
more complete and reliable. There are also only one year simulations because of
the computational time the simulations require.
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4.10.1 Base case

The base case scenario uses only the consumption data from commercial buildings
1 and 2, and the aggregated areas. Otherwise, the scenario runs a simulation using
the model described in the thesis.

4.10.2 Scenario 1: Additional large consumers

In scenario 1, there are an additional four consumers that are added to the con-
sumer data set. These users have a much larger consumption as can be observed in
Table 4.1. Especially the factory has an average power consumption of 3667 kW,
which is around 100 times larger than the consumption of the average base case
users. This scenario will analyse how the model is utilized by larger consumers.
The results will indicate how the model wishes to utilize the battery system when
it is connected to a larger consumer.

4.10.3 Scenario 2: C-rating change

In scenario 2, the C-rating is changed from 0.5 to 1. This essentially means that if a
battery system in the base case had a rating of 10kWh/5kW, it now has a rating of
10kWh/10kWh. Realistically, increasing the power rating would require improved
power electronics in the battery system. This would realistically cost more, but a
C-rating of 1 is common for battery systems. The aim with this scenario is to
analyse the how much the revenue increases when the power rating increases.

4.10.4 Scenario 3: FFR removed

In scenario 3, the FFR market is removed. As explained in Section 3.4.2, the FFR
market is based on a market test. The market is not active at the time of writing
this thesis. Therefore, realistically, a battery system cannot bid on the market at
this time. Removing the FFR market gives an indication on how the battery system
would perform in a the current market conditions. Note that the monthly utility
power tariff is not implemented as the time of writing this thesis, but the DSOs in
Norway are looking to implement the tariff within year 2022. The power tariff is
therefore still active in this scenario.

4.10.5 Scenario 4: 2021 energy prices

In scenario 4, the energy prices on the day ahead market for 2021 will be used
in the simulation. The reason this analysis is interesting is that the energy prices
towards the end of 2021 rose significantly due to the price increase of natural
gas and crude oil. The winter in Norway was also very dry, causing the water
reservoirs to deplete, further increasing the energy prices. The energy arbitrage
service revenue is directly effected by the fluctuations in price. When there are
large differences between the lowest and highest energy prices during the day,
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the battery system can exploit this to earn a profit. Many analysts expect energy
prices to remain high in the future. This scenario will therefore analyse the model
performance if this is the case.



Chapter 5

Results

In this chapter the results from the model is presented. Section 5.1 presents results
of the Prophet forecasting accuracy in the model. Section 5.3 presents the results
for the different scenarios. To give a structured representation of the results, the
results for the scenarios are presented in the same format.

5.1 Prophet consumption forecasting

The Mean Average Percentage Error (MAPE), Mean Average Error and Mean Square
Erro (MSE) is calculated for 10 different consumers to give insight into the per-
formance of the Prophet forecasting algorithm. The results of the error calcula-
tions for the 48 hour forecasts are presented in Table 5.1.

Consumer MAPE MAE MSE
Commercial building 1 0.0868 3.28 20.5
Commercial building 2 0.258 5.79 56.6
Aggregated area 3 0.109 3.63 21.1
Aggregated area 7 0.0878 7.17 82.5
Aggregated area 23 0.0805 3.67 22.3
Aggregated area 41 0.0891 4.45 32.0
Factory 0.0466 178 51400
Condominium 0.0848 9.91 164
Store 1 0.166 37.9 2480
Store 2 0.317 57.5 5510

Table 5.1: MAPE, MAE and MSE of 10 consumers using the Prophet algorithm.

There is a relatively large discrepancy in forecasting performance between the
consumers. Forecasting for commercial building 1 has a substantially better MAPE,
MAE and MSE of 0.0868 compared to commercial building 2 with 0.258. The ag-
gregated areas have a fairly consistent MAPE between 0.08 to 0.11. The factory
has a very low MAPE, but has a very high MAE and MSE, which is expected when

47
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the average consumption of the factory is high. Store 1 and store 2 have a high
MAPE, MAE and MSE. Given the error calculations presented in Table 5.1, the er-
ror deviation can be plotted for consumers with accurate and inaccurate consump-
tion forecasts. Figure 5.1 shows the forecast deviation for commercial building 1
and Figure 5.2 shows the forecast deviation for commercial building 2.
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Figure 5.1: Forecast deviation from actual values, Commercial building 1.
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Figure 5.2: Forecast deviation from actual values, Commercial building 2.

As can be seen in Figure 5.1 and 5.2, the Prophet forecasting algorithm has much
larger success with commercial building 1 than commercial building 2. The reason
behind this is discussed in Section 6.1.1. The peaks of the error deviation is not
perfectly centered at 0%, which could indicate that the forecast is either over-
damped or underdamped, and that the forecast has difficulties forecasting local
peaks.
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5.2 Optimization

5.2.1 Peak-shaving optimization

When the monthly capacity step is to be determined, the probability of the con-
sumption being under a capacity step is calculated. This calculation is performed
for every hour the following month, but a 10 hour example for commercial build-
ing 2 is shown in Table 5.2.

Time[h] Power[kW] 5kW 10kW 15kW 20kW 25kW 50kW 75kW
14:00:00 18.2 0.0 1.5 22.3 63.6 88.8 99.0 99.5
15:00:00 17.1 0.0 2.7 29.7 73.6 92.2 99.1 99.6
16:00:00 14.1 0.0 9.4 58.7 91.1 96.4 99.3 99.7
17:00:00 10.6 0.0 39.5 90.4 96.9 98.5 99.6 99.9
18:00:00 8.7 2.2 70.1 95.7 98.2 99.1 99.7 99.9
19:00:00 9.2 1.2 61.9 94.5 98.0 99.0 99.7 99.9
20:00:00 11.2 0.0 32.4 87.2 96.4 98.1 99.6 99.8
21:00:00 13.2 0.0 14.0 68.7 93.1 96.9 99.4 99.7
22:00:00 14.6 0.0 7.4 54.0 88.8 95.7 99.2 99.7
23:00:00 16.0 0.0 4.3 38.4 81.4 93.7 99.2 99.6

Table 5.2: Probability [%] of consumption being under each capacity step for
10 time steps, commercial building 2.

Commercial building 2 has an inaccurate forecast, which reflects in the calcu-
lations for the capacity step calculations. Table 5.2 shows that even though the
consumption forecast is between 8.7 to 18.2, the forecast for commercial building
is never 100% certain that the consumption will be under 75kW.

As described in Section 4.8.1, the monthly capacity step for an agent is decided
using the compounded probabilities of breaching the capacity step for the month.
This is done by multiplying all hourly probabilities for the month. In other words;
multiplying all the hourly column values in Table 5.2 yields the probability of being
under the capacity step for the month. Table 5.3 shows the monthly probabilities
of being below all the monthly capacity steps for commercial building 1 and 2.
The monthly capacity step is decided by the first capacity step that has higher than
10−50% probability. This probability is confirmed by tests and simulations.

An example of the determined reserve market bid as a result of Equation 4.6b is
presented in Table 5.4 and 5.5. The value of the peak-shaving service increases
linearly with the probability of breaching the monthly capacity step.
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Capacity step[kW] Com. building 1 [%] Com. building 2 [%]
5 0.00 0.00
10 0.00 0.00
15 0.00 0.00
20 0.00 0.00
25 0.00 0.00
50 2.12 ∗ 10−9 1.27 ∗ 10−6

75 93.25 5.28
100 100 26.98
150 100 56.96
200 100 72.38

Table 5.3: Total probability [%] of consumption being under each capacity step
for an entire month, commercial building 1 and 2.

Time Cons. forecast[kW] Cap. level prob. [%] Peak-shaving value [EUR]
07:00 19.96 100.00 0.000
08:00 23.04 100.00 0.000
09:00 28.88 100.00 0.000
10:00 36.12 98.84 1.217
11:00 42.59 92.10 8.285
12:00 46.50 78.46 22.59
13:00 47.29 73.54 27.75
14:00 45.70 83.51 17.29
15:00 43.09 91.13 9.298
16:00 40.58 95.52 4.693

Table 5.4: Reserve market bid compared to consumption forecast and under
50kW capacity level probability for 10 hours, commercial building 1.

Time Cons. forecast[kW] Cap. level prob. [%] Peak-shaving value[EUR]
07:00 20.06 98.69 1.366
08:00 23.83 97.73 2.375
09:00 25.81 97.11 3.029
10:00 25.61 97.28 2.850
11:00 24.41 97.56 2.553
12:00 23.71 97.90 2.197
13:00 23.81 97.73 2.375
14:00 23.49 97.90 2.197
15:00 21.21 98.49 1.573
16:00 16.75 99.12 0.9206

Table 5.5: Reserve market bid compared to consumption forecast and under
50kW capacity level probability for 10 hours, commercial building 2.
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The importance of forecasting accuracy becomes apparent when observing table
5.4 and 5.5. From table 5.1 it is concluded that commercial building 1 has a higher
consumption forecasting accuracy than commercial building 2. Commercial build-
ing 1 has several 0 EUR bids. This is due to the forecasted consumption being less
than 30kW, which is 40% less than the relevant capacity step of 50kW. The fore-
cast has never historically deviated more than 40% from the actual consumption
values, and the model is therefore confident the consumption will not deviate
more in the future. The risks associated with reserve market participation rather
than peak-shaving services are concluded to be negligible and the marginal cost
will therefore be 0 EUR, resulting in a 0 EUR peak-shaving value. The closing
price at the TSO will in many cases be higher than the bid provided by the central
controller, providing a margin of safety for the agents.

5.2.2 Cost of flexibility

Lede AS, which is a DSO, has specifically requested an analysis of what the cost of
flexibility is at certain times. The reason is that in a free market environment, it
would be useful to know how much flexibility would cost for the DSO if they were
to establish their own market or if they were to rent services from a flexibility pro-
vider. In the model developed, the agents of the battery systems assigned a value
to the service provided for each hour. Plotting the service values from cheapest to
most expensive for 10 days provides Figure 5.3.
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Figure 5.3: Flexibility cost from cheapest to most expensive.

Figure 5.3 shows that with a total of 1616 kW available power, there is a large
disparity between the most expensive agents and the cheapest. The value of the
services that the battery system provides are most expensive during the day due
to the need for peak-shaving services. An interesting observation is that around
40% of the power capacity is always available at a comparably cheap price, likely
because it was the reserve market prices that had the highest value for the agent.
Therefore, outbidding the reserve markets could secure a relatively high amount
of capacity if a DSO were to compete for the battery services.

5.3 Scenario presentation description

The following pages will show the results from the simulations performed on the
base case model and the scenarios explained in Section 4.10. The results from the
simulations are presented the exact same way for all the scenarios. This is to easily
observe how the model reacts to the changing parameters. The results pages are
split into two figures, two tables and six individual information boxes. It is advised
to take a look at the base case results page before reading the description below.

The top left figure shows the amount of time the average battery system spent
performing each service. The different colors represent the different services.
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• Red - Peak-shaving
• Purple - FFR
• Green - FCR D-2
• Orange - FCR D-1

Since the figure only shows the average service allocation of the battery system,
it can give a misleading impression of what all the agents do. The outer rings in
the figure show the maximum percentage job allocation for the agents. In other
words, if the closest, red outer ring is shaded 90% red, it means that at least one
agent spent 90% of the time providing the peak-shaving service. The figure gives
an indication of how much variation there is in service allocation amongst agents.
The energy arbitrage service is not shown in the figure because the energy arbit-
rage service is being provided at the same time as other services.

The top right figure shows which services the revenue comes from. The energy
arbitrage revenue is shown in blue. This figure shows which services are creating
the largest value for the average battery owner. This figure can closely resemble
the top left figure, but this is not always the case.

The two tables presented give useful output information from the model. The
table to the left presents the same information shown in the figures. It is easier to
observe small changes in the results when comparing the scenarios. The table to
the right show the total energy rating when combining the energy rating of all the
battery systems in the model. The total power rating for all the battery systems is
also presented. The C-ratio in the base case is 0.5, meaning that the total power
rating is half the total energy rating. The monthly revenue that is presented in the
right table presents the total revenue the model earned using the battery systems.
The right table also presents the revenue per kWh per month and the revenue per
kW per month. This is an important metric when analysing investment opportunit-
ies. The different scenarios will indicate when the model becomes more profitable.

The six boxes on the result pages also presents useful information on the per-
formance of the model. The "peak-shave success" box shows the percentage of
agents that managed to reduce the monthly utility power tariff within the month.
With the energy and power rating of the battery system being only 25%/12.5% of
the maximum power consumption, it is not always possible to reduce the monthly
utility power tariff, so a 100% peak-shaving success rate is unrealistic. The "Tot.
energy traded" box shows the total amount of energy traded during an average
month. This is both bought and sold energy that is in this statistic, so it is the
total energy that has been cycled through the battery systems. The "Avg. price
of flex" is what the average value of the service being provided is per hour. This
also includes the value of the peak-shaving service, which does not have a direct
monetary value at the point of service. The "Traded hours" shows the percentage
of time an average battery system traded an hourly service to another service. In
other words; it is the percentage of time that a service was booked for an hour,
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but the average battery system resulted in trading for another service on the local
market in the central controller. The "Rev. inc. from trading" box shows how much
the total revenue increased due to trading services on the local market. The "Trad-
ing val." box shows the total value traded on the local market, where the value is
decided by the agents. Note that the agents are allocating a value to the service
they are trading on the local market. This value is not a monetary gain in the
form of increased revenue, but this value gives some insight into the intensity and
volatility of the trading on this market.
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5.4 Base case

The complete description of the results presented are found in Section 5.3.

(a) Service allocation with max. agent
service proportion.

Peak-shaving revenue
FFR revenue
FCR D-2 revenue
FCR D-1 revenue
Energy arb. revenue

(b) Service revenue.

Service Jobs [%] Rev. [%]
Peak-shaving 9.0 5.2
FFR 28.9 40.0
FCR D-2 59.9 52.4
FCR D-1 2.1 0.6
Energy arb. 1.8

Metric Values
Total energy rating 1514kWh
Total power rating 757kW
Monthly revenue 13263=C
Rev./energy 8.76=C/kWh
Rev./power 17.5=C/kW

Peak-shave success

10.0%

Tot. energy traded

62.0MWh

Avg. price of flex

0.65=C/h

Traded hours

19.8%

Rev. inc. from trading

0.26%

Trading val.

2256=C
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5.5 Scenario 1: Additional large consumers

The complete description of the results presented are found in Section 5.3.

(a) Service allocation with max. agent
service proportion.

Peak-shaving revenue
FFR revenue
FCR D-2 revenue
FCR D-1 revenue
Energy arb. revenue

(b) Service revenue.

Service Jobs [%] Rev. [%]
Peak-shaving 10.0 3.4
FFR 30.0 45.5
FCR D-2 57.4 48.6
FCR D-1 2.6 0.8
Energy arb. 1.7

Metric Values
Total energy rating 3232kWh
Total power rating 1616kW
Monthly revenue 25458=C
Rev./energy 7.86=C/kWh
Rev./power 15.8=C/kW

Peak-shave success

9.27%

Tot. energy traded

153.8MWh

Avg. price of flex

1.04=C/h

Traded hours

24.0%

Rev. inc. from trading

0.15%

Trading val.

2264=C
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5.6 Scenario 2: C-rating change

The complete description of the results presented are found in Section 5.3.

(a) Service allocation with max. agent
service proportion.

Peak-shaving revenue
FFR revenue
FCR D-2 revenue
FCR D-1 revenue
Energy arb. revenue

(b) Service revenue.

Service Jobs [%] Rev. [%]
Peak-shaving 7.8 2.2
FFR 29.0 41.4
FCR D-2 61.1 54.9
FCR D-1 1.9 0.6
Energy arb. 0.9

Metric Values
Total energy rating 1514kWh
Total power rating 1514kW
Monthly revenue 25801=C
Rev./energy 17.0=C/kWh
Rev./power 17.0=C/kW

Peak-shave success

8.00%

Tot. energy traded

61.6MWh

Avg. price of flex

1.03=C/h

Traded hours

19.2%

Rev. inc. from trading

0.10%

Trading val.

3011=C
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5.7 Scenario 3: FFR removed

The complete description of the results presented are found in Section 5.3.

(a) Service allocation with max. agent
service proportion.

Peak-shaving revenue
FFR revenue
FCR D-2 revenue
FCR D-1 revenue
Energy arb. revenue

(b) Service revenue.

Service Jobs [%] Rev. [%]
Peak-shaving 10.3 7.1
FFR 0 0
FCR D-2 8.6 8.9
FCR D-1 3.4 1.7
Energy arb. 1.9

Metric Values
Total energy rating 1514kWh
Total power rating 757kW
Monthly revenue 9816=C
Rev./energy 6.48=C/kWh
Rev./power 13.0=C/kW

Peak-shave success

10.00%

Tot. energy traded

60.2MWh

Avg. price of flex

0.84=C/h

Traded hours

20.9%

Rev. inc. from trading

0.19%

Trading val.

2260=C
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5.8 Scenario 4: 2021 energy prices

The complete description of the results presented are found in Section 5.3.

(a) Service allocation with max. agent
service proportion.

Peak-shaving revenue
FFR revenue
FCR D-2 revenue
FCR D-1 revenue
Energy arb. revenue

(b) Service revenue.

Service Jobs [%] Rev. [%]
Peak-shaving 8.9 5.0
FFR 28.7 32.9
FCR D-2 60.5 45.6
FCR D-1 1.9 0.5
Energy arb. 15.9

Metric Values
Total energy rating 1514kWh
Total power rating 757kW
Monthly revenue 17143=C
Rev./energy 11.3=C/kWh
Rev./power 22.6=C/kW

Peak-shave success

10.00%

Tot. energy traded

41.9MWh

Avg. price of flex

0.89=C/h

Traded hours

19.1%

Rev. inc. from trading

0.18%

Trading val.

2141=C
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Discussion

The discussion chapter in this thesis gives insight into the results presented in
Chapter 5. The discussion chapter will give explanations as to why the scen-
arios changed the base case results. This chapter also discusses possible improve-
ments to the model developed and discusses possible real-world application of the
model. This chapter also discusses the market conditions in Norway and if battery
systems are suitable for grid implementations.

6.1 Results discussion

6.1.1 Prophet forecasting

The Prophet forecasting algorithm is a useful plug-and-play tool for implementa-
tion in this model. The algorithm is designed to detect seasonal, monthly, weekly
and daily trends. This is ideal for many power consumers in the grid. The al-
gorithm is easy to tune if there are consumers with different characteristics. The
algorithm is unfortunately not designed to quickly adapt to the power consump-
tion characteristics of consumers with volatile changes in their power consump-
tion pattern. The Prophet forecasting method is therefore not suited for consumers
with irregular consumption patterns.

The differentiating forecasting performance is observed in Table 5.1. The forecast-
ing accuracy is wildly different between commercial building 1 and commercial
building 2. Commercial building 1 has extremely predictable consumption, while
commercial building 2 has sporadic periods where the building is inactive without
any clear reason or trend. The Prophet forecasting algorithm does allow for the
creation of trend rules. For example; the building is closed every third Tuesday.
This is a rule that the Prophet forecasting algorithm would not detect, but can
be told to implement. For this thesis the customization of the forecasting towards
individual consumers has not been a priority, but it could be done to increase ac-
curacy of the forecasting.
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Another issue with the Prophet forecasting algorithm is that the forecasting com-
putational time increases exponentially with the input data size. The Prophet
forecasting algorithm spent around 0.3 seconds with one month historical con-
sumption data for one consumer, which is decent. When the Prophet forecasting
method received 10 months with historical consumption, the computational time
was around 10 seconds, which is substantially higher. The simulations was there-
fore extremely time consuming when there are 50 agents and they each have to
update the forecasts every 24 hours. Other traditional regression based forecast-
ing methods might have worse forecasting results, but could create forecasts much
faster.

6.1.2 Base case

When running simulations on the base case, the battery priorities become appar-
ent. The battery system spends the overwhelming amount of time performing re-
serve market services. Specifically, performing FFR- and FCR D-2 services is done
88.9% of the time. The peak-shaving service is performed around 9.0% of the time
and FCR D-1 around 2.1% of the time. A good indication that the optimization
model is working well is that the job scheduling closely reflects the revenue it pro-
duces. On average, the battery systems allocate 9% of the time to peak-shaving,
which makes up 5.2% of the revenue. It is to be expected that there is a slight
deviation between the percentage service scheduling and the total revenue the
services makes since some of the services only produce a high value at certain
hours. This is the reason that the FFR market creates the highest value compared
to the time the battery system is active in the FFR market. The FFR market has a
high price for only a few hours.

The outer lines on the job scheduling show that there are some agents that spend
around 85% of the time peak-shaving. This is a direct result of the design be-
hind the optimization. The agents that predominantly decided to peak-shave had
a large forecasting error and could therefore never be sure if the consumption was
going to exceed the monthly capacity step. This shows the importance of having an
accurate consumption forecast, since if there is an inaccurate forecast the optim-
ization problem will fear a breach of the monthly capacity step and will allocate
more time to peak-shaving services. There are also agents that only perform re-
serve market services. This is because the power consumption of that agent is far
away from breaching the monthly capacity step at all times.

The revenue per kW and kWh give an indication of the profitability of the model.
Since there have been made many assumptions as to the performance of the bat-
tery system and to what the power market allows of operations, it is difficult to say
anything definitive about the profitability of the model. With the current assump-
tions implemented the average battery system makes 8.67=C/kWh per month and
17.5=C/kW per month. To have something to compare to; At the time of writing
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article [45] the Tesla Megapack in Australia generated 17 million US dollars in the
first 6 months of operations with a energy rating of 129MWh/100MW resulting
in a monthly revenue of 22.0=C/kWh and 28.3=C/kW. The revenue in this model is
lower than that of the Tesla Megapack, but as the flexibility markets in Australia
have much larger prices, this is expected. Battery systems are rarely utilized, so
comparing the results with implemented models is difficult.

The peak-shaving success rate is at 10%, which means that the battery system
managed to reduce the monthly capacity step at 10% of the agents for the simu-
lated months. While this sounds low there are several reasons why it is difficult
to increase this rate much higher.

• The maximum power rating is not sufficiently high to reduce large spikes to
a lower capacity level.
• The energy rating is not sufficiently high enough to peak-shave if the peak

consumption level lasts for several hours. The energy in the battery system
will be depleted.
• There is a large span between the capacity steps when the consumption

becomes high. For example: The next capacity step after 50kW is 75kW. If
the power consumption of the agent fluctuates between 50kW and 70kW,
there is nothing the battery system can do to reduce the monthly capacity
step.
• There is a sudden, unexpected increase in power consumption that breaches

the monthly capacity step.
• The SOC at the time of peak-shaving is not high enough to successfully

peak-shave.

Of all the bullets listed above, only the last one is the fault of the model imple-
mented, since it is the models responsibility to plan for sufficient SOC at peak
consumption hours. The other factors are the result of a battery system that is to
small to sufficiently peak-shave. Note that in the simulations, peak-shaving has
been neglected for many of the agents because reserve market participation is
more profitable. Having a high peak-shaving success rate is therefore not a direct
metric of the models performance, but is instead a reflection on the agents prior-
ities.

There was an average of 62MWh traded for each month. To put that into per-
spective; the average battery system fully charged and discharged 20.7 times a
month meaning that the batteries managed to successfully perform exploit the
energy price swings and perform energy arbitrage. The prices on the day ahead
market have been historically low and not volatile. The year of 2019, which this
simulation ran on, is not exception. In scenario 4 the day ahead prices for the
end of 2021 were used. These prices are higher and more volatile. In the base
case, energy arbitrage collected 1.8% of the total revenue. This is not significant.
As stated in Section 3.1.2, energy cycling through the battery is a factor in bat-
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tery degradation. This has been excluded from optimization calculations, but in a
real-world application, this would have to be a factor when the energy arbitrage
revenue only makes up 1.8% of the total revenue.

The average price of flexibility was at 0.65=C/h meaning that the maximum value
of the services was on average 0.65=C for the hour. The larger battery systems have
a much higher average price for flexibility since they receive more compensation
if they provide reserve market services.

From simulations it is observed that larger battery systems were more active with
reserve market participation than the smaller battery systems. The reason for this
is that the larger battery systems get a larger payout from the TSO when providing
more reserve capacity on the markets compared to the smaller battery systems.
The larger consumers also have larger span between the capacity steps in the DSO
utility power tariff, resulting in the battery system not being able to peak-shave
and therefore choosing reserve market services instead.

6.1.3 Scenario 1: Additional large consumers

The main finding in the results for this scenario is that the battery systems for
the very large consumers spent all the time performing reserve market services.
Their power consumption was so high that there were no capacity steps they could
peak-shave under. By looking at the results page it is clear the more of the revenue
came from the reserve markets. A very interesting observation is that even though
the revenue increased dramatically in total, the revenue per kWh and kW is lower
than the base case. This indicates that the smaller systems have better profitability
when they are able to peak-shave, which also proves that providing multiple grid
services increases profitability compared to single-service applications.

6.1.4 Scenario 2: C-rating change

When increasing the C-rating from 0.5 to 1.0, effectively doubling the power rat-
ing, the agents get more revenue from the reserve markets. Doubling the power
rating doubles the power reserves that the battery system can provide to the re-
serve markets. As a result, the battery systems increased the reserve market par-
ticipation and also increased revenue as a result. In general, the energy storage
capacity is the main factor in battery costs. When the revenue almost doubles
from the base case, a battery system developer should increase the power rating
as much as possible as long as costs do not drastically increase.

Another interesting metric to evaluate is that the peak-shaving success rate went
from 10% in the base case to 8% in this scenario. This shows that increasing
the power rate did not increase the probability of peak-shaving successfully. The
reason the peak-shaving success rate went down is probably because the possible
available value that could be obtained on the reserve market was more attractive
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than the peak-shaving service. The trading on the local market also did not help
specific agents in peak-shaving when needing to. This caused the capacity step for
some agents to be broken.

6.1.5 Scenario 3: FFR removed

When deactivating the FFR market, the revenue reduced. This is to be expected
since the FFR market is highly priced. The participation in all other services in-
creased, but in most cases the agents decided to participate in the FCR D-2 market
instead. The results in this scenario is closer to resembling the expected revenue
for distributed batteries performing peak-shaving, reserve market participation
and energy arbitrage.

6.1.6 Scenario 4: 2021 energy prices

When using the energy prices from 2021 the energy arbitrage revenue increased
substantially from 1.8% to 15.9% of the total revenue. This service has now be-
come a major contributor to the total revenue. This could indicate that if the en-
ergy prices remain at exceeded levels, the energy arbitrage service could have a
significant role in increasing profitability of battery systems in the power grid. An
interesting metric to observe is the total energy traded. The total traded reduced
from 62.0MWh to 41.9MWh. This is due to how the optimization model was de-
signed and to the characteristics of the energy prices. If the energy prices two days
ahead are much higher than the prices one day ahead the agents will charge dur-
ing the first day and sell the second day. This is often the case for the energy prices
in 2021. In 2019 the energy prices varied during the day and the agents would
therefor charge and sell the same day. This increases the total volume of energy
traded. The price differences in 2021 were substantially higher than in 2019, so
even with a lower volume traded, the revenues were substantially higher.

6.2 Model performance

The implemented model provides good results, but it is difficult to evaluate the
performance since a fully optimal solution is too computational heavy to solve.
The design choices is critically analyzed in this section.

6.2.1 Optimization

The optimization process was designed to be computationally efficient. The model
achieved this very well. The run-time of the computational process was less than 1
microsecond for every agent, making the simulations run smoothly. The optimiz-
ation process managed to present good results and performed as expected. There
are two main design flaws in the optimization process.
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Firstly, the method of determining the monthly capacity step for each agent is
statistically inaccurate. The model used the compounding statistical probability
of the power consumption being under a capacity step, assuming that the power
consumption for each hour are independent events. While this method yielded de-
cent results through testing, it is not a scientific approach. The power consumption
for each hour are not independent events, and therefore the probability outputs
does not give a realistic probability of what the needed capacity step should be.
There are other approaches that could be utilized to yield a more accurate capa-
city step. For example: The model could look at the historical maximum monthly
power consumption to provide an indication of future capacity steps. This can be
done through calculating a moving average of past consumption or by analyzing
the capacity steps of previous years, if the data exists. This would be a good ap-
proach for aggregated areas or businesses with continuous operation, but would
not work well for businesses with sporadic and inconsistent power consumption.
Again, a tool for personalized analysis could result in more accurate outcomes.

Secondly, the optimization relies too much on the forecasting error to determ-
ine the value of services. Battery systems with bad forecasting are more likely to
spend more time on the peak-shaving service, which reduces profitability if there
is actually no need for the peak-shaving service. A way to increase profitability is
to let the agents with bad forecasting perform more reserve market services and
instead use the local market for trading with other agents if the forecast deviates
far from the expected power consumption.

The battery system and model has not been closely tuned to match the character-
istics of the consumer. Aggregated areas have different consumption profile than
commercial buildings. The aggregated area could need a higher energy capacity
rather than a high power output. In other words; a high C-rating is not as import-
ant for aggregated areas than it is for commercial buildings with intensive power
outputs. Personalizing the battery system to be optimally integrated with a power
consumer will likely increase profitability.

There are some optimization design choices that are valuable contributions to the
model. The choice of attributing a value to each service for each hour for each
agent is a viable strategy for an easily scalable system. If every service a battery
system can provide is attributed a value, it is trivial for the battery system to
provide the service that yields the highest value. This strategy allows the model
to include and exclude services depending on the wishes of the battery owner
without needing to reprogram the model.
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Conclusion and future work

This thesis aimed to research agent-based control mechanisms for distributed
BESS to provide energy arbitrage, peak-shaving and reserve market participation
services. These services were chosen out of the identified BESS services provided
in Table 2.1 to be optimal for the scope of this thesis. Based on simulations in a
developed and implemented model, it can be concluded that agent-based models
can be utilized to increase BESS flexibility and revenue. The results indicate that
the developed model increases revenue when providing multiple services com-
pared to single-service applications. The results also show that trading of service
obligations between agents slightly increase revenue and increases the overall sys-
tem flexibility. The implemented model proved to be a robust tool with simulation
animation capabilities to analyze the response of the battery agents with changing
scenarios.

The research in this thesis illustrates the ability of BESS being a provider of energy-
and flexibility services, but also raises the question of the willingness and ability
of energy markets to support distributed BESS as a supplier of energy- and flex-
ibility services. The time and minimum power restrictions on market bids cause
limitations on distributed BESS participation. Therefore, future studies could ad-
dress the implications of changing market restrictions to accommodate distributed
generation- and load units.

In this thesis a model is developed with a concept for how to enable distributed
flexibility resources like energy storage systems to respond to flexibility incentive
signals in a coordinated manner. Currently, the market mechanisms for local and
central flexibility are not developed and mature. Future work should develop the
market incentives to reflect the actual societal value of distributed power flexib-
ility in order to fully benefit from the distributed control proposed here. Market
mechanisms that could improve the functionality of distributed flexibility sources
include:

• Instantaneous energy- and flexibility market trading, in contrary to the daily
or monthly bidding windows which currently exist.
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• A public trading platform for trading energy- and flexibility obligations, to
relieve market participants from sub-optimally carrying out their obliga-
tions.
• No minimum power bid restrictions. You could essentially bid any amount

of power.
• Create markets for different categories of flexibility. For example: Flexibility

with fast response time of less than 1 second.

These market mechanisms would allow for a free market where evaluations for
services are priced more correctly.

The model needs to be personalized to improve the forecasting method for specific
users. In this thesis, consumers are assumed to have power consumption with clear
trends. The Prophet forecasting algorithm was implemented in the model to easily
detect underlying trends. Other consumers have trends that are not easy to detect
for the Prophet algorithm. There are other forecasting methods that would work
more optimally on those consumers. Since the optimization accuracy is highly de-
pendant on the forecasting accuracy of the power consumption, personalizing the
forecasting method to specific consumers could greatly increase profitability for
the specific users.

The agent-based modeling proposed in this thesis for distributed battery systems
for multiple grid services can be further developed for additional power flexibility
sources, such as distributed loads like electric vehicle chargers, water heaters and
generators such as wind- and solar power. An Internet of Things (IoT) platform
could be developed to visualize and control the distributed units. The IoT platform
could also be developed to optimize bids and autonomously deliver them to power
market participants. A major advantage with creating an IoT platform with many
generator and load units is that it circumvents the minimum bid restriction since
the IoT platform can aggregate power from many distributed units.
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