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Abstract

The scattering properties of light presents a challenge when capturing hyperspec-
tral images (HSI) of structures covered by turbid media. The captured image is
blurry and can be modeled as a convolution between a desired, clear image and
a point spread function (PSF). Methods for reconstructing the desired image
from the captured images are researched, and three are implemented. The first
method uses deconvolution with a closed form expression for the PSF to obtain a
reconstruction. The second method reconstructs a clear image from two bands of
the HSI, exploiting that different wavelengths are blurred in different amounts.
The third method attempts to eliminate the scattering contribution in each pixel
of the HSI by estimating the absorption coefficient of the embedded structure.
This is done using diffusion theory for light transport and inverse modeling. The
methods are tested on a dataset consisting of shapes covered by varying amounts
of a turbid media. The reconstructed images from each method are evaluated
quantitatively and visually. All three methods provide a measurable and notice-
able improvement in the image quality, when applied on an image of a structure
covered by 3 mm of turbid media. When the thickness of turbid media is increased
to 5 mm, all three methods performs poorly.





Sammendrag

Spredning av lys er en utfordring ved hyperspektral avbildning av strukturer i
turbide medium: Bildene blir uskarpe, og kan modelleres som en konvulsjon mel-
lom et ideelt, klart bilde og en punkspredefunksjon. Metoder for å rekonstruere
det ideelle bildet utforskes, og tre implementeres. Den første metoden bruker
dekonvulsjon med en analytisk utledet punkspredefunksjon. Den andre meto-
den rekonstruerer det ideelle bilde fra to ulike b̊and i et hyperspektralt bilde.
Metoden baserer seg p̊a at ulike bølgelengder spres ulikt. Den tredje metoden
prøver å fjerne spredningsbidraget i hver piksel av det hyperspektralet bildet
ved å estimere absorpsjonskoeffisienten. Dette gjøres v.h.a. diffusjonsteori for
lys transport og inversmodellering. De tre metodene testes p̊a et datasett med
bilder av former dekket av varierende mengder turbid medium. De rekonstruerte
bildene fra hver metode evalueres kvantitativt og visuelt. Alle metodene gir en
merkbar og m̊albar økning i bildekvaliteten p̊a bildet av formene dekket av 3 mm
turbid medium. N̊ar tykkelsen økes til 5 mm presterte alle metoder d̊arlig.
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1 Introduction

Hyperspectral images have more spectral channels than the regular 3-channel
RGB images we familiar with. The technology is an efficient and non-invasive di-
agnostic tool in various disciplines. Applications such as astronomy and geotech-
nical surveying use hyperspectral imaging to capture the spectral characteristics
of objects far away in a wide plane. In industrial applications, hyperspectral
cameras perform quality control and material inspection at high rates. In medi-
cal diagnostics, hyperspectral imaging is a non-invasive diagnostics tool that can
deliver results quickly.[16]

In many hyperspectral imaging applications, the object of interest is covered
by a turbid medium, such as the atmosphere, in the case of satellite imaging, or
tissue in medical applications. Turbid media is characterized by it’s tendency to
scatter light, changing it’s direction in a random manner.

When observing an object through a turbid media, it’s scattering properties
makes the object blurry. The effect can be seen on a foggy day or on the bath-
room mirror after a shower. This blur is a problem in the imaging applications
mentioned above because it obstructs the information the systems are designed
to capture. Removing or reducing the blurring effect from the captured images
improves the imaging system’s performance. With this motivation, the goal of
this thesis can defined as follows:

Goal: Explore, develop and evaluate methods for processing hyper-
spectral images, that reduce blurring created by scattering of light in
turbid media.

To achieve this goal, a three step research method was used. First, a lit-
erature review was performed. This process is detailed in section 3. Second,
three methods where developed based on the findings of the literature review.
These methods are largely based on existing methods from the literature, but are
adapted to serve the specific goal of this thesis. The adaptation and implemen-
tation of the three methods, as well as the dataset used, is presented in section 4.
Section 5 shows the result of each method when applied on the dataset. Finally,
the methods were evaluated. This is detailed in section 6, and the results of the
evaluation are discussed in section 7.

Throughout this thesis, the word structure will be used for the thing of interest
that is covered by a turbid medium. In the dataset used in this thesis, this is a
simple shape. In a general context, this could be more complex, like blood vessels
embedded in tissue, or terrain features in a sattelite image.
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2 Background theory

The following section presents the theory relevant for the researched methods.
Section 2.1 describes hyperspectral cameras and basic optical theory. Section 2.2
presents Boltzmann’s transport equation and diffusion theory. Section 2.3 de-
scribes the notation of signals used by this thesis. Section presents two denoising
algorithms. Section 2.5 describes convolution and two algorithms for deconvolu-
tion. Finally, section 2.6 defines focus measures.

2.1 Hyperspectral images and optics

Hyperspectral cameras have hundreds of spectral bands, typically in the 400-2000
nm range. This information makes it possible to distinguish between materials
that may appear similar in RGB-images. This is because different materials have
different absorption characteristics, quantified by the materials absorption coef-
ficient. The absorption coefficient (typically denoted µa) of a material is defined
as the probability per unit length that a photon is absorbed by the material. It
has unit m−1 and depends on the wavelength of the light[12].

When capturing hyperspectral images of an object, light travels through the
object, and is absorbed in varying amounts at different wavelengths according to
the absoption coefficient. Light exits the object and is captured by the camera.
The captured light can then be compared with absorption coefficients of known
materials to identify concentrations of different materials and composition within
the object. These process is relatively simple when absorption is the only light-
matter interaction present. This is not the case in turbid media, where light
scattering is the dominant light-matter interaction.

Scattering is the interaction between photons and matter where photons
change trajectory in a random manner. The scattering characteristics of a ma-
terial is quantified by the scattering coefficient (typically denoted µs), defined as
the probability per unit length that a photon is scattered by the material, and
the scattering anisotropy (typically denoted g) defined as the average cosine of
the polar scattering angle[12].

When light travels through turbid medium, photons that enter the media
together scatter independently of each other, and are spread out throughout the
medium, as shown in the middle of figure 1. This behaviour is described by the
point-spread function (PSF), or the impulse response of the system. In the case
of a medium with constant thickness, the PSF is a function P (ρ) : R2 → R where
the function value describes the intensity of light at a point ρ on the exit surface
of the medium that results from an impulse of light entering the medium at the
origin. The PSF naturally depends on the optical and geometrical properties of
the medium. Since the optical properties of a medium typically are wavelength
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dependent, the same is the case for the PSF. This is illustrated in the right plot
of figure 1.

Figure 1: Scattering of a Dirac delta pulse illustrated in a one-dimensional space.

2.2 Boltzmann’s transport equation and diffusion theory

To accurately quantify optical properties of a medium under observation, we need
a mathematical framework for describing light propagation. There are many
to choose from. Maxwell’s equations fully describe the propagation of light as
waves. However, if the geometries in question are complex, solving these are
infeasible[12]. Another option is to simulate each individual photon using a Monte
Carlo simulation. This method as been used successfully in many applications[20],
but is very computationally demanding. A third approach is to consider the
transfer of energy, described by Boltzmann’s transport equation, shown in (1).
Table 1 lists the symbol definitions for the equation as given by [12].

1

c

∂

∂t
L(r, s, t) = −∇·[sL(r, s, t)]−µtL(r, s, t)+µs

∫
4π

L(r, s, t)p(s, s′)dΩ′+Q(r, s, t)

(1)
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Table 1: Symbol definitions for equation (1) as given by [12]

Quantity Explanation Unit

c The speed of light in the medium m/s

µa Probability per unit length traveled that a pho-
ton is absorbed by the material

m−1

µs Probability per unit length traveled that a pho-
ton is scattered by the material

m−1

g Average cosine of the polar scattering angle Unit-
less

µ′
s µ′

s = µs(1− g) m−1

µt µt = µa + µ′
s m−1

I(r, s, t) The radiant intensity I at a point r in the direc-
tion s is the radiant power dP leaving the source
in a an element of solid angle dΩ divided by dΩ:
I = dP

dΩ

W/sr

L(r, s, t) The radiance L at a point r on a surface in the
direction s is the radiant intensity dI of an el-
ement dA of the surface, divided by the area of
the orthogonal projection of dA on the plane or-
thogonal to s: L = dI

dA cos θ

W/(sr·m2)

p(s, s′) The phase function defining the probability den-
sity that a photon is scattered from the direction
s′ to the direction s

Unit-
less

Q(r, s, t) The source function defining the radiant inten-
sity of the point r in the direction s

W/sr

Boltzmann’s transport equation is derived based on the conservation of energy.
The left side represents the change over time in the radiance L within a differential
volume. This change must equal the sum of the gain-, and loss mechanisms on
the right hand side. A physical interpretation of each of the gain-, and loss
mechanisms are given in table 2.
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Table 2: Physical interpretations of the rhs. terms of (1). The equation states
that the change in the radiance L within a differential volume must equal the
sum of these gain-, and loss mechanisms.

Term Explanation Gain/Loss

−∇ · [sL(r, s, t)] The power lost due to the energy
gradient. Energy flows from ar-
eas with high potential to areas
with low potential

Both

−µtL(r, s, t) The power lost from the volume
due to absorption and scattering

Loss

µs

∫
4π

L(r, s, t)p(s, s′)dΩ′ The gain in power due to scat-
tering events into the volume

Gain

Q(r, s, t) The source intensity of the vol-
ume

Gain

In the steady-state case, (1) reduces to (2)[12].

0 = −∇ · [sL(r, s)]− µtL(r, s) + µs

∫
4π

L(r, s)p(s, s′)dΩ′ +Q(r, s) (2)

When scatting is the dominant light-matter interaction, the radiance L(r, s)
can be approximated as being close to isotropic. This is because after sufficient
scattering events, light inside the medium loose it’s directionality. For this ap-
proximation to be accurate µ′

s >> µa must be satisfied. The approximation
is called the diffusion approximation, and gives the following expression for the
radiance[12].

L =
1

4π
ϕ+

3

4π
j · s (3)

where ϕ is the fluence rate and j is the energy flux.
Inserting (3) into (2) and integration over all solid angles we get the equation

of continuity[12]:

∇j = −µaϕ+ q (4)

where q is the radiant power of the source.
Together with Fick’s law, shown in (5)[12], the equation of continuity gives

the diffusion equation, shown in (6)[12]:
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j = −D∇ϕ (5)

where D = 1/(3µt) is the diffusion constant.

∇2ϕ− ϕ

δ2
= − q

D
(6)

where δ2 = 1/(3µaµt).

2.3 Signals and signal notation

A signal is a function f : A → B. A can be single- or multi-dimensional, and
the signal is classified accordingly. If A = Nn, the signal is called discrete. If
A = Rn, the signal is called continuous. As the focus of this thesis is images, the
focus will be on two-dimensional discrete signals f : N2 → R. Signal values will
be denoted by f [m,n].

In practice, image signals always has a finite domain. Unless otherwise spec-
ified this will be A = {(x, y) ∈ N2 | 0 ≤ x < M, 0 ≤ y < N}. However, for
mathematical convenience, this thesis will view images as infinite signals, with
domain N2, where f [m,n] = 0 when (m,n) /∈ A. Similar notation and conve-
nience will be used for one-dimensional signals.

2.4 Denoising

Denoising is the process of removing noise from a signal. This is useful in a
wide variety of applications, including all forms of imaging. No capture system is
perfect, so the captured signal is always affected by noise to some degree. In the
case of additive noise, the observed signal f is modeled as a sum of the desired
signal g and a noise signal n:

f = g + n (7)

Denoising is the process of recovering g from f without absolute knowledge of
n. To do this, one must assume a model for n. For many applications, the noise
is assumed to be normally distributed with zero mean and some variance σn:

n ∼ 1

σn

√
2π

e−
1
2x

2/σ2
n (8)

There are many methods for solving this type of problem. Two of them will be
presented below.
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2.4.1 Total variation (TV) denoising

Total variation (TV) denoising is based on the assumption that noisy signals have
high total variation, defined as

V (g) =
∑
n∈N

|g[n+ 1]− g[n]| (1D TV)

(9)

V (g) =
∑
m∈N

∑
n∈N

√
(g[m+ 1, n]− g[m,n])2 + (g[m,n+ 1]− g[m,n])2 (2D TV)

(10)

TV denoising reconstructs g from f by minimizing the total variation in g
while minimizing the square error between g and f , E(f, g):

ĝ = argmin
g

{E(f, g) + λV (g)} (11)

In the one-, and two-dimensional cases E(f, g) would be

E(f, g) =
1

N

∑
n∈N

(g[n]− f [n])2 (1D error) (12)

E(f, g) =
1

MN

∑
m∈N

∑
n∈N

(g[m,n]− f [m,n])2 (2D error) (13)

The regularization term λ controls how “agressive” the denoising is. λ = 0
gives no denoising. As λ → ∞ the reconstructed signal ĝ becomes progressively
smoother, and less like the original signal f . Figure 2 and 3 show examples of
TV denoising on a one-dimensional and two-dimensional signal, respectively.

Figure 2: Example of TV denoising on a one dimensional signal.
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(a) Left: Noisless test image, right: test image with
additive gaussian noise.

(b) Results after TV denoising with varying values for λ.

Figure 3: Example of TV denoising on a two dimensional signal. A test image
(top left) is corrupted by gaussian noise and then restored using TV denoising
using varying values for λ.

2.4.2 Denoising by block-matching and 3D filtering (BM3D)

The BM3D algorithm is a recent and very popular algorithm for image denoising.
It was first proposed by Dabov et. al.[2] in 2007. The algorithm can be broken
down into the following steps:

1. Block-matching:
Find blocks of the image that are similar, and group them into 3D-blocks.

2. Collaborative filtering of the blocks:
Apply a linear 3D transform to the blocks. Then, remove information from
the transformed coefficients, for example using thresholding.

3. Reconstruction:
Reconstruct the image blocks by applying the inverse of the transform in
step 2 and reassemble the image from the reconstructed blocks.

8



The algorithm is based on the assumption that most natural images have a
high degree of spatial redundancy, meaning that different parts of the image can
be represented as a combination of the same basic elements. This assumption
implies that when the transform domain is shrunk (step 2), the removed infor-
mation is mostly noise, while the true image is kept. Details about each step is
presented below.

Block-matching
The block-matching approach used in the BM3D algorithm is the same as the

one used in MPEG 1, 2, and 4, and H.26x. Each group of blocks is created in
respect to a reference block. Every block that is similar enough to this reference
block is included in the group. Similarity is measured using a distance measure
like an lp norm. This approach produces blocks that are not necessarily disjoint,
meaning that the same block can be part of multiple groups. Figure 4 shows an
example of block matching in practice.

Figure 4: Retrieved from [2]. Illustration of grouping blocks from noisy natural
images corrupted by white Gaussian noise with standard deviation 15 and zero
mean. Each fragment shows a reference block marked with“R”and a few of the
blocks matched to it.

Collaborative filtering of the blocks
Because the blocks in each group are similar, transforming the group by some

linear transform means that we can represent each block by a small number of
coefficients in the transform domain. Because of our assumption that natural
images have a high degree of spatial redundancy, the largest coefficients should
contain the true image information, while the smaller coefficients should mostly
contain information about the noise. Therefore, shrinking the transform domain

9



is an effective way of denoising the image. In this step, the σ parameter of the
algorithm controls how aggressive the denoising is, by varying the amount the
transform domain is shrunk.

Reconstruction
After shrinking the transform domain, the blocks are reconstructed by applying

the inverse transform of the one used in the previous step. The blocks are the
placed back into their original location. Because blocks may overlap, and that the
groups are not necessarily disjoint, many pixels will have multiple estimates from
different blocks. These estimates are aggregated to produce the best possible
reconstruction

Figure 5 shows an example of the results from the BM3D algorithm.

(a) Left: Noisless test image, right: test image with
additive gaussian noise.

(b) Results after BM3D denoising with varying values for σ.

Figure 5: Example of BM3D denoising. A test image (top left) is corrupted by
gaussian noise and then restored using BM3D using varying values for σ.

2.5 Convolution and deconvolution

Convolution is a mathematical operation on two functions or signals. The op-
eration comes in both continuous and discrete verities, as well as single- and
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multidimensional signals. The convolution of g with f is denoted by g ∗ h. Since
the subject of this thesis is image processing, ∗ will always denote discrete 2D-
convolution, defined by

(g ∗ h)[i, j] =
∑
m∈N

∑
n∈N

g[i−m, j − n] · h[m,n] (14)

Given a signal f = g ∗ h, deconvolution is the process of recovering g from f
and h. The following sections will describe two deconvolution algorithms.

2.5.1 Weiner deconvolution

Both convolution and deconvolution is commonly done in the Fourier domain.
Let F , G and H be the Fourier transforms of f , g and h, respectively. Then
f = g∗h can be expressed in Fourier domain as F = G ·H where · denotes regular
multiplication. If we assume H ̸= 0 on the entire domain, we can reconstruct G
from F and H by

G =
F

H
(15)

There are two problems with using this approach. The first is that the as-
sumption H ̸= 0 may not hold. The second problem is that in most real-world
applications, we can’t observe f . Instead we observe a noisy f , usually modeled
by f+n where n is additive noise, with Fourier transform N . Substituting F +N
for F in (15), we see that our recovered signal G = F/H + N/H becomes very
noisy when H is low.

Multiple methods have been developed to combat these problems, with one
being Weiner deconvolution. The Weiner deconvolution of f with h finds the esti-
mate, ĝ of g that minimized the expected square error between ĝ and g assuming
that the noise is Gaussian. This is done based on knowledge of the signal-to-noise

ratio (SNR), defined by SNR =
Sff

Snn
= E|F |2

E|N |2 .

The Weiner deconvolution of f with h is expressed in Fourier domain by
(16)[18].

Ĝ =
F

H

(
1 +

1

|H|2SNR

)−1

(16)

Even when the SNR is unknown, as is the case in most applications, the method
can produce good results by using a constant estimate for the SNR.

2.5.2 Richardson–Lucy deconvolution

The Richardson-Lucy deconvolution algorithm is an iterative algorithm designed
to reconstruct blurry emission tomography (ET) images[10]. The observed signal
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f is modeled as f =
∼
g ∗ h where

∼
g follows a Poisson distribution with mean

g. This model is chosen to fit the process of capturing of ET images, but the
algorithm as been shown to be useful in more general applications[4].

Given an initial estimate ĝ0 of g, the algorithm produces a series of estimates
ĝi where each estimate is calculated from the previous estimate by (17).

ĝi+1 = ĝi ·
[
h̄ ∗ f

h ∗ ĝi

]
(17)

where multiplication and division is done element-wise and h̄ is the flipped version
of h. When h is symmetric h̄ = h.

The algorithm has two important properties. Firstly, p(f |ĝi+1) ≥ p(f |ĝi),
meaning that each estimate is better than or equal to the previous estimate.
Secondly, ĝi approaches the maximum likelihood estimate of g as i → ∞. The
derivation for this is long will not be given here, but can be found in [10]. An
intuitive explanation of why (17) produces these properties will be given below.

When ĝi = g, h ∗ ĝi = f and the fraction in (17) is 1. Convolving this with h̄,
we get 1, and ĝi+1 = ĝi, meaning that ĝi = g is a steady state solution to (17).
When h ∗ ĝi ̸= f , the fraction is large in places where h ∗ ĝi is too low compared
to f . In the case of symmetric h, the fraction is convolved with h, meaning that
the factor inside the parenthesis of (17) is large at and around places where an
increase in ĝi would make h∗ ĝi closer to f , and thereby ĝi closer to g. Therefore,
applying (17) to an estimate ĝi nudges it closer to the true g.

2.6 Focus measures

A focus measure is a function α : I → R where I is the space of image signals.
A focus measure quantifies the sharpness of an image, meaning that if α(fa) <
α(fb), then fb is considered to be sharper (or equivalently, less blurry) than fa.
Focus measures are widely used for to do auto-focus in digital photography, and
are also used in some of the methods explored in this thesis.

In an article by Mir et. al.[8] 35 focus measures were evaluated in context of
the application of digital photography. In an article by Sun et. al.[14] 18 focus
measures was evaluated in the context of computer microscopy. Two of these
measures will be presented below.

The Brenner focus measure for an image f is defined by

αBrenner(f) =
∑
m∈N

∑
n∈N

(f [m,n+ 2]− f [m,n])2 (18)

Similarly the vertical Brenner focus measure is defined by

αBrenner,v(f) =
∑
m∈N

∑
n∈N

(f [m+ 2, n]− f [m,n])2 (19)
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The Brenner focus measures can be view as edge detectors. They detect pres-
ence of edges and sum the contributions from the entire image. The underlying
assumption is that more and harder edges are an indicator of a more in-focus
image. The Brenner focus measure performed well in the evaluation done by Mir
et. al. and average in the evaluation by Sun et. al.

Image statistics can also be used as a focus measure. The normalized variance
of an image f is defined as

ασ(f) =
1

NMµ

∑
m∈N

∑
n∈N

(f [m,n]− µ)2 (20)

with

µ(f) =
∑
m∈N

∑
n∈N

f [x, y] (21)

The normalized variance focus measure preformed well in the evaluation by
Sun et. al. and average in the evaluation by Hasim et. al.
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3 Literature review

A literature review was performed to identify methods that can help in reaching
this thesis’ goal. The literature is rich with methods for deblurring. These
methods vary in how much knowledge of the PSF is assumed.

Some methods, such as the ones in [10] and [13], assume that the PSF is
known, and try to optimize the reconstruction with this knowledge. Other meth-
ods, such as the one in [7]. Don’t assume knowledge of the PSF, but rather
statistical knowledge of the characteristics of a reconstructed image. Machine
learning has also been used to effectively deblur images. In [19], Zhao et. al.
use blurry images and non-blurry images to train an machine learning model to
deblur images without explicit knowledge of the PSF.

To obtain a manageable scope for this thesis, detailed literature review and
implementation is only done for methods that assume blurring as a result of
scattering through turbid medium. This is not, however, limited to methods
that assume hyperspectral data. A table of the most relevant methods found by
the literature review process is shown below, with details given in the following
sections.
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Author(s) Application Working principle Input
data

Shimizu et.
al.

Functional, flu-
orescent imag-
ing of rats

Deconvolution with parame-
terized PSF. Parameters fit-
ted using focus-finding prin-
ciples.

Single chan-
nel fluores-
cent image

Lee and
Park

Authentication
by finger vein
recognition

Deconvolution with parame-
terized PSF. Parameters fit-
ted using statistical knowl-
edge of the desired image.

Single chan-
nel image
captured at
870nm

Muria and
Sato

Authentication
by finger vein
recognition

Reconstruction of deblurred
image by exploiting that
channels at different wave-
lengths are blurred in
different and predictable
amounts.

Three chan-
nel image

Jiang et. al. Spiral CT imag-
ing of the inner
ear

Deconvolution with param-
eterized, gaussian PSF. Pa-
rameters fitted using ENR
measure

CT images

Svaasand
et. al.,
Bjorgan et.
al.

Estimation of
skin optical
parameters

Inverse modeling and diffu-
sion theory

NIR hy-
perspectral
data cube

Table 3: A summary of methods from the literature that is chosen for in-depth
exploration and implementation.

3.1 Methods using deconvolution with a parameterized PSF

Methods for deblurring by deconvolution with a parameterized PSF are common
in the literature. These models assume that the captured image I ′, weather it be
a CT image, fluorescence image or NIR image, can be modeled as a convolution
between the desired, clear image I and a PSF with additive noise ϵ, as show in
(22). The PSF is assumed to be a known function of unknown parameters. The
way the parameters are determined vary between methods. When the parameters
of the PSF are determined, the deblurred image can be found by deconvolving
the captured image with the PSF.

I ′ = I ∗ PSF + ϵ (22)
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In [11], Shimizu et. al. develop a method for improving fluorescent images.
Shimizu et. al. uses diffusion theory of photon transport to derive a closed form
PSF for a homogeneous turbid medium of constant thickness. The PSF and is
shown in (23) and depends on the absorption coefficient, the reduced scattering
coefficient µ′

s, the thickness d of the medium and the total power of a point source
P0.

PSF (ρ; d, P0) =
3P0

4π2

{
(µ′

s + µa) +

[
δ +

1

l

]
d

l

}
e−δl

l
(23)

With l2 = ρ2 + d2 and δ2 = 3µa(µ
′
s + µa).

µa and µ′
s are assumed known. To determine d0 and P0, Shimizu et. al.

use a focus-finding algorithm. By selecting a focus measure α(I), one can define
a function β mapping parameter values to the focus value of the reconstructed
image, shown in 24. We will call this a focus curve.

β(θ) = α(I ′ ∗−1 PSF (θ)) (24)

where ∗−1 denotes deconvolution, and θ is the PSF parameters, which in this
case are d0 and P0. Then, determining the parameters d and P0 can be done by
finding the global maximum of β(d, P0):

(d̂, P̂0) = argmax
(d,P0)

{β(d, P0)} (25)

With these estimates, an estimate of the clear image can be constructed by

Î = I ′ ∗−1 PSF (d̂, P̂0) (26)

Reconstructing in this way optimizes the focus of the recovered image.
Fluorescent images are different from the transmission images researched in

this thesis in that the captured light originated inside the tissue, rather than
traveling through it. However, in both cases, there is an optical signal embedded
in the tissue, that is distorted by scattering as it travels through the tissue. The
physics governing this scattering is the same in the two cases. Therefore, it is
reasonable to assume that the method developed by Shimizu et. al. also can
improve the quality of hyperspectral images.

Lee and Park[6] showed that it was possible to improve the quality of trans-
mission images of finger veins captured by a webcam using a similar method.
They used gray-scale images of the middle part of each finger, excluding thumbs,
captured at 850 nm. They use the same parameterized PSF, but a different
method for fitting the parameters d and P0. This process starts by creating a
map of where in the image blood vessels are located. Then, the orthogonal pro-
file of every point of every vessel is captured. If the image was unaffected by
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blurring, these profiles would be sharp. The parameters of the PSF are found
by determining the parameter values that produces the best match between the
captured profiles and a convolution between an idealized, sharp vessel profile,
and the PSF at these parameters. This method is dependent on the assumption
that all vessels in the image is of similar thickness. Based on where on the finger
the images where captured, Lee and Park assume that all vessels in the image
are close to 1.5 mm thick.

Deconvolution with a parameterized PSF is also the main idea behind the
method developed by Jiang et. al. in [4]. In the paper, the autors develop a
method for deblurring CT images of the inner ear. They assume a gaussian PSF
an fit the parameters by maximizing the edge-to-noise ratio, defined by 27, of the
deconvolved image. This is in principle the same procedure as the one employed
by Shimizu et. al. and Lee and Park, but with a different focus measure and
PSF.

ENR =
E

N
=

dK(Î , PSF ∗ Î)
dK(I, PSF ∗ Î)

(27)

where dK is the Kullback distance defined by

dK(u, v) =
∑

u log
u

v
−
∑

(u− v) (28)

3.2 Deblurring using tri-band Illumination by Muria and
Sato

In [9], Miura and Sato develop a method for deblurring 3-band transmission
images of finger veins. The method exploits the fact that the scattering properties
of tissue is different at different wavelengths. Miura and Sato models the captured
image I ′i on each band i by a clear image Ii convolved with a band-dependent
PSF:

I ′i = Ii ∗ PSFi + ni (29)

The foundational hypothesis of this method goes as follows. Choose two
wavelengths λi and λj such that the corresponding extinction coefficients of skin
µtr,i and µtr,j satisfy µtr,i = 2µtr,j . Then PSFi ≈ PSFj ∗PSFj . In other words,
if the extinction coefficient at channel i is twice that of channel j, the captured
image on channel i is “twice as blurry” as that on channel j.

Using this hypothesis, Miura and Sato show that a clear image Îj can be
reconstructed from the two blurry images by

Îj = I ′j + (I ′j − I ′i) ∗ I ′j ∗−1 I ′i (30)
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Where ∗−1 denotes deconvolution.
In the capturing process, Miura and Sato dynamically adjusts the illumination

brightness, such that the three bands are of equal brightness. To preform the
deconvolution, a Weiner filter is used. Smoothing of the second term in (30) is
done to increase noise robustness. The entire reconstruction is done in patches
of size 1x1 mm.

3.3 Scattering correction using diffusion theory

A popular way of correcting for the scattering of light is to use diffusion theory.
In [15] and [1], Svaasand et. al. and Bjorgan et. al. use diffusion theory to
obtain an expression for the reflectance of a layered medium in terms of it’s
optical parameters. This expression is used to estimate the optical parameters
from the observed reflectance using inverse modeling. A good estimation of the
absorption coefficient µa will naturally separate the absorption and scattering
characteristics of a material, resulting in a scattering correction method.

This method of estimating µa was used in the project preceding this the-
sis. The following section is a derivation the reflectance model for a single
layer medium obtained by diffusion theory. The derivation is from the preced-
ing project’s report[16] and is based primarely on [15]. A complete derivation,
including all intermediate steps can be found in the appendix of [16].

3.3.1 Reflectance model

The starting point for obtaining a model for the reflectance of a sample will be the
time-independent diffusion equation for photon transport, shown in (31) where ϕ
is the fluence rate, q is the source function, D = 1/(3µtr) is the diffusion constant
and δ = 1/

√
3µtrµa is the optical penetration depth[15].

∇2ϕ− ϕ

δ2
= − q

D
(31)

Assuming homogeneity along x and y, the ∇2 reduces to ∂2

∂z2 . Taking the
laplace transform of (31) and solving for ϕ(z)(s) we get

ϕ(z)(s) =
sC1

s2 − 1
δ2

+
C2

s2 − 1
δ2

− q

D
(
s2 − 1

δ2

) (32)

Assuming isotropic source functions, the photon source q in a homogeneous
infinite medium can be described by (33)[15], with the laplace transform shown
in (34).
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q(z) = µ′
se

µtrz (33)

q(z) =
µ′
s

s+ µtr
(34)

Inserting (34) into (32) and solving for ϕ, yields the fluence rate for z > 0,
ϕ+ expressed in terms of unknown parameters C5 and C6:

ϕ+(z) = C5e
z
δ + C6e

− z
δ +

δ2µ′
s

D(1− µ2
trδ

2)
e−µtrz

The total energy in the system must be finite. Therefore,
∫∞
0

ϕ+(z)dz must be
bounded. This implies that limz→∞ ϕ+(z) = 0. Using this boundary condition,
we find that C5 = 0, reducing (35) to:

ϕ+(z) = C6e
− z

δ +
δ2µ′

s

D(1− µ2
trδ

2)
e−µtrz (35)

To determine C6, the boundary condition for the skin-air interface shown in
(36)[15] is used.

j(z = 0) = Aϕ+(z = 0) (36)

where the coefficent A is defined in terms of the effective reflection coefficient
Reff as shown in (37)[15][3]. The complete definition of Reff can be found in
the appendix of [16].

A =
1−Reff

2(1 +Reff )
(37)

Solving (36) yields

C6 =
A−Dµtr

D
δ −A

δ2µ′
s

D(1− µ2
trδ

2)
(38)

Inserting (38) into (35) yields an expression for the fluence rate in terms of
assumed known variables:

ϕ+(z) =
A−Dµtr

D
δ −A

δ2µ′
s

D(1− µ2
trδ

2)
e−

x
δ +

δ2µ′
s

D(1− µ2
trδ

2)
e−µtrz (39)

Using (39), the reflectance γ is calculated using (40)[15]
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γ = j(z = 0) (40)

γ =
Aδ2µ′

s

(D − δA)(1 + µtrδ)
(41)

Rewriting D, δ and µtr in terms of µa and µ′
s yields a reflectance model

depending only on the absorption coefficient µa the reduced scattering coefficient
µ′
s and A.

γ =
Aµ′

s

(1 +A)µa +Aµ′
s +

(
1
3 +A

)√
3µ′

sµa + 3µ2
a

(42)
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4 Data and methods

Based on the findings from the literature review, tree methods were developed
and applied on a dataset of hyperspectral images. A presentation of the dataset
is given in section 4.1. The methods are described in section 4.2 - 4.4.

4.1 Agar dataset

The dataset consists of hyperspectral images of printed shapes covered by a Petri
dish containing varying amounts of turbid media. The images were captured
with a HySpex VNIR-1600 and contain spectral information from 160 wavelength
bands ranging from 411 nm to 989 nm. Gray-scale versions of the images used in
this thesis are shown in figures 6 - 8. Figure 6 shows the ground truth image. A
perfect deblurring algorithm would reconstruct the structures in this image from
the blurry images. The dataset was created by Remi Johansen[5].

Figure 6: Hyperspectral image of all printed shapes used in the dataset covered
by an empty Petri dish. This is the ground truth.

Figure 7: Hyperspectral image of the number three covered by a Petri dish with
3 mm turbid medium.
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Figure 8: Hyperspectral image of the number four covered by a Petri dish with
5 mm turbid medium.

The medium is agar gel mixed with intralipid. Agar gel is in practice non-
absorbing and non-scattering, while intralipid is practically non-absorbing and
highly scattering. The resulting medium is therefore practically non-absorbing
with the scattering properties of intralipid. Staveren et. al.[17] measured the
scattering properties of 10% intralipid, and fitted the model shown in 43.

µs = 0.016λ−2.4

g = 1.1− 0.58λ (43)

where λ is in micrometers and µs is in mL−1Lmm−1

The gels in the dataset have a 1.75% intralipid concentration. Estimating
the scattering properties of this concentration by linear approximation gives the
following expression for µ′

s

µs(λ) =
1.75

10
0.016λ−2.4(1− (1.1− 0.58λ)) (44)

All images in the dataset contain a Spectralon reflectance standard used for
reflectance calibration. This is a material reflects over 99% of light in the 400
nm - 100 nm range[5]. Computing the average spectrum over the area of the
reflectance standard gives a good estimate of the spectrum of the light source
used. Each image was divided by it’s light source spectrum to obtain reflectance
values.

After calibration, the only intresting segment of the image is that covered by
the Petri dish. This is extracted by cropping the image, and masking away the
outside of the Petri dish as well as it’s perimeter.

4.2 Method 1: Deconvolution with a parameterized PSF

This method is developed based on the work by Shimizu et. al [11] and Jiang
et. al.[4]. The focus curve is a function of the parameter values θ and is defined
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as the value of the chosen focus measure on the deconvolution between the input
image I ′ and the PSF with parameter values θ:

β(θ) = α(I ′ ∗−1 PSF (θ))

The reconstructed image is the result of the deconvolution for the θ where
the focus curve has it’s maximum. Throughout this thesis the maximum will be
found by sampling the focus curve at a sufficiently large interval with sufficient
resolution, and selecting the largest value. For applications where shorter run-
time is required, the gradient ascent algorithm can be used to find the maximum
much more efficiently.

There are many ways to implement this general algorithm. There are multiple
choices for the PSF, the deconvolution algorithm, the focus measure, and eventual
preprocessing steps. For each of these four components, the options will be
considered. The most promising options will be included in an evaluation where
all combinations for each of the four components are tested.

For the PSF, the expression derived by Shimizu et. al is used. This is because
from a physics perspective, their work is similar to this thesis. Additionally, the
PSF used by Shimizu et. al was used successfully for finger vein deblurring by
Lee and Park[6] on data similar to the data used in this thesis. One modification
of the PSF is done to reduce complexity of the method. For the purposes of
this thesis, there is no use in considering P0 as a variable. P0 appears as a
multiplicative factor in the PSF. Therefore, variations in P0 only result scaling of
the image values resulting from the deconvolution. To remove the variable, the
PSF is normalized with respect to P0. This leaves the depth d as the only PSF
parameter left to be fitted.

For the deconvolution algorithm, two options will be evaluated: Richardson-
Lucy deconvolution, as used by Shimizu et.al., and Weiner deconvolution.

For the focus measure, three options will be evaluated: ENR as defined by
Jiang et. al, the Brenner focus measure defined in (18), and the measure of
normalized variance defined in (20). These three are chosen because they are all
different in their approach to measuring focus. One could include all 35 focus
measures described in [8], or all 18 described in [14]. However, since most of
these are similar in nature to one of the three mentioned above, it is assumed
that these would have similar performance.

As seen in section 2.5, deconvolution algorithms are sensitive to noise. There-
fore, a denoising step prior to the deconvolution is included in the evaluation.
BM3D is chosen as the denoising algorithm, with parameter value with σ = 0.02.
BM3D is chosen because it has state of the art performance and is easy to im-
plement in Python.

With one option for the PSF, two options for the deconvolution algorithm,
three options for the focus measure, and two options for preprossesing, there are
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12 possible configurations for the algorithm. The results of each configuration
will be shown in section 5.1.

4.3 Method 2: Double blur reconstruction

This method is a reproduction of the method from Miura and Sato[9], with small
modifications to accommodate the change in camera technology, and experimen-
tal setup.

Miura and Sato control the wavelength and intensity of the illumination ele-
ments in the experimental setup to capture a three band image at wavelengths
λ0, λ1, λ2, where all bands have equal average pixel brightness. This capturing
process can be emulated by simply selecting the desired bands from the hyper-
spectral data used in this thesis. To achieve equal average pixel brightness, the
bands are scaled in software.

The wavelengths λ0 and λ2 are chosen such that µs(λ0) = 2µs(λ2), to satisfy
the methods foundational hypothesis. Figure 9 shows a plot of (43) for the
wavelength range of the hyperspectral data. The figure shows that the dataset
includes a range of wavelengths that satisfy µs(λ0) = 2µs(λ2). Visual inspection
of the bands show that both the highest- and lowest wavelength bands lower
signal to noise than the middle bands. Therefor 448 nm and 892 nm are chosen
as λ0 and λ2, respectively. Corresponding bands I0 and I2 are extracted from
the hyperspectral image and normalized such that all pixel values were in the
range [0, 1]. The band with the highest average pixel brightness is scale down
by a constant factor to match that of the other band. Then, BM3D denoising is
used with σ = 0.02. This is because the algorithm uses deconvolution, which is
sensitive to noise. After denoising, I0 and I2 are used to create a reconstructed
image by applying (30). The deconvolution in (30) is implemented using Weiner
deconvolution, as described in section 2.5.1. This is the same deconvolution
algorithm as used by Miura and Sato.
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Figure 9: Plot of (43)

4.4 Method 3: Deblurring by absorption estimation

Method 3 is based on diffusion theory, and borrows many concepts from [1]. This
framework has traditionally been used to remove the effects of scattering in the
spectral domain, but this thesis will explore weather it can also be used to correct
for spatial blurring.

Method 3 deblurres the hyperspectral image by looking at each pixel individ-
ually, and determining to what degree this pixel is part of the imaged structure.
First, the absorption spectrum in each pixel is estimated from it’s reflectance
spectrum. This is done using the reflectance model derived in section 3.3.1. De-
tails are given in section 4.4.1. Then, the correlation between the absorption
spectrum and the structure’s true spectrum is measured. This correlation is set
as the pixel value in the reconstructed image. The structure’s true spectrum is
extracted from the ground truth image. Details are given in section 4.4.2.

4.4.1 Estimation of µa

Assuming knowledge of µ′
s and A, the reflectance model derived in section 3.3.1

gives the reflectance γ as a function of µa: γ = f(µa). Every sample in the
calibrated hyperspectral data is a measurement of the reflectance γmeasured at a
certain point in space for a certain wavelength. An estimate for the µa for this
point in space and wavelength can be obtained by finding the µ̂a that satisfies
f(µ̂a) = γmeasured. This can be done by using Newton’s method to find zeros
of the function f(µ̂a) − γmeasured. This approach is used by Bjorgan et. al.[1]
to fit multiple skin optical parameters. In the method used here, µa is the only
parameter being estimated. Therefore, estimation can be done by numerically
approximating f−1 and letting µ̂a = f−1(γmeasured).

25



f−1 is approximated numerically by sampling f and interpolating. First a
list of N = 1000 evenly spaced values for µa is created: [µa,1, µa,2, ..., µa,N ], with
µa,1 = 1m−1 and µa,N = 1000m−1. These values are all fed into f to create a
list of 1000 corresponding reflectance values Γ = [γ1, γ2, ..., γN ]. Then f−1(γ) is
is approximated by linear interpolation:

f−1(γ) = µa,i + (γ − γi)
µa,i+1 − µa,i

γi+1 − γi
(45)

where γi is the largest value in Γ such that γi < γ.
For µ′

s, the approximation given in (43) is used. Since this is wavelength
dependent, f−1 must be calculated for each band separately. For A, the value of
0.17 is used. This is the common value used for skin measurements[15][1], which
is what the dataset used in this thesis is emulating. The resulting f−1 is plotted
in figure 10.

Figure 10: f−1 approximated by sampling of f and interpolating

4.4.2 Correlation with the true spectrum

To compute the structure’s true spectrum µa,true[λ], the ground truth image was
masked, setting all pixels not part of the number two, three or four to a value of
zero. Then the average spectrum of the remaining pixels was computed.

After the absorption µ̂a[i, j, λ] is estimated for every pixel [i, j] at every band
λ, the corresponding pixel Ireconstructed[i, j] in the reconstructed image is set as
the correlation between the estimated absorption spectrum and the true spec-
trum:

Ireconstructed[i, j] =
∑
λ

µ̂a[i, j, λ] · µa,true[λ] (46)
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5 Results

The three methods described in section 4 were applied on the dataset. Sections
5.1-5.3 presents the results of the three methods.

5.1 Method 1

The 12 different configurations of the algorithm was applied on the two of the
images in the agar dataset with 3 and 5 mm agar covering the structures. The
focus curve for each configuration is computed for each image. The focus curves
for the 3 and 5 mm case are shown in figure 11 and 12, respectively. Reconstructed
images for different PSF parameter values for the 3 and 5 mm case are shown in
figure 13 and 14, respectively.

Visual inspection of the reconstructed images at the bounds of the parameter
intervals for the focus curves in figure 13 and 14 shows that the optimal depth is
somewhere inside the interval. In the 3 mm case, only one of the 12 configurations
have a maximum inside this interval. This is the configuration using Richardson-
Lucy deconvolution with the ENR focus measure and BM3D denoising, similar
to the algorithm used by Jiang et. al. The maximum of the focus curve is at
d = 3.11. The algorithm output is the image corresponding to this depth. In the
5 mm case, none of the 12 configurations have a maximum inside this interval.
The algorithm therefore fails to produce an output. When comparing the three
methods, the image reconstructed with d = 5mm will be used as a stand-in for a
real output from the algorithm.
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Figure 11: Focus curves for each of the 12 configurations of the algorithm when
applied on an image of a structure covered by 3 mm turbid medium.

Figure 12: Focus curves for each of the 12 configurations of the algorithm when
applied on an image of a structure covered by 5 mm turbid medium.
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Figure 13: Top: Focus curve of the most promising configuration of the algo-
rithm when applied on an image of a structure covered by 3 mm turbid medium.
Bottom: Reconstructed images at different depths. The image with the highest
focus is framed in red and is the algorithm output.

Figure 14: Top: Focus curve using the configuration that was most promising
when applied on an image of a structure covered by 3 mm turbid medium, here
applied on an image of a structure covered by 5 mm of turbid medium. Bottom:
Reconstructed images at different depths. The focus curve has no maximum
inside the interval. Therefore, the algorithm has no output.
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5.2 Method 2

The method was applied on the agar dataset. Figure 15 and 16 shows the input
bands used, and the reconstructed images for the 3 and 5 mm case, respectively.

Figure 15: Inputs and outputs of method 2 when applied on a hyperspectral
image of a structure covered by 3 mm turbid media. Left and middle: Bands
from the hyperspectral image used as inputs to the method. Right: The output
of the method.

Figure 16: Inputs and outputs of method 2 when applied on a hyperspectral
image of a structure covered by 5 mm turbid media. Left and middle: Bands
from the hyperspectral image used as inputs to the method. Right: The output
of the method.
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5.3 Method 3

The method was applied on the two of the images in the agar dataset with 3 and
5 mm agar covering the structures. Figure 17a and 17b shows the reconstructed
images for the 3 and 5 mm case, respectively.

(a)
(b)

Figure 17: Outputs from method 3 when applied on hyperspectral images of a
structures covered by 3 mm (a) and 5 mm (b) turbid media.
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6 Evaluation

The three methods explored in this thesis was evaluated by comparing the results
with the ground truth shown in figure 6. There are many ways to do this. The
methodology used is presented in section 6.1 and the results of the evaluation is
presented in section 6.2.

6.1 Methodology

The outputs of the three methods, the raw data images and the ground truth
image was all normalized after masking, such that black in the image represents
0 while white represents 1.

All three methods have the same goal: To remove the effects of scattering
from the input images. The ground truth in figure 6 shows what the result of
this should look like. Therefore, we can compare the outputs from each method
with the ground truth to evaluate how well the goal was achieved. A natural way
to do this would be to compare every point of the structure in the method outputs
to the corresponding point of this structure in the ground truth image. Since the
structures in the images are aligned differently, this would require re-alignment
if the structures. Doing this accurately without introducing pixel artifacts as
a result of image rotation is very computationally demanding. Additionally, a
small error in the alignment would produce inaccurate comparisons. Therefore,
a simpler method to compare the two structures is used. A line is drawn through
one of the structures. The corresponding line in the other structure is found
manually using the image software Paint.net. Along each line, the pixel values of
the image is sampled at 1000 points using linear interpolation. The two resulting
pixel profiles can be compared. The pixel profiles capture the profile of the
structure’s edges well. This makes them suitable for use in evaluation, as it is
the edge profile that is most affected by scattering.

There are multiple ways of measuring the similarity or dissimilarity between
the pixel profiles. The most straightforward way is using mean square error
(MSE). A perfect reconstruction would have zero MSE. However, reconstruc-
tions that look good visually may perform poorly according to this metric. If a
reconstructed profile has identical shape to the ground truth profile, but is offset
by a constant value, the MSE is large. Therefore, normalized correlation between
the profiles is also used in the evaluation. It is a measure of similarity that is
less affected by constant offsets and linear scaling than MSE. In this context we
define the normalized correlation between two signals x and y by

corr(x, y) =

∑
i∈N(x[i] · y[i])√∑

i∈N x[i]2 ·
√∑

i∈N y[i]2
(47)
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6.2 Evaluation results

Sampled curves for all methods, the raw data, and the ground truth for the
structure covered by 3 mm and 5 mm turbid media is shown in figure 18 and
19, respectively. MSE and normalized correlation values for all profiles when
compared to the ground truth profile are shown in table 4.

Figure 18: Top: Pixel values of the images below, sampled along the drawn line.
Bottom, from left to right: The raw data image, the outputs of the three methods,
and the ground truth image, all for the 3 mm case.
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Figure 19: Top: Pixel values of the images below, sampled along the drawn line.
Bottom, from left to right: The raw data image, the outputs of the three methods,
and the ground truth image, all for the 5 mm case.

Table 4: MSE and normalized correlation values for all profiles when compared
to the ground truth profile. Lower MSE is better. Higher normalized correlation
is better.

(a) 3 mm case

Pixel profile MSE
Normalized
correlation

Raw data .1354 .9560
Method 1 .0497 .9848
Method 2 .0857 .9820
Method 3 .0541 .9790
Ground truth 0 1

(b) 5 mm case

Pixel profile MSE
Normalized
correlation

Raw data .0694 .9828
Method 1 .1037 .9845
Method 2 .0941 .9823
Method 3 .0386 .9771
Ground truth 0 1
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7 Discussion

A discussion of the results of the three methods and their evaluation is given in
section 7.1-7.3. Section 7.4 contains a discussion on the evaluation methodology.

7.1 Method 1

Looking at figure 13, it is evident that the deconvolition algorithm has worked as
intended. When deconvolving with the PSF at increasing depths, the resulting
image initially becomes sharper, with more defined edges. Then, after a certain
depth, deconvolution artifacts become visible, and increasingly prominent with
increasing depths. Determining the optimal depth for deconvolution becomes
a trade-off between sharp edges and deconvolution artifacts. Quantifying these
phenomena accurately is challenging, making finding the optimal depth challeng-
ing. 12 different configurations of the algorithm where tested on two different
images. Only one of the 24 cases resulted in a prediction for the optimal depth,
which is alarmingly low. There are two possible explanations for this. The fist
one is that the combination of denoising the inputs, Richardson-Lucy deconvo-
lution, and the ENR focus measure is the only configuration that can reliably
determine the optimal depth, but only up to a certain level of blurriness of the
input image. In this case, method 1’s fail to produce an output for the 5 mm case
can be attributed to that the input was too blurry to reconstruct. The second
possible explanation is that the method is unstable, and that the peak in the
focus curve observed for the one configuration is random. One can imagine that
for a different dataset, another configuration might produce a peak in the focus
curve. The fact that the working configuration is the same as the one used by
Jiang et. al. [4] for CT images strengthens the first explanation. To test the
reliability of the focus finding part of this method, a larger dataset is needed.

One might imagine that if the depth is known or determine by other means,
then deconvolving at that depth would be a reliable deblurring method. In theory,
this is true. If the model for the PSF is accurate, and all PSF parameters are
known, then deconvolution should produce an accurate reconstruction. However,
by fixing all parameters, the method looses one of it’s strengths: By leaving
the depth as a degree of freedom for the algorithm to determine, this parameter
can be used to compensate for inaccuracies in other parameters of the PSF,
such as the scattering coefficient. This is because both the depth and scattering
coefficient affect the most important characteristic of the PSF: Its width. This
benefit requires an accurate and stable focus finding component of the algorithm.

The output of the method for the 3 mm case has sharp edges, and includes
some signs of deconvolution artifacts. This is consistent with the result Jiang et.
al. got in [4].
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7.2 Method 2

In the 3 mm case, figure 17a shows that visually, the method provided a small
but noticeable improvement. This improvement is confirmed by a lower MSE and
higher normalized correlation than the raw data when compared to the ground
truth. Visually, these results seems to be similar to the ones Miura and Sato
got in [9]. Miura and Sato does not provide any numerical quality improvement
metrics that allow for quantitative comparison of the results.

In the 5 mm case, it is hard to argue that the results shown in 17b are better
than the input, and that the method provided an increase in image quality. This
is backed by that the output has higher MSE and lower normalized correlation
than the raw data when compared to the ground truth.

7.3 Method 3

In the 3 mm case, comparing figure 17a and 7 shows that visually, the method
provided a small but noticeable improvement. This improvement is confirmed by
a lower MSE and higher normalized correlation than the raw data when compared
to the ground truth. Method 3 differentiates itself from the two other methods
in that it does not operate spatially, but only spectraly. It may seem counter-
intuitive that this method is able to improve sharpness of edges, as this is a
spatial phenomenon. An possible explanation of why the method works is given
below.

Different channels are blurred in different degrees, based on the scattering
coefficient of the band’s wavelength. This means that the structure’s spectrum
“leaks” into the surrounding medium differently at different wavelengths. Thus,
the spectrum at the edge looks substantially different than the spectrum of the
structure, creating a improved sharpness in the image displaying the correlation
of each pixels spectrum and the ground truth spectrum.

Method 3 is also different from the other methods in that it uses data from
the ground truth image. One can see this as giving the method an unfair ad-
vantage. However, in most real world application, the absorbance spectra of the
constituents of an examined object are well documented, so this is not seen as an
issue.

In the 5 mm case, method 3 performs better than the raw data when using
MSE as a performance metric. Despite this, it is hard to argue that the method
provided any improvement in quality that was visible to the human eye. When
using normalized correlation as a performance metric, the method performed
worse than the raw data.
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7.4 Evaluation of deblurring

The goal of all three methods is to reduce blurring created by scattering of light
in turbid media. Objectively describing what the perfect reconstruction would
look like is trivial: It should look like the ground truth image. Objectively
quantifying how good an imperfect reconstruction is, however, is challenging.
Which reconstruction is “best” out of two imperfect ones, depends entirely on
the way performance is quantified.

In this thesis the three methods were evaluated based on two numerical per-
formance measures: The MSE- and the normalized correlation between pixel
profiles in the reconstructed images and ground truth image. The images shown
in figures 13, 14, 15, 16, 17a and 17b can also be used to perform visual quality
assessment.

In the 5 mm case, when using MSE as the evaluation metric, method 3 greatly
out-preforms the two other, even though visually, this does not seem to be the
case. In the 3 mm case, when using normalized correlation as the evaluation
metric, method 1 performs best, despite that the artifacts resulting from method
1 make in less visually pleasing than the result from the other methods. This
shows that MSE, normalized correlation and visual inspection provide different
views on what is “good”. MSE is an error measure, it weighs every sample along
the pixel profile equally, and is greatly affected by constant and linear scaling.
Normalized correlation is much more concerned with the general shape of the
profiles, and is less affected by constant and linear scaling. Visual inspection is
in itself a subjective process, depending on both the individual and the viewing
circumstances. However, most people share some common perceptual preferences,
with the most important factor being how recognizable objects of an image are.

Because of the difficulty in objectively evaluating performance, it is unrea-
sonable to pick a “best” method. In a practical application, where the use of the
reconstructed images is known, it is likely easier to make this decision.
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8 Conclusion

This thesis has explored, developed and evaluated methods for processing hy-
perspectral images that reduce blurring created by scattering of light in turbid
media. All three implemented methods measurably and noticeably improved the
quality of the least blurry image in the dataset. When applied on the most blurry
image, all three methods performed poorly.

The main contribution of this thesis is the adaptation of the three methods
and the evaluation of their performance when applied on a hyperspectral dataset.
This thesis has shown that the focus-finding principles developed by Jiang et.
al.[4] works in combination with the PSF derived by Shimizu et. al [11] in the
context of hyperspectral images. It has been shown that the scattering correction
methods by Svaasand et. al.[15] and Bjorgan et. al. [1] are useful for spatial
deblurring. Finally, the thesis has compared the performance of these methods
numerically and visually.
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