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Abstract

Sensors in the Internet of Things are becoming more and more preva-
lent, particularly lightweight sensors relying on low-power microcontrollers.
Many companies develop such sensors with cloud storage in mind. But
the need from clients to have an on-premises storage alternative has
recently arisen, whether from a desire to be independent from sensor man-
ufacturers’ public clouds or for security and back-up purposes. There is a
clear need for new storage, authentication and encryption methods. But
when dealing with lightweight sensors, certain communication and cryp-
tographic protocols can not be implemented due to their heavy resource
requirements. Finding the right trade-off between security, performance
constraints and user-friendliness is the true heart of this problem.

In this thesis we design state-of-the-art on-premises storage solutions
for sensor data as well as alternatives to pre-existing sensor-to-cloud
authentication and encryption in a lightweight sensor environment. This
is backed by a threat model of different devices involved in a sensor’s
communications to cloud or on-premises storage along with a literature
study of existing solutions. Our main contributions consist of sugges-
tions for data storage, key storage, key generation at manufacturing
and authentication independent from the sensor manufacturer’s cloud
while keeping the client’s sensor data private. We also discuss different
promising lightweight encryption primitives which may be applied to
communications in such a use case.

Our results show that it is possible to add an on-premises storage
solution to a pre-existing sensor-to-cloud protocol while keeping sensor
data only available to the client. Storage is not a big concern, but different
options bring up different security concerns. Authentication alternatives
will always require a certain level of trust between the sensor manufacturer
and client, as the manufacturer cannot be completely absolved from key
generation and exchange. We have also found promising lightweight
cryptographic primitives which can contribute to these solutions and
make them more secure.





Norwegian Abstract

Sensorer i Internet of Things blir mer og mer utbredt, særlig lettvekts-
senorer som er avhengige av lav-energi mikrokontrollere. Mange selskaper
utvikler slike sensorer med skylagring i tankene. Men nødvendigheten
for at klienter har et lokalt lagringsalternativ har nylig oppstått, enten
om det er med et ønske om å være selvstendig fra sensorprodusentens
offentlige sky eller for sikkerhets- og backupformål. Det er et klart nehov
for nye lagrings-, autentiserings- og krypteringsmetoder. Når man har med
lettvektssensorer å gjøre er det visse kommunikasjons- og krypteringspro-
tokoller som ikke kan bli implementert på grunn av deres ressursbehov.
Å finne riktig avveining mellom sikkerhet, ytelsesbegrensninger og bru-
kervennlighet er kjernen i problemet.

I denne masteroppgaven designer vi en state of the art lokal lagrings-
løsning for sensordata i tillegg til alternativer til allerede eksisterende
sensor-til-sky-autentisering og -kryptering i et lettvektssensormiljø. Dette
er støttet av en trusselmodell for ulike enheter som er involvert i sen-
sorers kommunikasjon med skyen eller lokal lagring sammen med en
litteraturstudie av eksisterende løsninger. Hovedbidraget vårt består av
forslag til datalagring, nøkkellagring, nøkkelgenerering hos produsent og
autentisering uavhengig av sensorprodusentens sky samtidig som klien-
tens sensordata forblir privat. Vi diskuterer også ulike lovende lettvektige
krypteringsprimitiver som kan bli anvendt for kommunikasjon i et slik
brukstilfelle.

Resultatene våre viser at det er mulig å legge til en lokal lagrings-
løsning til en allerede eksisterende sensor-til-skyprotokoll samtidig som
sensordata kun er tilgengelig for klienten. Lagring er ikke en stor be-
kymring, men ulike muligheter bringer opp ulike sikkerhetsbekymringer.
Autentiseringsalternativer vil alltid kreve et visst nivå av tillit mellom
sensorprodusenter og klienter siden produsenten ikke kan fullstendig fri-
kjenne seg fra nøkkelgenerering og -utveksling. Vi har også funnet lovende
lettvektige krypteringsprimitiver som kan bidra til disse løsningene og
gjøre dem mer sikre.
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Chapter1Introduction

The Internet of Things (IoT) has become an increasingly important part of our
day-to-day lives. Today, we can count over 12 million connected devices in the world
[Sin21]. This includes connected lights, cars, doors, health devices and many others.
Many of these devices operate using sensors (possibly built-in sensors) and operate
by adapting according to the data they collect from their surroundings.

With many systems and devices today so heavily reliant upon sensor data, a
natural question to ask is: “Can we trust this sensor data?”. For example, if
an attacker can tamper with a heat sensor’s data, they could stop the connected
sprinkler system from going off in case of a fire. This is why implementing secure
communications between IoT devices is so important.

1.1 Motivation

Figure 1.1 shows the typical network architecture for sensor data usage. Sensor
data will most often be stored in a cloud. We will be focusing on the following use case;
a client orders sensors from a company manufacturing sensors which communicate
with the sensor manufacturer’s cloud for storage.

In our use case, only the cloud possesses the private key needed for decryption of
sensor data. The client must trust the sensor manufacturer to securely handle and
transmit that data. This is an ever-recurring problem in security; you can either
implement things yourself or trust in the people who made the product you are using
[Tho84].

But some clients would rather keep their sensor data private from the sensor
manufacturer, as the manufacturer is the one who sets up authentication from the
sensor to the cloud and is able to encrypt and decrypt that data. Their sensors may
be used in critical services such as the health or military sectors. Clients such as
these would rather store their data using an on-premises solution.

1



2 1. INTRODUCTION

Figure 1.1: Typical sensor-to-cloud configuration

Other motivations for on-premises sensor data storage may be that clients want
to keep a back-up of data stored on the cloud if servers go down or if internet access
is disabled. They may also have their own private network set up according to
their own company’s protocol and do not want to have to communicate with the
sensor manufacturer’s cloud. The expected outcomes of using this alternative storage
are to increase security by having data storage be controlled without the need for
outwards connection, as well as less demanding communication operations as sensors
will communicate directly with on-site devices.

Security of on-premises storage and transmission of sensor data to that storage
will be the main focus of this thesis. We will compare the different approaches a
company can take when manufacturing sensors for a client who wants their data
kept private from the manufacturer. More specifically, we will be looking at the
requirements needed to make such a solution work in terms of network architecture,
storage options, key distribution, key storage and encryption of data in terms of
security, feasibility and user-friendliness.

1.2 Context

The basic network architecture we will be working with can be seen in Figure
1.2. The user’s sensor data is kept private using the storage option of their choice,
which will be further detailed in Chapter 3. The public data going to the sensor
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Figure 1.2: Combined cloud & on-premises storage configuration

manufacturer is the sensor’s Identifier (ID), some protocol-specific data needed by the
manufacturer to ensure proper interaction with the cloud or for sensor maintenance.

Private data in this case means only the client has access to it while public
data means the client and the sensor manufacturer can access it. The private data is
the encrypted data that the sensor periodically collects, such as the room temperature
for a heat sensor. The public data should not allow the cloud provider to decrypt
private sensor data.

In Figure 1.2, the gateway is a device whose main function is to forward packets
from the sensor to its end point. Depending on the packet’s destination address, it
will forward it either to the cloud or the on-premises storage. The smart devices in
this use case are any devices that rely on sensor data to function. Communications
to smart devices is out-of-scope for this thesis, as we want to focus on working with
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lightweight sensors and the authentication problem.

1.2.1 Disruptive Technologies context

The idea for this thesis came from Disruptive Technologies [Dis] (DT) who
manufacture ultra lightweight sensors communicating with their own cloud. These
include temperature, pressure, proximity and motion sensors. Some of their clients
have expressed interest in being able to store their sensor data on-premises, resulting
in this research topic.

Their sensors currently run on a CC1350 chip [Ins]. It is a 32-bit ARM microcon-
troller with 128 kB of Flash memory and 28 kB of Random Access Memory (RAM).
It is chosen for the wide temperature ranges at which it can operate, as DT aims
to make very sturdy sensors. These specifications are what we will be basing our
analysis on for further discussion.

We will thus be focusing on extremely small sensors, which have very low com-
puting power and limit the scale of security that can be achieved. They are not
capable of implementing certain resource-demanding protocols, such as Transport
Layer Security (TLS) and take time performing demanding computations. They are
also incapable of sending data packets over long distances which explains the need
for a gateway to relay information.

1.3 Objectives

The main objectives that arise in this use case are:

– What on-premises storage option or on-premises network architecture are safer
for data security and privacy,

– How can the sensor and the on-premises storage mutually authenticate when
the shared secret used for sensor-to-cloud communications is shared during the
manufacturing phase,

– How to securely encrypt sensor-to-on-premises-storage communications given
the low level capabilities of the sensor, and doing so in a user-friendly fashion.

The research questions we have defined from our objectives are as follows:

– What are the security requirements for an on-premises alternative
to cloud data storage?
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– What possible on-premises storage options or on-premises network
architectures are more suited to safe user-friendly sensor data stor-
age?

– What possible key exchange solutions exist to authenticate sensors to
on-premises storage, as an alternative to an existing sensor-to-cloud
protocol?

– What possible user-friendly low-level encryption protocols exist to
protect sensor data?

1.4 Research methodology

The aim of this work is to produce a state-of-the-art solution for anyone who would
wish to implement safe on-premises storage for sensors that originally communicate
with a cloud. To answer these research questions, we will take the following approach;

in Chapter 2, we will define the required notions for this thesis, in terms of
security and cryptography, as well as relevant work. In Chapter 3, we will discuss
different on-premises storage alternatives and their trade-offs. In Chapter 4, we will
perform a threat analysis of the proposed network architecture seen in Figure 1.2 in
order to discuss on-premises storage alternatives. From this threat analysis, Chapter
5 will discuss the mutual authentication problem, encryption possibilities and key
storage regarding the security of sensor data. Chapter 6 will make a comparison of
different lightweight encryption protocols to accompany the methods discussed in
Chapter 5.





Chapter2Background & Related Work

In this chapter, we will introduce the notions and notations required for the rest
of this thesis. Security principles, cryptography terms and network-centric terms are
needed to better understand our work. This chapter will be referenced every time an
underlying notion is required to understand a proposed implementation.

2.1 Information security background

Cybersecurity and information security have evolved extremely fast in the last 50
years. Since the arrival of the internet, the amount of cyber threats has increased
rapidly [AGGL22] and a need to define these threats has grown.

2.1.1 Principles of information security

The first time security principles were mentioned is in an National Institute
of Standards and Technology [Kis13] (NIST) publication from 1977 [RM77]. In
computer networks and cryptography, the key principles that must be followed in
order to implement a secure system are defined as such by the NIST glossary [PB19]:

– Authenticity is about being able to identify users and entities when establish-
ing communications. In order to have safe communications, you need a way
to tell if users are who they say they are. This is often done using a pair of
credentials, such as a username and password, or in the case of cryptography
by using a pre-shared key or pair of keys.

– Integrity of information is being able to trust that that information has not
been tampered with. If the received information is the original information that
was sent, then the communication channel kept the integrity of the message.
This is often checked by the use of a Message Authentication Code (MAC),
which we will elaborate on in Section 2.2.4.

7



8 2. BACKGROUND & RELATED WORK

– Non-repudiation Non-Repudiation of Receipt (NRR) prevents a user from
denying having received a message and lying about it. Non-Repudiation of
Origin (NRO) prevents a user from lying about the source of its information.
A legitimate user could actually have not received something, and this is a
problem that must be addressed (and should be covered by authenticity and
integrity, which are pre-requisites for non-repudiation), but a lying user saying
they did not get the original message must not have the opportunity to be sent
the message another time.

– Confidentiality is the degree of secrecy of the information. Only the sender
and receiver of a message should have access to that message unless they choose
to give access to other users. This is not to be confused with integrity, as a
message can be sniffed (meaning an attacker successfully got the contents of
the message) but not tampered with.

– Availability of resources is about having the information you are using be
available to authorized parties at all times. A system should have sufficient
availability if it is to be useful.

– Authorization is about the level of access a user can have once authentication
is achieved. The information that will be displayed to a user should be dependent
on their degree of authorization. This is done through the use of administrative
policies for example.

2.1.2 Classification of attacks

There are many different types of cyber attacks that exist and have grown in
popularity as computer network usage has grown. Attacks may be known under
different names, but there is a recognised catalog of vulnerabilities called Common
Vulnerabilities and Exposures [CVE] (CVE) that can be found online. We will only
cite the most common form of vulnerabilities that are relevant to IoT devices.

Spoofing

Spoofing is the act of passing as a valid user or entity in order to gain access to a
system or information which the attacker should not have access to. For example, a
successful Internet Protocol (IP) spoofing attack where an attacker alters the source
IP address in their network packet in order to pass as trusted IP address for a certain
system.

Denial of Service

A Denial of Service (DoS) attack is the exact opposite of availability, as it aims
to make services and information unavailable to legitimate users. A very common
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Distributed Denial of Service (DDoS) attack is IP spoofing from many different
points, as multiple incoming IP addresses can not be blocked all at the same time.

Backdoor

A backdoor in a system is a secret infiltration method that allows an attacker to
gain access to a system or network unseen. Backdoors may exist as a part of the
system’s design for admin use but could be exploited by attackers. Manufacturers
can also create their own, for various reasons, but it is a very risky implementation.
Backdoors are very dangerous because they can allow complete undetected access to
all resources in a network or system.

Eavesdropping

Eavesdropping, or sniffing, is the act of listening in on a communication between
two parties in a network. Examples include electromagnetic sniffing attacks, where
an attacker can observe electromagnetic transmissions generated by a device to gain
information on the processes being run or Man-in-The-Middle (MiTM) attacks, where
an attacker can capture packets sent between two parties and read the data before
sending it along to avoid detection.

Elevation of Privilege

Elevation of privilege is any situation where an attacker gains access to data or
operations they initially were not allowed to access. The most coveted elevation of
privilege is to become the root user in a system, thus gaining full access to a system.

2.2 Cryptography background

Cryptography in communications is the science of encryption (altering data so
it is unreadable by an outside source) and decryption (decyphering, or recovering
that data from its encrypted state). It enables two parties to communicate privately
without having an outside party or attacker decrypt their messages. Many different
methods of encrypting communications exist, but they all follow these same three
steps [KL14]:

– Auth (Authentication): process of validating a communicating party’s identity
through the use of a pre-shared secret

– Gen (Generation): probabilistic algorithm that generates one or multiple keys
used by Enc and Dec

– Enc (Encryption): probabilistic or deterministic algorithm that receives a key
K and a message m as input and outputs a cyphertext c
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– Dec (Decryption): deterministic algorithm that receives a cyphertext c and a
key K as input and outputs a message m

2.2.1 Cyphers

A cypher is an algorithm implementing cryptographic principles for encryption
and decryption. It is deployed on the two end-points of a communication. The
two broad categories of cypher families are symmetric cyphers and asymmetric
cyphers.

Symmetric Cyphers

Symmetric cyphers are so named because both entities use the same key for
encryption. It relies on both communicating parties already having that key available
to them, meaning it needs to be delivered through safe channels. Two histori-
cal examples of symmetric cyphers are the Data Encryption Standard (DES) and
Advanced Encryption Standard (AES) which were standardised by the Federal Infor-
mation Processing Standards [NIS] (FIPS), now an established source for encryption
standards.

Figure 2.1: Symmetric cypher encryption

Asymmetric Cyphers

For asymmetric cyphers, each communicating entity has its own pair of keys,
one public and one private. The public key is known to any and all parties on the
network, while the private key is only known to its owner. To send a message you
encrypt it using the receiver’s public key which you have access to and they will
decrypt it using their private key, as shown in Figure 2.2.

To illustrate this concept, we will give the example of Elliptic Curve Cryptography
(ECC). ECC is one of the most common applications of asymmetric cryptography and
allows for shorter keys than the classic Rivest-Shamir-Adleman (RSA) encryption.
It relies on the fact that solving the elliptic curve discrete logarithmic problem
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Figure 2.2: Asymmetric cypher encryption

is infeasible. It is stated as such; ”In the multiplicative group Zp*, the discrete
logarithm problem is: given elements r and q of the group, and a prime p, find a
number k such that r = qk mod p” [TGP21]. In the case of ECC, k is the private
key an attacker is trying to compute, given r the cyphertext and q the message. It
takes an extremely high amount of calculations to recover k the private key, which
makes ECC secure.

2.2.2 Hash functions

A hash function is a one-way function used to map data of arbitrary size to fixed-
size values. Hashes are often used in cryptographic cyphers to compress cyphertexts
during the encryption phase. These functions are deterministic and un-keyed which
makes them very useful for performing integrity checks on the encrypted data. Hash
functions are collision-resistant, meaning that given an output, it is computationally
infeasible to find two different inputs giving that same output. This means that you
can check the hash value received with the expected hash value, confirming whether
or not data has been tampered with.

2.2.3 Key management

Types of keys

There are many different names cryptographic keys can have in the steps used to
encrypt and decrypt information. Here are the most important key types we will use
in this thesis:

– Master keys: Keys that are used to derive other keys used for authentication,
encryption and other cryptographic methods. They are mostly used to respect
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forward secrecy.

– Long term keys: Keys that are used for encryption of communications as
long as that communication is active. Key Encryption Keys (KEKs) are a good
example of long term key, as these are not renewed very often.

– Session keys: Keys that are only used for a single session of communications,
meaning if communications are cut-off, a new session key is generated (either
from a master key or through other means).

– Authentication keys: Keys used only for the authentication phase, to deter-
mine the authenticity of communicating parties.

– Encryption keys: Keys used only for encryption of data, like the keys obtained
from a Diffie-Hellman (DH) handshake.

Key generation

Keys should be generated in a fashion such that attackers cannot reverse-engineer
the generation process. A cryptographic protocol’s implementation should be available
to the public if it is to be considered secure, so key generation requires a form of
random input at some level, otherwise no matter how complicated calculations are,
an attacker can calculate the same keys in the same way that the target device
originally did.

Key generation can be:

– Fully random, meaning that a key is randomly generated. This is the ideal
implementation, but true randomness with computers has yet to be achieved,
and randomizing calculations for a long key (particularly asymmetric key pairs)
requires extensive calculations.

– Pseudo-random, through the use of a PRNG. A PRNG imitates the workings
of a truly random generator but considerably reduces the number of output
possibilities.

– Pseudo-random, through the use of a Key Derivation Function (KDF). A
KDF is a one-way function that takes as input a master key and combines
randomness to produce new keys used for other cryptographic purposes. A
KDF validate forward-secrecy.

A PRNG takes an input of fixed size λ and gives an output of size n*λ (n = 2 in
Figure 2.3). This means that although the output domain size is n times bigger than
the input domain size, the actual number of outputs is much lesser than that of a
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Figure 2.3: PRNG output distribution, taken from Rosulek’s joyofcryptography
[Ros]

true random generator. A PRNG ”maps” outputs to imitate a random distribution.
To be considered a PRNG, the output must not be discernible from a random output.
Figure 2.3 illustrates this.

Forward secrecy is a feature that a cryptographic system must have. It means
that if an attacker can recover master keys, it will not be able to calculate session keys
derived from that master key, and thus will not be able to decrypt data sent using
those session keys. This is why a KDF is very important, as it introduces randomness
into the making of session keys and validates forward secrecy for a cryptographic
system.

Key exchange

A key exchange protocol is a mix between symmetric and asymmetric cryptography.
It consists of two parties using public/private key pairs to agree on a common secret
key used for further encryption. This common secret is established by both combining
their private key and the other entity’s public key to arrive to the same result. Since
an entity’s public and private keys are mathematically linked, this method works.

The most popular key exchange protocols are the DH and Elliptic Curve Diffie-
Hellman (ECDH) key exchange protocols. The inner workings of DH are shown in
Figure 2.4.
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Figure 2.4: Diffie Hellman key exchange

Both entities end up calculating the same secret key. An attacker cannot calculate
this secret key, as being able to reverse engineer these calculations even with access to
g, p, pA and pB takes an extremely long amount of time if g and p are large enough
primes. ECDH relies on the same principle, but using ECC calculations instead to
calculate the common secret key.

2.2.4 Authenticity & data integrity

Message Authentication Code

A MAC (or tag) is used to check the authenticity and integrity of data. MACs
are computed by taking as input the message or cyphertext of the message depending
on the implementation and possibly the encryption key. This value is then compared
to a calculated MAC on the receiver’s side to validate that the message has not been
tampered with and does come from the right sender.

Authenticated Encryption with Associated Data (AEAD) can be done
several ways:

– Encrypt-then-MAC: The plaintext is encrypted, then a MAC is generated
using the cyphertext. They are both sent together. Then, upon reception the
receiver calculates the MAC associated to the cyphertext and compares its
value to the one received.

– Encrypt-and-MAC: The MAC is calculated using the plaintext, then the
plaintext is encrypted without the MAC. The cyphertext and MAC are sent
together. Upon reception the cyphertext is decrypted, a MAC is calculated
using the decrypted message and compared to the received MAC.
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– MAC-then-Encrypt: The MAC is calculated using the plaintext, then the
plaintext is encrypted along with the MAC. They are both sent in encrypted
form. Upon reception, the package is decrypted, a new MAC is calculated
using the decrypted message and compared to the received MAC.

Nonce

A Nonce is a value used to distinguish between two messages encrypted using the
same key in order to avoid replay attacks. Nonces must be random. For example,
an attacker can recover the encryption key quite easily if Nonces are not updated
[DRA16]. It is an extra security add-on to distinguish a message’s integrity.

2.3 Network basics

2.3.1 OSI model

The Open Systems Interconnection (OSI) model, as shown in Figure 2.5, is the
basis of computer networks. Packets are encapsulated in layers of protocols, each
protocol taking care of referencing and orientating the packet for one of the layers.
For example, the widely used IP protocol operates at the network layer and is used to
reference a packet’s destination in an IP network. The Transmission Control Protocol
(TCP) operates at the transport layer and relies on the underlying protocol at the
network layer (almost always IP, as the TCP/IP protocol is the most widespread) to
itself encapsulate a packet and establish connections with distant hosts.

2.3.2 The TLS protocol

Today, the TLS protocol is the preferred security protocol at the transport layer.
Mutual TLS ensures authenticity of hosts by having them check the validity of each
others’ TLS certificates. These digital certificates are proof that an entity is the
owner of the public key being used for asymmetric communications. This certificate
has been issued by a trusted third-party, and that party’s authenticity is validated by
the above party that issued its certificate, and so on, until we reach the first issuer of
certificates which is a referenced trusted party.

Thanks to this signature verification, communications between end-points can be
effected without a previous shared secret. TLS also supports many cryptographic
protocols, meaning a device must implement code to treat each TLS extension. This
is too heavy a task for the sensor’s microcontrollers we are dealing with, which is
why the easy-to-use TLS protocol cannot be implemented in our use case.
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Figure 2.5: The OSI model

2.3.3 Client-Server model

At the lowest level of data storage, servers are always involved. Servers store
resources (in our case sensor data) and clients are the ones requesting those resources.
There can be more than one client per server, and servers and clients can be on the
same system, although in our use case, the server will be the on-premises storage
and the client will be the gateway. The server sharing resources is called a service.
The client-server model is a distributed application structure, meaning it is a way of
looking at client-server communications as a partitioning of tasks between the servers
and clients. What is important here is to remember this terminology of server and
client.
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2.3.4 Network security

Securing a network from connections of users with malicious intent is done
mainly by filtering who can and cannot connect to your devices. Firewalls are the
main means of filtering potentially dangerous connections. A firewall is a network
monitoring system which lets you ”whitelist” and ”blacklist” IP or other addresses of
malicious connections, types of connections depending on on the network protocols
used, amount of successive connections, etc.

Another, more effective system is an Intrusion Detection System (IDS). IDSs
are specific devices or software dedicated to monitoring network traffic. They are
more powerful than firewalls, in that they can monitor a large amount of devices and
the policies that can be implemented using IDSs are much more sophisticated and
can target specific types of attack patterns.





Chapter3On-premises Storage Options

Choosing the right storage for an on-premises solution is one of the cornerstones
of this thesis. There are three types of on-premises storage [HMLY05]; Direct
Attached Storage (DAS), Network Attached Storage (NAS) and Storage
Area Network (SAN), shown in Figure 3.1, with private cloud being a hybrid
approach. Following the client-server model mentioned in Section 2.3.3, in our use
case the client is the gateway as it is the last connected device in the data path
of sensor data (as shown in Figure 4.1). If another device like a switch or another
gateway is used as the entry point to the storage option, then that device is the
client.

3.1 Direct Attached Storage

The simplest of the three options is DAS, which is directly connected to a client
via a Peer-to-Peer (P2P) connection. DAS offers low latency communications
due to this proximity to the client and the lack of a connecting device (such as
a switch). But this implementation also limits scalability and imposes a physical
constraint as the DAS can not be established too far from the client.

In terms of security, we see in Section 4.4 that restraining the access to servers
is primordial in keeping data secure. With DAS, this P2P connection to the server
means that if a client is compromised then so is the server. Server set-up should only
allow normal behaviour, meaning reading and writing of that client’s sent data. The
use of an IDS surveying the storage option should also be considered.

3.2 Network Attached Storage

NAS is accessed through a classic Ethernet Local Area Network (LAN).
The advantage NAS offers over DAS is that it can be deployed further from the
client. It also allows for the interconnection of several NAS and competing access
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Figure 3.1: DAS, NAS and SAN storage options, adapted from Krenn’s ”Storage
basics: DAS, NAS and SAN at a glance” [Kre]

from multiple clients (in our case there could be multiple gateways to deal with). A
problem that one could encounter when using NAS is the high load being put on
the LAN by adding the use of TCP/IP protocols which are not optimised for heavy
storage traffic.

Once again, the access points to a NAS must be closely monitored. If the number
of clients communicating with the storage increases, entry points also increase. An
extra network firewall can also be added on the entry switch, further filtering traffic
and decreasing malicious client interactions.

3.3 Storage Area Network

A SAN consists of storage devices having their dedicated storage network,
typically Fibre Channel infrastructure. Client-side access is done through Ethernet
but further communications within the SAN are done through Fibre Channel. The
SAN allows for the connection of multiple storage options and thanks to Fibre
Channel usage, transfer speeds can be compared to those of a DAS, but can cover
greater distances which resolves the issue of scalability for DAS. Downfalls of SAN
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are the upkeep of the network as it requires more configuration and administrative
tasks, as well as having to deal with an additional infrastructure on top of Ethernet.

Choosing a NAS or SAN over a DAS increases the amount of connections between
nodes in the on-premises network, which increases the amount of possible entry
points for attackers. Network security is primordial for keeping data safe. This means
having a proper firewall set up at each entry point to filter malicious traffic. An
even safer implementation would be to use an IDS covering the entry points to the
network.

3.4 Private cloud

The use of a private cloud for data storage is also an option for the user. Private
cloud consists of using virtualized computing resources using the company’s physical
on-premises hardware or a cloud service provider. In our use case, it is unlikely
the client will use a cloud provider for data storage, as they already did not want
to use the sensor manufacturer’s cloud. This leaves using their own provisioned
hardware to establish a cloud network and this option should only be considered if
the client wishes to deploy a very high number of sensors. A hybrid approach could
also be considered, as using a private cloud solution is more adaptable than having
to remodel your storage layout every time you want to add more options.

Threats to physical storage are still relevant in this case, but a distributed
cloud adds another layer of access to storage which makes the end server harder
to reach, meaning more difficulty for the attacker. But it also brings about more
network oriented threats, as access points are multiplied in a cloud environment.
A private cloud is often expensive to set up, requiring more space and hardware
than conventional storage options as well as having to virtualize the whole storage
environment.

3.5 Data storage format

One would think that storing data in encrypted fashion is beneficial, but the client
should focus more on clearly implementing authorization privileges. The first option
for storing encrypted data is receiving encrypted data and immediately storing it,
meaning that the client would need to store the decryption key that was used at the
time data was received if they ever needed to decrypt that data. This is extremely
unsafe, as keys should be properly deleted once they are no longer in use.

The second option consists of decrypting the data upon reception then using a
separate encryption key only used for storage. This is feasible, but having to decrypt
data every time you want to access it is not viable compared to trusting that access
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to that data is truly secure. Implementing proper user access and a good
firewall is more important than encrypting storage data.

3.6 Discussion

We have seen our four on-premises storage option. Table 3.1 compares the trade-
offs that have to be made for each solution, in terms of security, implementation
costs, limitations and user-friendliness.

Storage
type

Security Implementation
pros

Implementation
cons

Direct
Attached
Storage

The direct connection
from the client to the
server means that com-
promising the client
also means compromis-
ing the server. Access
should be restricted to
reading and writing of
data.

This option offers
low-latency commu-
nications due to the
proximity of the
client and server.

This option limits
scalability and re-
quires the client
and server to be
physically close to
each other.

Network
Attached
Storage

More access points
means more attack
vectors. But the added
switch on the entry
point can be used to set
up and extra network
monitoring service.

This option is not
limited by physi-
cal distance and al-
lows the intercon-
nection of several
NAS as well as mul-
tiple client access.

This option does
not offer higher la-
tency communica-
tions than DAS and
SAN

Storage
Area
Network

More access points
means more attack
vectors. But added
switches to interconnect
storage options can be
used to set up and extra
network monitoring
service.

This option offers
low-latency commu-
nications due to
Fibre Channel us-
age, is not lim-
ited by physical dis-
tance and allows
the interconnection
of several networks
storage options.

This option re-
quires more up-
keep.
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Storage
type

Security Implementation
pros

Implementation
cons

Private
cloud

Virtualization of the
whole storage infras-
tructure makes access
harder. But if the cloud
is accessed through the
an internet browser,
this leads to a whole
slew of new threats.

Virtualisation of
the network makes
management more
user-friendly.

This option is more
costly than the oth-
ers because of virtu-
alization.

Table 3.1: Comparison of on-premises storage options

No matter the storage choice, the user will have to deal with the physical storage
unit’s management interface. This can cause security flaws in the system as the
interface creates one or more extra access points, which adds to the need for proper
network security. These interfaces must also be password protected which leads to
threats linked to password recovery as cited in Table 4.4.





Chapter4Network Architecture Threat Model

One of the main challenges in this thesis is identifying the possible threats to
our network architecture. In this chapter, we will discuss the different threats IoT
devices face in our context and what choices can be made to mitigate these threats.

Figure 4.1: Combined cloud & on-premises storage configuration

We will base our analysis on Figure 4.1, the same figure as the one discussed in
Section 1.2. It encompasses all possible data flows for sensor data in an on-premises
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solution. The amount of data going to the public cloud or the on-premises storage is
up to the client. The separation of data will be further discussed in Section 5.5.

Each device will be viewed as a singular node, to consider what is needed at
every level following the Spoofing - Tampering - Repudiation - Information
Disclosure - Denial of Service - Elevation of Privilege (STRIDE) threat
modeling method, as described in Chapter 3 of Threat Modeling by Shostack [Sho14].
Each threat is equivalent to a security property a system should have. Respectively to
each threat in the STRIDE model these are; authentication, integrity, non-repudiation,
confidentiality, availability and authorization (as described in Section 2.1.1.

We will consider each element of Figure 4.1 and its potential threats, using the
STRIDE-per-element method, as described in page 78 of Threat Modeling [Sho14].
This method of STRIDE threat modeling consists in cataloguing threats for each
device that can be found in the chosen network architecture. Threats will be ranked
Low, Medium or High according to the potential system exposure or sensitive data
access they can give an attacker. We will not, however, be looking at threats to the
end devices as they are varied and depend more on the type of device.

4.1 Sensor Threat Model

We will begin our analysis with the sensors. They communicate solely with a
gateway which acts as a transmitter as it has a stronger range and passes on the
information to the next node (here being the public cloud or on-premises storage).
There could be more than one gateway for the sensor to connect with and send the
information to, so during the connection phase (which is occasionally renewed), a
sensor will look for the gateway offering the best latency (among other factors) and
pair with it. Sensors also have very little computing power, which limits them in
some security parameters.

STRIDE
Category

Threat Solution Threat
Level

Spoofing A spoofed machine could
pretend to be the gateway
during the pairing phase and
communicate with the sen-
sor.

Having a proper au-
thentication phase upon
connection absolves this
threat.

Low
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STRIDE
Category

Threat Solution Threat
Level

Tampering An attacker with access to
the sensor could potentially
alter sensor data before it
is sent out, making it give
wrong readings.

Physical and backdoor
access to the sensor must
be limited - as we are
focusing on lightweight
sensors this is mitigated.

Low

Repudiation A spoofed gateway can
claim not to have received
data from the sensor, with
enough repetition this can
cause a DoS.

Set a limit on re-emission
of data (once a connec-
tion is secure).

Low

Information
Disclo-
sure

If an attacker can find the
encryption keys used for
communication in a sensor’s
storage they have total ac-
cess to all further communi-
cations.

This depends on the
safety of key storage cho-
sen for the sensor, dis-
cussed in Section 5.6.

High

An attacker can passively
monitor power or CPU con-
sumption on a sensor to gain
information on what calcu-
lations are being done for
cryptographic purposes, or
for data being recorded and
sent.

Implement randomised
power processing to
avoid power analysis
attacks. This is harder
on a lightweight device.

Medium

Denial of
Service

An attacker can send a
surge of requests to the sen-
sor and monopolise its net-
work resources by having it
treat these endless useless
requests.

Blacklist any address
that tries this - although
a lightweight sensor may
not be fast enough to pre-
vent such an attack.

Medium

Physical damage to the sen-
sor may render it unavail-
able to collect or send data

It is assumed that the
sensor is not physically
accessible to an attacker,
although wear and tear
may happen.

Low
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STRIDE
Category

Threat Solution Threat
Level

Elevation of
Privilege

Gaining full access to the
sensor gives you access to
unencrypted data. Even
worse, an attacker could pos-
sibly falsify data with such
access.

This again depends on
gaining access to the sen-
sor. A lightweight sen-
sor makes accessing data
harder, as instructions
are more automatic.

Medium

Table 4.1: STRIDE threat model of sensors

It seems that with sensors, the issue is the level of access an attacker can attain
on the device itself [SPA+21]. Network attacks such as ARP-spoofing depend on
the device’s packet filtering capabilities. Since we are focusing on more lightweight
sensors, such as those used by DT, these types of network attacks can be more
effective given that a sensor with lower computing power cannot match a stronger
sensor’s firewall capabilities. We will consider attacks that require full access to the
sensor as out-of-scope, as a lot of tampering is needed to gain full access on such a
miniature device.

4.2 Gateway Threat Model

Gateways act as transmitters for encrypted data between sensors and either the
public cloud or the storage. Gateways also have internet access, compared to sensors.
There may also be an extra layer of encryption added between the gateway and the
destination point which strengthens encryption on that end if the protocol is safe
enough.

STRIDE
Category

Threat Solution Threat
Level

Spoofing
A spoofed sensor could po-
tentially connect with the
gateway.

Having a proper au-
thentication phase upon
connection absolves this
threat.

Low

A spoofed sensor could pass
as an existing sensor activat-
ing its re-connection phase.

The authentication
phase also absolves this
threat. Re-connection
should also trigger
authentication.

Low
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STRIDE
Category

Threat Solution Threat
Level

Having the right sensor data,
one could bypass authentica-
tion with the gateway.

Implement a routine
manual check-up of con-
nected sensors to avoid
this.

Medium

Tampering
With access to the gateway,
an attacker can tamper with
firewall setup.

Access to the gateway
must be closely moni-
tored and limited to only
a few users.

Medium

An attacker could alter sen-
sor data passing through the
gateway, rendering it un-
readable or false.

Access to the gateway
must be closely moni-
tored and limited to only
a few users.

Medium

Repudiation A spoofed sensor or storage
entity can claim not to have
received data and trigger a
DoS by having the gateway
constantly resend packets.

Set a limit on re-emission
of data (once a connec-
tion is secure).

Low

Information
Disclosure

None. The gateway only
transmits encrypted data.

None needed. None

Denial of
Service

Gateways are vulnerable to
IP/ARP spoofing and any
other network congestion at-
tack just like sensors.

A strong firewall setup
should prevent this type
of attack. If not, an IDS
will be more secure.

Low

Elevation of
Privilege

An attacker that manages to
gain total access to the gate-
way could potentially gain
access to the rest of the sys-
tem.

Having a strong fire-
wall is a must, as well
as adding an extra au-
thentication phase to ac-
cess certain capabilities
of the sensor, like poten-
tial encryption keys be-
tween it and the cloud.

High

Table 4.2: STRIDE threat model of gateways

In the case of gateways, the threat of having access to sensor data is removed,
unless an attacker can break the encryption protocol between the sensor and the
storage. This is because a gateway only relays information, it is encrypted before
being sent to the gateway. Gateways also have more processing power and better
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network protection capabilities than sensors, thus mitigating some threats they have
in common.

4.3 Cloud Threat Model

Cloud networks are large networks distributed over multiple data centers. We
will focus on public clouds here, to treat the pre-existing cloud solution offered by
the sensor manufacturer in our use case, as shown in Figure 4.1. Note that if a client
wanted to set up a private cloud as their on-premises option, the threats would be
the same as on a public cloud, albeit a little scaled down due to the local aspect of
the cloud, making credential attribution and data access the client’s responsibility.

STRIDE
Category

Threat Solution Threat
Level

Spoofing
Unauthorised changes in ad-
min privileges for certain
users can lead to a security
breach.

Closely monitoring and
logging admin activities. Medium

Compromised login creden-
tials (potentially obtained
through brute force attacks)
could be used to gain access.

Check login credentials
for potential misuse; the
same user logged in
twice, a discarded user
being used, etc.

Medium

Tampering
Any unauthorised alter-
ation/deletion of logging
data or alteration of logging
policies can have conse-
quences on later log needs
for bugs.

Do not leave logging
data in the clear.

Low

An attacker can alter data
or metadata being sent to
the device.

Proper encryption ab-
solves this problem.

Low

Repudiation An attacker can attain ac-
cess to an insecure cloud by
claiming not to have user ac-
cess.

This is easily avoided by
applying the above prin-
ciples.

Low

Information
Disclo-
sure

Unauthorised cloud out-
bound connections to mali-
cious IP addresses.

Set up a strong fire-
wall with white-listed ad-
dresses and monitor new
connections closely.

Medium
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STRIDE
Category

Threat Solution Threat
Level

Unauthorized access to data
or logging data.

Closely monitoring and
logging admin privileges.
Add an authentication
step for access to unen-
crypted sensor data.

Medium

Denial of
Service

Multiple simultaneous con-
nection attempts can cause
a DoS.

Once again strong fire-
wall setup and/or IDS is
needed against this but
should suffice.

Low

Elevation of
Privilege

Unauthorised change of priv-
ilege for users can be danger-
ous.

Once again, closely moni-
toring and logging admin
activities avoids this.

Low

Table 4.3: STRIDE threat model of public clouds

As we can see from Table 4.3, threats to the cloud can come from outside of the
cloud network, as with the sensors and gateways, but also from inside. Users with
malicious intent or given too much privilege can be a danger [UVSL18].

Threats to the sensor manufacturer’s public cloud are not our concern here. We
will focus on threats that apply to the on-premises storage, but included the analysis
as that storage may be a private cloud. If so, user privilege and admin privilege
must be closely monitored and the cloud’s outbound connections must be limited to
only certain connections needed for a production cloud environment, like access to
software package repositories.

4.4 Server Threat Model

In this section we will look at potential threats to a server, which are the physical
backbone of any on-premises storage choice (see Chapter 3). Servers are hardware
devices (although they can be digitised on a computer) that offer services to clients,
including data storage. They are often quite powerful and managed remotely.



32 4. NETWORK ARCHITECTURE THREAT MODEL

STRIDE
Category

Threat Solution Threat
Level

Spoofing An attacker can infiltrate
the storage with stolen cre-
dentials or by brute forcing
them.

Closely monitoring and
logging admin activities. Medium

Tampering An attacker can alter data
or metadata being sent to
the device.

Proper encryption ab-
solves this problem.

Low

Repudiation An attacker could poten-
tially falsify an end device’s
request for sensor data.

Proper authentication
and firewall setup
rectifies this.

Low

Information
Disclo-
sure

If an attacker can gain ac-
cess to deallocated memory
or deleted storage blocks,
there may be some accessi-
ble data if the deletion was
not done properly.

Protect all memory and
storage blocks and delete
after deallocation.

Low

Storage traffic can be sniffed
through power analysis.

It is assumed that the
server is physically inac-
cessible to attackers.

Low

If an attacker can snoop on
the buffer caches used by the
storage device, they have ac-
cess to the data.

Make sensor data the
only accessible thing and
set up good network pro-
tection.

Medium

Denial of
Service

If an attacker can tamper
with the proper functioning
of the OS or kernel (through
subversion attacks) they can
cause damage to the data.

Limit access to the server
and log divergent opera-
tions.

Medium

Physical damage to the stor-
age will render it useless.

It is assumed that the
server is physically inac-
cessible to attackers.

Low

An attacker with network
access to storage can cause
a DoS through network con-
gestion.

Strong firewall setup
and/or IDS is needed
against this but should
suffice.

Low
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STRIDE
Category

Threat Solution Threat
Level

Disabling the storage’s
power input renders it
useless.

It is assumed that the
server is physically inac-
cessible to attackers.

Low

Elevation of
privilege

If an attacker can gain ac-
cess to access credentials for
the storage device, they will
have access to all data.

Make password protec-
tion or encryption too
hard to compute and do
not store passwords on
the network.

High

Table 4.4: STRIDE threat model of storage servers

As long as a server is physically inaccessible to attackers, the most dangerous
threats (such as access to data, being able to tamper with data, tampering with
the server’s inner operations) can be avoided. Admin privileges must also be closely
monitored and a strong firewall must be set up around the access points to storage
to avoid fraudulent access to servers, no matter the storage configuration chosen.

4.5 Discussion

As we have seen from our threat models, each node of the sensor data path has
its own particular set of threats that must be protected against. But there are some
threats common to all these devices that seem to come up often; unauthorised data
access and unauthorised connection to the devices. These issues can be dealt
with by implementing proper authentication and encryption between nodes. Key
exchange and key storage are very important aspects of securing communications
from sensor to storage and will be further expanded upon in Chapter 5.





Chapter5Key Management

As was previously stated in Chapter 4, the main threats that the connected devices
of our use case face are unauthorised access to devices and data confidentiality. These
threats can be respectively circumvented through the implementation of proper
authentication (giving authenticity to the transferred data) upon connection and
encryption (giving confidentiality to the data) across communication channels.

Figure 5.1: Sensor data path in IoT environment

We will be focusing on the encryption between the sensors and the on-premises

35
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storage, which is represented by the red arrow in Figure 5.1. The metadata sent to
the cloud is to be encrypted and transferred according to the sensor manufacturer’s
preferences.

Communication on the smart devices’ side is out-of-scope here. We will not discuss
re-transmission of stored data, although the protocols proposed for sensor-to-storage
and sensor-to-cloud communication can be adapted for communication with end
devices, as they have much more computing and communication capabilities than
lightweight sensors.

Sensor data should only be accessible to the two end points of the communication;
the sensor and the storage. First, to ensure secure communications, the sensor
must authenticate itself to the storage and vice-versa, with the gateway acting as a
middle-man transferring messages from one to the other. During the authentication
phase, the end points will synchronise keys (more details in Section 5.4). These keys
will be session keys, as discussed in Section 2.2.3. Once proper authentication is
achieved, the communication channel established is considered secure. The session
key(s) will then be used to encrypt all messages between the sensor and storage to
ensure confidentiality.

The extra green arrow in Figure 5.1 represents the possible use of an extra network
protocol to transfer data from the gateway to the on-premises storage or the public
cloud, like the use of TLS encryption or HTTPS Post requests. This extra protocol
does not affect in any way encryption between the sensor and the storage, it is
only an added encapsulation layer (as mentioned in Section 2.3) to ensure secure
communications on this channel.

5.1 Authentication without a pre-shared secret

A lightweight sensor does not possess the required computing power to support
the whole TLS protocol, which is one of the most common ways to establish secure
communications among IoT devices. TLS’s specifications require end devices to
support many different cryptographic primitives and this means a lot of code space
required to implement different support mechanisms of TLS use cases.

Nonetheless, authenticity is required between the two end-points. As we have
seen in Chapter 4, there are many ways an attacker can falsify their identity, and
this must be prevented. Authentication must be done through some other means
here. It must also be renewed at regular intervals (the length of those intervals is up
to the user) in order to avoid key recovery attacks.

One solution is to let the client run the key generation according to the specifica-
tions given by the sensor manufacturer, using a method relying on a PRNG. In this
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case there will be a drop in user friendliness during the authentication phase because
the client will have to manually connect each sensor, running the authentication
protocols specified by the manufacturer.

This option, however, does not satisfy authenticity of the end-points. There
must be a pre-shared secret between the two sensor and storage in order for them to
properly identify each other.

5.2 Pre-shared secret proposition: the master key

Another proposition, and our preferred mode of operation would be to embed
a master key onto the sensor during manufacturing. This master key would be
a random string of required length for further derivation of other keys used for
authentication and encryption.

This master key could be used for symmetric or asymmetric authentication and
encryption. In the case of symmetric cryptography, the master key would be the
secret key, and be pre-shared between both entities (as discussed in Section 5.3.1).
In the case of asymmetric cryptography, the master key would be the private key
and the public key would be derived from that private key, in an RSA-like fashion.
The private and public key pair would then be used for further DH exchanges as well
as asymmetric key encryption. This would also require that the same practices be
implemented storage-side.

5.2.1 Master key generation

The master key must be a randomly or pseudo-randomly generated key of suitable
size for the client’s security preferences. This key must be un-recoverable through
analysis of the protocol design and kept secret as all other keys will be derived from
it.

There are a two options when it comes to generating further encryption keys
(this includes the public key if we are in the asymmetric cryptography option):

– Using a KDF to produce further keys, meaning the master key plays a role in
the making of the keys but forward secrecy is respected.

– Producing random keys using a PRNG, which is more costly in computing
power, and makes the master key obsolete.

The first option is preferred. Using a KDF is faster and cheaper and does
not give any information on the master key from the derived keys and vice-versa.
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This allows us to achieve forward secrecy in the possible implementation of a DH
handshake.

5.2.2 Authentication

To achieve authentication, there needs to be a pre-shared secret between the
sensor and storage. Using the master key, our idea is to have the sensor’s public key
be known to the storage and vice-versa before deployment of the sensor. In the case
of symmetric key encryption, the master key and the secret key are one and the same,
and this key is pre-shared between the two entities. That way, when communications
begin, they can both broadcast their public keys and recognise that they are dealing
with the right device on both ends.

5.2.3 Manufacturing & master key exchange

How do we pre-share the public keys in a secure way? One option would be to do
it during the manufacturing process. First generate the master key and flash it
onto the sensor. Following the asymmetric option, derive the public key from it then
give that public key to the client along with the sensor. On the other side, the client
must also generate a public key and share it so the sensor can store its value which
will allow it to make that first connection to the storage. In the symmetric option,
the master (secret) key is being shared with the client.

This solution could be developed into an adaptable Application Programming
Interface (API) that the client could deploy onto their storage that allows them to
reference the storage’s public key from the asymmetric key pair used for connection
but that may be a resource-heavy task for the manufacturer to implement.

5.2.4 Authentication through the cloud

Another authentication solution would be to use the pre-existing authenti-
cation protocol between the sensor and the cloud to share this public key
or secret key. By using the same connection on the storage’s side, one could also
have the storage connect to the cloud to establish mutual authentication on either
side, thus creating a safe channel through which the sensor can communicate the
sensor’s public key to the storage and vice-versa (or send the secret key in the case
of symmetric cryptography).

After this step, the connection through the cloud is dropped and the sensor and
storage can authenticate now knowing each other’s public keys. After this phase,
communications can ensue, with the steps further developed in Section 5.3 and
Section 5.4. This sharing of a common secret is shown in Figure 5.2
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Figure 5.2: Pre-shared secret through the cloud

This would allow for the return to classic cloud storage if the user ever wished
for it or could be used as a backup storage for the cloud, as mentioned in Section 1.1.
Also, if the user chooses to store data types on different storage devices, this option
would enable us to differentiate between them by referencing their ID to the cloud.

In any of these solutions, a certain level of trust is required from the client to the
sensor manufacturer. The manufacturer will see this original authentication phase
unfold and must be trusted to let operations take place. Also, the manufacturer has
access to the master key during manufacturing and are there during the original
symmetric key pair generation, as they must communicate the public key to the
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client. This gives them access to future communications even if they claim not to
store those keys and goes against the original need for user secrecy.

5.3 Encryption using the pre-shared secret

We will now look at how this master key can be used for further encryption. We
will incrementally discuss improvements of these solutions in terms of security,
feasibility and user friendliness in the following sections. At each step, we will show
why each of the earlier propositions are not feasible or insecure and what steps we
have taken to improve on them.

The following propositions follow the assumption that the pre-shared key or
keys have been successfully delivered between the sensor and the storage, using the
implementation of the master key and authentication through its derived public key,
as discussed in Section 5.2. Authenticity between the two entities is already
validated.

5.3.1 Symmetric key encryption

The first idea that comes to mind is the simplest; to use the pre-shared
symmetric key for encryption. Today, a key of at least 128-bits is required to
circumvent key retrieval attacks for symmetric cyphers as recommended by the NIST
[BR19]. But the lightweight capabilities of the sensors may be more prone to other
cryptographic protocols (see Chapter 6). These steps can be seen in Figure 5.3.

Following Section 5.2, the symmetric key used in this case would be the master
key and would be common to both the sensor and the storage. In the diagram, K is
the master key. At manufacturing, the key would be safely delivered to the client
and be used to encrypt all communications.

Impact:

– Security

◦ The symmetric key protocol needs to be properly secure, with a key of
appropriate length.

◦ The constraint of user privacy from the sensor manufacturer is not re-
spected in this case, as they have access to the original symmetric key,
the master key in this case.

◦ Authenticity is respected here, but more because the two end-points are
the only ones able to decipher the data. Adversaries cannot decipher their
communications if sent in a broadcast manner but the entities have no
way of properly identifying each other.



5.3. ENCRYPTION USING THE PRE-SHARED SECRET 41

Figure 5.3: Symmetric Key Communication

– Feasibility: This solution is rather easy to implement.

– User friendliness: Encrypted communications are ready to send immediately
after connection.

5.3.2 Asymmetric key encryption

Another simple design would be using asymmetric encryption directly from
the key pairs used for authentication. The NIST suggests using a key of at least 256
bits when implementing asymmetric key encryption [BR19]. After the authentication
phase using the public keys of each end-point, communications would be encrypted
as described in Section 2.2.1. These steps can be seen in Figure 5.4.

Impact:

– Security:

◦ It is about the same level of security as the symmetric key encryption,
depending on the cypher chosen. See different options for these cyphers
in Chapter 6.

◦ The constraint of user privacy from the sensor manufacturer is still not
respected in this case, as they have access to the master key.

◦ Authenticity is now respected, as we are following the implementation of
Section 5.2.

– Feasibility: Asymmetric key encryption may be quite heavy in terms of resources
on the sensor’s side.
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Figure 5.4: Asymmetric Key Communication

– User friendliness: Encrypted communications are ready to send immediately
after connection.

5.4 Key exchange & encryption using the pre-shared secret

Many different options for key exchange exist, using symmetric or asymmetric
keys (see section 2.2 for more detail). The solutions presented in this section are
an improvement over Section 5.3, which immediately used the master key or pairs
of keys derived from the master key for encryption. We continue our incremental
approach here with an added key exchange step, where we now use the master key
to derive new keys for encryption.

5.4.1 Asymmetric handshake & symmetric key encryption

This implementation is a hybrid between asymmetric key cryptography and
symmetric key cryptography. After authentication, the private and public key pairs
from both entities are used to establish connection using a DH handshake or
ECDH key exchange protocol (see Section 2.2.4). After this handshake, an
agreed upon secret is calculated and then used for further communications, making
computations less complex for the sensor.

We assume that a KDF is used here to generate the pair of symmetric keys used
during the handshake, as specified in Section 5.2 to avoid key recovery. These steps
can be seen in Figure 5.5.
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Figure 5.5: Asymmetric Key Handshake + Symmetric Key Encryption

Impact:

– Security:

◦ The constraint of user privacy from the sensor manufacturer is still not
respected in this case, as they have access to the master key.

– Feasibility: An improvement is made on the asymmetric key encryption im-
plementation as the use of a symmetric key for encryption is less resource
intensive.

– User friendliness: This option requires the storage owner to implement the
protocols required or that the sensor manufacturer deploy it on the storage.

5.4.2 Asymmetric handshake renewal

The solution of asymmetric key exchange followed by symmetric key encryption
answers the problem of authentication but the master key was provided by the
sensor manufacturer. Theoretically, if they wanted to decrypt sensor-to-storage
communications they could, as they embedded the master key onto the sensor. This
is a cynical view of the trust given to the sensor manufacturer, but if a client wants
their data to be seen only by them, an extra step must be taken.

To keep communications private from the sensor manufacturer, a possible solution
would be to update public keys after the authentication phase, using the
original key generation protocol with the KDF. This time, key generation would
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not be done under the eyes of the manufacturer and the new key pair would be
completely secret. The rest of the protocol would go on as planned. These steps can
be seen in Figure 5.6. This would require a little more computing power from the
sensor but is feasible.

Figure 5.6: Asymmetric Key Handshake with renewal + Symmetric Key Encryption

Impact:

– Security: User privacy is now achieved.

– Feasibility: This solution demands another calculation for key generation to be
done by the sensor. Finding the most lightweight protocol for this in Chapter
6 is important.

– User friendliness: This succession of events is quite long to implement for the
user. It should be automated or at least properly documented.

5.4.3 Session key & key renewal

This solution is a slight improvement following the key renewal solution. It
answers the possibility of a connection drop during communications, be it accidental
through some network failure event or intentional, to renew connections.
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The solution is implemented as such: every time reconnection is required, a new
DH or ECDH exchange is done to compute a fresh symmetric key used to
encrypt this new session’s communications. These steps can be seen in Figure 5.7.
Re-connection should also be forced periodically to avoid giving attackers too much
time and information for their brute-force attacks. Another potential reason would
be that a node in the network is compromised and has leaked keys to an attacker,
rendering all future communications unencrypted for that attacker [MCLD14].

Figure 5.7: Asymmetric Key Handshake with renewal + Symmetric Key Encryption
with reconnection

The period at which this key renewal should be done is up to the user. This
depends on the size of the key and the capabilities of the sensor. If the key is longer
then renewal need not be done so often. Also, if the sensor is limited in terms of
calculations, key renewal can not be done too often you have to trade off security
for battery life. Another alternative would be to renew keys any time a sensor has
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downtime, for example if a sensor is only used during the day, set renewal every
morning before it starts collecting data.

Depending on the cypher used, the possibility to re-use some parameters from
the last session to avoid some setup costs could be done. For example, some cyphers
use metadata to calculate new keys, counters and such, in order to make renewal
costs less than initialization.

Impact:

– Security: This solution avoids threats related to key re-use attacks.

– Feasibility: It remains the same.

– User friendliness: The need for a ”home-brewed” protocol or an API developed
by the manufacturer for the client to deploy becomes quite clear as this is a lot
of steps to follow.

5.5 Separating private and public data

In the Section Section 5.3 and 5.4 we focused on sensor-to-storage communications.
The data going to the cloud is metadata about sensor operations and its ID. This
data should not allow the sensor manufacturer to decrypt communications between
the sensor and the storage. By this we mean the already established cloud in our
use case (see the orange arrow in Figure 5.1). In this section, we will discuss the
intricacies of separating data for storage and data to the cloud.

Differentiating data types must be done sensor-side. All communications
go through the gateway but they are already encrypted at that step. The destination
for the data is referenced in the network packet sent by the sensor and the gateway
redirects the packet to its proper destination. The gateway does not look at the data
to tell where it must be forwarded to.

Any time the sensor takes a reading, it will encrypt it, save the encrypted data in
its RAM and encapsulate it in a packet with the storage as destination. If it needs to
send analytic data to the cloud, the cloud’s address will be referenced in the packet.

5.6 Key storage

Storing keys is a very important part of key management. Even with an unbreak-
able encryption cypher, if an attacker can retrieve keys on a device, then they can
decrypt all communications.
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Bad practices for key storage are implementations like hard-coding keys into source
code or storing them in environment variables and leaving them in configuration files
that do not require permissions. Keys should also be stored separately from the data
they encrypt and decrypt, avoiding attackers getting lucky by gaining access to one
and having access to both.

When available, the best key storage options for a system are:

– A Hardware Security Module (HSM). These devices are dedicated cryp-
tographic processors used for secure key storage, encryption/decryption, digital
signatures and authentication purposes. They can be attached onto a device or
accessible through a local network.

– Key Vaults, such as those used in Amazon Web Services’ Key Management
Service and Microsoft Azure’s Azure Key Vault. These are key storage options
proposed by public cloud providers.

– Secure Storage APIs, for example the ProtectedData class [Mic] offered by
Microsoft’s .NET framework.

These options provide safe management and storage of keys, they are tamper-
proof and can offer the possibility of key generation as well. If these options are not
available, keys should at least be stored in an encrypted fashion, using a
KEK. That KEK can also be derived from the master key and should be stored apart
from the other keys, preferably on a secure other device. If that is not an option,
another less safe option would be to use obfuscating code to hide the private
or secret key. The idea is to use very confusing code used to decipher the stored
encrypted keys, making attackers have to go through a tedious reverse-engineering
phase when trying to obtain these keys.

In our use case, the devices affected by key storage are the end devices for
communications; sensors, storage and cloud. Each of these has different key storage
capabilities. For example, the sensor does not have access to key vaults and neither
does the on-premises storage if it is not a private cloud utilizing the aforementioned
services.

The best option for key storage sensor-side would be to use a HSM. If this is
not possible, the microcontrollers that the sensors run on should store keys in Static
Random Access Memory (SRAM) when using them because it allows small access
time, although it is not a very secure solution, as this would require the device to
always be turned on. The key should be loaded into SRAM from flash or other
non-volatile memory for instance. Some newer microcontrollers are also designed
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with key storage in mind. In the case of the MAX32558 [Int], this is done using
256-bit AES key storage.

5.7 Discussion

In this Chapter we discussed how to achieve authenticity and confidentiality of
sensor data in order to combat the threats exposed in Chapter 4.

To achieve confidentiality, we designed the use of a master key which can be used
to derive all keys needed for further encryption in sensor-to-storage communications.
After a step-by-step look at proper encryption methods, we arrived at Section 5.4.3,
which shows the most complete communications protocol we have designed using the
master key.

To achieve authenticity, there was a need to have a pre-shared secret between
the sensor and the storage. This pre-shared secret was either the entities’ respective
public keys in the case of asymmetric cryptography or the master key itself, being
a secret key in the case of symmetric cryptography. To share this common secret,
two options were outlined; sharing the secret at the manufacturing phase,
as discussed in Section 5.2.3 and sharing the secret through the pre-existing
connection to the cloud, as discussed in Section 5.2.4. These two options are
compared in terms of security, feasibility and user-friendliness Table 5.1.

Comparison
term

Sharing the secret at man-
ufacturing

Sharing the secret
through the cloud

Security It must be done in a secure
room and it relies on an un-
trusted method of delivering
the secret to the storage on
the client’s side.

It relies on the secure pre-
existing mutual authentica-
tion protocol with the cloud
which is considered safe.

Feasibility It requires more input from
the client at manufacturing,
either physically or through
some secure sharing protocol.

It requires the storage to be
able to have cloud access.

User-
friendliness

In the case of asymmetric
keys, it requires the client to
use the same key pair as the
one referenced at manufactur-
ing.

It allows the client to switch
back and forth with cloud
storage. It is not possible
if the client wants to deploy
their sensors in a network hav-
ing no internet access.

Table 5.1: Comparison of pre-shared secret options
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The solution for mutual authentication of sensors and storage using the master
key that we have proposed in Section 5.2 is valid but requires some coordination from
the sensor manufacturer and the client when it comes to sharing the pre-shared secret
during the manufacturing phase. This requires a lot of trust from both entities
and could potentially slow down the manufacturing process drastically. Therefore,
this solution is adapted to clients who order sensors by the hundreds if not thousands.
For a client who only wants a few sensors to implement in their home and does not
like having to deal with the manufacturer’s cloud, this solution is not financially
valuable for the manufacturer. We suggest the client either use the already existing
cloud protocol or the authentication-through-cloud solution suggested in Section
5.2.4.

The solution we have proposed in Section 5.4.3 runs authentication to then use
a symmetric key for less encryption and decryption calculations, which allows for
lower latency. In the next chapter, we will be looking in detail at what lightweight
cyphers can be implemented to run authentication and encryption for our purposes.
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As we have seen in Chapter 5, there is a need for secure, lightweight encryption
cyphers, both symmetric and asymmetric, depending on the preferred option. An
AEAD alternative would also be welcome as it adds more security. We have also
talked about using a key exchange protocol, but there is no need for a lightweight
alternative as ECDH key exchange is not too demanding for a sensor [RMF+15].

But how lightweight a protocol do we need? A typical microcontroller used in
lightweight sensors today would have the specifications of a CC1350 MCU [Ins] or a
MAX32558 [Int]. As stated by Trappe Howard and Moore [THM15], implementing
even the RC5 algorithm [Riv95], one of the most simple block cyphers to exist, requires
32-bit rotations which already pushes the limits of these 32-bit microcontrollers.

Cryptographic algorithms also require RAM and lookup tables to store calculations
or keys needed for implementation. These resources are also required by the sensor
to operate core functionality which means devoting them to security functions for too
much time results in a performance drop for the sensor. This is why finding a proper
lightweight cryptographic protocol is crucial for encrypting IoT communications.

The NIST holds workshops and conferences to find the best cryptographic primi-
tives. The primitives go through rigorous testing, attack-resistance trials, benchmark-
ing and a full cryptanalysis of the primitives is done. At the end, the best candidates
get standardised and become part of the NIST standards, which gives them a highly
reputed seal of approval. The NIST holds a particularly interesting workshop focused
entirely on lightweight cryptography [TMC+21]. The last workshop was held on May
9-11 2022 and defined a list of finalists which will be further evaluated and possibly
standardized in 2023. We will study some of these finalists and compare them in
terms of performance and security.

We have also found articles referencing lightweight cyphers; a study by Danda
et al. [DSJ20] and another by Hammad et al. [BZ17]. These studies differentiate
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cyphers using different metrics, notably classifying them by GE (Gate Equivalence)
requirements. Although this unit of measurement is dependent on CMOS technology
implementation of the cypher, it gives a generally good idea of resource requirements.

We will look at different promising cyphers from these sources and see how they
are implemented, as well as what makes them lightweight.

6.1 Keccak

Keccak [Tea] is a hash function based on the sponge construction principle. The
sponge construction, as seen in Figure 6.1 takes a permutation f that transforms a
fixed-length input into an output of the same length. It adapts this function into a
variable-length input and output construction by breaking a variable-length input
into blocks which it will XOR with the previous block that was run through the
function f. This is the absorbing phase. The squeezing phase consists of running the
same iterations but this time taking out the blocks one by one, leaving us with an
output of desired length.

Figure 6.1: Sponge construction diagram

The originality in Keccak is the permutations f that are fed into the sponge
construction. Keccak works by using a certain permutation chosen from a set of seven
Keccak-f[b] permutations, with b being the width of the permutation. Although the
Keccak-f[1600] permutation is more commonly used, the Keccak-f[200] and Keccak-
f[400] permutations seem to give the best results in terms of required computing
power, particularly when using a serialized architecture hybrid of Keccak [KY10].
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For example, by serializing the common Keccak-f[200] permutation, an area of 2.52
kGE is achieved, with throughput of 8 Kbps, 900 cycles per block and a power
consumption of 5.6 µW/MHz.

Keccak can also be used for authentication and authenticated encryption by
using the duplex method [BDPV12] and thus could suit our needs. Other encryption
cyphers presented in this chapter make use of lightweight hash functions to operate,
and Keccak could also be a good candidate for them. It is the winner of the SHA-3
competition and has been standardized in the NIST standard FIPS 202. We think
this is a viable candidate for lightweight encryption of sensor data.

6.2 A5/1

A5/1 is a very widely used protocol to this day, particularly used in Global
System for Mobile communications (GSM), a standard for mobile communications
and the predecessor to 3G. It is very lightweight due to the key size being only 64
bits, which makes it suffer on a security standpoint. A5/1 is a shift cypher, meaning
it is a symmetric key cypher. It can also be used for key generation.

Figure 6.2: A5/1 LFSR keystream generation

A5/1 functions as such; It encrypts 114-bit chunks of data by XOR’ing them with
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a generated keystream. The keystream is generated from 3 Linear-Feedback Shift
Registers (LFSRs), as seen in Figure 6.2. They are initialised with all bits at 0. Each
of these LFSRs has a clocking bit, which are examined at each cycle to determine
the majority bit. If this majority bit is the same as a register’s clocking bit, that
register is clocked. A register being clocked means that the ith bit of the secret key
is added to the least significant bit of that register. This is done for 64 cycles, one
cycle for each bit of the secret key. This is then repeated for the 22 bits of the frame
number. This use of the majority bit for clocking ensures pseudo-randomness by
having all 3 registers shift asynchronously.

Today, a 64-bit key can be cracked in many different ways and in a few minutes
using a powerful enough computer [BSW00]. A5/1 is easy to implement but does
not seem robust enough when compared to other alternatives, especially given the
key-size used. We chose to mention it to show that one of the more lightweight
alternatives we found (according to Dhanda et al. [DSJ20]) achieves this because of
its drastic trade-off in security.

6.3 APE

Authenticated Permutation-based Encryption (APE) is a block cypher that
relies on the use of permutations from lightweight hash functions such as Quark
[AHMN10], Spongent [BKL+11] or PHOTON [GPP11]. It has an adaptable key-size
and promising throughput and area usage results [Ele13].

Figure 6.3 shows APE’s mode of encryption. p is the chosen hash function in
the construction with A the associated data (extra security measures like a MAC
or a Nonce) and M the message (sensor data in our case). The associated data is
XOR’ed block-by-block with part of the previous hash then combined with the key
and run through the hash p once again. This is then repeated with the message.

APE was designed to withstand Nonce-misuse attacks. These attacks consist
of exploiting a cryptographic system where the same Nonce is being re-used for
different messages using the same encryption key, going against our recommendations
in Section 2.2.4. APE does this by encrypting the Nonce along with all other data
as can be seen in Figure 6.3. APE has achieves an average area of 2000 GE, a
throughput of 2 Kbps and a latency of 2000 cycles.

6.4 PHOTON-Beetle

PHOTON-Beetle is one of the NIST lightweight candidates at their most recent
workshop [TMC+21]. It relies on the PHOTON [GPP11] hash, particularly the P256
permutation, meaning the PHOTON permutation with a hash output of 256 bits.
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Figure 6.3: APE Encryption

This permutation is a sponge function AES-like matrix permutation. PHOTON-
Beetle can be used both for authenticated encryption, using the PHOTON-Beetle-
AEAD family of functions and for hashing, with the PHOTON-Beetle-Hash family.
PHOTON-Beetle achieves an estimated are of 1736 GE and a latency of 1716 clock
cycles.

As seen in Figure 6.4, for PHOTON-Beetle-AEAD encryption, the permutation
f is the P256 permutation. It works similarly to APE, in that the nonce, key and
associated data are processed much in the same way, by calculating the first r bits
and so-on. The originality of PHOTON-Beetle is its use of P256 permutation and
the fact that the cyphertext is not simply output after the squeezing phase, but is
run through another function p. p is a linear function which takes the combined
feedback of the permutation output (called the state) and the cyphertext block to
generate the next permutation input [BCD+19]. This use of the permutation output
stops the attacker from being able to control the next output if they have access to
the input, which adds another level of security to existing sponge cyphers.
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Figure 6.4: PHOTON-Beetle-AEAD encryption [BCD+19]

6.5 Discussion

In this chapter, we attempted to make a literature study and comparison of existing
lightweight cyphers, to complement our implementation suggestion of Chapter 5.
A lack of time limited our research, and only a few cyphers could be included.
Other interesting cyphers we intended to discuss included SFN [LLZZ18], HashOne
[MMSS16], ASCON [DEM+], Elephant [Via22] and Xoodyak [DW].

From what can be seen of the candidates of the recent NIST lightweight cryptog-
raphy workshop [TMC+21], there is a real need for such encryption methods, and
the preferred encryption type seems to be through the use of AEAD. Newer cyphers
seem to be built with one specific attack in mind and circumventing that attack,
all while keeping lightweight requirements. The aim for gate equivalence is around
1000-1500 GE.

PHOTON-Beetle and APE seem to be very worthy cyphers, both in terms of
security and resource requirements. We cannot however make a full comparison as
we do not have access to all resource metrics, and comparing only two cyphers seems
a little futile.
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The use of small sensors to monitor simple activities is growing extremely fast.
Companies developing such sensors need to be at the cutting-edge of technology and
must take into account manufacturing costs, sensor capabilities as well as the clients’
needs when developing sensors. With clients relying on these sensors more and more,
and with data privacy being at the forefront of information security discussions
today, more and more clients want to rely on their own on-premises infrastructure to
communicate with sensors and store their data.

7.1 Results

We have discussed the possible on-premises storage options for user-friendly
sensor data storage in Chapter 3. We also evaluated the security requirements for
an on-premises alternative to cloud data storage, through the use of a STRIDE
threat model in Chapter 4. These threats relied on unauthorised data access and
unauthorised connection to devices of our IoT network. To combat these threats,
we proposed two methods of master key delivery in Chapter 5, these being the
authentication-through-cloud approach and the sharing-at-manufacturing approach.
We also discussed the most effective key exchange solution as an alternative to the
existing sensor-to-cloud protocol, which brought up our literature study of different
user-friendly low-level encryption protocols in Chapter 6.

7.2 Discussion

The storage options discussed in Chapter 3 are all viable in our case, although
each has its trade-offs between security and aese of use. The real difference in imple-
mentation comes at Chapter 5 where we discuss key management. The main problem
in this thesis was achieving authentication without using the cloud’s automatic sync
to the sensor. Our propositions were those of sharing the secret at manufacturing
and sharing the secret through the cloud.
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As we have said in Section 5.7, sharing the secret at manufacturing requires
a lot of coordination between the manufacturer and client, and raises other threats.
This is also more costly to the manufacturer and not a viable solution for clients
only ordering a few sensors. On the other hand, using the pre-existing cloud
protocol relies on the client’s network being connected to the internet, which may
not be the case as it is a motivation for clients to have on-premises storage in the
first place.

The encryption and key exchange steps of Section 5.3 and Section 5.4 are quite
straight-forward when it comes to designing a cryptographic system. When it comes
to key storage in Section 5.6, using a HSM is our top recommendation. If a
HSM is not an option, the next best thing is using a KEK to encrypt all keys
used for encryption and authentication. Keys should never be stored in the clear
and should be kept well apart from data. The overview of lightweight cyphers in
Chapter 6 does not go into enough depth into the comparison between their different
resource consumption, meaning we cannot make trustworthy suggestions.

7.3 Future work

The logical next step for this thesis is implementation. A proof-of-concept
implementation of our proposed cryptographic scheme on a microcontroller commu-
nicating to a device imitating a server would be our test bench. Testing different
promising cyphers that were mentioned in Chapter 6 to see resource consumption
results and comparing them would give us a clearer idea of what implementation is
best. The next step could be to run known attacks against cryptographic systems
to see if we could recover any information.

The heart of this thesis has also been the relationship between manufacturer
and client, and exploring the level of trust clients are willing to give to manufacturers
would be another interesting option, by interviewing clients and their IT departments,
to see where better communications can be made between companies to ensure proper
data security and clarity between those parties.
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