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Abstract 

This thesis utilized nonlinear finite element analysis (NLFEA) as a tool to numerically reflect 

the behavior of reinforced concrete beams of different geometries. The finite element 

program utilized was DIANA with version 10.4, as this program supports a large number 

of numerical models for the different properties of reinforced concrete. The overall goal of 

this thesis was to investigate the stability and accuracy of fixed numerical models through 

a specter of varying beam geometries.  

In 2018, an experimental study was performed on longitudinal reinforced concrete beams 

of varying height and length subjected to a four-point bending load (Suchorzewski et al., 

2018). The tests were performed in two series, where the first series scaled the beams in 

the height direction and the second scaled the beams in the length direction. There were 

three different geometries in each series, however, the two series had one common 

geometry, resulting in a total of five different geometries to be numerically simulated. Due 

to the geometrical deviation in the beams, different failure mechanisms were obtained, 

namely, flexural bending, tension shear and compression shear failure. Thus, the 

experiment offered the possibility to investigate how different numerical models were able 

to perform as they were set to reflect RC beams with different geometries and failure 

modes.  

The numerical modelling procedures were limited to local, smeared, total-strain based 

crack approaches. Also, the numerical models were simplified by using 2D plane stress 

elements, and symmetry boundary conditions. Furthermore, the modelling choices in this 

thesis can be separated into the categories of fixed and varying modelling choices. The 

fixed modelling choices, that were common for all analyses, were affected by varying 

research papers and guidelines for nonlinear analyses of reinforced concrete. The varying 

modelling parameters were concerning the influence of different shear retention models, 

crack models and tension stiffening. Thus, this thesis contains three sub-investigations 

which analyze the influence of each varying modelling parameter.   

The shear retention models consisted of the damage based, Al-Mahaidi and aggregate 

based shear retention model. The numerical behavior varied greatly for the different shear 

retention models, and they possessed different strengths and weaknesses. In the second 

investigation, the rotating crack model, the fixed crack model and three variations of the 

threshold value in the rotating to fixed crack model were investigated. It showed that the 

rotating to fixed crack models were acting between the fully rotating and fully fixed crack 

model. Hence, as neither the rotating or fixed crack model were able to give consistent 

and accurate simulations of all beams, neither did the rotating to fixed crack models. In 

the third and final investigation, the influence of tension stiffening was analyzed. The 

inclusion of this effect improved the estimations for some of the beams, but not for all.  

None of the numerical models were concluded to be superior considering the summarized 

performance. It was rather found that the applicability of the models varied between beam 

geometries and failure modes. Thereby, it was concluded that none of the numerical 

models within the scope of this thesis were able to properly simulate all variations of 

geometries and failure modes.   
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Sammendrag 

I denne oppgaven ble ikkelineær elementmetode brukt som et verktøy til å reflektere 

oppførselen til armerte betongbjelker med ulik geometri numerisk. 

Elementmetodeprogrammet som ble brukt var DIANA med versjon 10.4, da dette 

programmet har mange numeriske modeller som representerer ulike egenskaper i armert 

betong. Hovedmålet med denne oppgaven var å undersøke stabiliteten og nøyaktigheten 

til numeriske modeller for flere ulike bjelkegeometrier, uten å endre modellene mellom 

bjelkegeometriene. 

I 2018 ble et eksperiment på strekkarmerte betongbjelker av varierende høyde og lengde 

gjennomført (Suchorzewski et al., 2018). Bjelkene var fritt opplagt med to punktlaster, 

som dermed resulterte i en firepunkts lastpåkjennelse. Testene ble gjennomført i to serier, 

hvor bjelkehøyden ble skalert i den første serien, og bjelkelengden ble skalert i den andre 

serien. Det var tre forskjellige geometrier i hver serie, men seriene hadde én felles 

geometri, som resulterte i at totalt fem forskjellige geometrier skulle bli simulert numerisk. 

Som følge av de varierende bjelkegeometriene ble tre ulike bruddmekanismer observert, 

nemlig momentbrudd, skjærstrekk og skjærtrykk. Dermed ga eksperimentet gode 

muligheter til å undersøke hvordan ulike numeriske modeller klarte å representere armerte 

betongbjelker med varierende geometrier og bruddmekanismer.  

De numeriske modellene var begrenset til å være lokale, “smeared”, totaltøynings-baserte 

rissmodeller. I tillegg var de numeriske modellene forenklet ved at kun elementer med 2D 

plan spenning ble brukt, samt symmetri-randbetingelser. Modelleringsvalgene i denne 

oppgaven kan deles inn i to kategorier, de konstante og de varierende. De konstante 

modelleringsvalgene, altså de som var felles i alle analysene, ble i stor grad preget av 

forskningsartikler og retningslinjer for ikkelineære analyser av armert betong. De 

varierende modelleringsvalgene omhandlet innflytelsen av ulike modeller for den 

resterende skjærstivheten i riss, ulike rissmodeller og “tension stiffening”. Derved 

inneholder denne masteroppgaven tre delundersøkelser som analyserer effekten av de 

varierende modelleringsvalgene.  

De ulike modellene for skjærstivhet i riss besto av den skadebaserte, Al-Mahaidi og den 

tilslagsbaserte modellen. Den numeriske oppførselen varierte stort mellom modellene, og 

de viste ulike styrker og svakheter. I den andre analysen ble den roterende rissmodellen, 

den ikke-roterende rissmodellen og tre variasjoner av terskelverdien til den roterende til 

ikke-roterende rissmodellen. Det viste seg at den roterende til ikke-roterende rissmodellen 

hadde en oppførsel og kapasitetsestimering som kan sies å være i mellom den roterende 

og ikke-roterende modellen. Dermed, ettersom verken den roterende eller ikke-roterende 

modellen klarte å gi konsistente og presise simuleringer av alle bjelkene, klarte heller ikke 

den roterende til ikke-roterende modellen dette. I den tredje og siste analysen ble 

påvirkningen av tension stiffening analysert. Inkluderingen av denne effekten forbedret de 

numeriske estimeringene for noen av bjelkene, men ikke alle.  

Summert sett var ingen av de numeriske modellene overlegne. Resultatene viste heller at 

brukbarheten til de ulike numeriske modellene varierte for ulike geometrier og 

bruddmekanismer. Dermed ble også konklusjonen at ingen av de numeriske modellene 

som ble brukt i denne oppgaven klarte å gi gode nok estimater for alle variasjonene av 

geometrier og bruddmekanismer vist i eksperimentet.   
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1 Introduction 

A linear finite element analysis (LFEA) provides relatively fast and easy procedures with 

low-cost analyses, in addition to the possibility of super positioning several load cases. 

Hence, LFEA has appealing features in a design case. However, LFEA cannot realistically 

represent reinforced concrete, as the behavior of this composite material is dominated by 

nonlinear properties. Examples of such properties are concrete cracking, reinforcement 

yielding, bond-slip between the reinforcement and the concrete, and even internal bond 

failure between the concrete mortar and aggregate. Thereby, nonlinear finite element 

analysis (NLFEA) has the potential to give a more realistic representation of the structural 

behavior in reinforced concrete than what is possible with a LFEA. Note the formulation 

“has the potential”. This wording is used because the amount of expertise needed to 

perform an analysis drastically increases when switching from a linear to a nonlinear 

approach. It requires an understanding of the numerical nonlinear procedure itself, but 

also a deeper understanding of the material in use and how the material properties are 

converted into numerical formulations.  

In the early 2000’s, Frank Vecchio addressed a number of uncertainties when performing 

NLFEA (Vecchio, 2001). Amongst these was the fact that any approach will be more suited 

to certain structure/loading situations and less so to others, and that no approach would 

perform well over the entire range of structural details and loading conditions encountered 

in practice. Since then, research papers and guidelines have been published which have 

addressed advantages and disadvantages of the modelling options one may encounter in 

the process of creating a nonlinear numerical model. This has made it easier, and possibly 

less dangerous for engineers (who are not experts in NLFEA) to perform these types of 

analyses. Ideally, there would have been a unified solution procedure which gave accurate 

results for all types of structures. This might be difficult to obtain, however, this idea sets 

the foundation for this thesis.  

In 2018 an experimental study on reinforced concrete beams without shear reinforcement 

was performed (Suchorzewski et al., 2018). The beams were scaled independently along 

either height or length, leaving a total of five different beam geometries. Also, experimental 

tests on beams of similar geometry and concrete mixture were repeated, which increased 

the reliability of the experimental results. As the beam geometries varied, different failure 

mechanisms, such as flexural, tension shear and compression shear failure, were obtained. 

In addition, the scaling of the beams also introduced the size effect to the behavior and 

capacity of the beams. In this thesis, the main objective is to investigate if it is possible to 

obtain sufficient and good results with one nonlinear solution procedure for the five beam 

geometries in Suchorzewski’s experiment.  

Numerical simulations of the experiment has in fact already been carried through by, 

amongst others, the authors of the experiment (Suchorzewski et al., 2018; Marzec et al., 

2019). In these simulations an elasto-plastic damage model was used, enhanced by non-

local softening, performed in Abaqus. In order to obtain the information needed to utilize 

the non-local softening, they used the UMAT subroutine. The numerical results were very 

good, however, the methods that were used exceeds the scope of this thesis, mainly 

because it was not completely performed with pre-existing options provided from the 

analyze software itself. Hence, the analyses in this thesis will not use non-local softening. 

Furthermore, a smeared, total-strain based crack model will be the basis in all analyses. 

With these limitations, the research question becomes: 
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To which extent can a unified solution procedure simulate reinforced concrete beams 

without shear reinforcement with varying shear span to effective depth ratio with different 

sizes based on local material models? 

 

The analyses done in this thesis can be sub-divided into three categories. First, the 

investigation of an appropriate shear retention model was carried through. This implies 

that only the total-strain based fixed crack model was used. Within these analyses, three 

shear retention models were examined, namely the damage based model, the Al-Mahaidi 

model and the aggregate based model. Second, the effect of different crack models were 

examined. This included the fixed and rotating crack model, but also a relatively new hybrid 

model, namely, the rotating to fixed crack model. Finally, the effect of tension stiffening 

was analyzed. Hence, three sub-questions shall also be answered. These are formulated 

as follows: 

 

What is the influence of varying shear retention models? 

What is the influence of varying crack models? 

What is the influence of tension stiffening? 

 

DIANA FEA is the software program which is used to perform the analyses in this thesis. 

DIANA is a multi-purpose finite element software package that is dedicated to a wide range 

of applications in civil engineering and has a large number of options concerning reinforced 

concrete.  

This thesis attempts to enable understanding of the modelling choices that were made, 

and why they were made. Thereby, a theory chapter, presenting the theoretical 

background for the modelling choices is first presented. Then, a modelling chapter, which 

has the purpose of giving the reader an overview of exactly which modelling choices that 

was made throughout the analyses. Results and discussion are then presented, before the 

conclusion and suggestions to further work. Finally, the information and calculations in the 

appendix is meant to work as additional support to the arguments and discussions in the 

thesis. In that case, the relevant chapter in the appendix will be referred to.  
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2 Theory and Methods for Nonlinear Finite 

Element Analysis of Reinforced Concrete 

Structures 

This chapter explains the theory behind the modelling choices that were done in this thesis. 

The analyses were performed in DIANA, which is a finite element analysis program with a 

great number of opportunities for modelling reinforced concrete. 

Chapter 2.1 and Chapter 2.2 contains information about finite element analysis in general, 

and information about the NLFEA. Chapter 2.3 and Chapter 2.4 describes the material 

behavior models of plain and reinforced concrete selected in DIANA, including comments 

on how these models may relate to physical reality. Chapter 2.5 describes the different 

crack models used, Chapter 2.6 discuss the different failure modes obtained in the 

experiment and analyses and Chapter 2.7 briefly discuss the size effect. 

In this thesis, the total-strain based crack model was used. This includes that uniaxial 

material models are modelled with explicitly specified biaxial effects. Some of the uniaxial 

and biaxial effects were also tested in a simple validation test, presented in Appendix A. 

2.1 Finite Element Analysis 

Finite element analysis (FEA) is a method to solve field problems numerically (Cook et al., 

2001). FEA is solved by discretizing a body into a finite number of elements. The behavior 

of these elements are described by a stiffness matrix. The elements are connected at the 

nodes by enforcing compatibility and equilibrium. Boundary conditions must also be 

applied. The resulting set of simultaneous algebraic equations are solved with respect to 

the displacements.  

2.1.1 Elements  

2D plane stress elements can be used to limit the calculation time. Due to problems such 

as parasitic shear, volumetric locking and incompatible strain concepts when using linearly 

interpolated isoparametric elements in nonlinear analyses, DIANA recommends using 

higher order elements. In this case, the eight-noded quadrilateral isoparametric plane 

stress element was used. It is based on quadratic interpolation and Gauss integration. By 

default, DIANA applies 2x2 integration which yields optimal stress points (DIANA TNO, 

2020).  
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Figure 2.1 – 8-noded quadrilateral isoparametric plane stress element (DIANA TNO,2020) 

 

 

The interface element between the load/support steel-plates and the concrete was the 

3+3, 2D line element. This is an interface element between two lines in a 2D configuration. 

It uses quadratic interpolation and a 3-point Newton-Cotes integration scheme. 

 

 

 

Figure 2.2 – 3+3-noded 2D line element (DIANA TNO, 2020) 

 

 

If the user chooses a beam or truss element representation of reinforcement in DIANA, 

independent elements and corresponding interface elements are established to reflect the 

reinforcement and bond-slip between the steel and concrete. This is in contrast to an 

embedded element formulation of the reinforcement, where the reinforcement is added 

through increasing the stiffness in the mother element. Hence, the reinforcement strain 

will always be the same as strain in the surrounding elements and thereby this formulation 

assumes full interaction between the concrete and the reinforcement bars. In this thesis, 

beam elements were selected to represent the reinforcement. The element was a three-

node, 2D class-III beam element, with quadratic interpolation and 2-point Gauss 

integration. 
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Figure 2.3 – 3-noded 2D class-III beam element (DIANA TNO, 2020) 

 

 

The corresponding interface element is an 11-node 2D line element. The element is an 

interface element between quadratic line and quadratic quadrilateral plane element in a 

2D configuration. The element is based on quadratic interpolation and uses a 3-point 

Newton-Cotes integration scheme in the longitudinal direction.  

 

 

 

Figure 2.4 – 11-noded 2D line element (DIANA TNO, 2012) 

 

 

2.2 Nonlinear Finite Element Analysis 

Nonlinearities in structural mechanics can be: 

- Material nonlinearity, as nonlinear elasticity, plasticity, and creep. 

- Contact nonlinearity, which concerns the gaps of adjacent parts opening or closing. 

- Geometrical nonlinearity, which regards how large deformations might change 

structural equilibrium equations and load directions.  

The problems in these categories are nonlinear because stiffness, and perhaps loads 

become functions of the displacement or deformation. Thus, the linear stiffness, 

displacement and force relation can no longer be solved in a direct one-step procedure 

(Cook et al., 2001). The following chapters (Chapter 2.2.1 – Chapter 2.2.6) explain matters 

as the incremental procedure, iterative method, convergence criteria and additional 

solution-improving techniques. These are all important to obtain a nonlinear solution. 
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However, the options are many and only the methods and procedures used in the analyses 

of this thesis will be of focus. 

2.2.1 Incremental-Iterative Solution Procedure 

In a NLFEA, the relation between the force and displacement vector is no longer linear. As 

for the linear analysis, the goal in a nonlinear analysis is to find a displacement vector that 

obtains equilibrium between internal and external forces. However, in contrast to the LFEA, 

this is not a one-step procedure. The incremental-iterative solution procedure enables a 

numerical solution of nonlinear problems. This includes that the total external load is 

divided into a number of increments. To ensure equilibrium at the end of each increment, 

an iterative solution algorithm may be used. In principal, the equilibrium solution to a 

nonlinear problem could be solved with one total load increment, however, doing that has 

some important drawbacks. The first and most obvious drawback is that it is difficult to 

iterate through very large load steps when the solution consists of strong nonlinearities, 

and if the iteration process actually does find a solution, information of the structural 

behavior will be very limited. In addition to this, the internal force vector might also depend 

on the displacement in the history. This would be the case if the material is path-

dependent, which means that different stress levels can be obtained for different strain 

paths. Hence, the incremental-iterative solution method has several advantages.  

2.2.2 Incremental Procedure 

In this thesis, a displacement controlled incremental procedure was used. This means that 

load was applied to the structure by prescribing certain displacements. The alternative is 

to use the load controlled incremental procedure, where a certain load intensity is applied 

at each load step. In the case of the displacement controlled increment procedure, the 

external force vector is not increased directly, but will be calculated through the stresses 

caused by the induced displacement (DIANA TNO, 2020). 

 

 

 

Figure 2.5 – Displacement controlled incremental procedure (DIANA TNO, 2020) 
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The use of a displacement controlled incremental procedure was motivated by the fact that 

the experiment that was analyzed also inflicted the load through displacement-controlled 

conditions (Suchorzewski et al., 2018). Furthermore, this method is often more stable than 

the load controlled procedure (Hendriks and Roosen, 2019). However, the displacement 

control restricts the displacement of a point to a prescribed value. This means that the 

dead weight and also asymmetric displacement in the case of multiple loads are restrained. 

Nevertheless, the influence of dead weight was assumed to be neglectable compared to 

the applied load. A quick check of this was done by multiplying the concrete volume of the 

experimental beam with the lowest capacity with a reinforced concrete density of 2500 

kg/m3, giving a dead weight of just below 4% of the applied load (in the most critical case 

of the five beams). Furthermore, the asymmetry was also not considered as the analyses 

were performed on half beams with symmetry boundary conditions.  

2.2.3 Iterative Method 

The regular Newton-Raphson iteration method was utilized. This method evaluates the 

stiffness matrix at every iteration and yields a quadratic convergence rate. This means that 

it in general finds convergence with only a few iterations. However, a new stiffness matrix 

is created at every iteration which makes each iteration relatively time consuming (DIANA 

TNO, 2020).  

 

 

 

Figure 2.6 – Regular Newton-Raphson iteration method (DIANA TNO, 2020) 

 

 

 

Figure 2.6 shows regular Newton-Raphson iterations for two load increments. The basic 

procedure can be described as following:  
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1. Start increment with increasing the external load, 𝑓𝑒𝑥𝑡
𝑡+∆𝑡. 

2. Calculate the tangent stiffness, 𝐾𝑡
𝑖+1 = 𝐾𝑡

𝑖 +
𝑑𝐾

𝑑𝑢
∆𝑢𝑖 

3. Estimate the new displacement, ∆𝑢𝑖+1 = ∆𝑢𝑖 +
𝑓𝑒𝑥𝑡

𝑡+∆𝑡− 𝑓𝑖𝑛𝑡
𝑖

𝐾𝑡
𝑖+1  

4. Estimate the secant stiffness using the estimated displacement, 𝐾𝑖+1 = 𝐾(∆𝑢𝑖+1) 

5. Use the secant stiffness to estimate the internal force,  𝑓𝑖𝑛𝑡
𝑖+1 = 𝐾𝑖+1∆𝑢𝑖+1 

6. Estimate the out-of-balance force, 𝑔𝑖+1 = 𝑓𝑒𝑥𝑡
𝑡+∆𝑡 − 𝑓𝑖𝑛𝑡

𝑖+1 

7. 𝑔𝑖+1 > 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 →Back to step 2, 𝑔𝑖+1 ≤ 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 →End increment 

 

In step 2 in the above procedure, a new tangent stiffness is evaluated, and this is done 

every time a new iteration is carried through, as seen in step 7. This is in contrast to the 

modified Newton-Raphson method which would go back to step 3, meaning that the 

recalculation of the tangent stiffness would only be done at every new increment.  

2.2.4 Arc Length Method with Indirect Displacement Control 

The arc length control was applied in the analyses. This method is especially important for 

a load controlled incremental procedure, as this would result in very large predictions for 

the displacement when the load-displacement curve exhibits a so-called snap-through 

behavior, which includes horizontal curves. As explained in Chapter 2.2.2, we use a 

displacement controlled incremental procedure. However, the arc-length method is also 

important when applying the load as a prescribed deformation because the method is able 

to capture snap-back behavior, where the displacement controlled incremental procedure 

alone fails.  

 

 

 

Figure 2.7 – Snap-through and snap-back behavior (DIANA TNO,2020) 

 

 

The basic idea behind the arc length methods is that both load and displacement 

increments are modified during the iterations. Within the arc-length method, one must 

choose whether to use the spherical path or updated normal plane. In this case, the 

spherical path was selected, which means that the iterations are confined to the surface of 

a hypersphere.  

Furthermore, indirect displacement control was utilized. By default, in DIANA, all 

displacements are included in the calculation of the arc length. Such strategy is adequate 

for analysis models with global failure behaviors, but for structures that fail locally, which 

are typical for concrete structures, the arc-length method can perform better if only a part 
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of the displacements are considered in the calculation. Hence, this constraint was applied 

to the node which showed most displacement in a linear-elastic analysis.  

2.2.5 Line Search 

Line search improves the convergence rate and is especially useful if the ordinary iteration 

process fails. The ordinary predictions might be far from equilibrium when strong 

nonlinearities as concrete cracking occurs (DIANA TNO, 2020). 

The line search algorithm uses a prediction of the iterative displacement increment 

obtained by the ordinary iteration algorithm and scales this by a value to minimize the 

energy potential. To determine an optimal magnification factor, the incremental 

displacement vector, Δ𝑢𝑖+1, is calculated from a scaled iterative increment:  

 

 𝛥𝑢𝑖+1 = 𝛥𝑢𝑖 + 𝜂𝛿𝑢𝑖+1 (2.1) 

 

where 𝛿𝑢𝑖+1 is derived from the selected iteration method. A minimum value of the 

potential energy requires that the derivation of the potential energy with respect to the 

scaling factor, 𝜂, is equal to zero:  

 

 𝑠(𝜂) =
𝜕𝛱

𝜕𝜂
=

𝜕𝛱

𝜕𝑢

𝜕𝑢

𝜕𝜂
= 𝑔(𝜂)𝑇𝛿𝑢 = 0 (2.2) 

 

Eq. (2.2) can be satisfied by calculating 𝑠 at various values of 𝜂. The two first values are 

derived from the original iteration process. Once the search direction is calculated, the 

values 𝑠(0) and 𝑠(1) are calculated by the inner product of 𝛿𝑢 with the out-of-balance force 

at the start and the end of the iteration (DIANA TNO, 2020).  

 

 

 

Figure 2.8 – Line search iteration (DIANA TNO, 2020) 
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2.2.6 Convergence Criteria 

The convergence criteria is the selected criteria for which the iteration process stops. The 

stopping criteria consists of two parts. That is, if convergence, or if a maximum number of 

iterations is reached. Both of these must be specified by the user. In this thesis, the energy 

norm was used to detect convergence. This norm is composed of internal forces and the 

relative displacements, and can be denoted as follows:  

 

 𝐸𝑛𝑒𝑟𝑔𝑦 𝑛𝑜𝑟𝑚 𝑟𝑎𝑡𝑖𝑜 = |
𝛿𝑢𝑖

𝑇( 𝑓𝑖𝑛𝑡
𝑖+1

+  𝑓𝑖𝑛𝑡
𝑖

)

𝛥𝑢0
𝑇( 𝑓𝑖𝑛𝑡

1 +  𝑓𝑖𝑛𝑡
0 )

| (2.3) 

 

Note that the internal force is used and not the out-of-balance force. The reason for this is 

that use of the out-of-balance force would be improper as the line search procedure could 

then minimize the norm before the solution really converges to equilibrium.  

2.3 Plain Concrete Characteristics  

Concrete behavior can be modelled in a diverse number of ways, including models based 

on nonlinear elasticity, plasticity, fracture mechanics, damage continuum mechanics and 

others (Vecchio, 2001). A common way of selecting material models for concrete is to use 

a uniaxial material model as basis, extended with additional models that take other 

material effects into account, such as the effects of confinement and lateral cracking.  

(Engen, 2017). This is the case for the total-strain based crack model in DIANA. The total-

strain based crack model describes the tensile and compressive behavior of a material with 

one stress-strain relationship and describe the cracking and crushing of concrete with a 

nonlinear elasticity relation. However, the model is not hypo-elastic, as the unloading and 

reloading follows the secant stiffness (DIANA TNO, 2020). Furthermore, the biaxial effects 

are explicitly added by the user.  

In this chapter, concrete characteristics and how these are modelled through the total-

strain based crack model in DIANA are investigated and elaborated. As DIANA provides 

several different models concerning the material behavior of concrete, only the models 

used in the numerical analyses in this thesis were in focus.  

2.3.1 Tension Behavior 

Initially, the stress-strain curve in tension acts almost linearly. In normal strength concrete 

the cracking process will start as debonding or expanding existing micro cracks in the 

cement paste at approximately 80% of the peak load. When the peak load is reached, a 

large amount of micro cracks will localize in a narrow zone and eventually split the 

specimen in two. Thus, a macro crack is formed. This zone (fracture process zone, FPZ) 

will probably develop in the weakest part of the specimen (Ulfkjær, 1992). This behavior 

is known as strain localization. The irreversible strain in the concrete, that takes place 

before the peak stress is reached, can be neglected when comparing it to the crack opening 
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displacement. Hence, the uncracked concrete material can be treated in a linear elastic 

manner (Reinhardt et al., 1986). 

Experiments show a post-peak stress-strain relation which is not completely brittle, but 

rather exhibit a nonlinear decreasing behavior (Reinhard et al., 1986; Chen and Su, 2013). 

This phenomenon is known as tension softening. In addition to fitting the experimental 

results, a softening behavior will also lead to numerical stability, in contrast to a fully brittle 

response. However, it is questioned whether the softening behavior is in fact a plain 

concrete property, or if it is a result of the experimental testing method (Kostovos and 

Pavlović, 1995). 

In this thesis, the Hordijk tension softening model was used. This model is governed by 

the fracture energy and a crack bandwidth. The mode I fracture energy will be released in 

an element once the tensile strength is violated. The mode I fracture energy equals to the 

area under the normal stress-strain crack opening diagram. To accommodate the smeared 

cracking framework, which is described in Chapter 2.5, the stress-strain crack opening 

relation must be transformed into the average stress-average strain relation. This can be 

done by geometrically relating the crack opening to the average strain of the element over 

the specified reference length. Physically, this is equivalent to smearing the discrete 

fracture localization over a reference domain. This reference length can be conveniently 

assumed to be equal to the element dimension (Maekawa et al., 2003). With this approach, 

a mesh independent procedure is fulfilled. It can be useful to have a look on how this is 

implemented in DIANA, before considering the actual softening model. First, the relation 

between the crack stress 𝜎𝑛𝑛
𝑐𝑟  and the crack strain 𝜀𝑛𝑛

𝑐𝑟  in the normal direction can be written 

as: 

 

 𝜎𝑛𝑛
𝑐𝑟 (𝜀𝑛𝑛

𝑐𝑟 ) = 𝑓𝑡 × 𝑦 (
𝜀𝑛𝑛

𝑐𝑟

𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 ) (2.4) 

 

where 𝑓𝑡 is the tensile strength and 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟  is the ultimate crack strain. The general function 

𝑦(…) represents the actual softening diagram. If the softening behavior on the constitutive 

level is related to the mode I fracture energy 𝐺𝑓
𝐼 through an equivalent length or crack 

bandwidth denoted as ℎ, it can be derived as: 

 

 𝐺𝑓
𝐼  = h∫ 𝜎𝑛𝑛

𝑐𝑟 (𝜀𝑛𝑛
𝑐𝑟 )𝑑𝜀𝑛𝑛

𝑐𝑟
𝜀𝑛𝑛
𝑐𝑟 =∞

𝜀𝑛𝑛
𝑐𝑟 =0

 (2.5) 

 

In short, the above equation is the area under the stress-strain curve multiplied with the 

crack bandwidth. If we combine eq. (2.4) and eq. (2.5) we get:  

 

 𝐺𝑓
𝐼  = h𝑓𝑡 ∫ 𝑦 (

𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 )𝑑𝜀𝑛𝑛

𝑐𝑟
𝜀𝑛𝑛
𝑐𝑟 =∞

𝜀𝑛𝑛
𝑐𝑟 =0

 (2.6) 

 

with the assumption that 𝑓𝑡 is constant. Change from the variable 𝜀𝑛𝑛
𝑐𝑟  to: 



12 

 

 

 𝑥 =
𝜀𝑛𝑛

𝑐𝑟  

𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟  

 (2.7) 

 

and consequently 𝑑𝜀𝑛𝑛
𝑐𝑟  to 𝜀𝑛𝑛.𝑢𝑙𝑡

𝑐𝑟 𝑑𝑥, the obtained relation becomes:  

 

 𝐺𝑓
𝐼  = h𝑓𝑡 (∫ 𝑦(𝑥)𝑑𝑥

𝑥=∞

𝑥=0

) 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟  (2.8) 

 

If we set ∫ 𝑦(𝑥)𝑑𝑥
𝑥=∞

𝑥=0
 =  𝛼 the final expression is noted as: 

 

 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 =

1

𝛼
×

𝐺𝑓
𝐼

ℎ𝑓𝑡
 (2.9) 

 

The ultimate strain 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟  is assumed to be constant during the analysis and is a material 

property calculated from the tensile strength 𝑓𝑡, the fracture energy 𝐺𝑓
𝐼, and the element 

area represented by the equivalent length ℎ.  

Hordijk, Cornelissen and Reinhardt (Cornelissen et al., 1986; Hordijk, 1991) proposed an 

expression for the softening behavior of concrete which results in a crack stress equal to 

zero at a crack strain 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 . 

 

 

Figure 2.9 – Hordijk tension softening (DIANA TNO, 2020) 

 

 

For 0 < 𝜀𝑛𝑛
𝑐𝑟 < 𝜀𝑛𝑛.𝑢𝑙𝑡

𝑐𝑟  the relation of the crack stress in the Hordijk softening curve is given 

by: 
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𝜎𝑛𝑛

𝑐𝑟 (𝜀𝑛𝑛
𝑐𝑟 )

𝑓𝑡
= (1 + (𝑐1

𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 )

3

)𝑒𝑥𝑝 (−𝑐2

𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 ) −

𝜀𝑛𝑛
𝑐𝑟

𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 (1 + 𝑐1

3)𝑒𝑥𝑝(−𝑐2) (2.10) 

 

and for  𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 < 𝜀𝑛𝑛

𝑐𝑟 < ∞: 

 

 
𝜎𝑛𝑛

𝑐𝑟 (𝜀𝑛𝑛
𝑐𝑟 )

𝑓𝑡
= 0 (2.11) 

 

The expression for the ultimate strain, 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 , can be calculated as: 

 

 𝛼 = ∫ 𝑦(𝑥)𝑑𝑥
𝑥=∞

𝑥=0

= 0.195 (2.12) 

 

which results in an ultimate crack strain of: 

 

 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 = 5.136

𝐺𝑓
𝐼

ℎ𝑓𝑡
 (2.13) 

 

To obtain the specific numbers in eq. (2.12) and (2.13), the values 𝑐1 = 3 and 𝑐2 = 6.93 

must be used. These constants are implicitly used in DIANA, as the user only specify the 

tensile strength, 𝑓𝑡, and the mode I fracture energy, 𝐺𝑓
𝐼. The empirical constants 𝑐1 and 𝑐2 

were chosen by fitting eq. (2.10) to uniaxial tensile tests (Hordijk, 1991). A simple 

validation test of the Hordijk tensile curve is presented in Appendix A.1. 

It is in fact the rapid decrease of the tensile softening curve that allows the cracks to 

localize in the smeared crack model. This happens because when a crack appears, the 

decreasing normal stiffness will release the tension stress in the surrounding elements, 

allowing for a larger opening in the present crack. 

Furthermore, the pre-peak stress-strain behavior is not included here because it simply 

follows the Young’s modulus 𝐸𝑐, which is assumed similar in tension and compression.  

2.3.2 Compression Behavior 

Due to the heterogeneity of concrete, a uniformly distributed external load can result in a 

nonuniform distribution of internal stresses and deformations. In addition to this, 

nonuniformly distributed internal strength and the presence of initial internal stress causes 

the progressive failure of internal bonds between the mortar and the aggregate as the 

external load increases. As progressive loading is taking place, a diminishing number of 

internal bonds are capable of resisting the externally applied load, which will lead to a 
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gradually weakened material. It can be advantageous to separate the compressive stress-

strain curve in plain concrete into three parts. First, when the load stress is ranging from 

0-30% of the peak stress, the increase of number and length of cracks in the concrete is 

negligible, and the concrete show a linear elastic behavior. Nevertheless, there are still 

preexisting bond cracks. These cracks can be the result of volume changes in the cement 

paste during hydration, bleeding, and drying shrinkage. Second, with further stress 

increase, up to about 70-90% of the peak stress, new bond cracks are formed and expand 

to mortar cracks. The mortar cracks connect the adjacent bond cracks. Third, by inflicting 

additional stress, more cracks coalesce, and the crack growth becomes unstable. This 

means that the load must decrease to avoid an uncontrolled crack growth. In contrast, the 

stable crack growth is taking place before the peak load, which means that they grow only 

when the load is increased. Softening can be defined as a gradual decrease of mechanical 

resistance due to a continuous increase of deformation forced upon a material specimen 

or structure. Hence, softening of the concrete takes place in the post-peak decrease of the 

mechanical resistance (Vonk, 1992). 

DIANA provides several concrete compression models which reflects the physical 

description of the compression behavior in the above section. One of the many models 

accessible in DIANA is the parabolic compression curve.  

 

 

Figure 2.10 – Parabolic compression curve (DIANA TNO, 2020) 

 

 

The parabolic compression curve consists of four functions depending on the strain level. 

The curve is linear and follows the elastic modulus 𝐸𝑐, until one-third of the strain at the 

maximum compressive strength, 𝑓𝑐, is reached. That is, for 
𝛼𝑐

3⁄ < 𝛼𝑗 ≤ 0: 

 

 𝑓 =  −𝑓𝑐
1

3
(

𝛼𝑗

𝛼𝑐
3⁄
) (2.14) 
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When 𝛼𝑐 < 𝛼𝑗 ≤
𝛼𝑐

3⁄ , the function takes the form: 

 

 𝑓 =  −𝑓𝑐
1

3
(1 + 4(

𝛼𝑗 −
𝛼𝑐

3⁄

𝛼𝑐 −
𝛼𝑐

3⁄
) − 2(

𝛼𝑗 −
𝛼𝑐

3⁄

𝛼𝑐 −
𝛼𝑐

3⁄
)

2

) (2.15) 

 

and for 𝛼𝑢 < 𝛼𝑗 ≤ 𝛼𝑐: 

 

 
𝑓 =  −𝑓𝑐

1

3
(1 + (

𝛼𝑗 − 𝛼𝑐

𝛼𝑢 − 𝛼𝑐
)
2

)  

 

(2.16) 

 

When 𝛼𝑗 ≤ 𝛼𝑢 the function is zero or a small user specified residual strength, as illustrated 

in Figure 2.10. The strain values are calculated as:  

 

 
𝛼𝑐

3⁄ = −
1

3

𝑓𝑐
𝐸

; 𝛼𝑐 = −
5

3

𝑓𝑐
𝐸

; 𝛼𝑢 = 𝑚𝑖𝑛 (𝛼𝑐 −
3

2

𝐺𝑐

ℎ 𝑓𝑐
, 2.5𝛼𝑐) (2.17) 

 

Hence, the softening part of the curve is governed by the fracture energy, 𝐺𝑐, and the 

characteristic element length, ℎ. This is in contrast to the Thorenfeldt compression curve, 

which is not regularized with an element length, nor dependent on the fracture energy. 

This, in addition to not being unit-free, is the reason that it is not advised to use (Hendriks 

and Roosen, 2019), and is one of the reasons why the parabolic curve were chosen above 

the Thorenfeldt curve in this thesis. Note that a simple validation test of the parabolic 

compression curve is performed in Appendix A.1. 

As the undamaged, uniaxial compression curve has been defined, further effects can now 

be included. Namely confinement effects, and reduction due to lateral damage. The 

confinement effect is related to the increase in both strength and ductility as a result of 

increasing isotropic stress (DIANA TNO, 2020). Isotropic stress is the result of multi-axial 

pressure from external loading, which might be denoted as active confinement, or it can 

be the result of passive confinement, such as stresses arising when the expansion in a 

specimen due to the Poisson effect is constrained (Deaton, 2013). The latter might be 

especially relevant for fully exploited structures, as the Poisson’s ratio does not stay 

constant, but in fact increases rapidly as the stress levels approach the ultimate strength 

(Kostovos and Pavlović, 1995). The confinement effects are shown in experimental tests 

by, amongst others, van Mier (van Mier et al., 1997), where several tests were done with 

different concrete mixtures and rate of lateral confinements. The lateral confinement in 

this experiment was the result of the friction that occurred between the loading plates and 

the concrete, so-called passive confinement. The confined zones cover a larger part of the 

concrete specimen as the specimen height/diameter ratio decreases. The experiments 

showed that the increase of the confinement zones gave both higher ultimate stress and 

strains. The increase of strength due to increasing isotropic stress is in DIANA expressed 
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with the Hsieh-Ting-Chen failure surface, which is a four-parameter failure criterion as 

follows:  

 

 𝑓 = 2.0108
𝐽2

𝑓𝑐𝑐
2 + 0.9714

√𝐽2
𝑓𝑐𝑐

+ 9.1412
𝑓𝑐1
𝑓𝑐𝑐

+ 0.2312
𝐼1
𝑓𝑐𝑐

− 1 = 0 (2.18) 

 

where:  

 

 𝐽2 =
1

6
((𝜎𝑐1 − 𝜎𝑐2)

2 + (𝜎𝑐2 − 𝜎𝑐3)
2 + (𝜎𝑐3 − 𝜎𝑐1)

2) (2.19) 

 

and:  

 

 𝐼1 = 𝜎𝑐1 + 𝜎𝑐2 + 𝜎𝑐3 (2.20) 

 

and finally:  

 

 𝑓𝑐1 = 𝑚𝑎𝑥(𝜎𝑐1, 𝜎𝑐2, 𝜎𝑐3) (2.21) 

 

𝑓𝑐1 is in this case the maximum principal stress. The four-parameter failure criterion was 

created in hopes of achieving a model which could easily be implemented in finite-element 

formulations. The parameters in this equation combines the uniaxial tensile and 

compressive strength, biaxial compressive strength, and experimental data of triaxial tests 

on concrete specimens. The resulting functional form appears to be a linear combination 

of three other criteria, namely, the von Mises, the Drucker-Prager and the Rankine’s 

criterion (Hsieh et al., 1982). The stress failure is denoted as 𝑓𝑐3 and is determined by 

scaling the linear elastic stress vector by a factor 𝑠, 𝜎𝑐 = 𝑠𝐸𝜀 such that eq. (2.18) is 

satisfied. The compressive failure stress in a multi-axial stress situation is then given by:  

 

 𝑓𝑐3 = 𝑠 ∗ 𝑚𝑖𝑛(𝜎𝑐1, 𝜎𝑐2, 𝜎𝑐3) (2.22) 

 

which gives the confined compressive failure strength:  

 

 𝑓𝑐𝑓 = −𝑓𝑐3  (2.23) 

 

and can also be expressed as: 

 

 𝑓𝑐𝑓 = 𝐾𝜎𝑓𝑐𝑐 (2.24) 
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where 𝐾𝜎 is the peak stress factor and 𝑓𝑐𝑐 is the uniaxial compressive strength. The 

correspondence between the peak stress factor Kσ and the peak strain factor Kε is 

discussed by Selby and Vecchio, which claims that the peak strain increases much more 

rapidly than the peak stress as confining pressure is increased, thus, different factors 

should be applied (Selby and Vecchio, 1997). However, in DIANA this is simplified, such 

that:  

 

 
𝐾𝜎 = 𝐾𝜀 

 
(2.25) 

 

In the parabolic compression curve, one can see that the strain formulations are dependent 

on the compressive 𝑓𝑐 such that the confinement effect will anyway affect the strain and 

the stress by the same factor. An illustration of the confinement effects are shown in Figure 

2.11.  

 

 

 

Figure 2.11 – Influence of lateral confinement on the compressive stress-strain curve 

(DIANA TNO, 2020) 

 

 

The confinement effect was illustrated in Appendix A.4. 

Furthermore, another factor affecting the compression behavior is the lateral cracking. 

Cracked concrete will have large tensile strains perpendicular to the principal compressive 

direction, which will reduce the compressive strength. If the material is cracked in the 

lateral direction, a factor, 𝛽𝜎𝑐𝑟
, governs the reduction of the the peak stress. These values 

can be interpret by Vecchio and Collins, or JSCE, where the critical parameter 𝛽𝜎𝑐𝑟
 is 

dependendt on the lateral cracking. In this thesis, the reduction due to lateral cracking was 

modelled by the Vecchio and Collins 1993-model (Vecchio and Collins, 1993). The strain 

parameter 𝛽𝜀𝑐𝑟
 is set to 1 in the presented models, which means that the peak strain is not 

explicitly reduced do to lateral cracking. However, once again, as the strains in the 

parabolic compression curve formulation are diretly dependent on the compressive 
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strength, a compressive reduction (due to lateral cracking) will implicetly affect the strains. 

The reduction factor by Vecchio and Collins is denoted as follows:  

 

 
𝛽𝜎𝑐𝑟

=
1

1 + 𝐾𝑐
≤ 1 

 

(2.26) 

 

where 

 

 𝐾𝑐 = 0.27 (−
𝛼𝑙𝑎𝑡

𝜀0
− 0.37) (2.27) 

 

where 𝛼𝑙𝑎𝑡 = √𝛼𝑙,1
2 + 𝛼𝑙,1

2  which are the average lateral damage of the lateral damages in 

each lateral direction, and 𝜀0 = −
𝑓𝑐

𝐸
. 𝛽𝜀𝑐𝑟

 plotted as a function of −
𝛼𝑙𝑎𝑡

𝜀0
 gives Figure 2.12. 

 

 

 

Figure 2.12 – Reduction factor due to lateral cracking (DIANA TNO, 2020) 

 

 

To validate the effect of lateral damage, a simple element test was performed, and is 

presented in Appendix A.2.   

2.3.3 Poisson’s Ratio Reduction 

In a cracked state, the Poisson effect ceases to exist. Stretching in a cracked direction does 

no longer lead to contraction in the perpendicular directions. Similar to a damage 

formulation where the secant stiffness reduces after cracking, the Poisson’s ratio is reduced 

at the same pace (DIANA TNO, 2020).  
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2.3.4 Unloading and Reloading 

Hypo-elasticity means that the loading and unloading follows the same stress-strain path. 

However, this approach would be an inaccurate description of the concrete model, given 

that the chosen compressive and tensile behavior models could exceed the elastic range. 

In DIANA, secant unloading, and reloading is used (DIANA TNO, 2020). This is also proven 

to reflect experimental results (Deaton, 2013). The importance of selecting the correct 

unloading/reloading path is particularly important for cyclic loading. However, this will also 

occur when proportional loading is inflicted to the concrete structure, as cracking will result 

in local stress releases of the surrounding elements, and thereby local unloading. 

 

 

 

Figure 2.13 – Loading-unloading-reloading (DIANA TNO, 2020) 

 

 

Figure 2.13 illustrates the procedure, where it is unloaded and reloaded in the compressive 

and tensile domain. Also, the secant unloading-reloading was illustrated in a simple 

validation test of the compressive and tensile behavior of concrete in Appendix A.1. 

2.4 Reinforced Concrete 

2.4.1 Reinforcement Model 

DIANA offers embedded and bond-slip reinforcement modelling. The embedded 

reinforcement adds truss-like stiffness to the surrounding structural elements. These 

elements are referred to as mother elements. Weight is not added from the reinforcement, 

nor removed from the concrete in the space occupied of the reinforcement. The mother 

element also does not diminish in stiffness due to the space occupied by the reinforcement. 

Nevertheless, these inaccuracies would probably be of negligible influence in a normal sized 

structure. When the reinforcement is embedded in the mother elements it utilizes the strain 

computed from the displacement field, which means that the reinforcement holds the same 
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strain as the surrounding concrete. This implies perfect bond conditions between 

reinforcement and concrete (DIANA TNO, 2020). On the other hand, bond-slip modelling 

does not imply perfect bond conditions, but rather gives the bond between the 

reinforcement steel and the surrounding concrete a certain strength. The bond between 

concrete and steel bars is no longer perfect when concrete damage around bars takes place 

(Brisotto et al., 2012). Kostovos argue that the small tensile strength of concrete will be 

critical, and since tensile failure will most likely take place before bond failure, embedded 

modelling can be justified (Kostovos and Pavlović, 1995). However, this argument may be 

weakened when considering a nonlinear analysis, where it can be difficult to presume the 

structural behavior once damage and several cracks is affecting the structure. When 

choosing bond-slip reinforcement in DIANA, the user has the option to select truss or beam 

elements, which are connected to the mother elements by interface elements. If the 

reinforcement model uses an embedded or discrete truss formulation, the reinforcement 

bars have no bending stiffness. Thus, only the reinforcement modelled with beam elements 

can obtain dowel actions which allow the longitudinal reinforcement to contribute to the 

shear resistance in the beam. This is why beam elements were used in this thesis. 

2.4.2 Bond-slip 

As mentioned in the previous chapter, if not embedded, DIANA connects the reinforcement 

to the mother elements through interface elements. For these interface elements, the user 

can select a diversity of bond-slip models. However, all bond-slip models include a linear 

normal and shear stiffness which must first be applied. The normal stiffness modulus sets 

a relation between the relative displacements and the tractions normal to the bar. The 

shear stiffness modulus relates the shear traction to the relative shear displacement in the 

longitudinal direction of the reinforcement (DIANA TNO, 2020). These values should be 

very stiff, so that the elastic relative displacement is negligible. However, too high stiffness 

values may result in numerical difficulties. DIANA provides the following guidelines for 

normal and tangential stiffness for interface elements: 

 

 𝐾𝑛 = 100𝐸
𝑙𝑒

⁄ ~1000𝐸
𝑙𝑒

⁄  (2.28) 

 

with the 𝐸 as Young’s modulus of the surrounding interfaces, and 𝑙𝑒 as the average mesh 

element size. The tangential stiffness is derived from the normal stiffness: 

 

 𝐾𝑡 =
𝐾𝑛

10⁄ ~
𝐾𝑛

100⁄  (2.29) 

 

Furthermore, DIANA offers six curves for the relations betseen shear traction and slip, 

namely the Cubic, Power law, Multilinear, Shima bond-slip, Shima bond-slip-strain, and 

finally a bond-slip model of the fib Model Code for concrete structures 2010 (DIANA TNO, 

2020). The influence of different bond-slip models were not investigated in this thesis, as 

only the bond-slip model of the fib Model Code was used. 
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Figure 2.14 – Bond-slip back-bone curve of fib Model Code 2010 (DIANA TNO, 2020) 

 

 

For 0 ≤ 𝑠 ≤ 𝑠1: 

 

 𝜏 = 𝜏𝑚𝑎𝑥(𝑠/𝑠1)
𝛼 (2.30) 

 

and for 𝑠1 ≤ 𝑠 ≤ 𝑠2: 

 

 𝜏 = 𝜏𝑚𝑎𝑥 (2.31) 

 

and for 𝑠2 ≤ 𝑠 ≤ 𝑠3: 

 

 𝜏 = 𝜏𝑚𝑎𝑥 − (𝜏𝑚𝑎𝑥 − 𝜏𝑓)(𝑠 − 𝑠2)/(𝑠3 − 𝑠2) (2.32) 

 

and finally, for 𝑠3 ≤ 𝑠: 

 

 𝜏 = 𝜏𝑓 (2.33) 

 

In the first section a power function for the bond-slip stress 𝜏 develops from zero to the 

maximum bond-slip stress 𝜏𝑚𝑎𝑥 at a relative slip displacement 𝑠1. In the second section 

the bond-slip stress 𝜏 remains constant at 𝜏𝑚𝑎𝑥 until a relative slip displacement 𝑠2. In the 

third section the bond-slip stress 𝜏 reduces linearly to the ultimate bond-slip stress 𝜏𝑓 at 

the relative slip displacement 𝑠3. In the figure, an additional relative displacement 𝑠0 is 

marked. This is not included in the original model from fib but inserted by DIANA since an 

exponent value smaller than 1 would result in an undefined stiffness in the origin. This is 



22 

 

solved by using a linear development in the bond-slip stress between zero and 𝑠0 such that 

the stress value at 𝑠0 equals the bond-slip stress as defined by the power function (DIANA 

TNO, 2020). 

2.4.3 Tension Stiffening 

The tension stiffening effect arises when cracking orthogonal to the reinforcement initiates. 

Obviously, the concrete tensile strength in a fully developed crack is zero. However, the 

stiffening effect is a result of the stiffness contribution that the concrete provides in 

between cracks, as the tensile stresses are transferred from steel to concrete by bond 

action. This lets the reinforcement steel to have less strain between the cracks, and 

progressively larger towards the cracks (Kostovos and Pavlović, 1995). This local stress 

distribution can be considered by modelling the average post-cracking tensile behavior. 

Since concrete continues to bear a part of the applied tension after cracking, tensile stress 

of the concrete in reinforced concrete gradually decreases when the average strain exceeds 

the crack strain. This differs from the stress release behavior of plain concrete, which 

exhibits a sharp drop immediately after cracking and no recovery of the stress transfer 

mechanism. The fundamental difference in post-cracking tensile behavior of plain concrete 

and concrete in reinforced concrete is due to the difference in the tensile resistant 

mechanism. Plain concrete resists tension through bridging of aggregates at the crack 

surface only, whereas reinforced concrete resists tension mainly through the bond stress 

transfer from the reinforcement bar (Maekawa et al., 2003). DIANA provides a tension 

stiffening model from the Japan Society of Civil Engineers (JSCE).  

 

 

 

Figure 2.15 – JSCE stiffening (DIANA TNO, 2020) 

 

 

The descending part in Figure 2.15 is mathematically described as: 
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 𝜎 = 𝑓𝑡(𝜀𝑡𝑢/𝜀)𝑐 (2.34) 

 

where 𝜎 is the average tensile stress, 𝜀 is the average tensile strain, 𝑓𝑡 is uniaxial tensile 

strength, 𝜀𝑡𝑢 is the cracking strain and 𝑐 is the stiffening parameter. The stiffening 

parameter 𝑐 is set to be 0.4 for deformed bars and 0.2 for welded wire mesh (Maekawa et 

al., 2003). 

At this point, a concrete tensile softening (Chapter 2.3.1) and stiffening post-cracking 

behavior is established. Thus, the next step considers where to apply the different 

behaviors. As longitudinal reinforcements rarely covers the whole beam, a stiffening 

behavior that covers the whole beam would be unrealistic. Hence, the establishment of 

stiffening zones is needed. A formulation provided by Maekawa et al is as follows (Maekawa 

et al., 2003): 

 

 ℎ𝑚𝑎𝑥 =
√𝜋

2
𝑑𝑏√

𝑓𝑦

𝑓𝑡
 (2.35) 

 

where ℎ𝑚𝑎𝑥 is the height of the stiffening zone, 𝑑𝑏 is the diameter of the reinforcement bar 

and 𝑓𝑦 and 𝑓𝑡 is the yield strength of the reinforcement bar and the tensile strength of the 

concrete, respectively. However, eq. (2.35) applies for reinforcement bars that fully 

transfer the bond stress. Thus, an adjustment factor, 𝐾, takes the concrete cover, 𝑡𝑐, and 

diameter bar, 𝑑𝑏, into account:  

 

 𝐾 = (
𝑡𝑐 − 𝑑𝑏

5.5𝑑𝑏
)
0.5

 (2.36) 

 

which is based on experimental data. Furthermore, to take into account that if bars in the 

same layer are placed far away from each other, the following equation is suggested:  

 

 ℎ𝑒 =
𝑛ℎ𝑚𝑎𝑥

2

𝑏
 (2.37) 

 

where ℎ𝑒 is equivalent height of the stiffening zone, 𝑛 is the number of steel bars, and 𝑏 

is the width of the thickness of the RC member. By combining eq. (2.35), (2.36) and (2.37) 

we finally obtain the following equation for estimation of the tension stiffening zone: 

 

 

ℎ𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑖𝑛𝑔 =

(
√𝜋
2 𝑑𝑏√

𝑓𝑦
𝑓𝑡

𝐾)

2

𝑛

𝑏
=

𝜋𝑓𝑦𝑑𝑏(𝑡𝑐 − 𝑑𝑏)𝑛

22𝑓𝑡𝑏
 

(2.38) 
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with the symbol descriptions described above. Note that this is the height of only one layer, 

meaning that if there are multiple layers, each layer is individually calculated. Overlapping 

and zones that fall out of the structural boundaries are disregarded.  

Alternatively, the Eurocode suggests the effective height as (Eurocode 2): 

 

 ℎ𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑖𝑛𝑔 = 𝑚𝑖𝑛{2.5(ℎ − 𝑑); (ℎ − 𝑥)/3;  ℎ/2} (2.39) 

 

where ℎ is the beam height, 𝑑 is the effective height and 𝑥 is the height of the compression 

zone. Also, the Norwegian national annex provides: 

 

 ℎ𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑖𝑛𝑔 ≥ ℎ − 𝑑 + 1.5𝑑𝑏 (2.40) 

 

Because of cracking and bond destruction continuously evolving as further loading is 

applied, Kostovos and Pavlović claims that the stiffness of the RC tie tends towards that of 

the bare bar, hence, tension stiffening effect is unlikely to affect the ultimate load 

predictions. However, the deflection might be more sensitive (Kostovos and Pavlović, 

1995). Nevertheless, a sensitivity study including the tension stiffening effect is performed 

in Chapter 4.3.   

2.5 Crack Modelling 

As finite element modelling essentially is based on a continuum-mechanic technique, an 

incompatibility issue arises whenever cracks are developing in the model, as cracks 

physically separates the structure. In order to overcome this, two crack modelling 

approaches are suggested, namely the discrete and smeared crack model.  

The discrete crack model introduces an actual gap in the finite element mesh at the location 

of a crack. This includes doubling and separating the nodal coordinates lying along 

individual crack paths, as well as automatically redefining of the mesh around the cracks 

to be able to represent various paths (Kostovos and Pavlović, 1995). Although this model 

allows for a precise prediction of the localized deformation at cracks, the discrete crack 

approach requires pre-defining of the tensile fracture zones, when the finite element is 

generated. However, the position of the cracks is not known beforehand for most structural 

analyses. DIANA offers two models the cracking modelled in a discrete manner, namely 

the discrete cracking model and the crack dilatancy model. Even though it could have been 

interesting to investigate the numerical behavior of the structures in a predefined crack 

path system, this is beyond the scope of this thesis, as it is of interest to carry out numerical 

simulations applicable in general engineering design cases, where the crack patterns are 

unknown. Thus, the discrete crack model is not further discussed in this thesis.  

The smeared crack model, on the other hand, makes use of the drastic material changes 

caused by the cracking as a means of simulating discontinuity, which in our case would be 

the Hordijk softening curve. Such material changes include reducing or removing the 

stiffness properties orthogonal to the crack, without introducing any gap in the initial mesh, 

and leaving the mesh unchanged throughout the analysis. Since material properties are 

evaluated only at specific points in an element, such as integration points, the alteration 

of the material properties due to cracking consequently affects the contributing region from 
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which these properties are evaluated, hence smearing the effect of cracking over the whole 

of that region. Thereby, smeared modelling represents cracked areas by modifying stiffness 

properties and stresses at the relevant Gauss points. Thus, smeared models simply replace 

uncracked stiffness matrices by cracked ones. The fact that there is no need for redefining 

the mesh through this process constitutes a computational advantage compared to the 

discrete crack model (Kostovos and Pavlović, 1995). The smeared crack approach can be 

subdivided into the fully rotating crack model, fixed crack model, multiple non-orthogonal 

crack models and hybrid crack models (Vecchio, 2001). However, there is an essential 

difference between the multiple non-orthogonal crack model, or the multi-directional fixed 

crack model as it is denoted in DIANA, and the other models. The multi-directional fixed 

crack model allows for several non-orthogonal cracks to appear in the same integration 

point. This is in contrast to the other models, which only allows for maximum two 

orthogonal cracks. The latter can be described by the total-strain based crack model and 

has the characteristics of describing the stress as a function of the strain. These properties 

are evaluated in the directions given by the crack directions. Hence, the strain can be noted 

as: 

 

 𝜀 = 𝜀𝑡𝑜𝑡𝑎𝑙 (2.41) 

 

with one stress-strain relation gives the stress: 

 

 𝜎 = 𝜎(𝜀) (2.42) 

 

This procedure is not possible for the multi-directional fixed crack model, due to several 

cracks in one integration point. Hence this model uses a decomposed strain model, 

consisting of the elastic strain and the crack strain: 

 

 𝜀 = 𝜀𝑒 + 𝜀𝑐𝑟 (2.43) 

 

giving the elastic stress-strain relation as: 

 

 𝜎 = 𝜎(𝜀 − 𝜀𝑐𝑟) (2.44) 

 

and the crack stress-strain relation as a function of the crack strain: 

 

 𝜎𝑐𝑟 = 𝜎(𝜀𝑐𝑟) (2.45) 

 

The further sub-decomposition of the crack strain allows for the possibility of modelling a 

number of cracks that simultaneously occur. The initiation of cracks are governed by a 

tension cut-off criterion and a threshold angle between two consecutive cracks, which must 

be simultaneously satisfied (DIANA TNO, 2020). However, the effect of using multi-

directional fixed crack models was not investigated. Thereby, this thesis includes an 

investigation of different total-strain based crack models, namely the fixed, fully rotating 
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and a hybrid crack model. The latter is, in DIANA, denoted as the rotating to fixed crack 

model. 

2.5.1 Fixed Crack Model 

Traditionally, the stress-strain law for smeared cracking has been set-up with a reference 

to fixed principal nst-axes of orthotropy (Rots and Blaauwendraad, 1989). In the nst-

notation, the n represents the normal crack direction (mode I), while s and t in this case 

represents the in-plane tangential crack direction (mode II), and out-of-plane tangential 

crack direction (mode III) respectively. To simplify the notations, and because the analyses 

in this thesis operated in a 2D-plane stress formulation, mode III is neglected in the 

following notations. See Figure 2.16.  

 

 

 

Figure 2.16 - Relative crack coordinate system 

 

 

Initially, the concrete is treated as an isotropic material, meaning that the same material 

properties yields in all directions. However, once cracking is initiated, the isotropic 

properties are replaced with an orthotropic material law, and can be noted as follows: 

 

 [

𝜎𝑛𝑛

𝜎𝑠𝑠

𝜎𝑛𝑠

] =

[
 
 
 
 
 
 

𝜇𝐸

1 − 𝜈2𝜇

𝜈𝜇𝐸

1 − 𝜈2𝜇
0

𝜈𝜇𝐸

1 − 𝜈2𝜇

𝐸

1 − 𝜈2𝜇
0

0 0
𝛽𝐸

2(1 + 𝜈)]
 
 
 
 
 
 

[

𝜀𝑛𝑛

𝜀𝑠𝑠

𝛾𝑛𝑠

] (2.46) 

 

where 𝐸 is Young’s modulus, 𝜈 is Poisson’s ratio, and 𝜇 and 𝛽 are the reduction factors for 

mode I and mode II stiffness (Rots and Blaauwendraad, 1989). The concept of the fixed 

crack model is that the crack is fixed upon initiation (DIANA TNO, 2020). This includes the 

need to specify a shear retention factor, as the principal stresses keeps rotating after crack 
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initiation, creating tangential crack stresses. The shear retention will be further elaborated 

in Chapter 2.5.4. DIANA relates the global (xy) and local crack (ns) strains as: 

 

 𝜀𝑛𝑠𝑖+1
𝑡+∆𝑡 = 𝑻 𝜀𝑥𝑦𝑖+1

𝑡+∆𝑡  (2.47) 

 

where the transformation matrix, 𝐓, can be denoted as: 

 

 𝑻 = 𝑻( 𝜀𝑥𝑦𝑖+1
𝑡+∆𝑡 ) (2.48) 

 

meaning that the transformation matrix, 𝐓, is a relative angle function dependent on the 

strain situation and whether the fixed or rotating crack model is applied. For the fixed crack 

model, the transformation matrix, 𝐓, is fixed upon cracking, whereas for the rotating crack 

model, 𝐓, is constantly changing. If 𝜙 represent the angle between x and n in Figure 2.16, 

the transformation matrix, 𝐓, is expressed as: 

 

 𝑻 = [

𝑐𝑜𝑠2𝜙 𝑠𝑖𝑛2𝜙 𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

𝑠𝑖𝑛2𝜙 𝑐𝑜𝑠2𝜙 −𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙

−2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 2𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜙 𝑐𝑜𝑠2𝜙 − 𝑠𝑖𝑛2𝜙

] (2.49) 

 

2.5.2 Rotating Crack Model 

The rotating crack model, or the coaxial stress-strain model, is appealing in the way that 

there is no need for a shear retention specification. The basic concept, which was touched 

upon in the previous chapter, is that the crack direction is constantly rotating according to 

the principle strain. In the step-by-step computation, only one crack is considered as 

active, and the previous cracks are erased from the memory (Maekawa et al., 2003). Even 

though the physical aspect of this model is not as easy to stand by as the fixed crack 

model, it has during a long period of time shown its suitability for modelling reinforced 

concrete structures (DIANA TNO, 2020). As mentioned in Chapter 2.5.1, in the rotating 

crack model equation the transformation matrix, 𝐓, is constantly changing, and is 

dependent on the current strain situation.  

An issue with the rotating crack model was the fact that material orthotropy generally 

implies the rotation of principal stress to deviate from the rotation of principle strain. 

Consequently, when the axes of material orthotropy co-rotate with the axes of principal 

strain, they will cease to coincide with the axes of principal stress. Hence, the direct use of 

the principal stress-strain curves then becomes inconsistent. However, to solve this, co-

axiality between principal stresses and strains may be enforced in the following manner. 

By virtue of Mohr’s strain circle, a small increment of shear strain causes the direction of 

principal strain to rotate by an angle ∆𝜙𝜀 according to: 

 

 ∆𝜙𝜀 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛

𝛥𝛾12

2(𝜀11 − 𝜀22)
 (2.50) 
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where Δ𝛾12 is the shear strain increment in the 1,2 reference frame and 𝜀11 and 𝜀22 are 

the initial principal strains. In the same way, Mohr’s stress circle indicates that a small 

increment of shear stress causes principal stress rotation by an angle of ∆𝜙𝜎 according to: 

 

 ∆𝜙𝜎 =
1

2
𝑎𝑟𝑐𝑡𝑎𝑛

Δ𝜏12

(𝜎11 − 𝜎22)
 (2.51) 

 

Co-axiality between principal stresses and strains is enforced by ∆𝜙𝜀 = ∆𝜙𝜎. Hence: 

 

 
𝛥𝜏12 =

(𝜎11 − 𝜎22)

2(𝜀11 − 𝜀22)
𝛥𝛾12 

 

(2.52) 

 

With the statement in eq. (2.52), the formulation of the tangential stress-strain law for a 

consistent rotating crack concept then becomes: 

 

 [

∆𝜎11

∆𝜎22

∆𝜏12

] =

[
 
 
 
 
 
 
𝜕𝜎11

𝜕𝜀11

𝜕𝜎11

𝜕𝜀22
0

𝜕𝜎22

𝜕𝜀11

𝜕𝜎22

𝜕𝜀22
0

0 0
(𝜎11 − 𝜎22)

2(𝜀11 − 𝜀22)]
 
 
 
 
 
 

[

∆𝜀11

∆𝜀22

∆𝛾12

] (2.53) 

 

In eq. (2.53) the derivatives can be inserted directly as the shear term guarantees 

coaxiality between principal stress and principal strain (Rots and Blaauwendraad, 1989).  

2.5.3 Rotating to Fixed Crack Model 

The rotating to fixed crack model is, as the name suggests, a hybrid crack model which 

consists of both rotating and fixed cracks depending on the total strain level. In DIANA the 

user specifies a critical strain value. Until this value is reached, the crack acts as a rotating 

crack and is aligned with the principal strains in the respective integration point. When the 

critical total strain, 𝜀𝑓, is reached, the crack orientation is fixed and the model changes 

from the rotating to the fixed crack model (DIANA TNO, 2020). Note that the threshold 

strain value, 𝜀𝑓, is compared with the total principal strain 𝜀1, and not the crack strain. This 

means that if a threshold value is specified to be smaller than a strain value initiating a 

crack, or put differently, smaller than 𝑓𝑡 𝐸⁄ , it will result in a completely fixed crack model. 

DIANA provides no clear guidelines for defining the critical threshold strain, hence, an 

investigation of the influence of a varying threshold value will be carried out in Chapter 

4.2. 
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2.5.4 Shear Retention 

A consequence of using the fixed crack model is the presence of a tangential shear 

resistance in the crack, as the principle stresses keeps rotating after initiation. The reduced 

mode I normal stiffness in the crack forces the principal stresses to rotate to find a new 

equilibrium position, which includes an immediate shear stress along the crack surface. 

The physical interpretation of this tangential shear resistance can be assessed as aggregate 

interlock. This is the result of the crack pattern navigating in the cement paste between 

aggregates, causing an unsmooth crack surface to form in which aggregates pointing out 

in the crack will prevent the crack from tangential slipping. This resistance is denoted as 

shear retention, and is specified by reducing the shear stiffness in the crack by a retention 

factor, 𝛽, which relates the shear crack stiffness to the undamaged shear stiffness in the 

following manner: 

 

 𝐺𝑐𝑟 = 𝛽𝐺 (2.54) 

 

with 0 ≤ 𝛽 ≤ 1.  

 

 

 

Figure 2.17 – Reduced shear stiffness (DIANA TNO, 2020) 

 

 

Early versions attempted to set the shear retention factor equal to zero, meaning that 

there was no shear stiffness as cracks were formed. However, this was a rather crude 

approximation of reality as cracks in heterogeneous materials may be well capable of 

transmitting shear stresses due to aggregate interlock, as mentioned above. Moreover, the 

sudden switch from the initial isotropic linear-elastic law to an orthotropic law with zero 

stiffness implies a strong discontinuity which turned out to amplify numerical difficulties 

(Rots and Blaauwendraad, 1989). 

DIANA provides a number of shear retention models. It is possible to use a constant shear 

retention value, full or reduced, however this might result in shear stress-locking on the 



30 

 

crack surfaces, as the size of the crack opening does not affect the shear stiffness 

reduction. Hence, only variable shear retention models were investigated in this thesis. 

This is also according to the recommendations in the guidelines for NLFEA of concrete 

structures (Hendriks and Roosen, 2019).  

The damage based shear retention model decreases the shear stiffness proportional to the 

decrease of the normal stiffness as a crack evolves. In other words, the secant shear 

stiffness degrades at the same rate at the secant tensile stiffness due to cracking (Hendriks 

and Roosen, 2019). Hence, the reduced crack shear stiffness in DIANA is expressed as: 

 

 𝐺𝑐𝑟 =
𝐸𝑐𝑟

2(1 + 𝜈𝑐𝑟)
 (2.55) 

  

where 𝐸𝑐𝑟 is the tensile secant modulus after cracking, and 𝜈𝑐𝑟 is the reduced Poisson’s 

ratio, according to Chapter 2.3.3. This also implies that there is no residual shear stiffness 

across macro-cracks (Rots and Blaauwendraad, 1989). The motivation for the use of this 

model is that it often provides conservative results, and that it is user-friendly, as no extra 

specifications are needed. 

In contrast to the damage based shear retention model, when using the Al-Mahaidi shear 

retention model, DIANA demands a minimum shear retention specification. DIANA 

recommends this value to be no larger than 0.01. Hence, to avoid further numerical 

instabilities, this was the minimum shear retention value chosen in this thesis. The Al-

Mahaidi shear retention factor evolves in the following manner:  

 

 𝛽 = 0.4
𝑓𝑡

𝐸𝜀𝑛𝑛
 (2.56) 

 

where 𝑓𝑡 is the tensile strength, 𝐸 is the Young’s modulus, and 𝜀𝑛𝑛 is the total normal strain 

(DIANA TNO, 2020). By analyzing eq. (2.56) one can see that the shear retention factor 

immediately drops to 0.4 as the first crack is initiated, and then continues decreasing with 

increasing normal strain. Similarities can be drawn between the Al-Mahaidi and damage 

based shear retention models as they both decrease with increasing strain, however, the 

Al-Mahaidi is not directly governed by the tension softening model, as is the case for the 

damage based. 

Finally, the aggregate based shear retention model was analyzed. As the other models, 

this model also reduces the shear capacity as the crack width increases.  However, the 

aggregate based shear retention model assumes that all contact is lost and thereby zero 

shear resistance in the crack, when the crack is wider than half the mean aggregate size. 

The linear decay of the shear retention reads: 

 

 𝛽 = 1 − (
2

𝑑𝑎𝑔𝑔
)𝜀𝑛𝑛

𝑐𝑟 ℎ𝑐𝑟 (2.57) 

 

where 𝑑𝑎𝑔𝑔 is the mean aggregate size, 𝜀𝑛𝑛
𝑐𝑟  is the crack normal strain, and ℎ𝑐𝑟 is the crack 

bandwidth (DIANA TNO, 2020). The crack strain multiplied with the crack bandwidth is the 

numerical interpretation of the crack width. Physically, this model makes sense. However, 
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this model implies that half of the mean aggregate size is pointing out between cracks 

along the whole crack length. In reality, we have little control of where the crack develops 

and neither where different aggregate sizes locate. Hence, to use the mean aggregate size 

might be interpret as non-conservative.  

The three shear retention models presented in this chapter were compared in a simple 

one-element test and is presented in Appendix A.3.  

2.6 Modes of Failure 

This chapter will briefly discuss different failure modes in concrete beams, obtained as a 

result of varying geometrical aspects. However, failure modes including stirrup failure etc., 

will not be examined here, as this is not relevant for the present study. Furthermore, 

several and more detailed versions of the failure modes described below exist, however, 

the presented failure modes are the main failure modes seen in the experimental and 

numerical results in this thesis.  

2.6.1 Flexural Failure 

For a shear span to effective depth ratio, 𝑎/𝑑, above 6, flexural failure displays either 

yielding of the longitudinal reinforcement and crushing of the concrete in the compression 

zone or just excessive yielding of the longitudinal reinforcement (de Putter et al., 2022). 

This will occur in at a section of maximum moment and will result in vertical cracks forming 

in from the bottom of the beam.  

2.6.2 Tension Shear Failure 

For a shear span to effective depth ratio, 𝑎/𝑑, above 2.5 and to about 6, the diagonal crack 

starts from the last flexural crack and turns gradually into a crack more and more inclined 

under the shear loading. Such a crack does not proceed immediately to failure. The 

diagonal crack encounters resistance as it moves up into the compression zone, hence, 

flattens out, and stops at some point. Further loading will expand the crack until sudden 

failure occurs (Lafta and Ye, 2016).  

2.6.3 Compression Shear Failure 

For shear span to effective depth ratio, a/d, between approximately 1.0 and 2.5 , the shear 

failure is mainly caused by the crushing of concrete in the compression zone at the top of 

the critical diagonal crack, or in other words, in the top of the strut. This type of failure is 

known as shear compression failure (Zararis, 2003).  

2.7 Size Effect 

To capture the size effect, and no other influences, one must consider structures of 

different sizes but geometrically similar shapes. According to standard criteria, failure is 
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indicated when the nominal stress reaches the nominal strength of the concrete (Bažant, 

1984). However, when taking the size effect into account, the nominal strength may 

deviate for the same material. Thus, the strength of structural materials is not constant – 

it decreases with increasing size of the specimen (Carpinteri, 1989). Two size effects are 

of major importance under loading, namely the stochastic and energetic size effect 

(Suchorzewski et al., 2018). 

2.7.1 Stochastic Size Effect 

This size effect concerns the heterogeneity of the concrete material and is referred to as 

the statistical (or stochastic) size effect. With this heterogeneity follows a strength 

variability throughout the concrete structure. This property is independent of the structure 

size. However, the stress gradient normally varies inversely with the structure size, which 

means that the region of nearly maximum stress becomes larger in a larger structure. 

Therefore, a coalition of low strength and peak stress is higher for larger structures. This 

results in declining strength with increasing structural size. Nevertheless, the decline stops 

when the region of nearly maximum stress becomes much larger than the region of low 

strength, which provides a horizontal asymptotic limit as the structure gets very large 

(Bažant, 1984). 

2.7.2 Energetic Size Effect 

This second size effect is called the energetic or deterministic size effect. In summary, the 

source of the energetic size effect is a mismatch between the size dependence of the 

energy release rate and the energy consumption rate by fracture (cracking). A significant 

part of the energy release increases with the square of the structure size, while the energy 

consumption increases in proportion to the structure size. Therefore, the nominal stress 

must decrease to reduce the energy release rate of the structure to achieve equilibrium 

between the energy consumption and the energy release (Bažant, 2000).  
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3 Finite Element Modelling of Five Beams 

Tested by Suchorzewski et al.  

In this chapter, the modelling setup is established. To make optimal choices in a NLFEA, a 

certain amount of experience and expertise is needed, as the application is rarely straight-

forward (Vecchio, 2001). Thereby, many of the modelling choices in this thesis were 

influenced by guidelines and research papers made by experts in the field. Some papers 

were especially important through the realization of this thesis, and these are presented 

below: 

- The experimental study of shear strength and failure mechanisms in RC beams 

scaled along height or length, done by Suchorzewski, Korol, Tejchman and Mróz 

(Suchorzewski et al., 2018). These experiments are the basis for comparison for 

the analyses done in this thesis. The different size adjustments and failure 

mechanisms obtained in the experiments creates a good foundation for analyzing 

the robustness and stability of different modelling procedures.  

- The guidelines for nonlinear finite element analysis of concrete structures (Hendriks 

et al., 2017; Hendriks and Roosen, 2019). The guidelines are provided in a 

summarized and clear way, with reasons for why to use the different applications 

presented. 

- The article by de Putter et al. (de Putter et al., 2022). In this research, 19 alternative 

2D nonlinear finite element approaches where benchmarked against 101 

experiments on RC beams. The large amount of analyses uses the total-strain based 

crack model with either fixed or rotating crack models, varying element sizes, 

reinforcement models, bond-slip models, and equilibrium conditions. Accuracy and 

deviations were documented, and certain issues with the different models were 

pointed out. Thus, the newly published article is highly relevant, and inspired 

several of the modelling choices for the analyses in this thesis.  

It is worth mentioning that some of the authors in the experimental study presented above 

also ran numerical simulations of the experiment (Suchorzewski et al., 2018; Marzec et 

al., 2019), and good correlation between numerical and experimental results was obtained. 

In these analyses an elasto-plastic damage model was used, enhanced by non-local 

softening, and were performed in Abaqus. Some inspiration and ideas were also extracted 

from these analyses. In the analyses, they used a 2D plane stress format with symmetry 

boundary conditions – meaning they only modelled one half of the beam. Despite of these 

simplifications, good results were obtained. The motivation for modelling in a plane stress 

formulation with symmetry boundary conditions were that computational time decreases, 

and that the beam thickness was quite slender. Furthermore, the good results obtained in 

the non-local model, confirms that these simplifications can be made and good accuracy 

can still be preserved. 

With a crack band model, as used in the analyses in this thesis, it lies within the 

mathematical formulation that the cracking strain is uniformly distributed over the width 

of the band, with a sudden jump at the band boundary. Nevertheless, a more realistic 

description would include a nonuniform variation of the cracking strain, as the density of 

cracks or microcracks will increase towards the center of the fracture process zone. The 

latter may be achieved by adopting the concept of a non-local continuum. Summarized, 

this concept assumes that the stress at a point is not a function of the smoothed stress at 

the same point but a function of the smoothed strain distribution over a certain 
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characteristic volume centered at that point. The mean strain is defined as a certain 

averaging integral over the characteristic volume with a suitable empirical weighting 

function (Bažant, 1986). Further elaboration or investigation of the non-local model will 

not be provided in this thesis. The main reason for this is that it is not a direct option in 

DIANA, and that the main scope was to investigate the capability of local procedures. The 

very short introduction of the non-local approach was merely meant to inform the reader 

of an alternative approach, which has proved to be successful in the numerical estimation 

of the experiment investigated in this thesis.  

3.1 Experimental Setup 

The experiments by Suchorzewski were done in two series (Suchorzewski et al., 2018). In 

series 1, the beams were scaled along the height, and in series 2, the beams were scaled 

along the length. In each series there were three variations of the respective variable 

(𝑑 𝑜𝑟 𝑙), resulting in six different beams. However, the two series had a common geometry, 

resulting in a total of five different geometries. The experimental results showed that the 

behavior of the one common geometry was so similar that two separate numerical analyses 

was considered to be unnecessary. Thereby, throughout the analyses in this thesis, there 

are five variations of the geometry. The geometries are illustrated in Figure 3.1–Figure 

3.5, where the measures are given in millimeters. The notations has the following meaning: 

S1/S2 refers to the relevant series, D18/D36/D72 refers to the effective height, and 

a36/a72/a108 refers to the shear span. Note that Figure 3.2 states S1&2, meaning that 

this geometry is applied in both series. The anchorage length was 130 mm for S1D18a108, 

310 mm for S2D18a36, S2D18a72 and S1&2D18a108, and 670 mm for S1D72a108. Also, 

all the rebars had a diameter of 20 mm.  

 

 

 

Figure 3.1 – Beam S1D18a108 

 

 

 

Figure 3.2 – Beam S1&2D36a108 
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Figure 3.3 – Beam S1D72a108 

 

 

 

Figure 3.4 – Beam S2D36a72 

 

 

 

Figure 3.5 – Beam S2D36a36 

 

 

As mentioned, only half of the beams were modelled. This was done by restraining all 

movement in the longitudinal direction at the midspan of the beams. An illustration of this 

can be seen in Figure 3.11 – Figure 3.15. 
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3.2 Non-variable Modelling Parameters 

Table 3.1 – Constitutive model for concrete 

Constitutive model for concrete 

Crack model 
Total-strain based smeared 

crack model 

Tensile softening curve Hordijk 

Crack bandwidth Govindjee projection 

Compressive curve Parabolic 

Compression strength 

reduction 
Vecchio and Collins, 1993 

Confinement effects Hsieh-Ting-Chen 

Poisson’s ratio reduction Damage based 

 

 

 

Table 3.2 – Kinematic assumptions concrete 

Kinematic assumptions concrete 

Element type 
8-node quadrilateral plane 

stress element 

Integration and interpolation 
2x2 Gaussian, quadratic 

interpolation 

Element size 
≈h/20 ≥ 1*Max aggregate 

size 

 

 

 

Table 3.3 – Concrete material properties for each series 

Concrete material properties for each series 

 Series 1 Series 2 

Compressive cylinder 

strength, 𝑓𝑐 
47.4 N/mm2 51.0 N/mm2 

Tensile strength, 𝑓𝑡 2.81 N/mm2 3.61 N/mm2 

Young’s modulus, 𝐸 33100 N/mm2 35300 N/mm2 

Poisson’s ratio, 𝜈 0.2 0.2 

Tensile fracture 

energy, 𝐺𝐹 
0.093 N/mm 0.095 N/mm 

Compressive fracture 

energy, 𝐺𝐶 
23.25 N/mm 24.75 N/mm 
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The compressive strength, tensile strength, and Young’s modulus in Table 3.3 are reported 

experimental values (Suchorzewski et al., 2018). The compressive strength was reported 

as cube strength. The relation between cube compressive strength and cylinder 

compressive strength may depend on several factors (Kumari, 2015), however, the 

cylinder strength was assumed to be 80% of the cube strength. 

As can be seen in Table 3.3, some deviation is present between the series, even though 

the same concrete recipe mix was used. The Poisson’s ratio was recommended to be 0.2 

by the guidelines for NLFEA of concrete structures (Hendriks and Roosen, 2019). The 

tensile fracture energy was calculated according to Bažant and Becq-Giraudon (Bažant and 

Becq-Giraudon, 2002), where the area under the initial tangent of the of the softening 

stress was established as: 

 

 
𝐺𝑓 = 𝛼0 (

𝑓𝑐
0.051

)
0.46

(1 +
𝑑𝑚𝑎𝑥

11.27
)
0.22

(
𝑤

𝑐
)
−0.30

 

 
 

(3.1) 

where the 𝛼0 is a coefficient depending on the aggregate type and is 1 for round 

aggregates, 𝑓𝑐 is the uniaxial cylinder strength, 𝑑𝑚𝑎𝑥 is the maximum aggregate size and 
𝑤

𝑐⁄  is the water-cement ratio. The value determination, elaboration and understanding of 

eq. (3.1) were aided by Suchorzewski’s article (Suchorzewski et al., 2018). Furthermore, 

the area under the complete stress-separation curve was determined as: 

 

 𝐺𝐹 = 2.5𝐺𝑓 (3.2) 

 

Finally, the compressive fracture energy can be related to the tensile fracture energy by 

(Nakamura and Higai, 2001):  

 

 𝐺𝐶 = 250𝐺𝐹 (3.3) 

 

For the S1&2D36a108 analyses, the material properties from series 1 were used. 
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Table 3.4 – Constitutive model for reinforcement steel 

Constitutive model for reinforcement steel 

Yield strength, 𝑓𝑦 560 MPa 

Young’s Modulus, 𝐸𝑠 205 GPa 

Plasticity model 
Von Mises with linear 

hardening 

Hardening modulus, 𝐸ℎ 0.02𝐸𝑠 

Hardening type Isotropic 

Ultimate strain, 𝜀𝑢 25‰ 

Poisson’s ratio, 𝜈 0.3 

 

 

The material properties of the reinforcement steel was also reported by Suchorzewski 

(Suchorzewski et al., 2018). The hardening modulus, 𝐸ℎ, was modelled according to 

Hendriks et al. (Hendriks et al., 2017), and the ultimate strain was the same as in de 

Putter’s research (de Putter et al., 2022).  

 

 

Table 3.5 – Kinematic assumptions reinforcement 

Kinematic assumptions reinforcement 

Element type 
3-node plane stress beam 

element 

Integration and interpolation 
2-point Gaussian, quadratic 

interpolation 

 

 

 

Table 3.6 – Kinematic and constitutive assumptions for reinforcement bond interface 

elements 

Kinematic and constitutive assumptions for 

reinforcement bond interface elements 

Element type 
11-node plane stress line 

element 

Integration and interpolation 
3-point Newton-Cotes, 

quadratic interpolation 

Shear stiffness, plate/support 

plate interface 
1000 N/mm2/mm  

Normal stiffness, 

plate/support plate interface 
100000 N/mm2/mm 
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The shear and normal stiffness values for the bond interface was calculated according to 

eq. (2.28) and eq. (2.29) in Chapter 2.4.2 based on fixed (for all analyses) approximate 

values, being Young’s modulus equal to 30 000 N/mm2, an element length of 30 mm, and 

the factors 100 and 1/100 for 𝐾𝑛 and 𝐾𝑡, respectively. 

 

 

Table 3.7 – Bond-slip conditions 

Bond-slip conditions 

Maximum bond-slip stress, 

𝜏𝑚𝑎𝑥 
17.4 N/mm2 

𝑠0 0.06 mm 

𝑠1 1 mm 

𝑠2 2 mm 

𝑠3 5 mm 

𝛼 0.4 

Ultimate bond-slip stress, 𝜏𝑏𝑓 7.0 N/mm2 

 

 

 

The bond-slip values were estimated according to fib Model Code 2010 (fib Model Code 

2010) and were based on good bond conditions. The minor material deviations between 

series 1 and 2 were assumed to be negligible when calculating the bond-slip stress. Hence 

averaged bond-slip stress values were set as basis for all analyses. These values are 

presented in Table 3.7.  

 

 

Table 3.8 – Kinematic and constitutive assumptions for support and loading plate 

interface elements 

Kinematic and constitutive assumptions for support 

and loading plate interface elements 

Element type 
3+3-noded plane stress line 

element 

Integration and interpolation 
3-point Newton-Cotes, 

quadratic interpolation 

Shear stiffness, load/support 

plate interface 
1MPa/mm, linear 

Normal stiffness, 

plate/support plate interface 
1000 MPa/mm, no-tension 
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The shear and normal stiffness values in Table 3.8 was taken to be the same as in de 

Putter’s research (de Putter et al., 2022). Note that the element selection of the interfaces, 

presented in Table 3.6 and Table 3.8, are not explicitly chosen. These elements are 

automatically adapted to fit the element selected in Table 3.2. This also applies for the 

reinforcement beam element presented in Table 3.5, which is either quadratic or linear, 

depending on the general element type selected in Table 3.2. 

 

 

Table 3.9 – Equilibrium control 

Equilibrium control 

Arc-length control 

Sperichal path, with indirect 

displacement control of the 

node which showed largest 

displacement in an elastic 

analysis 

Load control 

Applied as prescribed 

deformation with step 

length: upeak/50 – but 20 

steps up to the first step of 

upeak/50 

Iteration scheme 
Full Newton-Raphson with 

line search, 100 iterations 

Continuation 
Continuation in case of 

nonconverged load steps 

Norm Energy with tolerance 0.0001 

 

 

 

Also, several of the equilibrium control procedures were inspired by de Putters research 

(de Putter et al., 2022). The mesh layout are presented in Figure 3.6 – Figure 3.10.  

 

 

 

Figure 3.6 – Mesh layout for beam S1D18a108 
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Figure 3.7 – Mesh layout for beam S1&2D36a108 

 

 

 

Figure 3.8 – Mesh layout for beam S1D72a108 

 

 

 

Figure 3.9 – Mesh layout for beam S2D36a72 

 

 

 

Figure 3.10 – Mesh layout for beam S2D36a36 
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3.3 Variable Modelling Parameters 

The following chapters, Chapter 3.3.1 – Chapter 3.3.3, presents the varying modelling 

parameters. The influence of different shear retention models, total-strain based crack 

models and the tension stiffening effect were investigated. It is these variations that will 

be investigated in Chapter 4. 

3.3.1 Shear Retention Models 

The motivation for these analyses is the large deviations in the shear retention models 

given in DIANA (see Chapter 2.5.4 for theory and Appendix A.3 for visual illustrations of 

the different shear retention models). The damage based and aggregate based shear 

retention models are both recommended in the guidelines for NLFEA of concrete structures 

(Hendriks and Roosen, 2019). The damage based is recommended due to its conservative 

formulation, and its ease of use, as no extra value specifications is needed from the user. 

The aggregate based is physically easy to understand, as the retention depends on the 

crack width and the aggregates in the concrete. The Al-Mahaidi shear retention model was 

also investigated, with a lower bound value of 0.01 as recommended by the DIANA 

guidelines (DIANA TNO, 2020). This shear retention model was not recommended in the 

guidelines (Hendriks and Roosen, 2019), however, due to its instant decrease of retention 

as a crack occurs, it is interesting to see how it acts compared to the other two. In 

summary, the aggregate provides a relatively high amount of shear retention, the damage 

based provides a relatively low amount of shear retention and is reaching zero when a 

macro-crack is formed, and the Al-Mahaidi provides a relatively low amount of shear 

retention, but a small amount of shear retention still remains as the crack grows large. 

3.3.2 Crack Models 

Both the rotating and fixed crack models were analyzed in de Putters research, where the 

general conclusion was that rotating crack models works better for beams with shear 

reinforcement, while fixed crack models performed better for beams without shear 

reinforcement (de Putter et al., 2022). However, a relatively new feature in DIANA is to 

use the rotating to fixed crack model as explained in Chapter 2.5.3. This model can be 

explained as a hybrid model of rotating and fixed cracks, as it initially follows the rotating 

crack propagation until a certain normal strain value is reached, where it stops rotating, 

and turns into a fixed crack.  

The first decision in this model is to choose appropriate threshold strain values, in which 

the crack changes from rotating to fixed. In every analysis, the fully rotating and fully fixed 

crack model will be plotted in order to see how the hybrid model works in comparison. As 

mentioned in Chapter 2.5.3, the threshold value is the total strain, meaning that a 

threshold value lower than 
𝑓𝑡

𝐸⁄  will give a crack model that act as fully fixed. Three hybrid 

models will be used for each beam, representing half-open, fully open, and finally a total 

strain value resulting in 5 times fully open crack. Because of different material values, 

geometries and element sizes, the threshold values will vary for each beam. See Table 

3.10 for the applied values, and Appendix B.1 for the calculation procedure.   
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Table 3.10 – Threshold total normal strain values for different beams 

Threshold total normal strain values for different beams 

 Half-open crack 
Fully open 

crack 
5xFully open crack 

S1D18a108 0.0054 0.0107 0.0532 

S1&2D36a108 0.0038 0.0075 0.0370 

S1D72a108 0.0022 0.0043 0.0213 

S2D36a72 0.0030 0.0060 0.0295 

S2D36a36 0.0030 0.0060 0.0295 

 

 

The second decision is which shear retention model to use in the fixed crack model. The 

crack model investigation was purposely done after the shear retention analyses in order 

to determine an appropriate shear retention model to use in these analyses. As can be 

seen in Chapter 4.1 the Al-Mahaidi shear retention model had the overall better 

performance. However, this model was sensitive in terms of creating an alternative crack 

path, giving the beam more capacity. Also, this model requires a lower bound shear 

retention value, which remains a bit arbitrary to determine. Therefore, the damage based 

will be used for beam S1D72a108, S2D36a72 and S2D36a36, while the aggregate based 

model will be used where the damage based heavily underestimated the capacity, that is 

for beam S1D18a108 and S1&2D36a108. Note that the overall goal of this thesis is to 

reach a unified solution procedure, which will not be a direct outcome of these analyses, 

as we change the shear retention model for some of the beams. The reason for this is that 

it would be difficult to estimate the quality of the rotating to fixed crack models if the fixed 

crack model include wrong failure modes or give either very underestimated or 

overestimated capacities. Hence, optimal shear retention models were chosen in order to 

see if the rotating to fixed crack model could further improve these results.   

3.3.3 Tension Stiffening 

Finally, the tension stiffening (TS) effect is analyzed. The theory is presented in Chapter 

2.4.3 and the calculation of TS heights is carried through in Appendix B.2. Kostovos and 

Pavlović claims that the TS effect does not affect the ultimate capacity, due to the fact that 

continuously extensive cracking lets the stiffness of the RC tie to tend towards the one of 

the bare bar (Kostovos and Pavlović, 1995). However, since the capacity of the beams in 

the fixed crack model is sensitive regarding the shear retention model, as presented in 

Chapter 4.1, in combination with the shear retention models being dependent on the 

tension softening model, as presented in Chapter 2.5.4, an investigation of the TS effect 

may be interesting. Several reasons are presented in Chapter 4.3. 
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Table 3.11 – Tension stiffening zones, Maekawa compared to the Eurocode. 

Tension stiffening zones, 

Maekawa vs EC 

 
Maekawa 

mm 
EC 

mm 

S1D18a108 91 80 

S1&2D36a108 141 96 

S1D72a108 419 184 

S2D36a72 121 97 

S2D36a36 121 97 

 

 

In Appendix B.2, a comparison of the Maekawa and Eurocode TS zones are investigated, 

and a summary of the results are presented in Table 3.11. As Table 3.11 presents, the 

Eurocode is in general more conservative, using a smaller height than the Maekawa model. 

For the S1D72a108, the Maekawa model resulted in a very large TS zone, being larger 

than half of the total beam height. This could result in a problem, because the 2D TS in 

the total-strain based crack model does not account for the direction of the bond effect on 

the concrete. Hence, finite elements which are found to be in the effective embedment 

zone of a reinforcing bar are designated isotropic TS (Hauke and Maekawa, 1999). If the 

TS zone is too large, an overly stiff post-cracking behavior could act in the inclined cracks 

in the shear zone, which in reality have the properties of plain concrete. DIANA does in 

fact offer anisotropic TS behavior, however, this is only applicable in the Maekawa-Fukuura 

Concrete Model, which is not used in this thesis (DIANA TNO, 2020). The resulting stiffening 

zones are presented in Figure 3.11 – Figure 3.15. The shaded area represents the TS zone, 

while the unshaded area represents the plain concrete with the Hordijk tension softening.  

 

 

 

Figure 3.11 – Beam S1D18a108 with tension stiffening zone 
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Figure 3.12 – Beam S1&2D36a108 with tension stiffening zone 

 

 

 

Figure 3.13 – Beam S1D72a108 with tension stiffening zone 

 

 

 

Figure 3.14 – Beam S2D36a72 with tension stiffening zone 
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Figure 3.15 – Beam S2D36a36 with tension stiffening zone 

 

 

Another question is which crack model and shear retention model to use. At this point, 

different types of both the former and the latter have been analyzed. In these analyses, 

only the fixed crack model with damage based shear retention shall be used despite the 

fact that we already know that the damage based model gives inaccurate results for the 

flexural (S1D18a108, S1&2D36a108) beams. This is done to investigate if the TS model 

may improve the damage based results on the more flexural beams as well. As can be 

seen in Chapter 2.5.4 and in Appendix A.3, the damage based shear retention model is 

conservative as the shear stiffness degrades at the same rate as the secant tensile stiffness 

due to cracking. Hence, with another softening model in the concrete surrounding the 

reinforcement, another result might be obtained with the damage based model. 
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4 Finite Element Results and Discussion 

This chapter presents the obtained numerical results and the discussion of these. The result 

layout will follow the same order as presented in Chapter 3.3. There are, as mentioned, 

five different beam geometries to analyze. These geometries are presented in Figure 3.1 

– Figure 3.5. Only half of the beam is modelled, with plane stress formulations. The results 

will contain comparisons between the numerical analyses and the experiment by 

Suchorzewski et al. (Suchorzewski et al., 2018).  

Appendix C presents the experimental crack pattern, and also numerical crack strain plots 

with specifications of where on the force-deflection curve the crack plots where extracted. 

The reason for this is that the amount of different beams and analyses results in a very 

large number of crack plots, which would be cumbersome to include in Chapter 4. Hence, 

as this chapter merely discusses the most important crack observations with a limited 

amount of crack plot visualizations, the complete set of crack strain plots are presented in 

the appendix.  

Furthermore, an important topic was how to determine the failure modes. In de Putters 

research, a schematic procedure was established in order to define the different failure 

mechanisms (de Putter et al., 2022). They separated between three different failure 

modes. Namely, the flexural failure, which implies yielding of the longitudinal 

reinforcement and crushing of the compression zone or just excessive yielding of the 

longitudinal reinforcement. Tension shear failure was identified as failure due to opening 

of the critical inclined crack without crushing of the compression zone, and finally the 

compression shear failure was marked by crushing of the diagonal strut. However, as the 

number of analyses in this thesis are fewer than in de Putters, it is possible to evaluate the 

failure modes more carefully in each analysis.  

The consequence of having very clear and specific criteria is that it may fog the 

mechanisms that actually cause the beams to fail. This can be exemplified by explaining 

the failure mechanisms of a flexural failure and a compression shear failure. The general 

understanding of a flexural failure is that the beam bends so much that the reinforcement 

reaches yielding in the zone of maximum moment. Then, the reinforcement experience 

large strains, and the cross section gets a smaller, more localized compression zone, which 

eventually cause concrete crushing. This would let the concrete crush in the area of 

maximum moment, which will be caused by large stresses aligned with the longitudinal 

direction of the beam. On the other hand, a compression shear failure, which is described 

in Chapter 2.6.3, exhibits crushing of concrete underneath the loading plate due to large 

compressive forces in the beam strut. Furthermore, if the reinforcement yields, the failure 

of the beam can still be concrete crushing due to too large forces in the compressive 

diagonal strut, rather than concrete crushing in the area of maximum moment.  

In this thesis, several factors played a role when deciding the failure mode. These are 

factors as global versus local reinforcement yielding (see Figure 4.37), stiffness change 

after yielding took place, the area of concrete crushing, crack pattern and relative 

numerical capacities. The main goal is always to locate the mechanism which causes the 

beam to fail. Obviously, this way of determining failure modes leaves more room for 

classification errors, as the failure mode does not depend on one single factor. However, 

the following chapters will attempt to explain the reasons behind each classification, 

especially where the failure modes are indistinct.  
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4.1 The Influence of Shear Retention Models 

Chapter 4.1.1 – Chapter 4.1.5 compare the shear retention models within one beam 

analysis, while Chapter 4.1.6 compare how the numerical analyses perform overall. 

The crack strain plots for the analyses performed in this chapter are visually presented in 

Appendix C.1. 

 

4.1.1 Beam S1D18a108 

 

Figure 4.1 – Force-deflection plot for the experiment and varying shear retention models 

for beam S1D18a108 

 

 

Figure 4.1 presents the force-deflection curve for lowest beam, denoted as S1D18a108, 

for three different shear retention models. One can also see three curves for the 

experiment, as three similar specimens of similar geometry and concrete quality were 

experimentally tested. This is also the case for the other beams, where two or three similar 

specimens were tested.  

As can be seen in Figure 4.1, the damage based shear retention model deviates from the 

other two numerical models, as well as the experiment itself. The reinforcement never 

yielded, and the failure mode obtained by the damage based shear retention model 

becomes tension shear rather than the expected flexural failure. The wrongly predicted 

failure mode results in a capacity almost 50% lower than the experimental capacity.  
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The crack pattern of the damage based shear retention model shows little resemblance to 

the experimental one, as the development of large, coherent, horizontal cracks presents 

itself as the beam is loaded. In comparison, the experimental crack pattern has several 

localized cracks, all being relatively vertical, as the beam fails through extensive yielding 

of the reinforcement and concrete crushing.  

A possible explanation to the capacity deviation between the damage based model and the 

experimental model might have cause in the formulation of the damage based shear 

retention model. As presented in Chapter 2.5.4 and Appendix A.3, the shear retention in 

the cracks descends quickly when using the damage based model. Additionally, there is no 

shear retention at all when a full macro crack is formed. Hence, since the S1D18a108 beam 

is flexural, large cracks will occur, and the use of the damage based model would thereby 

drastically impair the shear retention in these cracks, resulting in the wrongly predicted 

tension shear failure mode. 

On the other hand, both the Al-Mahaidi and the aggregate based shear retention model 

have good correlation with the experimental results, only deviating from the experimental 

capacity by 0.36% and 3.32% respectively. In these cases, the failure mode was flexural, 

as in the experiment. The crack patterns of these models showed better resemblance to 

the experimental crack pattern than the damage based model did. Even though the 

formation and number of cracks were sufficiently represented by these models, the 

distance between localized cracks in the midspan was too short. In addition, the horizontal 

crack incline in the shear span was somewhat exaggerated in the numerical models, 

especially by the Al-Mahaidi model. In terms of ductility, the Al-Mahaidi was the most 

accurate.  

As mentioned, all three shear retention models were analyzed and compared in Appendix 

A.3. Here, one could see that the Al-Mahaidi shear retention curve showed similarities to 

the damage based shear retention curve. However, an important difference between the 

models were the fact that the Al-Mahaidi retains a small amount of shear retention even 

when the cracks grow large, while the damage based, as mentioned, does not. Hence, this 

chapter shows that this small amount might be the difference between a correct and a 

wrongly predicted failure mode.  
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4.1.2 Beam S1&2D36a108 

 

Figure 4.2 – Force-deflection plot for the experiment and varying shear retention models 

for beam S1&2D36a108 

 

 

Note the two experiments noted as S1D36a108_1 and S1D36a108_2 in Figure 4.2. This 

refers to the experiments from series 1 and series 2 respectively. Also note that the 

experiments are having quite similar responses, which is the reason why separate analyses 

for the two experiments seemed unnecessary.  

Furthermore, as seen in Figure 4.2, again, the damage based shear retention model 

deviates from the other two models. However, for this analysis, none of the three models 

were able to present a good representation of the experimental behavior.  

The damage based shear retention model might suffer the same destiny as in the analysis 

of the S1D18a108-beam. The S1&2D36a108 beam is also relatively flexural, giving large 

cracks and thereby little post-crack shear resistance. The capacity is underestimated with 

almost 40% by the damage based model. 

The other two shear retention models seem to have the opposite effect, giving too much 

resistance in the cracks. As the experimental failure mode was tension shear, the damage 

based, Al-Mahaidi and aggregate based shear retention model yielded a tension shear, 

compression shear and flexural failure mode respectively. The Al-Mahaidi overestimated 

the capacity by 32%, while the aggregate based almost doubled the experimental capacity.  
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In the damage based model, also the crack propagation is similar to the analysis of the 

S1D18a108 beam. That is, a large diagonal crack takes form and makes the beam fail in 

tension shear. This crack pattern does in fact not deviate a lot from the experimental crack 

pattern. However, it seems like the damage based model has a tendency to underestimate 

the experimental capacity when failing in tension shear – despite being the correct failure 

mode.  

The Al-Mahaidi shear retention model showed quite interesting results. Initially, it follows 

the experimental force-deflection curve almost identically, before it looses capacity around 

4-5 mm deflection. Instead of continuing to a tension shear failure, a new crack pattern 

starts to form directly from the loading plate to the bearing plate, giving a capacity 

estimation about 30% above the experimental values, and failing in compression shear.  

Similar tendencies were elaborated on by de Putter (de Putter et al., 2022), where several 

of the numerical analyses estimated a compression shear failure rather than tension shear 

or flexural failure. It was stated that the position of the critical shear cracks were changed 

from their original position, which crosses the compressive strut, to their final position, 

which was under the strut. This over-rotation of crack patterns enables the possibility to 

have an alternative shear force transfer mechanism through the compression strut, thus, 

significantly increasing the load bearing capacity. As the term “over-rotation” might 

indicate, this spurios behavior was only reported for the rotating crack models, and not the 

fixed ones, in de Putters research. However, de Putter only utilized one type of shear 

retention model for the fixed crack models, namely, the damage based shear retention 

model. As we can see in Figure 4.2, the fixed, damage based shear retention model does 

not exaggerate the capacity by creating a new crack pattern.  

The cause of the reestablishment of crack paths cannot be the result of over-rotation, as 

the crack model is fixed. As this does not happen for the damage based shear retention 

model, it would be logical to assume that the higher amount of shear retention in the Al-

Mahaidi model is sufficient enough to cause shear stress locking in the crack, not letting 

the beam fail in tension shear, but compression shear. The alternative crack formation 

formed in the Al-Mahaidi model is presented in Figure 4.3. Figure 4.3 A) and B) is plots 

just before and after the capacity drop at 5 mm, while Figure 4.3 C) is the final crack 

pattern just after failure. The expression used in this thesis, “reestablishment of crack 

pattern”, then refers to a similar change in crack pattern as observed in Figure 4.3. 
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A) 

  

B) 

  

C) 

  
Figure 4.3 – Crack strain plot of S1&2D36a108 with the Al-Mahaidi shear retention 

model, establishment of an alternative crack formation 

 

 

The aggregate based shear retention model also shows a capacity drop close to the 

experimental failure. However, in this case, the reestablishment of the crack pattern is not 

as obvious as in the Al-Mahaidi case. A direct, coherent, and localized crack between the 

loading plate and the support plate never took place in the aggregate based model, as a 

contrast to the Al-Mahaidi model. Also, the vertical cracks in the bending zone of the beam 

had a relatively large size compared to the inclined cracks in the shear zone. This is also 

in contrast to the Al-Mahaidi and damage based model, where the inclined crack in the 

shear zone clearly dominated in size. The cause may again be shear stress locking in the 

cracks.  

In short, the following can be stated:  

- The damage based shear retention model has too low shear resistance in the cracks, 

as it has the correct failure mode, but too low capacity.  

- The Al-Mahaidi shear retention model has enough shear resistance in the cracks to 

create an alternative crack path which carry the shear in an alternative way through 

the compressive strut. 

- The aggregate based shear retention model simply has too much shear resistance 

in the cracks, as the beam seems rather unaffected by the inclined shear cracks, 

and just keeps expanding the vertical flexural cracks as the loading proceeds, finally 

failing in a flexural failure mode.  
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4.1.3 Beam S1D72a108 

 

Figure 4.4 – Force-deflection plot for the experiment and varying shear retention models 

for beam S1D72a108 

 

Figure 4.4 presents the numerical and experimental comparison of the S1D72a108 beam. 

The different shear retention models did not deviate a lot from each other, and relatively 

good correlation was found between the experiment and the analysis.  

The damage based shear retention model did in fact show the highest capacity (unlike the 

previous analyses), with an overestimation of the experimental mean capacity of 18.3%. 

The Al-Mahaidi overestimated the capacity by 8.4%, while the aggregate based 

overestimated the capacity by 16.3%. All three shear retention models were evaluated to 

have the compression shear failure modes, despite yielding in the reinforcement. The 

model which experienced most yielding was the damage based model shear retention 

model. However, the failure mode was still classified as compression shear due to the fact 

that only one of the two reinforcement layers yielded, in combination with not showing 

tendencies to opening of flexural cracks. In addition, the general behavior of the force-

deflection curve did not flatten out or change direction after yielding took place. As a final 

argument, the reinforcement yielding only took place locally. Local yielding is discussed in 

Chapter 4.3.5. The Al-Mahaidi and the aggregate based shear retention model experienced 

yielding in a late stage, and also only in one of the reinforcement layers. Hence, a flexural 

failure mode would be a less suiting classification than the compression shear failure mode.  

By further analyzing Figure 4.4, one can see that the elastic phase and the first change in 

the force-deflection curve due to cracking is correct compared to the experimental 

behavior. On the other hand, all three models shows that the cracking propagation phase, 
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that is between the first force-deflection curve change and the capacity peak, acts too stiff 

compared to the experimental results.  

The damage based shear retention model showed a development of too few cracks 

compared to the experimental crack pattern, in addition to lacking a more direct crack path 

from the loading plate to the support plate. The two other models were able to represent 

a crack pattern more similar to the experimental one. This direct crack pattern takes place 

in the experiment because the shear span to effective depth ratio 𝑎 𝑑⁄ = 1.5, which is quite 

low, and thereby allows for a direct force transfer from the loading plate to the support 

plate. 

Another deviation from the experiment was the formation of a vertical crack forming in the 

top of the beam above the support plate. This more or less took place for all three models. 

If we plot the in-plane principal stresses before and after this crack formation, one can see 

that tension stress is building up in the upper region of the beam and being released as 

the crack forms. This is illustrated in Figure 4.5. 

 

 

 

 

 

 

 

 

 

Figure 4.5 – Crack strain (left) and principal stress (right) before and after the 

emergence of a crack in the top part of the beam for the Al-Mahaidi shear retention 

model 

 

One possible solution to the behavior observed in Figure 4.5 could be that the anchorage 

is experiencing too large tensile stresses in its longitudinal direction, and by the looks of 

it, is pulling the concrete in the upper part of the beam. The reason for the large tensile 

stresses in the anchorage may be the result of a loose or damaged bond between the 

longitudinal reinforcement and the concrete, so that tensile stresses in the longitudinal 

reinforcement are no longer a clean function of the moment force but are working more 

like a rope pulled in each end, where the ends would be the anchorage.  

Alternatively, or additionally, stresses in the longitudinal reinforcement close to the 

anchorage must arise to satisfy equilibrium whenever inclined cracking takes place near 

the support, as illustrated to the right in Figure 4.38. This is also described in the Eurocode 

and is taken into consideration by shifting the moment diagram (Eurocode 2). Regardless 

of what the exact reason for this spurious crack formation might be, it was necessary to 

investigate whether or not it influenced the capacity of the beam. Two different approaches 
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were used in an attempt to try to fix the spurious cracking, which are illustrated in Figure 

4.6. 

 

 

  
Figure 4.6 – Crack strain plots with short anchorage (left) and an isotropic linear elastic 

corner (right) 

 

 

In the first attempt, the anchorage length was decreased, presented to the left in Figure 

4.6. This was done in order to evaluate the effect of the long anchorage on the top beam 

cracks. The smaller anchorage resulted in a reduced top-beam crack size. However, the 

cracks were not eliminated, and also, another spurious crack of larger size appeared above 

the anchorage. Hence, despite improving the crack pattern, it was concluded that lowering 

the anchorage was not sufficient enough.  

The next alternative considered a corner part of the beam as linear elastic. This is 

illustrated to the right in Figure 4.6, where elastic material properties were inserted in the 

white part of the beam with the pink contour. That way, cracking in this zone is entirely 

eliminated, which can be observed in the crack strain plot in the figure. The resulting force-

deflection for this beam was plotted in Figure 4.7 and was compared to original Al-Mahaidi 

beam without the elastic corner. 
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Figure 4.7 – Force-deflection plot using the Al-Mahaidi shear retention model for beam 

S1D72a108 with and without a linear elastic corner 

 

 

As Figure 4.7 illustrates, the deviation between the two models is not large. Note that to 

insert the elastic material properties to the corner of the beam, an oblique separation line 

had to be drawn. This oblique line made it impossible to obtain the same meshing layout 

as the one presented in Figure 3.8. Thus, the small deviation in the force-deflection 

diagram might also be caused by the different meshing layouts.  

Throughout the analyses in this thesis, other models and beams also exhibited the 

discussed top-beam cracking. However, separate analyses for each of these cases would 

be very time consuming  and probably repetitive. Therefore, with the findings in this 

chapter, it is concluded that the spurious cracking in the top of the beam does not affect 

the behavior in such a degree that it is necessary to prevent this in each case. 
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4.1.4 Beam S2D36a72 

 

Figure 4.8 – Force-deflection plot for the experiment and varying shear retention models 

for beam S2D36a72 

 

 

Figure 4.8 presents the numerical and experimental comparison of the S2D36a72 beam. 

The numerical analyses acts too stiff and are reaching much higher capacities than the one 

reached in the experiment. The damage based shear retention model overestimates the 

capacity by 32.2%, Al-Mahaidi overestimates by 48.0 % and the aggregate based by 

71.1%. However, these numbers are comparisons of the numerical capacity and the mean 

experimental strength. This is of particular importance for this beam, as the S2D36a72 

beam turned out to work as a transitional limit between high and low beams where the 

failure changed its mode (Suchorzewski et al., 2018). As can be seen in Figure 4.8, the 

two experimental force-deflection curves show quite different capacities. The highest 

capacity exceeds the lowest by 37%, which is due to a tension shear failure in one 

experiment, and compression shear failure in the other. As all of the failure modes in the 

numerical analyses were determined to be compression shear or even flexural, the 

comparison with the mean experimental values resulted in large overestimations.  

Nevertheless, by comparing the numerical capacities only to the experiment failing in 

compression shear, there are still large overestimations of 14.3%, 27.9% and 47.9% for 

the damage based, Al-Mahaidi and aggregate based shear retention model respectively. 

This overestimation might still have cause in the relatively flexural nature of this beam. It 

is worth noting that Suchorzewski classified a compression shear failure as a tangential 
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crack slip of considerable size, compared to the normal crack opening. Hence, a 

combination of a large normal crack opening and a large tangential crack slip will also be 

determined as a compression shear failure. Thereby, if the experimental critical crack 

already exhibited a substantial normal crack opening, the resistance for tangential crack 

movement would decrease. As the numerical models have continuously showed 

incapability of properly representing a tension shear failure, the experimental compression 

shear failure affected by the characteristics of a tension shear failure might also be badly 

predicted by the numerical models. 

Furthermore, as mentioned, the compression shear failure was the failure mode for the 

damage based and Al-Mahaidi shear retention model, while the aggregate based yielded a 

flexural failure. All models failed due to crushing of the concrete, but only the aggregate 

based model had yielding in the reinforcement. In addition, one can also see that the force-

deflection curve changes behavior after yielding, and the crack pattern have vertical, 

flexural cracks of considerable sizes. 

The damage based shear retention model formed too few cracks. The crack formation 

missed the outer experimental crack in which eventually caused the experimental beam to 

fail. Beyond this, the crack pattern was quite similar to the experimental one.  

Both the Al-Mahaidi and the aggregate based shear retention model gave straight crack 

paths between the loading plate and the support plate. The experiment also showed a 

crack leading from the loading plate to the support plate, but the crack was more curved 

compared to the cracks in the numerical analyses.  
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4.1.5 Beam S2D36a36 

 

Figure 4.9 – Force-deflection plot for the experiment and varying shear retention models 

for beam S2D36a36 

 

 

Figure 4.9 shows the numerical and experimental force-deflection curves of the S2D36a36 

beam. Even though all numerical models experienced yielding of the reinforcement, a 

difference was observed between the aggregate based shear retention model and the other 

two. While the yielding of the reinforcement for the aggregate based model was widespread 

across a larger area in the midspan of the beam, the other two models had a local area of 

yielding, being restricted to only a short span at the end of the compressive strut (see 

example in Figure 4.37 and Chapter 4.3.5). One can also see how the global and local 

yielding of the reinforcement affect the force-deflection curve differently, as the aggregate 

based shear retention model showed a descending stiffness before failure took place, which 

is not as clear in the other two models. Thus, the failure mode for the aggregate based 

shear retention model will be classified as a flexural failure, while the other two will be 

classified as compression shear.  

One can see, as in the S2D36a72 beam, that the initial elastic stiffness of the numerical 

analyses differs from the experimental elastic stiffness. It almost seems like the 

experiment does not yield a pre-crack phase and post-crack phase, as it is hard to detect 

any change in the experimental force-deflection curve. Initially, it was assumed that this 

could either be due to a very small pre-crack elastic range, as a very small experimental 

pre-crack phase was observed in Figure 4.8, or that initial cracks in the beam were present 
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before the experiment took place. However, calculations presented in Appendix B.3 

revealed that the former argument would most likely not be the reason for the numerical 

and experimental deviation. The reason for the initial stiffness deviation is further 

discussed in Chapter 4.1.6. 

The crack propagation phase also acts too stiff. This causes the numerical ductility to be 

too small, compared to the experimental ductility. The capacity is in this case numerically 

underestimated. The numerical capacity is 17.3%, 12.9% and 1.5% lower than the 

experimental mean capacity for the damage based, Al-Mahaidi and aggregate based shear 

retention model respectively. 

This beam has the smallest shear span to effective depth ratio, where 𝑎 𝑑⁄ = 1.0, which 

causes the experimental crack pattern to form a direct and relatively linear crack path 

between the loading plate and the support plate. This direct crack path is also seen in all 

three numerical analyses.  

4.1.6 Comparisons and Remarks 

Table 4.1 – Summary of chapter 4.1 – The influence of varying shear retention models 

Beam Mean capicity 

(experiment)[kN] 

Failure 

mode 

(exp) 

Shear 

retention 

model 

Mean 

capicity 

(DIANA)[kN] 

Failure 

mode  

Difference 

[%] 

S1D18a108 120.74 Y Dam. 61.70 T -48.9 

Al-M. 121.18 Y 0.4 

Agg. 124.75 Y 3.3 

S1&2D36a108 235.95 T Dam. 142.66 T -39.5 

Al-M. 311.94 C 32.2 

(-13.0*) 

Agg. 453.46 Y 92.2 

(8.9*) 

S1D72a108 1029.70 C Dam. 1218.55 C 18.3 

Al-M. 1116.14 C 8.4 

Agg. 1197.84 C 16.3 

S2D36a72 379.80 

(439.43/320.17) 

C/T Dam. 502.12 C 32.2 

(14.3**) 

Al-M. 562.10 C 48.0 

(27.9**) 

Agg. 649.88 Y 71.1 

(47.9**) 

S2D36a36 1330.48 C Dam. 1100.02 C -17.3 

Al-M. 1159.29 C -12.9 

Agg. 1310.11 Y -1.5 

*Manually deciding the capacity by locating the moment of crack path reestablishment 

**Compared only to the experimental compression shear capacity 

 

 

Table 4.1 summarizes and compares the experimental and numerical failure modes and 

capacities for each beam in Chapter 4.1. In the table, two marks (* and **) are added. 

The first mark (*) describes the numerical and experimental capacity difference if one were 

to compare the manually located numerical capacity at the moment of crack path 

reestablishment, as can be seen in Figure 4.3, with the experimental mean capacity. This 
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is somewhat discussed in de Putters research (de Putter et al., 2022), as they added an 

alternative way of determining the capacity for beams expected to fail in tension shear. In 

this case, the failure load was no longer taken to be the maximal sustained load in the 

numerical analysis, but the load at the moment where the shear crack opened and changed 

the crack path. As mentioned, this includes a manual interpretation of the results. As 

explained in the de Putters research, this only happened for the rotating crack models, 

which was not used in Chapter 4.1. As discussed in Chapter 4.1.2, shear stress locking in 

the cracks enables the reestablishment of the crack pattern, letting the analysis continue 

to reach a higher capacity as it yields a different failure mode than the expected tension 

shear failure. The second mark (**) is simply included to have an isolated comparison of 

the numerical and experimental capacity of the same failure mode, which would be 

compression shear, in the S2D36a72 beam.  

One insecurity in Table 4.1 is whether or not to include an improved, manual determination 

of the capacity for the aggregate based shear retention model in the S1&2D36a108 beam. 

The reason for this was touched upon in Chapter 4.1.2, as the crack path reestablishment 

of the aggregate based shear retention model was not as obvious as in the Al-Mahaidi case. 

The insecurity lies in whether the capacity is overestimated due to an alternative transfer 

of the shear, as is clearly seen in the Al-Mahaidi case, or if the overestimation is simply 

due to the fact that the aggregate based shear retention model provides too large shear 

resistance in the cracks. The latter is also supported by the fact that the aggregate based 

analysis does not fail in a compression shear failure, but in a flexural failure, containing 

yielding of the reinforcement in combination with crushing of the concrete. Nevertheless, 

the improved, manual comparison is included for the aggregate based shear retention 

model as the force-deflection curve shows a clear disruption very close to the moment of 

experimental failure before it continues and completes its path by failing in a flexural mode.  

 

 

 

Figure 4.10 – Capacity comparison (left) and a capacity deviation diagram (right) 

between numerical and experimental results for the shear retention analysis 

 

 

Figure 4.10 visualizes the numerical and experimental differences. The figure to the left 

shows how the numerical models follows the capacity of the experiment, while the right 
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shows the numerical capacity deviation from the experiment for every shear span to 

effective depth ratio. Negative percentages in the right figure means that the numerical 

capacity was lower than the experimental capacity, and vice versa. As illustrated, the 

numerical models especially struggle to give reasonable predictions of the experimental 

behavior for the beams with intermediate shear span to effective depth ratios. That is for 
𝑎

𝑑⁄ = 2.0 and 𝑎 𝑑⁄ = 3.0. As pointed out in Chapter 2.6, these ratios have the properties of 

experimentally failing in tension shear, which turned out to be difficult to numerically 

simulate. The only model that produced a tension shear failure was the damage based 

shear retention model. However, the experimental capacity was underestimated, for 

reasons discussed in Chapter 4.1.1 and Chapter 4.1.2. On the other hand, for very low 

shear span to effective depth ratios (1 and 1.5) or high ratios (6) the numerical models 

were for the most part (not the damage based for high ratios) able to give good predictions 

of the experimental capacity.  

 

 

 

Figure 4.11 – Initial slope of the numerical and experimental force-deflection curves for 

beam S1D18a108, S1&2D36a108, S1D72a108, S2D36a72 and S2D36a36 

 

 

Figure 4.11 shows the initial slopes of the force-deflection curves for the different beams. 

It is noted that the numerical force-deflection curve struggles to follow the initial 

experimental slope as the beams gets shorter. Some of the possible reasons for this were 

discussed in Chapter 4.1.5, where it was assumed to be caused either by pre-existing 

cracks or a very small pre-cracking phase. However, an analytical comparison provided in 

Appendix B.3 found that the numerical initial stiffness is more correct than the 

experimental initial stiffness. In addition, the deflection at crack initiation was also 

calculated. The results are presented in Table B.4.  

The analytical calculation showed that for the beams S2D36a72 and S2D36a36, the 

deflection at crack initiation should be 0.21 mm and 0.11 mm respectively, while the 

representative numerical deflections were found to be 0.38 mm and 0.21 mm. Hence, the 

analytical and numerical values are in fairly good agreement. (Note that the crack initiation 

in the numerical context means the point where the cracks localizes. It is at this point one 

can see that the force-deflection curve is changing direction, and not necessarily at the 

point where the first cracks appear in the numerical model. An example of initial non-

localized cracks which do not affect the stiffness in a particular degree is presented in 

Figure 4.26. By these statements one can find the numerical deflection at crack initiation 

in Figure 4.11, by locating the deflection at the point of the first “bump” in the numerical 

force-deflection curves.)  

In the calculations of the deflection at crack initiation, the cracking-force was also 

calculated. These values were not presented in Appendix B.3, as they were not the main 

focus of the calculation, but they revealed to be 82.6 kN and 165 kN for beam S2D36a72 
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and S2D36a36 respectively. As the numerical force at cracking were 120 kN and 241 kN, 

it overestimates the analytical force to some degree, but undoubtedly provides a closer 

estimate than the experiments.  

All in all, these results show that the experimental force-deflection curves for the shortest 

beams (S2D36a72 and S2D36a36) lack a proper pre-crack phase compared to the 

analytical results. Hence, the former discussed option of a very small pre-cracking phase 

is probably not the answer of the numerical and experimental initial deviation in the force-

deflection.  

The analytical calculations and numerical results then rise questions to the accuracy of the 

experiment itself. Thus, the author of the experiment, Dr. Jan Suchorzewski, was contacted 

in an attempt to clarify the issue. In the email response, Dr. Suchorzewski mentioned that 

the problem could be related to incorrect settings of the support, despite the fact that they 

were measured. Furthermore, he also mentioned that a colleague, who has also simulated 

the experiments, has had similar problems (Suchorzewski 2022;Marzec et al., 2019). The 

sensitivity to the stiffness of the loading frame is significant for the shorter beams 

(S2D36a72 and S2D36a36). Thereby, it is concluded that the most probable cause of the 

stiffness deviation between the numerical analyses and experiment seen in beam 

S2D36a72 and S2D36a36 in Figure 4.11 is the result of experimental errors. 

 

 

Figure 4.12 – Experimental and numerical shear strength 𝜏 =
𝑃

2

1

𝑡𝑑
 (𝑃 = 2𝑉) for varying 

a/d-ratios for different shear retention models 

 

 

As described in Chapter 2.7, to capture the size effect, and no other influences, one must 

consider structures of different sizes but geometrically similar shapes. This is not the case 

in the present study, as length and height of the structure was independently adjusted. 

This is why Figure 4.12 plot the shear strength as a function of the shear span to effective 

depth ratio. The differing shear strength in Figure 4.12 is especially affected by varying 

failure mechanisms, and in general how the loading is transferred through the beam and 

on to the support. In addition, the size effect, described in Chapter 2.7, will also contribute 

to the differing shear strength.  
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4.2 The Influence of Crack Models 

Chapter 4.2.1 – Chapter 4.2.5 compare the fixed, rotating, and different rotating to fixed 

(RTF) crack models within one beam analysis, while Chapter 4.2.6 compare how the 

numerical analyses perform overall. In this chapter, the terms half, full and 5*full RTF 

crack model will be used. This refers to the total normal strain threshold value in which the 

model shall switch from a rotating to a fixed crack model. The models are further explained 

in Chapter 3.3.2.  

The fully fixed crack model is the same as presented and discussed in Chapter 4.1, hence, 

this model will not be the main focus in this chapter. Yet, the fully fixed model will be 

presented, and in some occasions shortly discussed, in order to get a good perspective on 

how the numerical behavior varies between the different crack models.  

The crack strain plots for the analyses performed in this chapter are visually presented in 

Appendix C.2. 

4.2.1 Beam S1D18a108 

 

Figure 4.13 – Force-deflection plot for the experiment and varying crack models for beam 

S1D18a108 

 

 

Figure 4.13 shows the force-deflection curve for the beam S1D18a108, for five different 

crack models, as explained in Chapter 3.3.2. For the most part, the RTF crack models, 

denoted as half, full and 5*full in Figure 4.13, proves to give a force-deflection curve 

between the fully fixed and fully rotating crack model throughout the analyses in Chapter 

4.2. If the threshold value is very small, then the RTF model will act more like the fixed 
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model, and if it is large, it will act more like the rotating model. This can also be seen in 

Figure 4.13.  

In the half and full RTF crack models, the ductility is severely improved compared to the 

other numerical models. Both of these models show good resemblance to the experimental 

behavior, and yield the same failure mode as the experiment, namely the flexural failure 

mode. The capacity of the half and full RTF crack models underestimated the mean 

experimental capacity by 3.3 % and 4.7 % respectively. The crack pattern of the half RTF 

crack model are quite similar to the one of the fully fixed crack model, while the full RTF 

crack model have a crack pattern that looks like a mixture of the fully fixed and fully 

rotating crack pattern. Also, for all analyses in Chapter 4.2, the crack patterns seems to 

work “between” the fully fixed and fully rotating crack model, where if the threshold value 

is very small, then the crack pattern of the RTF model will look more like the one in the 

fixed model, and vice versa.  

The fully rotating crack model and the 5*full RTF crack model did not show experiment-

like force-deflection behaviors. The force-deflection curves turn to early, at around 13-14 

mm deflection, lose some capacity, before they increase again, and finally fail at 20-30 

mm deflection. The fully rotating crack model underestimates the experimental capacity 

by 13.3 %, while the 5*full RTF crack model underestimates the experimental capacity by 

24.0 %. In the crack strain plots in Appendix C.2.1 it can be seen that the “bump” in the 

force-deflection curves in Figure 4.13 (seen in the rotating, 5*full and slightly in the full 

RTF crack model) takes place in conjunction with the formation of a large coherent and 

inclined crack. The crack stretches from the loading plate to the support plate, as illustrated 

in Figure 4.14.  

 

 

 

 
 

Figure 4.14 – Crack width formation after failure for the fully rotating crack model for 

beam S1D18a108 

 

 

Note that in Figure 4.14, the crack widths are plotted. In this case, the lines are plotted 

orthogonal to the actual crack direction. It is also scaled by value, so the larger the crack 

width, the longer the lines. This illustrates the relative domination of the inclined crack. It 

is also observed that the cracks are parallel to the reinforcement, and not orthogonal, as 

one might expect for this type of flexural beam.  

In Chapter 4.1.2, the topic of over-rotation of cracks was mentioned. The issues of over-

rotation was faced in de Putters research, as 24 of the beams with experimentally observed 

flexural (bending or tension shear) failure were simulated as compression shear failure, 

due to the critical crack changing from its original position, which crosses the strut, to its 

final position being under the strut (de Putter et al., 2022). This issue is present for beam 
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S1D18a108, and also for the other beams in Chapter 4.2, which uses the rotating crack 

model.  

In an attempt to understand why the over-rotation is happening, it was necessary to take 

a closer look at the formulation for the rotating crack model, which was presented in 

Chapter 2.5.2. As explained, co-axiality between the principal stress and  the principal 

strain is enforced in the rotating crack model. With this enforcement, a shear stiffness is 

generated. Furthermore, in an experiment where reinforced concrete panels were exposed 

to large shear stresses, it was proven that the rotation of the principal stress lagged behind 

the rotation of the principal strain (Vecchio and Lai, 2004). Thereby, it is possible that the 

shear stiffness generated in the rotating crack model causes the original, ‘‘correct’’ critical 

crack to over-rotate. As the stiffness is only reduced orthogonal to the crack direction, the 

over-rotation of cracks will also result in an over-rotation of the stiffness reduction. This 

also implies that the initially damaged concrete can regain stiffness. Hence, it is possible 

that the process of crack over-rotation provides new stiffness to a critical crack instead of 

opening it, and in the same process, forms a new crack from the support plate to the 

loading plate, as for example illustrated in Figure 4.19 B). 

Furthermore, the failure mode in the rotating crack model might look like a tension shear 

failure, but the concrete in the compression zone in the midspan crushes as the beam fails. 

Due to the small range of yielding (see Figure 4.13), it is difficult to assess whether the 

failure mode can indeed be classified as the flexural failure mode, or if it is compression 

shear. Either way, the large, diagonal crack does not match the experimental crack pattern, 

and the force-deflection behavior suffers from this. Despite the uncertainty, the failure 

mode is concluded to be flexural, as the yielding of reinforcement takes place before the 

final capacity. Note that this argument alone has not been reason enough to classify the 

beam as flexural in other analyses, but have, in those cases, also shown more 

characteristics similar to a compression shear failure, than in the present case.  

The failure mode of the 5*full RTF crack model is also difficult to assess. One can see that 

the curve reaches its maximum capacity before yielding in the reinforcement occurs, hence 

the conclusion of a flexural failure might be misleading. In addition, the concrete does not 

crush as the beam fails. Therefore, the failure mode is considered to be a tension shear 

failure.  



67 

 

4.2.2 Beam S1&2D36a108 

 

Figure 4.15 – Force-deflection plot for the experiment and varying crack models for beam 

S1&2D36a108 

 

 

 

Figure 4.15 shows the force-deflection curves for the beam S1&2D36a108. As the fully 

fixed crack model yielded a flexural failure due to shear stress locking in the cracks, 

discussed in Chapter 4.1.2, and the fully rotating crack model suffers from over-rotation 

of the crack pattern, as discussed in Chapter 4.2.1, and failing in compression shear, all 

the RTF crack models also suffered wrong failure modes. Hence, every model heavily over-

estimated the experimental capacity, where the numerical model which was closest to the 

experimental capacity had an over-estimation of 57 %, being the 5*full RTF crack model. 

Every model experienced reinforcement yielding, however, only the fully fixed model is 

concluded to have a flexural failure. This is mainly because the yielding of the other models 

does not seem to affect the structural behavior in a considerable degree, as it does in the 

fully fixed model. In addition, only the fully fixed model had relatively large, vertical cracks 

in the midspan, which insinuates a flexural bending failure.  

However, every model also shown the “bump” in the force-deflection curve, which can be 

seen in Figure 4.15 and more closely in Figure 4.16. 
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Figure 4.16 – Reestablishment of crack pattern reflected in the force-deflection curve 

 

 

As discussed in Chapter 4.1.6, de Putter established an alternative, manual way of 

determining the numerical capacity. This can also be done for the models in this chapter, 

at the curve-disruptions observed in Figure 4.16. This would drastically improve the 

capacity for all models, from the original errors spanning from 57 % to 92 % to the 

improved -31 % to 9 %. However, this method is evaluated to be not sufficient enough to 

be included in an acceptable unified solution procedure for the beams in this thesis, as this 

would demand a certain experience and general practice from the user. In other words, 

these manually improved results will not be taken into consideration when the main 

research question of this thesis is answered, as presented in Chapter 1.  
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4.2.3 Beam S1D72a108 

 

Figure 4.17 – Force-deflection plot for the experiment and varying crack models for beam 

S1D72a108 

 

 

Figure 4.17 presents the force-deflection plots for the beam S1D72a108. Note that in this 

analysis, we switch the shear retention model from the aggregate based to the damage 

based, for reasons discussed in Chapter 3.3.2. The numerical models did not deviate a lot, 

and overestimated the experimental capacity by 6 % - 21 %, approximately. The formation 

of the critical crack in the fully fixed crack model forms along the reinforcement before it 

grows into the web approximately at the middle between the load plate and the support 

plate. On the contrary, the fully rotating crack model forms a longer critical crack 

expanding from the load plate to the support plate. Similar crack patterns are presented 

in Figure 4.19, for the rotating and fixed crack model. The three RTF models form crack 

patterns which could be said to be between the extremes of the fully rotating and fully 

fixed model. Once again, the formation of spurious cracks occurred on the top of the beam. 

This will not be further discussed here as it was elaborated on in Chapter 4.1.3. 

In this analysis, all models were considered to fail in a compression shear, because yielding 

did not affect the overall structural behavior considerably, and in addition, yielding only 

happened locally at the end of the compressive strut, as further explained in Chapter 4.3.5. 

Also, in several cases, only one of the two reinforcement layers yielded. 

The failure mode of the fully rotating model was somewhat difficult to determine, as one 

can see a slight stiffness decrease before failure. However, also this model only exhibited 
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local yielding, and shown a crack pattern fitting to a compression shear failure. Despite the 

insecurities, the fully rotating model is assigned the compression shear failure.   

4.2.4 Beam S2D36a72 

 

Figure 4.18 – Force-deflection plot for the experiment and varying crack models for beam 

S2D36a72 

 

 

Figure 4.18 presents the force-deflection plots for the beam S2D36a72. The fully fixed 

model showed a lower capacity than the fully rotating model. This can be explained by the 

crack propagation, which was quite similar to the one explained in Chapter 4.2.3. This is 

also illustrated in Figure 4.19. Figure 4.19 A) shows the fixed crack model. The cracks form 

along the reinforcement, before growing relatively vertically into the web. In contrast, the 

rotating crack model, in Figure 4.19 B), creates a crack path which localizes underneath 

the compressive strut. Again, the RTF crack models act between the fully fixed and rotating 

model. The fully fixed, half RTF and full RTF crack model failed in compression shear, as 

yielding for the two latter models only occurred locally and did not seem to affect the 

general behavior of the structure. The fully fixed model had a larger opening of the critical 

crack as the beam failed, but in combination with crushing of the concrete, hence, a 

compression shear failure. The rotating and 5*full RTF crack model had a failure mode 

more similar to a flexural failure, as the reinforcement yielded over a larger area in the 

midspan as well as locally underneath the compressive strut and also showed tendencies 

of stiffness loss. 
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A) 

  

B) 

  
Figure 4.19 – Crack strain plots for A) fully fixed damage based model and B) fully 

rotating crack model just before failure for beam S2D36a72 

 

 

As in Chapter 4.1.4, none of the models were able to simulate the tension shear failure, 

and thereby large numerical overestimations of the capacity occurred again. The numerical 

capacity was 31 % – 64 % higher than the mean experimental capacity, and 13 % – 42 % 

higher compared to only the experimental compression shear capacity.  
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4.2.5 Beam S2D36a36 

 

Figure 4.20 – Force-deflection plot for the experiment and varying crack models for beam 

S2D36a36 

 

 

Figure 4.20 presents the force-deflection plots for the beam S2D36a36. As it may be 

difficult to see in the figure, the fully fixed crack model experience reinforcement yielding 

at about 2.5 mm deflection, while the other models yields at about 3 mm. In this case, the 

fully fixed model and the fully rotating model showed similar behaviors on the force-

deflection curve, while the RTF models had both lower and higher capacities than the two 

non-hybrid crack models.  

The failure mode in the 5*full RTF crack model was determined to be a flexural failure. This 

is because extensive yielding zones occurred both locally underneath the compressive strut 

and in the midspan. Also, the stiffness decreases before the final failure. For the four other 

models, the failure mode was evaluated to be compression shear, as only local yielding 

(see illustrations in Chapter 4.3.5) underneath the strut took place, which did not seem to 

affect the overall structural behavior.  

The numerical capacities ranged from 6 % - 21 % lower than the experimental capacity, 

which is about the same as was found in the shear retention analysis in Chapter 4.1.5. 

 



73 

 

4.2.6 Comparisons and Remarks 

Table 4.2 – Summary of chapter 4.2 – The influence of varying crack models 

Beam Mean capicity 

(experiment) 

[kN] 

Failure 

mode 

(exp) 

Crack 

model 

Mean 

capicity 

(DIANA)

[kN] 

Failure 

mode 

Difference 

[%] 

S1D18a108 120.74 Y Fixed 124.75 Y 3.3 

Half 116.72 Y -3.3 

Full 115.10 Y -4.7 

5*Full 91.82 T -24.0 

Rot 104.59 Y -13.4 

S1&2D36a1

08 

235.95 T Fixed 453.46 Y 92.2 

(8.9*) 

Half 393.56 C 66.8        

(-7.6*) 

Full 415.84 C 76.2 

(-15.2*) 

5*Full 371.28 C 57.4 

(-30.6*) 

Rot 373.14 C 58.1 

(-31.4*) 

S1D72a108 1029.70 C Fixed 1218.55 C 18.3 

Half 1088.74 C 5.7 

Full 1186.42 C 15.2 

5*Full 1131.74 C 9.9 

Rot 1248.64 C 21.3 

S2D36a72 379.80 

(439.43/320.17) 

C/T Fixed 502.12 C 32.2 

(14.3**) 

Half 495.65 C 30.5 

(12.8**) 

Full 534.66 C 40.8 

(21.7**) 

5*Full 604.81 Y 59.2 

(37.6**) 

Rot 622.16 Y 63.8 

(41.6**) 

S2D36a36 1330.48 C Fixed 1100.02 C -17.3 

Half 1180.42 C -11.3 

Full 1055.53 C -20.7 

5*Full 1256.35 Y -5.6 

Rot 1165.45 C -12.4 

*Manually deciding the capacity by locating the moment of crack path reestablishment 

**Compared only to the experimental compression shear capacity 

 

 

Table 4.2 summarizes and compares the experimental and numerical failure modes and 

capacities for each beam in Chapter 4.2. Also, in this table the marks * and ** were added, 

for reasons discussed in Chapter 4.1.6. This includes the insecurity of adding the * to the 

fixed model in the S1&2D36a108 beam, which was also discussed in Chapter 4.1.6. 
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Figure 4.21 – Capacity comparison (left) and a capacity deviation diagram (right) 

between numerical and experimental results for the crack model analysis 

 

 

Figure 4.21 visualizes the numerical and experimental differences in the crack model 

investigation and is further explained in Chapter 4.1.6. Note that for 𝑎 𝑑⁄ = 3.0 and 𝑎 𝑑⁄ =

6.0 the aggregate based shear retention is utilized, while the damage based shear retention 

model is used for the remaining beams, due to individual struggles to represent certain 

beams for each of the shear retention models. Reasons for this choice were also discussed 

in Chapter 3.3.2. 

Once again, the numerical analyses struggles to represent the beams with 𝑎 𝑑⁄ = 2.0 and 

𝑎
𝑑⁄ = 3.0. The use of the rotating crack model did not lead to a correct failure mode in the 

S1&2D36a108 beam, hence, also the RTF crack models predicted the wrong failure mode. 

This causes the heavily overestimated numerical results.  

Furthermore, as discussed in Chapter 4.1.4, the S2D36a72 beam acted as a transitional 

limit between the tension and compression shear failure mode. For this beam (𝑎 𝑑⁄ = 2.0) 

the fully fixed damage based shear retention model presented more accurate results 

compared to the fully rotating model, and the RTF models mainly estimated capacities 

between the two extremes. The error plot to the right in Figure 4.21 compares the 

numerical analyses to the mean capacity of the experimental analyses. Hence, one part of 

the overestimation can be explained by the fact that the numerical beams, that fail in 

compression shear, or even in a flexural failure, are compared to a capacity value which is 

strongly affected by the lower tension shear capacity. However, as can be seen by the 

markings ** in Table 4.2, the numerical results still overestimate the capacity when only 

compared to the experimental compression shear capacity. The largest overestimations 

can be found in the rotating and 5*full RTF crack model, which was concluded to exhibit a 

flexural failure, and not a compression shear failure, which might also contribute to the 

overestimation. The other three models, which failed in compression shear, overestimated 

the experimental compression shear capacity by 13 % - 22 % approximately. Errors in this 

range are not easy to explain, as it might be the result of several complex reasons in the 

numerical analysis. Some possible reasons were discussed in Chapter 4.1.4, where it is 

considered whether overestimation might be related to the transitional (between tension 

and compression shear failure) properties of the beam. 
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The initial pre-crack stiffnesses of the shorter beams are yet again wrongly predicted by 

the numerical models. See discussion and calculations in Chapter 4.1.6 and Appendix B.3.  

 

 

 

Figure 4.22 – Experimental and numerical shear strength 𝜏 =
𝑃

2

1

𝑡𝑑
 (𝑃 = 2𝑉) for varying 

a/d-ratios for different crack models 

 

 

Figure 4.22 illustrates the highest shear stress values reached in each crack model analysis 

compared to the experimental values. The x- and y- scales are discussed in Chapter 4.1.6. 

As also discussed in Chapter 4.1.6, the differing shear strengths are mainly affected by the 

different failure modes obtained in the different beams, but also by the size effect, which 

was discussed in Chapter 2.7. The largest numerical-experimental shear strength deviation 

occurs for the beams with 𝑎 𝑑⁄ = 2.0 and 𝑎 𝑑⁄ = 3.0. 

Another important observation was concerning the convergence rate of the analyses 

between the different crack models. Because a unified solution procedure is searched for 

in this thesis, a fixed equilibrium control was used throughout all analyses. However, the 

equilibrium control, specified in Chapter 3.2, has in general provided reliable results as 

quite few load steps did not converge. That is, up until the point of the present analyses, 

where especially the rotating crack model exhibited a large number of non-converged load 

steps. The results were logged and presented in Figure 4.23. 
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Figure 4.23 – Non-converged load steps presented as percentage (bar) and in numbers 

(numbers above bar) for each analysis for each beam 

 

 

Figure 4.23 shows that the analyses of the fixed crack model in general contains less non-

converged steps compared to the rotating crack model. The RTF crack models are 

decreasing the number of non-converged load steps as the threshold value (the total 

normal strain value that switches the crack model from the rotating to the fixed when 

exceeded) gets smaller. The number of non-converged load steps are plotted above the 

bar of its respective analysis in order to not only show the non-convergencies as a 

percentage, but also the exact number. The non-converged load steps seem to occur 

parallel to the over-rotation of cracks. As about 25 % - 55 % of the load steps in the 

rotating crack models are non-converged, the reliability of these analyses are considered 

to be low.  

It is not easy to evaluate what the limit of non-converged steps is before the results should 

be considered to be invalid. Several factors, as how many non-converged steps takes place 

consecutively, the error size, and where on the force-displacement curve the non-

converged load steps occurs, would be important when determining the quality of the 

solution. For example, de Putter evaluated the numerical capacity to be the highest 

capacity shown for a converged load step (de Putter et al., 2022). This means that a great 

number of non-converged load steps could be present in the analysis without disposing the 

results. 

If the rotating crack model would have satisfied the conditions of being an acceptable 

unified solution procedure, that is, provided accurate results for all beams, it would not be 

a straightforward task to determine if the model would fulfill the requirements of the 

research question in this thesis, as a large part of the load step did not converge. However, 

as the results show, the rotating crack model provides less accuracy than several of the 
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other crack models, and thereby, there is no need to evaluate the reliability of the model 

any closer. 

4.3 The Influence of Tension Stiffening 

Chapter 4.3.1 – Chapter 4.3.5 compare the model with and without tension stiffening (TS) 

within one beam analysis, while Chapter 4.3.6 compare how the numerical analyses 

perform overall. The TS effect is often used for structures with very large elements. As can 

be seen in Figure 3.6 - Figure 3.10, the elements in the analyses in this thesis are relatively 

small. Thereby, the following elaborates on other reasons to why a TS model could be 

interesting to analyze. Furthermore, as will be seen in the following chapters, the credibility 

of the results produced by the present TS model is also challenged.  

 

 

 

Figure 4.24 – The concrete stress (SXX) in the longitudinal direction plotted along the 

dashed line just above the reinforcement. This is plotted on top of the crack strain for the 

beam S1D18a108 with the aggregate shear retention model analyzed in chapter 4.1.1. 

The left scale holds the unit of measurement N/mm2. The horizontal and vertical beam 

aspect ratio is not correct. 

 

 

  

Figure 4.25 – The concrete stress (SXX) in the longitudinal direction plotted along the 

beam cut-off. This is plotted on top of the crack strain for the beam S1D18a108 with the 

aggregate shear retention model analyzed in chapter 4.1.1. The underneath scale holds 

the unit of measurement N/mm2. The horizontal and vertical beam aspect ratio is not 

correct. 
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Figure 4.24 and Figure 4.25 represent the concrete stress SXX plotted on top of the crack 

strain plot. The plot in Figure 4.24 resembles the stress plot one might expect between the 

cracks. There are three main reasons for the investigation of the TS effect.  

The first reason is illustrated in Figure 4.25, where one can see how the longitudinal 

concrete stress SXX reduces to zero as it approaches the bottom of the beam. This implies 

that there is no concrete contribution to the stiffness at the bottom of the beam, which in 

an uncracked case should have been present, given that the concrete provides a larger 

tensile-area above the reinforcement than underneath.  

The second reason has cause in the development of cracks in the smeared crack model, 

as this type of crack modelling often results in a too large number of cracks appearing at 

the same time. That is, before the cracks localize, there could arise a zone of non-localized 

cracks, which takes place as a larger part of the structure reaches the tensile strength at 

the same time, or more precisely, at the same load increment. This phenomenon is 

illustrated in Figure 4.26.  

 

 

 

Figure 4.26 – Crack strain plot before the crack localizes for the damage based shear 

retention model in beam S1D18a108 

 

 

Alternatively, one can study the output file, which is a file created when starting an analysis 

in DIANA. This file provides information about the performance of the job such as error 

messages and log information (DIANA TNO, 2020). This is presented in Figure 4.27.  
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Figure 4.27 – Output file logging for step 10 and 11 in the damage based shear retention 

model in beam S1D18a108 

 

 

The yellow-marked values in Figure 4.27 show how the number of cracks increase too fast 

from one step to another. This fast increase of cracks seems inevitable when using the 

smeared total-strain based crack model. However, the size of these cracks are very small, 

and thereby the damage inflicted by each individual crack is also small. Despite this, the 

collective damage induced by these cracks could reduce the overall beam stiffness. The 

reason for this is that the stiffness that was lost as a cause of the unrealistic crack pattern 

seen in Figure 4.26 is never retrieved. Hence, the procedure would be as follows: 

unlocalized cracks arise as seen in Figure 4.26, then cracks localize and release the stress 

in the surrounding concrete which would close and unload many of the unlocalized cracks, 

and finally, as the structure is further loaded, the stress between the cracks will build up 

again as seen in Figure 4.24. In the latter step, the elements would be in a reloading phase, 

and can thereby not reach the resistance provided by completely undamaged concrete. 

The reloading phase is further explained and illustrated in Chapter 2.3.4 and Appendix A.1. 

Thus, the general thought behind inserting a TS effect in the zone which is most exposed 

for the unlocalized cracking is that the TS model would work as a counterweight to the 

collective damage induced by the unlocalized cracks. 

The third and final reason regards the numerical representation of the complex biaxial 

stress state in the beams. As seen in Chapter 4.1, the failure of the beams varies greatly 

with the different shear retention models. This is the result of the different shear resistance 

the models provide in the cracks, which are dependent on the crack size. Furthermore, the 

crack size depend on the tension softening model. Hence, by using a different softening 

model in a restricted area of the beam with the damage based shear retention model could 

help stabilize the analysis, as the damage based model has given very conservative results 

for the more flexural beams. It is important to recognize that this argument is not directly 

linked to the physical aspect of TS, but rather to the attempt of “repairing” or improving a 

model based on what is discovered in the previous analyses.  

Furthermore, as mentioned, only the fixed, damage based model are utilized in this 

chapter. The model will be presented with and without TS to perceive the relative effect of 

TS in a clear manner. 
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4.3.1 Beam S1D18a108 

 

Figure 4.28 – Force-deflection plot for the experiment and numerical models with and 

without tension stiffening for beam S1D18a108 

 

 

As Figure 4.28 presents, the TS effect does have a positive influence on the numerical 

behavior, as the capacity error is reduced from -49 % to -34 %. However, the TS effect 

does not solve the issue with the damage based shear retention model for this beam, as it 

still yields the wrong failure mode, namely the tension shear. It is concluded to be a tension 

shear failure due to the fact that the reinforcement never yields, the concrete never 

crushes, and the critical crack opens as the failure takes place.  

 

 

A) 

  

B) 

  
Figure 4.29 – The crack strain pattern A) without and B) with tension stiffening after 

failure for beam S1D18a108 
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As Figure 4.29 shows, the size of the critical crack is restrained in the TS zone. This causes 

the critical crack to grow larger in the upper part of the beam, compared to the non-TS 

model. Also, as can be seen on the scales to the right in the figure, the crack is smaller for 

the model with TS. If one were to take a look at Appendix C.3.1, the crack strain pattern 

for the TS model just before failure has a better resemblance to the experimental crack 

pattern than the model without TS. 

4.3.2 Beam S1&2D36a108 

 

Figure 4.30 – Force-deflection plot for the experiment and numerical models with and 

without tension stiffening for beam S1&2D36a108 

 

 

Figure 4.30 compares the experimental and numerical force-deflection behavior with and 

without TS. The shape of the numerical curves looks quite similar, but the TS effect results 

in a higher capacity, reducing the capacity error from -40 % to -16 %. One can again 

conclude with the numerical models failing in tension shear, for the same reasons stated 

in in the previous chapter. The crack strain pattern after failure with and without TS is 

presented in Figure 4.31.  
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A) 

  

B) 

  
Figure 4.31 – The crack strain pattern A) without and B) with tension stiffening after 

failure for beam S1&2D36a108 

 

 

The crack patterns in Figure 4.31 are differed by the evolvement of the critical crack in the 

lower part of the beam. As the model without TS creates a localized crack along the 

reinforcement bars, the TS model localizes the crack just above the TS zone. Also, the 

crack width is smaller for the TS model compared to the non-TS model.  
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4.3.3 Beam S1D72a108 

 

Figure 4.32 – Force-deflection plot for the experiment and numerical models with and 

without tension stiffening for beam S1D72a108 

 

 

As it is difficult to see, the reinforcement yielding in Figure 4.32 applies to the model 

without TS. Yielding does not take place for the TS model. The capacity accuracy changes 

from 18 % overestimation in the non-TS model, to -5 % in the TS model compared to the 

mean experimental capacity. However, the accuracy of the ductility is better for the non-

TS model. The crack strain pattern after failure in the TS model is more similar to the 

experimental crack pattern than the non-TS crack strain pattern. This is illustrated in Figure 

4.33 below. The figure shows that the non-TS model exhibit a crack opening just to the 

right of the support, in addition to having a quite large crack in the top of the beam, above 

the support. On the other hand, for the TS model the main crack opening happens along a 

crack that gives a better resemblance to the experimental crack pattern. Also, the TS model 

had lower crack width than the non-TS model.  

The non-TS model yielded a compression shear failure, for reasons discussed in Chapter 

4.1.3. This is also the case for the TS model, as the reinforcement did not yield, in addition 

to the presence of concrete crushing.  
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A) 

 

 

B) 

 

 

C) 

 

 

Figure 4.33 – The crack strain pattern for the A) experimental, B) without, and C) with 

tension stiffening after failure for beam S1D72a108 
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4.3.4 Beam S2D36a72 

 

Figure 4.34 – Force-deflection plot for the experiment and numerical models with and 

without tension stiffening for beam S2D36a72 

 

 

The capacity accuracy changes from 32 % overestimation in the non-TS model, to 65 % 

in the TS model compared to the mean experimental capacity. In this analysis, the TS 

model experienced yielding, in contrast to the non-TS model. Despite this fact, both models 

were assessed to fail in a compression shear failure. The non-TS model failure is discussed 

in Chapter 4.1.4. The reason for the failure mode classification in the TS model is that the 

reinforcement yielding happens locally (see Figure 4.37) and the force-deflection behavior 

does not seem to be particularly affected by the yielding. It is worth mentioning that this 

was a close call, as the failure showed properties of a flexural failure as well.  

Another observation is that for the TS model, cracks grew large in the TS zone, in contrary 

to what have been seen for the previous analyses in Chapter 4.3, where cracks have tended 

to remain relatively small within the TS zone. The crack strain pattern is presented in 

Figure 4.35. One possible explanation could be that the beam in the present analysis is 

shorter than the beams in the previous analyses (Chapter 4.3.1– Chapter 4.3.3), and 

thereby a smaller moment force will develop as the loading is applied. This would result in 

a shorter cross sectional tension zone. Hence, if a large part of the tension zone is located 

within the TS zone, the threshold for crack localization might be lower here than just 

outside the TS zone.  



86 

 

 

  
Figure 4.35 – The crack strain pattern with tension stiffening after failure for beam 

S1D72a108, where large cracks develop in the tension stiffening zone 

 

 

As the crack pattern in Figure 4.35 was rather similar for both the model with and without 

TS, the question rises to what the reason for the increasing capacity in the TS model might 

be. The crack patterns, which can be further analyzed in Appendix C.3.4, show that the 

crack strain, and thereby the crack width, is smaller for the TS model compared to the 

non-TS model, both before and after failure. The smaller crack width is the result of a 

slower decrease of stiffness after cracking for the TS model compared to the non-TS model. 

The relatively small crack width imposed by the TS model may then be the main factor for 

the differing capacity between the two numerical models.  

4.3.5 Beam S2D36a36 

 

Figure 4.36 – Force-deflection plot for the experiment and numerical models with and 

without tension stiffening for beam S2D36a36 
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The difference in the TS model and the non-TS model are nearly inseparable for the 

S2D36a36 beam. The numerical capacity is, compared to the mean experimental capacity, 

-17 % for the non-TS model and -15 % for the TS model. Chapter 4.1.5 explains why the 

non-TS model is classified as a compression shear failure. The same arguments goes for 

the TS model, as this is also concluded to fail in compression shear. That is, the yielding 

of reinforcement takes place locally at the end of the compression strut. In addition, the 

force-deflection curve does not seem affected by the yielding, as it happens late, just 

before failure takes place. The local yielding is illustrated in Figure 4.37. 

 

 

 

 

 

 

Figure 4.37 – The reinforcement stress plot SXX with local yielding plotted alone (upper 

figure) and together with the respective crack strain plot (lower figure). The legend to 

the right only represents the reinforcement stress SXX. 

 

 

Note that yield strength of the reinforcement is 𝑓𝑦 = 560 𝑁/𝑚𝑚2. As Figure 4.37 illustrates, 

the yielding only takes place above the support plate, being at the end of the compressive 

strut, where the cracks have localized. The local yielding might be the result of the 

Poisson’s effect induced by the large compressive forces in the compressive strut. The 

compressive forces will give rise to an orthogonal expansion, which could cause large 

tensile stresses in the longitudinal reinforcement and give a reinforcement stress plot as 

seen Figure 4.37. Alternatively, the local yielding could be the result of the equilibrium 

conditions that arise when an inclined crack takes place close to the support, as discussed 

in Chapter 4.1.3. Both reasons are visually illustrated in a simplified manner in Figure 4.38. 
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Figure 4.38 – Poisson’s effect of compressive strut (left) where the arrows illustrate the 

strain directions and a free body diagram of the end support region cut out at an inclined 

crack (right) where the arrows illustrate the forces  

 

 

When the reinforcement yielded as presented in Figure 4.38, the analysis has not been 

classified with a flexural failure.  

4.3.6 Comparisons and Remarks 

Table 4.3 – Summary of chapter 4.3 – The influence of tension stiffening 

Beam Mean capicity 

(experiment)[kN] 

Failure 

mode 

(exp) 

Tension 

stiff. 

Mean capicity 

(DIANA)[kN] 

Failure 

mode 

(DIA) 

Difference 

[%] 

S1D18a108 120.74 Y No 61.70 T -48.9 

Yes 80.15 T -33.6 

S1D36a108 235.95 T No 142.66 T -39.5 

Yes 198.30 T -16.0 

S1D72a108 1029.95 C No 1218.55 C 18.3 

Yes 976.43 C -5.2 

S2D36a72 379.80  

(439.43/320.17) 

C/T No 502.12 C 32.2 

(14.3**) 

Yes 625.71 C 64.7 

(42.4**) 

S2D36a36 1330.48 C No 1100.01 C -17.3 

Yes 1131.37 C -15.0 

**Compared only to the experimental compression shear capacity 

 

 

Table 4.3 summarizes and compares the experimental and numerical failure modes and 

capacities for each beam in the Chapter 4.3. Also, the mark ** is explained in Chapter 

4.1.6.  
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Figure 4.39 – Capacity comparison (left) and a capacity deviation diagram (right) 

between the numerical and experimental results for the tension stiffening analysis 

 

 

Figure 4.39 visualizes the numerical and experimental differences in the TS analyses and 

the figure is also further explained in Chapter 4.1.6. The use of the TS effect did not seem 

to affect the failure modes of the original fixed, damage based shear retention model. 

However, the TS model improved the capacity error compared to the experimental 

capacities for all beams but the beam S2D36a72. That is, the beam with 𝑎 𝑑⁄ = 2.0, which 

is discussed in Chapter 4.3.4. The fact that the TS effect did not only increase the capacity, 

but also decreased the capacity compared to the non-TS model is quite interesting, as the 

model then show ability to adjust the capacity error regardless of the initial error being too 

high or too low. Unfortunately, the TS model increased the originally overestimated 

capacity in the beam S2D36a72, which gave a pattern of increasing the capacity to the 

more flexural beams. Thus, it cannot be concluded that the TS model necessarily would 

improve the numerical results.  

It is important to remember that the TS effect is the concrete contribution to the stiffness 

of the beam tie as the reinforcement is stretched in its longitudinal direction. Due to factors 

as the beams failing in shear with non-vertical cracks combined with the fact that the 

imposed TS effect is isotropic, and not orthotropic to the longitudinal reinforcement 

direction, it is difficult to evaluate whether the improved results are due to a more realistic 

numerical model, or if it is simply caused by coincidental and unintended effects. An 

example of the latter could be when a non-vertical crack evolves within the TS zone. In 

this case, the crack stiffness would have the same properties as the one in a vertical crack, 

which is not realistic.  

On the other hand, one could discuss whether or not the crack evolution for the numerical, 

fixed, damage based model is realistic and similar to the actual experiment. Figure 4.40 

compares the numerical crack strain pattern for the damage based model with the 

experimental crack pattern at failure.  
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A) 

 

 

B) 

 

 

Figure 4.40 – Crack pattern comparison at failure of the fixed, damage based shear 

retention model without tension stiffening and the experiment 

 

 

As seen in the figure, a continuous crack has developed along the reinforcement. This crack 

development does not properly reflect the experimental crack pattern. By the influence of 

a TS zone covering the reinforcement, a more realistic crack opening takes place as the 

beam fails, which is presented in Figure 4.33 in Chapter 4.3.3. However, this is just the 

case for one analysis of one beam, and the TS effect could just as easily affect realistic 

crack evolvements wrongly. Hence, stating that the TS effect would always improve 

spurious crack patterns along the reinforcement would be rather optimistic, and most likely 

wrong.  

Also note that the TS effect indirectly affects the shear retention in the cracks. As the 

resistance of the normal crack opening increases, resulting in a smaller crack width, the 

shear retention would also be increased. Hence, the shear retention model will also be of 

great importance when utilizing the TS model. In this case, the damage based formulation 

is used. That includes rapidly reducing the shear crack resistance to zero as the crack is 

opened. With smaller crack widths the shear resistance of the crack could be significantly 

larger when using damage based formulation. On the other hand, if the Al-Mahaidi shear 

retention was used, an instant decrease of shear retention by 60% would be applied at the 

moment a crack initiated, and the effect would maybe have been smaller. The aggregate 

based has a linear formulation, hence smaller deviations in the crack opening would 

probably affect this model even less than the other two shear retention models.  

Furthermore, larger TS zone would probably improve the results of the two most flexural 

beams, that is beam S1D18a108 and beam S1&2D36a108. However, as discussed, the 
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isotropic TS effect would wrongly affect inclined cracks. This is also the main reason for 

choosing the EC2 TS zones calculated and presented in Appendix B.2, as this zone was 

smaller than the alternative Maekawa TS zones.  

 

 

 

Figure 4.41 – Experimental and numerical shear strength 𝜏 =
𝑃

2

1

𝑡𝑑
 (𝑃 = 2𝑉) for varying 

a/d-ratios for the damage based model with and without tension stiffening 

 

 

Figure 4.41 illustrates the shear stress values reached in the TS analyses compared to the 

experimental values, where x- and y- scales are discussed in Chapter 4.1.6. As also 

discussed in Chapter 4.1.6, the differing shear strengths are mainly affected by the 

different failure modes obtained in the different beams, and by the size effect discussed in 

Chapter 2.7. 
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5 Conclusion 

The main objective of this thesis was to evaluate if it was possible to obtain good numerical 

results for a variety of beam geometries with one unified solution procedure. The solution 

procedure was further limited within the scope of a local, smeared, total-strain based crack 

approach. With the parameter variations and general modelling choices made in this thesis, 

the results have been less successful than the results in the non-local solution procedure 

discussed in Chapter 3. Good results were obtained in individual cases, but none of the 

models were able to properly simulate all five beams.  

The first investigation, presented in Chapter 4.1, considered the influence of varying shear 

retention models. The results of the models deviated greatly from each other. In the most 

extreme example, which was achieved for the S1&2D36a108 beam, the aggregate based 

shear retention model overestimated the capacity with about 90% while the damage based 

shear retention model underestimated the capacity by 40%. This large deviation is the 

result of the damage based shear retention model’s tendency to underestimate the capacity 

of flexural beams, while the aggregate based shear retention model has a tendency to 

exhibit crack shear locking. The former problem is due to the conservative nature of the 

damage based shear retention formulation, and vice versa for the aggregate based. The 

damage based formulation has a very rapid decrease of shear retention as the crack width 

gets larger. Hence, when this model is used in flexural beams that exhibit large cracks, the 

capacity is underestimated. However, this model was the only model that was able to 

properly represent a tension shear failure, even though the capacity in this case also was 

underestimated. On the other hand, the aggregate based shear retention model has an 

unconservative formulation, which resulted in large capacity overestimations for some of 

the beams. The aggregate based shear retention model gave the beams too much crack 

shear stiffness as the crack opened and did in some cases wrongly predict the failure mode 

to be flexural, rather than the expected compression shear. Furthermore, in most cases 

the Al-Mahaidi shear retention model provided a result between the damage based and 

aggregate based shear retention models. This model can in fact also be concluded to be 

the most stable model in terms of estimating the capacity, as it did not fail too soon in the 

flexural beams, such as the damage based, but neither overestimate the capacity in the 

same degree as the aggregate based. The downside of using this model is that it had a 

strong tendency of reestablishing the crack pattern in a direct path between the loading 

plate and the support plate, despite this not being the case in the experimental crack 

pattern. This model is also the only one of the three shear retention models that was not 

recommended in the guidelines for NLFEA of concrete structures (Hendriks and Roosen, 

2019). This is probably due to the need for a lower bound value, which lack physical 

meaning. By evaluating the crack patterns, one can in summary conclude that the damage 

based has a very low tendency of reestablishing an alternative crack pattern as it rather 

seems to fail when the critical crack is opened, the Al-Mahaidi, as mentioned, has a high 

tendency of reestablishing an alternative crack pattern, while the aggregate based does 

not necessarily reestablish a false crack pattern, but gives too much resistance in the 

existing cracks.  

The second investigation, presented in Chapter 4.2, considered the influence of varying 

crack models. More specifically, a fully fixed crack model, a fully rotating crack model, and 

three variations of the threshold value in the rotating to fixed crack model. The results 

were not too surprising, as the hybrid crack model in most cases estimated a capacity 

between the one estimated by the fully fixed and the fully rotating crack model. Thus, as 
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both the rotating and the fixed crack model yielded different types of spurious behaviors, 

the rotating to fixed crack model also suffered from these faults. The faults of the fixed 

crack model were mentioned in the section above, while the rotating crack model tended 

to suffer from over-rotation of the cracks. There was a direct and clear correlation between 

this over-rotation and the amount of non-converged load steps. The latter was presented 

in Figure 4.23. The figure shows a consistently increasing number of non-converged load 

steps as the crack models moved from the fixed to the rotating one. Hence, when using 

the hybrid model with a crack strain threshold value responding to a 5*fully developed 

crack, the number of non-converged load steps was relatively large. Moving on to a 

threshold value responding to 1*fully developed crack, the number of non-converged load 

steps improved significantly.  Furthermore, using the rotating to fixed crack model with a 

threshold value responding to a half full crack opening provided the least amount of non-

converged load steps compared to the other hybrid models. This model also showed quite 

promising capacity results, as it often tended towards the experimental capacity compared 

to the other crack models. 

The final investigation considered tension stiffening. The tension stiffening was applied to 

the structure by using an alternative tension softening diagram, which provided more 

resistance compared to the “normal” tension softening diagram as the crack got larger. 

This stiffening curve was then inserted to a limited area on the beam, calculated with 

formulations from the Eurocode. The effect of tension stiffening did provide more accurate 

capacities in all beams but one. Thereby, the effect of tension stiffening was mostly 

positive. However, as discussed in Chapter 4.3.6, it is difficult to assess whether the 

improved results are indeed the cause of the intended effect or if it is a spurious effect 

caused by the isotropic formulation in the tension stiffening zone. However, as the 

numerical capacity estimation of one of the beams aggravated with the use of tension 

stiffening, it could yet not be concluded that the tension stiffening effect consistently 

improved the results for every beam geometry. Furthermore, the crack pattern was in 

some cases also improved by utilizing the tension stiffening effect, which is exemplified in 

Figure 4.33. The larger post crack tensile resistance gave the crack pattern a more logical 

appearance, seen in the light of the experimental crack pattern. 

Furthermore, when all analyses in this thesis were taken into consideration, some patterns 

emerged. First of all, the general tendency of creating a direct crack path between the 

support and loading plate was high. It seems that the smeared total-strain based crack 

formulation struggles to represent a tension shear failure mode. When the beams in reality 

fail due to a large opening of a critical diagonal crack, the numerical models rather change 

their crack pattern and create a direct force transmission path, going straight from the load 

plate to the support plate, making the beam fail in compression shear instead. Hence, one 

should be especially aware when this type of behavior is seen in the numerical model and 

give a proper evaluation of which failure mode is more realistic for the relevant structure 

and load situation.  

Another pattern seen is probably connected to the statements in the above section. That 

is how the numerical model is working within sufficient accuracy for the very low shear 

span to effective depth ratios,  𝑎 𝑑⁄ = 1.0 and 𝑎 𝑑⁄ = 1.5, and relatively high shear span to 

effective depth ratios, with 𝑎 𝑑⁄ = 6.0, while for the intermediate ratios, with 𝑎 𝑑⁄ = 2.0 and 

𝑎
𝑑⁄ = 3, the numerical models are struggling significantly more. In fact, the average 

absolute percent value of the error of all analyses, that is the three shear retention models, 

four crack models (excluding the fully fixed as this is the same as in the shear retention 

analyses), and the one tension stiffening model, we get 10%, 10%, 51%, 59% and 16% 

error for  𝑎 𝑑⁄ = 1, 1.5, 2, 3 and 6, respectively. Hence, there is an obvious jump in error for 

the intermediate shear span to effective depth ratios. However, note that some of the 
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errors are due to reasons which could have been avoided. For example, the damage based 

shear retention model obviously failed to represent the most flexural beam, with  𝑎 𝑑⁄ =

6.0, as the beam failed in tension shear rather than in a flexural failure. Furthermore, 

almost every beam exhibited an alternative crack pattern instead of failing in tension shear 

for 𝑎
𝑑⁄ = 3.0, where the capacity could have been manually decided as discussed in 

Chapter 4.1.6. By a manual interpretation, the error could have been reduced from 59% 

to 20%. Also, it is worth mentioning the error for the  𝑎 𝑑⁄ = 2.0 beam could have been 

improved by comparing the numerical results to the experimental beam which yielded the 

same failure mode. That is because all the numerical models failed in compression shear, 

and the experimental comparable capacity was the mean value of two experimental beams, 

where one failed in compression shear and the other in tension shear. However, this is less 

appropriate as this beam could just as well have failed in tension shear as compression 

shear in a real situation. The other notation about the beam with  𝑎 𝑑⁄ = 2.0 is that even 

when the numerical capacities are compared to the experimental compression shear 

capacity it is still quite overestimated. This might be the result of the beam having relatively 

large crack widths, as it is a transitional beam between compression and tension shear 

failure, which could affect the experimental capacity to be lower, which was discussed 

further in Chapter 4.1.4.  
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6 Suggestions for Further Research 

In this thesis research has been done to find a unified solution procedure which was able 

to represent a diversity of beam geometries. As this was not satisfactorily achieved, the 

search for such a solution procedure continues. Thereby, some suggestions for further 

research will be presented in this chapter. 

When several numerical models shall be investigated within a limited amount of time, the 

analyst has to balance on a line between computational time and realistic numerical 

representations. In this thesis, a 2D-representation with symmetry boundary conditions 

was chosen in order to make it possible to investigate a great number of modelling 

procedures. Hence, a next step is to extent the analyses to a full size 3D model to achieve 

a more accurate numerical representation. This way, effects as tension stiffening (more 

accurate TS zones) and confinement would be more realistic.  

Furthermore, it was proved that the influence of shear retention was highly important to 

the numerical capacities and behaviors in general. Three shear retention models were 

investigated in this thesis, namely the damage based, Al-Mahaidi and aggragate based 

shear retention model. However, these models have the setback of not representing shear 

dilatancy, which could be of great importance in the simulation of RC beams. DIANA does 

in fact have some models that also include this, for example the Maekawa contact density 

model, which could be interesting to investigate further.  

A limited number of material parameter changes and combinations were investigated in 

this thesis, simply due to the lack of time. Hence other important factors, as for example 

variabilities of the tensile strength might be investigated. In this thesis, the tensile strength 

was extracted directly from a splitting tensile test performed by Suchorzewski, with the 

same concrete mixture as the one in the experimental beams. However, Maekawa claims 

that structural tensile strength tend to be smaller than material values obtained in splitting 

tensile tests due to shrinkage, residual stresses, and other effects (Maekawa et al., 2003). 

Hence, an investigation of different values of the tensile strength might result in better 

numerical capacity estimations and even change the failure modes. Another material tweak 

could be to reduce the Young’s modulus. This was also taken directly from the experimental 

tests performed by Suchorzewski. However, the guidelines for NLFEA of concrete structures 

recommends reducing this by 15 % to account for initial cracking due to creep, shrinkage, 

and such (Hendriks and Roosen, 2019). In general, parameter changes and uniaxial and 

biaxial models beyond what is investigated in this thesis could be of great importance to 

the numerical model and is thereby worth investigating further. Finally, an entirely different 

fracture model could also be worth investigating, as this thesis was limited to only the 

smeared, total-strain based crack model.  

Furthermore, this thesis did not evaluate the effect of different kinematic approaches, nor 

equilibrium controls. The effect of varying mesh densities as well as the properties assigned 

to the nonlinear incremental-iterative procedure could be of great importance for the 

outcome of the analyses. Hence, it is recommended that this also is looked into.  

A final suggestion is to further investigate the non-local approach, addressed in Chapter 3. 

The model showed good estimations for the beams presented in this thesis, and it would 

be interesting to see the same model being used on different types of structures and 

loading situations.  
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Appendix A  

Validation Tests 

 
DIANA offers a great variety of possibilities on how to model your material. To validate and 

understand the behavior of different material behaviors, and also combination of different 

behaviors, a small series of simple element tests were performed. The loading was always 

inflicted in the form of prescribed deformation, and the tests were performed on a four-

node quadrilateral isoparametric plane stress element with size h=100 mm. 

 

 

 

Figure A.1 – Four-noded isoparametric plane stress element (DIANA TNO, 2020) 

 

 

A.1 Compression and Tensile Behavior 

 

Figure A.2 – Model setup for compression and tension validation test 
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The motivation for these tests were to validate the compression and tensile responses. A 

parabolic compression model, and the Hordijk tensile model, were used. The secant 

unloading and reloading was also illustrated.  

 

 

 

Figure A.3 – Parabolic compression response with secant unloading and reloading 

 

 

Figure A.3 is the plotted response of the compression behavior with unloading and 

reloading. The compressive strength were set to 53 N/mm2, the compressive fracture 

energy was set to 24.1 N/mm, the Young’s modulus was 30 000 N/mm2 in this validation 

test. Using the formulas for the parabolic compression curve given in Chapter 2.3.2, we 

obtain the strain values as: 

 

 
𝛼𝑐

3⁄ = −
1

3

𝑓𝑐

𝐸
= −0.0006; 𝛼𝑐 = −

5

3

𝑓𝑐

𝐸
= −0.0029; 𝛼𝑢 = 𝑚𝑖𝑛 (𝛼𝑐 −

3

2

𝐺𝑐

ℎ 𝑓𝑐
, 2.5𝛼𝑐) = −0.0098 

 

which reflects the linear, peak, and ultimate strain limits respectively. These values fits the 

measured properties in the parabolic compression curve.  
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Figure A.4 – Hordijk tensile response with secant unloading and reloading 

 

 

Figure A.4 is the plotted response of the Hordijk tensile behavior with secant unloading 

and reloading. The tensile strength was set to 3.82 N/mm2, the fracture energy as 0.1 

N/mm2 and the Young’s modulus is still 30 000 N/mm2. Using the formulas for the Hordijk 

compression curve given in Chapter 2.3.1, we obtain the strain values as: 

 

𝜀𝑛𝑛.𝑝𝑒𝑎𝑘 =
𝑓𝑡
𝐸

= 0.00013; 𝜀𝑛𝑛.𝑢𝑙𝑡
𝑐𝑟 = 5.136

𝐺𝑓
𝐼

ℎ𝑓𝑡
= 0.00134 

 

which reflects the peak and ultimate strain. One can see a small deviation in the measured 

ultimate strain and the analytical ultimate strain, as the measured seems to reach 0.0012. 

However, a strain error of 0.0001 is concluded to be in the acceptable range, as minor 

inaccuracies might take place in the transition between numerical and analytical 

calculations. In general, the curve acts as expected.  
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A.2 Compressive Reduction due to Lateral Cracking 

 

Figure A.5 – Model setup for validation of compressive reduction due to lateral cracking 

 

 

The motivation for this validation test was to illustrate and understand how the 

compressive strength is reduced due to damage in the lateral direction. The theory 

background is provided in Chapter 2.3.2. Figure A.5 shows the loading procedure. First, a 

tensile strain was applied with a certain strain amount, denoted as “Step 1” in Figure A.5. 

Then, a compression force was applied. In this test, the Poisson’s ratio were not included 

(𝜈 = 0) to avoid unwanted lateral effects. To validate the reduction a series of such loading 

procedures were carried through with different values of the tensile strain. Again, the 

compression strength was 53 N/mm2.  

 

 

 

Figure A.6 – Compressive behaviors for different lateral strain values 
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The legend, ranging from 0 to 10, represents the lateral damage to compressive strain 

ratio, −
𝛼𝑙𝑎𝑡

𝜀0
, where 𝛼𝑙𝑎𝑡 = √𝛼𝑙,1

2 + 𝛼𝑙,1
2  and 𝜀0 = −

𝑓𝑐

𝐸
. For example, ratio 2.5 means that a 

tensile strain value of 𝛼𝑙𝑎𝑡 = 2.5𝜀0 = 0.0044 was applied before initiating the compression 

force. Also note that the peak strain in Figure A.6 moves to the right, as more lateral 

damage is applied. This is not because of the strain factor, as discussed in Chapter 2.3.2, 

but is the result of the strain in the parabolic curve being dependent on the compressive 

strength.  

By collecting and calculating the reduced capacity of the strength in Figure A.6, a plot 

against the analytical eq. (2.26) in Chapter 2.3.2 was shown to see the correlation. 

 

 

 

Figure A.7 – Analytical vs. numerical plots of the lateral reduction of compressive 

strength 

 

 

As seen in Figure A.7, the numerical validation test shows good correlation with the 

analytical results. Note that it is possible to insert a lower bound limit in DIANA, which is 

recommended to be 40% (Hendriks and Roosen, 2019), and is also used in the analyses 

in this thesis. As seen in Figure A.7, no lower bound value was inserted in this specific 

validation test. 
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A.3 Shear Retention 

 

Figure A.8 – Model setup for shear retention tests 

 

 

The motivation for this type of test is to investigate the differences in the three different 

shear retention models that were analyzed in this thesis. This is done in a similar manner 

as before, with different values of tensile strain in step 1, however, now the next step, step 

2, results in a constant shear force. The shear retention models, presented in Chapter 

2.5.4, are dependent on the tensile behavior, which in this case was the Hordijk softening 

curve, presented in Chapter 2.3.1. 

 

 

Figure A.9 – A comparison of shear retention models for different tensile strain values for 

the damage based, Al-Mahaidi and aggregate based shear retention model 



106 

 

In the legend in Figure A.9, the description of each curve is provided. The basic procedure 

was to evaluate the stiffness of each shear retention model for different values of the 

tensile strain. The three shear retention models investigated was the damage based, the 

Al-Mahaidi with a lower bound value of 0.01 and the aggregate based with a mean 

aggregate size of 4.8 mm. These models were also used in one of the studies in this thesis. 

Also, three tensile strains were used to illustrate the decrease in shear stiffness, which 

were equivalent to: right after initiation of crack, half-full crack opening, and fully opened 

crack. As can be seen in Figure A.9, the initial stiffness right after cracking was equivalent 

to 15 000 N/mm2, which fits the inserted values of 𝐸 = 30000 and 𝜈 = 0 when calculated 

according to eq. (2.55). The damage based shear retention had, not surprisingly, the 

fastest decrease as the crack strain increased. However, the Al-Mahaidi shear retention 

model had the most conservative just-after-cracking stiffness, as this curve immediately 

reduces the stiffness by 60%. Still, the Al-Mahaidi curve had a slower decrease in shear 

stiffness than the damage based shear retention model as the crack strain got larger. 

Finally, the aggregate based shear retention model showed the least conservative results. 

An extra parameter check was performed for the aggregate based model, where the tensile 

strain was equivalent to 10 times a fully opened crack. Even for this strain, it showed 

relatively large shear stiffness. This is not surprising as this model is based on a linear 

decrease, reaching zero when the crack width is equivalent to half the mean aggregate 

size. Another way of illustrating the shear retention of the different models is by plotting 

the reduction factor as a function of the normal crack strain, see Figure A.10. 

 

 

 

Figure A.10 – Reduction factor 𝛽 as a function of the total normal strain 𝜀𝑛𝑛 for the 

damage based, Al-Mahaidi, and aggregate based shear retention model 

 

 

The plots in Figure A.10 were made by plotting eq. (2.55) – (2.57). Note that there is a 

difference between the total normal strain and the crack normal strain, and thereby, this 
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had to be taken into account when plotting the shear retention models. Also note that the 

damage based model, that is eq. (2.55), is not a function which represents the reduction 

factor 𝛽 directly, but rather the total crack shear stiffness. Hence, for the damage based 

shear retention model, one must find the secant stiffness in the Hordijk tension softening 

curve divided by the undamaged stiffness, to achieve the plot in Figure A.10. Then, if we 

set the Poisson’s ratio 𝜈 = 0, the equation becomes: 

 

 

𝛽
𝑑𝑎𝑚𝑎𝑔𝑒_𝑏𝑎𝑠𝑒𝑑

=
𝐺𝑐𝑟

𝐺
=

𝐸𝑐𝑟

2⁄

𝐸
2⁄

=
𝐸𝑐𝑟

𝐸
=

𝜎𝑛𝑛
𝑐𝑟 (𝜀𝑛𝑛

𝑐𝑟 )𝐻𝑜𝑟𝑑𝑖𝑗𝑘
𝜀𝑛𝑛

⁄

𝐸
 (A.1) 

 

Eq. (A.1) applies shows how the reduction factor 𝛽 might be plotted for the Hordijk tensile 

curve. In the equation, 𝜎𝑛𝑛
𝑐𝑟 (𝜀𝑛𝑛

𝑐𝑟 )𝐻𝑜𝑟𝑑𝑖𝑗𝑘 is equivalent to eq. (2.10), 𝜀𝑛𝑛 is the total normal 

strain, and 𝐸 is the undamaged Young’s modulus.  

This simple validation test illustrate the deviation between the shear retention models. It 

also shows that the aggregate based shear retention model is the most unconservative 

model, and that the Al-Mahaidi and damage based model are more conservative. Which of 

the latter models that are the most conservative depends on the crack widths in the given 

case. Also note that there is no lower bound value in the damage and aggregate based 

shear retention models, in contrast to the Al-Mahaidi model.  

A.4 Confinement 

Another important aspect of the biaxial behavior of concrete is the effect of lateral 

confinement. This effect increases the compressive strength as a result of increasing 

isotropic stress. How DIANA implement this effect is described in Chapter 2.3.2. 

 

 

 

Figure A.11 – Model setup for confinement test 
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Figure A.12 – Compressive behaviors for different ratios of confinements 

 

 

As can be seen in Figure A.12, an increasing strength and ductility occurs for increasing 

lateral confinement. One can see that the initial compression strength value at 53 N/mm2 

reaches about 66 N/mm2 for a confinement ratio of 75 %. This is an increase of about 

25%.   
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Appendix B  

Modelling Calculations 

 

B.1 Calculation of Threshold Strain Value in the 

Rotating to Fixed Crack Model 

The calculation of threshold values are done with respect to the crack strain in eq. (2.13). 

Since the equation is based on crack strain, and the threshold values are applied as total 

strain, one must add the pre-crack strain to get the exact value threshold value, 𝜀𝑓: 

 

 
𝜀𝑓 =

𝑓𝑡
𝐸

+ 5.136
𝐺𝑓

𝐼

ℎ𝑓𝑡
𝑥 

(B.1) 

 

The 𝑥 represents the multiplying factor to obtain different total strain values reflecting the 

crack size and would for example be 1 for a fully opened crack. The values used in the 

equation and the corresponding result are presented in Table B.1. 

 

 

Table B.1 – Calculation of threshold strain value in the rotating to fixed crack model 

Calculation of threshold strain value in the rotating to fixed crack model 

 
𝐸 
N/mm2 

𝑓𝑡 
N/m

m2 

𝐺𝑓
𝐼 

N/m

m 

ℎ 
mm 

Half Full 5xFull 

S1D18a108 33100 2.81 0.093 16 0.0054 0.0107 0.0532 

S1&2D36a10

8 
33100 2.81 0.093 23 0.0038 0.0075 0.0370 

S1D72a108 33100 2.81 0.093 40 0.0022 0.0043 0.0213 

S2D36a72 35300 3.61 0.095 23 0.0030 0.0060 0.0295 

S2D36a36 35300 3.61 0.095 23 0.0030 0.0060 0.0295 
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B.2 Calculation of Tension Stiffening Zone 

Eq. (2.38) from Chapter 2.4.3 gives: 

 

 
ℎ𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑖𝑛𝑔 =

𝜋𝑓𝑦𝑑𝑏(𝑡𝑐 − 𝑑𝑏)𝑛

22𝑓𝑡𝑏
 (B.2) 

 

which is the Maekawa formulation (Maekawa et al., 2003). The Eurocode (Eurocode 2), 

with the national annex gives, as can be seen in eq. (2.39) and eq. (2.40) from Chapter 

2.4.3: 

 

 ℎ𝑠𝑡𝑖𝑓𝑓𝑒𝑛𝑖𝑛𝑔 = 𝑚𝑖𝑛{2.5(ℎ − 𝑑); (ℎ − 𝑥)/3;  ℎ/2}  ≥ ℎ − 𝑑 + 1.5𝑑𝑏 (B.3) 

 

See symbol descriptions in Chapter 2.4.3. As can be seen in eq. (B.3), the compression 

zone is a part of the expression. To calculate the compression zone, a service limit state 

cracked cross section with no residual concrete tensile stress is assumed, with the following 

expression:  

 

 𝑥 = 𝛼𝑑 = (√(𝜂𝜌)2 + 2𝜂𝜌 − 𝜂𝜌)𝑑 (B.4) 

 

where 𝜂 =
𝐸𝑠

𝐸𝑐𝑚
⁄  and 𝜌 =

𝐴𝑠
𝑏𝑑⁄ , where 𝐸𝑠 is the steels Young’s modulus, 𝐸𝑐𝑚 is the 

concrete Young’s modulus, 𝐴𝑠 is the area of the reinforcement, 𝑏 is the concrete width and 

𝑑 is the effective height. This model assumes linear elasticity following Hooke’s law, and 

Navier/Bernoulli’s hypothesis about plane strain sections remain plain (Sørensen, 2010). 

This is not the case in the nonlinear analyses performed in this thesis. However, eq. (B.4) 

is assumed to provide an approximation which is sufficient enough in the current case. 

Table B.2 presents the tension stiffening zones calculated according to Maekawa and 

Eurocode procedures.  
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Table B.2 – Calculation of tension stiffening zone 

Calculation of tension stiffening zone      

 
𝑓𝑦  

N/mm2 

𝑓𝑡 
N/mm2 

𝑑  
mm 

𝑑𝑏 
mm 

𝑡𝑐  
mm 

𝑛
/𝑙𝑎𝑦𝑒𝑟 

𝑏 
mm 

ℎ 
mm 

𝑥 
Maekawa 

mm 

Maekawa* 

mm 
EC 

S1D18a108 560 2.81 180 20 40 2 250 230 61 91 91 80 

S1&2D36a108 560 2.81 360 20 40 4 250 410 122 182 141 96 

S1D72a108 

Lower layer 
560 2.81 720 20 40 4 250 795 244 182 

419 184 
S1D72a108 

Upper layer 
560 2.81 720 20 90 4 250 795 244 637 

S2D36a72 560 3.61 360 20 40 4 250 410 119 142 121 97 

S2D36a36 560 3.61 360 20 40 4 250 410 119 142 121 97 

*Actual tension stiffening height with geometrical boundaries, several layers and 

overlapping taken into account. 

 

 

Note that eq. (B.3) from the Eurocode provides the actual height of the whole tension 

stiffening (TS) zone, while eq. (B.2) from Maekawa provides the height for each 

reinforcement layer, where the height is to be extracted equally from the center of the 

reinforcement layer. Hence, “Maekawa*” in Table B.2 presents the actual resulting height 

on the beams. The actual heights of the TS zones in the Maekawa formulation then 

becomes: 91 mm, 141 mm, 419 mm, 121 mm and 121 mm for S1D18a108, 

S1&2D36a108, S1D72a108, S2D36a72 and S2D36a36 respectively. Using these values, 

the Maekawa/Eurocode ratio becomes 1.14, 1.47, 2.28, 1.25 and 1.25. The largest 

deviation happens for the S1D72a108, due to the extra layer giving the Maekawa model a 

very large stress expansion area, as can be seen in Table B.2 for the S1D72a108 upper 

layer. Due to the fact that the total-strain based crack model only allows for isotropic 

material modelling of the TS effect, the large expansion of the TS zone in S1D72a108 may 

give horizontally inclined cracks in the shear zone post-crack stiffness beyond realistic 

measures. Thus, the more conservative Eurocode TS height is used instead.  

B.3 Calculation of Analytical Initial Stiffness and Crack 

Initiation Values 

Initially, the cross section should be considered uncracked. Hence, the concrete contributes 

both in compression and tension. This is illustrated in Figure B.1. 
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Figure B.1 – Uncracked cross section (Øverli, 2016) 

 

 

The compression zone depth can then be expressed as:  

 

 
𝛼𝑑 =

𝐴𝑐0.5ℎ + 𝜂𝐴𝑠𝑑

𝐴𝑐 + 𝜂𝐴𝑠
 

 

(B.5) 

 

with 𝐴𝑐 as the area of the concrete cross section, ℎ as the concrete height, 𝐴𝑠 as the total 

reinforcement area, 𝑑 as the effective height, and finally 𝜂 =
𝐸𝑠

𝐸𝑐𝑚
⁄ , which is the Young’s 

modulus of reinforcement over the Young’s modulus of the concrete ratio. Furthermore, 

the concrete and reinforcement contribution of the second moment of inertia is respectively 

noted as:  

 

 
𝐼𝑐1 =

𝑏ℎ3

12
+ 𝑏ℎ (𝛼𝑑 −

ℎ

2
)
2

;  𝐼𝑠1 = 𝐴𝑠(𝑑 − 𝛼𝑑)2 (B.6) 

 

where 𝑏 is the cross sectional width. The flexural stiffness of the uncracked cross section 

can now be expressed as: 

 

 (𝐸𝐼)1 = 𝐸𝑐𝑚𝐼𝑐1 + 𝐸𝑠𝐼𝑠1 (B.7) 

 

 

Eq. (B.7) is from now marked as the analytical flexural stiffness. To compare this to the 

numerical and experimental initial stiffnesses, the unit load method was used in 

combination with simplified integration. 
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Figure B.2 – Moment diagrams of the unit load and the external loading 

 

 

Figure B.2 shows the moment diagrams of the unit load, applied at the midspan, and the 

external loading. By integrating the product of the moment diagrams showed in Figure B.2, 

we find that the measured flexural stiffness of the numerical and experimental force-

deflection curves can be expressed as:  

 

 

(𝑬𝑰)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =

[
 
 
 
 
 

(𝐸𝐼)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑆1𝐷18𝑎108

(𝐸𝐼)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑆1&2𝐷36𝑎108

(𝐸𝐼)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑆1𝐷72𝑎108

(𝐸𝐼)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑆2𝐷36𝑎72

(𝐸𝐼)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑_𝑆2𝐷36𝑎36 ]
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
1

𝛿

59

1500
𝑉𝐿3

1

𝛿

59

1500
𝑉𝐿3

1

𝛿

59

1500
𝑉𝐿3

1

𝛿

299

7986
𝑉𝐿3

1

𝛿

131

4116
𝑉𝐿3

]
 
 
 
 
 
 
 
 
 
 

 

 

(B.8) 

 

where 𝛿 is the measured deflection, 𝑉 = 𝑃
2⁄  is the measured load at the respective 

deflection, and 𝐿 is the respective length. Note that in eq. (B.8) the deflection, 𝛿, and the 

load, 𝑉 = 𝑃
2⁄ , are values drawn directly from the numerical and experimental force-

deflection diagrams for the respective beam. Also note that 𝐿 is varying for the 

geometrically different beams, that is the distance between the middle of the support 

plates. Hence, for beam S1D18a108, S1&2D36a108 and S1D72a108 𝐿 = 2700𝑚𝑚, while 

for beam S2D36a72 𝐿 = 1980𝑚𝑚, and finally for beam S2D36a36 𝐿 = 1260𝑚𝑚. The 

lengths a and b in Figure B.2 do not show in eq. (B.8) because they were converted into 

different fractions of the total length, 𝐿. Without further ado, the analytical stiffness in eq. 

(B.7), and the numerical and experimental measured stiffness of the beams are compared 

in Table B.3. The results show that the initial stiffness of the beams only scaled in height 

(Figure 3.1 – Figure 3.3) shows good correlation between the analytical and measured 

values. For the shorter beams (Figure 3.4 and Figure 3.5) both the numerical and 

experimental measurements struggles to fit the analytical. However, the numerical model 

shows much better resemblance to the analytical measurements compared to the 

experimental. Note that for the beam S2D36a72, Figure 4.8 shows a very small range of 

where the experimental and numerical initial stiffnesses collide, but, for the sake of 

comparison, the experimental measurements were taken from values beyond this small 

range. Hence, if the very small initial experimental stiffness was measured, the obtained 

values would reflect the numerical values, with an “error” of 14% as seen in Table B.3.  
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Table B.3 – Analytical, numerical, and experimental initial stiffness 

Analytical, numerical, and experimental initial stiffness 

 
(𝐸𝐼)𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 

Nmm2 

(𝐸𝐼)𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 
Nmm2 

Numerical 

difference 

% 

(𝐸𝐼)𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙  

Nmm2 

Experimental 

difference 

% 

S1D18a108 8.9e12 8.0e12 -10 8.0e12 -10 

S1&2D36a108 53.3e12 49.8e12 -7 49.8e12 -7 

S1D72a108 396.2e12 368.0e12 -7 368.0e12 -7 

S2D36a72 56.5e12 48.7e12 -14 9.6e12 -83 

S2D36a36 56.5e12 41.0e12 -27 7.6e12 -87 

 

 

If Figure 4.11 in Chapter 4.1.6 is carefully investigated, one can see a very slight direction 

change in the force-deflection curve for the beam S2D36a36 (furthest to the right in the 

figure) at about 1 mm deflection. The stiffness alteration in a pre- and post-crack cross 

section would in a normal case certainly be more affected than the one observed in Figure 

4.11. However, as a final check, the analytical deflection at the point of crack initiation was 

investigated and presented in the following sections. The cracking moment is calculated 

as:  

 

 
𝑀𝑐𝑟 =

𝐼𝑐1 + 𝜂𝐼𝑠1
ℎ − 𝛼𝑑

𝑓𝑐𝑡𝑚 (B.9) 

 

where 𝐼𝑐1 and 𝐼𝑠1 is calculated as in eq. (B.6), 𝛼𝑑 as in eq. (B.5), and 𝑓𝑐𝑡𝑚 was set to be 

the same as 𝑓𝑡 in Table B.2. Furthermore, the cracking moment was converted to a cracking 

force by: 

 

 
𝑉𝑐𝑟 =

𝑀𝑐𝑟

𝑎
 (B.10) 

 

where 𝑀𝑐𝑟 is calculated in eq. (B.9), and 𝑎 is the shear span which is illustrated in Figure 

B.2 and the specific values are presented in Figure 3.1 – Figure 3.5. Finally, if 𝑉 = 𝑉𝑐𝑟 and 

(𝑬𝑰)𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = (𝑬𝑰)𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 (where (𝑬𝑰)𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 is presented in Table B.3) in eq. (B.8), 

and we rearrange the equation to be solved for the deflection rather than the bending 

stiffness, we can obtain the analytical deflection values for when cracking should initiate. 

These values are presented in Table B.4. The values are ranging from 0.11 mm – 0.52 

mm. For beam S2D36a36 the deflection was calculated to be 0.11 mm. Thus, the direction 

change at 1 mm in the force-deflection curve for beam S2D36a36 is probably not caused 

by the crack initiation.  
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Table B.4 – Deflection at crack initiation 

Deflection at crack initiation 

 
Deflection 

mm 
 

S1D18a108 0.52  

S1&2D36a108 0.32  

S1D72a108 0.16  

S2D36a72 0.21  

S2D36a36 0.11  
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Appendix C  

Crack Strain Patterns  

 
This chapter shows the crack strain plots of different models and beams at critical changes 

in the force-deflection curve. To exemplify: The crack plots A) and B) in Figure C.7 are not 

marked by the respective letters in Figure C.6. However, A) equals the first mark on the 

force-deflection curve, B) is the second, and so on. This applies to all such illustrations in 

this thesis. Also, note that the crack strain plots are scaled by value. This is done to show 

more clearly where relatively large and small crack strains occur. In each of the crack strain 

chapters, for example in Appendix C.1.1, a systematic presentation is given as follows:  

- Crack plot extractions marked as X’es on the respective force-deflection curve. The 

number of crack plots is not fixed as the number of critical changes in the crack 

pattern varies between the models and beams.  

- The crack plots for the different models with the respective crack strain values.  

In many cases the behavior of the numerical beam is very dependent on how the crack 

pattern evolves as the loading is inflicted. Deviation between the force-deflection curve in 

the analysis and the experiment often has a relation to deviation in respective crack 

patterns. Hence, the numerical crack evolution and the experimental crack pattern is 

presented. In the following chapters, the experimental force-deflection curves are not 

presented, as the main purpose of the force-deflection diagrams in this chapter is to 

present where the crack plots were extracted, and not to compare the numerical and 

experimental force-deflection curves. Such comparisons is presented in Chapter 4. The 

experimental crack patterns are shown in Figure C.1 – Figure C.5. 

 

 

 

Figure C.1 – Crack pattern at failure for beam S1D18a108 (Suchorzewski et al., 2018) 

 

 

 

Figure C.2 – Crack pattern at failure for beam S1&2D36a108 (Suchorzewski et al., 2018) 

(critical crack is marked in red) 



117 

 

 

Figure C.3 – Crack pattern at failure for beam S1D72a108 (Suchorzewski et al., 2018) 

(critical crack is marked in red) 

 

 

A) 

 

  

B) 

 

  

Figure C.4 – Crack pattern at failure for beam S2D36a72 (Suchorzewski et al., 2018), 

where A) failed in tension shear and B) failed in compression shear. (critical crack is 

marked in red) 

 

 

 

Figure C.5 – Crack pattern at failure for beam S2D36a36 (Suchorzewski et al., 2018) 

(critical crack is marked in red) 
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C.1 Crack Strain Patterns of the Shear Retention 

Analyses 

In this chapter, the crack strain patterns for different shear retention analyses are 

presented. This includes the damage based, Al-Mahaidi and aggregate based shear 

retention model for each of the five beam geometries.  

C.1.1 Crack Strain Patterns of Beam S1D18a108 

 

Figure C.6 – Crack plot specification for shear retention models for beam S1D18a108 

 

 

 

A) 

  

B) 

  
Figure C.7 – Crack strain plots beam S1D18a108, damage based 
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A) 

  

B) 

  

C) 

  
Figure C.8 – Crack strain plots beam S1D18a108, Al-Mahaidi 

 

 

A) 

  

B) 

  
Figure C.9 – Crack strain plots beam S1D18a108, aggregate based 
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C.1.2 Crack Strain Patterns of Beam S1&2D36a108 

 

Figure C.10 – Crack plot specification for shear retention models for beam S1&2D36a108 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.11 – Crack strain plots beam S1&2D36a108, damage based 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.12 – Crack strain plots beam S1&2D36a108, Al-Mahaidi 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.13 – Crack strain plots beam S1&2D36a108, aggregate based 
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C.1.3 Crack Strain Patterns of Beam S1D72a108 

 

Figure C.14 – Crack strain plot specification for shear retention models for beam 

S1D72a108 

 

 

 

 

 

 

 

 

 

 



125 

 

A) 

 

 

B) 

 

 

C) 

 

 

Figure C.15 – Crack strain plots beam S1D72a108, damage based 
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A) 

 

 

B) 

 

 

C) 

 

 

D) 

 

 

Figure C.16 – Crack strain plots beam S1D72a108, Al-Mahaidi 
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A) 

 

 

 

B) 

 

  

C) 

 

 

 

D) 

 

  

Figure C.17 – Crack strain plots beam S1D72a108, aggregate based 
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C.1.4 Crack Strain Patterns of Beam S2D36a72 

 

Figure C.18 – Crack plot specification for shear retention models for beam S2D36a72 

 

 

A) 

  

B) 

  
Figure C.19 – Crack strain plots beam S2D36a72, damage based 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.20 – Crack strain plots beam S2D36a72, Al-Mahaidi 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.21 – Crack strain plots beam S2D36a72, aggregate based 
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C.1.5 Crack Strain Patterns of Beam S2D36a36 

 

Figure C.22 – Crack plot specification for shear retention models for beam S2D36a36 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.23 – Crack strain plots beam S2D36a36, damage based 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.24 – Crack strain plots beam S2D36a36, Al-Mahaidi 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.25 – Crack strain plots beam S2D36a36, aggregate based 

 

 

 

C.2 Crack Strain Patterns of the Crack Model Analyses 

In this chapter, the crack strain patterns for different crack model analyses is presented. 

This includes a fully fixed crack model, a rotating to fixed crack model with threshold values 

reflecting a half full developed crack, a fully developed crack and a 5 times fully developed 

crack, and finally a fully rotating crack model for each of the five beam geometries. The 

fully fixed crack plots can also be found in some of the plots in Appendix C.1. They were 

plotted in this chapter in order to easily see the crack development as the crack models 

span from fully fixed, through the rotating to fixed crack models, to the fully rotating crack 

model.  
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C.2.1 Crack Strain Patterns of Beam S1D18a108 

 

Figure C.26 – Crack plot specification for crack models for beam S1D18a108 

 

 

A) 

  

B) 

  
Figure C.27 – Crack strain plots beam S1D18a108, fully fixed 

 

 

 

 

 

 

 

 



136 

 

A) 

  

B) 

  

C) 

  

D) 

  
Figure C.28 – Crack strain plots beam S1D18a108, rotating to fixed – threshold at half 

full crack 

 

 

A) 

  

B) 

  

C) 

  

D) 

  
Figure C.29 – Crack strain plots beam S1D18a108, rotating to fixed – threshold at fully 

developed crack 

 

 

 



137 

 

A) 

  

B) 

  

C) 

 
 

 

D) 

  
Figure C.30 – Crack strain plots beam S1D18a108, rotating to fixed – threshold at 5*fully 

developed crack 

 

 

A) 

  

B) 

  

C) 

  

D) 

  
Figure C.31 – Crack strain plots beam S1D18a108, fully rotating 
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C.2.2 Crack Strain Patterns of Beam S1&2D36a108 

 

Figure C.32 – Crack strain plot specification for crack models for beam S1&2D36a108 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.33 – Crack strain plots beam S1&2D36a108, fully fixed 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.34 – Crack strain plots beam S1&2D36a108, rotating to fixed – threshold at half 

full crack 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.35 – Crack strain plots beam S1&2D36a108, rotating to fixed – threshold at fully 

developed crack 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.36 – Crack strain plots beam S1&2D36a108, rotating to fixed – threshold at 

5*fully developed crack 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.37 – Crack strain plots beam S1&2D36a108, fully rotating 
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C.2.3 Crack Strain Patterns of Beam S1D72a108 

 

Figure C.38 – Crack strain plot specification for crack models for beam S1D72a108 (the 

crack plot extractions are marked as dots for better visibility) 
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A) 

 

 

B) 

 

 

C) 

 

 

Figure C.39 – Crack strain plots beam S1D72a108, fully fixed 
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A) 

 

 

B) 

 

 

C) 

 

 

D) 

 

 

Figure C. 40 – Crack strain plots beam S1D72a108, rotating to fixed – threshold at half 

full crack 
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A) 

 

 

B) 

 

 

C) 

 

 

Figure C.41 – Crack strain plots beam S1D72a108, rotating to fixed – threshold at fully 

developed crack 
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A) 

 

 

B) 

 

 

C) 

 

 

Figure C.42 – Crack strain plots beam S1D72a108, rotating to fixed – threshold at 5*fully 

developed crack 
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A) 

 

 

B) 

 

 

C) 

 

 

D) 

 

 

Figure C.43 – Crack strain plots beam S1D72a108, fully rotating 
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C.2.4 Crack Strain Patterns of Beam S2D36a72 

 

Figure C.44 – Crack plot specification for crack models for beam S2D36a72 

 

 

A) 

  

B) 

  
Figure C.45 – Crack strain plots beam S2D36a72, fully fixed 
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A) 

  

B) 

  
Figure C.46 – Crack strain plots beam S2D36a72, rotating to fixed – threshold at half full 

crack 

 

 

A) 

  

B) 

  

C) 

  

D) 

  
Figure C.47 – Crack strain plots beam S2D36a72, rotating to fixed – threshold at fully 

developed crack 
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A) 

  

B) 

  
Figure C.48 – Crack plots strain beam S2D36a72, rotating to fixed – threshold at 5*fully 

developed crack 

 

 

A) 

  

B) 

  
Figure C.49 – Crack strain plots beam S2D36a72, fully rotating 
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C.2.5 Crack Strain Patterns of Beam S2D36a36 

 

Figure C.50 – Crack strain plot specification for crack models for beam S2D36a36 (the 

crack plot extractions are marked as dots for better visibility) 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.51 – Crack strain plots beam S2D36a36, fully fixed 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.52 – Crack strain plots beam S2D36a36, rotating to fixed – threshold at half full 

crack 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.53 – Crack strain plots beam S2D36a36, rotating to fixed – threshold at fully 

developed crack 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.54 – Crack strain plots beam S2D36a36, rotating to fixed – threshold at 5*fully 

developed crack 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.55 – Crack strain plots beam S2D36a36, fully rotating 
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C.3 Crack Strain Patterns of the Tension Stiffening 

Analyses 

In this chapter, the crack strain patterns were plotted for a fixed crack model with damaged 

based shear retention with tension stiffening (TS). For the sake of comparison, the model 

without TS was also plotted, which is the same can be seen in Appendix C.1 for the damage 

based shear retention model. The extra white line, as for example can be seen in Figure 

C.58, marks the TS zone. That is, a TS curve is used in the post-crack phase underneath 

this line, instead of the Hordijk tension softening model.  

C.3.1 Crack Strain Patterns of Beam S1D18a108 

 

Figure C.56 – Crack plot specification with and without tension stiffening for beam 

S1D18a108 

 

 

A) 

  

B) 

  
Figure C.57 – Crack strain plots for beam S1D18a108, damage based without tension 

stiffening 
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A) 

  

B) 

  
Figure C.58 – Crack strain plots for beam S1D18a108, damage based with tension 

stiffening 

 

 

C.3.2 Crack Strain Patterns of Beam S1&2D36a108 

 

Figure C.59 – Crack plot specification with and without tension stiffening for beam 

S1&2D36a108 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.60 – Crack strain plots for beam S1&2D36a108, damage based without tension 

stiffening 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.61 – Crack strain plots for beam S1&2D36a108, damage based with tension 

stiffening 
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C.3.3 Crack Strain Patterns of Beam S1D72a108 

 

Figure C.62 – Crack plot specification with and without tension stiffening for beam 

S1D72a108 
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A) 

 

 

B) 

 

 

C) 

 

 

Figure C.63 – Crack strain plots for beam S1D72a108, damage based without tension 

stiffening 
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A) 

 

 

B) 

 

 

Figure C.64 – Crack strain plots for beam S1D72a108, damage based with tension 

stiffening 
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C.3.4 Crack Strain Patterns of Beam S2D36a72 

 

Figure C.65 – Crack plot specification with and without tension stiffening for beam 

S2D36a72 

 

 

A) 

  

B) 

  
Figure C.66 – Crack strain plots for beam S2D36a72, damage based without tension 

stiffening 
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A) 

  

B) 

  
Figure C.67 – Crack strain plots for beam S2D36a72, damage based with tension 

stiffening (The figures are not the same, even though they are very similar) 

 

 

C.3.5 Crack Strain Patterns of Beam S2D36a36 

 

Figure C.68 – Crack plot specification with and without tension stiffening for beam 

S2D36a36 

  



168 

 

A) 

  

B) 

  

C) 

  

D) 

  
Figure C.69 – Crack strain plots for beam S2D36a36, damage based without tension 

stiffening 
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A) 

  

B) 

  

C) 

  

D) 

  
Figure C.70 – Crack strain plots for beam S2D36a36, damage based with tension 

stiffening 
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