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Abstract. The main purpose of this thesis is to study zero-knowledge pro-
tocols for proof of correct shuffle using lattices. To understand the computations
done in the protocols and why the protocols are secure, one chapter is dedicated
to studying the ring structure of lattices. We then go over to study two existing
protocols to prove a correct shuffle before we give a try to construct a new zero-
knowledge protocol for shuffle using permutation matrices.

Sammendrag. Hovedformålet med denne oppgaven er å studere protokoller
for kunskapsløse bevis av korrekt ommstokning ved bruk av gitter. For å forst̊a
utregningene gjort i protkollene og hvorfor protokollene er sikre, har vi dedikert
et kapittel til å studere ringstrukturen til gittere. Deretter g̊ar vi videre til å
studere to eksisterende protocoller for bevis av korekt omstokning før vi gir et
forsøk p̊a å konstruere et nytt kunskapsløst beves for omstokning ved bruk av
permutasjonsmatriser.
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CHAPTER 1

Introduction

A zero-knowledge protocol is a proof of something you have done or something
you know. These protocols are some of the most central things in anonymous
electronic voting. One of these zero-knowledge proofs is to give a proof of correct
shuffle, and this is essential because of anonymity. We want one party to receive
the votes and know who sent them but not be able to see what the vote is. Then
we want a second party to be able to see what the votes are and count them, but
not be able to know whom each vote is from. However, the second party must
know that each vote is from someone, so it knows the first party did not cheat by
excluding votes or adding extra. Therefore we let the first party perform a zero-
knowledge proof of correct shuffle to prove that the votes the second party receives
are the same as the first party received, just in a different order.

When working with cyclic groups and the ElGamal encryption scheme, there
are multiple ways to give a zero-knowledge proof of correct shuffle. Furukawa and
Sako [5], and Furukawa [6] give two proofs of shuffle using permutation matrices
and that the messages committed to are a multi commitment of the known messages
with the permutation matrix applied to them. While Neff [11] gives a protocol that
proves a shuffle by creating two polynomials, one which has the known messages
as roots and another that has the messages committed to as its roots. Then since
the permutation of roots in a polynomial does not matter, it holds to show that
these polynomials have the same evaluations for a single element.

We will be studying an adaptation of Neff’s protocol which works over lattices
instead of cyclic groups, which are given and proven secure by Aranha et al. [1].
We will also give a small try to adapt the proof of Furukawa and Sako to a protocol
over lattices and discuss what theory we would need to do it.

The reason to adopt these protocols to lattices instead of cyclic groups is be-
cause of the developments of quantum computers. It has been proven that it is easy
to compute the discreet logarithm and factor numbers with a quantum computer,
which cyclic group encryption relies on being hard for its security. However, for
post-quantum cryptography, encryption schemes over lattices are some of the most
promising of being secure. And it is, therefore, wanted to adapt most cryptography
schemes to rely on lattice problems.
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2 1. INTRODUCTION

We start in Chapter 3 to define commitment schemes as done by Baum et al.
[2] and define the different types of securities we want these schemes to have. Then
we define zero-knowledge proofs and Σ-protocols the same way as it is done by
Damg̊ard [3].

In Chapter 4, we continue by introducing what a lattice is and state some re-
sults of the ring structures to certain types of lattices. We also introduce how to
define the Gaussian distribution over lattices and give two results showing that the
protocols we study will be complete and that one would not leak any information.
We will also introduce two knapsack problems over lattices which the different
types of securities will rely on. We will also give scenarios where both of these
problems can not be solved by any all-powerful adversary.

Chapter 5 is where we will introduce the commitment scheme over lattices that
we will be using and prove the correlation between its security and the hardness of
the two knapsack problems. We will also give a few protocols and show that they
are zero-knowledge proofs.

In Chapter 6, we will study two protocols for a correct shuffle. The first one
was given by Aranha et al. [1], and then the adaptation of it [4] to prove a correct
shuffle of encrypted messages given as vectors of lattice points.

Finally, in Chapter 7, we will give an extremely slow protocol to prove that a
matrix is a permutation matrix. We will also discuss how we could make a more
useful protocol if we had the necessary theory.



CHAPTER 2

Notation

We start by introducing some notations that will be used throughout this thesis.

First of all, we will write vectors and matrices with bold letters where small let-
ters like b will denote vectors and capital letters like A will denote matrices, where
0n×k denote the n×k zero-matrix and In the n times n identity matrix. If we write
x·y it will mean the usual inner product of two vectors unless it is stated otherwise.

If we let S be a set, then we denote x
$←− S as picking a value uniformly random

from S and giving it to x. If S is a probability distribution we denote x
$←− S as

picking x according to S. Sometimes we will also write x ← A(input) to give x
the value of the output from an algorithm A, or we write x← 3 + 4 to give x the
value 3 + 4.

We will also have a notation for writing probabilities. To show how we write
this we give an example of when have a key generating algorithm KeyGen, an
algorithm A and a set X, then we denote

Pr
[
A (pk, x) = 1

∣∣∣pk ← KeyGen, x
$←− X

]
the probability that A in input pk and x outputs 1 given that pk is computed from
KeyGen and x chosen uniformly at random from X. If we are doing computations
with probabilities it would be nice with a more compact notation and write

Pr
x

$←−X
[A (pk, x) = 1|pk ← KeyGen] .

Which means exactly the same as above.
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CHAPTER 3

Commitments and Zero-Knowledge Proof

We will, in this chapter, introduce what a commitment scheme is and what kind
of properties we want from this. After this, we will define what a zero-knowledge
proof (which we will shorten to ZK proofs) is. We will also define what it means
for a ZK proof to be an honest-verifier zero-knowledge proof (which we write as
HVZK proof). Then we will define a special type of HVZK proof which are Σ-
protocols. These definitions are what we will be using for the protocols we will
study in Chapter 5, 6, and 7.

1. What is a Commitment scheme

The intuition of a commitment scheme is to be able to bind yourself to a
message without letting anyone know what the message is. The properties of the
commitment scheme will later, in the protocols for ZK proofs, be the reason the
protocols’ security properties hold.

Definition 3.1. A commitment scheme for a message spaceM is a set of tree
algorithms KeyGen,Commit and Open which are defined as follows:

- KeyGen is a PPT algorithm that take the security parameter λ as input

and returns a public parameter pk ∈ { 0, 1 }poly(λ)
.

- Commit is a PPT algorithm that takes as input a public parameter pk ∈
{ 0, 1 }poly(λ)

and a message m ∈ M. and returns a commitment c ∈
{ 0, 1 }poly(λ)

and r ∈ { 0, 1 }poly(λ)
.

- Open is a deterministic polynomial-timed algorithm that takes as input

a public parameter pk ∈ { 0, 1 }poly(λ)
, a commitment c ∈ { 0, 1 }poly(λ)

,

r ∈ { 0, 1 }poly(λ)
and a message m ∈M and returns a bit b ∈ { 0, 1 }.

If pk = KeyGen(), then Open (pk,Commit (pk,m) ,m) = 1.

A commitment scheme in itself would not be very useful. We also want some
additional properties. The first one of these is the hiding property which can be
described as if we have two messages in the message space and a commitment
to one of them, an adversary would not be able to determine which message the
commitment is related to.

Definition 3.2. We say that a commitment scheme is ε-hiding if for any
algorithm A that is given pk ← KeyGen(), and for any two messages m0 6= m1

chosen by A

Pr
[
A(pk,m0,m1, c) = b

∣∣∣ b $←− { 0, 1 } , c, r ← Commit(pk,mb)
]
≤ ε+

1

2
.
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6 3. COMMITMENTS AND ZERO-KNOWLEDGE PROOF

If we let A be any all-powerful algorithm, we say that the commitment scheme
is statistically hiding. However, if we restrict A to be PPT, we say it is computa-
tionally hiding.

The second property we want a commitment scheme to have is the binding
property which is that given a public parameter pk, it is hard to find two messages
which can have the same commitment c.

Definition 3.3. We say a commitment scheme is ε-binding if given any algo-
rithm the following holds

Pr

[
A (pk) = (m,m′, r, r′, c) s.t. m 6= m′,

Open (pk, c, r,m) = Open (pk, c, r′,m′) = 1

∣∣∣∣ pk ← KeyGen()

]
≤ ε.

Here we also say that the commitment scheme is statistically binding if we let
A be any all-powerful algorithm and computational binding if we restrict it to be
PPT.

We now give two trivial examples of commitment schemes. One that will be
statistically binding and not at all hiding and one that will be the opposite.

Example 3.4. We define KeyGen() just to return a random bit string pk.
and Comit(pk,m) = (c, r) where c = m and r just a random bit string. Then
Open(pk, c, r,m) returns 1 if and only if c = m.

We can easily see that this is not at all hiding since the commitment is the
message, but it is binding since we can not find another message equal to the com-
mitment.

Example 3.5. We define the commitment scheme for a message space M =

{ 0, 1 }λ with KeyGen() just the same as last time. It returns a random bit string to

pk. But now we define Comit(pk,m) = (c, r) where r
$←−M and c = m⊗ r, where

⊗ is the xor operation. Then Open(pk, c, r,m) returns 1 if and only if m = c⊗ r.

In this commitment scheme, we see that it is impossible to break the hiding
property since any message can be related to a commitment. But the scheme will
not at all be binding, since the algorithm can given a commitment c just pick two
different messages m and m′ and compute r = c⊗m and r′ = c⊗m′.

These two examples of commitment schemes are useless, but they show that a
commitment scheme can be either hiding or binding without it being the other at
all. When we introduce the commitment scheme in Chapter 5, we will see that the
scheme will have a stronger or weaker hiding or binding property depending on the
size we let the set where we pick our r to have.

2. Zero-Knowledge proofs and Σ-protocols

A ZK proof of something is a conversation between a prover and a verifier,
where the prover wants to prove to the verifier that it has some knowledge, and the
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verifier wants to be sure that it can not be convinced by the prover, if the prover
does not have the knowledge. One example we will have of this in Chapter 5 is
a proof of having a commitment to an unknown or known message. But now we
start by defining what a ZK proof is.

Definition 3.6. A zero-knowledge proof with soundness error ε of a relation
R ⊆ X×W for sets X and W , is an interactive protocol Π between a prover P and
a verifier V. Both P and V are given public input x, and at the end of Π, V will
output accept or reject. We also want a ZK proof to have the following properties.

- Completeness: If P knows a witness w ∈ W such that (x,w) ∈ R and
follows Π honestly, V will output accept with overwhelming probability.

- Soundness: For any prover P∗ that can get V to accept for a given input
x with probability ε′ > ε, there exists a constant c and an algorithm E
called the extractor that can with black-box access to P∗ produce a witness
w′ such that (x,w′) ∈ R with at most

|x|c

ε′ − ε
steps. Access to P∗ is counted as one step.

We take some time to discuss the two properties we want the ZK proof to have.
The completeness property is pretty straightforward, we want an honest conver-
sation to work. The not so obvious property is the soundness property, but the
intuition is that it should be easier to find a witness w′ such that (x,w′) ∈ R than
to convince the verifier without knowing a witness. Notice also that the witness
w′ extracted by E does not need to be the same as the one P∗ knows, but the
soundness shows that P∗ knows one.

Sometimes it is enough to have a ZK proof, but we would like the proofs to have
an additional property. We want the verifier to learn nothing about the witness
that the prover knows.

Definition 3.7. We say that a zero-knowledge proof Π is honest-verifier zero-
knowledge if there exists a PPT algorithm A that given x ∈ X can simulate an
accepting transcript of Π that is statistically indistinguishable from an honest tran-
script of Π.

We can also define Σ-protocols, which is another form of an interactive protocol
between two algorithms. We define Σ-protocols because we later will see that Σ-
protocols are HVZK proofs, and it is usually easier to prove that something is a
Σ-protocol than to prove it is an HVZK proof.

Definition 3.8. Let R ⊆ X ×W be a relation for sets X and W . If we have
an interactive protocol between a prover P and a verifier V who gets x ∈ X as
input and P additionally gets (x,w) ∈ R as input and the interaction goes in the
following way.

1. P sends a message α to V.
2. V sends a challange β ∈ { 0, 1 }t to P.
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3. P sends an answer γ to V.
4. V accepts or rejects depending on x, α, β and γ.

Then we call this protocol a Σ-protocol if the following tree properties holds.

- Completeness: If P and V follow the protocol for input x ∈ X and privet
input w for P where (x,w) ∈ R, V will output accept with overwhelming
probability.

- Special soundness: For any input x with a pair of accepting conversations
(α, β, γ) and (α′, β′, γ′), where β 6= β′, one can efficiently compute a
witness w′ such that (x,w′) ∈ R.

- Honest-Verifier Zero Knowledge: There exist a PPT simulator A that on
input x ∈ X and and a β ∈ { 0, 1 }t can output an accepting conversation
(α, β, γ) that is statistically indistinguishable from a honest conversation
between P and V.

The name Σ-protocol comes from the way you can draw up the conversation if
we include one step at the start when the prover sends x over to the verifier. Then
the protocol looks like a Σ.

We notice that in the security sense, the only difference between a Σ-protocol
and an HVZK proof of knowledge is the special soundness and soundness property.
Furthermore, what we will see in the following theorem is that a Σ-protocol is an
HVZK proof of knowledge.

Theorem 3.9. Let Π be a Σ-protocol for a relation R ⊆ X ×W , where the
length of the challenge bit-string β is t > 2. Then Π is an HVZK proof of knowledge
for R with soundness error 2−t+2.

The soundness error of this theorem is proven by Damg̊ard [3] that can be
decreased to 2−t, but since we will work with t� 2, we only prove it for 2−t+2.

Proof. We see that the completeness and the honest-verifier zero-knowledge
follow since it is the same defined properties.

Let P∗ be a prover that can get V to accept for a given x with probability
ε′ > 2−t+2. Let H be the binary matrix where we have a row for each α that
P∗ can send, and a column for each challenge β. An element of H is 1 if P∗ is
able to send an accepting answer and 0 otherwise. Now we see that because of the
special soundness property, if we find two 1’s in a single row, then we will be able
to extract a witness w′. The idea of the extractor E we construct is that it will ask
P∗ for a message α and give it a random challenge β until it hits a 1 in H, then E
will continue with the same α, but different challenges until it hits a second 1.

We know that H contains 1/ε′ number of 1’s and therefore E will hit a 1 with
O(1/ε′) expected calls, but we do not know if a row with a 1 will contain a second
1. So if E hits a row with a single 1 in it, it will never finish. We, therefore, define a
row to be heavy if more than ε′/2 of the elements in it are 1. Since ε′ > 2−t+2, it is
easy to see that a heavy row will contain at least two 1’s. Let H′ be the submatrix
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of H of all rows that are not heavy, h′ be the number of elements in H′ and h the
number of elements of H. Then the number of 1’s in H will be hε′ by assumption
and the number of 1’s in H′ will be less then h′ε′/2. If we now let g be the number
of 1’s in heavy rows, we get that

g ≥ hε′ − h′ε′/2 > hε′ − hε′/2 = hε′/2,

which means that more than half of the 1’s is contained in heavy rows. Therefore
E will, with more than 1/2 in probability, hit a heavy row when it hits its first 1.

Because of the size of the challenge space H will have 2t columns and E will for

each β it sends after hitting a heavy row have provability ε′2t−1−1
2t hitting another

1. We then have that in a heavy row, E will hit a second 1 in expected T callings,
where

T =
2t

ε′2t−1 − 1
≤ 4

ε′
.

So to find the second 1, E will also be expected to need O(1/ε′) steps.

We now define how E will work:

1. Probe random elements of H until a 1 is found.
2. In parallel, continues with the two following steps and stop if either of the two

stops:
i. Try a different element of the row where the first 1 was found until a

second 1 is found.
ii. Pick a random element of H and a random element from {1, ..., d}. Stop

if both were 1.
3. If 2. stopped because of i. extract w′, if 2. stopped because of ii. then return

to step 1.

We see that the chance of 2. stopping because of ii. is ε′/d. This means that we
want to pick a d such that if E finds the first 1 in a heavy row, it will with sufficient
probability find the second 1 before 2. stops because of ii.

The probability of ii. finishing after k steps is ε′

d (1− ε′/d)
k−1

. Then since

(1− ε′/d)
k−1 ≤ 1, we get that the probability for ii. to finish after k or fewer

steps is at most kε′/d. For k = d/2ε′ this bound is equal to 1/2. If we set d = 16
we get that ii. will stop after more then 8/ε′ iterations with probability at least 1/2.

We now see that both Step 1 and 2 will finish in the expected time O(1/ε′)
and Step 3 in constant time. We also have in Step 1 that E hits a heavy row with
a probability of 1/2. From Markov’s inequality, we have that i. in Step 2 will
finish with probability 1/2 in 8/ε′ steps or fewer. Furthermore, we have shown
that ii. in Step 2 will stop after more than 8/ε′ steps with a probability greater
than 1/2. Then we have that E will extract a witness in Step 3 with a probability
of at least 1/8. So each iteration of E to get to Step 3 is with expected O(1/ε′)
steps with constant probability to terminate after each iteration, which means that
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E is expected to run O(1/ε′) steps. This is better then what is needed which is

O
(

1
ε′−2−t+2

)
, which means we are done. �

This type of proof is called a heavy-row argument and is a standard way to
prove that an extraction algorithm terminates in polynomial time and therefore
proves the soundness property of a protocol. However, suppose a protocol has the
special soundness property. In that case, it is usually easier to prove this property
instead, and because of Theorem 3.9, this will be sufficient to prove that a protocol
is a ZK proof.

In the ZK proofs we will study, we will allow the prover to abort after receiving
the challenge as introduced by Lyubashevsky [8] so it does not reveal unnecessary
information when the verifier would not accept. However, the prover will not nec-
essarily abort whenever it can not answer the challenge sent by the verifier, it will
with a higher probability abort, when the verifier would not accept with a high
probability, as done by Baum et al. [2]. We will talk more about this in Section
2 of Chapter 4. Whenever the prover aborts, they start over with a new message
and challenge.



CHAPTER 4

Lattices

Here we will introduce the necessary theory about lattices to construct and
prove the security of the commitment scheme and ZK proofs we will be studying
in Chapter 5, 6, and 7. We will first look at what a lattice is, then look at some
nice results before defining the discrete Gaussian distribution over lattice points.
Finally, we will define two knapsack problems connected to lattices and prove their
unconditional hardness under some parameters.

1. What are Lattices

An integer lattice Λ is usually looked at as a subgroup of ZN . And we define
a full rank lattice Λ with basis B ∈ ZN×N to be

Λ =
{

v ∈ ZN
∣∣ ∃z ∈ ZN s.t. B · z = v

}
.

Then we can at once define one usual problem for a lattice Λ, which is to find the
shortest non-zero vector of Λ. Or more general, the approximate Shortest Vector
Problem (SVPγ(Λ)), which asks to find a non-zero element of Λ of a smaller norm
than γ with the usual `2-norm.

But we will be studying lattices with an additionally property. We want Λ to
be
(
XN + 1

)
-cyclic, which means that if we have an element (v1, ..., vN ) ∈ Λ then

we want (−vN , v1, ..., vN−1) ∈ Λ. One type of lattices that has this property is
ideals of the ring R = Z[X]/〈XN + 1〉. We can see that this property holds by
multiplying the element by X. Then we can define the tree `-norms of an element
f = fN−1X

N−1 + ...+ f1X + f0 ∈ R:

||f ||1 =

N−1∑
i=0

|fi|,

||f ||2 =

(
N−1∑
i=0

|fi|2
)1/2

,

||f ||∞ = max
i∈[N−1]

|fi|.

Further more since we want to do cryptography, we define the finite ring Rp =

Zp[X]/〈XN + 1〉 for a prime p. Then if f =
∑N−1
i=0 f̄iX

i ∈ Rp we define the norms

of f to be the norm of an element in R with coefficients fi ∈
[
− q−1

2 , q−1
2

]
such

that fi ≡ f̄i (mod p) for each i. And just as usual for this norm we also get for a
f ∈ Rp the inequalities

11
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||f ||1 ≤
√
N ||f ||2 ≤ N ||f ||∞ and ||f ||∞ ≤ ||f ||1.

We also get two more nice bounds that we state in the following lemma.

Lemma 4.1. Let f, g ∈ Rp, then we get the following two properties:

1: If ||f ||∞ ≤ β and ||g||1 ≤ γ, then ||f · g||∞ ≤ β · γ.
2: If ||f ||2 ≤ β and ||g||2 ≤ γ, then ||f · g||∞ ≤ β · γ.

Next, we would like to know when a lattice point is invertible in Rp. We can
not in general guarantee that all lattice points are invertible, but it can be proven
[9] that when either the 2-norm or∞-norm is not too large, we will know that they
are invertible.

Lemma 4.2. Let N ≥ δ > 1 be powers of 2, p a prime such that p ≡ 2δ + 1
(mod 4δ). Then XN + 1 factors into δ irreducible polynomials XN/δ + rj modulo
p, and any y ∈ Rp\{0} such that

||y||∞ <
1√
δ
· p1/δ or ||y||2 < p1/δ

is invertible in Rp

We can also look at polynomials where the coefficients are elements in Rp.
Then we can ask if there is a bound on how many zeros such a polynomial will
have. And there is, which we give in the following lemma which we give a proof
for.

Lemma 4.3. Let N ≥ δ ≥ 1 be powers of 2, p a prime such that p ≡ 2δ + 1
(mod 4δ) and T ⊆ Rp. Let g(X) ∈ Rp[X] be a polynomial of degree τ . Then, g

has at most τ δ roots in T , and Pr[g(ρ) = 0|ρ $←− T ] ≤ τ δ/|T |.

Proof. By Lemma 4.2 XN + 1 factors into δ different irreducible factors
XN/δ + rj . The factor ring of each irreducible polynomial will contribute to at
most τ roots of g(X) ∈ Rp[X]. Then by the Chinese Remainder Theorem, we get

that there will be at most τ δ roots of g(X). Then if ρ
$←− Rp, the chance of ρ being

a root must be less than the maximum number of roots divided by the number of
elements to choose from. The same for T , since T can not have more roots of g(X)
then Rp itself. �

We continue by defining a few subsets of Rp which we will use in the next
chapters. The first one is the Challenge Space

(1) C = { f ∈ Rp | ||f ||∞ = 1, ||f ||1 ≤ κ } ,
for a chosen κ. This is the challenge space we will use in our ZK proofs in the next
chapters. If we want |C| > 2λ then we find a κ such that

(
N
κ

)
· 2κ > 2λ. We also

define the space of differences of things in the challenge space

(2) C̄ = { f1 − f2 | f1, f2 ∈ C, f1 6= f2 } .
Finally we define the following set for a positive integer α

(3) Sα = { f ∈ Rp\ { 0 } | ||f ||∞ ≤ α } .
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We will always pick an α such that all elements of Sα will be invertible.

2. The Gaussian Distribution over Rk

We continue by defining the Gaussian distribution over lattices. We do this
since later, when we define the different HVZK proofs, it will be a result that will
give the honest verifier property, which says that a vector sampled from a Gaussian
distribution around 0 is statistically indistinguishable from a vector sampled from
a Gaussian distribution around a small vector. But we first recall that the usual
Gaussian distribution around a vector v ∈ RN with standard deviation σ is given
by the following density function.

ρNv,σ(x) =
1√
2πσ

· exp

(
−||x− v||22

2σ2

)
.

We will denote it ρNσ (x) when the distribution is centered around 0, and we
continue by defining the Gaussian distribution around a vector from Rk.

Definition 4.4. Let v ∈ Rk be a vector of lattice points. We then define the
Gaussian distribution over Rk centred in v with standard deviation σ to be

N k
v,σ(x) =

ρk·Nv,σ (x)

ρk·Nσ (Rk)
,

where ρk·Nσ
(
Rk
)

=
∑

x∈Rk ρ
k·N
σ (x).

If v = 0, then we write N k
σ (x). Now we state two results about sampling from

a normal distribution, both of which are proven by Lyubashevsky [10]. The first
one is a tail bound which says we can expect the size of the vectors we sample from
the Gaussian distribution not to be too big.

Lemma 4.5. For any d > 0

Pr
[
||z||2 > dσ

√
kN |z $←− N k

σ

]
< dkN · exp

(
kN

2

(
1− d2

))
.

This lemma will be used later to know that when we first sample a vector
from a Gaussian distribution and then add a small vector, we can expect with an
overwhelming probability that the norm still will not get too big. This will be one
of the verifier’s criteria to accept in the ZK proofs.

Next, we state another result regarding the statistical difference of the Gauss-
ian distribution around 0 and another small vector.

Lemma 4.6. Let V ⊆ Rk such that all elements have 2-norm less then T , let

σ ∈ R such that σ = ω
(
T
√

log(kN)
)

and let h be a probability distribution on

V . Then there exists a M = O(1) such that the following algorithms A and S are
within statistical distance 2−ω(log(kN))/M .
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A:

1. v
$←− h

2. z
$←− N k

v,σ

3. Output (z,v) with probability min

(
1,

N k
σ (z)

M · N k
v,σ(z)

)
S:

1. v
$←− h

2. z
$←− N k

σ

3. Output (z,v) with probability 1/M

The probability of A outputting something is at least 1−2−ω(log(kN))

M .

Baum et al. [2] mentions that by setting σ = αT , we get that

M = exp
(
12/α+ 1/

(
2α2

))
such that the statistical distance between A and S will be 2−100/M and A will have
probability at least

(
1− 2−100

)
/M to output something. We will always chose k

and N such that kN � 128, but already with kN = 128, we have that M ≈ 4.5,
and it decreases as k and N increases.

As we mentioned in Chapter 3 in the ZK proofs we will be studying, the prover
will be able to abort when the probability for rejection is higher. This probability
will come from the distribution of A in Lemma 4.6. The prover will have some
private input r ∈ Skα for an α and get a challenge d ∈ C, then v = d · r.

3. Knapsack Problems

Now we introduce the two knapsack problems for lattices, that will give the hid-
ing and binding properties to the commitment scheme we will introduce in Chapter
5. Both the knapsack problems are basically the same as the usual Learning With
Error (LWE) problem and the Short Integer Solution (SIS) problem for lattices.
After we have defined these problems, we will give proof of their unconditional
hardness for specific parameters. Finally, we discuss vaguely some of the ways to
solve the two knapsack problems. The reason we use the two knapsack problems
instead of LWE and SIS is that it will be easier to correlate the commitment scheme
to these problems.

We first define the Search Knapsack problem, which is just like the ring-SIS
problem but with a matrix in Hermite Normal Form.

Definition 4.7. The Search Knapsack problem denoted SKS2
n,k,β asks to find

a short vector y satisfying
[
In A′

]
· y = 0n when given a random A′. We say
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an algorithm A has advantage ε in solving the SKS2
n,k,β problem if the following

probability

Pr

||yi||2 ≤ β ∧ [In A′
]
· y = 0n

∣∣∣∣∣∣∣ A′
$←− Rn×(k−n)

p ; 0k 6= y =

y1

...
yk

← A (A′)


is at most ε.

We now define the Decisional Knapsack problem, which is the same as the
ring-LWE problem, where the error vector is the first n entries of the short vector
we multiply by our matrix.

Definition 4.8. The Decisional Knapsack problem denoted DKS∞n,k,β asks to

distinguish between
[
In A′

]
· y given a short vector y and a uniformly chosen u

from Rnp given A′. We say a algorithm A has advantage ε in solving the DKS∞n,k,β
problem if∣∣∣Pr

[
b = 1

∣∣∣ A′
$←− Rn×(k−n)

p ,y
$←− Skβ , b← A

(
A′,

[
In A′

]
· y
)]

−Pr
[
b = 1

∣∣∣ A′
$←− Rn×(k−n)

p ,u
$←− Rnp , b← A (A′,u)

] ∣∣∣ ≤ ε.
Since the hiding and binding properties for the commitment scheme we use

will depend on the difficulty of solving the two knapsack problems, we continue by
proving their unconditional hardness under specific parameters. To do this, we will
need the following lemma.

Lemma 4.9. Let y =

y1

...
yk

 ∈ Rkp\ { 0 } be such that all nonzero entries are

invertible. Then

Pr
A′

$←−Rn×(k−n)
p

[[
In A′

]
· y = 0n

]
≤ p−n·N .

Proof. First notice that at least one of yn+1, ..., yk must be none-zero. With-
out loss of generality we can assume that yk 6= 0. If we write the columns of[
In A′

]
as a1, ...,ak, we then get that the the wanted probability can be written

as follows

Pr
ak

$←−Rnp

[
ak · yk = −

k−1∑
i=1

ai · yi

]
= Pr

ak
$←−Rnp

[
ak = −y−1

k ·
k−1∑
i=1

ai · yi

]
= p−n·N .

Which is what we wanted. �

Theorem 4.10. Let N ≥ δ ≥ 1 be powers of 2, p a prime such that p ≡
2δ + 1(mod 4δ) and

pn/k · 2256/(k·N) ≤ 2β <
1√
δ
p1/δ,

then any algorithm A will have advantage at most 2−128 in solving DKS∞n,k,β.
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Proof. First of all we notice that because of the upper bound of 2β, all non-
zero elements of S2β will be invertible by Lemma 4.2. We first show that

H =
{
hA′ : Skβ → Rnp

}
, where hA′(y) =

[
In A′

]
· y

is a universal set of functions. In other words, we want to show that given two
y1,y2 ∈ Skβ , the probability of finding an hA′ with a collision is small. This we get
from Lemma 4.9 by the following

Pr
A′

$←−R(k−n)×n
p

[[
In A′

]
· y1 =

[
In A′

]
· y2

]
= Pr

A′
$←−R(k−n)×n

p

[[
In A′

]
· y′ = 0n

]
≤ p−n·N ,

where y′ = y1 − y2 ∈ S2β . Then we know that H is a universal hash family onto
Rnp . We also get a lower bound on the min-entropy (the negative logarithm of the

probability of the most likely outcome) of y
$←− Sk2β by

− log

(
1

|Sk2β |

)
≥ log

(
(2β)

k·N
)

= k ·N · log (2β)

≥ k ·N · log
(
pn/k · 2256/(k·N)

)
= k ·N ·

(
n

k
log (p) +

256

k ·N
log (2)

)
= log |Rnp |+ 256.

Then by the Leftover Hash Lemma [7] the distributions
(
A′, hA′(y)

)
and

(
A′,u

)
where y

$←− Skβ and u
$←− Rnp will have statistical difference at most 2−128. Then we

see that the advantage of solving DKS∞n,k,β will also be at most 2−128. �

Notice that in the proof, we have the upper bound of β only such that Lemma
4.9 holds, so we can prove that H is universal. However, intuitively it should be
harder to solve DKS∞n,k,β when β increases and therefore be harder for β greater
than the upper bound in Theorem 4.10. There exists reductions from DKS∞n,k,β to
DKS∞n,k,β′ when β divides β′ but this does not hold in general. But as we will see

from the next lemma, we do not want β to be too big since the harness of SKS2
n,k,β

will increase as β decreases, which means that we want to use a β as small as
possible that satisfy the lower bound in Theorem 4.10.

Theorem 4.11. Let N ≥ δ ≥ 1 be powers of 2, p a prime such that p ≡
2δ + 1(mod 4δ) and

β < p1/δ, and

β <

√
N

2πe
· pn/k2−128/(k·N) −

√
N

2
,

then any algorithm A will have advantage at most 2−128 in solving SKS2
n,k,β.
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Proof. First of all we see because the first bound of β, we can use Lemma
4.9. Now if we let VN (r) be the volume of a N -dimensional ball of radius r, then

there are fewer then VN

(
β +
√
N/2

)
elements y ∈ R such that ||y||2 ≤ β. Then

by the union bound we get

Pr
A′

$←−R(k−n)×n
p

∃y =

y1

...
yk

 s.t. ||yi||2 ≤ β and
[
In A′

]
≤ VN

(
β +
√
N/2

)k
· p−n·N

<

(√
2πe

N
·
(
β +
√
N/2

))k·N
· p−n·N < 2−128,

where the last inequality comes from the second bound of β. This bound says that
the probability of the existence of a solution y of SKS2

n,k,β is small and we therefor
get the wanted bound. �

So we have proven for which bounds on β we have unconditional hardness
of the two knapsack problems, but we will also discuss the scenarios when these
bounds do not hold. For SKS2

n,k,β we can define the set

Λ =
{

y ∈ Rk
∣∣ [In A′

]
· y = 0 mod p

}
.

We can see that this is a group under addition over Rk. We can also see that

finding a solution y =

y1

...
yk

 such that ||yi||2 ≤ β is at least as hard as finding a

y such that ||y||2 ≤ β
√
k. And since Λ is also a group over ZkN , this problem is

the same as finding a vector of norm β
√
k in a random lattice of dimension kN .

From Theorem 4.11 such a vector does not exist if β is small enough, so even an
all-powerful adversary will not be able to find such a vector. But we know it will
be easier to find as β increases.

For DKS∞n,k,β the best current method of solving it, is to find a close vector to
a target in Λ. In the case t is picked uniformly at random, then the target vector
will be uniformly distributed, but if t =

[
In A′

]
for a y with small coefficients,

then the target vector will be close to Λ. From Theorem 4.10 we have that when
β is large enough, then t =

[
In A′

]
will have the same distribution as a uniform

t making the problem unsolvable, but as β gets smaller it becomes easier to solve.





CHAPTER 5

Commitments and Zero-Knowledge Proofs using
Lattices

This chapter will use what we have introduced of lattices to construct the com-
mitment scheme we will be using. We will then prove that the hiding and binding
properties of this commitment scheme depend on the hardness of the knapsack
problems introduced in Chapter 4. We will then use this commitment scheme to
construct multiple ZK proofs of different relations. Two of these ZK proofs will
be proofs of a correct shuffle, the first of messages mi ∈ Rp, and the second of
messages m ∈ R`p.

In Table 1, we see a list of different sets and parameters and the notation we
use for them. We will use these parameters in the commitment scheme and the ZK
proofs in the following chapters.

Parameters Explanation

R = Z[X]/〈XN + 1〉 The ring over which we define norms of vectors

Rp = Zp[X]/〈XN + 1〉 The ring over which we do most of the computation

p The prime modulus defining Rp

k With (over Rp) of the commitment matrix

n Height (over Rp) of the commitment matrix A1

` Dimention (over Rp) of the message space

β Norm bound for honest prover’s randomness in `∞-norm

Sβ Set of all x ∈ Rp with `∞-norm at most β

C Subset of S1 which is the challenge space (see (1))

C̄ The set of differences C − C excluding 0

κ The maximum `1-norm of ellements in C
σ = 11 · κ · β ·

√
kN Standard deviation used in the zero-knowledge proofs

Table 1. An overview of parameters and notation

1. The Commitment Scheme

We will start by defining the commitment scheme we are going to use in Chap-
ter 5, 6, and 7. We do this by describing the three algorithms KeyGen,Commit,

19
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and Open. The message space for the commitment scheme will be R`p.

KeyGen: Generate B1 ∈ Rn×kp and B2 ∈ R`×kp as

B1 =
[
In B′1

]
, where B′1

$←− Rn×(k−n)
p(4)

B2 =
[
0`×n I` B′2

]
, where B′2

$←− R`×(k−n−`)
p(5)

Then output B =

[
B1

B2

]
∈ R(n+`)×k

p .

Commit: The commit algorithm take as input public parameter B =

[
B1

B2

]
∈

R
(n+`)×k
p and a message m ∈ R`p, then it generates a r

$←− Skβ and compute

(6) Com(m; r) := c =

[
c1

c2

]
=

[
B1

B2

]
· r +

[
0n

m

]
and outputs c and (r; 1).

Open: The opening algorithm take as input public parameter B =

[
B1

B2

]
∈

R
(n+`)×k
p , a commitment c =

[
c1

c2

]
, a message m ∈ Rp, a r =

r1

...
rk

 ∈ Rkp and a

challenge f ∈ C̄. It outputs 1 if

(7) f ·
[
c1

c2

]
=

[
B1

B2

]
· r + f ·

[
0n

m

]
,

and ||ri||2 ≤ 4σ
√
N for all i, and outputs 0 otherwise. σ is defined as in Table 1.

We start by commenting on the challenge parameter f . Why do we have this
when the Commit algorithm just sets it to 1? And when Open checks that (7) holds,
if f 6= 1 then it is a sign of an attack or someone who try to cheat. The reason
for f is that in the ZK proofs we will study, the witnesses are always openings of
commitments. Furthermore, when extracting witnesses in the proofs of the sound-
ness property, we can not guarantee that (6) holds. However, this will not cause
any security problems, as we will prove that the hiding and binding properties will
follow from the two knapsack problems for lattices.

Before we prove the hiding and binding properties, we show that the commit-
ment scheme is complete, which means that a commitment with associated r and
f outputted from Commit opens to 1.

Theorem 5.1. Given a message m ∈ R`p and publick parameter B generated
from KeyGen. Then Open(B,Commit(B,m),m) = 1.
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Proof. Let c, r =

r1

...
rk

 ∈ Skβ and f = 1 be the output of Commit(B,m).

First we observe that since ri ∈ Sβ for each i we get that

||ri||2 ≤
√
N ||ri||∞ ≤ β

√
N ≤ 4σ

√
N,

since σ = 11 · κ · β ·
√
kN . We also see that (7) is the same as (6) since f = 1,

which is how c is computed and therefor holds. �

Now we will start to prove the hiding and binding property of the commitment
scheme. We will do this by showing if there exists an algorithm that can break
the hiding or binding property, then there exists an algorithm that can break the
Search Knapsack problem or the Decisional Knapsack problem.

Theorem 5.2. If there exists an algorithm A which can brake the ε-hiding
property of the commitment scheme, then there exists another algorithm A′ that
runs at the same time and has an advantage at least ε in solving DSK∞n+`,k,β.

Proof. Given an instance A =
[
In+` A′

]
, t of DSK∞n+`,k,β . A′ starts by

choosing the public parameter B =

[
B1

B2

]
as[

B1

B2

]
=

[
In R

0`×n I`

]
·A,

where R
$←− Rn×`p . Then sends B to the algorithm A and obtains m0,m1 ∈ R`p. A′

generates a bit b
$←− {0, 1} and commits to mb as

c =

[
c1

c2

]
=

[
In R

0`×n I`

]
· t +

[
0n

mb

]
,

and sends it to A. If A returns b′ = b, then A′ will output 1, and 0 if A outputs
b′ 6= b.

First suppose the public parameters

[
B1

B2

]
are correctly distributed for the

commitment scheme. We can then see that if t = A · y for some y ∈ Skβ , then[
c1

c2

]
=

[
In R

0`×n I`

]
·A · y +

[
0n

mb

]
=

[
B1

B2

]
· y +

[
0n

mb

]
= Com(mb; y),

and A should then have probability 1/2 + ε to output b′ = b, which means A′ will
in this case output 1 with prbability 1/2 + ε.

In the case that t
$←− Rkp , then we can see that the commitment of mb will be

independent of the message, so A will output b′ = b with probability 1/2. We can
then see that A′ will have an advantage of ε of solving DSK∞n+`,k,β .
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Now we just have to see that the public parameters are correctly distributed.
We start by writing

A =

[
In 0n A′1

0`×n I` A′2

]
.

Then we get the following[
B1

B2

]
=

[
In R A′1 + R ·A′2

0`×n I` A′2

]
.

We then see that since A′1,A
′
2 and R are just uniformly picked matrices, that our

public parameters will have the same distributioan as in (4) and (5). �

Next, we prove that if one can break the binding property of the commitment
scheme, then one will also be able to solve SKS2.

Theorem 5.3. Suppose there exist an algorithm A that can brake the ε-binding
property of the commitment scheme, then there exists an algorithm A′ that has an
advantage at least ε in solving SKS2

n,k,16σ
√
κN

.

Proof. Let A′ be given B1 =
[
In B′1

]
as an instance of SKSn,k,γ . A′ then

generates B′2
$←− R

`×(k−n−1)
p and sets B2 =

[
0`×n I` B′2

]
. A′ then sends

[
B1

B2

]
to A as public parameters for the commitment scheme. Suppose A is able to come

up with a commitment

[
c1

c2

]
and two valid openings (m; r; f) and (m′; r′; f ′), where

m 6= m′, then we get that

f ·
[
c1

c2

]
=

[
B1

B2

]
· r + f ·

[
0n

m

]
,(8)

f ′ ·
[
c1

c2

]
=

[
B1

B2

]
· r′ + f ′ ·

[
0n

m′

]
.(9)

Then A′ multiply (8) by f ′ and (9) by f and subtract them from another and get.

0 = (f ′r− fr′) ·B1,

0 = (f ′r− fr′) ·B2 + f · f ′ · (m−m′)

Since m 6= m′ and f and f ′ are invertible, f ·f ′ ·(m−m′) is not zero, which impies
that f ′r−fr′ can not be zero either. Since thise are valid openings f, f ′ ∈ C̄, which
implies that ||f ||2, ||f ′||2 ≤ 2

√
κ. We also know then that ||ri||2, ||r′i||2 ≤ 4σ

√
N for

each i. Form this we get

||f ′r− fr′||2 ≤ 2||f ′r||2 ≤ 16σ
√
κN.

So we can conclude that A′ will with advantage at least ε at producing a solution
f ′r− fr′ of SKSn,k,16σ

√
κN . �

We have now seen that the binding property depends on SKS and the hiding
property depends on DKS, and both of these knapsack problems depend on the pa-
rameter β. We saw in Chapter 4 that the hardness of SKS decreases as β increases,
but then the hardness of DKS increases. This means that we must prioritize either
the binding or hiding property of the commitment scheme. We can decide that the
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commitment scheme shall be statistically binding or statistical hiding, but then
the other property will be much weaker. But we can also choose a β in between
such that we get strong binding and hiding properties, but not statistical binding
or statistical hiding.

For the rest of the thesis, we will assume that we have chosen parameters such
that the hiding and binding properties are satisfactory for our purposes.

2. Zero-Knowledge proof of Opening

Now that we have a commitment scheme that is both sufficiently hiding and
binding for existing parameters, we are ready to introduce our two first ZK proofs.
These will be two proofs where the prover convinces the verifier that it knows a
valid opening of a known commitment c. One of them, the prover will prove that
the commitment opens to a specific known message, and the other, the prover only
shows that it knows an opening without revealing the message.

We will start with ΠOpen as given in Figure 5.1, which is the one where the
message is not revealed. Then we go on to prove the completeness, special sound-
ness, and honest-verifier zero-knowledge properties of the protocol ΠOpen, which
will show that ΠOpen is a Σ-protocol.

Before we prove the properties of ΠOpen, we notice that in the protocol, we

pick y
$←− N k

σ , which means y will be an element of Rk. We will however still do
computations with y as it was an element of Rkp instead. In practice, when sam-

pling a vector from N k
σ , it will not be picked from it truly, since a computer is not

able to compute the infinite sum ρk·Nσ
(
Rk
)
. However, this will not be a problem

in practice.

Lemma 5.4. The verifier in ΠOpen given in Figure 5.1 will output 1 with
overwhelming probability when not aborted. The probability of abort is at most

1− 1−2−100

M .

Proof. By Lemma 4.6 we get that the probability of P aborting is 1− 1−2−100

M .

If we look at the equality B1 · z = t + d · c1, when ΠOpen is followed honestly,
we get on the left hand side,

B1 · z = B1 · y + d ·B1 · r,

and on the right hand side, where c1 is as in (6),

t + d · c1 = B1 · y + d ·B1 · r.

Finely we get from Lemma 4.5 that since y
$←− N k

σ that ||zi||2 ≤ 2σ
√
N for each i

with exception of a negligible probability. �

Then we go over to prove the special soundness property of ΠOpen.
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ΠOpen

Public input:

B =

[
B1

B2

]
, c

Provers input:

m ∈ R`p, r ∈ Skβ

Prover P Verifier V
y

$←− N kσ
t← B1 · y

t−−−−→
d

$←− C
d←−−−−

z← y + d · r
Continue with probability

min

(
1,

Nkσ (z)

M·Nk
dr,σ

(z)

)
z−−−−→

Write z =


z1
...

zk


Accept iff ||zi|| ≤ 2σ

√
N and B1 ·

z = t + d · c1

Figure 5.1. Zero-Knowledge Proof of opening.

Lemma 5.5. Given a commitment c =

[
c1

c2

]
and a pair of accepted tran-

scripts (t, d, z), (t, d′, z′) of ΠOpen, then we can find a valid opening (m, r′, f) of the
commitment scheme.

Proof. We start by setting f = d−d′ ∈ C̄, where we can see that f is non-zero
since d 6= d′. Hence f is invertible by Lemma 4.2. We then set r′ = z− z′ and we
set m′ = c2 − f−1 ·B2 · r′. Then we see that[

B1

B2

]
· r′ + f ·

[
0n

m′

]
=

[
B1 · (z− z′)

B2 · r′ + f ·
(
c2 − f−1B2 · r′

)]
=

[
B1 · (t + d · c1 − t− d′ · c1)

f · c2

]
=

[
(d− d′) · c1

f · c2

]
= f ·

[
c1

c2

]
.

We also get that ||r′i||2 ≤ ||zi||2 + ||z′i||2 ≤ 4σ
√
N , which shows that (m′, r′, f) is a

valid opening of c. �
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Theorem 5.6. Given c = Com(m; r), the protocol ΠOpen given in Figure 5.1
is an HVZK proof of the relation

ROpen =

{
(s, w)

∣∣∣∣ s = (c,B1,B2), w = (m̃, r̃, f),
Open(c, m̃, r̃, f) = 1

}
.

Proof. From Lemma 5.4 and Lemma 5.5, we get the completeness and special
soundness properties of ΠOpen.

To show that ΠOpen is HVZK we let S be an algorithm that chooses z
$←− N k

σ

and d
$←− C. If we then set t = B1z− dc1 we get from Lemma 4.6 that this will be

statistically indistinguishable from a real non-aborting transcript of ΠOpen.

This shows that ΠOpen is a Σ-protocol and is therefore by Theorem 3.9 an
HVZK proof. �

ΠOpen is an excellent example of an HVZK proof. We will not use it in any
way later, but the ideas in the proof of it being an HVZK proof will be used in rel-
evant to understanding the security proofs of the ZK proofs we will introduce later.

We continue by introducing the following ZK proof ΠCommit as given in Figure
5.2 for the opening of a known message. This protocol will be almost the same
as ΠOpen, but in this proof, the message m will be part of the public input, and
the prover will convince the prover that c is indeed a commitment of the message m.

Theorem 5.7. Let c = Com(m; r), then ΠCommit is an HVZK proof of the
relation

RCommit =

{
(s, w)

∣∣∣∣ s = (c,m,B1,B2), w = (r̃, f),
Open(c,m, r̃, f) = 1

}
.

Proof. The completeness of ΠCommit follows exactly as for ΠOpen. So does
almost the special soundness property.
Given two valid transcripts {t, d1, z1} and {t, d2, z2} of ΠCommit we define r′ =
z1 − z2 and f = d1 − d2 and get that

B · r′ + f ·
[
0n

m

]
= t + d1c− d1 ·

[
0n

m

]
− t + d1c− d2 ·

[
0n

m

]
+ (d1 − d2) ·

[
0n

m

]
= (d1 − d2) · c = f · c.

And just as in the proof of Theorem 5.6 ||r′i|| ≤ 4σ
√
N for all i. So then we have

that (r′, f) is a witness for (c,m,B1,B2), and we have special soundness.

We simulate ΠCommit almost the same way as ΠOpen by choosing z
$←− N k

σ and

d
$←− C, and then we sett t = B ·z−d ·c−d ·

[
0n

m

]
, which we see that is statistically

indistinguishable from a real transcript of ΠCommit.
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ΠCommit

Public input:

B =

[
B1

B2

]
, c,m

Provers input:
r ∈ Skβ

Prover P Verifier V
y

$←− N kσ
t← B · y

t−−−−→
d

$←− C
d←−−−−

z← y + d · r
Continue with probability

min

(
1,

Nkσ (z)

M·Nk
dr,σ

(z)

)
z−−−−→

Write z =


z1
...

zk


Accept iff ||zi|| ≤ 2σ

√
N and

B · z +

[
0n

d ·m

]
= t + d · c

Figure 5.2. Zero-Knowledge Proof of committing to a specific
message m.

Then we have shown that ΠCommit is a Σ-protocol, and it is, therefore, an HVZK
proof. �

We notice that when simulating ΠCommit, we could simulate it with a message
m, without c being the commitment to m. This will be relevant in a ZK proof we
will introduce in Chapter 7.

3. Zero-Knowledge proof of Linear Relations

We have given a ZK proof of having the opening of a commitment c, but
we can extend this protocol to be a ZK proof of this with two commitments as
well as a linear relation between them. Given two commitments c = Com(m; r)
and c′ = Com(m′; r′), we want to give a proof that m′ = αm + β given public
α, β ∈ Rp, and that c′ and c opens to m′ and m.

Theorem 5.8. Let α, β ∈ Rp and c = Com(m; r) =

[
c1

c2

]
, c′ = Com(m′; r′) =[

c′1
c′2

]
be commitments, then ΠLin given in Figure 5.3 is an HVZK proof of the
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ΠLin

Public input:

B =

[
B1

B2

]
, c, c′, α, β

Provers input:
m,m′ ∈ R`p, r, r′ ∈ Skβ

Prover P Verifier V
y,y′

$←− N kσ
t← B1 · y, t′ ← B1 · y′
u← α ·B2 · y −B2 · y′

t,t′,u−−−−−−−→
d

$←− C
d←−−−−

z← y + d · r
z′ ← y′ + d · r′
Continue with probability∏
(a,b)∈{(r,z),(r′,z′)}

min

(
1,

N kσ (z)

M · N kdr,σ(z)

)
z,z′−−−−−−→

Accept iff

1: ||zi||2, ||z′i||2 ≤ 2σ
√
N

2: B1 · z = t + d · c1
3: B1 · z′ = t′ + d · c′1
4: αB2·z−B2·z′ = (αc2+β−c′2)d+u

Figure 5.3. Zero-Knowledge Proof of linear relation of two messages.

relation

RLin =

{
(s, w)

∣∣∣∣ s = (α, β, c, c′B1,B2), w = (m̃, r̃, r̃′, f),
Open(c, m̃, r̃, f) = Open(c′, αm̃ + β, r̃′, f) = 1

}
.

This result is proven by Baum et al. [2] and Aranha et al. [1] state that it is
easy to extend it to a proof of this for a linear relation of multiple messages. We
will denote this ZK proof ΠLin+ which is given in Figure 5.4, which will be a proof
of the following relation,

RLin+ =

 (s, w)

∣∣∣∣∣∣∣∣
s = (α1, ...ατ , β, c1, ..., cτ , c

′,B1,B2),
w = (m̃1, ..., m̃τ , r̃1, ..., r̃τ , r̃

′, f1, ..., fτ , f),
Open(c′,

∑τ
i=1 αim̃i + β, r̃′, f) = 1,

Open(ci, m̃i, r̃i, fi) = 1∀i ∈ [τ ]

 .
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ΠLin+

Public input:

B =

[
B1

B2

]
, {ci}τi=1, c

′, {αi}τi=1, β

Provers input:
{mi}τi=1,m

′ ∈ R`p, {ri}τi=1, r
′ ∈ Skβ

Prover P Verifier V
y1, ...,yτ ,y

′ $←− N kσ
t′ ← B1 · y′
ti ← B1 · yi ∀i ∈ [τ ]

u←
∑τ
i=1 αi ·B2 · yi −B2 · y′

{ti}τi=1,t
′,u

−−−−−−−−−→
d

$←− C
d←−−−−

zi ← yi + d · ri ∀i ∈ [τ ]
z′ ← y′ + d · r′
Continue with probability (10)

{zi}τi=1,z
′

−−−−−−−−−→
Accept iff

1: ||zi||2, ||z′i||2 ≤ 2σ
√
N

2: B1 · zi = ti + d · ci,1 ∀i ∈ [τ ]
3: B1 · z′ = t′ + d · c′1
4:

∑τ
i=1 αiB2 · zi −B2 · z′

= (
∑τ
i=1 αici,2 + β − c′2)d+ u

Figure 5.4. Zero-Knowledge Proof of linear relation between
multiple messages.

First of all we see from Lemma 4.6 that the probability of the prover to not
aborting in ΠLin+ will be

(10)
∏

(a,b)∈{(r′,z′),{(ri,zi)}τi=1}

min

(
1,

N k
σ (z)

M · N k
dr,σ(z)

)
,

which will approximately the same as (1/M)τ+1. If we do not let M be to big and
only use the protocol for small τ ’s, the protocol will be sufficient.

We now give proof that ΠLin+ is an HVZK proof.

Theorem 5.9. Given scalars α1, ..., ατ , β and commitments c1, ..., cτ , c
′, the

protocol ΠLin+ given in Figure 5.4 is an HVZK proof of the relation RLin+ .

Proof. We start by proving the completeness of ΠLin+ when the prover does
not abort. So assume ci = Com(mi; ri) for each i ∈ [τ ] and c′ = Com(m′; r′)
where m′ =

∑τ
i=1 αimi + β, and assume the prover P does not abort. Then the

first three points of accepting follows exactly as in the proof of Lemma 5.4. Then
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we check the the forth requirement and see that(
τ∑
i=1

αici,2 + β − c′2

)
d+ u =

(
τ∑
i=1

(αiB2 · ri + αimi) + β −B2 · r′ −
τ∑
i=1

αimi − β

)
· d

+

τ∑
i=1

αi ·B2 · yi −B2 · y′

=

τ∑
i=1

αiB2 · (yi + dri)−B2 · (y′ + dr′)

=

τ∑
i=1

αiB2 · zi −B2 · z′.

Now we prove the special soundness of ΠLin+ . Assume that ({zi}τi=1, z
′, d) and

({z̄i}τi=1, z̄
′, d̄) are both accepting transcripts of {ti}τi=1, t

′,u, where d 6= d̄. Then
we define f = d− d̄, r̃i = zi − z̄i for each i and r̃′ = z′ − z̄′. We then set

m̃i = ci,2 − f−1B2 · r̃i for i ∈ [τ ],

m̃′ = c′2 − f−1B2 · r̃′,

and just as in the proof of Lemma 5.5 we get that (ci, m̃i, r̃i, f) and (c, m̃′, r̃′, f)
will all be valid openings, which is what we want. But we also need to show that
m′ =

∑τ
i=1 αimi + β. This we do directly as follows

τ∑
i=1

αim̃i + β =

τ∑
i=1

αi

(
ci,2 −

(
d− d̄

)−1
B2 (zi − z̄i)

)
+ β

=

τ∑
i=1

αici,2 −
(
d− d̄

)−1

(
τ∑
i=1

αiB2zi −
τ∑
i=1

αiB2z̄i

)
+ β

=

τ∑
i=1

αici,2 −
(
d− d̄

)−1 (
d− d̄

)( τ∑
i=1

αici,2 + β − c′2

)
−
(
d− d̄

)−1
((u− u) + B2) (z′ − z̄′) + β

= c′2 −
(
d− d̄

)−1
B2 (z′ − z̄′) = m̃′.

Where the third equality comes from the fourth accepting requirement. Then we
have proven that (m̃1, ..., m̃τ , r̃1, ..., r̃τ , {f}τi=1, f) is a witness for s. Therefor we
have that ΠLin+ has the special soundness property.

To prove the HVZK property, we let S be an algorithm that start by choosing

{zi}τi=1, z
′ $←− N k

σ and d
$←− C, then we set

ti = B1 · zi − dci,1 for each i ∈ [τ ],

t′ = B1 · z′ − dc′1,

u =

τ∑
i=1

αiB2 · zi −B2 · z′ −

(
τ∑
i=1

αici,2 + β − c′2

)
d
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We see that u will just look like a random value, and form Lemma 4.6 the zi’s and
z′ chosen by S will be statistically indistinguishable from those computed in ΠLin+ .

Then we have proven that ΠLin+ is a Σ-protocol, and it is, therefore, an HVZK
proof. �



CHAPTER 6

Zero-Knowledge proof of Correct Shuffle

This chapter is where we will study the two existing protocols for a correct
shuffle. In the first Section, we will start by proving a proposition regarding the
invertibility of multiple messages chosen uniformly. This will be used in the first
protocol for shuffle. In the second Section we will make a change in the commitment
scheme, so we can use the first protocol on messages that are vectors of lattice
elements.

1. Correct shuffle of Messages in Rp

Onwards we will denote JxK as the commitment Com(x; rx) of an element
x ∈ R`p. In this section we will use ` = 1, since the protocol ΠShuffle given in Figure
6.1 only works then. This is because ΠShuffle works with messages that are invert-
ible, and this only make sense when we talk about lattice elements, not vectors.

A ZK proof of correct shuffle is where the public input is a set of commitments
{ ci }i∈[τ ] and messages { m̂i }i∈[τ ], where the prover wants to convince the verifier

that the set of commitments opens to the set of messages in some order, and that
it knows the opening of all of them. The ZK proof will be of the relation RShuffle,
which is given as

RShuffle =

 (s, w)

∣∣∣∣∣∣
s = (c1, ..., cτ , m̂1, ..., m̂τ ,B1,b2),
w = (π, ri, ..., rτ , f1, ..., fτ ), π ∈ Sτ ,
Open(ci, m̂π(i), ri, fi) = 1 ∀i ∈ [τ ]

 .

We first state the following property of the commitment scheme and give an
easy proof of it.

Proposition 6.1. Let c = Com(m; r) be a commitment with opening (m; r, f)
and let cρ = Com(ρ; 0). Then c− cρ is a commitment with opening (m− ρ; r, f).

Proof. First we note that ||ri||2 ≤ 4σ
√
N for each i, since r is part of a valid

opening of c. We also compute

f · (c− cρ) = fc− fcρ =

[
B1

b2

]
· r + f ·

[
0n

m

]
+ f ·

[
0n

ρ

]
=

[
B1

b2

]
· r + f ·

[
0n

m− ρ

]
.

And by this we have that (m− ρ; r, f) is a valid opening of c− cρ. �

31
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We will denote JmK− ρ to be the commitment Com(m− ρ; rm).

In the protocol, we need to have the property that given a ρ
$←− Rp, then mi−ρ

will be invertible for all the messages mi. This will be true with a huge probability
by the following proposition.

Proposition 6.2. Let N ≥ δ ≥ 1 be powers of 2, and p a prime such that
p ≡ 2δ + 1 (mod 4δ). Then

Pr
x1,...,xτ ,ρ

$←−Rp
[x1 − ρ, ..., xτ − ρ invertible in Rp] ≥ 1−min(1, τ · (1− e−δ/p)).

Proof. Start by letting Si be the set of ρ ∈ Rp such that mi − ρ is non-
invertible. From Lemma 4.2 we know that XN + 1 factors into δ irreducible poly-
nomials, which means that there will be(

pN/δ−1 · (p− 1)
)δ

=
(
pN/δ − pN/δ−1

)δ
invertible elements in Rp. Then we get that |Si| = pN −

(
p0N/δ − pN/δ−1

)δ
, and by

treating the S′is as disjoint subsets we get a bound of there union as |S1∪ ...∪Sτ | ≤
τ · pN − τ ·

(
pN/δ − pN/δ−1

)δ
. Now by dividing by the size of Rp we get a bound

of the probability of picking a ρ such that at least one of mi − ρ is non-invertible
which is

τ ·
pN −

(
pN/δ − pN/δ−1

)δ
pN

= τ − τ ·
(
pN/δ − pN/δ−1

pN/δ

)δ
= τ ·

(
1−

(
1− 1

p

)δ)
≤ τ ·

(
1− e−δ/p

)
,

where the last inequality follows from that 1 + x ≤ ex. We take the minimum of
this and 1 to not get larger probability then 1, and subtracting it form 1 to get the
complement which is all of them being invertible. �

Usual parameters for the protocol will be where τ ≈ 1000000, δ = 2 and
p ≈ 232. Then we can se that the probability of all of the xi − ρ being invertible is
almost equal to 1.

In the protocol ΠShuffle given in Figure 6.1 the verifier will pick a ρ
$←− Rp and

send it to the prover, then both computes M̂i = m̂i − ρ and the prover computes
Mi = mi − ρ, then the prover will convince the verifier that

∏τ
i=1Mi =

∏τ
i=1 M̂i.

We will see that this is sufficient to prove the relation RShuffle. To prove this P will

start by picking θ
$←− Rp and then computing JDiK as follows

JD1K = Jθ1M̂1K,

JDiK = Jθi−1Mi + θiM̂iK for i ∈ [τ − 1]\{1},
JDτ K = Jθτ−1Mτ K.

(11)
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ΠShuffle

Public input:

B =

[
B1

b2

]
, {JmiK}τi=1 ∈ Rp, {m̂i}τi=1 ∈

Skβ
Provers input:

{mi}τi=1, {ri}τi=1

Prover P Verifier V
ρ

$←− Rp\{m̂i}τi=1
ρ←−−−−

M̂i = m̂i − ρ M̂i = m̂i − ρ
Mi = mi − ρ JMiK = JmiK− ρ
θi

$←− Rp, ∀i ∈ [τ − 1]

∀i ∈ [τ − 1] commpute JDiK as in (11)
{JDiK}τi=1−−−−−−−→

β
$←− Rp

β←−−−−−
∀i ∈ [τ − 1] commpute si as in (12)

{si}
τ−1
i=1−−−−−−−−−→

Use ΠLin to prove that

1: βJM1K + s1M̂1 = JD1K
2: ∀i ∈ [τ − 1]\{1},

si−1JMiK + siM̂i = JDiK
3: sτ−1JMτ K + (−1)τβM̂τ = JDτ K
Accept iff all the instances of ΠLin

are accepted

Figure 6.1. Zero-Knowledge Proof of Shuffle

The verifier then chose a challenge β
$←− Rp, sends it to the prover, then the prover

computes si in the following way

(12) si = (−1)i · β
i∏

j=1

Mj

M̂j

+ θi

Finely the prover uses ΠLin to prove that Di, Mi and M̂i are of the forms in (13),
(14) and (15). So to prove the completeness of ΠShuffle comes down to proving the
following lemma.

Lemma 6.3. If m1, ...,mτ is a permutation of m̂1, ..., m̂τ and Mi−ρ is ivertible
for all i ∈ [τ ], then the si’s computed as in (12) satisfy the following equations

βM1 + s1M̂1 = θ1M̂1,(13)

si−1Mi + siM̂i = θi−1Mi + θiM̂i for i ∈ [τ − 1]\{1},(14)

sτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .(15)
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Proof. We prove this by checking one equation at the time. We start with
(13).

βM1 + s1M̂1 = βM1 +

(
θ1 − β

M1

M̂1

)
· M̂1 = θ1M̂1.

Now we continue with (14),

si−1Mi + siM̂i =

(−1)i−1 · β
i−1∏
j=1

Mj

M̂j

+ θi−1

 ·Mi

+

(−1)i · β
i∏

j=1

Mj

M̂j

+ θi

 · M̂i

= θi−1Mi + θiM̂i.

We observe that when multiplying in the Mi and M̂i in the equation above, we
get the extra Mi in the first product and cancel M̂−1

i in the second, which makes
the products differ by sign since the second product has one higher exponent of −1.

Finally we verify (15),

sτ−1Mτ + (−1)τβM̂τ =

(−1)τ−1 · β
τ−1∏
j=1

Mj

M̂j

+ θτ−1

 ·Mτ + (−1)τβM̂τ

Since the Mi’s are a permutation of the M̂i’s, the product will include the inverse of

all Mi except the one that is equal to M̂τ , which means that Mτ ·
∏τ−1
j=1

Mj

M̂j
= M̂τ .

So we get that

sτ−1Mτ + (−1)τβM̂τ = (−1)τ−1βM̂τ + θτ−1Mτ + (−1)τβM̂τ = θτ−1Mτ .

�

Lemma 6.4. Assume the commitment scheme is binding and ΠLin given in
Figure 5.3 is a sound proof of knowledge of RLin except with probability t. Then
ΠShuffle given in Figure 6.1 is a sound proof of knowledge of RShuffle except with

probability ε ≤ τδ+1
|Rp| + 4τt.

Proof. We first create an extractor E that given an instance s of ΠShuffle and
black-box access to P∗ will create a witness w such that (s, w) ∈ RShuffle. We devide
E in τ subextractors Ei which will work as follows.

1. Run instances with arbitrary randomness tape for P∗ as well as arbitrary
challenges until an accepted transcript is collected.

2. Rewind P∗ until after the first message in the ith instance of ΠLin and
search for a second challenge that gives an accepted transcript of ΠLin.

E then set mi = Mi − ρi, where ρi is the value used by Ei and Mi the message ex-
tracted. If {mi}τi=1 is a permutation of {m̂i}τi=1 E outputs w = (τ, r1, ..., rτ , f1, ..., fτ ).
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The proof that E works in polynomial time is stated by Aranha et al. [1] that
it can be done by a usual heavy-row argument, which we exclude.

Now assume we have two accepted transcripts of P∗ with the same ρ and
different challenges β and β′, then we also have values si and s′i such that the
following equalities hold by the soundness of ΠLin.

1. βM1 + s1M̂1 = D1 = β′M1 + s1M̂1.
2. si−1Mi + siM̂i = Di = s′i−1Mi + s′iM̂i for i ∈ [τ − 1]\{1}.
3. sτ−1 + (−1)τβM̂i = Dτ = s′τ−1 + (−1)τβ′M̂i.

By subtracting the right side from each equations we can express this in the fol-
lowing form:

M1 M̂1 0 . . . 0 0

0 M2 M̂2 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . Mτ−1 M̂τ−1

(−1)τM̂τ 0 0 . . . 0 Mτ

 ·


β − β′
s1 − s′1

...
sτ−2 − s′τ−2

sτ−1 − s′τ−1

 =


0
0
...
0
0

 .

Inductively since Mi, M̂i and β − β′ are non-zero all the si − s′i will also be non-
zero. If we now call the matrix to the left for M and the non-zero vector c we
get that M · c = 0. Since c is a non-zero vector we know from linear algebra that
det(M) = 0. The determinant of M can easily be computed to

det(M) =

τ∏
i=1

Mi + (−1)2τ−1
τ∏
i=1

M̂i =

τ∏
i=1

Mi −
τ∏
i=1

M̂i.

We can now define the two polynomials g(X) =
∏τ
i=1(mi − X) and ĝ(X) =∏τ

i=1(m̂i − X). Then we see that det(M) = 0 if and only if g(ρ) = ĝ(ρ). If
the mi’s are a permutation of m̂i’s then g(X) = ĝ(X) so we are done. If not,
g(X)− ĝ(X) will be a polynomial of degree at least τ so by Lemma 4.3 it will have

at most τ δ zeros. Therefor we can see that with less then τδ+1
|Rp| probability the m̂i’s

will be a permutation of the mi’s. �

Theorem 6.5. Assuming that τ � |Rp|. If the commitment scheme is hiding,
and ΠLin is an HVZK proof, then ΠShuffle given in Figure 6.1 is an HVZK proof of
the relation RShuffle.

Proof. First since τ � |Rp| we get form Proposition 6.2 that it is high proba-
bility to pick a ρ which makes each Mi invertible. Then the completeness property
of ΠShuffle follows from Lemma 6.3 and the completeness of ΠLin.

The soundness property follows from Lemma 6.4

We will prove the HVZK property by looking at the series of games given in
Figure 6.2:
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ΠShuffle Game 1 Game 2 Simulator

1: θi
$←− Rp 1: θi

$←− Rp 1: si
$←− Rp 1: JDiK← J0K

2: Di ← (11) 2: Di ← (11) 2: θi
$←− Rp 2: si

$←− Rp
3: Send JDiK 3: Send JDiK 3: Di ← (16) 3: 3: Send JDiK
4: si ← (12) 4: si ← (12) 4: Send JDiK 4: Send si
5: Send si 5: Send si 5: Send si 5: Sim ΠLin

6: ΠLin 6: Sim ΠLin 6: Sim ΠLin

Figure 6.2. Games used to prove the hovest-verifier zero-
knowledge property of ΠShuffle. We use the notation x ← (i) to
denote that x is computed as i equation (i).

First we note that the only difference between ΠShuffle and Game 1 is that in
Game 1 we simulate ΠLin instead of ruining it. So from the HVZK property of ΠLin

we get that ΠShuffle and Game 1 are statistical indistinguishable.

When proving that Game 1 and Game 2 are statistical indistinguishable we
note that the way si are computed in (12) are statistical indistinguishable from
uniformly random picked elements of Rp since when computing si we add θi which
are picked uniformly at random. We also see that in Game 1 we compute Di as in
(11) which will be a random element. And so will also he Di witch we compute as

D1 = βM1 + s1M̂1,

Di = si−1Mi + siM̂i i ∈ [τ − 1]\{1},

Dτ = sτ−1Mτ + (−1)τβM̂τ .

(16)

Then since the si’s and Di’s are the only things that are different in the two games,
which both just look like random elements, the two games are statistically indis-
tinguishable.

Finely we show that given an adversary A that can distinguish Game 2 and
Simulator, then we can construct an algorithm A′ that can break the hiding prop-
erty of our commitment scheme.

First we let a commitment oracle for each i ∈ [τ ] pick a random message

mi
$←− Rp and ri

$←− Skβ then compute c0,i ← Com(0, ri) and c1,i ← Com(mi, ri).

The oracle then picks a bit b
$←− {0, 1} and sends {cb,i}τi=1 to A′. A′ then pick

si
$←− Rp and β

$←− Rp and sends {cb,i}τi=1, {si}τi=1 and to A and receives a bit b′

which A′ outputs.
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We note that A receiving c1,i will be indistinguishable from receiving JDiK
computed as in (16) since the Di’s just looks like randomly picked elements.

From these three arguments we get that the Simulator and ΠShuffle are statistical
indistinguishable and ΠShuffle is therefor HVZK proof of RShuffle. �

2. Correct Shuffle of Encrypted Messages

So we have a nice protocol for proving a shuffle of messages, but usually, we
want to have a shuffle of encrypted messages. The problem with ΠShuffle is that
it only works for messages in Rp, but ciphertexts of lattice points are usually in
R2
p. So in this section, we will introduce a protocol that uses ΠShuffle but works for

messages in R`p.

We will do this by using ΠShuffle on ρ ·mi for all i. Where ρ = (1, h, h2, ..., h`−1)

for a h
$←− Rp picked by the verifier V. We alsa change the comitmets JmiK =

[
ci,1
ci,2

]
to Jρ · miK =

[
ci,1

ρ · ci,2

]
by changeing the public key pk = B =

[
B1

B2

]
to

(17) pk′ = B′ =

[
B1

ρ ·B2

]
=

[
B1

b′2

]
We clearly see that this does not make the hiding property of the commitment
weaker since the attacker could have done this in the attack. However, we prove
that this new pk does not change anything about the binding property.

Proposition 6.6. If a PPT attacker A can brake the binding property of the
commitment scheme using pk′ as in (17), then there exists a PPT attacker A′ that
can brake the binding property of our original commitment scheme.

Proof. Assume A outputs (m1, r1, f1) and (m2, r2, f2) which both are valid

openings for a commitment

[
c1

ρ · c2

]
=

[
c1

c′2

]
where m1 6= m2. Then we have that

f1c
′
2 = b′2 · r1 + f1 ·m1 and f2c

′
2 = b′2 · r2 + f2 ·m2. Then by multiplying the first

one with f2 and the second with f1 and subtracting we get

0 = b′2 · (f2r1 − f1r2) + f1f2 (m1 −m2)

Since m1 6= m2 we then know that b′2 · (f2r1 − f1r2) 6= 0. We then set m1 =
c2 − f−1

1 B2r1 and m2 = c2 − f−1
2 B2r2. Then we can see that (m1, r1, f1) and

(m2, r2, f2) are valid openings by

B2 · ri + fimi = B2 · ri + fi
(
c2 − f−1

i B2ri
)

= fi · ci
for i ∈ {1, 2}. Now the only thing left is to prove that m1 and m2 are distinct.
This we do by assuming they are equal and multiply the expression of them by
f1f2 and subtracting so we get

0 = B2 (f2r1 − f1r2) .
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Π`Shuffle

Public input:

B =

[
B1

B2

]
, {JmiK}τi=1, {m̂i}τi=1

Provers input:
{mi}τi=1 ∈ R`p, {ri}τi=1 ∈ Skβ , π ∈ Sτ

Prover P Verifier V
h

$←− Rp
ρ←

(
1, h, h2, ..., h`−1

)
ρ←−−−−

Run ΠShuffle with V to prove that {Jρ ·
miK}τi=1 is a permutation of {ρ ·m̂i}τi=1

with the same π and B′ =

[
B1

ρ ·B2

]
.

Accept iff ΠShuffle returns accept.

Figure 6.3. Zero-Knowledge Proof of Shuffle of messages mi ∈ R`p

If then multiply from left with ρ we get

0 = b′2 (f2r1 − f1r2) ,

which is a contradiction, so m1 6= m2. �

We are then ready to introduce the protocol that will be an HVZK proof of
the following relation

R`Shuffle =

 (s, w)

∣∣∣∣∣∣
s = (c1, ..., cτ , m̂1, ..., m̂τ ,B1,B2),
w = (π, ri, ..., rτ , f1, ..., fτ ), π ∈ Sτ ,
Open(ci, m̂π(i), ri, fi) = 1 ∀i ∈ [τ ]

 ,

and then prove that it is an HVZK proof.

Theorem 6.7. If ΠShuffle given in Figure 6.3 is an HVZK proof of the relation
RShuffle with soundness error ε′, then Π`

Shuffle is an HVZK proof of the relation

R`Shuffle with soundness error ε = 2ε′ + 3
(
`−1
p

)N
.

Proof. First, we see that both the completeness and HVZK properties follow
from these properties of ΠShuffle.

To show the soundness property, we will assume there exist a prover P∗ that
can given an input x, with probability ν > ε, convince the verifier to output accept.
We construct an extractor E that by calling on P∗ will construct a witness w for
x.

When constructing this E , we remember that we have an extractor E ′ of ΠShuffle

and use this to construct E , which will go as follows and restart every time it aborts.
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1. Run random instances of Π`
Shuffle until a valid instance with challenge h is

generated. Do this at most 2/ε times, otherwise, abort.
2. Run E ′ with h fixed by P∗ until it outputs π, { ri, fi }i∈[τ ]. If E ′ aborts then

abort and in parallel start a new loop until E ′ finishes.
3. Let m̃i = (fic2,i −B2ri) · f−1

i . If m̃π(i) = m̂i for all i ∈ [τ ] then output
π, { ri, fi }i∈[τ ] otherwise abort.

First, we notice that since the fi’s are invertible, the m̃i’s are well-defined. And
if E outputs something, then it is a valid witness. We continue to prove that each
loop is run in polynomial time with constant probability for E to output something.
We do this with a heavy-row argument.

In the first step, we expect to find an accepting transcript after less than 1/ε
iterations. Since we run it 2/ε iterations, the probability of not aborting is more
than 1/2. Let H be the binary matrix with a row for each h and columns for
choices in ΠShuffle. An entry of H is 1 if P∗ would convince V and 0 otherwise. We
say a row of H is heavy if it contains more than ε/2 > ε′ 1’s. Then by a counting
argument, more than half of the 1’s will be in a heavy row, and the probability
of hitting a h that is a heavy row is then greater than 1/2. If we hit a heavy
row, then we know E ′ will output a valid witness for ΠShuffle in polynomial time
by assumption, and we are then done. Once E ′ outputs something, then Step 3 is
inexpensive and is omitted.

We can also assume that E outputs the same opening with a probability of 1/2
in at least 2/3 of the heavy rows. If not, it can easily be proven that we can break
the binding property of the commitment scheme by Proposition 6.6.

We also show that there must be more then 3
2

(
`−1
p

)N
heavy rows by assuming

otherwise. Assume there are exactly 3
2

(
`−1
p

)N
where each of these contains only 1’s

and all other rows contains ε/2 1’s such that we have the maximum of 1’s possible

without more then 3
2

(
`−1
p

)N
heavy rows. Then we get that the probability for P∗

to convince V will be

3

2

(
`− 1

p

)N
+

(
1− 3

2

(
`− 1

p

)N)
· ε

2
<

3

2

(
`− 1

p

)N
+
ε

2
< ε.

This is a contradiction, so the number of heavy rows must be more than 3
2

(
`−1
p

)N
.

Now assume that E ′ extract a valid witness π, { ri, fi }i∈[τ ] for { Jρ ·miK }i∈[τ ]

and messages { ρ · m̂i }i∈[τ ], but the extracted m̃i’s is not a permutation of the

m̂i’s. Then there exists a i ∈ [τ ] such that

fi ·
(
ρ · c2,π(i)

)
= ρ ·B2 · ri + fi · (ρ · m̂i) ,

but

fi · c2,π(i) = B2 · ri + fi · (m̂i + δ)
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where m̃i = m̂i + δ for a non-zero vector δ =

 δ0
...

δ`−1

. Combining both equations

we get that 0 = ρ · δ which is the same as saying that the polynomial δ(X) =∑`−1
i=0 δiX

i is zero evaluated at h. From Lemma 4.3 δ(X) can have a maximum

of (`− 1)
d
< (`− 1)

N
number of roots, but the transcript is extraditable and

thus acceptable for strictly more then (` − 1)N different choices of h. Therefor
δ must be zero, which means that Step 3 only aborts if E ′ extracts a witness
π, { ri, fi }i∈[τ ] for RShuffle that is not the “default one”, which only happens with

constant probability. �



CHAPTER 7

Zero-Knowledge proofs using Permutation
Matrices

In the last chapter, we looked at a protocol for an HVZK proof of shuffle of
messages in Rp and then used it to create a shuffle for messages in R`p. In this
chapter, we will start on a try to prove the shuffle of messages using permutation
matrices. We will also discuss ways we could go forward in creating a proof of
correct shuffle using permutation matrices if we had the necessary theory.

1. A Naive Proof of Permutation Matrix

We start by introducing what a permutation matrix is and give a really bad
proof of a matrix being a permutation matrix.

Definition 7.1. A square matrix A = (ai,j) is a permutation matrix if all the
rows and columns sum up to 1 and ai,j ∈ {0, 1} for each i and j.

Our strategy in this section will be to prove that a matrix A is a permutation
matrix by directly following the definition. We will first prove that each matrix
element is either 0 or 1 and then prove that each row and column sums up to 1. But
first, we introduce an HVZK proof of a message being one of two values m0 and m1.

Theorem 7.2. Assume the binding property of our commitment scheme and
that ΠCommit is an HVZK proof. Then ΠOr given in Figure 7.1 is an HVZK proof
of the relation

ROr =

 (s, w)

∣∣∣∣∣∣
s = (c, {m0,m1},B1,B2),
w = (b, r̃, f), b ∈ {0, 1},
Open(c,mb, r̃, f) = 1

 .

Proof. Completeness and HVZK both follow directly from the completeness
and HVZK property of ΠCommit. So we only need to prove the special soundness
property.

Let (t0, t1, β, β0, β1, z0, z1) and (t0, t1, β
′, β′0, β

′
1, z
′
0, z
′
1) be two valid transcripts

of ΠOr where β 6= β′. Then just as in the proof of Theorem 5.7 we get two valid

openings of Open(c,m0, ˜z0 − z′0, β0 − β′0) and Open(c,m1, ˜z1 − z′1, β1 − β′1). But
this breaks the binding property of the commitment scheme unless z1−b = z′1−b
and β1−b = β′1−b for a bit b. So by assumption we will have such a bit and set the

41
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ΠOr

Public input:

B =

[
B1

B2

]
, c = JmbK, {m0,m1}

Provers input:
b ∈ {0, 1}, r ∈ Skβ

Prover P Verifier V
β1−b

$←− C
Simulate ΠCommit with β1−b and m1−b
to get t1−b and z1−b.

y
$←− N kσ

tb ← B · y
t0,t1−−−−−−−→

β
$←− C̄

β←−−−−−
βb ← β − β1−b
zb ← y + βb · r

z0,z1,β0,β1−−−−−−−−−−−−→
Accept iff:

1: β = β0 + β1
2: (t0, β0, z0) and (t1, β1, z1) are

accepted proofs for ΠCommit with
messages m0 and m1.

Figure 7.1. Zero-Knowledge Proof of committing to one of two
messages m0 or m1.

witness to be w = (b, zb − z′b, βb − β′b).

ΠOr is therefor a Σ-protocol, and therefor an HVZK proof of ROr by Theorem
3.9. �

Then we are ready to give an HVZK proof of a matrix A being a permutation
matrix by proving the followin relation.

RPermMat =

 (s, w)

∣∣∣∣∣∣∣∣
s = (C = (ci,j),B1,B2), i, j ∈ [τ ],

w = (A = (ai,j),R = (r̃i,j),F = (fi,j)) ,
ai,j ∈ {0, 1},

∑τ
k=1 ak,j =

∑τ
k=1 ai,k = 1 ∀i, j ∈ [τ ],

Open(ci,j , ai,j , r̃i,j , fi,j) = 1 ∀i, j ∈ [τ ]

 .

Permutation protocol. Here, we give the steps in the protocol ΠPermMat to prove
that A is a permutation matrix:

1. The prover P and the verifier V are given a τ × τ -matrix of commitments C =

(ci,j) and the public key to the commitment scheme B =

[
B1

B2

]
. P is also given

A = (ai,j) ∈ {0, 1}τ×τ and R = (ri,j) ∈ Sτ×τβ .
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2. P uses ΠOr to prove that each ci,j opens up to either 0 or 1.
3. In a spaning tree fashion P uses ΠLin+ τ log τ times on each row and column to

prove that the commitment of there sums are c1, ..., c2τ . Then P use ΠCommit

to prove that each of these commitments opens up to 1.
4. V accepts if and only if all of the proofs returns accept.

We notice that in Step 3 of ΠPermMat, the prover does not use ΠLin+ to prove
the linear relation directly of all the τ elements in each row and column. This is
because the probability of not aborting is, as we see by (10) exponential decreasing
with τ , and since we usually want to use τ ≈ 1000000, P in ΠLin+ would almost
never not abort.

Theorem 7.3. Assuming that ΠOr,ΠCommit and ΠLin+ are HVZK proofs, then
ΠPermMat is an HVZK proof of the relation RPermMat.

Proof. We start by noticing that both the completeness and HVZK proper-
ties follow directly from these properties in ΠOr,ΠCommit and ΠLin+ .

The soundness property will with an extractor that rewinds on each of the
protocols, and a heavy-row argument also follows from the soundness of the same
tree ZK-proofs. �

2. Further work

Now we have a ZK proof for proving that a matrix A is a permutation matrix,
the problem with this is that it is in no way usable since it is way too slow as well
as it does not prove the shuffle of messages. Furukawa and Sako [5] give another
protocol for proving this property by using an equivalent definition of permutation
matrices and multi commitments. However, this protocol is working over cyclic
groups, where schemes for multi commitments exist.

They talk about a proof that the ElGamal cipher texts E1, ..., Eτ are a per-
mutation of E′1, ..., E

′
τ . These cipher texts are of the form Ei = (gi,mi), where

gi,mi ∈ Z∗p are elements of order q. Where q and p primes such that p = q · k + 1
for an integer k. The E′i are the commitments of the Ej of the form Ei = (g′i,m

′
i) =(

gri · gπ(i), y
ri ·mπ(i)

)
for publicly known g and y = gX , a secret X ∈ Zp and a set

{ri}. But since this commitment scheme works for multi commitments and they
work with permutation matrices they can prove that

(18) E′i = (g′i,m
′
i) =

(
gri

τ∏
i=1

g
Aij
i , yri

τ∏
i=1

m
Aij
i

)
,

where A = (Aij) is a permutation matrix. In this ZK proof they use the following
theorem, which gives an equivalent definition of permutation matrices.
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Theorem 7.4. A matrix A = (Aij)(i,j=1,...,τ) is a permutation matrix if and

only if for all i, j and k both

τ∑
h=1

AhiAh,j =

{
1, if i = j

0, if i 6= j
(19)

τ∑
h=1

AhiAhjAhk =

{
1, if i = j = k

0, otherwise
(20)

hold.

Note that Furukawa and Sako [5] state the Theorem for permutation matrices
over Zp, however, the Theorem does hold in general.

The ZK proof is divided into four parts. So they do it by proving the following.

1. Given {gi} and {g′i}. The {g′i} can be expressed as in (18) with integers {ri}
and a matrix A such that 19 holds.

2. Given {gi} and {g′i}. The {g′i} can be expressed as in (18) with integers {ri}
and a matrix A such that 20 holds.

3. The {ri} and A used in the two above proofs are the same.
4. For each pair (g′i,m

′
i) the same {ri} and A are used.

They combine these fore proofs into one single protocol such that they do not
have multiple conversations.

If we had a multi commitment scheme for lattice commitments, we could maybe
do something similar to give a ZK proof of shuffle. If we assume the messages

mi =

[
mi,1

mi,2

]
still got put into one commitment ci then we could omit the fourth

proof, such that the proof would go by proving the following tree statements.

1. Given {mi} and {ci}. The {ci} are multi commitments of the Aij ·mjj∈[τ ]

with vectors {ri} and a matrix A such that 19 holds.
2. Given {mi} and {ci}. The {ci} are multi commitments of the Aij ·mjj∈[τ ]

with vectors {ri} and a matrix A such that 20 holds.
3. The {ri} and A used in the two above proofs are the same.

Where we again would combine these three proofs into one conversation.

Unfortunately, we do not have a notion of multi commitments using lattices
of this scale. One could first think of using multi commitments by just adding up
messages so that we commit to m1 + m2, but then the commitment scheme would
either be not at all binding since we could just find two different messages adding
up to the same sum as m1 and m2. Or we would need to give a proof like ΠLin+

from Figure 5.4, which we have seen dos not work with large values for τ .
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A second multi commitment scheme one could think of is just by increasing
`, but then both the size of the public matrix and the commitments would be too
big. The size of these could decrease by doing as we did for Π`

Shuffle, by taking the
inner product of m with ρ. However, we have not had time to look at this and
therefore do not know if this would be sufficient.
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