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Summary

Solving and estimating the Cauchy-Riemann equations ∂u = f has been a staple in

complex analysis since its inception and is central in many applications. In this the-

sis we will solve and find estimates for the ∂-equation in two complex variables for

bounded pseudoconvex domains with real analytic boundary of finite type. The tech-

niques used are similar to a paper titled “Sup-Norm Estimates for ∂” by Grundmeier,

Stensønes and Simon and involves using a bumping to type of a domain.

Oppsummering

Det å løse og estimere Cauchy-Riemann-ligningene ∂u = f har vært grunnleggende

i kompleks analyse siden feltets begynnelsen og er sentralt i mange applikasjoner. I

denne oppgaven vil vi løse og estimere ∂-ligningen i to komplekse variabler for be-

grensende pseudokonvekse områder med reell analytisk rand av endelig type. Teknikkene

som brukes er som i en artikkel kalt “Sup-Norm Estimates for ∂” av Grundmeier, Sten-

sønes og Simon og innebærer bruk av bumping til type til et område.
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In this thesis we will solve the ∂-equation on bounded weakly pseudoconvex domains

with real analytic boundary of finite type using methods from [5]. These methods are

such that we will obtain sup norm and Hölder estimates for the solution operator.

The main result we will show is the following Theorem.

Main Theorem. Let Ω ⊂ C2 be a bounded pseudoconvex domain with real analytic

boundary of D’Angelo finite type 2k and let f be a ∂-closed (0,1)-form onΩ. Then there

exists a solution u of ∂u = f onΩ such that

||u||∞ ≤CΩ|| f ||∞

where CΩ is independent of f . Furthermore for every η > 0 there is a solution u(η) as

above that satisfy ( 1
2k −η)-Hölder estimates with constant only depending onΩ and η.

1.1 Motivation

We recall that a function of one complex variable is called analytic if and only if it

satisfies the Cauchy-Riemann equations

∂u

∂x
= ∂v

∂y
,

∂u

∂y
=−∂v

∂x

where u(x, y) and v(x, y) are the real and imaginary parts of a complex-valued func-

tion f (z), respectively. Symbolically we can rewrite the Cauchy-Riemann equations

from real and imaginary parts to holomorphic and anti-holomorphic parts by the

relations

∂

∂z
= 1

2

( ∂
∂x

− i
∂

∂y

)
,

∂

∂z
= 1

2

( ∂
∂x

+ i
∂

∂y

)
.
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The requirement of being an analytic function then becomes ∂ f /∂z = 0 meaning that

the function does not depend on conjugate variables.

For a function f (z1, ..., zn) of several complex variables we say it is holomorphic if

it is analytic in each variable z j 7→ f (z1, ..., z j , ..., zn). More generally, in a complex

differential structure the exterior derivative d decomposes into operators ∂ and ∂ by

∂ f =
n∑

j=1

∂ f

∂z j
d z j ,

∂ f =
n∑

j=1

∂ f

∂z j
d z j .

Therefore, as in the one variable case, we can say that f is holomorphic if and only

if ∂ f = 0. Naturally then, the ∂-operator serves as a generalization to the Cauchy-

Riemann equations.

The ∂-operator appears in many areas of complex analysis. For example the Cauchy

integral formula in C for C 1 functions on a domain D

f (ζ) = 1

2πi

∫
∂D

f (z)d z

ζ− z
− 1

2πi

∫
D

∂ f (z)

∂z

d z

ζ− z
,

and its generalization to several variables in the Bochner-Martinelli formula [6]

f (ζ) =
∫
∂D

f (ζ)ω(z)−
∫

D
∂ f (z)∧ω(z).

Here

ω(ζ, z) := (n −1)!

(2πi )n

1

|ζ− z|2n

n∑
j=1

(ζ j − z j )dζ1 ∧dζ1 ∧ . . .dζ j . . .∧dζn ∧dζn .

Other examples where the ∂-operator arises are in the Hartogs phenomenon and in

classification of peak points.

Proposition 1.1.1 (Hartogs Phenomenon). Let Ω ⊂⊂ Cn , n > 1. Let K be a compact
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in Ω so that Ω \ K is connected. If f is holomorphic on Ω \ K , then there is a unique

holomorphic function F onΩ such that F |Ω\K = f .

The proof of the Proposition relies on the following solution to the ∂-problem.

Lemma 1.1.2. Letψ be a ∂-closed (0,1)-from on Cn with compact support. Then there

exits a function u with compact support such that ∂u = ψ where u = 0 on the un-

bounded component of supp(ψ).

Proof of Hartogs Phenomenon. Let φ ∈C∞
c (Ω) be so that it is identically 1 on a neigh-

borhood of K and is 0 in a neighborhood of the boundary ∂Ω. Define the function

f̃ (z) =
(1−φ(z)) · f (z) if z ∈Ω\ K ,

0 if z ∈ K .

Then f̃ ∈C∞(Ω) and setω= ∂ f̃ . We see thatω has C∞ coefficients, ∂ω= 0 and thatω

has compact support. We then find u so that ∂u =ω. We have also that u is identically

0 in a neighborhood U of ∂Ω. We define F = f̃ −u and see that

∂F = ∂ f̃ −∂u =ω−ω= 0

and so notice that

F |U = ( f̃ −u)|U = f |U

yielding that F = f onΩ\ K and thus F is an extension of f .

The following Proposition and proof is as in [7] and shows how a solution to the ∂-

problem can be used show the existence of a function which peaks on the boundary

of a pseudoconvex domain.
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Proposition 1.1.3. If Ω is a smooth bounded pseudoconvex domain in Cn that is

strongly pseudoconvex at p ∈ ∂Ω then there exists a function f :Ω−→C holomorphic

onΩ and smooth onΩwith f (p) = 1 and | f | < 1 onΩ\ {p}.

Proof. Since the boundary is smooth we can find a local strong support function g (z)

at p, namely a function g ∈C∞(U ) where U is a neighborhood of p with g (0) = p and

Re g > 0 on Ω∩U \ {p}. Then by choosing a smooth cut off function χ in a small

neighborhood of p we can define a ∂-closed (0,1)-form

ψ(z) =
0, when z = p

∂
(χ

g

)
, when z 6= p.

Then ψ is smooth ∂-closed with compact support. We solve ∂ by finding u so that

∂u =ψ. Define so f by

f (z) =
0, when z = p

1
χ/g−v , when z 6= p

.

It is easy then to see that f satisfies the sought criteria.

Remark 1.1.4. In this Proposition we are using that for strongly pseudoconvex do-

mains we have solutions for ∂ which satisfies sup-norm estimates. This will be dis-

cussed later.

The ∂-problem has many aspects one can consider. In this thesis we will consider

solutions when our input of data is a ∂-closed (0,1)-form. So the question is: Given

a (0,1)-form f on a domain Ω with ∂ f = 0, does there exist a function u on Ω so that

∂u = f ?

The question concerning existence of a solution to the ∂-equation can be answered

when the domain is pseudoconvex. Hörmander showed that given a (0, q)-form v on

a pseudoconvex domain with ∂v = 0, then there exists a solution.
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Theorem 1.1.5 (Hörmander, Demailly, Theorem (8.4) [2]). Let ρ be a plurisubhar-

monic function on a pseudoconvex domain D ⊂Cn , v be a ∂-closed (0, q)-form. Then

there exists a (0, q −1)- form u such that ∂u = v and∫
D
|u|2e−ρ ≤C

∫
D
〈M−1v, v〉e−ρ,

where M is a matrix that depends on ρ and q.

Remark 1.1.6. When q = 1 the matrix M is just the complex Hessian matrix of ρ.

The estimates for this solution are weighted L2 estimates. For the solution to be the

most applicable we would like to be able to produce solutions with stronger estimates

and have a solution formula. A later result by Henkin and Ramirez [6] gives us this

on strongly pseudoconvex domains in terms of an integral formula which satisfies

Hölder estimates of order 1/2.

Theorem 1.1.7. If Ω ⊆ Cn is strongly pseudoconvex with C 4 boundary and f is a ∂-

closed (0,1)-form on a neighborhood ofΩwith C 1 coeffiecients, then the function

HΩ f = cn

∫
∂Ω×[0,1]

f ∧η(µ)∧ω(ζ)− cn

∫
Ω

f (ζ)

||ζ− z||2n
η(ζ− z)∧ω(ζ)

satisfies ∂HΩ f (z) = f (z). Here cn is a constant dependent on dimension n, the func-

tions

ω(ζ) := dζ1 ∧ . . .∧dζn

η(ξ) :=
n∑

j=1
(−1) j+1ξ j dξ1 ∧ . . .∧∧dξ j−1 ∧dξ j+1 ∧ . . .∧dξn

for any ξ= (ξ1, ...,ξn) ∈Cn , and for λ ∈ [0,1]

µ j =
ζ j − z j

||ζ− z||2λ+h j (1−λ)
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where all h j (ζ, z) : ∂Ω×Ω−→C are holomorphic in z and solves the Cauchy-Fantappiè

equation

n∑
j=1

h j (ζ, z)(ζ j − z j ) ≡ 1

when ζ ∈ ∂Ω, z ∈Ω.

Remark 1.1.8. In the construction of the kernel one uses that strongly pseudoconvex

domains are locally convex to construct the functions h j . This is not the case for

weakly pseudoconvex domains, as such domains are not locally convex.

Naturally the question of sup-norm estimates arises in the general pseudoconvex

case aswell. However some additional assumptions need to be made. Sibony [10]

gave an example of a C∞ smooth pseudoconvex domain in C3 and a ∂-closed (0,1)-

form f which is bounded in the given domain, but no solution u of the ∂-equation

∂u = f is bounded. This tells us that pseudoconvexity is not the sole requirement for

solving ∂ with sup norm estimates.

Fornæss have shown that for some domains of finite type one is able to find solutions

with sup norm estimates [3]. An example of such is the Kohn-Nirenberg domain.

Therefore one suspects that finite type for points in the boundary is a requirement to

find a solution with sup norm estimates. For strongly pseudoconvex boundary points

we have that the type is 2, thus this requirement holds for strongly pseudoconvex

domains.

1.2 Definitions and Preliminaries

Most theory on the ∂-equation involves the concept of pseudoconvex domains as al-

ready mentioned. Such domains are central in several complex variables. We can

characterize them in different ways, and for this thesis we will use the notion of Levi-
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pseudoconvexity. This type of pseudoconvexity is dependent on the smoothness of

the boundary.

Definition 1.2.1. We say that a domainΩ⊂⊂Cn with boundary ∂Ωhas C k -differentiable

boundary at the point p ∈ ∂Ω if there exists a real valued function ρ ∈C k (U ) defined

in a neighborhood U of the boundary ofΩ such that

Ω∩U = {z ∈U : ρ(z) < 0}, (1.1)

dρ(z) 6= 0 for z ∈U . (1.2)

We say the boundary is of class C k if all points p ∈ ∂Ω is of class C k .

Remark 1.2.2. We call the function ρ a defining function for the the domainΩ.

Definition 1.2.3. Consider the function J :R2n −→R2n defined by

J (x1, y1, . . . , xn , yn) = (−y1, x1, . . . ,−yn , xn).

The complex tangent space is defined as a subspace of the real tangent space

TC
p M := {x ∈ Tp M |J x ∈ Tp M }.

Knowing these concepts we can define the concept of Levi-pseudoconvexity.

Definition 1.2.4 (Levi pseudoconvex). Let Ω ⊂ Cn be a domain with C 2 boundary.

Then there is a C 2 defining function r :Cn −→R. We say thatΩ is Levi-pseudoconvex

if for every p ∈ ∂Ω and t ∈ TC
p Ω

∑
i , j

∂2r (p)

∂zi∂z j
ti t j ≥ 0.

If the inequality is strict for all p ∈ ∂Ω, we callΩ strongly Levi-pseudoconvex.
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Remark 1.2.5. Levi-pseudoconvexity is independent of choice of defining function.

Remark 1.2.6. For domains not satisfying the required smoothness we classify pseu-

doconvexity differently. However, all domains in this thesis will have sufficiently

smooth boundary. Therefore we will throughout this thesis refer to all Levi-pseudoconvex

domains as just pseudoconvex.

We will also require that our domains have points of finite type in the boundary. We

will consider the notion D’Angelo finite type.

Definition 1.2.7 (D’Angelo type [1]). Let Ω ⊂⊂ Cn be pseudoconvex domain with

C∞ boundary and let r be the defining function for Ω. For a holomorphic function

f :∆−→Cn where f (0) = p define the type at the point p as

sup
f

ν(r ◦ f )

ν( f )

where ν( f ) is the order of vanishing at the origin of C.

Remark 1.2.8. We say a domain is of finite type m if all points p ∈ ∂Ω is of finite type

m or less. Further if the domain in question is pseudoconvex the type of the point

must be an even number as a result of computing the Levi-form.

To give estimates we will use a the concept of bumping to type which will be a larger

pseudoconvex domain containing the original domain. Here we will utilize the extra

room to find pointwise estimates which we can then translate to smooth ones.

Definition 1.2.9. Given a pseudoconvex domainΩ and p ∈ ∂Ω, we say thatΩ can be

locally bumped at p if there exists a neighborhood U of p and another pseudoconvex

domainΩ∗
p satisfying the inclusionsΩ\{p}∩U ⊂Ω∗

p with p ∈ ∂Ω∗
p . We then sayΩ∗

p is

a local bumping at p.

Throughout the thesis we will be using that for functions f (z) and g (z) that | f (z)|. |g (z)|
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if there is a constant C > 0 so that | f (z)| ≤ C |g (z)|. Also we will write | f (z)| ∼ |g (z)|
when | f (z)| . |g (z)| and |g (z)| . | f (z)|. When | f | ∼ |g | we call the functions propor-

tional in size.

A crucial point is that whenever we have a defining function for a domainΩ= {r (z) <
0}, we can use it to measure the distance to the boundary of the domain. This is be-

cause defining functions are not unique, rather they depend on one another. That is,

if there are two C k defining functions r1 and r2 forΩ, then there is an h ∈C k−1(Ω) with

h 6= 0 such that r1 = hr2. This means that all defining functions are comparable in size

and using the following Lemma gives us that a defining function |r (z)| ∼ dist(z,∂Ω).

Lemma 1.2.10. Let Ω be a nonempty open subset of Rk , where k ≥ 2. Assume Ω is

bounded and the boundary ofΩ is of class C 2. Then the signed distance function

dΩ(x) =
−dist(x,∂Ω), if x ∈Ω

dist(x,∂Ω), if x 6∈Ω

is a defining function forΩ.

To prove the main theorem we will first show that a bounded domain with real ana-

lytic boundary of finite type can be bumped to type at each boundary point. We will

use this fact to construct a solution operator and provide bounds.

Then to construct the solution operator we will use the Henkin Integral kernel. What

we need to do is adjust the functions h j involved in the Cauchy-Fantappiè equation

h1(ζ, z)(ζ1 − z1)+h2(ζ, z)(ζ2 − z2) ≡ 1.

By strong pseudoconvexity these functions satisfies bounds from below allowing the

integral to be estimated. We then need to construct functions satisfying bounds when

the domain is weakly pseudoconvex. This will be done by choosing smooth pointwise
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solutions to the Cauchy-Fantappiè equations and making them holomorphic.

Using the local bumping and Hörmanders theorem 1.1.5 we can show there are func-

tions satisfy pointwise bounds on the boundary. By considering a smaller domain

Ω−ε these pointwise estimates can be replaced with estimates which are smooth on

the boundary and satisfy the Cauchy-Fantappiè equation. These new functions can

then be used in the Henkin Integral formula to get a solution operator on ∂Ω×Ω−ε
which will satisfy Hölder estimates.

The final step is then to extend this solution to a solution ∂Ω×Ω−ε.



Chapter 2

Bumping to Type

In this chapter we will show how to construct a local bumping of a bounded pseudo-

convex domain with real analytic boundary of finite type.

12
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2.1 Local Bumping

First we will show that weakly pseudoconvex, bounded domains of finite type with

real analytic boundary can be bumped to type. Let Ω ⊂⊂ Cn+1 for n ≥ 1 be such a

domain. Then we can find a local description near a boundary points via a smooth

defining function in a neighborhood of the domain. Let W be a neighborhood of 0

and let ρ : W −→R be the smooth defining function for W ∩Ω, then

Ω∩W = {z ∈Cn+1 : ρ(z) < 0}.

Translating the domain we can assume without loss of generality that 0 is in the

boundary and by a rotation assume that t = (1,0, ...,0) is in the complex tangent space

TC
0 (Ω). Since the domain has real analytic boundary, by writing the series expansion

around 0, we express

ρ(z) = ρ(0)+2Re
(n+1∑

j=1

∂ρ

∂z j
z j + 1

2

n+1∑
i=1, j=1

∂2ρ

∂zi∂z j
zi z j

)
+

n+1∑
i=1, j=1

∂2ρ

∂zi∂z j
zi z j +O(|z|2).

Write (w,z) = (u + i v, x1 + i y1, ..., xn + i yn) ∈C×Cn and introduce a linear coordinate

change so that

∂ρ

∂u
= 1,

∂ρ

∂v
= 0 and

∂ρ

∂z
= 0. (2.1)

Set further

r (z,z) =
∞∑

m=2k
Pm(z,z)

where each Pm(z) is homogeneous polynomial in z and z of order m and P2k 6≡ 0. The

boundary is of finite type and the domain is pseudoconvex, therefore the number

2k must be less than or equal to the type at 0. The series expansion can then be

expressed as

u + r (z,z)+O(v2, ||z||v)
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and we can write the domain locally as

{(w,z) ∈C×Cn : u + r (z)+O(v2, ||z||v) < 0}. (2.2)

We want to control the higher order terms O(v2, ||z||v). Calculating the Levi form

Lev(ρ,z,z) in a neighborhood of 0, we know from the pseudoconvexity of Ω must be

greater than or equal to 0. The Levi form consists of terms of the form

∂2ρ

∂zi∂z j
∼ ∂2r

∂zi∂z j
+ szs−1

i z t
j + t zs

i z t−1
j + st v zs−1

i z t−1
j + szs−1

i + t z t−1
j ≥ 0.

Therefore the terms which are of degree lower than the smallest degree of r (z,z), in

this case 2k, cannot be negative as they would dominate r (z, z) in the neighborhood.

In other words when s + t > 2k + 1 the terms v zs z t are small and cannot affect the

positivity of the levi form. This means that the bumped out domain can be assumed

to have defining function

u + r (z,z)+O(v2, ||z||M v)

where M ≥ 2k.

We now show how to deal with higher order terms. By a holomorphic change of co-

ordinates w = w̃ −B w̃ 2 with large constant B >> 0

u = ũ −B(ũ2 − ṽ2),

v = ṽ −2Bũṽ

we can express

ρ(w,z) = ũ −Bũ2 +B ṽ2 + r (z,z)+O(ṽ2, ||z||M ṽ , ṽ2ũ, ||z||M ũṽ).

Multiplying the defining function with some nonzero function we can obtain a new
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defining function. Let s be a nonzero function, then

∇(ρs) =∇(ρ)s +ρ∇(s)

and since r = 0 on the boundary, we have that ∇(ρs) =∇(ρ)s and thus ρs also locally

defines the domain.

For terms of the form ũṽ2, ũ||z||M ṽ and −Bũ2 we can, for some C > B , multiply by

(1+C ṽ2), (1+C ||z||M ṽ) and (1+C ũ), respectively. Notice that then

C ũ(ṽ2 +||z||M ṽ + ũ)−Bũ2 +O(ṽ2ũ, ||z||M ũṽ) > 0.

Further consider the function

ũ +B ṽ2 + r (z,z)+O(ṽ2, ||z||M ṽ). (2.3)

Higher order terms are just those multiplied with ṽ . For an 0 < η << 1 add 0 to the

expression by adding η||z||2k −η||z||2k +2
√

Bη||z||k v −2
√

Bη||z||k v . We want to com-

plete the square in such a way that

(
p

B v −p
η||z||k )2 = B v2 +η||z||2k −2

√
Bη||z||k v

≤ B v2 +η||z||2k −2
√

Bηvzszt .

This holds when k > 2k +1 as v ||z||k ≥ |vzszt | in a small neighborhood of 0. We then

get that

(
p

B v −p
η||z||2k )2 +O(v2, ||z||M v) > 0.

Therefore the expression can

ũ +B ṽ2 + r (z,z)+ (
p

B v −p
η||z||k )2 −η||z||2k +2

√
Bηv ||z||2k +O(ṽ2, ||z||M ṽ),
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can be rewritten using

B ṽ2 +O(ṽ2) > 0;

2
√

Bηṽ ||z||2k +O(||z||M ṽ) > 0;

(
p

B v −p
η||z||k )2 > 0.

We are left with a larger domain with defining function

ũ + r (z,z)−η||z||2k

where η> 0 is a small.

The local bumping will rely on the leading term in r (z,z). Namely, if P2k is plurisub-

harmonic and not pluriharmonic we can bump the domain. To this end we will use

a Proposition.

Proposition 2.1.1 (Bedford, Fornæss, Noell). Suppose that P (z) is a homogeneous

plurisubharmonic polynomial on Cn−1, and assume that P is not harmonic on any

complex line through 0. Then there exists a function F (z) which is C∞, homogeneous

of degree equal to that of P, positive away from 0 and which satisfies the condition that

P −εF is strictly plurisubharmonic away from 0 for any 0 < ε<< 1.

If the leading term in r (z,z) satisfy the requirements of the Proposition, we find F as

in the Proposition. Setting P̃2k = P2k − εF we have from the Proposition that P̃2k is

subharmonic. Since F is strictly positive away from 0 and of degree 2k we see that

there is ab ε′ > 0, so that we have F ≥ ε′||z||2k . This leads us to the inequality

P̃2k < P2k −εε′||z||2k = P2k −ε′′||z||2k .
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where ε′′ = εε′. Setting R2k+1 =
∑∞

m=2k+1 Pm(z,z) we see that

ũ + r (z,z)−η||z||2k = ũ +P2k +R2k+1 −η||z||2k

> ũ + P̃2k (z)+ε′′||z||2k +R2k+1 −η||z||2k .

Now choosing η > 0 so that η < ε′′ the inequality (ε′′−η)||z||2k +R2k+1 > 0 holds by

(possibly) shrinking the neighborhood of 0. Then the local bumping can be given as

Ω∗
0 = {(w,z) ∈C×Cn : Re(w)+ P̃2k (z) < 0}. (2.4)

Ω∗
0

Ω

0

Re(w)

Figure 2.1: Visualization of a 2d slice of the local bumpingΩ∗
0

2.2 A Pseudoconvex Extension

To extend the locally bumped domain to a pseudoconvex extension we will intersect

our local bumping with a larger pseudoconvex domain coming from the Stein neigh-

borhood basis forΩ.

Definition 2.2.1. Let D ⊂⊂Cn be pseudoconvex, we say that D has a Stein neighbor-

hood basis if for any open neighborhood U of D there is a pseudoconvex domain Dε

so that D ⊂ Dε ⊂U .
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We knowΩ has a neighborhood basis from the following theorem.

Theorem 2.2.2. [4] If D is a pseudoconvex domain with real analytic boundary, then

D has a Stein neighborhood basis.

The idea is that the pseudoconvexity from the local bumping needs to be continued

when leaving the local area. Therefore we need Dε coming from the Stein neighbor-

hood basis. For a neighborhood U of 0, the domain U ∩Ω∗
0 is pseudoconvex as we

have constructed. Then taking the domain Dε, we find a smaller neighborhood V of

0 so that V ⊂U . We see thus that V ∩Dε ⊂U ∩Ω∗
0 . Then the intersection

Dε∩Ω∗
0

defines the pseudoconvex domain which will be the extension satisfying pseudocon-

vexity everywhere on.

The intersection is pseudoconvex by the classic lemma.

Lemma 2.2.3. If D1 and D2 are pseudoconvex domains, then the intersection D1 ∩D2

is pseudoconvex.

Proof. A domain is pseudoconvex if and only if− log(dist(p,∂D)) is plurisubharmonic.

Now dist(p,∂(D1 ∩D2)) = min{dist(p,∂D1),dist(p,∂D2)} and further

− log(dist(p,∂(D1 ∩D2)) = max
{− log(dist(p,∂D1)),− log(dist(p,∂D2))

}
which is plurisubharmonic.

We want to define an intermediate bumped domain Ω∗∗
0 . It will be a bumping in

the same sense as Ω∗
0 , however only “half”. We define this domain by in some sense
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halving the bumping function from Proposition 2.1.1. More explicitly by considering

2F , we define ˜̃P2k = P2k −2εF and further notice that

˜̃P2k ≤ P2k −2ε′′||z||2k

and

P2k −2ε′′||z||2k < P2k −ε′′||z||2k

so ˜̃P2k < P̃2k . Then define

Ω∗∗
0 = {(w,z) ∈C×Cn : Re(w)+ ˜̃P2k (z) < 0}.

It follows easily thatΩ∗∗
0 ⊂Ω∗

0 .

Ω∗
0

Ω

0

Re(w)

Ω∗∗
0

Figure 2.2: Visualization of a 2d slice of the intermediateΩ∗∗
0

So far we have defined a local bumping for finite type domains in Cn+1 with n ≥ 1

with the restriction that the leading polynomial term in r (z,z) is not harmonic along

any complex line through 0, but it is plurisubharmonic. For domains in C2 we can

guarantee that this is the case for every bounded domain of finite type. This is be-

cause complex curves are easier to control and therefore finding a polynomial which

satisfies the requirements in Proposition 2.1.1 is a then simpler ordeal.

In C2 the polynomial P2k is only a polynomial in one complex variable. By a change
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of coordinates and using that a harmonic function in one variable is the real part of

holomorphic function, we absorb harmonic terms into Re(w) and get subharmonic,

but not harmonic, and homogeneous polynomial of order 2k.

In the rest of the thesis we will then only consider whenΩ⊂C2 is a bounded domain

with real analytic boundary of finite type 2k.



Chapter 3

A Solution Operator for ∂

In this chapter we show how the bumping can be used to a solution operator which

satisfies Hölder estimates on a slightly smaller domain.

21
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Throughout this chapter Ω ⊂C2 will be a bounded pseudoconvex domain with real

analytic boundary of finite type 2k andΩ∗
p will denote the bumped domain at p.

3.1 Koszul Complex

Given functions g1(p, z) and g2(p, z) on Ω∗
p which are smooth in z and solve the

Cauchy-Fantappiè equation pointwise for each p, there is a way to modify them

so that they become holomorphic and still satisfy the Cauchy-Fantappiè equation

pointwise. This procedure is done via a Koszul complex and is what we will use this

section to show.

Lemma 3.1.1. For a fixed p and smooth solutions g1, g2 which satisfy

g1(p, z)(p1 − z1)+ g2(p, z)(p2 − z2) ≡ 1,

then there exists functions h1,h2 holomorphic in z which satisfy

h1(p, z)(p1 − z1)+h2(p2 − z2) ≡ 1.

Proof. Since

g1(p, z)(p1 − z1)+ g2(p, z)(p2 − z2) ≡ 1,

we see that

∂
(
g1(p, z)(p1 − z1)+ g2(p, z)(p2 − z2)

)= 0.
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By multiplying in 1

∂g j ·1 = ∂g j (g1(p, z)(p1 − z1)+ g2(p, z)(p2 − z2))

which yields

∂g1 ·1 = ∂g1
(
g1(p, z)(p1 − z1)+ g2(p, z)(p2 − z2)

)
,

∂g2 ·1 = ∂g2
(
g1(p, z)(p1 − z1)+ g2(p, z)(p2 − z2)

)
.

By using that ∂g1(p1 − z1) =−∂g2(p2 − z2) we rewrite

∂g1 =−g1∂g2(p2 − z2)+∂g1g2(p2 − z2) = (g2∂g1 − g1∂g2) · (p2 − z1),

∂g2 = ∂g2g1(p1 − z1)− g2∂g1(p1 − z1) = (g1∂g2 − g2∂g1) · (p1 − z1).

Now define a (0,1)-form

ω := g2∂g1 − g1∂g2 (3.1)

and notice that ∂ω= 0 so ω is a ∂-closed form. Now, by using Theorem 1.1.5, we find

a solution u satisfying ∂u =ω lying in weighted L2 space. Define

h1 := g1 −u(p2 − z2) (3.2)

h2 := g2 +u(p1 − z1). (3.3)

These functions satisfy the Cauchy-Fantappié equation

h1(p1 − z1)+h2(p2 − z2) = g1(p1 − z1)−u(p2 − z2)(p1 − z1)+ g2(p2 − z2)+u(p1 − z1)(p2 − z2)

= g1(p1 − z1)+ g2(p2 − z2) ≡ 1

and by construction ∂h j = 0 for j = 1,2.
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3.2 Constructing a Support Function

Now we need to choose the smooth functions to modify via the Koszul complex.

These function will chosen related to the bumped domain Ω∗
p . The function will

reflect the type at 0 and the tangential direction. In a similar manner to the con-

struction of the Henkin integral kernel, we seek local functions G1, G2 and Φ which

will solve the division problem

G1 +G2 ≡Φ. (3.4)

First we will constructΦ(w, z). We will require that it is holomorphic in the first vari-

able and smooth in the second variable. We also require that it also satisfies

(1) Φ= (p1 − z1)− A ·F (p2 − z2) where A > 0;

(2) F > 0 away from p;

(3) {Φ= 0}∩Ω∗
p \ {0} =;;

(4) |Φ| ∼ dist(·,∂Ω∗
p ) on ∂Ω\ {p}.

Indeed we can find such a function Φ on the bumping Ω∗
p . For ease of notation we

set p = 0. For a constant A > 0 so large so that A|z|2k + P̃2k ≥ 0 we define

Φ(w, z) := w − A|z|2k . (3.5)

The first two criteria follow directly from howΦ is defined. WhenΦ= 0 we then have

that w = A|z|2k implying that w is real. It follows then that Re w+P̃2k = A|z|2k +P̃2k ≥
0, so we get {Φ= 0}∩Ω∗

0 \ {0} =;.

On the boundary ∂Ω∗
0 the defining function forΩ∗

0 is 0. That is, Re w +P̃2k = 0, mean-

ing that near the boundary |Re w | ∼ |z|2k . Noting also that near 0 we have that the
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defining function ρ is dominated by Re w being the only first order term, in particu-

lar then |Re w | ≥ |Im w | near ∂Ω. Therefore

|w | ≤ |Re w |+ |Im w | ≤ 2|Re w | ∼ |z|2k

and |z|2k ∼ |Re w | ≤ |w | eventually showing that |w | ∼ |z|2k .

Similarly we can see that dist(·,∂Ω∗
0 ) ∼ |Re w + P̃2k | ∼ |w |. Using this we can then see

that

dist(·,∂Ω∗
0 ) ∼ 1

2
|w |+ 1

2
|w | ∼ |Φ|.

Having constructed the supporting functionΦwe now chose the accompanying func-

tions G1 and G2 which will solve the division problems. Let

G1 = 1,

G2 =−Azk−1zk .

These functions will, together with Φ, satisfy the division problem in (3.4). We see

this by noting that

w

Φ
+ −z Azk−1zk

Φ
= w − A|z|2k

Φ
≡ 1.

We then want to apply the Koszul complex procedure in Lemma 3.1.1 to get holomor-

phic solutions. The (0,1)-form ω= g2∂g1 − g1∂g2 from (3.1) is then

ω= ∂G2

Φ2
= −Ak|z|2k−2

(w − A|z|2k )2
.

Finding the u which satisfy ∂u =ω on Ω∗
0 using Theorem 1.1.5 we get that the holo-
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morphic functions relating to our smooth ones are given by

h1 = 1

Φ
+uz

h2 = −Azk−1zk

Φ
−uw.

as in equation (3.3).

3.3 Weighted L2 Estimates

This section will be used to prove some lemmas which will allow us to pass from L2 to

pointwise estimates for the kernel. To do that what we need to find are estimates for

the function u which is the solution of ∂u =ω from (3.1) when using Theorem 1.1.5.

We want to calculate an integral of the form∫
D
〈M−1v, v〉e−ψ.

The matrix M appearing in the integral depends on ψ and the degree of the from v .

In our case we have a (0,1)-form, meaning that M is only the Levi matrix of ψ. The

choice of ψ needs to be carefully considered. An apt choice of weight should be such

that the matrix M is simple to compute and gives an integrable integral.

In the case of our (0,1)-form ω we would ideally see that∫
Ω∗

0

|ω|2d w ∧d w ∧d z ∧d z <∞,

and thus have estimations for u. Inserting the expression for |ω|2 we see

∫
Ω∗

0

|z|4k−4

|w − A|z|2k |4 d w ∧d w ∧d z ∧d z

=
∫
Ω∗

0

|z|4k−4

(w − A|z|2k )2(w − A|z|2k )2
d w ∧d w ∧d z ∧d z.
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Integrating over w and w gives essentially

|z|4k−4

(w − A|z|2k )(w − A|z|2k )
d z ∧d z = |z|4k−4

|w − A|z|2k |2 d z ∧d z. (3.6)

We now notice that if we gain |z|2 this can be integrated and seen finite. This is then

our aim when choosing the weight ψ.

The choice of ψ will rely on the classic plurisubharmonic function on pseudoconvex

domains − log(dist(·,∂Ω∗
0 )) and in the same manner as Φ be chosen related to how

the bumped domain Ω∗
0 looks like. We would like the weight to reflect the type at 0.

Let ε > 0 and define the function ρ = log(|w | + |w |1+ε+ |z|2k ). To avoid a vanishing

Levi matrix we have introduced a term |w |1+ε. The function ρ is plurisubharmonic

and together with the − log(dist(·,∂Ω∗
0 )) will form a suitable weight.

We integrate over the domain Ω∗∗
0 , which is a bumping in the same sense as Ω∗

0 ,

just “half” of the original bumping, but still having the − log(dist(·,∂Ω∗
0 ) term in the

weight. This is weight is only singular in 0 and not on the boundary ∂Ω∗∗
0 .

Lemma 3.3.1. Let (w, z) ∈Ω∗∗
0 and for ε> 0 and δ> 0 set

ψ=−(ε+δ) log(dist(·,∂Ω∗
0 ))+δρ

=−(ε+δ) log(dist(·,∂Ω∗
0 ))+δ log(|w |+ |w |1+ε+|z|2k ),

then ψ is plurisubharmonic and the integral∫
Ω∗∗

0

|u|2e−ψd w ∧d w ∧d z ∧d z

is finite.

To prove this Lemma we want to apply Theorem 1.1.5. This requires us to compute

the Levi-matrix ofψ, whose expression is not easily computed. Seeing as we are going
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to get Hermitian matrices we can therefore simplify the computation by applying a

result concerning such matrices.

Lemma 3.3.2. Let T,L be complex valued Hermitian matrices with T positive semi

definite and L positive definite. Then

v H (L+T )−1v ≤ v H L−1v. (3.7)

Proof. Let L be a positive definite matrix, and T be a positive semi definite matrix.

Writing the Cholsesky decomposition for L−1 =UU H we can write

v H (L+T )−1v = v H (UU H +T )−1v = v HU (I +U H TU )−1U H v

since inverses of positive definite matrices are positive definite. Set u = U H v . Now

we notice that

uH (
I +U H TU

)−1u = (
u−H (

I +U H TU
)
u−1)−1

= 1

(u−H u−1 +u−HU H TU u−1)

≤ (
u−1u−H )−1 = uH u

since

u−H u−1 +u−1U H TU u−H ≥ u−H u−1

which leads to the result.

Proof of Lemma 3.3.1. Let L be the Levi-matrix of ρ, and T be the Levi-matrix of ψ,

then T is the matrix that is used in Theorem 1.1.5. The term δρ is plurisubharmonic.

To see this we create a locally holomorphic function f :C2 −→C3 defined by

f (w, z) = (w
1
2 , w

1+ε
2 , zk ).
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Then we can write ρ = log(|| f ||) which is a plurisubharmonic function.

When the functions are plurisubharmonic (strictly plurisubharmonic), the Levi ma-

trices are positive semi definite (positive definite). Then we can apply Lemma 3.3.2

and we get the inequality∫
Ω∗∗

0

〈T −1ω,ω〉e−ψ ≤
∫
Ω∗∗

0

〈L−1ω,ω〉e−ψ.

We want to find an integrable expression which estimates 〈L−1ω,ω〉e−ψ. As men-

tioned, L is the Levi-matrix corresponding to the function ρ, that is

L =
[
ρw w ρw z

ρzw ρzz

]
.

To compute the inverse use the inverse formula for 2×2 matrices, giving

L−1 = 1

detL

[
ρzz −ρw z

−ρzw ρw w

]
.

Being that ω is a (0,1)-form, the expression L−1ω will be the form

1

detL
(−ρw z +ρw w )ω= (−ρw z +ρw w )ω

ρzzρw w −|ρzw |2

and by Cauchy-Schwarz inequality we have an estimate

〈L−1ω,ω〉e−ψ ≤ ( |ρzw |
|ρzzρw w −|ρzw |2| +

|ρw w |
|ρzzρw w −|ρzw |2|

)|ω|2e−ψ. (3.8)

After some somewhat lengthy computations we can get a local estimate for this ex-

pression given by |z|4k−2/|Φ|4−ε ignoring constants. Roughly speaking integrating

with respect to d w∧d w reduces the exponent in the denominator by 2 and we are left

with |z|4k−2/|Φ|2−ε which will yield a finite integral. The details of the computations

are now what follows.
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To compute L−1, we for ease of notation set Q = |w |+ |w |1+ε+|z|2k . Then

∂Q

∂z
= kzk−1zk ,

∂Q

∂w
= 1

2
w− 1

2 w
1
2 + (

1+ε
2

)w
1+ε

2 −1w
1+ε

2 .

and the partials for ρ

ρz = 1

Q
kzk−1zk ,

ρw = 1

Q

1

2
w− 1

2 w
1
2 + (

1+ε
2

)w
1+ε

2 −1w
1+ε

2

We then see that

ρw w = 1

Q2

[( 1

4|w | + (
1+ε

2
)2w− 1−ε

2 w− 1−ε
2

)
Q

− (w− 1
2 w

1
2

2
+ (

1+ε
2

)w
1+ε

2 −1w
1+ε

2
)(w− 1

2 w
1
2

2
+ (

1+ε
2

)w
1+ε

2 −1w
1+ε

2
)]

= 1

Q2

[( 1

4|w | + (
1+ε

2
)2|w |ε−1)Q

− (w− 1
2 w

1
2

2
+ (

1+ε
2

)w
1+ε

2 −1w
1+ε

2
)(w− 1

2 w
1
2

2
+ (

1+ε
2

)w
1+ε

2 −1w
1+ε

2
)]

.

Using that (z +w)(z +w) = |z|2 +|w |2 +2Re(zw) can rewrite

= 1

Q2

[( 1

4|w | +
(1+ε

2

)2|w |ε−1)(|w |+ |w |1+ε+|z|2k)
− 1

4
− (

1+ε
2

)2|w |2ε−2Re
(1

2
w

−1
2 w

1
2 (

1+ε
2

)w
ε+1

2 w
ε−1

2
)]

= 1

Q2

[1

4
+ |w |ε

4
+ |z|2k

4|w | +
(1+ε

2

)2|w |ε+ (1+ε
2

)2|w |2ε+ (1+ε
2

)2|w |ε−1|z|2k

− 1

4
− (

1+ε
2

)2|w |2ε−2Re
(1

2
w

−1
2 w

1
2 (

1+ε
2

)w
ε+1

2 w
ε−1

2
)]

Notice that

2Re
(1

2
w

−1
2 w

1
2 (

1+ε
2

)w
ε+1

2 w
ε−1

2
)= (1+ε

2

)|w |ε
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so we can further rewrite

1

Q2

[1

4
+ |w |ε

4
+ |z|2k

4|w | +
(1+ε

2

)2|w |ε+ (1+ε
2

)2|w |2ε+ (1+ε
2

)2|w |ε−1|z|2k

− 1

4
− (

1+ε
2

)2|w |2ε− (1+ε
2

)|w |ε
]

= 1

Q2

[ |w |ε
4

+ |z|2k

4|w | +
(1+ε

2

)2|w |ε+ (1+ε
2

)2|w |ε−1|z|2k − (1+ε
2

)|w |ε
]

by grouping together terms so that we can use

((1+ε
2

)2 − (1+ε
2

)+ 1

4

)
= ε2

4
(3.9)

we can see that

= 1

Q2

[ |z|2k

4|w | +
(1+ε

2

)2|w |ε−1|z|2k + (1+ε
2

)2|w |ε− (1+ε
2

)|w |ε+ |w |ε
4

]
= 1

Q2

[ |z|2k

4|w | +
(1+ε

2

)2|w |ε−1|z|2k +|w |ε
((1+ε

2

)2 − (1+ε
2

)+ 1

4

)]
= 1

Q2

[ |z|2k

4|w | +
(1+ε

2

)2|w |ε−1|z|2k + ε2

4
|w |ε

]
(3.10)

For the partials with respect to the z-variable we get

ρzz =
k2|z|2k−2(|w |+ |w |1+ε+|z|2k )−k2|z|2k−2|z|2k

(|w |+ |w |1+ε+|z|2k )2

= k2|z|2k−2 (|w |+ |w |1+ε)

(|w |+ |w |1+ε+|z|2k )2
(3.11)

Finally we compute the mixed terms

ρzw = kzk−1zk

Q2

(w
1
2 w− 1

2

2
+ (

1+ε
2

)w
1+ε

2 w
ε−1

2
)

(3.12)

ρw z =
kzk zk−1

Q2

(w− 1
2 w

1
2

2
+ (

1+ε
2

)w
ε−1

2 w
1+ε

2
)
. (3.13)
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Then we have all the terms which appear in the Levi matrix. Now for computing the

determinant we see that

ρzzρw w = k2|z|2k−2

Q4

(
|w |+ |w |1+ε

)[ |z|2k

4|w | +
(1+ε

2

)2|w |ε−1|z|2k + ε2

4
|w |ε

]
= k2|z|2k−2

Q4

[ |z|2k

4
+ (1+ε

2

)2|w |ε|z|2k + ε2

4
|w |1+ε

+ |z|2k |w |ε
4

+ (1+ε
2

)2|w |2ε|z|2k + ε2

4
|w |1+2ε

]

and that

|ρzw |2 =
∣∣∣kzk−1zk(w− 1

2 w
1
2

2 + ( 1+ε
2 )w

1+ε
2 −1w

1+ε
2

)
(|w |+ |w |1+ε+|z|2k )2

∣∣∣2

= k2|z|2k−2

Q4

[ |z|2k

4
+ (1+ε

2

)2|w |2ε|z|2k + (1+ε
2

)|w |ε|z|2k
]

which leads to an expression for ρzzρw w −|ρzw |2 given by

k2|z|2k−2

Q4

[ |z|2k

4
+ (1+ε

2

)2|w |ε|z|2k + ε2

4
|w |1+ε+ |z|2k |w |ε

4
+ (1+ε

2

)2|w |2ε|z|2k + ε2

4
|w |1+2ε

− |z|2k

4
− (

1+ε
2

)2|w |2ε|z|2k − (1+ε
2

)|w |ε|z|2k
]

= k2|z|2k−2

Q4

[(1+ε
2

)2|w |ε|z|2k + ε2

4
|w |1+ε+ |z|2k |w |ε

4
+ ε2

4
|w |1+2ε− (1+ε

2

)|w |ε|z|2k
]
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Now by grouping the terms containing |w |ε|z|2k and again using (3.9)

k2|z|2k−2

Q4

[(1+ε
2

)2|w |ε|z|2k + ε2

4
|w |1+ε+ |z|2k |w |ε

4
+ ε2

4
|w |1+2ε− (1+ε

2

)|w |ε|z|2k
]

= k2|z|2k−2

Q4

[(1+ε
2

)2|w |ε|z|2k − (1+ε
2

)|w |ε|z|2k +|z|2k |w |ε1

4
+ ε2

4
|w |1+ε+ ε2

4
|w |1+2ε

]
= k2|z|2k−2

Q4

[
|w |ε|z|2k

((1+ε
2

)2 − (1+ε
2

)+ 1

4

)
+ ε2

4
|w |1+ε+ ε2

4
|w |1+2ε

]
= k2|z|2k−2

Q4

[ε2

4
|w |ε|z|2k + ε2

4
|w |1+ε+ ε2

4
|w |1+2ε

]
= k2|z|2k−2

Q4
· ε

2

4

[
|w |ε|z|2k +|w |1+ε+|w |1+2ε

]

Now that we have computed all the entries in the matrix L we can express the recip-

rocal of the determinant as

1

detL
= 4

ε2
· Q4

k2|z|2k−2

(
|w |1+ε+|w |1+2ε+|z|2k |w |ε

)−1

.

Note also that

|w |1+ε+|w |1+2ε+|z|2k |w |ε = |w |ε(|w |1+ε+|z|2k +|w |)

so we can further rewrite

1

detL
= 4

ε2

Q3

k2|z|2k−2|w |ε .

We need to consider the expression

|ρw w |
|ρzzρw w −|ρzw |2|



CHAPTER 3. A SOLUTION OPERATOR FOR ∂ 34

which after inserting (3.10) turns out to be

= Q

k2|z|2k−2

1

ε2/4

1

|w |ε
[ |z|2k

4|w | +
(1+ε

2

)2|w |ε−1|z|2k + ε2

4
|w |ε

]
.

Rewriting the expression some

Q

k2|z|2k−2

1

ε2/4

1

|w |ε
[ |z|2k

4|w | +
(1+ε

2

)2|w |ε−1|z|2k + ε2

4
|w |ε

]
=Q

1

|w |ε
[ |w |ε

k2|z|2k−2
+ 1

ε2/4

1

k2

|z|2
4|w | + (1+ε)2 1

k2ε2
|w |ε−1|z|2]

=Q
[ 1

k2|z|2k−2
+ 1

ε2

1

k2

|z|2
|w |1+ε + (1+ε)2 1

k2ε2

|z|2
|w |

]
and by using that 1

ε2 > 1 and (1+ε)2 > 1 we get that

Qe−ψ[ 1

k2|z|2k−2
+ 1

ε2

1

k2

|z|2
|w |1+ε + (1+ε)2 1

k2ε2

|z|2
|w |

]
<Qe−ψ[ (1+ε)2

ε2

1

k2|z|2k−2
+ (1+ε)2

ε2

1

k2

|z|2
|w |1+ε +

(1+ε)2

ε2

1

k2ε2

|z|2
|w |

]
=Qe−ψ (1+ε)2

ε2

1

k2

[ |z|2
|z|2k

+ |z|2
|w |1+ε +

|z|2
|w |

]
Recall that in the local bumpingΩ∗

0 we have that |w | ∼ |z|2k . So we see that

|w |+ |w |1+ε+|z|2k

|z|2k
∼ 1+|w |ε,

|w |+ |w |1+ε+|z|2k

|w | ∼ 1+|w |ε,

|w |+ |w |1+ε+|z|2k

|w |1+ε ∼ 1+ 1

|w |ε .

Recall that in the local bumping we had that |w | ∼ |z|2k . Therefore we bound locally

|ρw w |
|ρzzρw w −|ρzw |2| <

|z|2
k2

(1+ε)2

ε2

[
1+|w |ε+ 1

|w |ε
]

.
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The term

|ρzw |
|ρzzρw w −|ρzw |2|

we can also bound in the local bumping

2Q

kε2

|z|
|w |ε (1+ (1+ε)|w |ε) = 2

kε2

|w ||z|+ |w |1+ε|z|+ |z|2k+1

|w |ε (1+ (1+ε)|w |ε)

∼ |z|2k+1 1+|w |ε
|w |ε (1+|w |ε)

= |z|2k+1(2+ 1

|w |ε +|w |ε)

≤ |z|2(2+ 1

|w |ε +|w |ε).

All these computations then lead to the final local estimate of (3.8)

〈L−1ω,ω〉e−ψ .
(
(1+ 1

|w |ε +|w |ε)+ 1

k2

(1+ε)2

ε2

[
1+|w |ε+ 1

|w |ε
])
|z|2e−ψ|ω|2.

We see here that we have “gained” |z|2 to the integrand which makes (3.6) integrable.

The weight in the integral can be handle by noting that Q = |w | + |w |1+ε + |z|2k ≥
|w |+ |z|2k & |Φ| and that dist(·,∂Ω∗

0 ) ∼ |Φ| inΩ∗
0 , so we see that

e−ψ = exp[(ε+δ) log(dist(·,∂Ω∗
0 ))−δρ]

= (dist(·,∂Ω∗
0 ))ε+δQ−δ

. |Φ|ε

The estimates we have achieved are all local, however this is of no problem to us

because away from a neighborhood of 0 the integral is bounded, so we need only

consider the integral in a small ball around 0. Let therefore BR (0) be a ball around 0

of radius R << 1. The integrals we consider are

∫
Ω∗∗

0 ∩BR (0)

1

k2

(1+ε)2

ε2

[
1+|w |ε+ 1

|w |ε
] |z|4k−2

|w − A|z|2k |4−εd w ∧d w ∧d z ∧d z
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and ∫
Ω∗∗

0 ∩BR (0)
|z|2(1+ 1

|w |ε +|w |ε)
|z|4k−4

|w − A|z|2k |4−εd w ∧d w ∧d z ∧d z

after inserting for ω. We know that |w |ε is a bounded term inΩ∗
0 , what we essentially

need to compute are the integrals:

∫
Ω∗∗

0 ∩BR (0)

|z|4k−2

|w − A|z|2k |4−ε ; (3.14)∫
Ω∗∗

0 ∩BR (0)

1

|w |ε
|z|4k−2

|w − A|z|2k |4−ε . (3.15)

Using this we want to compute

∫
Ω∗∗

0 ∩BR (0)

|z|4k−2

|w − A|z|2k |4−εd w ∧d w ∧d z ∧d z.

Containing the domain of integration in a sufficiently large polidisk we can in an

easier fashion compute the integral. Choose an R ′ dependent on R and Ω∗∗
0 so that

we can containΩ∗∗
0 ∩BR (0) ⊂ {0 ≤ |w | ≤ R ′,0 ≤ |z| ≤ R ′}. Use that |Φ|& |Re w−A|z|2k |+

|Im w | the fact that Re w < 0 to see |Φ| & |w | + A|z|2k . Then using polar coordinates

for |w | we see that

∫ R ′

0

|z|4k−2

(r + A|z|2k )4−εdr = 1

(ε−3)(ε−2)

[−|z|4k−2((3−ε)r + A|z|2k )

(r + A|z|2k )3−ε
]R ′

0

≤ 1

(ε−3)(ε−2)

|z|4k−2

(A|z|2k )2−ε

Using polar coordinates for |z| we get

∫ R ′

0

r 4k−1

(Ar 2k )2−εdr ≤ (AR ′2k )ε

2A2εk
<∞.

The second integral can be computed in the same manner, but we have to deal with
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the potential singularity in |w |−ε. Let |w | ≥ ν, then

∫
Ω∗∗

0 ∩BR (0)

1

|w |ε
|z|4k−2e−ψ

|w − A|z|2k |4 ≤
∫
Ω∗∗

0 ∩BR (0)

1

νε
|z|4k−2e−ψ

|w − A|z|2k |4

Then we want to compute

lim
ν→0

1

νε

∫ R ′

0

∫ R ′

ν

r s4k−1

(r + As2k )4−εdr d s

We get then that for some constant C the expression Cνε−ε = C dominates the inte-

gral proof is done.

Remark 3.3.3. The terms when calculating the weight involves a term ε−2. So when

ε−→ 0 the weighted integral blows up. This means that to use the weighted estimates

to gain |z|2 we also lose the sharp Hölder estimate 1/(2k) by a small amount.

3.4 Passing to Pointwise Estimates

We want to pass from the L2 weighted estimates to pointwise estimates. To do this

we will show that it is possible to fit a polidisk into the intermediate bumping domain

Ω∗∗
0 centered at a point q ∈ ∂Ω. Because of the way we chose the Φ we will can fit a

polidisk such that the volume is similar to |Φ(q)||q2|. We can use this to find a point-

wise bound for u involving Φ. We show these estimates locally where the domain is

given in the local coordinatesΩ= {Re w + r (z, z̄)+O(Im w 2, |z|Im w) < 0} as in 2.2.
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Ω∗∗
0

Ω

0

Re(w)

q

Pβ(q)

Figure 3.1: Visualization of 2d slice of Ω∗∗
0 with the polidisk Pβ(q) centered at a

boundary point.

For r > 0, define a polidisk by

Pr (q) := {(w, z) ∈C2 : |w −q1| < r |Φ(q)|, |z −q2| < 1

2
|q2|}.

In the local bumping we know that for a point q ∈ ∂Ω we have that dist(q,∂Ω∗
0 ) ∼

|Φ(q)|. Then we can find β′ > 0 so that β′|Φ(q)| ≤ dist(q,∂Ω∗
0 ). In the intermediate

bumping we can then find a 0 < β < β′ so that β|Φ(q)| ≤ dist(q,∂Ω∗∗
0 ). Then for any

z ∈ Pβ(q) we get

|z1 −q1| < dist(q,∂Ω∗∗
0 ),

|z2 −q2| < 1

2
|q2|,

showing that ||z −q ||. dist(q,∂Ω∗∗
0 ) and therefore Pβ(q) ⊂Ω∗∗

0 .

When z ∈ Ω is away from ∂Ω we also want to fit a polidisk in Ω∗∗
0 . show that we

still have that |Φ(z)| ≤ dist(z,∂Ω∗∗
0 ). This will follow from Φ being a continuously

differentiable function and therefore also locally Lipschitz. This means that there is

an α> 0 so that |Φ(ξ1)−Φ(ξ2)|. ||ξ1 −ξ2|| when ||ξ1 −ξ2|| <α.

Notice that dist(z,∂Ω∗∗
0 ) ≥ ||z − q|| since q ∈ ∂Ω and dist(z,∂Ω∗∗

0 ) ≥ dist(q,∂Ω∗∗
0 ).
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Hence we get that

|Φ(z)| ≤ |Φ(q)|+ |Φ(z)−Φ(q)|
≤ |Φ(q)|+ ||z −q||
. dist(q,∂Ω∗∗

0 )+dist(z,∂Ω∗∗
0 )

. dist(z,∂Ω∗∗
0 )

when ||z −q || <α. This then implies that there is a γ> 0 so that Pγ(z) ⊂Ω∗∗
0 .

Ω∗∗
0

Ω

0

Re(w)

z

Pβ(ζ)

Figure 3.2: Visualization of 2d slice of Ω∗∗
0 with the polidisk Pβ(ζ) centered at point

ζ ∈Ω.

Having fit a polidisk in Ω∗∗
0 we can use sub-averaging to get pointwise estimates for

u by utilizing that u is part of a holomorphic function. We want to show the following

Proposition.

Proposition 3.4.1. Let p ∈ ∂Ω and z = (z1, z2) ∈Ω\ {p} with ||z −p|| <α, then for each

η> 0 with η<< 1
2k we have

|u(p − z)| ≤Cη · 1

|p2 − z2|
1

|Φ(p, z)|1+η ,

where Cη > 0 is a constant depending on η.
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Proof. Without loss of generality set p = 0. We choose η> 0 and δ> 0 and set

ψ=−2(η+δ) log(dist(z,∂Ω∗
0 ))+2δ log(|z1|+ |z2|1+η+|z2|2k ).

From Lemma 3.3.1, we have seen that the integral∫
Ω∗∗

0

|u|2e−ψ ≤ B. (3.16)

is finite.

Let q ∈ ∂Ω. We have seen earlier that dist(q,∂Ω∗
0 ) ∼ |Φ(q)|. By the discussion above

we can fit a polidisk into the domainΩ∗∗
0 and there is a c > 0 so that√

vol (Pβ) ≥ c|Φ(q)||q2|. (3.17)

Using thatψ(q)−ψ(z) is bounded inΩ∗
0 we can find a suitable constant B > 0 so that

we increase the bound by multiplying in Beψ(q)−ψ(z). Hence

|u(q)|2 ≤ B

vol (Pβ)

∫
Pβ(q)

|u|2e−ψ(z)+ψ(q)

≤ Beψ(q)

vol (Pβ)

∫
Ω∗∗

0

|u|2e−ψ.

The integral is finite and thus

|u(q)|. e
1
2ψ(q)√

vol (Pβ)
.

Inserting in for the weight ψ and using the volume estimate (3.17) we get

|u(q)|. dist(q,∂Ω∗
0 )−η−δ(|q1|+ |q1|1+ε+|q2|2k )δ

|Φ(q)||q2|
.

Now dist(q,∂Ω∗
0 ) ∼ |Φ(q)| when q ∈ ∂Ω, therefore dist(q,∂Ω∗

0 ) & |Φ(q)|, and because

Q = |q1|+ |q1|1+η+|q2|2k ≥ |q1|+ |q2|2k ≥ |Φ(q)|
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we finally get that

|u(q)|. |Φ(q)|−η−δ|Φ(q)|δ
|q2||Φ(q)|

≤ 1

|q2||Φ(q)|1+η .

Now when we have a point z is away from ∂Ω, we can then still fit a polidisk of size

|Φ(z)||z2| inΩ∗∗
0 as by the discussion preceding the Proposition. The estimates for u

then also hold for z ∈Ωwhen ||z|| <α, so

|uz2| ≤ C

|Φ(z)|1+η .

Remark 3.4.2. We cannot achieve better estimate than |Φ|1+η. There will always be

a loss of η coming from the weighted estimates in Lemma 3.3.1. This means that if

η−→ 0 the estimates blow up.

Using the pointwise estimates from Proposition 3.4.1 we then readily achieve point-

wise estimates for h1(p, z) and h2(p, z). We see that for z ∈ Ω with ||z − p|| < α and

p ∈ ∂Ω

|h1(p, z)| = | 1

Φ
−u(p2 − z2)|

≤ 1

|Φ| + |u(p2 − z2)|

.
1

|Φ|1+η (3.18)

|h2(p, z)| = |−A(p2 − z2)k−1(p2 − z2)
k

Φ
−u(p1 − z1)|

.
|p2 − z2|2k−1

|Φ|1+η
.

1

|Φ|1+η . (3.19)

by recalling that |p1−z1| ∼ |p2−z2|2k inΩ∗
0 . When ||z|| >α the functions are bounded,
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which follow from the fact that h1 and h2 are holomorphic inΩ so we can apply stan-

dard Cauchy estimates to u onΩ∗
0 .

We also seek estimates for the derivatives d(h1) and d(h2). Because the functions h1

and h2 are holomorphic, we apply Cauchy estimates on the fitted polidisk to see that

∣∣∣∂h1

∂z1

∣∣∣≤ 1

2π

∫
|ξ1−z1|=β|Φ|

∣∣∣ h1(ξ)

(ξ1 − z1)2
dξ1

∣∣∣
≤ sup |h1|

β|Φ| ,∣∣∣∂h1

∂z2

∣∣∣≤ 1

2π

∫
|ξ2−z2|= 1

2 |p2−z2|

∣∣∣ h1(ξ)

(ξ2 − z2)2
dξ2

∣∣∣
≤ 2sup |h1|

|p2 − z2|
.

This readily implies that

|d(h1)|. 1

|Φ|2+η +
1

|z2||Φ|1+η
. (3.20)

The same argument holds for h2 since |p2 − z2|2k−1 is bounded inΩ∗
p , thus

|d(h2)|. 1

|Φ|2+η +
1

|z2||Φ|1+η
. (3.21)

3.5 Constructing an Integral Kernel

To prove the main Theorem we want estimates which are smooth in the boundary

variable. The functions h j are dependent on solving ∂u = ω, so the smoothness in-

volves checking the smoothness of Hörmander’s solution. We bypass this problem

by showing that the functions can be replaced with similar functions which depend

smoothly on the boundary variable.

Similarly to [9] we will create the integral kernel on a smaller domain Ω−ε ⊂ Ω to

ensure the functions h j depend smoothly on the boundary variable. As we have es-
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timated and constructed our h j ’s locally we will thereafter use a partition of unity to

glue together a solution operator onΩ−ε.

Proposition 3.5.1. Let p ∈ ∂Ω. Then there is an open neighborhood U of p and func-

tions h̃1(ζ, z) and h̃2(ζ, z) on (U ∩∂Ω)×Ω−ε which are smooth in ζ, holomorphic in z

which satisfies

h̃1(ζ, z)(ζ1 − z1)+ h̃2(ζ, z)(ζ2 − z2) ≡ 1,

and when ||ζ− z|| <α there is a constant Cη so that

|h̃ j (ζ, z)| ≤ Cη

|Φ(ζ, z)|1+η (3.22)

|dh̃ j (ζ, z)| ≤ Cη

|Φ(ζ, z)|2+η +
Cη

|ζ2 − z2||Φ(ζ, z)|1+η (3.23)

for j = 1,2.

When ||ζ− z|| ≥α, the functions h̃ j (ζ, z) and dh̃ j are bounded for j = 1,2.

Ω∗
p

Ω−ε

p

Figure 3.3: Visualization ofΩ−ε.

Proof. Fix a point p ∈ ∂Ω and choose a small ε> 0. In the same manner as in Chapter
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2 we set with out loss of generality p = 0 and define for a neighborhood W of 0

W ∩Ω−ε = {z ∈C2 : ρ(z) <−ε}.

This is still pseudoconvex if ε is sufficiently small and we haveΩ−ε ⊂⊂Ω.

We have the pointwise holomorphic solutions h1(p, z) and h2(p, z) to the Cauchy-

Fantappiè equation for p ∈ ∂Ω and z ∈Ω with estimates in p − z with (p, z) ∈ ∂Ω×Ω.

We now show these functions can be translated to smooth estimates on ∂Ω×Ω−ε. We

defineΨ : ∂Ω×Ω−ε −→C by

Ψ(ζ, z) = h1(p, z)(ζ1 − z1)+h2(p, z)(ζ2 − z2).

This is continuous in the ζ-variable, holomorphic in the z-variable and withΨ(p, z) ≡
1. By continuity in ζwe can find a neighborhood U of p so that |Ψ(ζ, z)| ≥ 1

2 on (U (p)∩
∂Ω)×Ω−ε. We can so define a new function

h̃ j (ζ, z) = h j (p, z)

Ψ(ζ, z)

for j = 1,2. Then h̃ is smooth in ζ, holomorphic in z and h̃1(ζ, z)(ζ1−z1)+h̃2(ζ, z)(ζ2−
z2) ≡ 1 on (U (p)∩∂Ω)×Ω−ε. Each of the functions h̃ j (ζ, z) will satisfy the bound

|h̃ j (ζ, z)| ≤ 2|h j (p, z)|.

From (3.18) and (3.19) we know the functions are then pointwise bounded by

|h̃1(ζ, z)|. 1

|Φ(p, z)|1+η

|h̃2(ζ, z)|. |p2 − z2|2k−1

|Φ(p, z)|1+η

when ||p − z|| < α. By possibly shrinking U further to ensure that ||p − ζ|| ≤ ||p − z||
we may assume that ||p − z|| ≥ 1

2 ||ζ− z|| because

||ζ− z|| ≤ ||p −ζ||+ ||p − z|| ≤ 2||p − z||.
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In this neighborhood we also have that |Φ(p, z)|& |Φ(ζ, z)| as seen by

2|Φ(p, z)| ≥ |ReΦ|+ |ImΦ|
= |− |Re(p1 − z1)|− A|p2 − z2|2k |+ |Im(p2 − z2)|
= |Re(p1 − z1)|+ |Im(p2 − z2)|+ A|p2 − z2|2k

≥ |p1 − z1|+ A|p2 − z2|2k

≥ 1

2
|ζ1 − z1|+ A

22k
|ζ2 − z2|2k

& |Φ(ζ, z)|

so the estimates then become

|h̃1(ζ, z)|. 1

|Φ(ζ, z)| +
1

|Φ(ζ, z)|1+η

.
1

|Φ(ζ, z)|1+η (3.24)

|h̃2(ζ, z)|. |ζ2 − z2|2k−1

|Φ(ζ, z)| + |ζ2 − z2|2k−1

|Φ(ζ, z)|1+η

.
1

|Φ(ζ, z)|1+η . (3.25)

when ζ ∈ U (p), z ∈ Ω−ε and ||ζ− z|| < α. The smooth estimates for the differentials

dh j are obtained in the same manner.

To get a solution operator on the entirety of the domain we need to glue these local

constructions together. Our domain is bounded, meaning that the boundary ∂Ω is

compact. For each p ∈ ∂Ω we know that there is an open neighborhood V of p so

that Proposition 3.5.1 holds. Then letting {Vp }p∈∂Ω be an open cover of the boundary

∂Ωwe use the compactness to reduce to a finite subcover Vp1 , ...,Vpm .

To glue these functions together we will use a partition of unity. Therefore choose

{χ j (ζ)}m
j=1 to be a family of functions with each χ j ∈ C∞(Vp j ), where 0 ≤ χ j (ζ) ≤ 1 so

that
∑m

j=1χ j (ζ) ≡ 1 on ∂Ω. This is a partition of unity subordinate to the finite cover
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{Vp j }m
j=1. Note that Proposition 3.5.1 hold for each of the sets Vp j . We set

ĥ1 =
m∑

j=1
χ j (ζ)h̃1,p j (ζ, z),

ĥ2 =
m∑

j=1
χ j (ζ)h̃2,p j (ζ, z).

These new functions satisfy the Cauchy-Fantappiè equation on ∂Ω as seen by

ĥ1(ζ, z)(ζ1 − z1)+ ĥ2(ζ, z) =
m∑

j=1
χ j (ζ)h̃1,q j (ζ1 − z1)+

m∑
j=1

χ j (ζ)h̃2,q j (ζ2 − z2)

=
m∑

j=1
χ j (ζ)

(
h̃1,q j (ζ, z)(ζ1 − z1)+ h̃2,q j (ζ, z)(ζ2 − z2)

)≡ 1.

Recall from Theorem 1.1.7 the Henkin integral formula

HΩ f = cn

∫
∂Ω×[0,1]

f (ζ)∧η(µ)∧ω(ζ)− cn

∫
Ω

f (ζ)

||ζ− z||2n
η(ζ− z)∧ω(ζ).

Using the now constructed functions ĥ j we set

µ̂ j =
ζ j − z j

||ζ− z||2λ+ ĥ j (1−λ)

and because ĥ1 and ĥ2 satisfy the Cauchy-Fantappiè equation, we then get an inte-

gral operator H (ε)
Ω on ∂Ω×Ω−ε which maps ∂-closed (0,1)-forms f onΩ into functions

onΩ−ε. This operator is given by the modified Henkin formula

H (ε)
Ω f (z) = c2

∫
∂Ω×[0,1]

f (ζ)∧η(µ̂)∧ω(ζ)− c2

∫
Ω

f (ζ)

||ζ− z||4η(ζ− z)∧ω(ζ). (3.26)

Note that the estimates from Proposition 3.5.1 still hold locally which we will use

when finding estimates for the operator
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3.6 Hölder Estimates

Now that we have constructed the solution operator H (ε)
Ω which maps ∂-closed (0,1)-

forms on Ω to functions on Ω−ε with ∂(H (ε)
Ω f ) = f on Ω−ε. We have yet to prove

any estimates for this operator. To do this we need to use the local estimates which

we found in Proposition 3.5.1.What we will show now are Hölder estimates of order

1/(2k)−η.

Theorem 3.6.1. Let Ω ⊂ C2 be a pseudoconvex bounded domain with real analytic

boundary of D’Angelo finite type 2k. Then for every ∂-closed (0,1)-form f onΩ and for

each η> 0 there is a constant CΩ,η > 0 such that one has

|(H (ε)
Ω f )(ξ1)− (H (ε)

Ω f )(ξ2)| ≤CΩ,η|| f ||∞|ξ1 −ξ2|
1

2k −η

for all sufficiently small ε> 0 and all ξ1,ξ2 ∈Ω−ε.

The proof requires us to estimate the integrals in the operator H (ε)
Ω . However note

that the integral over Ω is unchanged from the that in the Henkin integral formula.

The Hölder estimates then must arise from the integral over the boundary. This is as

expected in that the local estimates reflect the type of the boundary.

Further we define

B (ε)
Ω ( f ) := c2

∫
∂Ω×[0,1]

f (ζ)∧η(µ(ε))∧ω(ζ),

I (ε)
Ω ( f ) := c2

∫
Ω

f (ζ)

||ζ− z||4η(ζ− z)∧ω(ζ).

Thus we can write H (ε)
Ω f = B (ε)

Ω f − I (ε)
Ω f . If we then show that both B (ε)

Ω f and I (ε)
Ω f

satisfy Hölder estimates of order 1/(2k)−η the theorem will follow easily.
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First we show that I (ε)
Ω satisfies

|(I (ε)
Ω f )(ξ1)− (I (ε)

Ω f )(ξ2)| ≤CΩ,η|| f ||∞|ξ1 −ξ2|
1

2k −η (3.27)

for for all sufficiently small ε> 0 and all ξ1,ξ2 ∈Ω−ε.

We know that I (ε)
Ω f satisfies Hölder estimates of order 1/2 by the properties of the

Henkin integral kernel [6]. This means I (ε)
Ω will also satisfy estimates of lower order,

in particular of order 1/2k − η. This follows from embedding of Hölder spaces on

bounded sets.

Next we want to show that

|(B (ε)
Ω f )(ξ1)− (B (ε)

Ω f )(ξ2)| ≤CΩ,η|| f ||∞|ξ1 −ξ2|
1

2k −η (3.28)

for for all sufficiently small ε> 0 and all ξ1,ξ2 ∈Ω−ε.

To see this we apply a known result from real function theory as stated and proved in

chapter V.3.1 of [8].

Lemma 3.6.2. Let D ⊂⊂ RN be a bounded domain with C 1 boundary. Suppose g ∈
C 1(D) and that for some 0 <α< 1 there is a constant c so that

|d g (x)| ≤ c ·dist(x,∂D)α−1,

for x ∈ D. Then there is a constant C so that

|g (x)− g (y)| ≤C ||x − y ||α

for x, y ∈ D.

Proof. Let δ > 0 and define the set Uδ = {z ∈RN : 0 < z1 < δ, and ||z|| < δ}. Suppose
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that |d g (z)| ≤ czα−1
1 . For any x, y ∈Uδ/2 we see that

|g (x1, x)− g (x1 +||x − y ||, x)| ≤
∫ x1+||x−y ||

x1

∣∣∣ ∂g

∂x1
(t , x)

∣∣∣d t

≤ c
∫ x1+||x−y ||

x1

|d g (t , x)|d t

≤C c
∫ x1+||x−y ||

x1

tα−1d t

≤C c||x − y ||α

By the Mean Value Theorem we see that

|g (x1 +||x − y ||, x)− g (y1 +||x − y ||, y)| ≤ |d g (z)| ||x − y ||
≤ czα−1

1 ||x − y ||
≤ c||x − y ||α−1||x − y ||.

Then

|g (x)− g (y)| ≤ |g (x1, x)− g (x1 +||x − y ||, x)|
+ |g (x1 +||x − y ||, x)− g (y1 +||x − y ||, x)|
+ |g (y1 +||x − y ||, y)− g (y1, y)|
≤ 3C c||x − y ||α

for all x, y ∈Uδ/2 with |x − y | < δ/2.

Now we translate the domain so that 0 ∈ ∂D and change coordinates so that T0(∂D) =
{x ∈ RN : x1 = 0}. Then in a neighborhood Uδ around 0 we have dist(x,∂D)α−1 ≤
|x1|α−1 for all x ∈U ∩D . This gives

|d g (x)| ≤ cxα−1
1

and we apply the local result giving that |g (x)− g (y)|. ||x − y ||α when ||x − y || < δ/2.

By compactness of ∂D we can reduce an open cover of sets {Vδ/2,ν}ν∈I to a finite cover
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of open sets Vδ/2 which cover ∂D . Then we get that |g (x)− g (y)| . ||x − y ||α when

x, y ∈⋃
i Vδ/2,i with ||x − y || < r where r > 0 and depends on α and D .

Define the compact set E = {x ∈ D : dist(x,∂D) ≥ r } and so

|g (x)− g (y)| ≤C ||x − y || <∞

when x, y ∈ E . Therefore when ||x − y || ≥ r we can write

|g (x)− g (y)|
||x − y ||γ ≤ |g (x)− g (y)|

r γ
<∞

and we are done.

To apply Lemma 3.6.2 we want to fix a point z ∈Ω−ε and show that∣∣∣dz

(∫
∂Ω×[0,1]

f (ζ)∧η(
µ̂
)∧ω(ζ)

)∣∣∣. dist(z,∂Ω)
1

2k −η−1. (3.29)

Recall the functions

η(ξ) =
n∑

j=1
(−1) j+1ξ j dξ1 ∧ . . .∧∧dξ j−1 ∧dξ j+1 ∧ . . .∧dξn ,

µ̂ j =
ζ j − z j

||ζ− z||2λ+ ĥ j (1−λ).

We see that

d µ̂ j = ∂

∂λ
µ̂ j dλ+∑

i

∂

∂ζi

µ̂ j dζi .
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We can then express

η(µ̂) =
[( ζ1 − z1

||ζ− z||2λ+ ĥ1(1−λ)
)( ζ2 − z2

||ζ− z||2 − ĥ2

)
−

( ζ2 − z2

||ζ− z||2λ+ ĥ2(1−λ)
)( ζ1 − z1

||ζ− z||2 − ĥ1

)]
=

( ζ2 − z2

||ζ− z||2 ĥ1 − ζ1 − z1

||ζ− z||2 ĥ2

)
dλ. (3.30)

We see that only terms containing dλ appear in the final expression. The reason for

this is that the integral cannot support the added differentials dζ j .

Differentiating under the integral sign we see that B (ε)
Ω ( f ) becomes

∣∣∣∫
∂Ω

f (ζ)∧dz

( ζ2 − z2

||ζ− z||2 ĥ1 − ζ1 − z1

||ζ− z||2 ĥ2

)
∧ω(ζ)

∣∣∣
≤ || f ||∞

∫
∂Ω

∣∣∣dz

( ζ2 − z2

||ζ− z||2 ĥ1

)∣∣∣+ ∣∣∣dz

(
g
ζ1 − z1

||ζ− z||2 ĥ2

)∣∣∣dS(ζ).

Apply the quotient rule to see that (setting (w, z) = (ζ1 − z1,ζ2 − z2) to shorten the

expression)

d
( z

||ζ− z||2 ĥ1

)
= d(zĥ1)||ζ− z||2 − zĥ1d(||ζ− z||2)

||ζ− z||4

= 1

||ζ− z||4 ((ĥ1d z + zdĥ1)||ζ− z||2 − zĥ1(zd z + zd z +wd w +wd w)),

d
( w

||ζ− z||2 ĥ2

)
= 1

||ζ− z||4 ((ĥ2d w +wdĥ2)||ζ− z||2 +wĥ2(zd z + zd z +wd w +wd w)).

Taking the norm we get an estimate

∣∣∣d(
z

||ζ− z||2 ĥ1)
∣∣∣≤ 1

||ζ− z||4
((|ĥ1|+ |zdĥ1|

)||ζ− z||2 +|ĥ1|
(
2|z|2 +2|zw |)).

Using that |z| ≤ ||ζ− z|| and |w | ≤ ||ζ− z|| we can simplify the expression to

∣∣∣d( zĥ1

||ζ− z||2
)∣∣∣≤ |ĥ1|

||ζ− z||2 + |z||dĥ1|
||ζ− z||2 + 4|ĥ1|

||ζ− z||2 (3.31)
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and similarly we have

∣∣∣d( wĥ2

||ζ− z||2
)∣∣∣≤ |ĥ2|

||ζ− z||2 + |w ||dĥ2|
||ζ− z||2 + 4|ĥ2|

||ζ− z||2 . (3.32)

We will use these estimates to show (3.29). We will consider the integral in two cases:

when ||ζ− z|| <α and ||ζ− z|| ≥α as in Proposition 3.5.1.

Lemma 3.6.3. Fix z ∈Ω−ε, then the estimate

∫
∂Ω∩{||ζ−z||≥α}

∣∣∣dz

( ζ2 − z2

||ζ− z||2 ĥ1 − ζ1 − z1

||ζ− z||2 ĥ2

)
dS(ζ)

∣∣∣≤CΩ,ηdist(z,∂Ω)
1

2k −η−1 (3.33)

holds.

Proof. When ||ζ−z|| ≥αwe have from Proposition 3.5.1 that ĥ j and d(ĥ j ) are bounded

functions. Hence

∣∣∣d( (ζ2 − z2)ĥ1

||ζ− z||2
)∣∣∣+ ∣∣∣d( (ζ1 − z1)ĥ2

||ζ− z||2
)∣∣∣. 1

||ζ− z||2 . (3.34)

Since ||ζ− z|| ≥ dist(z,∂Ω) and ||ζ− z|| ≥α we can rewrite

||ζ− z||−2 = ||ζ− z|| 1
2k −η−1

||ζ− z||− 1
2k +η−1

≤ dist(z,∂Ω)
1

2k −η−1

α− 1
2k +η−1

and therefore ∫
∂Ω∩{||ζ−z||≥α}

1

||ζ− z||2 dS(ζ) ≤CΩ,ηdist(z,∂Ω)
1

2k −η−1 (3.35)
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Lemma 3.6.4. Fix z ∈Ω−ε, then the estimate

∫
∂Ω∩{||ζ−z||<α}

∣∣∣dz

( ζ2 − z2

||ζ− z||2 ĥ1 − ζ1 − z1

||ζ− z||2 ĥ2

)
dS(ζ)

∣∣∣≤CΩ,ηdist(z,∂Ω)
1

2k −η−1

holds.

To show this we want to use a local coordinate system to integrate over the boundary.

The coordinate system will be such that we can use ImΦ and the defining function ρ

as coordinates. This will be useful in coming estimates.

Lemma 3.6.5. There is a constant γ> 0 so that for each z ∈Ω−ε there is a C 1 coordinate

system in B(z,γ) with

x1 = ρ(ζ)+|ρ(z)|
x2 = ImΦ(ζ, z)

x3 = Re (ζ2 − z2)

x4 = Im (ζ2 − z2).

Proof. Fix z ∈ ∂Ω. As in (2.1) from section 2.2 we have a coordinate change so that

∂ρ

∂u
= 1,

∂ρ

∂v
= 0 and

∂ρ

∂z
= 0.

Notice then that

∂ρ

∂ζ1
= ∂ρ

∂u

∂u

∂ζ1
= 1

2
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as 2u = ζ1 − z1 +ζ1 − z1 and therefore

1

2
= ∂ρ

∂ζ1
= ∂ρ

∂z1

∂z1

∂ζ1
= 1

2

∂z1

∂ζ1
.

Similarly we see that ∂ρ
∂ζ2

= 0. Then

d x1 ∧d x2 = dρ(ζ)∧dIm(ζ1 − z1)

= ∂ρ

∂ζ1
dζ1 ∧ (∂+∂)(

w −w

2
)

= 1

4
dζ1 ∧dζ1 6= 0

The result holds now for the fixed z as follows from the inverse function theorem, so

we can use {x1, x2, x3, x4} as local coordinates in a neighborhood around z.

Proof of Lemma 3.6.4. When ||ζ− z|| <α we have the local estimates

|ĥ j (ζ, z)| ≤ Cη

|Φ(ζ, z)|1+η

|dĥ j (ζ, z)| ≤ Cη

|Φ(ζ, z)|2+η +
Cη

|ζ2 − z2||Φ(ζ, z)|1+η

from Proposition 3.5.1. This then gives that

∣∣∣d( (ζ2 − z2)ĥ1

||ζ− z||2
)∣∣∣. 1

||ζ− z||2|Φ|1+η +
|ζ2 − z2|
||ζ− z||2

( 1

|Φ|2+η +
1

|ζ2 − z2||Φ|1+η
)
+ 1

||ζ− z||2|Φ|1+η

.
1

||ζ− z||2|Φ|1+η +
1

||ζ− z|||Φ|2+η .

Near each boundary point we have that |Φ| ≤ |ζ1 − z1|+ A|ζ2 − z2|2k ≤ ||ζ− z||+ A||ζ−
z||2k . ||ζ− z|| and so

1

||ζ− z||2|Φ|1+η = |Φ|
||ζ− z||2|Φ|2+η

.
1

||ζ− z|| |Φ|2+η .
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Likewise we see that

∣∣∣d( (ζ1 − z1)ĥ2

||ζ− z||2
)∣∣∣. 1

||ζ− z|| |Φ|2+η .

Then we get the bound ∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z|| |Φ|2+ηdS(ζ) (3.36)

We know that |Φ| ≥ dist(z,∂Ω), so |Φ|η ≥ dist(z,∂Ω)η and∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z|| |Φ|2+ηdS(ζ)| ≤ 1

dist(z,∂Ω)η

∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z|| |Φ|2 dS(ζ).

From the local bumping we know that the defining function for the bumped domain

is smaller than the defining function ρ for Ω. So we have Re(ζ1 − z1)+ P̃2k < ρ < 0.

Rearranging we get that Re(ζ1−z1) ≤ ρ− P̃2k . ρ−|ζ2−z2|2k . Now this means that we

can use the local defining function in our expression because

|Re(ζ1 − z1)− A|ζ2 − z2|2k | ≥ |ρ− (c + A)|ζ2 − z2|2k |.

and as ρ < 0 we have

|ρ− (A+ c)|ζ2 − z2|2k | = ∣∣−1(|ρ|+ (A+ c)|ζ2 − z2|2k )
∣∣∼ |ρ|+ |ζ2 − z2|2k .

What we seek to compute is then∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z||(|ρ|+ |ζ2 − z2|2k
)2 dS(ζ).

We use the local coordinates form Lemma 3.6.5. We choose an R, dependent on α

andΩ, such that

∂Ω∩ {||ζ− z|| <α} ⊆ {x1 = |ρ(z)|, |x2|, |x3|, |x4| ≤ R}∣∣∣∣∣∣dS(ζ)
∣∣
∂Ω∩{||ζ−z||<α}

∣∣∣∣∣∣. ||d x2 ∧d x3 ∧d x4||.
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This means we can bound the integral in terms of the new local coordinate system

and the defining function forΩ and the inequality∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z||(|ρ|+ |ζ2 − z2|2k
)2 dS(ζ)

.

∫
0≤x2,x3,x4≤R

1

(|ρ|+ A(x2
3 +x2

4)k +|x2|)2
√

x2
3 +x2

4

d x2d x3d x4.

holds. Integrating up x2 gives us∫
0≤x3,x4≤R

( 1

(|ρ|+ A(x2
3 +x2

4)k )
− 1

(|ρ|+ A(x2
3 +x2

4)k +R)

) 1√
x2

3 +x2
4

d x3d x4

≤
∫ ( 1

|ρ|+ A(x2
3 +x2

4)k

) 1√
x2

3 +x2
4

d x3d x4.

Introducing polar coordinates for x3 and x4 we can further increase the bound and

thus we need to consider ∫
1

|ρ|+ Ar 2k
dr.

Using a substitution r = |ρ| 1
2k s we get

1

|ρ|1− 1
2k

∫ R|ρ|−1/(2k)

0

1

1+ s2k
d s

and since the integral is finite we have the following bound∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z|| |Φ|2 dS(ζ) . |ρ(z)| 1
2k −1.

Because |ρ| ∼ dist(z,∂Ω) we see that∫
∂Ω∩{||ζ−z||<α}

1

||ζ− z|| |Φ|2+ηdS(ζ) . dist(z,∂Ω)
1

2k −η−1

and Lemma 3.6.4 holds.
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Now proving that B (ε)
Ω satisfies Hölder estimates only requires us to apply our Lem-

mas and proving Theorem 3.6.1 is just combing the estimates for B (ε)
Ω and I (ε)

Ω .

Proof of Theorem 3.6.1. We have seen that we have the inequality

|d(B (ε)
Ω f )(z)| ≤ || f ||∞

∫
∂Ω

∣∣∣dz

( ζ2 − z2

||ζ− z||2 ĥ1

)∣∣∣+ ∣∣∣dz

( ζ1 − z1

||ζ− z||2 ĥ2

)∣∣∣dS(ζ).

Applying Lemmas 3.6.3 and 3.6.4 we further see that

|d(B (ε)
Ω f )(z)|| ≤ || f ||∞CΩ,ηdist(z,∂Ω)

1
2k −η−1

and applying Lemma 3.6.2 and we get that

|(B (ε)
Ω f )(ξ1)− (B (ε)

Ω f )(ξ2)| ≤ || f ||∞CΩ,η|ξ1 −ξ2|
1

2k −η.

Now Theorem 3.6.1 follow from (3.27) and (3.28) since

|(BΩ− IΩ)( f )(ξ1)− (BΩ− IΩ)( f )(ξ2)| ≤ || f ||∞CΩ,η|ξ1 −ξ2|
1

2k −η.



Chapter 4

The Main Result

This chapter will prove the Main Theorem by extending the integral kernel to entire

domainΩ.

58
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4.1 Proof of Main Theorem

We will now extend the solution operator from Theorem 3.6.1 to a solution operator

which yields functions defined on Ω which also achieves Hölder estimates of order

1/(2k)−η and sup-norm estimates. Recall first the Main Theorem.

Main Theorem. Let Ω ⊂ C2 be a bounded pseudoconvex domain with real analytic

boundary of D’Angelo finite type 2k and let f be a ∂-closed (0,1)-form onΩ. Then there

exists a solution u of ∂u = f onΩ such that

||u||∞ ≤CΩ|| f ||∞

where CΩ is independent of f . Furthermore for every η > 0 there is a solution u(η) as

above that satisfy ( 1
2k −η)-Hölder estimates with constant only depending onΩ and η.

We will construct a sequence of functions uk which will be solutions to ∂uk = f on

each Ω−εk and show that we can obtain u as a limit of a convergent sequence. We

will create a family of functions and find the sequence from there. We will use the

Arzela-Ascoli theorem to then show convergence.

Theorem 4.1.1 (Arzela-Ascoli Theorem). If K is a compact metric space and { fi } is

a sequence of complex valued functions which is uniformly bounded and uniformly

equicontinuous on K , then { fi } has a uniformly convergent subsequence.

We also want to define what it means to exhaustΩ by compacts.

Definition 4.1.2. We say a topological space M can be exhausted by compacts if there
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is a nested sequence of compact sets K1 ⊆ K2 ⊆ . . . such that Ki ⊆ int(Ki+1) for each i

and M =⋃∞
i=1 Ki .

We need to define what it means to be equicontinuous.

Definition 4.1.3. Let Γ = { fi : Ω −→ C}∈I be a family of functions. We say that the

family is uniformly equicontinuous if for every ε > 0 there exists a δ > 0 such that

when z, w ∈Ωwith |z −w | < δ, | f (z)− f (w)| < ε for all f ∈ Γ.

First we show that solutions arising from H (ε)
Ω equicontinuous. Let ν > 0, then there

is a δ and ξ1,ξ2 ∈Ω−ε so that when |ξ1 −ξ2| < δ, then

|u(η)
m (ξ1)−u(η)

m (ξ2)| ≤CΩ,η|| f ||∞|ξ1 −ξ2|
1

2k −η < ν

for all u(η)
m ∈ {u(η)

k |k ≥ 1} by choosing δ= ν
η− 1

2k

|| f ||∞CΩ,η
.

Let {εk }∞k=1 be a sequence of positive numbers so that εk+1 < εk . Then as k −→∞ we

have that εk −→ 0. Let further f be ∂-closed (0,1)-form on Ω and set u(η)
k = H (εk )

Ω f

which solves ∂u(η)
k = f on Ωεk . The family of functions {u(η)

k :Ωεk −→C} is uniformly

bounded and uniformly equicontinuous functions onΩεk .

Further let {Ωεk }∞k=1 be sequence of compact domains dependent on the sequence

{εk }∞k=1. This sequence is nested since εk+1 < εk and also Ωεi ⊆Ωεi+1 . The family of

functions {uk |k ≥ m} is normal onΩεm from the Arzela-Ascoli Theorem. We therefore

can find a subsequence {uk j }∞j=1 which converges uniformly to a function u onΩεk j
.

For an arbitrary compact K ⊂ Ω since {Ωεk } is a nested open cover of Ω, some Ωεm

must contain K . This is because the sequence exhaust Ω. Then since u(η)
m has a

convergent subsequence in Ωεm , the same subsequence converges in K . This then

implies that there exists a a u(η) onΩwhich then satisfies ∂u(η) = f .
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On an arbitrary compact K , we can then find a subsequence converging to u(η). Then

the limit u must also satisfy ∂u = f because of

|∂u − f | = |∂(u −uk j )+∂uk j − f | ≤ |∂(u −uk j )|+ |∂uk j − f | −→ 0+0.

and

|u(η)(z)−u(η)(w)| = |u(η)(z)−u(η)(w)+u(η)
k j

(z)−u(η)
k j

(z)+u(η)
k j

(w)−u(η)
k j

(w)|
≤ |u(η)(z)−u(η)

k j
(z)|+ |u(η)

k j
(w)−u(η)(w)|+ |u(η)

k j
(z)−u(η)

k j
(w)|

−→ 0+0+CΩ,η|| f ||∞|z −w | 1
2k −η

Sup-norm estimates now follow from the Hölder continuity. If the domain of a Hölder

continuous function is a bounded subset of Rn , then the function is also bounded.

Proposition 4.1.4. LetΩ⊂Cn be a bounded domain. If a function f :Ω−→C satisfies

| f (z)− f (w)| ≤ c|z −w |α

for an α ∈ (0,1) and all z, w ∈Ω, then f is bounded.

Proof. Suppose f is unbounded. Then we can find a sequence {zn}∞n=1 ⊂ Ω so that

| f (zn)| > n for all n. AsΩ is a bounded domain, the sequence is bounded. Then there

exists a convergent subsequence {znk }∞k=1 ⊂ {zn}∞n=1 satisfying | f (znk )| > nk . Now

since

| f (zn j )− f (zni )| ≤ c|zn j − zni |α

and {znk }∞k=1 is a Cauchy sequence we get that the sequence { f (znk )}∞k=1 is a Cauchy

sequence. Cauchy sequences are bounded, however since we supposed f unbounded

we have that | f (znk )| > nk for all k. This is a contradiction.
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Applying this result to our solution u(η) we immediately see that

||u||∞ ≤C || f ||∞

and we have proved the main theorem.
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5.1 Conclusion

We have proved that we can modify Henkins integral formula to become a solution

operator for ∂ on bounded weakly-pseudoconvex domains with real analytic bound-

ary of finite type in C2. This operator satisfied Hölder estimates reflecting the type

of the boundary. We did this by showing that for bounded domains of finite type in

C2 we can always find a local bumping to type of the domain around any bound-

ary point. Using then an appropriate choice of smooth solutions to the Cauchy-

Fantappiè equation we used Hörmanders solution of ∂ to modify them into holo-

morphic functions with weighted L2 estimates also satisfying the Cauchy-Fantappiè

equation. Selecting an appropriate weight and using Cauchy estimates we achieved

pointwise estimates for h1 and h2.

On a slightly smaller domain Ω−ε we replace the functions with functions where the

local estimates are smooth on the boundary. Patching these together we obtained

an integral formula which satisfied Hölder estimates which reflects the type at the

boundary, with some small loss coming from the weighted estimates.

Further we extended the solution operator to the entire domain Ω using exhaustion

of compacts, the Arzela-Ascoli and a normal families argument.

5.2 Future Work

In this thesis we have shown the main theorem when we have a pseudoconvex do-

main of finite type in C2. Naturally one seeks solutions when domains lie in Cn with

n ≥ 3. The challenge lies in the geometric behavior of the boundary. This is easier for

domains lying C2 as the only complex curves which are tangent to the boundary is C.

Moving up in dimension there exists possibilities for curves touching to much higher

order, meaning the type might change depending on direction. Finding a bumping

to type of the domain and a corresponding support function is then a central ques-

tion. For similar domains in C3 the paper this thesis is based on [5] proves the same
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result.
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