
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Andreas Bjelland Berg

Combining Gmsh and MRST

Developing software for more efficient grid
creation in two dimensions

Bachelor’s thesis in Mathematical Sciences
Supervisor: Knut-Andreas Lie
Co-supervisor: Øystein Klemetsdal, August Johansson
June 2022

Ba
ch

el
or

’s
th

es
is

Andreas Bjelland Berg

Combining Gmsh and MRST

Developing software for more efficient grid creation
in two dimensions

Bachelor’s thesis in Mathematical Sciences
Supervisor: Knut-Andreas Lie
Co-supervisor: Øystein Klemetsdal, August Johansson
June 2022

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Mathematical Sciences

Abstract

Creating an accurate, discrete grid representation of a real-life, continuous domain
can be challenging. This is especially true when trying to model geological forma-
tions, as they tend to be highly heterogeneous, often with crossing faults or wells.
Accurate grids are, however, crucial for creating realistic simulations. This drives
a need for software that can quickly and efficiently generate grids conforming to
constraints of the real-life domain.

In this thesis, I discuss theory behind existing methods for creating grids, including
a discussion of triangulations and their relationship to grids. I then present two
existing tools for creating grids – Gmsh and MRST, and how they can be used.
Finally, I introduce a new software module for combining the two – gmsh4mrst, and
discuss how it can be used, as well as how it can be developed further in the future.

This thesis was written in collaboration with SINTEF Digital.

Oppsummering

Det kan være svært utfordrende å skape presise, nøyaktige grid-representasjoner av
virkelige, kontinuerlige domener. Dette er spesielt sant n̊ar det kommer til model-
lering av geologiske formasjoner, ettersom de har en tendens til å være svært het-
erogene, ofte med kryssende forkastninger og brønner. Nøyaktige representasjoner
er likevel kritiske for å skape realistiske simuleringer. Dette skaper et behov for
programvare som kjapt og effektivt kan skape grids som representerer det virkelige
domenet.

I denne oppgaven diskuterer jeg teorien bak eksisterende metoder for å skape grids,
inkludert en diskusjon om trianguleringer og deres relasjon til grids. Jeg presenterer
videre to eksisterende verktøy for å skape grids – Gmsh og MRST, og hvordan
de kan brukes per dags dato. Avslutningsvis introduserer jeg et nytt program for
å kombinere disse to – gmsh4mrst, og diskuterer hvordan dette kan brukes, samt
hvordan det kan videreutvikles i fremtiden.

Denne oppgaven ble skrevet i samarbeid med SINTEF Digital.

i

Table of Contents

Abstract i

Oppsummering i

List of Figures iv

List of Tables v

List of Algorithms v

List of Code Segments v

1 Introduction 1

2 Theory 2

2.1 Delaunay triangulation . 3

2.2 Voronoi diagrams . 5

2.2.1 Relationship between Delaunay and Voronoi 6

2.2.2 Clipped Voronoi diagrams . 7

2.2.3 Centroidal Voronoi diagrams 7

2.2.4 Optimal Delaunay triangulation 8

2.3 PEBI grids . 9

2.4 Transfinite grids . 11

3 Software 11

3.1 MRST . 11

3.1.1 The UPR Module . 12

3.2 Gmsh . 16

3.2.1 Gmsh modules . 16

3.2.2 Examples of Gmsh . 20

3.2.3 Limitations of Gmsh . 22

ii

4 Combining MRST and Gmsh 23

4.1 gmshToMrst . 23

4.2 gmsh4mrst . 24

4.2.1 Installation of gmsh4mrst . 24

4.2.2 Features of gmsh4mrst . 24

4.2.3 Using gmsh4mrst in Python 25

4.2.4 Using gmsh4mrst in MATLAB 25

4.2.5 Mechanics of gmsh4mrst . 27

4.2.6 Limitations of gmsh4mrst . 31

4.2.7 Examples of gmsh4mrst . 32

5 Future work 34

Bibliography 35

Appendix 37

A Gmsh examples . 37

B Parameters in gmsh4mrst . 42

B.1 Background grid refinement 42

B.2 Constraint creation in pebiGrid2DGmsh 43

B.3 Transfinite grid control . 44

B.4 Miscellaneous arguments . 45

C gmsh4mrst examples . 46

iii

List of Figures

1 Illustration of the first 4 simplices. 3

2 Example of a convex hull . 3

3 Example of triangulation . 4

4 Example of circumcircles . 4

5 Non-uniqueness of Delaunay triangulations 5

6 Illustration of flipping a common side to create Delaunay triangulations 5

7 Example of Voronoi diagrams . 6

8 Duality of Delaunay triangulations and Voronoi diagrams 7

9 Comparison of centroidal and non-centroidal Voronoi diagrams 8

10 Example of applying the optimal Delaunay algorithm on a point set . 10

11 Visualization of PEBI generation. 10

12 Examples of transfinite grids . 11

13 Example of protective sites in UPR. The magenta lines represent wells. 13

14 Output from Gmsh distance and threshold fields. 17

15 Illustration of the Gmsh threshold field. 18

16 Comparison of the Gmsh meshing algorithms 19

17 Simple square grid generated in Gmsh 21

18 Adjusted mesh size generated in Gmsh 21

19 Local patches of structured meshes generated in Gmsh 22

20 Misaligned constraints when converting triangulation to PEBI grid . . 23

21 Comparison of the Python methods implemented in gmsh4mrst . . . 26

22 Comparison of the MATLAB methods implemented in gmsh4mrst . . 28

23 Faults represented as transfinite grids. 29

24 Wells represented as transfinite grids. 30

25 Creating faults and wells in MATLAB 30

26 Mesh refinement in gmsh4mrst. 31

27 PEBI grid with complex domain, generated using gmsh4mrst 32

28 PEBI grid with intersecting constraints, generated using gmsh4mrst . 33

iv

29 PEBI grid with fine details, generated using gmsh4mrst 33

List of Tables

1 Arguments controlling background grid refinement in gmsh4mrst. . . 42

2 Arguments controlling constraint creation in pebiGrid2DGmsh. 43

3 Arguments controlling transfinite grid creation in gmsh4mrst. 44

4 Miscellaneous arguments in gmsh4mrst. 45

List of Algorithms

Algorithm 1: Lloyd’s method . 8

Algorithm 2: Optimal Delaunay triangulation 9

Algorithm 3: UPR Unstructured Gridding 15

List of Code Segments

Code Segment 1: Gmsh: Simple square mesh 37

Code Segment 2: Gmsh: Adjusting the mesh size field 38

Code Segment 3: Gmsh: Structured meshes 40

Code Segment 4: gmsh4mrst: Complex domain 46

Code Segment 5: gmsh4mrst: Intersecting constraints 47

Code Segment 6: gmsh4mrst: Detailed grid 48

v

1 Introduction

The climate is changing at an ever-increasing pace. With 19 of the 20 hottest years
on record happening since the turn of the millennium [15], it is adamantly clear that
something must be done. One proposed part of the solution for climate change is
carbon capture and storage, where CO2 is captured – whether from the air or before
it is released – and stored for long periods of time [7]. One way of storing CO2 safely
for longer periods of time is by utilizing subsurface, geological formations, such as
depleted oil- and gas reservoirs. In order for this to actually help climate change
mitigation over time, the leakage rate must less than 1% per 1000 years [17]. To
ensure this can be achieved, accurate and precise simulation tools are required.

The first step of any simulation workflow starts with an accurate model of the
domain. Subsurface geological formations are typically highly heterogeneous, often
consisting of many layers with different physical properties [3]. This is further
complicated by large-scale geological features such as faults. To store CO2 in the
reservoirs, there must also be a way to create wells leading into the reservoirs, adding
an additional feature our models must handle. We therefore need a modelling system
that can handle heterogeneity and represent several different, often crossing, physical
features, while still being computationally efficient enough to be usable.

Several methods for computer modelling have been attempted. The earliest methods
consisted of Cartesian grids, extended from slices of the domain. Later methods
included corner-point grids [12] – Cartesian grids with irregular polygons, which
further evolved into unstructured grids, with PEBI grids being a popular choice [3].
In unstructured grids, wells are typically represented as cell centroids, while faults
are traced by faces in the grid.

There exists several tools for simulating geological systems. One of these tools is
the MATLAB Reservoir Simulation Toolbox (MRST). MRST includes a module for
constructing PEBI grids – UPR – which supports faults through face alignment of
the cells, and wells through cell centroid alignment [4]. Due to how UPR creates
its background grid, the software is only capable of constructing small- to medium-
sized grids, and may struggle in certain cases. The primary goal of this thesis has
been to develop an extension to the UPR module, by replacing the grid refinement
algorithm with mesh creation in Gmsh, thus enabling users of MRST to easily cre-
ate more complex and detailed grids. We create three methods for automatically
creating meshes in Gmsh, then create a MATLAB module interfacing all three meth-
ods. Special care is taken to ensure the module follows these principles, and create
conforming grids.

The thesis is structured as follows. Section 2 goes through some necessary back-
ground theory, particularily focused on Voronoi diagrams and PEBI grids. Section 3
discuss existing software. The section introduce both Gmsh and MRST, and includes
both limitations and examples of the two software packages. It also discusses UPR
further. In Section 4, I first discuss the existing method for combining Gmsh and
UPR. I then introduce a new package for combining Gmsh and MRST in Section 4.2,
including a guide of installation and use, as well as an in-depth discussion of the
implementation details of the new package. It naturally includes examples of how

1

the package can be used, as well as a number of plots and illustrations. The thesis
then concludes by discussing how the package can be improved going forward in
Section 5.

2 Theory

This project is a continuation on previous work by Berge [3], and most of the theory
in this section is, unless otherwise stated, based on Berge [3] or Berge et al. [4].

To produce and use discrete representations of the real world, there must be a way
to map the real, continuous domain to a discrete representation. This is typically
done by looking at a set of points in the real domain.

Definition 2.1 (Point set). A point set P ∈ Rn is a finite set of points in Rn.

While there exist infinite point sets, we limit ourselves to finite sets in order to have
a discrete representation. As point sets only include the points themselves, they
cannot be used to describe the room between the points. In order to handle this,
another type of representation is needed. Two points can be connected by a line
segment, which describes the room between the two points in one dimension. To
describe the room between three or more points in two dimensions, we introduce
the concept of tesselation.

Definition 2.2 (Tesselation). A tesselation is a way to cover a two-dimensional
plane with a repeating pattern of geometrical figures, with no gap or overlaps.

The simplest geometrical figure that can be used in a two-dimensional tesselation is
the triangle, i.e., a polygon with three edges and three vertices. We can extend the
idea of a triangle into simplices.

Definition 2.3 (Simplex). A simplex is a generalization of a triangle to arbitrary
dimensions. An n-dimensional simplex is the simplest geometrical figure in an n di-
mensional space.

Using simplices enables the inclusion of data about our domain that is not directly
represented in the points. In geological modelling, this primarily includes physical
properties such as subsurface faults, wells and other geological features, which are
necessary for accurate simulations.

As discrete representations of objects in physical space are limited to at most three
spatial dimensions, we only need to consider the first four simplices (Figure 1):

• A 0-simplex is a point.

• A 1-simplex is a line.

• A 2-simplex is a triangle.

2

(a) 0-simplex (b) 1-simplex (c) 2-simplex (d) 3-simplex

Figure 1: Illustration of the first 4 simplices.

• A 3-simplex is a tetrahedron.

In general, a k-simplex is a k-dimensional geometric object consisting of the convex
hull of its k + 1 vertices.

Definition 2.4 (Convex hull). The convex hull of a point set P is the minimal
convex set containing P .

Figure 2: Example of a convex hull for a set of 10 randomly generated points in R2.

The result of converting a point set into a set of simplices is called a triangulation.

Definition 2.5 (Triangulation). A triangulation T of a point set P is the set of
simplices T such that:

• the set of vertices in T equals P , and

• the union of all simplices in T equals the convex hull of P , i.e., the union of
all simplices in T makes up the minimal convex set containing P .

For a given point set, one can generally create multiple valid triangulations. Figure 3
shows two triangulations for the same point set P .

2.1 Delaunay triangulation

Delaunay triangulations were first introduced by Delaunay [5] in 1943. Delaunay
triangulations maximize the smallest angle of the simplices in the triangulation and

3

(a) Random triangulation (b) Delaunay triangulation

Figure 3: Example of two triangulations for a set of points P ∈ R2.

therefore produce representations that work nicely in grid-based applications. The
Delaunay triangulation of a point set P is defined as follows:

Definition 2.6. The T triangulation of the point set P is a Delaunay triangulation
if no vertices in P are inside the circumcircle of any simplex in T .

Definition 2.7 (Circumcircle). A circumcircle of a polygon is a circle passing
through all vertices of the polygon. The circumcircles of a triangulation is the
set of circumcircles of all simplices in the triangulation.

(a) Circumcircles of Figure 3a (b) Circumcircles of Figure 3b

Figure 4: Example of circumcircles for the two triangulations in Figure 3. Note that
Figure 4a has a been cropped so that two of the circumcircles are only shown as
arcs.

In Figure 4b, no vertices of P are inside any of the plotted circumcircles. This shows
that the triangulation in Figure 3b is a Delaunay triangulation. In Figure 4a, two
vertices are inside each of the two large circumcircles created from the centermost,
obtuse triangles. This shows that the triangulation in Figure 3a is not Delaunay.

Delaunay triangulations are unique as long as at most three vertices are on the same
circumcircle [3, Theorem 2.1]. In cases where this is not true, such as where four
vertices make up a cyclic quadrilateral, there exist several valid Delaunay triangula-
tions for the same point set P . This is illustrated in Figure 5, where the two center
vertices make up cyclic quadrilaterals with both the top and bottom pair of vertices.
This enables four valid Delaunay triangulations of the point set.

4

Figure 5: Non-uniqueness of Delaunay triangulations. Two cyclic quadrilaterals
enable four valid Delaunay triangulations.

Several algorithms exist for generating Delaunay triangulations. The simplest of
these is a flip algorithm. This algorithm is based on the flipping technique: Observe
any two triangles ABC and BCD that share a common side BC, where the triangles
do not meet the Delaunay condition. These triangles can be converted to two
triangles that do meet the Delaunay condition by flipping them – swapping the
common side BC for a new common side AD, thus creating new triangles ABD
and ACD. An example of this technique is shown in Figure 6. The algorithm
is simple once this technique is known: To create a Delanunay triangulation, start
with any triangulation T , then flip edges of any non-conforming triangles until every
triangle meet the Delaunay condition.

(a) Initial triangulation. (b) After flipping.

Figure 6: Illustration of flipping a common side to create Delaunay triangulations.
We start with an initial triangulation ABC and BCD in (a). These do meet the
Delaunay condition, as shown from the gray circles. We therefore flip the common
side and get the new triangulation ABD and ACD shown in (b).

2.2 Voronoi diagrams

A Voronoi diagram is a form of gridding formally introduced by Voronoi [19], which
is closely related to Delaunay triangulations.

Definition 2.8 (Voronoi diagram). Let P be a point set in Rn consisting of points
pi ∈ P for i = 1, . . . ,m. Each point pi is called a site. A point x ∈ Rn belongs to
the Voronoi cell vi associated with site pi if the distance between pi and x is equal
to the minimum distance from x to any site p ∈ P . Formally, we can define this as

vi = {x : x ∈ Rn s.t. |x− pi| ≤ |x− p| ∀p ∈ P} . (1)

5

The set of all Voronoi cells vi is called a Voronoi diagram or Voronoi grid.

Figure 7: Example of Voronoi diagrams for different point sets, marked in red.

The intersection between two Voronoi cells vi and vj is called a face, and is denoted
by vi,j. The face is made up of all points x ∈ Rn that are the same distance from pi
and pj, and where this distance is the same as the minimum distance from x to any
p ∈ P . We can define this formally as

vi,j =
{
x : x ∈ Rd s.t. |x− pi| = |x− pj| ≤ |x− p| ∀p ∈ P

}
. (2)

We can, in general, say that a k-face of a Voronoi diagram is the k-dimensional
intersection between Voronoi cells. We can define this formally as

vi,...,j =
{
x : x ∈ Rd s.t. |x− pi| = · · · = |x− pj| ≤ |x− p| ∀p ∈ P

}
. (3)

When dealing with a two-dimensional domain, i.e., P ∈ R2, there are 1-dimensional
faces as edges where two cells meet and 0-dimensional faces as vertices where two
or more edges intersect. In Figure 7, the 1-dimensional faces are marked by lines,
and the 0-dimensional faces are marked by black dots. When P ∈ R3, we have 2-
dimensional faces as planes where two 3-dimensional cells meet, 1-dimensional faces
as edges where two planes intersect, and 0-dimensional faces as vertices where two
or more edges intersect.

2.2.1 Relationship between Delaunay and Voronoi

For two-dimensional domains, it follows from Equation 3, that 0-dimensional faces,
i.e., Voronoi vertices, are points where the distance to three Voronoi sites are equal
and smaller than the distance to any other sites. In other words, sites pi, pj and
pk ∈ P create a vertex vi,j,k when the open circle intersecting all sites is empty of
any sites in P . The vertex is placed in the center of the open circle. The same holds
true in R3, where four sites have a 0-dimensional face (vertex) if and only if the
open ball intersecting all four sites is empty of any sites in P .

This appears to be very similar to the definition of Delaunay triangulation in Defini-
tion 2.6. In fact, Delaunay triangulations and Voronoi grids are considered dualities.

Let T be a Delaunay triangulation and V be a Voronoi diagram, both on the same
point set. Then each node in T is associated with a cell in V , and vice versa. More
specifically, the centers of the circumcircles used to prove T is Delaunay are vertices

6

in the Voronoi diagram, and if there is an edge in T between two sites, then the
sites share a face in V . Likewise, the sites in the Voronoi diagram are vertices in
the Delaunay triangulation. This is illustrated in Figure 8: sites are marked by blue
dots and the circumcenters of the Delaunay triangulation are marked by red dots.

(a) Delaunay triangulation (b) Voronoi diagram

Figure 8: Delaunay triangulation and Voronoi diagram for the same point set.

2.2.2 Clipped Voronoi diagrams

One important, but in our case unwanted, property of Voronoi diagrams is that
they extend to infinity. This is visible in both Figure 7 and Figure 8. As we are
interested in mapping real-world objects to discrete domains that can be used for
simulations, we need a way to fit the domain of our model to the boundary of the
physical domain we are modelling. To handle this, we can modify the definition of
Voronoi diagrams slightly, introducing clipped Voronoi diagrams.

Definition 2.9 (Clipped Voronoi diagram). Let P be a point set in a bounded
domain D ⊂ Rn. We define a clipped Voronoi diagram as the set of all cells vi,
where

vi = {x : x ∈ D ⊂ Rn s.t. |x− pi| ≤ |x− p| ∀p ∈ P} . (4)

While there is little difference between clipped and unclipped Voronoi diagrams,
limiting the domain is beneficial for simulations and computer representation. Note
that clipping a Voronoi diagram means the border cells are no longer strictly Voronoi,
but this tends to have little impact on the overall quality of the cells.

2.2.3 Centroidal Voronoi diagrams

The properties of a Voronoi diagram depend on the distribution of its sites. One
especially interesting case happens when the sites and centers of each cell align. We
use the mass center of the Voronoi cells to calculate the center of each cell. The
mass center of a Voronoi cell is given as

ci =

∫
Vi
yρ(y)dy∫

Vi
ρ(y)dy

, (5)

7

where Vi is the volume of the cell and ρ(y) is a given mass density function of the
cell. If the mass centers and sites in a Voronoi diagram line up, we have a special
subset of Voronoi diagrams called a centroidal Voronoi diagram (CVD).

Definition 2.10 (Centroidal Voronoi diagram). Let P be a set of sites in a Voronoi
diagram V . The diagram is a centroidal Voronoi diagram if ci = pi for all pi ∈ P .

As a result of this alignment, centroidal Voronoi diagrams typically have highly
regular and evenly sized cells, which is why they are often called optimal Voronoi
diagrams [3]. This property is shown in Figure 9.

(a) Random Voronoi diagram (b) Centroidal Voronoi diagram

Figure 9: Comparison of centroidal and non-centroidal Voronoi diagrams

Several methods for generating CVDs exist, and one of the simplest is by using
fixed-point iteration. The method, called Lloyd’s method, is shown in Algorithm 1.

Algorithm 1: Lloyd’s method

1 Make an initial set of sites

2 Until convergence:

3 Construct Voronoi diagram of sites

4 Compute centroids of the Voronoi diagram

5 Use the centroids as new sites

While this method is simple and easy to implement, its linear convergence limits its
usability. A quasi-Newton method was introduced by Liu et al. [14], using the CVD
energy function given by

F (x) =
m∑
i=1

∫
Vi

ρ(y)|y − ci|2dy, (6)

which is minimized when pi = ci. This method is both faster and more robust than
Lloyd’s method [14].

2.2.4 Optimal Delaunay triangulation

Another method for generating nice Voronoi diagrams is by exploiting the duality
between Delaunay triangulations and Voronoi diagrams and using a force based

8

algorithm. The optimal Delaunay triangulation, introduced by Persson and Strang
[16], associates each Delaunay vertex with a joint and each edge with a spring. By
defining an element size function h(x, y), we attain the uncompressed length of the
springs. We then let the forces follow Hooke’s law, but only for repulsive forces, i.e.,
the force f from a spring with length l and uncompressed length l0 is given by

f(l, l0) =

{
l0 − l, l < l0,

0, l ≥ l0.
(7)

The total force on a point, F (pi), is simply the sum of the force from all springs
connected to pi. We have two special types of points to consider. Points along the
border must avoid getting pushed out of the domain. To do so, we add an external
force perpendicular to the border pointing inwards, balancing the internal forces.
We can also have fixed joints. These are not allowed to move, no matter the applied
force. The optimization loop, then, is simple:

Algorithm 2: Optimal Delaunay triangulation

1 Make an initial set of sites

2 Until convergence:

3 Calculate Delaunay triangulation of sites

4 For each edge in the triangulation:

5 Calculate force of the associated spring

6 For each non-fixed vertex in the triangulation:

7 Calculate the sum of forces on the vertex, including

external forces

8 Move vertex a set step length along the sum of forces

This method is the primary method for generating background sites in UPR, and
is further discussed in Section 3.1.1. An example of applying the optimal Delaunay
triangulation algorithm on a point set is shown in Figure 10.

2.3 PEBI grids

Within reservoir modelling, the term PEBI grids – PErpendicular BIsector grids – is
often used instead of Voronoi grids. Berge [3] operates with the following definition:

Definition 2.11 (PEBI grid). Let P ∈ Rn be a finite point set and let B be the
PEBI grid of P . For each site pi ∈ P , a cell bi is generated by the following algorithm:

1. For each other site in pj ∈ P , create the ”perpendicular bisector plane” of pi
and pj, i.e., the plane that splits P in two subspaces perpendicular to the line
from pi to pj, in the middle of the two points.

2. Let H(pi, pj) be the subspace that contains pi.

The cell bi is then defined as the intersection of all these subspaces, i.e.,

bi =
⋂

pj∈P\pi

H(pi, pj). (8)

9

(a) Before ODT (b) Uniform h (c) Non-uniform h

Figure 10: Example of applying the optimal Delaunay algorithm on a point set.
The initial point set is shown in (a). The result of applying the optimal Delaunay
algorithm with a uniform element size function is shown in (b). The result of
applying the optimal Delaunay algorithm with a non-uniform element size function
is shown in (c). The red points are fixed.

This process is visualized in Figure 11, in which pi is the site marked by a red dot,
with blue dots representing the other pj ∈ P . The dashed lines are the lines from pi
to each pj, with the solid black lines representing the two dimensional perpendicular
bisector planes between pi and each pj. The light-red area is the cell bi.

Figure 11: Visualization of PEBI generation.

It is relatively easy to show that PEBI grids and Voronoi diagrams are the same.
Let P be a finite point set in a domain D, with B as a PEBI grid of P , and consider
a randomly selected point x ∈ D. Assume that x belongs to PEBI cell bi. This
means it is part of all subspaces H(pi, pj), and thus must be at least as close to pi
as any other pj ∈ P . As this holds for all j, it follows from Equation 4 that x ∈ vi.

Now consider the Voronoi diagram of P . As every point in D belongs to at least
one Voronoi cell, assume a randomly selected point x ∈ D belongs to cell vi in the

10

Voronoi diagram of P . We know from Equation 4 that x is at least as close to vi as
any other vj. This means that x will be in the subspace H(pi, pj) for all j, meaning
it must be in the intersection of all H(pi, pj). It thus follows from Definition 2.11
that x ∈ bi.

As PEBI is widely used in the literature, as well as in the software used for this
thesis, I will use the term PEBI grids, rather than Voronoi diagrams, going forward.

2.4 Transfinite grids

One way of creating structured grids is by defining a continuous function f around
the constraint of the grid, then interpolating the constraint function to create a
function on the whole domain [6]. This creates a transfinite grid.

Definition 2.12 (Transfinite grid). A transfinite grid is defined by interpolating a
function f defined around the constraint of the grid into the domain of the grid.

The simplest form of transfinite grids are defined by a linear function f around the
constraint, creating a rectangular, structured grid. Three examples of transfinite
grids are shown in Figure 12.

(a) Linear f (b) Exponential y (c) Exponential x and y

Figure 12: Examples of transfinite grids. In (a), f is linear along both axes. In (b),
f is exponential along the y-axis, but linear along the x-axis. In (c), f is exponential
along both axes.

3 Software

As there exists a vast range of solutions for creating grids to represent real domains,
learning, using and discussing all of them are way beyond the scope of this thesis.
I will instead focus on two tools – MRST in Section 3.1 and Gmsh in Section 3.2 –
as well as ways to combine the two tools in Section 4.

3.1 MRST

The MATLAB Reservoir Simulation Toolbox (MRST) is an open-source toolbox for
reservoir simulation, developed by the Computational Geosciences group at SINTEF

11

Digital. Originally aimed at the study of discretization and flow solvers, the project
has since expanded and currently offers much of the same functionality that can be
found in commercial reservoir simulators [13]. Its main target is still research, with
the primary focus being on rapidly developing and demonstrating contemporary
methods and concepts [18].

To keep its extensive set of features maintainable, MRST is organized with a set of
core functionality, as well as several optional add-on modules. The core includes
methods for handling grids, data, and basic drive mechanisms such as gravity,
sources, and wells, as well as an implementation of automatic differentiation. The
add-on modules includes tools for discretization, solvers for incompressible flow,
simulators based on automatic differentiation, specialized computational methods
aimed at solving concrete problems, several utility modules, as well as tools that can
be used to aid the modeling of the reservoirs. The latter group contains the UPR
module.

3.1.1 The UPR Module

The “Unstructured PEBI-grids for Reservoirs” (UPR) module was developed by
Berge [3] as part of his 2016 master’s thesis. The module is designed to generate
PEBI grids conforming to line and surface constraints (typically: well trajectories
and fault surfaces) and can handle several challenging cases, such as multiple faults
intersecting, intersections at sharp angles, and intersections between wells and faults.
The module also contains methods to generate such grids in three dimensions, but
I will focus on 2D applications.

Well sites: UPR represents wells as cell centroids and handles the base case, where
the well follows a single curve, by simply placing a set of well sites along that curve.
The distance between two consecutive sites is not necessarily constant along the
curve, but care is taken such that the distribution satisfies the well condition [3].

Definition 3.1 (Well condition). Let p1 and p2 be two consecutive well sites. The
well condition is satisfied if there exists a circle intersecting both points p1 and p2
that does not contain any other sites.

It follows from Definition 2.6 that the edge between two consecutive well sites makes
up an edge in a Delaunay triangulation if the well condition is satisfied, ensuring
the two wells are neighbors in the PEBI grid. To simplify calculations, UPR uses a
circle centered on the midpoint between two consecutive well sites to check the well
condition.

Extra care is also taken when two wells intersect, as handling each well independently
may lead to consecutive sites not connecting, or low-quality cells. To handle this,
the intersecting wells are split and a well site is placed at the intersection. This well
site is then shared among all intersecting at the point, i.e., all sites that now start
or end at the intersection.

12

UPR also allows protection sites around the well sites to ensure regular well shapes
and control the radius for the well cells. This is done by creating a pair of protection
cells for each well site. These protection cells are placed normal to the well path,
one on each side of the well site, with a distance equal to the target well radius. No
protection sites are used for well intersection sites. An example of this is shown in
Figure 13.

(a) Well without protection. (b) Well with protection.

Figure 13: Example of protective sites in UPR. The magenta lines represent wells.

Fault sites: Faults are represented by cell edges and are created by tracing faults
with two lines of fault sites – one on each side of the fault lines. UPR does this
by creating a set of circles along each fault, then creating fault sites where these
circles intersect. It starts by placing a set of points, C = {ci}, along the fault, with
a distance between points given by a density function di = ρ(ci, ci+1). To create two
fault points, two consecutive circles must intersect in two places. This creates the
following distance limitations:

di ≤ Ri +Ri+1, (9)

di ≥ |Ri −Ri+1|, (10)

where Ri is the radius of the circle centered at ci. In UPR, the radius of each circle
is set to be proportional to the average of the distance to the circles on either side,
i.e.,

Ri = cf
di + di−1

2
, (11)

where cf is a constant circle factor, determining the distance between the fault and
the fault sites. Fault sites are then placed where two circles intersect, satisfying the
fault condition.

Definition 3.2 (Fault condition). Let p1 and p2 be two fault sites placed at the
intersection of the same pair of fault circles. The fault condition is satisfied if the
interior of the two fault circles does not contain any sites.

The fault condition is enough to prove that the fault is traced by a face in the PEBI
grid. Let c1 and c2 be the circles creating p1 and p2, and let cp be a point on the open
line segment between c1 and c2. Let c be a closed circle intersecting p1 and p2 with

13

centroid cp. This circle is then an element in a subset of {c1, c2}, thus containing no
other sites than p1 and p2. As c intersects both p1 and p2, we have that

|cp − p1| = |cp − p2| < |cp − p|

for all other sites p. From Definition 2, cp must therefore be on the PEBI face vp1,p2 .

As with wells, extra care must be taken when fault lines intersect, as fault sites from
different faults may disrupt the fault conditions. To handle these cases, faults are
first split up at intersections, such that they may only appear at the start or end
of each fault line segment. A fault circle is then placed at the intersection, and is
shared by all fault lines starting or ending at the intersection. All other circles are
placed like normal. For each circle neighboring an intersection circle, there are three
potential options:

Do nothing: If the interior of the circle does not contain any other sites, the circle
is left as is.

Shrink the circle: If the interior of the circle contains any other fault sites, the
radius of the circle is shrunk. Let pi be the site inside the circle. The circle, as
well as the circle generating pi, is shrunk down such that they both intersect
the intersection circle at the same point. If multiple pis exist, the smallest
radius is chosen.

Combine circles: If the radius is shrunk down enough to violate the condition in
Equation 9, then it is simply combined with the conflicting circle. The result
is a single fault site located in the middle of the two previous fault sites. The
new circle is considered to be an intersection, and the process repeats for its
neighbors.

Intersections between wells and faults: Special care is also taken when wells
and faults intersect. UPR handles this, like with the previous types of intersections,
by first splitting the well and fault at the intersection. The first fault circle of the
fault starting at the intersection, and the last fault circle of the fault ending at the
intersection, are both placed half a step from the intersecting point. The two fault
sites created from these circles are then label well sites, making up the end sites of
the well segments ending at the intersection.

Other sites: UPR employs three methods for generating the remaining PEBI
sites. The first and simplest method is to just distribute the sites in a Cartesian
grid. After all sites have been placed, all background sites violating well and fault
conditions are removed. In addition to this, each well and fault site gets a grid size,
defined for well sites as the distance between two consecutive well sites, and for fault
sites as the distance between two sites generated by the same two fault circles. Any
background sites within the grid size of a well or fault site are also removed, creating
a structured PEBI grid conforming to both wells and faults.

To refine structured grids, especially for cells near constraints, UPR employs a stand-
ard multilevel quad-tree local grid refinement [3, pp.49]. The method refines a cell

14

by splitting it in four, connecting the opposing edges to each other. To refine a
PEBI cell, the site creating the cell is replaced by four sites, one in each quadrant
of the cell.

The primary way of creating unstructured grids in UPR is by using the force-based
method discussed in Section 2.2.4. To refine cells near constraints, UPR uses the
following element size function [3, Equation 4.2]:

hr(p) = min

[
hmax, hmin exp

(
d(p,W)

ϵ

)]
, (12)

where hmax is the desired grid size far from constraints, hmin is the desired grid size
close to constraints, and the distance d(p,W) is the closest distance from the point
p to the set of constraint sites W . The parameter ϵ controls the transition – a small
ϵ means the transition from hmin to hmax happens quickly, while a large ϵ leads
to a wider transition zone. All constraint sites are kept fixed. UPR relies on the
implementation from a package called distmesh [16]. An example of this algorithm
can be seen in Figure 10.

The last method UPR implements is by using the CVD energy function to optimize
the Voronoi diagram, as discussed in Section 2.2.3. Again, fault and well sites are
considered fixed. The CVD energy function is then minimized, but without moving
any of the fault or well sites.

A generalized overview of UPR’s algorithm for unstructured gridding [3, pp.51] is
shown in Algorithm 3.

Algorithm 3: UPR Unstructured Gridding

1 Create faults and wells

2 Place a set of well sites along each well path, according to the

well cell density function

3 Place a set of circles centered along the faults according to

the fault cell density function. Place fault sites at circle

intersections

4 If two or more wells intersect:

5 Place a well site at the intersection

6 If two or more faults intersect:

7 Place a circle at the intersection

8 Adjust the neighboring circles as needed

9 Place fault sites at circle intersections as before

10 If a well and a fault intersect:

11 Place a circle on each side of the intersection, half a step

away. The two sites created by these circles are considered

well sites.

12 Create a set of reservoir sites in the domain

13 Create other sites, such as refinements

14 Remove all reservoir sites that violate fault or well condition

15 Remove all reservoir sites closer to a fault or well site than their

respective grid size.

15

Limitations: The key limitation of UPR is its site placement algorithm. While
distmesh tends to produce uniform grids closely aligning with the given constraints,
it is often slow, especially for grids with fine details. As these cases may be present in
practical scenarios, such as when modelling small wells in relatively large domains,
it would be beneficial to implement a method for handling these cases efficiently and
accurately.

3.2 Gmsh

Gmsh is an open-source grid generator, CAD engine, and post-processor developed
by Geuzaine and Remacle [9]. Supporting both a graphical user interface, a dedic-
ated scripting language, and APIs in C, C++, Julia, and Python, Gmsh has become
one of the most popular finite element mesh generators in the world [8].

First released in 1998, Gmsh is built on a simple philosophy – to be a fast, light, and
user-friendly mesh generator [9]. Gmsh is designed to generate large meshes in little
time, claiming they can generate “larger than average” meshes in less than a minute
on a standard computer, while being able to visualize the mesh in real-time. The
program is designed to have as little footprint as possible, with easy installation and
a comprehensible code base. Finally, Gmsh is designed such that a novice user is
able to quickly create simple meshes, with an extensible and well-documented API.

3.2.1 Gmsh modules

Gmsh is structured in four separate modules. The Geometry module is how Gmsh
creates new physical geometry. Gmsh was originally designed with a limited CAD
engine, primarily suited for simple structures [9]. However, as the user base of Gmsh
grew, so did the need for better CAD support, allowing Gmsh to mesh industrial
CAD models. To handle this, Gmsh’s geometry module is built on a set of four
abstract data structures. These are:

• vertices, G0
i , of dimension 0,

• edges, G1
i , of dimension 1,

• faces, G2
i , of dimension 2, and

• regions, G3
i , of dimension 3.

Combining these structures into a boundary representation, Gmsh is able to accur-
ately define any 3D model. The model is built as a list of entities, with each entity
possibly consisting of multiple data structures.

The Meshing module handles, naturally, the meshing done in Gmsh. The meshing
is based on the target mesh size of all points (x, y, z) in the domain being given by
the mesh size field function δ(x, y, z). This function can be defined by:

16

• giving vertices a target mesh size, then interpolating along edges,

• giving model edges a mesh gradient,

• defining mesh sizes in another mesh, or

• setting default mesh sizes that adapt to the curvature of model entities.

These fields are highly flexible, and can depend on several factors. Examples of
these fields include:

Distance fields: Distance fields are used to calculate the distance from a set of
lines and points. An illustration of the output from a distance field is shown
in Figure 14a.

Threshold fields: Threshold fields are used to set values depending on another
variable, often the distance from a distance field. The threshold field has
four parameters: minimum and maximum for both distance and size. The
field outputs a stepped curve – when the distance is lower than the minimum
distance, the minimum size is returned. Between the minimum and maximum
distance, the size scales linearly, and when the distance is above the maximum,
the size is equal to the maximum size. An illustration of the output from a
threshold field is shown in Figure 14b. An illustration of the threshold curve
is shown in Figure 15.

Minimum fields: Minimum fields simply returns the minimum of a set of fields.
It is often used to get the smallest cell size from a set of size fields.

(a) Distance field (b) Threshold field

Figure 14: Output from Gmsh distance and threshold fields. The distance field
calculates the distance from a central line, and the threshold field uses the distance
field as input. The blue color indicates a low output, i.e. the minimum distance and
size, respectively, and the red indicates a high output.

17

Figure 15: Illustration of the Gmsh threshold field.

The meshing module provides several algorithm for meshing 2D domains. An over-
view of these, as well as a short description, is given below. All algorithms start
with a Delaunay mesh containing all points of an originally created 1D mesh.

MeshAdapt: Splits long edges, collapses short edges and swaps edges if that cre-
ates a better geometrical configuration. MeshAdapt is the most robust al-
gorithm for very complex curved surfaces and is run automatically if Delaunay
or Frontal-Delaunay fails [10].

Delaunay: New points are inserted at the center of the circumcircle with the largest
radius. Delaunay is the fastest for very large meshes of plane surfaces and
usually handles complex mesh size fields well [10].

Frontal-Delaunay: A form of Delaunay computing both points and connections
at the same time. Typically produces high element quality [10].

Frontal-Delaunay for Quads: Experimental variant of Frontal-Delaunay. Tries
to create right-angle triangles that can be combined into rectangles [10].

BAMG: Experimental algorithm creating anisotropic triangles, i.e., triangles with
different properties in different directions, such as triangles that are long and
narrow [10].

Examples of the meshes created by these algorithms can be seen in Figure 16.
While Gmsh provides several different algorithms, they all produce some type of
unstructured triangulation. To convert these into quadrilateral grids, Delaunay
offers four recombination algorithms. Two of these – Blossom and Blossom full-
quad – are based on a minimum-cost algorithm [9]. There is very little available
information about the last two: Simple and Simple full-quad.

Gmsh is primarily aimed at creating unstructured meshes. It does, however, provide
some methods for generating structured meshes, including support for transfinite

18

(a) MeshAdapt

(b) Delaunay

(c) Frontal-Delaunay

(d) Frontal-Delaunay for Quads

(e) BAMG

Figure 16: Comparison of the Gmsh meshing algorithms. The left set of meshes are
empty, while the right set have an embedded face constraint marked in magenta.
Note that BAMG fails to create a quality mesh with an embedded line.

19

meshes [9]. While these require some manual work to work nicely, they provide a
way to generate structured, controlled meshes. An example of transfinite meshes is
shown in Figure 19, with code in Code Segment 3.

The Solver module provides two ways to connect Gmsh to external finite element
solvers. The most straight-forward way is by directly using the Gmsh API to load
geometry, meshes, and data [9]. This method requires a significant programming
investment from the solver developers, as the connection between the solver and the
API must be created.

To maintain the goal of being a user friendly generator, Gmsh provides a Gmsh
interface through Unix or TCP/IP sockets. This lets a user launch solvers directly
from Gmsh, and requires few adaptations of the solver software. Solvers are outside
the scope of this thesis.

The Post-Processing module enables loading and display of data views, alongside
visualizations of the geometry and mesh. Views are collections of values, both scalar
and tensors, where scalar fields can be visualized as iso-surfaces or color maps and
vector fields as arrows or displacement maps. Post-processing is outside the scope
of this thesis.

3.2.2 Examples of Gmsh

While Gmsh is designed to be user friendly, the scope of features and interfaces
make the provided APIs somewhat complex. This section will present some basic
examples of Gmsh programs, as well as their outputs. Source code for the examples
is shown in Appendix A.

Simple square mesh: While a square mesh is simple to envision, the creation of
one requires a bit of code. Code Segment 1 shows how this can be implemented,
using Gmsh’s Python API. The output is shown in Figure 17.

Adjusting the mesh size field: Gmsh offers two ways to adjust the local resol-
ution of the produced mesh. The first option, as shown in Figure 16, is to embed
lines in the mesh, making Gmsh use the lines as faces in the mesh. The second
method is to adjust the mesh size field function.

An example of the latter method is shown in Code Segment 2, with output in
Figure 18. In the example, we use a line as basis for a threshold field that scales
the mesh size based on distance from the line. We also use a point as basis for a
math field that scales the mesh size based on the square of the distance from the
point. We finally combine the fields by using the minimum mesh size. Note that
neither the point nor the line are embedded in the mesh, meaning that there is no
guarantee that the faces of the mesh align with either. The example also shows how
Gmsh can connect to multiple CAD kernels; in this case using the OpenCASCADE
kernel [10].

20

Figure 17: Simple square grid generated in Gmsh. Output from Code Segment 1.

Figure 18: Locally adjusted mesh resolution generated in Gmsh. Output from
Code Segment 2.

21

Structured meshes: Structured meshes, or local patches of structured meshes,
can be created by using transfinite curves and surfaces. An example of this is
shown in Code Segment 3, with output in Figure 19. In the example, two patches
of transfinite meshes are created. The green mesh consists of linearly distributed
transfinite nodes, while the orange consists of nodes following a geometric progres-
sion with exponent 1.5. The cyan mesh is a standard unstructured mesh. To get
rectangular cells, we use the recombine feature, combining the triangular grid into
quadrilaterals within the transfinite meshes.

Figure 19: Local patches of structured meshes generated in Gmsh. Output from
Code Segment 3.

3.2.3 Limitations of Gmsh

Although Gmsh is a well-developed solution for both meshing and CAD work, it does
have some limitations, especially when combining it with MRST and UPR. One key
difference between the two systems arises from the fact that Gmsh operates with
triangulations, while the UPR module of MRST operates with PEBI grids. As these
are dualities, we can easily convert between triangulation nodes to PEBI sites. This
does, however, have a potential of losing information about cell faces.

When converting from a triangulation to a PEBI grid, vertices in the triangulation
are used as sites in the PEBI grid, and two sites connected in the triangulation
share a PEBI face. As such, any face constraint in the triangulation is guaranteed
to have a cell path in the PEBI grid, but there is no guarantee for the width of the
path. This is especially true when the path is turning. An even bigger issue arises

22

from cell constraints in the triangulation. There is no guarantee of triangulation cell
centers ending up on a PEBI face, and even less chance of the faces aligning with
the cell constraints.

An illustration of this challenge is shown in Figure 20. The cells of the PEBI grid
align somewhat nicely with the cell constraint on straight lines, but fails without
detailed manual control in the corners. The vertices of the PEBI grid are somewhat
close to the face constraint, but the edges do not align with the constraint line.

(a) Triangulation (b) PEBI grid

Figure 20: Illustration of misaligned constraints when converting a triangulation to
a PEBI grid. The magenta line represents a face constraint in the triangulation, and
should preferably be a cell constraint in the PEBI grid. The blue line represents a
cell constraint in the triangulation, and should preferably be a face constraint in the
PEBI grid.

The simplest way of handling this limitation would be to manually control the
mesh cell placement to ensure smooth conversion for both types of constraints. As
Gmsh is primarily developed for automatic mesh generation, it does not have op-
tions for manual cell placement, and any manual refinements must be done through
workarounds such as embedding points and lines, adjusting the mesh size field and
creating transfinite meshes.

4 Combining MRST and Gmsh

As MRST and Gmsh both have their limitations, adopting Gmsh into an MRST
workflow may be beneficial. This section will discuss an existing method for loading
Gmsh meshes, gmshToMrst, and introduce a new package for integrating the two,
gmsh4mrst.

4.1 gmshToMrst

Originally developed by Johansson [11] as a stand-alone method for loading Gmsh
meshes into MRST, gmshToMrst became part of MRST’s module library with release

23

2022a. The module reads the mesh from an .m-file and performs the necessary
computations for converting the mesh to an MRST grid. While it does this job
well, one key requirement of gmshToMrst is that the Gmsh mesh has been computed
beforehand. This requires users to manually create the Gmsh mesh, slowing down
the rapid prototyping MRST is designed for, while forcing its users to learn an
entirely new program in order to generate the grids.

4.2 gmsh4mrst

To help with this, I have developed a new software module, gmsh4mrst, to en-
able automatic Gmsh mesh generation from MATLAB. By abstracting most of the
manual work required for generating meshes in Gmsh, gmsh4mrst is designed to
enable users to use Gmsh as a backend for mesh creation, speeding up the mesh
generation of detailed domains, without the user having to spend time learning a
new software. The goal of gmsh4mrst is to enable a near drop-in replacement of
distmesh with Gmsh-created meshes.

4.2.1 Installation of gmsh4mrst

In order to integrate the two systems, gmsh4mrst is split in two parts, one written
in Python and one in MATLAB. The Python package is hosted on PyPi [1], and can
easily be installed from there. The MATLAB package must be manually downloaded
from Github [2], and the files must be added to the MATLAB path.

The Python package works as a stand-alone package. The MATLAB package, how-
ever, uses Python to create base meshes, and therefore requires that the Python
package is installed to run. MATLAB must be run from an environment with the
Python package installed, whether that is through a virtual environment or the base
Python installation on the computer.

4.2.2 Features of gmsh4mrst

The primary target of gmsh4mrst is to automate Gmsh mesh creation for use in
MRST grids, while maintaining the flexibility needed for optimal grid creation.
Care has been taken to ensure gmsh4mrst is as robust as possible, especially when
it comes to connecting MATLAB and Python. The module is designed to easily
handle complex, non-convex domains, and to precisely and quickly adapt the grid
to all given face- and cell constraints.

One key feature of gmsh4mrst is its many user-settable arguments and parameters.
By leaving most grid-refinement decisions available to the user, gmsh4mrst can be
used for almost every grid creation necessary, while reasonable defaults ensure the
module can be used for simple grids without much time spent on refinement. An
overview of the available arguments is given in Appendix B.

24

4.2.3 Using gmsh4mrst in Python

The Python part of gmsh4mrst is where most of the grid generation is done. While
the actual implementation and specifications may change over time, the Python
package currently implements three methods.

background grid 2D: As arguably the most basic of the implemented methods,
background_grid_2D uses Gmsh to create a simple background triangulation without
any embedded points or lines, but with refinement around face- and cell constraints.
This results in a uniform mesh, and can be used as a straight replacement of
the Distmesh algorithm. The user has detailed control of the mesh, including
any refinement done along the constraints. An example of a grid produced using
background_grid_2D is shown in Figure 21a.

delaunay grid 2D: Going one step further, delaunay_grid_2D creates a back-
ground triangulation, but include the constraints in the generated mesh. Face con-
straints are embedded directly as lines or points, ensuring that the faces of the
resulting Delaunay triangulation align with the constraints. Each cell constraint is
wrapped in a transfinite mesh, ensuring the constraints are traced with cells in the
triangulation. As a result of using transfinite meshes, delaunay_grid_2D fails if
any cell constraints intersect either each other or any face constraints. An example
of a grid produced using delaunay_grid_2D is shown in Figure 21b.

pebi base 2D: The most complex of the implemented methods, pebi_base_2D

creates a background triangulation, but include both face- and cell constraints as
transfinite meshes. The idea behind this is that it ensures a distribution of Delaunay
vertices – and by extension PEBI sites after converting the triangulation – around the
constraints, ensuring face constraints are traced by PEBI faces and cell constraints
by PEBI sites. As a result of using transfinite meshes, pebi_base_2D fails if any
constraints intersect. An example of a grid produced using pebi_base_2D is shown
in Figure 21c.

All methods implemented in the Python package output Delaunay triangulations.
The difference in outputs of the methods is shown in Figure 21, where the left sides
of the grids contain face constraints, and the right sides contain cell constraints.

4.2.4 Using gmsh4mrst in MATLAB

The MATLAB part of gmsh4mrst contains all code for converting the Gmsh meshes
to MRST grids, as well as some code for creating PEBI sites. While the actual
implementation and specifications may change over time, the MATLAB package
currently implements three methods.

25

(a) background grid 2D (b) delaunay grid 2D

(c) pebi base 2D

Figure 21: Comparison of the Python methods implemented in gmsh4mrst. The
grids have a fault on the left side, and a well on the right side.

26

pebiGrid2DGmsh: Designed to be a semi-direct replacement of MRST’s pebiGrid2D,
pebiGrid2DGmsh uses background_grid_2D to create a background grid, then cre-
ates well and fracture sites in MATLAB. This gives it the same flexibility and ro-
bustness as pebiGrid2D, while avoiding the slow site distribution of Distmesh. An
example of a grid produced using pebiGrid2DGmsh is shown in Figure 22a.

delaunayGrid2DGmsh: As a simple function wrapper, delaunayGrid2DGmsh uses
delaunay_grid_2D to create a Delaunay triangulation capturing the supplied con-
straints, then converts it to an MRST data type without converting it to a PEBI grid.
As no conversion is done, this leaves the output grid as a Delaunay triangulation,
but it avoids the extra work of converting without losing constraint information.
Due to using delaunay_grid_2D, no cell constraints may intersect. An example of
a grid produced using delaunayGrid2DGmsh is shown in Figure 22b.

pebiGrid2DGmshBase: A somewhat experimental method, pebiGrid2DGmshBase
uses pebi_base_2D to create a triangulation with constraints embedded as transfin-
ite meshes. The user can then choose whether to convert the triangulation to a
PEBI grid or not. This results in a relatively flexible method, but due to using
pebi_base_2D, no constraints may intersect. An example of a grid produced using
pebiGrid2DGmshBase is shown in Figure 22c and Figure 22d.

All the MATLAB methods gives the user complete control of all parameters of the
underlying Python grid creation, with pebiGrid2DGmsh additionally letting the user
control the fault- and well site creation done in MATLAB. The difference in outputs
of the methods is shown in Figure 22, where the left sides of the grids contain face
constraints, and the right sides contain cell constraints.

4.2.5 Mechanics of gmsh4mrst

Faults as embedded lines: Faults are implemented differently in the three avail-
able methods, but here we discuss faults implemented as embedded face constraint
lines in Gmsh, which is how it is done in delaunayGrid2D. In Gmsh, embedding
a line is a relatively simple process, but extra care is taken to ensure intersections
between faults are modelled correctly. If two constraint segments intersect, both
segments are split at the segment, creating four sub-segments – two starting at the
intersection and two ending at the intersection.

Faults as transfinite grids: In pebiGrid2DGmshBase, faults are implemented as
transfinite grids. By creating a structured grid around the fault, we can manually
control the site distribution around the line, ensuring it ends up as a face in the final
grid. We can create protective sites around the faults by increasing the number of
perpendicular nodes used in the transfinite grid. When the grid is converted to
PEBI, each fault grid should have an even number of perpendicular nodes to make
it a face in the grid, while they should have an odd number of nodes to stay as a face
in the Delaunay triangulation. An illustration of this process is shown in Figure 23.

27

(a) pebiGrid2DGmsh (b) delaunayGrid2DGmsh

(c) pebiGrid2DGmshBase (d) pebiGrid2DGmshBase as PEBI

Figure 22: Comparison of the MATLAB methods implemented in gmsh4mrst. The
grids have a fault on the left side, and a well on the right side.

28

(a) Fault represented by 2-width transfinite grid.

(b) Fault represented by 4-width transfinite grid.

Figure 23: Faults represented as transfinite grids. The blue line represents a fault.
The plots to the left are Delaunay grids before conversion, and the plots to the right
are the resulting PEBI grids after conversion.

Wells as transfinite grids: Wells are implemented differently in the three meth-
ods as well, but here we discuss wells implemented as transfinite grids in Gmsh,
which is how it is done in delaunayGrid2D and pebiGrid2DGmshBase. Much like for
faults, we can manually control the site distribution around wells by using transfin-
ite grids, ensuring they end up as PEBI sites after conversion. By increasing the
number of perpendicular nodes used in the transfinite grid, we can also create pro-
tective sites around the well lines. When the grid is converted to PEBI, each well
grid should have an odd number of perpendicular nodes to make it a site in the grid
while they should have an even number of nodes to stay as sites in the Delaunay
triangulation. An illustration of this process is shown in Figure 24.

Faults and wells in MATLAB: Fault and well creation in pebiGrid2DGmsh is
done in MATLAB, and follows the same process as pebiGrid2D from Berge [3]. In
short, this process places well sites and fault sites where they should be, and then
later remove conflicting sites from the background grid. This means the Gmsh grid
is constructed without having to worry about constraints, and then cleaned up later.
An illustration of this process is shown in Figure 25.

Mesh refinement: The mesh refinement in gmsh4mrst is done by using mesh size
fields, as introduced in Section 3.2.1. Faults are used as inputs for one distance field,
and wells are used as inputs for another. These fields are then used as input in their
own threshold fields, and the minimum of these threshold fields are used as the final

29

(a) Well represented by 3-width transfinite grid.

(b) Well represented by 5-width transfinite grid.

Figure 24: Wells represented as transfinite grids. The magenta line represents a
well. The plots to the left are Delaunay grids before conversion, and the plots to
the right are the resulting PEBI grids after conversion.

(a) Background grid. (b) Add constraints. (c) Remove conflict points.

Figure 25: Creating faults and wells in MATLAB. The mesh in (a) is created using
Gmsh. The constraints in (b) follow a familiar pattern – the blue line is a fault, and
the magenta line is a well. In (c), we have removed the conflict points and are left
with a conforming grid.

30

mesh size field. The distance constraints and the minimum size of the threshold
fields are controlled by user-settable parameters, as discussed in Appendix B. The
maximum size of the threshold fields is set to the default cell size. An illustration
of this process is shown in Figure 26.

(a) Constraints. (b) The mesh size field. (c) The produced mesh.

Figure 26: Mesh refinement in gmsh4mrst. The input of the mesh refinement is
shown as constraints in (a). Based on this, gmsh4mrst creates the mesh size field
shown in (b). The result is shown in (c) as a Delaunay triangulation, but the method
still applies when the triangulation is later converted to PEBI.

Combining MATLAB and Python: While MATLAB has a decent interface
for calling Python methods, it is strict on the data conversion, and does not work
when trying to send multi-dimensional- or cell arrays to Python. In order to bypass
this, both the shape and constraints are converted to structs before being sent to
Python, with constraints being converted to a multi-level struct. The result is that
Python receives a MATLAB struct, which it reads as a Python dictionary, with
an x- and y-key for each constraint. These keys point to a one-dimensional array,
holding the x- and y-components of each constraint, respectively.

4.2.6 Limitations of gmsh4mrst

As gmsh4mrst uses Gmsh to produce its meshes, the primary limitation of Gmsh –
that it produces Delaunay triangulations rather than PEBI grids – creates limita-
tions for gmsh4mrst as well. While this has been worked around in pebiGrid2DGmsh,
it increases the work needed to produce good PEBI grids from Gmsh, and is the
reason why we cannot encode faults and wells directly in the Gmsh mesh.

One key limitation of delaunayGrid2D and pebiGrid2DGmshBase arise from their
use of transfinite grids. These grids cannot intersect, limiting the usability of the
two methods – delaunayGrid2D will not work for cases where wells cross either
other wells or faults, and pebiGrid2DGmshBase will not work for cases where any
constraints cross each other. While the methods work well when this is not the case,
this places strict limitations on the usability of the methods.

Another thing worth mentioning is the structuredness of the transfinite grids pro-
duced in the above-mentioned methods. Due to the nature of transfinite grids, they

31

produce highly structured subgrids. This is beneficial because it gives greater control
of the produced grid, and thus great control of how it is converted into a PEBI grid,
but may also be suboptimal if the grid is to be used for simulations or other work.
In cases where this may be an issue, it would be better to use pebiGrid2DGmsh, or
any of the methods of the UPR module of MRST.

One key design goal of gmsh4mrst was to create a drop-in replacement of Distmesh
in pebiGrid2D. While this is somewhat complete in pebiGrid2D, it does not have
complete API compitability, with many more arguments, as well as some that are
not included in pebiGrid2DGmsh. Some work is therefore needed if complete API
compitability is wanted.

The final limitation worth mentioning is a distinct lack of feedback to the user,
especially if something crashes. While basic argument parsing is done, any other
errors are unhandled, creating confusing error messages. This is doubly true if any-
thing goes wrong on the Python-side of things, where I have experienced everything
from the connection between MATLAB and Python abruptly closing, to MATLAB
crashing without any error message. This makes it hard for the user to understand
what has gone wrong, and makes the program less robust.

4.2.7 Examples of gmsh4mrst

A key design choice when creating gmsh4mrst was to have an easy-to-use interface.
This section will present some examples of gmsh4mrst programs, as well as their
outputs. Source code for the examples is shown in Appendix C.

Complex domains When working with real-life domains, we sometimes have
domains that are not perfectly rectangular. To handle this, gmsh4mrst supports
using any polygon as domain. Code Segment 4 shows how to create a star-shaped
domain in gmsh4mrst. The output is shown in Figure 27.

Figure 27: PEBI grid with complex domain, generated using gmsh4mrst. The
blue line represents a fault, and the magenta line represents a well. Output from
Code Segment 4.

32

Intersecting constraints Real-life geological features may intersect, something
gmsh4mrst is designed to handle this with ease. Code Segment 5 shows how to
create a grid with intersecting constraints. The output is shown in Figure 28.

Figure 28: PEBI grid with intersecting constraints, generated using gmsh4mrst.
The blue lines represent faults, and the magenta line represents a well. Output from
Code Segment 5.

Grids with fine details One key drawback of UPR using the distmesh algorithm
for generating sites is its slowness when creating grids with fine details. This is
something gmsh4mrst is designed to handle. Code Segment 6 shows how to create
a grid spanning a square kilometer, with a 10 centimeter well passing through. The
output is shown in Figure 29.

Figure 29: A PEBI grid with a domain of one square kilometer, with a 10 centimeter
well passing through the domain. The magenta line represents a well. Output from
Code Segment 6.

33

5 Future work

With the large user base and feature set of Gmsh, there is significant potential
for using gmsh4mrst in interesting applications. Whether through advanced mesh
refinement, improved triangulation algorithms, or any other features of Gmsh, the
potential of expanding the use of Gmsh is definitely present.

One key requirement for future improvement of gmsh4mrst is by gaining a better un-
derstanding of the requirements, wants and needs of potential users. As my domain
knowledge is limited, it is hard to fully understand what features are and are not
useful, so the first step in any future development is simply to gain users and collect
feedback. This way, any developers can ensure that gmsh4mrst is optimized for the
right work, while any unused features or unneeded parameters may be removed.

One interesting topic to consider is using Gmsh to create structured background
grids, instead of the unstructured triangulations gmsh4mrst currently produced.
This could be achieved using a combination of embeddings and transfinite grids,
but would likely require significant manual work in order to make robust.

When looking forward, one clear development of gmsh4mrst is to expand the grid
generation to 3D. This is something both Gmsh and MRST can handle, and while
it would require at least some adaptations of the code, it could potentially open
up a new dimension of opportunities when it comes to combining the two tools. As
modelling targets usually are three-dimensional, this would also expand the usability
of the package significantly.

Finally, MATLAB provides functionality for calling code written in C++, and Gmsh
provides a C++ API. Although most of the functionality for Gmsh is already written
in C++ and only called from Python, porting gmsh4mrst to C++ could potentially
lead to increased speed. While this is not needed for models on a smaller scale,
it could be beneficial for larger, complex domains with numerous faults and wells.
As gmsh4mrst provides a MATLAB package separate from the Python package,
porting of the Gmsh-calling code could be done without changing anything in how
the package is used from MATLAB.

One goal of gmsh4mrst was to create an open-source project that can be continuously
developed as the needs of the software develop. The software is currently distributed
with the same license as Gmsh, which allows anyone to use, change and distribute the
software as they want, as long as future distributions are also open-source. With this
in mind, I hope this project can be used as a starting point for future development,
and that gmsh4mrst will become a useful tool for researchers using MRST.

34

Bibliography

[1] Berg, Andreas B. gmsh4mrst. url: https://pypi.org/project/gmsh4mrst/.

[2] Berg, Andreas B. gmsh4mrst - Source code. url: https://github.com/BollaBerg/
gmsh4mrst.

[3] Berge, Runar L. Unstructured PEBI-grids Adapting to Geological Features in
Subsurface Reservoirs. NTNU, June 2016. url: https://ntnuopen.ntnu.no/
ntnu-xmlui/handle/11250/2411565.

[4] Berge, Runar L., Klemetsdal, Øystein S. and Lie, Knut-Andreas. ‘Unstruc-
tured PEBI Grids Conforming to Lower-Dimensional Objects’. In: Advanced
Modeling with the MATLAB Reservoir Simulation Toolbox. Ed. by Knut-
Andreas Lie and Olav Møyner. Cambridge University Press, 2021, pp. 3–45.
doi: 10.1017/9781009019781.005.

[5] Delaunay, Boris. ‘Sur la sphère vide’. In: Bulletin de l’Académie des Sciences
de l’URSS. Classe des sciences mathématiques et na 6 (1934), pp. 793–800.

[6] Dyken, Christopher and Floater, Michael S. ‘Transfinite mean value interpol-
ation’. In: Computer Aided Geometric Design 26.1 (2009), pp. 117–134. issn:
0167-8396. doi: https ://doi .org/10 .1016/ j . cagd .2007.12 .003. url: https :
//www.sciencedirect.com/science/article/pii/S0167839607001240.

[7] Fawzy, Samer et al. ‘Strategies for mitigation of climate change: a review’.
In: Environmental Chemistry Letters 18 (6 Nov. 2020), pp. 2069–2094. doi:
10.1007/s10311- 020- 01059-w. url: https://doi .org/10.1007/s10311- 020-
01059-w.

[8] Geuzaine, Christophe and Remacle, Jean-François. Gmsh. Presentation. url:
https://gmsh.info/doc/course/general overview.pdf (visited on 25th May 2022).

[9] Geuzaine, Christophe and Remacle, Jean-François. ‘Gmsh: A three-dimensional
finite element mesh generator with built-in pre- and post-processing facilities’.
In: International Journal for Numerical Methods in Engineering 79.11 (2009),
pp. 1309–1331. doi: 10.1002/nme.2579. url: https://gmsh.info/doc/preprints/
gmsh paper preprint.pdf.

[10] Gmsh. Gmsh 4.10.2. url: https://gmsh.info/doc/texinfo/gmsh.html (visited
on 25th May 2022).

[11] Johansson, August. gmsh to mrst. 2021. url: https://github.com/augustjohansson/
gmsh to mrst.

[12] K. Ponting, D. ‘Corner Point Geometry in Reservoir Simulation’. In: cp-234-
00003 (1989). issn: 2214-4609. doi: https : //doi . org/10 . 3997/2214 - 4609 .
201411305. url: https://www.earthdoc.org/content/papers/10.3997/2214-
4609.201411305.

[13] Lie, Knut-Andreas. An Introduction to Reservoir Simulation Using MATLAB
/ GNU Octave: User Guide for the MATLAB Reservoir Simulation Toolbox
(MRST). Cambridge University Press, 2019. doi: 10.1017/9781108591416.

35

https://pypi.org/project/gmsh4mrst/
https://github.com/BollaBerg/gmsh4mrst
https://github.com/BollaBerg/gmsh4mrst
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2411565
https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/2411565
https://doi.org/10.1017/9781009019781.005
https://doi.org/https://doi.org/10.1016/j.cagd.2007.12.003
https://www.sciencedirect.com/science/article/pii/S0167839607001240
https://www.sciencedirect.com/science/article/pii/S0167839607001240
https://doi.org/10.1007/s10311-020-01059-w
https://doi.org/10.1007/s10311-020-01059-w
https://doi.org/10.1007/s10311-020-01059-w
https://gmsh.info/doc/course/general_overview.pdf
https://doi.org/10.1002/nme.2579
https://gmsh.info/doc/preprints/gmsh_paper_preprint.pdf
https://gmsh.info/doc/preprints/gmsh_paper_preprint.pdf
https://gmsh.info/doc/texinfo/gmsh.html
https://github.com/augustjohansson/gmsh_to_mrst
https://github.com/augustjohansson/gmsh_to_mrst
https://doi.org/https://doi.org/10.3997/2214-4609.201411305
https://doi.org/https://doi.org/10.3997/2214-4609.201411305
https://www.earthdoc.org/content/papers/10.3997/2214-4609.201411305
https://www.earthdoc.org/content/papers/10.3997/2214-4609.201411305
https://doi.org/10.1017/9781108591416

[14] Liu, Yang et al. ‘On Centroidal Voronoi Tessellation—Energy Smoothness
and Fast Computation’. In: ACM Trans. Graph. 28.4 (Sept. 2009). issn: 0730-
0301. doi: 10.1145/1559755.1559758. url: https://doi.org/10.1145/1559755.
1559758.

[15] NASA. NASA: Climate Change and Global Warming. url: https://climate.
nasa.gov/ (visited on 30th May 2022).

[16] Persson, Per-Olof and Strang, Gilbert. ‘A Simple Mesh Generator in MAT-
LAB’. In: SIAM Review 46.2 (2004), pp. 329–345. doi: 10.1137/S0036144503429121.
url: https://doi.org/10.1137/S0036144503429121.

[17] Shaffer, Gary. ‘Long-term effectiveness and consequences of carbon dioxide
sequestration’. In: Nature geoscience 3.7 (2010), pp. 464–467. issn: 1752-0894.

[18] SINTEF. MRST. url: https://www.sintef.no/projectweb/mrst/ (visited on
24th May 2022).

[19] Voronoi, Georges. ‘Nouvelles applications des paramètres continus à la théorie
des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres
primitifs.’ In: Journal für die reine und angewandte Mathematik (Crelles Journal)
(1908), pp. 198–287.

36

https://doi.org/10.1145/1559755.1559758
https://doi.org/10.1145/1559755.1559758
https://doi.org/10.1145/1559755.1559758
https://climate.nasa.gov/
https://climate.nasa.gov/
https://doi.org/10.1137/S0036144503429121
https://doi.org/10.1137/S0036144503429121
https://www.sintef.no/projectweb/mrst/

Appendix

A Gmsh examples

This appendix contains the code behind the Gmsh examples listed in Section 3.2.2.

Code Segment 1: Gmsh: Simple square mesh

import gmsh

Always initialize gmsh

gmsh.initialize()

Create corner points

Note that the mesh may look different if corners are

defined clockwise instead of counter-clockwise

p1 = gmsh.model.geo.add_point(0, 0, 0)

p2 = gmsh.model.geo.add_point(1, 0, 0)

p3 = gmsh.model.geo.add_point(1, 1, 0)

p4 = gmsh.model.geo.add_point(0, 1, 0)

Create line segments

l1 = gmsh.model.geo.add_line(p1, p2)

l2 = gmsh.model.geo.add_line(p2, p3)

l3 = gmsh.model.geo.add_line(p3, p4)

l4 = gmsh.model.geo.add_line(p4, p1)

Create a curve loop of the edge lines

curve = gmsh.model.geo.add_curve_loop([l1, l2, l3, l4])

Create a surface of the curve loop

surface = gmsh.model.geo.add_plane_surface([curve])

Synchronize the CAD kernel to create Gmsh data structures

gmsh.model.geo.synchronize()

Generate 2D mesh

gmsh.model.mesh.generate(2)

Show the model by running the GUI

gmsh.fltk.run()

Always finalize when done using the API

gmsh.finalize()

37

Code Segment 2: Gmsh: Adjusting the mesh size field

import gmsh

Always initialize gmsh

gmsh.initialize()

Gmsh can easily use different CAD kernels

In this case, we use OpenCASCADE to create our base domain,

starting at (0, 0, 0), with sides dx = dy = 1

surface = gmsh.model.occ.add_rectangle(0, 0, 0, 1, 1)

Synchronize the CAD kernel to create Gmsh data structures

gmsh.model.occ.synchronize()

Setup our base mesh size

base_size = 0.2

Create our line

start = gmsh.model.occ.add_point(0.2, 0.2, 0)

end = gmsh.model.occ.add_point(0.8, 0.8, 0)

line = gmsh.model.occ.add_line(start, end)

Create the point

point = gmsh.model.occ.add_point(0.3, 0.7, 0)

Synchronize to ensure the new points are available for Gmsh

gmsh.model.occ.synchronize()

Create a Distance field, calculating the distance from a line

line_distance = gmsh.model.mesh.field.add("Distance")

Set the input of line_distance to be our line

gmsh.model.mesh.field.set_numbers(line_distance, "CurvesList", [line])

Set the sample rate of the field to 100

gmsh.model.mesh.field.set_number(line_distance, "Sampling", 100)

Now we create a Threshold field, using line_distance as our input

We want to scale for all cells with a distance in [0.05, 0.2]

We want the size of the cells to be in [base_size / 10, base_size]

line_thresh = gmsh.model.mesh.field.add("Threshold")

gmsh.model.mesh.field.setNumber(line_thresh, "InField", line_distance)

gmsh.model.mesh.field.setNumber(line_thresh, "SizeMin", base_size / 10)

gmsh.model.mesh.field.setNumber(line_thresh, "SizeMax", base_size)

gmsh.model.mesh.field.setNumber(line_thresh, "DistMin", 0.05)

gmsh.model.mesh.field.setNumber(line_thresh, "DistMax", 0.2)

To use the point, we must set up another distance field

point_dist = gmsh.model.mesh.field.add("Distance")

gmsh.model.mesh.field.set_numbers(point_dist, "PointsList", [point])

38

We can now create a MathEval field, using the square distance as our

input. We shift F to so that the minimum mesh size is base_size / 10

point_field = gmsh.model.mesh.field.add("MathEval")

gmsh.model.mesh.field.set_string(point_field, "F",

f"F{point_dist}^2 + {base_size / 10}"

)

We can now create a Min field, to calculate the minimum of all the

fields. We then set it as our mesh size field

min_field = gmsh.model.mesh.field.add("Min")

gmsh.model.mesh.field.setNumbers(min_field, "FieldsList",

[line_thresh, point_field]

)

gmsh.model.mesh.field.setAsBackgroundMesh(min_field)

Generate 2D mesh

gmsh.model.mesh.generate(2)

Show the model by running the GUI

gmsh.fltk.run()

Always finalize when done using the API

gmsh.finalize()

39

Code Segment 3: Gmsh: Structured meshes

import gmsh

Always initialize gmsh

gmsh.initialize()

Create the linear transfinite mesh

trans_lines = [] # For storing lines

trans_loops = [] # For storing curve loops

trans_surfaces = [] # For storing surfaces

for start_x in (0.2, 0.6):

Create transfinite mesh corners

corner1 = gmsh.model.geo.add_point(start_x, 0.2, 0)

corner2 = gmsh.model.geo.add_point(start_x + 0.2, 0.2, 0)

corner3 = gmsh.model.geo.add_point(start_x + 0.2, 0.8, 0)

corner4 = gmsh.model.geo.add_point(start_x, 0.8, 0)

Create transfinite mesh lines

lines = [

gmsh.model.geo.add_line(corner1, corner2),

gmsh.model.geo.add_line(corner2, corner3),

gmsh.model.geo.add_line(corner3, corner4),

gmsh.model.geo.add_line(corner4, corner1)

]

trans_lines.append(lines)

Create transfinite mesh curve loop, save it in trans_loops

trans_loop = gmsh.model.geo.add_curve_loop(lines)

trans_loops.append(trans_loop)

Create the transfinite mesh surface

trans_surface = gmsh.model.geo.add_plane_surface([trans_loop])

trans_surfaces.append(trans_surface)

Make the first mesh transfinite

We use 11 points along the short sides of the mesh,

and 31 points along the long sides of the mesh

This gives us a grid of 10 * 30 cells

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[0][0], 11)

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[0][1], 31)

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[0][2], 11)

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[0][3], 31)

We can now make the surface transfinite

If our surface had more than 4 corners, we would have to manually

specify the corners to use for the transfinite interpolation

This is automatic for 3 and 4 corners

gmsh.model.geo.mesh.set_transfinite_surface(trans_surfaces[0])

40

We make the second mesh transfinite

We keep the number of points, but make the points along the long

sides follow a geometric progression with power = 1.5

Note how we reverse the second line, to get a symmetric distribution

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[1][0], 11)

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[1][1], 31,

coef=1.5)

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[1][2], 11)

gmsh.model.geo.mesh.set_transfinite_curve(trans_lines[1][3], 31,

coef=-1.5)

gmsh.model.geo.mesh.set_transfinite_surface(trans_surfaces[1])

Recombine triangles to get a rectangular grid

gmsh.model.geo.mesh.set_recombine(2, trans_surfaces[0])

gmsh.model.geo.mesh.set_recombine(2, trans_surfaces[1])

Create a base surface

p1 = gmsh.model.geo.add_point(0, 0, 0)

p2 = gmsh.model.geo.add_point(1, 0, 0)

p3 = gmsh.model.geo.add_point(1, 1, 0)

p4 = gmsh.model.geo.add_point(0, 1, 0)

l1 = gmsh.model.geo.add_line(p1, p2)

l2 = gmsh.model.geo.add_line(p2, p3)

l3 = gmsh.model.geo.add_line(p3, p4)

l4 = gmsh.model.geo.add_line(p4, p1)

curve = gmsh.model.geo.add_curve_loop([l1, l2, l3, l4])

We create the base surface everywhere except within the

transfinite meshes we created

surface = gmsh.model.geo.add_plane_surface([curve] + trans_loops)

Synchronize the CAD kernel to create Gmsh data structures

gmsh.model.geo.synchronize()

Generate 2D mesh

gmsh.model.mesh.generate(2)

Show the model by running the GUI

gmsh.fltk.run()

Always finalize when done using the API

gmsh.finalize()

41

B Parameters in gmsh4mrst

This appendix gives a brief description of the available user-settable parameters
of gmsh4mrst. The parameters are formatted as they are used in MATLAB, but
all parameters – unless otherwise noted – are available in Python as well. Unless
specifically stated, all Python parameters have the same name as their MATLAB
equivalents, only written in snake_case instead of camelCase.

B.1 Background grid refinement

Most of the available arguments control the refinement of the background grid pro-
duced in Python, and are passed directly through to the Python package. These
arguments are listed in Table 1.

Table 1: Arguments controlling background grid refinement in gmsh4mrst.

Argument Description

resGridSize The default size of each cell in the
grid. In Python, this argument is named
cell dimensions.

faceConstraintFactor Controls the size of the cells close to the
face constraints. The minimum size of the
face constraint threshold field is given as
faceConstraintFactor * resGridSize.

faceConstraintRefinementFactor The cell size in the background refine-
ment done around the face constraints.
Only available in pebiGrid2DGmsh and
pebiGrid2DGmshBase.

minFCThresholdDistance Distance from face constraints where cell
dimensions will start increasing. Used as
the minimum distance of the face con-
straint threshold field.

maxFCThresholdDistance Distance from face constraints where cell
dimensions will be back to their default
value. Used as the maximum distance of
the face constraint threshold field.

FCMeshSampling How many points along each face con-
straint line to sample for distance calcu-
lation.

cellConstraintFactor Same as faceConstraintFactor, but for
cell constraints.

cellConstraintLineFactor Overrides cellConstraintFactor for cell
constraint lines. Only available in
pebiGrid2DGmsh.

cellConstraintPointFactor Overrides cellConstraintFactor for cell
constraint points.

Continued on next page.

42

Argument Description

cellConstraintRefinementFactor The cell size in the background refine-
ment done along the cell constraints.
Only available in pebiGrid2DGmshBase

and delaunayGrid2DGmsh and
pebiGrid2DGmshBase.

minCCThresholdDistance Same as minFCThresholdDistance, but
for cell constraints.

maxCCThresholdDistance Same as maxFCThresholdDistance, but
for cell constraints.

CCMeshSampling Same as FCMeshSampling, but for cell con-
straints.

faceIntersectionFactor Same as faceConstraintFactor, but
for intersections of constraints. Only
available in pebiGrid2DGmsh and
delaunayGrid2DGmsh.

minIntersectionDistance Same as minFCThresholdDistance,
but for intersections of constraints.
Only available in pebiGrid2DGmsh and
delaunayGrid2DGmsh.

maxIntersectionDistance Same as maxFCThresholdDistance,
but for intersections of constraints.
Only available in pebiGrid2DGmsh and
delaunayGrid2DGmsh.

meshAlgorithm Which Gmsh meshing algorithm to use.
recombinationAlgorithm Which Gmsh recombination algorithm to

use.

B.2 Constraint creation in pebiGrid2DGmsh

The MATLAB method pebiGrid2DGmsh creates constraints in MATLAB instead of
Python, and therefore accepts arguments that influence how this creation is done.
These arguments do the same as in pebiGrid2D, and are kept to keep the replace-
ment as simple as possible. The arguments are listed in Table 2.

Table 2: Arguments controlling constraint creation in pebiGrid2DGmsh.

Argument Description

interpolateCC Whether any interpolation should be done along the cell con-
straint lines.

CCRefinement Whether refinement should be done around the cell constraints.
CCEps The refinement transition around the cell constraints.
CCRho Controls the distance between the cell constraint

sites. The distance between the sites is given as
CCRho * CCFactor * resGridSize.

Continued on next page.

43

Argument Description

protLayer Whether a protection layer should be added around the cell
constraints.

protD The distance between the cell constraint and protection sites.
interpolateFC Same as interpolateCC, but for face constraints.
circleFactor The ratio between the radius and distance between the circles

used to create the face constraints.
FCRho Same as CCRho, but for face constraints.
sufFCCond Whether the fault condition (Definition 3.2) should be enforced,

instead of a less strict condition.

B.3 Transfinite grid control

Several arguments are available for controlling the transfinite grids used to pro-
duce cell constraints in delaunay_grid_2D and both face- and cell constraints in
pebi_base_2D. Unless explicitly stated, all arguments are available in both these
methods. These arguments are listed in Table 3.

Table 3: Arguments controlling transfinite grid creation in gmsh4mrst.

Argument Description

faceConstraintParallelFactor Overrides faceConstraintFactor

along the face constraint lines, i.e.
sets the length of the transfinite cells
along the constraints. Only available
in pebiGrid2DGmshBase.

faceConstraintPerpendicularFactor Overrides faceConstraintFactor

across the face constraint lines, i.e.
sets the width of the transfinite cells
across the constraints. Only available
in pebiGrid2DGmshBase.

faceConstraintPointFactor Overrides faceConstraintFactor for
cell constraint points. Only available
in pebiGrid2DGmshBase.

faceConstraintPerpendicularCells The number of transfinite nodes should
be placed across the end-segment of
the face constraint transfinite grids, i.e.
how many cells wide should the face
constraint grid be. Only available in
pebiGrid2DGmshBase.

cellConstraintParallelFactor Overrides cellConstraintFactor

along the cell constraint lines, i.e. sets
the length of the transfinite cells along
the constraints.

Continued on next page.

44

Argument Description

cellConstraintPerpendicularFactor Overrides cellConstraintFactor

across the cell constraint lines, i.e. sets
the width of the transfinite cells across
the constraints.

cellConstraintPerpendicularCells The number of transfinite nodes should
be placed across the end-segment of
the cell constraint transfinite grids, i.e.
how many cells wide should the cell
constraint grid be. Only available in
pebiGrid2DGmshBase.

B.4 Miscellaneous arguments

Some arguments are not part of the above groups, but still worth mentioning. These
arguments are listed in Table 4.

Table 4: Miscellaneous arguments in gmsh4mrst.

Argument Description

shape The shape of the domain. Can either be a 2D array of points
or a size [x, y]. If a size is passed, the domain will be a square
between [0, 0] and [x, y].

faceConstraints The face constraints the grid should adapt to.
cellConstraints The cell constraints the grid should adapt to.
convertToPEBI Whether the grid should be converted to PEBI. Only avail-

able in pebiGrid2DGmshBase.
savename A name the Gmsh mesh should be saved as. Only available in

the Python package, as it is set automatically in MATLAB.
run frontend Whether the Gmsh frontend should be run after creating the

grid. Only available in the Python package.

45

C gmsh4mrst examples

This appendix contains the code behind the gmsh4mrst examples listed in Sec-
tion 4.2.7.

Code Segment 4: gmsh4mrst: Complex domain

% Set the default grid size

resGridSize = 0.1;

% Set the domain to a star-shape

outer = 1;

inner = 0.5;

domain = [

outer*cosd(18) outer*sind(18);

inner*cosd(54) inner*sind(54);

outer*cosd(90) outer*sind(90);

inner*cosd(126) inner*sind(126);

outer*cosd(162) outer*sind(162);

inner*cosd(198) inner*sind(198);

outer*cosd(234) outer*sind(234);

inner*cosd(270) inner*sind(270);

outer*cosd(306) outer*sind(306);

inner*cosd(342) inner*sind(342);

];

% Create a single fault and well

faceConstraints = {[-0.5 -0.7; 0.3 0.3]};

cellConstraints = {[-0.3 0.3; 0.5 -0.7]};

% Create the PEBI grid

G = pebiGrid2DGmsh(...

resGridSize, ...

domain, ...

'faceConstraints', faceConstraints, ...

'cellConstraints', cellConstraints ...

);

46

Code Segment 5: gmsh4mrst: Intersecting constraints

% Set the default grid size

resGridSize = 0.1;

% Set the domain to the unit square

domain = [1 1];

% Create intersecting constraints

faceConstraints = {

[0.1 0.1; 0.9 0.9], ...

[0.5 0.1; 0.5 0.9], ...

[0.9 0.1; 0.1 0.9], ...

};

cellConstraints = {

[0.4 1; 0.7 0.8; 0.9 0.2] ...

};

% Create the PEBI grid

G = pebiGrid2DGmsh(...

resGridSize, ...

domain, ...

'faceConstraints', faceConstraints, ...

'cellConstraints', cellConstraints ...

);

47

Code Segment 6: gmsh4mrst: Detailed grid

% Set the default grid size

resGridSize = 0.1;

% Set the domain to the unit square

% We use kilometers as units

domain = [1 1];

% Set the size of cells near our well

cellConstraintFactor = 0.1;

% Set the width of the well

cellConstraintPerpendicularFactor = 0.0001; % 10 cm

% Create a simple well passing through the domain

cellConstraints = {

[0.5 0.99; 0.3 0.01] ...

};

% Create the PEBI grid

% We can use pebiGrid2DGmshBase as we have no crossing constraints

G = pebiGrid2DGmshBase(...

resGridSize, ...

domain, ...

'cellConstraints', cellConstraints, ...

'cellConstraintFactor', cellConstraintFactor, ...

'cellConstraintPerpendicularFactor', ...

cellConstraintPerpendicularFactor ...

);

48

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
at

he
m

at
ic

al
 S

ci
en

ce
s

Andreas Bjelland Berg

Combining Gmsh and MRST

Developing software for more efficient grid
creation in two dimensions

Bachelor’s thesis in Mathematical Sciences
Supervisor: Knut-Andreas Lie
Co-supervisor: Øystein Klemetsdal, August Johansson
June 2022

Ba
ch

el
or

’s
th

es
is

	Abstract
	Oppsummering
	List of Figures
	List of Tables
	List of Algorithms
	List of Code Segments
	Introduction
	Theory
	Delaunay triangulation
	Voronoi diagrams
	Relationship between Delaunay and Voronoi
	Clipped Voronoi diagrams
	Centroidal Voronoi diagrams
	Optimal Delaunay triangulation

	PEBI grids
	Transfinite grids

	Software
	MRST
	The UPR Module

	Gmsh
	Gmsh modules
	Examples of Gmsh
	Limitations of Gmsh

	Combining MRST and Gmsh
	gmshToMrst
	gmsh4mrst
	Installation of gmsh4mrst
	Features of gmsh4mrst
	Using gmsh4mrst in Python
	Using gmsh4mrst in MATLAB
	Mechanics of gmsh4mrst
	Limitations of gmsh4mrst
	Examples of gmsh4mrst

	Future work
	Bibliography
	Appendix
	Gmsh examples
	Parameters in gmsh4mrst
	Background grid refinement
	Constraint creation in pebiGrid2DGmsh
	Transfinite grid control
	Miscellaneous arguments

	gmsh4mrst examples

