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Abstract

In this thesis, a class of implicit Runge–Kutta (IRK) methods known as Hamiltonian Boundary
Value Methods (HBVMs) are considered. These methods are especially suited to solve canonical
Hamiltonian systems; with the right choice of parameters, they preserve polynomial Hamiltonians
exactly, while for general Hamiltonian systems, they can be made energy-preserving down to
machine precision for arbitrary stepsizes. They are based on an extended collocation condition,
and can be constructed with many different quadrature bases; here, HBVMs based on Gauß–
Legendre or Lobatto are considered. After presenting the background theory on HBVMs, it is
demonstrated that any HBVM with s fundamental stages and k total stages have deterministic
order 2s and Hamiltonian error convergence of order 2k.

The main goal of the thesis is to adapt HBVMs to Stochastic Differential Equations (SDEs).
Limiting the scope to Stochastic Hamiltonian Systems (SHSes) wich can be expressed in terms
of a single integrand, it is shown that the HBVM(k, s) has strong or mean square (ms) order
of accuracy s, while the Hamiltonian error convergence is of order k in the weak sense. For
polynomial stochastic Hamiltonians of degree ν, if the parameters of the Gauß or Lobatto based
HBVM satisfy the conservation condition 2k ≥ νs, the method is completely energy-preserving.

Several numerical experiments for both deterministic and single integrand Hamiltonian sys-
tems are offered to support the theory, namely the quadratic Harmonic Oscillator (called Kubo
Oscillator for SDEs), the cubic Hénon–Heiles problem, a polynomial Hamiltonian of order six and
the non-polynomial Kepler problem in two dimensions. While the strong error convergence neatly
fits in with the theory, for non-conservative choices of the parameter k > s, the weak Hamiltonian
convergence order is somewhat lower than expected. The methods with conservative choices of
k does nevertheless preserve the Hamiltonian exactly.

A chapter is devoted to discussing implementation of an IRK solver for SDEs in Python, com-
paring solvers based on traditional scientific computing ecosystem offered through the numpy and
scipy packages with the relatively new jax; the latter turns out to be a lot faster while still
offering similar degree of precision.
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Sammendrag

I denne oppgaven betraktes en klassemed implisitte Runge–Kutta-metoder (RK-metoder) som
kalles Hamiltonian Boundary Value Methods (HBVMs). Disse metodene er spesielt godt egnet
til å løse kanoniske Hamiltonske systemer; med riktig valg av parametre bevarer de polynom-
iske Hamiltoner nøyaktig, mens de kan gjøres energibevarende for generelle Hamiltoner ned til
maskinpresisjon for en vilkårlig skrittlengde. De er basert på en utvidet kollokasjonsbetingelse og
kan lages med mange forskjellige kvadraturbasiser; her betraktes først og fremst Gauß–Legendre
og Lobatto. Etter å ha presentert relevant bakgrunnsteori, demonstreres det at enhver Gauß–
HBVM med s grunntrinn og k trinn totalt har deterministisk orden 2s og Hamiltonsk feilkonver-
gens av orden 2k. For Lobatto-HBVMs gjelder det samme resultatet med et ekstra trinn.

Hovedmålet har vært å tilpasse HBVMs til å kunne brukes på stokastiske differensiallikninger
(SDEer). Etter å ha snevret oppgaven oppgaven inn til stokastiske Hamiltonske systemer (SHSer)
som lar seg skrives med kun én integrand, blir det vist at HBVM(k, s) har sterk konvergensorden s
og Hamiltonsk feilkonvergens i svak forstand av orden k. For polynomiske stokastiske Hamiltoner
av grad ν vil metoden være fullstendig energibevarende hvis metodens parametre oppfyller
bevaringsbetingelsen 2k ≥ νs.

Flere numeriske eksperimenter for både deterministiske og stokastiske Hamiltonske systemer
ble gjennomført for å underbygge de teoretiske resultatene: en endimensjonal kvadratisk har-
monisk oscillator (kalt Kubo-oscillator for stokastisk variant), det kubiske Hénon–Heiles-problemet,
en sjettegrads polynomisk Hamilton, samt det ikke-polynomiske Kepler-problemet i to dimens-
joner. Mens den observerte sterke feilkonvergensen passer svært godt overens med den teoret-
iske ordenen, ga ikke-bevarende valg av k > s noe lavere enn teoretisk svak feilkonvergens for
Hamiltonen. Likevel er Hamiltonen nøyaktig bevart for k valgt konservativ.

Et kapittel er også viet til implementasjonen av en IRK-løser for SDEer i Python, der løsere
basert på det tradisjonelle økosystemet for vitenskapelige beregninger i form av pakkene numpy og
scipy sammenlignes med det relativt nye biblioteket jax; det siste viser seg å være mye raskere
samtidig som det har en tilsvarende grad av nøyaktighet.
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Preface

I’ve observed that convenient approximations bring you
closest to comprehending the true nature of things.

Hard-Boiled Wonderland and The End of the World
Haruki Murakami

We have normality. I repeat, we have normality. Anything
you still can’t cope with is therefore your own problem.

The Hichhiker’s Guide to the Galaxy
Douglas Adams

This Master’s thesis is a continuation of the my specialization project [1], wich was written in
the autumn of 2021 and finished in January 2022. That project dealt mainly with the conservation
of quadratic invariants of Stratonovich SDEs as presented by Hong et al. [2], but some attention
was also paid to Stochastic Hamiltonian Systems with additive noise, for which one can observe
a drift in the expectation of the Hamiltonian [3]. As a part of the review process, the energy-
preserving methods of Brugnano et al. [4] were descried, but were only noted in the final draft.

During the numerical experiments related to the work, some of the methods achieved a higher
order of mean-square convergence than was expected for multidimensional noise. It turned out
that the test problem (the Kubo Oscillator) allowed a reformulation with a single integrand, for
which type of problem numerical methods automatically attain half that of their deterministic
order [5]. In this work, the results of Debrabant and Kværnø [5] and the methods of Brugnano et
al. [4] are combined to present energy-preserving methods for Stochastic Differential Equations
of arbitrary high order.
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Nomenclature

0d1×d2×..., 1d1×d2×... Vectors of specified dimension where all entries have the
given value; dimensions might be omitted when obvious
from context, e.g. zero entries in matrices.

Id Identity matrix with rank d.
J Skew-symmetric structure matrix; see 2.2 for definition.
ea Basis unit vector with value 1 at entry a and 0 at all other

entries.

Gauss-2s, Lobatto-2s Gauß(–Legendre) and (Gauß–)Lobatto IIIA collocation
methods of deterministic order 2s.

Gauß-HBVM(k, s), Lobatto-HBVM(k, s) Hamiltonian Boundary Value Method with parameters
k, s based on Gauß and Lobatto quadrature, respectively.

sgn (·) Function sgn : F→ {−1, 1} returns the sign of the input.
d
dt Derivative w.r.t. variable t.
∂t Partial derivative w.r.t. some scalar variable t.
⊗ Kronecker product.
∇x ,∇q,∇p Gradient w.r.t. x , q or p.
δi j Kronecker delta, which is 1 if i = j and 0 otherwise.

N Set of natural numbers.
R,Rn,Rn×m Set of numbers, n-dimensional vectors and

n×m-dimensional matrices with real-valued entries,
respectively.

N(µ,σ2) Normal distribution with mean µ and variance σ2; note
that N(µ,σ2) = µ+σ · N(0, 1).

Cn
�

Rd1 ,Rd2
�

Set of all functions mapping from Rd1 to Rd2 with
continuous derivatives of degree n.

Pn(D) The set of polynomials of degree less than or equal to n
on the domain D.

W (t) Wiener Process (Brownian Motion) at time t;
W (t) ∈ Rd , d ∈ N.

X (t),Q(t), P(t) Stochastic time-dependent variable.
dX (t) Symbolic form of stochastic variable X .
t0, x0, q0, p0, X0,Q0, P0 Initial values, capital letter indicating that it is stochastic.
x(t), q(t), p(t) Deterministic time-dependent variables.
dµ(t) Single integrand measure.
dW (t) Symbolic form of Wiener Process.
◦dW (t), ◦dX (t) ◦ dµ(t) Stratonovich sense of stochastic process.
∆t,∆W,∆µ,∆Z Discrete increments of variables t, W,µ and Z .
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Chapter 1

Introduction

Change isn’t always for the best; this could be the slogan for geometric integration. Conserved
quantities often arise in differential equations modelling physical systems, reflecting underlying
governing principles such as conservation laws. In many use cases, it might be more important
that numerical scheme used for integration conserves these quantities as it is that they are cheap
to compute. This holds both for systems of Ordinary Differential Equations (ODEs) and systems
of Stochastic Differential Equations (SDEs), although (as is often the case) it might be slightly
more difficult for the latter. A special class of problems for which ODE and SDE amounts to about
the same, as well as a class of method which works almost equally well on both, will be explored
in this thesis.

1.1 Conserving the Hamiltonian

Hamiltonian systems, originally developed as a reformulation of Newtonian mechanics by way
of Lagrange, are now found in a wide range of fields. From applications in classical and partic-
ularly celestial mechanics, for instance models of planetary and stellar motion [6, Sec. I.2–I.3],
Hamiltonian dynamics are now used for models in everything from chemistry and molecular dy-
namics [6, 7] to economics (see for instance [8]) and other social sciences. A recent example of
the latter, in response to the climate crisis, is an attempt to model a sustainable society through a
steady state model combining both economic variables (Gross Domestic Product and Complexity,
or the level of sophistication of the products in an economy) with ecological variables (Total en-
ergy consumption and CO2 emmisions) [9]. In mechanics, the Hamiltonian function is usually an
expression for the total energy of the system, being the sum of kinetic and potential energy [10].
Whence, the error in the Hamiltonian of a system is interchangeably called the energy error.

Hamiltonian functions are a particular instance of first integrals, invariants or constants of
motion. For Poisson systems, which are a generalization of the canonical Hamiltonian system, the
class of Casimir funcions (if such exists for the system) are invariant in time. Moreover, as was
discovered by Poisson in 1809, the Poisson bracket of two first integrals is again a first integral
[6, pp. 256]. As an example consider the fully or completely integrable Kepler problem in R3, for
which the energy, the angular momentum vector, as well as their composition the Runge–Lenz
vector, are invariants [7, pp. 46–47].

It has been long known that Hamiltonians systems are closely associated with symplecticity;
it was shown by Jacobi in 1837 that symplectic transformations preserve the Hamiltonian char-
acter of ODEs [6, pp. 186], and by Poincaré in 1899 that their flow is symplectic [6, pp. 184].
For this reason, numerical integration of Hamiltonian systems have until the last two decades
mainly been investigated for symplectic methods, whose timestep approximation constitutes a
symplectic mapping (see e.g. [6, 11]). Symplectic methods nearly conserve Hamiltonian for ex-
ponentially long times [6, pp. 367], though without care this property might be lost by using
adaptive stepsizes [6, Ch. VIII]. In addition, symplectic integrators automatically preserve all
quadratic invariants [12]. However, a numerical method cannot be both symplectic and energy-

1
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preserving for general Hamiltonian problems [13, 14]. In fact, no Runge–Kutta (RK) method can
preserve all polynomial invariants of order higher than two [6, pp. 106].

Despite there not being one method to preserve them all, many numerical methods have been
developed or shown to preserve specific invariants. A prominent class of such methods are the dis-
crete gradientmethods, for which the numerical integrator is expressed through the discretization
of the gradient of an invariant or Lyapunov function of the system. With good discretization, such
methods will by constrution preserve this specific first integral exactly [15]; examples of these
discrete gradient methods include the Averaged Vector Field (AVF) method [16]. Other promin-
ent strategies to preserve first integrals involve projecting numerical solutions onto the manifold
defined by the invariant, thoroughly discussed by [6] [6], and methods designed to preserve the
path or line integral of the invariants, known as Line Integral Methods (LIMs) [17]; this thesis
concerns methods of the latter kind.

1.1.1 Hamiltonian Boundary Value Methods

For any polynomial Hamiltonian function of a canonical Hamiltonian system, there exists RK
methods which can preserve it exactly [18]; more specificly, the AVF constitutes the energy-
preserving RK method of the least number of stages with this property [19]. Iavernaro and Trigi-
ante [20] presented a framework for designing conservative methods based on discretization of
the line integral using an extended collocation condition. An alternative energy-preserving method
framework was given by Hairer [21] based on Lagrange polynomials, which is closely connec-
ted with collocation methods. All these different findings can be tied to Hamiltonian Boundary
Value Methods (HBVMs),1 which are methods designed to preserve polynomial Hamiltonians of
arbitrary degree exactly [4, 24].

In essence, the Hamiltonian Boundary Value Methods (HBVMs), which with parameters k, s
can be formulated as RK methods with k stages and order 2s, are be derived from the discrete
line integral of a Hamiltonian system through imposing the extended collocation condition [24].
Different quadraturemight be used as a basis, but here, the symmetric Gauß(–Legendre) and Lob-
atto are considered, as presented by Brugnano et al. [4, 25]. These have the advantage of being
symmetric methods, and the Gauß collocation-based methods achieve the highest possible order
for methods conserving the Hamiltonian with the lowest number of stages [25]. Consequently,
they coincide with the AVF method [24].

HBVMs have been written about extensively in an ODE setting (see e.g. [4, 24–30]), as have
Line Integral Methods (LIMs) in general.2 A natural extension of the HBVMs, which only focus on
preserving the energy of a canonical Hamiltonian system, is to adapt it to preserve the Hamilto-
nian of more general Poisson systems, as well as one or several invariants of the ODE. The first
item was the focus of [33] [33], whereas Brugnano and Iavernaro [17] provided a framework
for preserving invariants. These last methods, called Generalized HBVMs, can for methods of or-
der 2s and k "nodes" be adapted to achieve a global error of O

�

∆t2k
�

in an arbitrary number of
invariants, still retaining a block size s.

One of the drawbacks of the HBVMs is that they are not symplectic. Burrage and Burrage
[34] created a class of methods in an attempt to redress this, but they lost the favourable energy
behaviour of HBVMs (as expected from previously mentioned results on energy-preservation and
symplecticity). However, it is possible to perturb the coefficient matrix of Gauß collocation meth-

1The Boundary Value Method part of the name is legacy of the eponymous generalization of linear multistep
methods, where the multistep formula depends on k = k1 + k2 boundary conditions partitioned into k1 intitial and k2

terminal conditions [22, 23].
2The authors Brugnano and Iavernaro together with different collaborators have had a prodigious output on the

subject of LIMs over the last fifteen years. Unfortunately, of the papers come off as slightly repetative and might give
the impression of language and theory being slightly rushed; moreover, the large number of articles to keep track of
can be confusing. Despite the dubious reputation of the publisher (Axioms were rejected by the Norwegian National
Board of Scholarly Publishing (NPU) as a scientific publishing channel [32]), their review article [31] from 2018 seems
to offer a nice and sussinct introduction of the framework; it has also been cited more than 40 times by researchers
other than Brugnano and Iavernaro.
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ods in each timestep to ensure that the methods are symplectic and conserve the Hamiltonian
function. The size of the optimal perturbation parameter α is such that the method still maintains
an error O

�

∆t2s
�

and an energy error O
�

∆t2k
�

in the general case. This has been done by Brug-
nano et al. [35] in constructing the Energy and QUadratic Invariant Preserving Method (EQUIP)
methods. Note that to find the optimal perturbation α∗ for each timestep, they need perform a
few newton iterations, which are somewhat costly.

In the year of writing, Amodio et al. [36] unified these frameworks for even more general
classes of methods, originally referred to as Poisson Hamiltonian Boundary Vaule Methods (PHB-
VMs) for the generalized HBVM and Enhanced PHBVMs (EPHBVMs) for a version preserving
Casimirs (cf. EQUIP methods).

1.2 Numerical Methods for Stochastic Differential Equations

Numerical schemes for SDEs are often adaptations of schemes for solving ODEs, as the standard
deterministic methods rarely work in general [37, pp. XXII]. An effective approach to develop
schemes is to truncate Itô–/Stratonovich–Taylor series, also known as Wagner–Platen series ex-
pansions, after the necessary number of terms to achieve the desired order of convergence, ana-
logous to Taylor series expansions for ODE schemes [37, pp. XXVI–XXVII].

Error convergence order or order of accuracy of SDE schemes are in general measured in
either weak or strong sense. Strong error measurements compares the method error to an exact
solution along each trajectory of processes, usually measured in the mean square (ms) sense
(see Definition 2.33). Weak error is concerned with the distribution of the methods, or the "error
of the means" [38], possibly transformed by some function from a suitably large class [39, pp.
98] (see Definition 2.34). Numerical schemes are usually developed for either strong or weak
approximations, for which they are referred to as weak or strong schemes. Although a certain
strong order of accuracy guarantees the method at least the same weak order accuracy [37, pp.
23–24], they can otherwise be quite unrelated [39, pp. 98]; an example will be explored in this
thesis.

Due to the advantageous properties of its calculus as well as its colored noise better repres-
enting the effects studied, the Stratonovich formulation of SDEs is especially popular in physics
[37, Sec. 6.1]. For solving Stratonovich SDEs, Burrage and Burrage constructed [40] and gave
order conditions using B-series [41] for a general class of Stochastic Runge–Kutta (SRK) meth-
ods for strong approximation, while Komori [42] and Rößler [43] developed a similar Stochastic
Runge–Kutta (SRK) framework for scalar and multidimensional Wiener Processes, respectively.
Although one can construct such SRK methods of arbitrary high order in theory, they generally
involve exponentially more terms than their deterministic counterpart [40].

1.2.1 Geometric Integration and Stochastic Hamiltonian Systems

Stochastic Hamiltonian Systems (SHSes), or Hamiltonian systems in some way perturbed by
random fluctuations, arise within many different domains of the natural sciences. It is possible to
formulate Stochastic Hamiltonian Systems (SHSes) in the sense of Itô, (see [39, pp. 319]), but
the current thesis concerns the Stratonovich SHSes. As for deterministic Hamiltonian systems, the
phase flow of SHSes a.s. preserves the symplectic structure; Milstein and Tretyakov [39, Ch. 5]
have constructed several schemes especially suited to SHSes, in particular SHSes with separable
Hamiltonian and/or additive noise, many of which are symplectic.

As for numerical methods in general, geometric integration of SDEs have also gained trac-
tion. For general SHSes, Hong et al. [2] give conditions for which SRK methods are symplectic
and conserve quadratic invariants, while Anmarkrud and Kværnø [44] demonstrate that these
conditions can be used as simplifying conditions during method construction. Discrete gradient
approaches to integrate SDEs based on the framework presented by McLachlan et al. [15] was
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taken by Hong et al. [45] and Li et al. [46]; the latter also constructed linear projection methods,
which they proved to be a subclass of the stochastic discrete gradients.

There have also been attempts to apply HBVMs to SDEs. Burrage and Burrage show that for
SHSes with general additive noise for scalar [34] and multidimensional [3] Wiener Processes,
the (at most quartic) Hamiltonian drifts in expectation; this drift can be preserved by midpoint-
based methods inspired by HBVMs. In both papers, the tested scheme amounts to composition
methods treating the deterministic and noise term separately, much alike to Strang splitting [1].
However, D’Ambrosio et al. [47] shows through perturbation analysis that the drift error of these
methods strongly depend on the size of the noise term. Chen et al. [48] presents an adaptation
inspired by Hairer [21] of order one which is exactly drift-preserving, amending the issues of the
previous schemes.

Some investigation of SDEs have been of a class of problems where the drift and diffusion
functions are equal up to a constant; Debrabant and Kværnø [5] call such problems single integ-
rand SDEs, as they allow the problem to be rewritten using a single integrand with an adapted
measure. These single integrands problems can be solved with standard deterministic RK meth-
ods using a randomly perturbed timestep, maintaining half the deterministic error convergence
order for both weak and strong order of convergence [5]; as such, methods of arbitrary high
order can be cheaply attained, compared to the far more complicated SRK methods of Burrage
and Burrage [40]. Cohen et al. [49] extends these results to hold for any B-series methods, not-
ing that the geometric properties of the method in a deterministic setting also holds for single
integrand problems. In particular, this has been shown to hold for EQUIP methods [50].

1.3 In This Thesis

The specialization project [1], the precursor of this work, limited its scope to energy-preserving
methods for quadratic (or, in the case of SHSes with additive noise, quartic) invariants; here, the
subject matter is preserving energy for SHSes with higher order polynomial and general Hamilto-
nians. This thesis is devoted to exploring the construction and energy-preserving properties of the
HBVMs, as well as extending their results for ODE applications to Single Integrand Hamiltonian
Systems (SIHSes).

1.3.1 Thesis Structure

After the frontmatter, the thesis is structured thus:

• This chapter reviews relevant literature and presents the thesis problem and structure
• Chapter 2 offers a brief introduction to geometric integration and SDE theory
• Chapter 3 is devoted to the HBVMs in a deterministic setting, offering a derivation (Section
3.1), a summary of properties (Section 3.2) and some numerical tests (Section 3.3)
• Chapter 4 concerns Single Integrand Hamiltonian Systems (SIHSes) and the application
of HBVMs, presenting features of single integrand problems (Section 4.1), SIHSes (Sec-
tion 4.2), results for HBVMs applied to SIHSes (Section 4.2.1), and some complementary
numerical experiments (Section 4.3)
• Chapter 5, where features of the implementation are investigated
• Chapter 6, where the thesis matter is discussed and further work suggested
• Appendix A and B, consisting of selected HBVM Butcher tables and additional convergence
results, respectively
• Backmatter, in the form of Abbreviations and Bibliography
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It should be noted that, as this thesis continues the work done in the specialization project [1],
many sections of the preliminary Chapter 2 repeat and expand upon material already presented
in the previous work. In particular:

• Section 2.1 is based on [1, Section 2.4.1 & 2.4.2], albeit restructured and with more back-
ground on Poisson Systems and Poisson brackets;
• Section 2.2.1 is essentially [1, Section 2.4.3] rewritten for non-autonomous equations,
while Section 2.2.2 is a slightly expanded version of [1, Section 2.4.4];
• Section 2.4 is almost word for word collected from [1, Section 2.2 & 2.3].

Section 2.3 is new, however, as are the subsequent chapters herein.



Chapter 2

Preliminaries

This thesis demands some knowledge about SDEs and numerical integration to be easily un-
derstood. At Norwegian University of Science and Technology (NTNU), the subjects MA8109 -
Stochastic Processes and Differential Equations, MA8404 - Numerical Integration of Time De-
pendent Differenetial Equations, as well as their prerequisites, should give sufficient background
knowledge. For the uninitiated reader (or one just looking for a quick recap), background theory
is also presented here.

2.1 Hamiltonian, Poisson and Invariant Systems

Within this section, mainly autonomous ODEs, i.e. ODEs not explicitly time-dependent, of the
format

ẋ = f (x(t)), x(t0) = x0, f : U → Rd , U ⊂ Rd (2.1)

although it is quite possible to generalize to non-autonomous ODEs as well. This theory is mainly
adapted from Hairer et al. [6, Ch.IV & VI], unless stated otherwise.

2.1.1 Hamiltonian Systems

The derivation of the Hamiltonian system is adapted from Hairer et al. [6].
The origin of Hamiltonian function comes from a reformulation of the Lagrangian of a mech-

anical system, given in the form

L(q, q̇) = T (q, q̇)− U(q), q(t0), q̇(t0) = q0, q̇0 ∈ Rd , (2.2)

where T (q, q̇) is an expression for the kinetic energy and U(q) is an expression for the potential
energy in said system; q refers to position and q̇ its time derivative. To arrive at a Hamiltonian
expression for the system, the Lagrangian needs to be regular, i.e. have that the Legendre trans-
form

p = φ(q, q̇) =∇q L(q, q̇), (2.3)

is bijective (injective and surjective). The definition of the Hamiltonian for the system is given by

H(q, p) := pT q̇− L(q, q̇). (2.4)

Taking the derivative of (2.4), using (2.3) and the Euler-Lagrange equations

∇q L(q, q̇) =
d
dt

�

∇q̇ L(q, q̇)
�

, (2.5)

this can be restated as a system of equations on the form

q̇ =∇pH(q, p), (2.6a)
ṗ = −∇qH(q, p). (2.6b)

6

https://www.ntnu.edu/studies/courses/MA8109#tab=omEmnet
https://www.ntnu.edu/studies/courses/MA8109#tab=omEmnet
https://www.ntnu.edu/studies/courses/MA8404#tab=omEmnet
https://www.ntnu.edu/studies/courses/MA8404#tab=omEmnet
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Remark. It is assumed here and after that H ∈ C1 (U ,R) , U ⊂ R2d , i.e. that H is a continuously
differentiable function on a subset U of R2d .

Definition 2.1. A separable Hamiltonian system is a system of ODEs with a Hamailtonian of the
form

H(q, p) = pT M−1p+ V (t, q), M ∈ Rd×d , V ∈ C1
�

[t0, T]×Rd ,R
�

, (2.7)

so called as the p and q components are separable.

Definition 2.2. A Hamiltonian system is said to be canonical or of a canonical form if the system
can be expressed as

ẋ = J∇x H(x), (2.8)

where J is the skew-symmetric canonical structure matrix [7] and H is an analytic scalar function
i.e.

J =

�

0 Id
−Id 0

�

, H ∈ C1
�

R2d ,R
�

. (2.9)

Remark. The system of equations arrived at (2.6) can be stated equivalently as a canonical
Hamiltonian system by setting H(q, p) = H(x).

Remark. The Hamiltonian function associated with an ODE is often referred to as the energy of
the system.

Definition 2.3. The flow of an ODE from an initial value x0 at a (fixed) time t, denoted ϕt(x0), is

ϕt(x0) = x(t),

where x satisfies (2.1) for the initial value x0.

Remark. Variational equations, arising from ∂x0
ϕt , are closely tied to symplecticity, yet outside

the scope of this thesis.

Definition 2.4. [6, pp. 185] An ODE of the form (2.8) is locally Hamiltonian if there exists a
neighbourhood for every x0 ∈ U where f (x) = J∇x H(x) for some function H.

Symplecticity and the Connection to Hamiltonians

Definition 2.5. [6, pp.183] Let ω be a bilinear mapping ω : R2d ×R2d → R such that

ω(ξ,η) = ξT Jη, J =

�

0 Id
−Id 0

�

.

A differentiable mapping g : U → R2d for an open set U ⊂ R2d is called symplectic if

ω(g ′(x)ξ, g ′(x)η) = ξT g ′(x)T J g ′(x)η= ξT Jη=ω(ξ,η) ∀ξ,η ∈ R2d . (2.10)

Remark. For symplectic linear mappings g(x) 7→ Ax , it follows that

ω(Ax , Ay) = (Ax)T JAy = x T AT JAy = x T J y T =ω(x , y) ∀x , y ∈ R2d .

More succinctly, AT JA= J .

Theorem 2.1. [15, pp.184] Letϕt be the flow of a Hamiltonian system (2.8). Thenϕt is a symplectic
mapping.

Theorem 2.2. [15, pp.185] An ODE ẋ = f (x), x(t0) = x0 ∈ U for f ∈ C1
�

U ,R2d
�

is said to be
locally Hamiltonian if and only if its flow ϕt (see Definition 2.3) is symplectic.

Remark. In fact, the symplecticity condition is a quadratic invariant of the variational equation
of Hamiltonian systems.
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2.1.2 Invariants

Definition 2.6. [6] An invariant, first integral, conserved quantity or constant of motion[7, Ch.
3.3] is a function I ∈ C1

�

Rd ,R
�

such that for any x satisfying an ODE of the form (2.1), it holds
that

d
dt

I(x) =∇x I(x) ẋ =∇x I T f (t, x) = 0 ∀t ∈ [t0, T]. (2.11)

From the definition above, it follows that
∫ t

t0

d
dτ

I(x(τ))dτ= I(x(t))− I(x0) = 0 ∀t ∈ [t0, T]

⇔ I(x(t)) = I(x0) ∀t ∈ [t0, T].

(2.12)

Linear invariants are of the form

I(x) = dT x , d ∈ Rd , (2.13)

whereas quadratic invariants are of the form

I(x) = x T C x , C ∈ Rd×d s.t. C T = C . (2.14)

Note that invariants can also be of cubic or higher polynomial order, or not polynomial at all. It
is also quite possible that certain problems have several invariants - see e.g. [6, Ch.VI.6.4].
Remark. Taking the derivative of H(x(t)) with respect to t leads to the expression

d
dt

H(x(t)) =∇x H(x(t))T ẋ =∇x H(x(t))T J∇x H(x(t)) = 0

⇒ H(x(t))−H(x0) =

∫ t

0

d
dt

H(x(τ))dτ= 0 ∀t
(2.15)

if x satisfies (2.8). From comparing (2.11) and (2.12) with (2.8) and (2.15), it becomes clear
that Hamiltonians are invariants of their associated differential equation.

2.1.3 Poisson Systems

A useful tool for the discussion of Hamiltonians and invariants are the so-called Poisson Brackets.

Definition 2.7. A Poisson bracket is a bilinear and antisymmetric operation on continuous func-
tions F, G ∈ C1

�

[t0, T]×Rd ,R
�

given by the equation

{F, G} (t, x) =∇x G(t, x)T S(t, x)∇x F(t, x), (2.16)

where S : [t0, T]×Rd → R2d×2d is a skew-symmetric matrix function, i.e.

S(t, x)T = −S(t, x) ∀t ∈ [t0, T]. (2.17)

Note that the argument are often written implicitly, that is: {F, G} (t, x) = {F, G}.

Remark. Poisson brackets satisfy the Jacobi identity[6, citing Jacobi, 1862]

{{F, G} , H}+ {{H, F} , G}+ {{G, H} , F}= 0, (2.18)

as well as Leibniz’ rule
{F · G, H}= F · {G, H}+ G · {F, H} , (2.19)

the last one corresponding to standard chain rule of deterministic calculus.
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Remark. The symplectic map of Definition 2.5 is a Poisson bracket, as are all other constant
structure matrices[7, Ch. 3.3].
Remark. For any ODE with an invariant I it would hold that

{x , I}=∇x I(x)T Id ẋ =∇x I(x)T ẋ = 0,

where the structure matrix is just the identity matrix Id . For canonical Hamiltonian systems in
particular,

{x , I}= {H, I}=∇x I(x)T J∇x H(x) = 0,

with the structure matrices Id and J , respectively.

Theorem 2.3. [6, citing Poisson, 1809] If I1(x) and I2(x) are first integrals, so are their Poisson
bracket {I1, I2}(x).

McLachlan et al. [15] offers a reformulation of the system (2.1) with an invariant I(x) to the
following:

ẋ = S(t, x)∇x I , S : [t0, T]×Rd → Rd×d , ST = −S; (2.20)

in other words, the ODE can be expressed by a combination of a skew-symmetric matrix function
S and its invariant I . It follows readily that

d
dt

I(x(t)) =∇x I T S∇x I = 0 ∀t ∈ [t0, T], (2.21)

owing to the skew-symmetry of S.
Given that the first integral doesn’t vanish, they give the following form of S defined by the

invariant:
S =

f · ∇x I T −∇x I · f T

∥∇x I∥2
, ∥∇x I∥2 =∇x I T∇x I , (2.22)

where f is as in (2.1).

Definition 2.8. Systems of equations which can be written in the form

ẋ = S(t, x)∇x H(t, x), t ∈ [t0, T], x(t0) = x0 ∈ Rd , (2.23)

where S is given as in (2.17), are called Poisson systems. Note that the function H is still denoted
a Hamiltonian [6, Ch. VII.2].

Remark. It is easy to see that Hamiltonian systems are a special case of 2d-dimensional Poisson
systems with S(t, x) = J .

Definition 2.9. [6, Ch. VII.2] A function C(t, x) is called a Casimir function of a Poisson system
if it holds that

∇x C(t, x)T S(t, x) = 0 ∀x . (2.24)

Remark. It follows by definition that a Casimir function is a first integral of any Poisson system
with structure matrix S(t, x).
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2.2 Geometric Integration of Ordinary Differential Equations

In this section, the most important definitions and results regarding structure-preserving proper-
ties of RK methods are presented.

2.2.1 Runge–Kutta Methods for ODEs

Definition 2.10. An s-stage Runge–Kutta method applied the ODE

ẋ = f (t, x(t)), x(t0) = x0, t ∈ [t0, T],

take the form

yi = xn +∆t
s
∑

j=1

ai j f (tn + c j∆t, y j), i = 1, . . . , s, (2.25)

xn+1 = xn +∆t
s
∑

i=1

bi f (tn + ci∆t, yi), n= 0, . . . , N (2.26)

where ∆t is an equidistant temporal step-length, with x0 a given initial value.

Remark. A non-autonomous ODE is used in the definition above to show the explicit presence of
the abscissa {ci}si=1.

c A
bT

Table 2.1:
Butcher
table.

These methods can be written in the form of a Butcher table (Table 2.1), where
bT = (b1, · · · , bs), c = A · 1s are s-dimensional vectors and A an s × s-matrix, with
each element i, j corresponding to coefficients in the RK-methods. Note that

• Methods with only zero entries on and above the diagonal of A, i.e. ai j = 0
for j ≥ i are called explicit.
• Methods with zero entries above and some non-zero entries on the diagonal
of A, i.e. ai j = 0 for j > i, are called diagonally implicit.
• Methods with non-zero entries on and above the diagonal of A are called
implicit.
• ki is called stage i.
• Methods are called irreducible if they do not have equivalent stages.

2.2.2 Structure-Preservation and Symplecticity

Here, the main concern are autonomous ODEs, i.e. equations of the form

ẋ = f (x(t)), x(t0) = x0, t ∈ [t0, T]. (2.27)

Definition 2.11. [51, Ch. IV.3] Consider the test equation

ẋ = λx(t), t ∈ [t0, T], x(t0) = x0 ∈ C, λ ∈ C. (2.28)

Applying a RK method to (2.28) yields the relation

x1 = R(λ∆t)x0, where R(z) = 1+ zbT (Is − zA)T 1s =
det

�

Is − zA+ z1s bT
�

det (Is − zA)
. (2.29)

The function R(z) is called the stability function of the RK method.

Definition 2.12. [51, Ch. IV.3] A numerical (one-step) method is A-stable if its stability domain
contains the whole negative plane, i.e.

C− = {z ∈ C : ℜ(z)< 0} ⊂ S = {z ∈ C : |R(z)| ≤ 1} . (2.30)

For RK methods with (2.29) as stability function, A-stability is achived if and only if

|R(iz)| ≤ 1 ∀z ∈ R, R(z) ∈ C1 for ℜ(z)< 0. (2.31)
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Definition 2.13. [51, Ch. IV.12] Let

M := BA+ AT B − bbT , B = diag {b} . (2.32)

If the coefficients of an s-stage RK method satisfies the conditions

1. bi ≥ 0 for i = 1, . . . , s and
2. M is positive semi-definite (psd),

it is said to be algebraically stable.

Definition 2.14. [6, pp. 42] The adjoint method of a one-step method Φh, denoted Φ∗h, is the
inverse map of the original methods with reversed time step, i.e.

Φ∗h := Φ−1
−h. (2.33)

Φh is symmetric or time-reversible if

Φh ◦Φ−h = I or equivalently Φh = Φ
−1
−h = Φ

∗
h; (2.34)

in other words, the method is its own adjoint.

Theorem 2.4. [6, pp. 147] The adjoint method of an s-stage RK method is itself an s-stage RK
method with coefficients

a∗i j = bs+1− j − as+1−i,s+1− j , b∗i = bs+1−i ∀i, j.

The RK method is symmetric if

as+1−i,s+1− j + ai j = b j ∀i, j.

Definition 2.15. [6, pp. 187] A numerical one-step method Φh is a symplectic method if the
mapping of the method with

xn+1 = Φh(xn)

is symplectic when applied to a smooth Hamiltonian system, i.e.
�

∂xn
xn+1

�T
J
�

∂xn
xn+1

�

= Φ′h(xn)
T JΦh(xn) = J . (2.35)

Theorem 2.5. [6, Thm. VI.4.9] For any RK method, the following statements are equivalent:
• The method is symmetric for linear problems ẋ = Lx .
• The methods is symplectic for quadratic Hamiltonian problems H(x) = 1

2 x T C x , where C is
symmetric.
• The stability function satisfies R(−z)R(z) = 1∀z ∈ C.

Theorem 2.6. [6, Thm. IV.2.2 & Thm. VI.4.3] An s-stage RK method is symplectic and conserves
all quadratic invariants of an ODE if

M = 0, (2.36)

where M is defined as in (2.32).

Remark. From Theorem 2.6 it should be readily apparent that symplecitc RK methods are also
algebraically stable.

Theorem 2.7. [6, pp. 106] No RK method can conserve all cubic or higher order polynomial invari-
ants.

Another interesting and related result from Zhong and Marsden [13]:
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Theorem 2.8. Numerical methods exactly preserving energy or other conserved quantities1 beyond
quadratic degree of a Hamiltonian ODE cannot be symplectic.

Remark. Although symplectic methods cannot preserve energy exactly in general, they still have
strong energy conservation properties [3, 6, 13]. Nevertheless, this result has motivated research
into non-symplectic methods.

Definition 2.16. [51, Proposition IV.3.8] If the coefficients of an s-stage RK method satisfies

AT es = b, (2.37)

i.e. the last row of A equals the b vector, it is said to be stiffly accurate.

2.3 Collocation Methods

A class of structure-preserving Implicit Runge–Kutta (IRK) methods with particular relevance to
this thesis, collocation methods, are discussed in [51, 52, Ch. II.7 & IV.5]; central features are
repeated here.

2.3.1 Legendre Polynomials

An class of funtions with particular importance to collocation methods considered here are the
Legendre polynomials. The form and relevant properties of Legendre polynomials, as well as their
shifted and scaled verision, are presented in this section.

Definition 2.17. The Legendre polynomials {bPk}∞k=0 are functions bPk ∈ Pk[−1, 1] such that

bPk(x) =
1
2k

⌊k/2⌋
∑

j=0

(−1) j
�

k
j

��

2(k− j)
k

�

x2(k− j), k = 0,1, . . . ., (2.38)

satisfying a recursive formula

bP0(x) = 1, bP1(x) = x , bPk+1(x) =
2k+ 1
k+ 1

x bPk(x)−
k

k+ 1
bPk−1(x), k = 1, 2, . . . (2.39)

Definition 2.18. The shifted Legendre polynomials typically refers to a shift of (2.38) to [0, 1],
i.e. ePk(x) = ePk(2x − 1), leading to the reformulation

ePk(x) =
1
k!

dk

d xk

�

xk(x − 1)k
�

=
k
∑

j

(−1) j+k

�

k
j

��

j + k
j

�

x j , (2.40)

with the recursive form

eP0(x) = 1, eP1(x) = 2x − 1, ePk+1(x) =
2k+ 1
k+ 1

(2x − 1)ePk(x)− ePk−1(x), k = 1, 2, . . . (2.41)

Brugnano et al. lists the following properties of the shifted Legendre polynomials in [4].

1. Symmetry:
ePi(1− x) = (−1)iePi(x), i = 0, 1, . . . (2.42a)

2. Endpoint symmetry:
ePi(0) = (−1)i , ePi(1) = 1, i = 0,1, . . . (2.42b)

1Here, only invariants are considered
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3. Properties of the integral:

2

∫ x

0

eP0(θ )dθ = 2x = eP1(x) + eP0(x),

2(2k+ 1)

∫ x

0

ePk(θ )dθ = ePk+1(x)− ePk−1(x), k = 1, 2, . . .

(2.42c)

4. Property of the differential equation:

d
dx

�

(x2 − x)eP ′k(x)
�

+ k(k+ 1)ePk(x) = 0, k = 0, 1, . . . (2.42d)

Legendre polynomials are members of the Hilbert space L2[a, b] for [a, b] ∈ {[−1, 1], [0,1]}, with
the inner product

< f , g >L2[a,b]:=

∫ b

a
f (x)g(x)dx (2.43)

and norm

∥ f ∥L2[a,b] :=

�

∫ b

a
f 2(x)dx

�

1
2

. (2.44)

In the ODE reference literature (e.g. [51]), the shifted Legendre polynomials are often scaled or
normalized.

Definition 2.19. The k-th shifted and scaled Legendre Polynomial Pk ∈ Pk[0, 1] is given as

Pk(x) =
p

2k+ 1
k!

dk

d xk

�

xk(x − 1)k
�

=
p

2k+ 1
n
∑

j=0

(−1) j+k

�

k
j

��

j + k
j

�

x j (2.45)

and satisfies
< Pk, Pj >L2[0,1]= δk j , j, k = 0, 1, . . . (2.46)

Analogously to the above and as noted in [51, Ch. IV.5], the shifted and scaled Legendre
polynomials satisfy

∫ x

0

P0(θ )dθ = ξ1P1(x) +
1
2

P0(x),

∫ x

0

Pk(θ )dθ = ξk+1Pk+1(x)− ξkPk−1(x), for k = 1,2, . . .

(2.47)

with
ξk =

1

2
p

4k2 − 1
. (2.48)

The rest of the properties (2.42) can be adapted for the normalized version with suitable scaling.
All the aforementioned Legendre polynomials are orthogonal faimilies, in that

< Pk, Pj >L2[a,b]= δk j · Ck, j, k = 0,1 · · · ,

where

Ck =











1
k+1/2 for Legendre polynomials on [−1,1],

1
2k+1 for shifted Legendre polynomials on [0, 1],
1 for shifted and normalized Legendre polynomials.

(2.49)

Therefore, they form an orthogonal basis on their respective spaces L2[−1,1] and L2[0,1], with
the shifted and scaled version also orthonormal.
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Definition 2.20. The Legendre series of f ∈ L2[−1, 1] is given as [53, Ch. 10.1]

L f =
∞
∑

k=0

bfkbPk, bfk =
�

k+
1
2

�

∫ b

a
f (x)bPk(x)dx . (2.50)

Remark. One arrives at the shifted Legendre series if one replaces [−1,1], bPk(x) and
�

k+ 1
2

�

with
[0, 1], ePk(x) and (2k+ 1).
Remark. Using the shifted and scaled Legendre polynomial in the Legendre series only leads to
a redefinition of f using an orthonormal basis [54, Appendix D]; that is,

f (x) =
∞
∑

k=1

< f , Pk >L2[0,1] Pk(x) =
∞
∑

k=1

Pk(x)

∫ 1

0

Pk(x) f (x)dx . (2.51)

2.3.2 Derivation of Methods

Collocation methods gets their name from the fact that they satisfy the collocation condition:

Definition 2.21. Consider a general ODE of the form

ẋ = f (t, x), t ∈ [t0, T], x(t0) = x0 ∈ Rd . (2.52)

A polynomial u ∈ Ps such that u(0) = x(t0) satisfies the collocation condition if

u′(ci) = f (τi , u(ci)), τi = t0 + ci∆t, (2.53)

for s points 0≤ c1 < · · ·< cs ≤ 1.

There exist exactly one polynomial of order s−1 which interpolates s arbitrary disctinct abscis-
sae, and when these are known, said polynomial can be written in terms of Lagrange polynomials.
Thus, letting τ(θ ) = t0 + θ∆t and τ j = t0 + c j∆t, one can write

u′(θ ) =
s
∑

j=1

f (τ j , u(c j))ℓ j(θ ), ℓ j(θ ) =
s
∏

k=1
k ̸= j

θ − ck

c j − ck
. (2.54)

It follows that

u(c)− u(0) =

∫ t0+c∆t

t0

u′(θ (τ))dτ=∆t

∫ c

0

s
∑

j=1

f (τ j , u(c j))ℓ j(θ )dθ =∆t
s
∑

j=1

f (τ j , u(c j))

∫ c

0

ℓ j(θ )dθ

⇒ u(c) = x0 +∆t
s
∑

j=1

f (τ j , u(c j))

∫ c

0

ℓ j(θ )dθ .

To arrive at a standard RK formulation of a collocation method, one simply sets

ai j =

∫ ci

0

ℓ j(θ )dθ , bi =

∫ 1

0

ℓi(θ )dθ , for i, j = 1, . . . , s. (2.55)
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Then, by setting yi = u(ci) for i = 1, . . . , s and letting x(t0 +∆t)≈ u(1), it follows that

yi = u(ci) = u(0) +∆t
s
∑

j=1

�∫ ci

0

ℓ j(θ )dθ
�

f (τ j , u(c j))

= x0 +∆t
s
∑

j=1

ai j f (τ j , y j) for i = 1, . . . , s;

x1 = u(1) = u(0) +∆t
s
∑

i=1

�

∫ 1

0

ℓi(θ )dθ
�

f (τ j , u(ci))

= x0 +∆t
s
∑

i=1

bi f (τi , yi).

The same procedure is then applied for subsequent steps of the method with only the initial value
adjusted, i.e. x0⇝ xn and x1⇝ xn+1 for n= 1, . . . , N − 1, where N = (T − t0)/∆t.

The most defining feature of the collocation method is the way in which one arrives at the
abscissae c = {ci}ni=1. The main classes of methods use the roots of

ds

dx s
(x s(x − 1)s) (2.56a)

ds−1

dx s−1

�

x s(x − 1)s−1
�

(2.56b)

ds−1

dx s−1

�

x s−1(x − 1)s
�

(2.56c)

ds−2

dx s−2

�

x s−1(x − 1)s−1
�

(2.56d)

leading to Gauß-Legendre (2.56a), Radau (2.56b and 2.56c) and Lobatto (2.56d) quadrature,
respectively [51, Ch. IV.5].
Remark. The roots of (2.56a) are also the roots of shifted Legendre polynomial ePs(x), whereas
(2.56d) can alternatively stated as (x2− x)ePs

′(x) [4]. For Lobatto abscissae {ci}si=0, Brugnano et
al. notes in [4] that

∫ ci

0

ePs(x)dx = 0, i = 0, 1, . . . , s. (2.57)

Remark. It is common to denote methods as type I (2.56b), type II (2.56c) and type III (2.56d)
in addition to the name of the quadrature applied. This refers to the included endpoints: Radau
type I (Radau left) has a root at zero, Radau type II (Radau right) at 1 and Lobatto type III at
both 0 and 1.

In this thesis, the interest is mainly in the Gauß and Lobatto IIIA methods, as they have roots
symmetrically placed on the interval [0,1]. Gauß-Legendre methods are consequently referred
to as Gauß methods hereafter, while in later chapters Lobatto methods denotes the Lobatto IIIA
methods, unless otherwise specified.

2.3.3 Important properties

In this section, important properties applying to the methods studied in this thesis are gathered.
Here, it is assumed that coefficients are gathered as in Definition 2.22, where b and c are column
vectors. Three simplifying conditions are usually applied[51, Ch. IV.5]:
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Definition 2.22. For s-stage collocation methods with coefficients A= {ai j}si, j=1, b = {bi}si=1 and
c = {ci}si=1, the simplifying conditions B(p), C(η) and D(ζ) are given as follows.

B(p) :
s
∑

i=1

bic
q−1
i =

1
q

, q = 1, . . . , p;

C(η) :
s
∑

j=1

ai jc
q−1
j =

cq
i

q
, i = 1, . . . , s, q = 1, . . . ,η;

D(ζ) :
s
∑

i=1

bic
q−1
i ai j =

b j

q

�

1− cq
j

�

, j = 1, . . . , s, q = 1, . . . ,ζ.

Remark. B(p) essentially means the quadrature formula for (bi , ci) is of order p [51, Ch. IV.5].
Consequently, sstage collocations methods derived from (2.56a) and (2.56d) satisfy B(2s) and
B(2s− 2), respectively.

Lemma 2.9. [51, Lemma IV.5.4] For an RK method with distinct abscissae and non-zero weights,
it holds that

1.
C(s), B(s+ ν) =⇒ D(ν),

2.
D(s), B(s+ ν) =⇒ C(ν).

Theorem 2.10. [51, Thm. IV.5.1] If the coefficients of an RK method satisfies B(p), C(η) and D(ζ)
with p ≤ η+ ζ+ 1 and p ≤ 2η+ 2, then the method is of order p.

Remark. s-stage Gauß methods satisfy conditions B(2s), C(s) and D(s), and is consequently of
order 2s. s-stage Lobatto methods’ coefficients ai j are derived by imposing C(s) while the quad-
rature satisfes B(2s− 2), from which D(s− 2) follows; they are consequently of order 2s− 2.2

Lemma 2.11. [6, Thm. V.2.1] A collocation method of is symmetric if its quadrature rule has
symmetric roots, i.e.

cs+1−i = 1− ci for i = 1, . . . , s. (2.58)

Selected Properties

• Gauß methods have the highest achievable order for an s-stage RK method [6, Ch. II.1.3].
• By [51, Corollary IV.12.15] and (2.56), the B-stability and algebraic stability property co-
incides for collocation methods.
• Gauß methods are symplectic, whereas Lobatto IIIA are not.
• From Lemma 2.11, Gauß and Lobatto IIIA methods are symmetric.
• Lobatto IIIA methods are stiffly accurate, whereas Gauß methods are not.

2.3.4 Construction of Methods

Asmentioned before, for s-stage collocationmethods, the entries of c are set to the roots of (2.56).
For collocation methods, the quadrature weights b satisfy B(s), which in matrix form becomes

V T b = a, (2.59)

where V , called the Vandermonde matrix [51, pp. 78], and a has the form

V :=





1 c1 · · · cs−1
1

...
... . . . ...

1 cs · · · cs−1
s



 ∈ Rs×s, a =
�

1
q

�s

q=1
. (2.60)

2For a summary of properties of all the main collocation methods, the reader is referred to [51, chIV.5, Table 5.13].



Chapter 2: Preliminaries 17

(2.59) is a full rank linear system; consequently, b can be found simply by solving it. However,
explicit expressions for the weights of the Gauß and Lobatto quadrature take the form [see e.g.
53, Ch. 10.4]

bi =















1

ci(1− ci)
�

eP ′s (ci)
�2 using Gauß nodes,

1

s(s+ 1)(ePs(ci))2
using Lobatto nodes,

for i = 1, . . . , s, (2.61)

where ePj are the shifted (but not scaled) Legendre polynomials (see Appendix 2.3.1). To find the
matrix A, some other intermediary quantities should be introduced.

Let W be an s× s-matrix with entries such that

wi j = Pj−1(ci), i = 1, . . . , s, j = 1, . . . , s, (2.62)

where {Pj−1}sj=1 are the orthonormal (i.e. shifted and scaled) Legendre polynomials up to degree
s. For methods based on the quadrature (2.56), it holds that

X :=W−1AW =











ξ0 −ξ1

ξ1 0
. . .

. . . . . . βs−1
0 ξs−1 βs











, ξk =
1

2
p

|4k2 − 1|
, k = 0, . . . , s− 1; (2.63)

where βs−1,βs are method class specific parameters[51, Example IV.5.16]. For Gauß methods,
these are set to −ξs−1 and zero, respectively, leading to the matrix

XG =











ξ0 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1
0 ξs−1 0











. (2.64)

Definition 2.23. [51, Definition IV.5.10] An s× s-matrix W satisfies the T (η,ζ)-condition for the
quadrature formula (b, c) if

1. W is nonsingular
2. wi j = Pj−1(ci) for i = 1, . . . , s and j = 1, . . . , (max{η,ζ}+ 1)
3.

W T BW =

�

Iζ+1 0
0 R

�

with R ∈ Rs−ζ−1×s−ζ−1 arbitrary,

where η,ζ are integers such that 0≤ η,ζ≤ s− 1.

Theorem 2.12. [51, Thm. IV.5.11] Let W satisfy T (η,ζ) for some quadrature formula (b, c). Then,
for the RK method based on the quadrature and with the matrix X :=W−1AW , it holds that

1. C(η) ⇔ the first η columns of X equals those of XG
2. D(ζ) ⇔ the first ζ rows of X equals those of XG

Remark. This theorem holds for much more general X -matrices than (2.63), as long as the RK
method is quadrature based.

An important (and quite restrictive) result:

Lemma 2.13. [51, Lemma IV.5.9] For any quadrature formula of order greater or equal to 2s− 1,
the matrix W as given in (2.62) satisfies

W T B =W−1 ⇔ W T BW = Is. (2.65)
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Lastly, let

M(x) :=
s
∏

i=1

(x − ci) = C (Ps(x) +α1Ps−1(x) +α2Ps−2(x)) . (2.66)

Note that by setting (α1,α2,βs,βs−1) = (0, 0,0, 1), one arrives at the Gauß methods, whereas by
setting (α1,α2,βs,βs−1) = (0,−

q

2s+1
2s−3 , 0, 0) one arrives at the Lobatto methods.

2.4 Stochastic Differential Equations

This section is almost in its entirety retrieved from the preliminaries of the specialization project
[1] with only minor corrections and additions.

Stochastic calculus is an attempt to analytically study systems, physical or otherwise, which
cannot be exactly expressed through ODEs due to being perturbed by random fluctuations or
noise. Although attempts to treat such noisy ODEs was attempted before this, usually by circum-
venting the theoretical foundation, the first "proper" formalism was introduced by Itô [55] in
1944. Stratonovich offered an alternative formulation in 1966 [56], which in contrast to Itô’s
framework closely resembles the deterministic calculus, yet interprets noise in a slightly different
way. Both are accurate interpretations of noise, but for slightly different systems. Stratonovich
calculus is oftenmore accurate whenworking with systems with "colored" noise, which often arise
in physics [39], while Itô calculus aptly represent "white" or unstructured noise, better describing
phenomena of biology, population statistics and financial markets [57].

Usually, SDEs are written in one of two equivalent ways:

dX (t) = b(t, X (t))dt +σ(t, X (t)) ∗ dW (t), t ∈ [t0, T], X (t0) = X0 ∈ Rd , (2.67a)

and

X (t) = X0 +

∫ t

t0

b(τ, X (τ))dτ+
∫ t

t0

σ(τ, X (τ)) ∗ dW (τ), (2.67b)

with W (t) being an m-dimensional Wiener Process and ∗ replaced with " " when referring to Itô
SDEs and "◦" when referring to Stratonovich SDEs. All the involved quantities are explained in
this section. To shortly summarize the most commonly used associated phrases:

• (2.67a) is the symbolic form of writing an SDE, whereas (2.67b) is the integral form and
"proper" way to write SDEs
• b(t, X (t)) is called the drift term and is the deterministic part of the equation, whereas
σ(t, X (t)) is called the diffusion term and is the stochastic or "noisy" part of the equation
• when σ is independent of X (t), i.e. σ(t, X ) = σ(t), one refers to the system as an SDE with
additive noise, while for σ(t, X (t))’s explicitly depending on X (t), it is referred to as an SDE
with multiplicative noise

The following definitions and results are necessary to work with SDEs, and follows the nota-
tion of Øksendal [57] and Kuo [58]. In this thesis, when concerned with SDEs, operating in
complete probability spaces {Ω,F ,F(t), P} is considered a given. As is convention, when con-
sidering stochastic processes X (t,ω) : [t0, T] × Ω → Rd , the notation X (t) with sample path ω
implicit is often applied. For an introduction to the foundations of probability theory, the reader
is referred tothe aforementioned sources.



Chapter 2: Preliminaries 19

2.4.1 Wiener Processes and Stochastic Processes

Essential to the mathematical foundation of SDEs is the concept of the Wiener Processes.3

Definition 2.24. [58] A function W (t) for t ∈ [t0, T] is a Wiener Process if it has
1. W (0) = 0 a.s. (Zero initial value)
2. W (t)−W (s)∼ N(0, t − s) (Normally distributed increments)
3. W (t2)−W (t1)⊥W (s2)−W (s1) for 0≤ s1 < s2 < t1 < t2 ≤ T (Independent increments)
4. limt→s W (t,ω)−W (s,ω) = 0 ∀ω ∈ Ω a.s. (Continuous sample paths)

This can be generalized to an m dimensions with

W (t) = {W1(t), W2(t), . . . , Wm(t)}T ,

where Wi and Wj are independent Wiener Processes ∀i, j = 1,2, . . . , m : i ̸= j

Property 2.25. Properties of the Wiener Processes W (t)

1. E [W (s)W (t)] =min{s, t}
2. E [W (t)|W (s)] = E [W (t)|F(s)] =W (s) for s < t
3. fW (t) :=W (t0+ t)−W (t0) is a Wiener Process for any fixed t0 ≥ 0 (Translation invariance)
4. fW (t) :=W (λt)/

p
λ is a Wiener Process for any λ ∈ R+ (Scale invariance)

5. W (t) is nowhere differentiable a.s.

Remark. F(t) ⊂ F is the σalgebra generated by W (t).
The following definitions and results are necessary to work with SDEs, and follows notation

from [57] and [58].

Definition 2.26. Let {Ω,F ,F(t), P} be a complete probability space with probability measure
P. Then, the space of stochastic processes Lad(L2[t0, T],Ω) = L2

ad is the space of all functions
f , g : [t0, T]×Ω→ R such that

• f is B[t0, T]×F-measurable
• f is F(t)-adapted
•
∫ T

t0
E
�

| f |2
�

dt <∞ for almost all (a.a.) ω ∈ Ω

equipped with an inner product

< f , g >L2
ad

:=

∫ T

t0

E [| f g|]dt

and a norm
∥ f ∥L2

ad
:=< f , f >

1
2

L2
ad

.

2.4.2 Itô Calculus

Definition 2.27. [57, pp.29] Let f ∈ L2
ad and let {ϕn}n∈N ∈ M2

step ⊂ L2
ad be a sequence of

stochastic step functions such that

E

�

∫ T

t0

( f (t,ω)−ϕn(t,ω))
2

�

n→∞
−−−→ 0.

Then, the Itô integral I( f ) ∈ L2(Ω) is given by

I( f ) :=

∫ T

t0

f (t)dW (t) = lim
n→∞

∫ T

t0

ϕndW (t). (2.68)

3The terms Brownian motion B(t) and Wiener Process W (t) are used interchangeably in the literature. Following
the reasoning of Kloeden and Platen [37, pp.40] rather than the notation used by Øksendal [57], the author prefers
the denotation Wiener Processes in this thesis.
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Remark. For a better insight into the steps needed in this construction, see Kuo [58, Ch. 4.3] and
Øksendal [57, pp. 26–29].

Lemma 2.14. Properties of the Itô integral.
Let f , g ∈ L2

ad and t0 < t1 < T . Then the following properties holds for the Itô integral.

• Linearity:
∫ T

t0
(a f + bg)dW (t) = a

∫ T
t0

f dW (t) + b
∫ T

t0
gdW (t) ∀a, b ∈ R

• Partition:
∫ T

t0
f dW (t) =

∫ t1

t0
f dW (t) +

∫ T
t1

f dW (t) for a.a. ω ∈ Ω

• Expectation: E
�

∫ T
t0

f dW (t)
�

= 0 for a.a. ω ∈ Ω

• Itô isometry: E
h
�

∫ T
t0

f dW (t)
�2i

= E
�

∫ T
t0
| f |2 dt

�

•
∫ T

t0
f dW (t) is F(T )-measurable

Definition 2.28. Let A ∈ Rn×n be any real-valued matrix. Then the trace of A is an operator
tr {·} : Rn×n→ R such that

tr {A}=
n
∑

i=1

Aii , (2.69)

i.e. the sum of the diagonal elements of A.
For multidimensional arrays of order greater than two, the generalized trace contracts the first

and last dimension of the array by summation, implicitly assuming the dimensions have the same
length.

Remark. Higher order arrays occuring here are usually a composition of the Gradient or Hes-
sian of a function with some matrix functions. The gradient and Hessian of a vector function
(e.g. b(t, X ) ∈ Rd) would be multidimensional arrays of order two and three, respectively, i.e.
∇x b(t, X ) ∈ Rd×d and ∇2

x b(t, X ) ∈ Rd×d×d . The gradient and Hessian of a matrix function (e.g.
σ(t, X ) ∈ Rd×m) would be multidimensional arrays of order three and four, respectively, i.e.
∇xσ(t, X ) ∈ Rd×d×m and ∇2

xσ(t, X ) ∈ Rd×d×d×m.
As an example, letΣ ∈ Rd×m, g ∈ C2

�

Rd ,Rd
�

⇒ ΣT∇2
x g(X )Σ ∈ Rm×d×m. Then, tr

�

ΣT∇2
x g(X )Σ

	

:
Rm×d×m→ Rm such that

tr
�

ΣT∇2
x g(X )Σ

	

=
m
∑

k=1

d
∑

i, j=1

Σik∂x i
∂x j

g(X )Σ jk.

Definition 2.29. [57, pp. 44, 48] Let W (t) be an m-dimensional Wiener Process on {Ω,F , P}. A
d-dimensional Itô process X (t) on {Ω,F , P} is a stochastic process or integral such that

X (t) = X0 +

∫ t

t0

b(τ,ω)dτ+
∫ t

t0

σ(τ,ω)dW (τ), (2.70)

where σ ∈ L2
ad , such that

P

�

∫ t

t0

σ(τ,ω)2dτ <∞ ∀t ≥ t0

�

= 1, (almost surely finite)

b is F(t)-adapted and

P

�

∫ t

t0

|b(τ,ω)|dτ <∞ ∀t ≥ t0

�

= 1.

Theorem 2.15. Itô’s Formula [55].
Let X (t) be a d1-dimensional stochastic process satisfying

dX (t) = b(t, X )dt +σ(t, X )dW (t), X (t0) = X0, t ∈ [t0, T],



Chapter 2: Preliminaries 21

where W is an m-dimensional Wiener Process.
Furthermore, let g ∈ C1,2

�

[t0, T]×Rd1 ,Rd2
�

and Y (t) = g(t, X (t)). Then,

dY (t) = ∂t gdt + (∇x g)T dX +
1
2
dX T

�

∇2
x g
�

dX

=
�

∂t g + (∇x g)T b+
1
2

tr
�

σT
�

∇2
x g
�

σ
	

�

dt + (∇x g)T σdW (t),
(2.71)

where, using usual convention, dWjdWk = 0 if j ̸= k, (dWj)2 = dt and dWjdt = dtdWj = (dt)2 =
0∀ j.
Element-wise, for i = 1, . . . ,d2, this becomes

dYi(t) = ∂t gidt +
d1
∑

j=1

∂x j
gidX j +

1
2

d1
∑

j,k=1

∂x j
∂xk

gidX 2
j

=

 

∂t gi +
d1
∑

j=1

 

∂x j
gi b j +

1
2

d1
∑

k=1

∂x j
∂xk

gi

m
∑

l=1

σ jlσkl

!!

dt +
d1
∑

j=1

∂x j
gi

m
∑

l=1

σ jldWl(t)

(2.72)

Theorem 2.16. Existence and Uniqueness.[57, 58, pp.70 & 190–192]
Let b : [t0, T]×Rd → Rd and σ : [t0, T]×Rd → Rd×m be measurable functions satisfying

1. Lipschitz condition:

∥b(t, x)− b(t, y)∥2 + ∥σ(t, x)−σ(t, y)∥F ≤ C∥x − y∥2 ∀x , y ∈ Rd (2.73)

for some constant C .
2. Linear growth condition:

∥b(t, x)∥2 + ∥σ(t, x)∥F ≤ K(1+ ∥x∥2) ∀x ∈ Rd (2.74)

for some constant K.
Let X0 ∈ F0 ⊂ F be a random variable independent of the σ-algebra F(∞) generated by the m-
dimensional Wiener Process W (t,ω). Assume that X0 is finite in the mean square, i.e. E

�

|X0|2
�

<∞.
Then, if X (t) satisfies the equation

dX (t) = b(t, X )dt +σ(t, X )dW (t), X (t0) = X0, t ∈ [t0, T], (2.75)

it is a unique and t-continuous solution adapted to the filtration FX0(t) = F0 ⊗ F(t) with a finite
ms bound, i.e.

E

�

∫ T

t0

|X (t)2|dt

�

<∞. (2.76)

Remark. [58, pp. 190] For X (t) to solve (2.75), it holds that

• σi j ∈ L2
ad for i = 1, . . . , d and j = 1, . . . , m

• fi ∈ L1
ad for i = 1, . . . , d

• (2.75) is satisfied for every t ∈ [t0, T] a.s.

2.4.3 Stratonovich Calculus

Definition 2.30. [58, pp. 120] Let X (t) and Y (t) be (possibly multidimensional) Itô processes.
The Stratonovich integral of X (t) w.r.t. Y (t) is given by

∫ t

t0

X (τ) ◦ dY (τ) =

∫ t

t0

X (t)dY (t) +
1
2

∫ t

t0

dX (τ) · dY (τ). (2.77)

Equivalently, in symbolic form, we get that

X (t) ◦ dY (t) = X (t)dY (t) +
1
2
dX (t) · dY (t). (2.78)
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Theorem 2.17. [56] Let X (t) be an Itô process such that

dX (t) = b(t, X )dt +σ(t, X )dW (t), b(t, X ) ∈ Rd , σ(t, X ) ∈ Rd×m, (2.79)

where W (t) is an m-dimensional Wiener Process. This corresponds to the Stratonovich process

dX (t) = bdt +σ ◦ dW (t)

=
�

b−
1
2

tr
�

σT∇xσ
	

�

dt +σ ◦ dW (t). (2.80)

Equivalently, b = b+ 1
2 tr
�

σT∇xσ
	

.

Remark. Consider σ(t, X (t)) ∈ Rd×1 and ∇xσ(t, X (t)) ∈ Rd×d×1 for m= 1, i.e.

tr
�

σT∇xσ
	

i =
1
∑

k=1

d
∑

j=1

σ jk∂x j
σik =

d
∑

j=1

σ j1∂x j
σi1.

Proof. From the definition of the Stratonovich integral, we get that

σ ◦ dW (t) = σdW (t) + dσ · dW (t). (2.81)

Using Itô’s formula (2.71), it follows that

dσ(t, X ) · dW =
��

∂tσ+ (∇xσ)
T b+

1
2

tr
�

σT
�

∇2
xσ
�

σ
	

�

dt + (∇xσ)
T σdW

�

· dW

=
�

(∇xσ)
T σdW

�T dW

= dW TσT (∇xσ)dW

= tr
�

σT∇xσ
	

dt.

(2.82)

as dtdWi(t) = 0= dWidWj for i ̸= j and dW 2
i = dt ∀i, j = 1, . . . , m.

Then, inserting into the symbolic expression for the SDE,

dX (t) = bdt +σdW (t) = b∆t +σ ◦ dW (t)− dσ · dW (t)

=
�

b− tr
�

σT∇xσ
	

�

dt +σ ◦ dW (t)

= bdt +σ ◦ dW (t).

Corollary 2.17.1. For SDEs with additive noise, i.e. σ(t, X (t)) = σ(t) ∈ Rd×m, the Itô and Stra-
tonovich formulations coincide; that is, b = b.

Proof.

∇xσ =∇xσ(t) = 0d×d×m ⇒ b = b+
1
2

tr
�

σT∇xσ
	

= b+ 0d = b.

Theorem 2.18. Stratonovich Chain Rule.
Let X (t) be a stochastic Stratonovich process such that

dX (t) = b(t, X )dt +σ(t, X ) ◦ dW (t) (2.83)

and let g ∈ C2([t0, T]×Rd1 ,Rd2). Then,

dY (t) = dg(t, X (t)) = ∂t gdt +∇x g · dX

=
�

∂t g + (∇x g)T b
�

dt + (∇x g)T σ ◦ dW (t).
(2.84)
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Proof. The Stratonovich process in Theorem 2.18 corresponds with the Itô process

dX (t) =
�

b+
1
2

tr
�

σT∇xσ
	

�

(t, X )dt +σ(t, X )dW (t)

= b(t, X )dt +σ(t, X )dW (t).
(2.85)

Using the Chain Rule for Itô processes (Theorem 2.15), it follows that

dg(t, X (t)) =
�

∂t g + (∇x g)T b+
1
2

tr
�

σT
�

∇2
x g
�

σ
	

�

dt + (∇x g)T σdW (t) (2.86)

Looking at the last term and expanding using Definition 2.30:

(∇x g)T σdW (t) = (∇x g)T σ ◦ dW (t)−
1
2
d
�

(∇x g)T σ
�

· dW (t)

= (∇x g)T σ ◦ dW (t)−
1
2

�

tr
�

σT
�

∇2
x g
�

σ
	

+ (∇x g)T tr
�

σT∇xσ
	�

dt,
(2.87)

using the same argumentation as for (2.82). Hence, inserting this into (2.86),

dg(t, X (t)) =
�

∂t g + (∇x g)T b+
1
2

tr
�

σT
�

∇2
x g
�

σ
	

�

dt + (∇x g)T σ ◦ dW (t)

−
1
2

�

tr
�

σT
�

∇2
x g
�

σ
	

+ (∇x g)T tr
�

σT∇xσ
	�

dt

=
�

∂t g + (∇x g)T b
�

dt + (∇x g)T σ ◦ dW (t)

= ∂t gdt +∇x g · dX .

(2.88)

2.4.4 Numerical Simulation

Definition 2.31. A one-step approximation Yt,x(t +∆t) to a stochastic process X (t) as given by
(2.75) is given as

Yt,x(t +∆t) = x +Φ(t, x ,∆t; W (θ )−W (t),θ ∈ [t, t +∆t]), t ∈ [t0, T], (2.89)

with Y0 = X0 = X (t0) and Yk+1 = Ytk ,Yk
(tk+1) = Yt0,X0

(tk+1), where tk = t0 + k · ∆t for k =
0, . . . , N ; tN = T .

Definition 2.32. Let X t,x(t +∆t) denote a stochastic process which takes the value x at time t,
and let Yt,x(t +∆t) denote a one-step approximation of X t,x(t +∆t). The local error δt,x(∆t) is
given by

δt,x(∆t) = X t,x(t +∆t)− Yt,x(t +∆t), (2.90)
while the global error ϵn(∆t) is given by

ϵn(∆t) = X (tn)− Yn. (2.91)

Definition 2.33. [39, pp. 1] A one-step method has strong mean-square order of convergence γ if
Æ

E [|ϵn(∆t)|2]≤ K(∆t)γ (2.92)

for some constant K.

Definition 2.34. [39, pp. 98] A one-step method has weak order of convergence γ if, for the exact
solution X (t) and its approximation Y (t),

|E [ f (X (T ))]− E [ f (Y (T ))]| ≤ K(∆t)γ, (2.93)

where f is from a sufficiently large class of functions.4
4Kloeden and Platen are satisfied with polynomials (see [37, pp. XXV]). Here, this is considered too restrictive a

condition.
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Theorem 2.19. Fundamental Theorem of Mean-Square Order of Convergence [39, pp. 5].
Consider a system of Itô SDEs

dX (t) = b(t, X (t)) +σ(t, X )dW (t), X (t0) = X0, t ∈ [t0, T]

with b(t, X ) ∈ Rd and σ(t, X ) ∈ Rd×m and W (t) ∈ Rm such that the criteria of Theorem 2.16 are
fulfilled. Let δt,x be the local error of a one-step method from X t,x(t) with arbitrary t ∈ [t0, T −∆t]
and x ∈ Rd . Suppose that

1.
�

�E
�

δt,x(∆t)
��

�≤ K1

p

1+ |x |2(∆t)p1

2.
q

E
�

|δt,x(∆t)|2
�

≤ K2

p

1+ |x |2(∆t)p2

3. 0≤ p := p2 −
1
2 ≤ p1 − 1

Then, for any N ∈ N,
Æ

E [|ϵn(∆t)|2]≤ K3

Æ

1+ E [|X0|2](∆t)p for n= 1, . . . , N . (2.94)

In other words, the one-step method has mean-square order of convergence p.

Remark. The constants K1, K2, K3 are independent of X0 and N ; they only depend on the formu-
lation of the problem and the one-step method.



Chapter 3

Hamiltonian Boundary Value Methods

In a series of papers from the last fifteen years (see e.g. [4, 25, 26]), Brugnano, Iavernaro and
the late Trigiante introduced a family of RK methods particularly suited to solving deterministic
Hamiltonian differential equations. In fact, their family of methods can preserve any polynomial
Hamiltonian of an arbitrarily high order without significant increase in computational cost [4].
They also perform well for more general Hamiltonians without relying on the expression of the
Hamiltonian in the method formula, in contrast with e.g. discrete gradient methods.

For autonomous canonical Hamiltonian systems, meaning ODEs of the form

ẋ = J∇x H(x), H ∈ C1
�

R2d ,R
�

, J =

�

0 Id
−Id 0

�

, (3.1)

the Hamiltonian function H(x(t)) between t0 and t1 := t0 +∆t for some stepsize ∆t can be
reformulated as a line integral on the form

H(x(t1))−H(x0) =

∫ t1

t0

d
dt

H(x(t))dt =

∫ 1

0

∇x H(u(c))T u′(c)dt = 0, c(t) =
t − t0

∆t
, (3.2)

where u : [0,1]→ R2d is any analytic function such that

u(0) = x0, u(1) = x(t1).

As all Hamiltonian functions are invariants, the integral in (3.2) vanishes when x(t) satisfies (3.1)
and t0 ≤ t1 ≤ T . The methods considered, called Hamiltonian Boundary Value Method (HBVM),
can be considered a particular or even expanded version of collocation methods (see Section 2.3).
The distinguishing feature of these methods is that the line integral of the Hamiltonian function
(the left-hand side of (3.2)) remains zero along the path of the approximation for polynomial H,
i.e. H ∈ Pν, ν ∈ N.

The derivation of the methods, based on Brugnano et al. [4, 26], is presented in Section 3.1.
The central properties of HBVMs, as well as a comparison with collocation methods, follows in
Section 3.2. Lastly, numerical tests of the methods are found in Section 3.3.

3.1 Derivation of Methods

The derivation of the methods follow along the lines presented by Brugnano et al. [26].1

1The notation used here differs significantly: In the works of Brugnano et al. [4, 26], u generally denote the colloc-
ation polynomial, whereas σ is used for polynomials in general and their own methods in particular; here, uH refers
to the polynomial used in the derivation of the HBVMs, wit σ is reserved for diffusion terms in the stochastic setting.

25
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Limiting the current scope to the shorter interval [t0, t0+∆t] allows the following redefinition
of (3.1) on L2[0, 1] using orthonormal basis functions (cf. (2.51)):

x ′(t0 + c∆t) =∆t
∞
∑

j=1

Pj−1(c)

∫ 1

0

Pj−1(θ ) J∇x H(x(t0 + θ∆t))dθ
︸ ︷︷ ︸

const. w.r.t. c and/or t

, (3.3)

with c(t) as in (3.2). The basis functions considered here are the shifted and scaled Legendre
polynomials, which are presented in Section 2.3.1. Note that the term ∆t before the sum comes
from exchanging the variable of integration, whereas the definite integrals in (3.3) are constant
coefficients.

Now, (3.3) is approximated using a collocation polynomial uH ∈ Ps[0,1] with x(t0 +∆t) ≈
uH(1); this polynomial can then be expressed using the differential equation

u′H(c) =∆t
s
∑

j=1

Pj−1(c)

∫ 1

0

Pj−1(θ ) J∇x H(uH(θ ))dθ , uH(0) = x0. (3.4)

The main difference between (3.3) and (3.4) is that the sum is now finite with s terms.
The next step is to discretize the integrals in (3.4). This leads to the discrete line integral

∫ 1

0

Pj−1(θ ) J∇x H(uH(θ ))dθ ≈
k
∑

l=1

bl Pj−1(cl) J∇x H(uH(cl)) = Rk(∆t), (3.5)

where the constants (bl , cl)kl=1 are determined by a quadrature rule on [0,1] and Rk(∆t) is the
interpolation error of the quadrature rule. If H is a polynomial function, a quadrature rule of
sufficiently high order computes the line integral in (3.5) exactly. In other words, the residual
Rk(∆t) vanishes.

Inserting (3.5) into (3.4) leads to the extended collocation condition [4]

u′H(c) =∆t
s
∑

j=1

Pj−1(c)
k
∑

l=1

Pj−1(cl)bl J∇x H(uH(cl))

=⇒ uH(ci) =∆t
s
∑

j=1

�∫ ci

0

Pj−1(c)dc

� k
∑

l=1

Pj−1(cl)bl J∇x H(cl) for i = 1, . . . , k.

(3.6)

This condition is used to determine the k × k coefficients in A of the resulting one-step method.
Here, the k refers to the number of stages in the method, whereas s refers to the order of the
interpolation polynomial.

To arrive at a RK formulation of the method, reorder the terms in (3.6) such that

uH(ci) =∆t
k
∑

l=1

s
∑

j=1

�∫ ci

0

Pj−1(c)dc

�

Pj−1(cl)bl

︸ ︷︷ ︸

=ail

J∇x H(cl) for i = 1, . . . , k, (3.7)

whence the formula for the coefficients is given by the equation (with an index name switch)

ai j =
s
∑

l=1

�∫ ci

0

Pl−1(c)dc

�

Pl−1(c j)b j for i, j = 1, . . . , k. (3.8)

This expression can be rewritten in matrix form as

A := IsW
T

s B, (3.9a)
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where B = diag {b} and Is, Ws ∈ Rk×s such that

Is,i j =

∫ ci

0

Pj−1(c)dc, Ws,i j = Pj−1(ci) for i = 1, . . . , k, j = 1, . . . , s; (3.9b)

Pj(c) is the j−th shifted and scaled Legendre polynomial (cf. Sections 2.3.1 and 2.3.4).
In short, construction of HBVM(k, s) in RK form with coefficients A = {ai j}ki, j=1, b = {bi}ki=1

and c = {ci}ki=1 follows this procedure:

1. Set c to be the k distinct roots of an interpolation polynomial (e.g. Gauß or Lobatto).
2. Let b be given by the integral of the Lagrange function, i.e.

bi =

∫ 1

0

ℓi(c)dc, where ℓi(c) =
k
∏

j=1
j ̸=i

c − c j

ci − c j

or use explicit expressions (see Section 2.3.4 for Gauß and Lobatto quadrature).
3. Set A := IsW

T
s B, as in (3.9).

3.2 Properties of HBVMs

The following are the main results for HBVM(k, s), as shown and stated by Brugnano et al. [4,
26]:

Theorem 3.1. Given a HBVM(k, s) based on Gaußian quadrature and stepsize ∆t applied to the
equation (3.1), i.e.

ẋ = J∇x H(x(t)), x(t0) = x0 ∈ R2d , t ∈ [t0, T].

Then it holds that
1. the method has order of accuracy 2s
2. the method preserves any H ∈ Pν, where ν≤ 2k/s, exactly
3. for general Hamiltonians, the method has a local energy error O

�

∆t2k+1
�

4. the method is symmetric

Remark. The first statement follows by Theorem 2.10 if HBVM(k, s) satisfies conditions B(2s),
C(s) and D(s−1). By definition, HBVM(k, s) satisfies B(2k), where k ≥ s, and C(s) follows as each
row of A is a multistep method of order greater than or equal to s. Brugnano et al. [4] shows that
D(s− 1) holds true.

The second and third statement follows by definition. It holds for H ∈ Pν with ν ≤ 2k/s and
uH ∈ Ps that

H(uH(t))−H(x0) =

∫ t

t0

d
dτ

H(uH(c(τ))))dτ ∈ Pνs ⊆ P2k/s·s = P2k.

When the order of the Hamiltonian exceeds the degree of exactness for the underlying quadrature
rule, for t ∈ [t0, t0 + c∆t], the energy error

eH(∆t) := H(x1)−H(x(t0 +∆t)) = H(uH(1))−H(u(0)) + (H(x(t0))−H(x(t0 +∆t)))
︸ ︷︷ ︸

=0

=

∫ 1

0

d
dt

H(uH(c))dc =

∫ 1

0

∇x H(uH(c))
T u′H(c)dc

=∆t
k
∑

j=1

�

∫ 1

0

Pj−1(c)∇x H(uH(c))dc

�T

J

�

∫ 1

0

Pj−1(θ )∇x H(uH(θ ))dθ
�

︸ ︷︷ ︸

=0

+∆t · Rk (∆t)

=∆t · Rk(∆t) =∆t ·O
�

∆t2k
�

=O
�

∆t2k+1
�



Chapter 3: Hamiltonian Boundary Value Methods 28

as Rk(∆t) is the interpolation error of a quadrature rule of order 2k.
Lastly, symmetry follows from Lemma 2.11.

Remark. For k = s+ r and r ≥ 0, the r extra stages are called silent stage by Brugnano et al. [4],
as they do not affect the method order nor significantly increase computational cost (see Section
5.1.2).

A similar result holds for Lobatto-based HBVMs.

Lemma 3.2. The results of Theorem 3.1 holds for HBVMs based on Lobatto quadrature with one
additional point; that is, the Lobatto-HBVMwith k+1 stages based on the s+1-th Lobatto polynomial
satisfies the conditions of Theorem 3.1. As such, Lobatto-HBVMs with k + 1 stages of degree 2s are
referred to as HBVM(k, s).

Remark. The (Gauß–)Lobatto collocation polynomial is one degree lower than Gauß(–Legendre)
(see (2.56)); the first stage of Lobatto-based methods is always explicit. The proof can be done
in a similar way as to Theorem 3.1 - see [4].
Remark. Lobatto-HBVMs are stiffly accurate. This follows automatically from being based on
Lobatto quadrature, for which the last stage of the coefficient matrix A always coincides with the
b vector.
Remark. The coefficient matrix A has rank s for both Gauß and Lobatto quadrature. That the rank
of the coefficient matrix A depends on s rather than k becomes important in implementation. For
more details, see Section 5.1.2.

3.2.1 Limits of Collocation Methods

As should be clear from the previous subsections, there is a strong relation between HBVMs and
collocation methods. In fact, the following holds true [4].

Lemma 3.3. The HBVM(k, s) with k = s coincides with the collocation method based on the same
collocation polynomial of degree s.

Proof. Consider now collocationmethods based onGaußian quadrature. According to [26, Lemma
1], the matrix I ∈ Rs×s can be rewritten as

Is =Ws+1X =Ws+1

�

Xs
ξseT

s

�

(3.10)

with ei ∈ Rs the i-th unit vector and Xs given as

Xs =











ξ0 −ξ1

ξ1 0
. . .

. . . . . . −ξs−1
0 ξs−1 0











∈ Rs×s, ξk =
1

2
p

|4k2 − 1|
(3.11)

where Xs = XG , as seen in Section 2.3.4. It is thus possible to write A as

A= IsW
T

s B =Ws+1XsW
T

s B. (3.12)

For k = s, it holds that
Ws+1X =WsXG (3.13)

as ws+1,i = Ps(ci) = 0 for all i = 1, . . . , s, with being defined as the roots of Ps(x) on [0, 1].
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Figure 3.1: Plot of global error convergence in Rigid Body Hamiltonian (3.15) for Gauß and
Lobatto collocation methods of order p ∈ {2, 4,6, 8} with constants I = [I1, I2, I3]

T = [.8, .6, .2]T ,
(t0, T ) = (0,1) and initial values x0 = [cos(1.1), 0, sin(1.1)]T . The approximations are compared to
H(xexact) = H(x0).

How do the collocation methods fare when trying to exactly preserve Hamiltonians in com-
parison with HBVMs? From Sections 2.2.2 and 2.3, it should be clear that the symplectic Gauß
methods preserve quadratic invariants exactly, whereas the non-symplectic Lobatto (IIIA) meth-
ods do not; however, the Lobatto methods are expected to preserve quadratic Hamiltonians. This
can most simply be demonstrated by inserting k = s in the presevation condition of HBVMs:

ν≤
2k
s

�

�

�

�

k=s
= 2s/s = 2.

For a more visual demonstration, consider the Rigid Body Problem in the (2.20) form

ẋ = S(x) · x =





0 x3/I3 −x2/I2
−x3/I3 0 x1/I1
x2/I2 −x1/I1 0



 · x , x(t0) = x0 ∈ R3, t ∈ [t0, T] (3.14)

with constants I = [I1, I2, I3]
T = [.8, .6, .2]T and initial values x0 = [cos(1.1), 0, sin(1.1)]T . This

Poisson problem has two quadratic invariants

H(x) =
1
2

�

1
I

�T

x2, C(x) =
1
2
∥x∥2 (3.15)

the first one will be referred to as the Hamiltonian, whereas the second is a Casimir. In Figure
3.1 one can clearly see that Gauß methods achieves an error in the Hamiltonian close to machine
precision even for large stepsizes, whereas Lobatto methods maintain error convergence maching
their order; both results are as expected.2

For a quadratic canonical Hamiltonian problem, consider the harmonic oscillator

ẋ = J∇x H(x), H(x) =
1
2
∥x∥22, x(t0) = x0 ∈ R2, t ∈ [t0, T] (3.16)

2Lobatto-2 (the trapezoidal rule) displays a slightly higher order of convergence for the largest stepsizes. This is
caused by the Newton iterations not converging within the maximum number of iterations in each timestep. The
discussion of the implementation of the Newton iterations are found in Section 5.1.1.
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Figure 3.2: One-dimensional Harmonic Oscillator (3.16) Hamiltonian error convergence plot of
Gauß and Lobatto collocation methods of order p ∈ {2,4, 6,8} with initial value x0 = [q0, p0]T =
[0,1] and (t0, T ) = (0,1). The approximations are compared to H(xexact) = H(x0).

with initial values x0 = [q0, p0]T = [0,1]T . As can be seen in the corresponding convergence plot
of Figure 3.2, both Gauß and Lobatto methods preserve the quadratic Hamiltonian exactly; the
slight increase in global error for smaller stepsizes can be attributed to accumulated roundoff
error over an increasing number of timesteps. For their performance on examples of higher order
and more general canonical Hamiltonian problems, see Section 3.3.

3.3 Numerical Tests and Results

For demonstrating the convergence properties of the HBVMs presented in Theorem 3.1 and
Lemma 3.2, it would be necessary to simulate both polynomial and non-polynomial canonical
Hamiltonian systems.

All the test problems are canonical Hamiltonian systems, i.e. have the form

ẋ = J∇x H(x), J =

�

0 Id
−Id 0

�

, x(t0) = x0 ∈ R2d , t ∈ [t0, T]. (3.17)

For convergence plots, the global error is calculated on the interval t ∈ [0,1] and the reference
solution approximated with Gauß-10 using stepsize∆t = 2−13, unless otherwise specified. In the
convergence tables, when no error in Hamiltonian is expected eller observed beyond machine
precision, this is reported as ’–’.

3.3.1 Harmonic Oscillator

First, revisit the harmonic oscillator of (3.16)

ẋ = J∇x H(x), H(x) =
1
2
∥x∥22, x(t0) = x0 ∈ R2, t ∈ [t0, T] (3.18)

as before with initial values x0 = [q0, p0]T = [0,1]T . This problem has the explicit solution

x(t) =

�

sin(t)
cos(t)

�

, (3.19)

making it useful for computing errors over long time intervals.
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Figure 3.3: The Harmonic Oscillator (3.18) approx-
imated by Lobatto-HBVM(3,2) over time T = 103

plotted over the contours of the Hamiltonian.

Figure 3.4 displays the long-term error
behaviour of HBVMs with parameters s ∈
{2,3}, determining the solution order, and k ∈
{3,4, 5}, determining the "Hamiltonian" order.
The error is displayed for the solution vari-
able in the upper plot and the Hamiltonian in
the lower plot. Figure 3.3 shows the numer-
ical approximation of one HBVM moving on
the contours of the Hamiltonian on the same
timespan.

The Hamiltonian error stays close to ma-
chine precision over the whole interval; one
can only observe random fluctuations most
likely due to roundoff errors. However, all the
numerical approximations have a weak linear
drift away from the exact solution of the ODE.
The six methods tested are clustered in two lines, making their individual behaviour hard to dis-
cern, but their qualitative behaviour is identical. That the methods with s = 2 are clustered in
the top line while the methods with s = 3 are clustered in the lower line in the top plot will be
confirmed with further experiments on error convergence.
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Figure 3.4: Long term error development for Harmonic Oscillator (3.18) with a selection of meth-
ods with T = 103. The solution error is calculated with an exact formula, whereas the Hamiltonian
reference solution is the initial value. Note that the horizontal axis is logarithmic and the vertical
axis logarithmic and linear for the first and second plot, respectively.
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3.3.2 Hénon–Heiles

Now, consider the Hénon–Heiles Problem, which is a cubic Hamiltonian with two degrees of
freedom; it has been used as a test in [3, 6, 10] and related later papers. The variant of the
Hénon–Heiles Problem studied has the Hamiltonian function

H(x) = H(q, p) =
1
2

�

∥q∥22 + ∥p∥
2
2

�

+α
�

q1q2
2 −

1
3

q3
1

�

(3.20)

where α = 16 as in the paper by Burrage and Burrage [3] and the initial value used is x0 =
[
p

3,1, 1,1]T .

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Gauss-2 or HBVM(1,1) 2 1.99 2 2.00
Gauss-HBVM(2,1) – – 2 2.00
Gauss-4 or HBVM(2,2) 4 3.89 4 3.86
Gauss-HBVM(3,2) – – 4 3.85
Gauss-HBVM(4,2) – – 4 3.85
Gauss-6 or HBVM(3,3) 6 6.02 6 5.96
Gauss-HBVM(4,3) 8 8.1∗ 6 5.98
Gauss-HBVM(5,3) 10.0 – 6 5.98
Gauss-HBVM(6,3) – – 6 5.98

Table 3.1: Table comparing expected and observed error convergence order in Hamiltonian and
ODE solution for deterministic Hénon–Heiles problem, calculated using same data as seen in Figure
3.5b unless otherwise stated. ∗Approximate value read from figure

In Figure 3.5, global and local error convergence plots for a selection of HBVMs based on
Gauß quadrature are shown; Figure B.1 in Appendix B consists of convergence plots for methods
based on Lobatto quadrature. Error both in x and H(x) are compared to a reference solution3,
calculated using Gauß-10 and stepsize 2−13. The expected and observed Global convergence
orders for the methods both in solution and Hamiltonian are reported in Tables 3.1 and B.1.

As can be seen, the collocation methods maintain the same order of convergence in H(x) as
in x whereas the HBVMs with extra stages (i.e. k ≥ s) in general achieves machine precision
preservation immediately. The exception to this is HBVM(4, 3) (for both Gauß and Lobatto quad-
rature), which converges with order approximately eight, which is the expected order reported
in the tables. However, HBVM(5, 3) preserves the Hamiltonian down to machine precision, even
though an order of ten is expected. It might be that an order of ten would be observed for lar-
ger stepsizes than included here. It should be noted that the cubic terms in (3.20) are relatively
small, causing all the methods to perform well in terms of Hamiltonian error.

As before is virtually impossible to discern between the different methods for global and local
error convergence in Figures 3.5 and B.1, other than being clustered in three lines with slopes
2s+ i for s = {1, 2,3} and i = 1 and i = 0 for local and global convergence, respectively. The reader
is therefore referred to the Tables 3.1 and B.1, where the expected and observed convergence
order of the methods are summarized; and to Figure 3.6, where global errors of the HBVMs are
scaled by the Gauß collocation method of corresponding order, i.e.

Relative error=
∥xexact − xHBVM(k, s)∥2
∥xexact − xGauß-2s∥2

. (3.21)

The observed convergence order and relative error for each timestep hardly deviates from the
collocation method, whence it is clear that the methods maintain the expected theoretical order.

3For Hamiltonian plots, the reference solution stays constant, so H(xexact) := H(x0) is used in error calculations.
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Figure 3.5: Convergence plots for HBVMs with Gauß-Legendre quadrature with s ∈ {1, 2,3} on
Hénon–Heiles problem for t ∈ [0,1]. In addition slopes of order a are plotted for a ∈ {2, 4,6,8}
in Figure 3.5b and for a ∈ {3,4, 7,9} in Figure 3.5a. Expected and observed order is reported in
Table 3.1.

Moreover, the qualitative behaviour of the HBVMs are identical for Gauß and Lobatto quadrature,
whence it would be redundant to report results both for Gauß and Lobatto quadrature for every
test problem in the numerical sections of the thesis. Therefore, only the convergence results for
HBVMs with one quadrature are included in the numerical sections of the main report, with
results for the other quadrature found in Appendix B.
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Figure 3.6: Hénon–Heiles global error convergence of HBVM(k, s) with s ∈ {1,2, 3}; k and the
method quadratures are described in the figure legend. The error of each method is scaled by the
error of the Gauß collocation method of the same expected order; see (3.21).

3.3.3 Sixth degree Polynomial Hamiltonian

The third test problem is a sixth degree Hamiltonian with one degree of freedom, wich was used
as an example in [4, 10]. Its Hamiltonian H(x) ∈ Pν(R2,R) with ν= 6 is given by the formula

H(x) = H(q, p) =
1
3

p3 −
1
2

p+
1

30
q6 +

1
4

q4 −
1
3

q3 +
1
6

, x0 = [0,1]T . (3.22)

Figure 3.7: Contour plot of Hamiltonian (3.22) with approximation
from Lobatto-HBVM(6, 2) over t ∈ [0,104] with stepsize 2−4.

In this case, the problem
demands that k = νs/2 =
3s; in other words, three times
as many stages are needed
to guarantee exact energy-preservation
than of the base collocation
method. The need for thrice as
many stages without any gain
in local error of the solution
might seem excessive. For a dis-
cussion of a way to side-step the
potential increase in computa-
tional cost, see Section 5.1.2.

Figure 3.7 shows the con-
tours of the Hamiltonian with
an embedded solution gener-
ated by Lobatto-HBVM(6,2) from initial value x0 = [0, 1]T . As as can be seen, the solution moves
neatly on a single level set.

In Figure 3.8 and Table 3.2 (and similarly Figure B.2 and B.2 for Lobatto quadrature), con-
vergence results for (3.22) are reported.

As before, the global error in the ODE closely matches the expected order. For any lower choice
of k than giving exact preservation, the Hamiltonian error convergence is still significantly better
than for the collocation method, albeit more stages are needed to preserve the error exactly than
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for the Hénon–Heiles problem. More prominently than for the Hénon–Heiles problem, several
of the methods preserve energy in practice despite having k < 3s, bypassing the expected error
convergence. As noted by Brugnano et al. [26], one needs only to add enough stages to ensure
the error doesn’t exceed machine precision for the method to be virtually energy-preserving.
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Figure 3.8: Convergence of Gauß-HBVM(k, s) for Hamiltonian of order 6 given by (3.22) for s ∈
{1, 2,3} and k up to conservation for t ∈ [0, 1]. The reference solution xexact is calculated using
Gauß-10 and ∆t = 2−13.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Gauss-2 or HBVM(1,1) 2 2.01 2 2.01
Gauss-HBVM(2,1) 4 4.01 2 2.00
Gauss-HBVM(3,1) – – 2 2.00
Gauss-4 or HBVM(2,2) 4 3.99 4 4.01
Gauss-HBVM(3,2) 6 5.97 4 3.99
Gauss-HBVM(4,2) 8 – 4 3.99
Gauss-HBVM(5,2) 10 – 4 3.99
Gauss-HBVM(6,2) – – 4 3.99
Gauss-6 or HBVM(3,3) 6 6.00 6 6.00
Gauss-HBVM(4,3) 8 8.03 6 6.03
Gauss-HBVM(5,3) 10 – 6 6.03
Gauss-HBVM(6,3) 12 – 6 6.04
Gauss-HBVM(7,3) 14 – 6 6.03

Table 3.2: Expected and observed error convergence orders measured in Hamiltonian and ODE
solution for Gauß-HBVMs; the approximated problem is a canonical Hamiltonian system with
H ∈ P6 given by (3.22), and the order is calculated using the same data as seen in Figure 3.8.
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3.3.4 Kepler Problem

As an example of a non-polynomial canonical Hamiltonian system, the Kepler problem is con-
sidered. This is a quite simple, yet illustrative non-polynomial problem, which has been studied
in [6, 10, 17, 35]. It is an instance of the central force problem in R2, and with suitable normal-
ization it has the Hamiltonian

H(x) = H(q, p) =
1
2

pT p−
1
∥q∥

. (3.23)

In addition to being a canonical Hamiltonian problem, the two-dimensional Kepler problem also
preserves the angular momentum

G(x) = G(q, p) = q× p = q1p2 − p1q2. (3.24)

For the numerical experiments, initial values are determinied by the formula

x T
0 =

�

qT
0 , pT

0

�

=

�

1− e, 0, 0,

√

√1+ e
1− e

�

, e = 0.5 (3.25)

where e ∈ [0,1) is the eccentricity of the problem, which ensures orbital movement around a
mass centre in ((0, 0) and a period of 2π [6, ch. I.2].

Figure 3.9: Kepler problem (3.23) with initial values (3.25)
simulated over 104 periods.

For illustration, Figure 3.9 shows
the solution approximated by Gauß-
HBVM(4,3) over 104 periods. Figure
3.10 compares the error behaviour
of Gauß-HBVM(4, s) for s ∈ {2,3, 4}.
In both plots, stepsize ∆t = 2−4 is
used.

As expected, the ODE error de-
creases significantly when adding
a fundamental stage, i.e. increas-
ing s by one and the order of the
method by two. All three methods
demonstrate an error in Hamiltonian
bounded between 10−12 and 10−11,
although the collocation method is
smaller than the other by more
than a factor of three and four
for HBVM(4,2) and HBVM(4, 3), re-
spectively. Still, this is quite decent
performance for methods of two and four orders lower error convergence. Otherwise, the
Hamiltonian and solution error behaves qualitatively the same, oscillating regularly for all meth-
ods.

The error in the angular momentum, shown in the lowest plot, is bounded for HBVM(4,2) at
about 10−6 and for HBVM(4, 3) at approximately 10−9. Gauß-6 preserves the angular momentum
exactly, which is as expected for a symplectic method.

Lastly, convergence results for Lobatto-HBVMs are reported in Figure 3.11 and Table 3.3.
The matching Figure B.3 and Table B.3 for Gauß-HBVMs are found in the Appendix. All the
methods demonstrate the expected order with somemargin of error: HBVM(5, 2) has a calculated
Hamiltonian errer convergence order of 9.17 compared to an expected order ten, yet its line in
the plot overlaps closely with HBVM(5,3), which achieves a measured 10.09. The convergence
in the solution very similar to the one seen for the other problems, confirming the order results.
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Figure 3.10: Error development for Gauß-HBVMs applied to the Kepler problem with starting
values (3.25), with e = 0.5, stepsize ∆t = 2−4 and (t0, T ) = (0, 103). Solution error is measured
in Euclidean norm, comparing the approximation with a reference solution generated by Gauss-
10 with stepsize 2−7; Hamiltonian (3.23) is compared with initial value H(x0); and the angular
momentum invariant (3.24) is compared with initial value G(x0). The first axis is linear, whereas
the second axis is logarithmic, in contrast to Figure 3.4.
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Figure 3.11: Deterministic error convergence plots of Lobatto-HBVMs for Kepler problem (3.23)
with initial values (3.25) over time t ∈ [0,1] compared with slopes of relevant order.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Lobatto-2 or HBVM(1,1) 2 2.00 2 1.99
Lobatto-HBVM(2,1) 4 4.02 2 2.04
Lobatto-HBVM(3,1) 6 6.02 2 2.03
Lobatto-HBVM(4,1) 8 8.03 2 2.03
Lobatto-HBVM(5,1) 10 10.16 2 2.03
Lobatto-4 or HBVM(2,2) 4 3.86 4 4.00
Lobatto-HBVM(3,2) 6 5.93 4 3.98
Lobatto-HBVM(4,2) 8 8.22 4 3.97
Lobatto-HBVM(5,2) 10 9.17 4 3.97
Lobatto-HBVM(6,2) 12 11.78 4 3.97
Lobatto-6 or HBVM(3,3) 6 6.05 6 6.02
Lobatto-HBVM(4,3) 8 8.09 6 5.97
Lobatto-HBVM(5,3) 10 10.09 6 5.97
Lobatto-HBVM(6,3) 12 11.73 6 5.97
Lobatto-HBVM(7,3) 14 – 6 5.97

Table 3.3: Expected and observed error convergence orders for deterministic Kepler problem
(3.23) with initial values (3.25). The HBVMs reported are based on Lobatto quadrature and the
order is calculated using the same data as seen in Figure 3.11.
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Single Integrand Hamiltonian Systems

Milstein and Tretyakov [39, Ch. 5] states that a general Stochastic Hamiltonian System (SHS) in
the Stratonovich sense can be written of the form

dQ(t) =∇pH0(t,Q, P)dt +
m
∑

i=1

∇pHi(t,Q, P) ◦ dWi(t), Q(t0) = q0 ∈ Rd ,

dP(t) = −

�

∇qH0(t,Q, P)dt +
m
∑

i=1

∇qHi(t,Q, P) ◦ dWi(t)

�

, P(t0) = p0 ∈ Rd ,

(4.1)

for t ∈ [t0, T] and W (t) an m-dimensional Wiener Process; or equivalently,

dX (t) =

�

dQ
dP

�

(t) = J∇x H0(t, X )dt +
m
∑

i=1

J∇x Hi(t, X ) ◦ dWi(t), X (t0) = X0 ∈ R2d , (4.2)

with J the canonical structure matrix presented earlier; given that such functions as
Hi ∈ C1,1

�

[t0, T]×R2d ,R
�

for i = 0, . . . , m exist. Hong et al. [2] considers an autonomous canon-
ical variant; that is,

dX (t) = J∇x H0(X )dt +
m
∑

i=1

J∇x Hi(X )dWi(t), (4.3)

with
∇x Hi(X )

T J∇x H j(X ) = {H j , Hi}(X ) = 0 ∀i, j = 1, . . . m. (4.4)

Said paper extends results for numerical methods presented in [6, ch. IV & VI] to this stochastic
setting; a large part of the specialization project [1] was devoted to replicate the findings of
Hong et al. [2]. However, Milstein and Tretyakov [39] and Hong et al. [2] only present methods
of relatively low order of both weak and ms convergence, albeit symplectic.

In this chapter, a special variant of (4.3) will be discussed, for which a simple adaptation
of HBVMs will achieve arbitrarily high ms order of convergence, as well as perfectly preserving
polynomial stochstic Hamiltonians. Section 4.1 will present the structure and main properties of
this kind of problem, while in Section 4.2.1 are found the results related to HBVMs. Section 4.3
is devoted to numerical experiments demonstrating the properties of the methodical framework.

4.1 Single Integrand Problems

With basis in (4.3), let now the Hamiltonian functions be such that that Hi(x) = σiH(x) with
σ0 ∈ {0,1} and σi ∈ R for i = 1, . . . , m where H ∈ C1

�

R2d ,R
�

. This allows the following system
reformulation

dX (t)
= J∇x H(X ) σ0dt + J∇x H(X ) ·σT ◦ dW (t)

= J∇x H(X ) ·
�

σ0dt +σT ◦ dW (t)
�

,
σ0 ∈ {0, 1}, σ ∈ Rm. (4.5)

39
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This is an instance of single integrand SDEs:

dX (t) = f (t, X ) ◦ dµ(t), t ∈ [t0, T], X (t0) = X0 ∈ Rd , (4.6a)

where
dµ(t) := σ0dt +σTdW (t), σ0 ∈ {0, 1}, σ ∈ Rm, (4.6b)

with W (t) an m−dimensional Wiener Process. In integral form, this becomes

X (t) = X0 +

∫ t

t0

f (X (τ)) ◦ dµ(τ), t ∈ [t0, T], (4.7)

making the name self-evident.
As noted by Debrabant and Kværnø in the same paper, any single integrand problem with

an m-dimensional Wiener Process can be equivalently stated in terms of a modified diffusion
constant and scalar Wiener Process

σ :=

√

√

√

m
∑

i=1

σ2
i , W :=

1
σ

m
∑

i=1

σiWi . (4.8)

This kind of problem arises in several applications, of which Debrabant and Kværnø lists sev-
eral. In Section 4.2, SHSes will be considered.

4.1.1 Numerical Methods on Single-Integrand Problems

To solve single integrand problems, one could apply SRK methods. For general Stratonovich SDEs
with m-dimensional noise,

dX (t) = g0(t, X )dt +
m
∑

i=1

gi(t, X ) ◦ dWi(t) (4.9)

an SRK method with s stages would be given as [2, 41]

Yk = Xn +
m
∑

i=0

s
∑

j=1

Z jk,i gi(Yj) for k = 1, . . . , s

Xn+1 = Xn +
m
∑

i=0

s
∑

k=1

zk,i gi(Yk)

(4.10)

where Z0, z0 are the coefficient matrix and vector scaled by the current stepsize ∆tand Zk, zk are
randomly perturbed coefficient matrices and vectors for k = 1, . . . m. However, for single integrand
problems, this can be reduced to methods of the form

Yk = Xn +∆µn

s
∑

j=1

a jk f (Yj) for k = 1, . . . s

Xn+1 = Xn +∆µn

s
∑

k=1

bk f (Yk)

(4.11)

as ∆µna jk = Z jk,0 +
∑m

i=1σi Z jk,i and ∆µn bk = zk,0 +
∑m

i=1σizk,i; here, ∆µn refers to a discrete
approximation of dµ(t) for a timestep ∆tn at time tn, i.e.

∆µn =∆tn +σ(W (t +∆t)−W (t))≈∆tn +σ∆Wn (4.12)

with ∆Wn the simulated Wiener Process increment over the interval [tn, tn +∆t]. As noted by
Debrabant and Kværnø [5], the coefficient matrix and vector A and b can typically be chosen as
those of a deterministic RK method.

The following Theorem is a slightly shortened version of the main result of [5].
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Theorem 4.1. Consider a single integrand problem

dX (t) = f (X (t)) ◦ dµ(t), t ∈ [t0, T], X (t0) = X0 ∈ Rd . (4.13)

If f satisfies [5, Assumption 4.1], then any SRK method (4.11) applied to (4.13) of deterministic
order pd is of ms as well as weak order of accuracy pµ = ⌊pd/2⌋.

Remark. This result is very convenient. Methods for general Stratonovich SDEs typically rely on
approximations to the Stratonovich–Taylor/Wagner–Platen Series, which for methods of order
greater than 1 becomes highly involved. As already seen, the SDE equivalent of RK methods in-
volves a (possibly) unique coefficient matrix and vector for every noise term. For single integrand
problems, the deterministic B-series and RK coefficients suffice [5, 49].

4.1.2 Implicit Methods and Truncated Wiener Processes

The RKmethods considered in this thesis are all implicit. When applying implicit methods to SDEs
with multiplicative noise, it important to ensure that the approximated solution stays bounded
in expectation. In [39, ch. 1.3.3], Milstein and Tretyakov demonstrates that with the standard
way of simulating Wiener Process, i.e.

dW (t)≈∆W =
p
∆tξ, ξ∼ N(0, 1)

implicit methods generates solutions with unbounded expectation for arbitrarily small step-sizes
∆t. To counter this problem, they propose to use a truncated alternative to ξ, namely

ζ∆t =

¨

ξ, |ξ| ≤ A∆t

sgn (ξ)A∆t otherwise

where A∆t > 0. In addition, they demand that

E
�

(ξ− ζ∆t)
2
�

≤∆tk for k ≥ 1. (4.14)

Looking at the second moment of the difference between ξ and ζ∆t ,

E
�

(ξ− ζ∆t)
2
�

=

∫ ∞

−∞
(x − x∆t)

2

︸ ︷︷ ︸

=0 for |x |≤A∆t

1
2π

e−
x2
2 dx

=
2

2π

∫ ∞

A∆t

(x − A∆t)
2 e−

x2
2 dx

=
2

2π
e−A2

∆t/2

∫ ∞

0

ye−
y2

2 e−A∆t ydy

=
1

p
2π (A∆t + 1)

3
2

e−A2
∆t/2 < e−A2

∆t/2.

For the integration, it is assumed that A∆t < π/2. Imposing (4.14),

E
�

(ξ− ζ∆t)
2
�

< e−A2
∆t/2 =∆tk, k ≥ 1 ⇒ A∆t =

Æ

2k|ln∆t|.

The choice of k would depend on the ms order of accuracy the method should achieve, with the
natural choice for single integrand problems being the order pµ of the method solving (4.13).
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4.1.3 Geometric Integration of Single Integrand Problems

As observed by Cohen and Dujardin [59], the noise introduced in single integrand problems does
in some sense respect the geometric structure of the phase space. This, as well as the result of
Debrabant and Kværnø [5], is further elaborated by Cohen et al. [49]. In short, Cohen et al.
states that the geometric properties of a numerical time integrator of ODEs carries over to the
anologous single integrand problem, albeit with the reduction in order as described in Theorem
4.1. Examples of time integrator properties listed by Cohen et al. with particular relevance here
are symmetry ("self-adjointness"), symplecticity, as well as energy and invariant preservation.

4.2 Hamiltonian Systems

Returning to the context of Hamiltonian systems and using the rationale from Section 4.1, (4.5)
can be restated as in the following definition.

Definition 4.1. A Single Integrand Hamiltonian System (SIHS) is an SDE of the form

dX (t) = J∇x H(X ) ◦ dµ(t), dµ(t) = σ0dt +σdW (t), t ∈ [t0, T], X (t0) ∈ R2d (4.15)

where σ0 ∈ {0, 1}, σ ∈ R and W (t) is a scalar Wiener Process.

Remark. This is hardly the only case of SHSes of the form (4.3) which satisfies the condition
(4.4). For instance, one could consider a coupled N -body problem1 where each body is perturbed
independently, which can be formulated as

dX (t) = J∇x H(X )dt +
N
∑

i=1

∇x Hi(X )dWi(t)

where with a coupling term Hc

H(X ) = Hc(X ) +
N
∑

i=1

Hi(X ), {Hi , H j}(x) = 0 ∀x ∈ R2d , i, j = 1, . . . , N .

Another hypothetical counterexample would be that noise is introduced in an invariant of the
deterministic problem. One particular instance would be a stochastic variant of the Central Force
Problem in R3 with noise acting on the angular momenta, i.e.

dQ(t) =∇pH(Q, P)dt +
3
∑

i=1

∇p Li(Q, P) ◦ dWi(t),

dP(t) = −∇qH(Q, P)dt −
3
∑

i=1

∇q Li(Q, P) ◦ dWi(t),

with

H(Q, P) =
1
2

PT P −
1
∥Q∥

,

L(Q, P) =Q× P ∈ R3.

Such problems are beyond the scope of this thesis, however; they are only provided for demon-
stration.

1cf. [7, ch.4.5.3 & 6.5.2]
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4.2.1 Application of Hamiltonian Boundary Value Methods

Combining the results of Section 3.2 and 4.1, this theorem follows.

Theorem 4.2. Consider a HBVM with s active and k total stages based on Gaußian quadrature.
When applied to canonical SIHSes (4.15), i.e.

dX (t) = J∇x H(X ) ◦ dµ(t), t ∈ [t0, T], X (t0) ∈ R2d , (4.17)

it holds that
1. the method has ms order of accuracy s
2. for general Hamiltonian functions, the weak order of accuracy is k
3. for H ∈ Pν, where ν≤ 2k/s, the energy is preserved exactly
4. the method is symmetric

Remark. These results follows directly by combining the results of [4, 5, 49]. Recall from Defini-
tion 2.34 that a method has weak order k if

|E [g(X (T ))]− E [g(Y (T ))]| ≤ K(∆t)k, K ≥ 0,

where g : Rd → R is of a sufficiently large class of functions, X (t) refer to the exact solution and
Y (t) refers to an approximate solution generated by the method. By setting g = H the result
follows immediately.

For HBVMs based on Lobatto quadrature, one gets the following result (remember that it has
an extra stage for the same order method).

Lemma 4.3. Theorem 4.2 holds for any HBVM(k, s) based on Lobatto quadrature as well.

Related Results

Several generalizations of HBVMs have been mentioned in Section 1.1.1. Continuing the line
of reasoning from [49], all their properties should be similarly transferrable to single integrand
problems. In fact, some of these generalizations have already been tested on said problems: Li et
al. [50] presents results for EQUIP methods.

4.3 Numerical Tests

Here, SIHSes of the form (cf. equation 4.15)

dX (t)
= J∇x H(X ) (dt +σ ◦ dW (t))

= J∇x H(X ) ◦ dµ(t),
t ∈ [t0, T], x0 ∈ R2d , (4.18)

with σ ∈ R and W (t) a scalar Wiener Process are simulated for different canonical Hamiltonian
problems H and with J as before. The methods are applied to problems with the same Hamiltoni-
ans as in Section 3.3. For the convergence plots, confidence intervals are calculated following the
procedure presented by Kloeden and Platen [37, ch.9.3 & 9.4]; the methods are approximately
integrated between (t0, T ) = (0, 1) with other experiment features as described in Table 4.1 and
respective figure legends. As before, the convergence results found this section include HBVMs
of only one quadrature basis, alternating between Gauß and Lobatto. The results for the other
sets of methods are found in Appendix B as before.
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Problem σ0 σ Batches Batch simulations Total Confidence
Hénon–Heiles (4.21) 1 1 20 5000 100 000 > 99.9%

H order 6 (4.22) 1 1 20 5000 100 000 99.0%
Kepler (4.23) 1 1 20 5000 100 000 99.0%

Table 4.1: Problem variables for SIHS error convergence plots.

4.3.1 Kubo Oscillator

The stochastic variant of the Harmonic Oscillator presented in Section 3.3.1 is also called the
Kubo Oscillator, and is often used as a numerical test example [39, ch. 5.4.1]; it was also used as
a test problem in the specialization project [1]. Its general formula can be written as

dX (t) = J X (t) ◦ dµ(t), dµ(t) = σ0dt +σdW (t), t ∈ [t0, T], X (t0) = x0 ∈ R2 (4.19)

with J the canonical structure matrix, σ0,σ ∈ R and Hamiltonian H(X ) = 1
2∥X∥

2
2. As for the

deterministic problem, an exact solution is known, which for initial values x0 = [0, 1]T is

X (t) =

�

sin (σ0 t +σW (t))
cos (σ0 t +σW (t))

�

. (4.20)
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Kubo Oscillator, t = 2 3

Figure 4.1: Long term error measured in solution and Hamiltonian for a HBVMs applied to single
realization of Kubo oscillator (4.19).

In Figure 4.1, the error of different HBVMs applied to the same realization of the problem
is plotted. The same stepsize has been used in Figure 4.1 as in Figure 3.4 for the problem’s
deterministic equivalent. The solution error grows almost linearly but jumps interspersedly, and
it is two orders larger than for the Harmonic Oscillator. The Hamiltonian is still close to zero (of
magnitude 10−14) and moving randomly as for the deterministic variant, indicating conservation.
This larger and slightly more erratic error behaviour is caused by the stochastic nature of the
problem. Of course, only looking at one realization is not enough to draw conclusions on the
properties of the method; further experiments are needed.
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4.3.2 Hénon–Heiles

Here, the Hénon–Heiles problem of Section 3.3.2 with Hamiltonian (3.20), which reads

H(X ) = H(Q, P) =
1
2

�

∥Q∥2 + ∥P∥2
�

+α
�

Q1Q2
2 −

1
3

Q3
1

�

(4.21)

is considered with α= 16 and the initial value used is x0 = [
p

3,1, 1,1]T .
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Figure 4.2: Convergence plots for single integrand Hénon–Heiles problem (4.21) for Lobatto-
HBVM(k, s) for s ∈ {1, 2,3} and k as described in legend. The parameters used are collected in
Table 4.1.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Lobatto-2 or HBVM(1,1) 1 0.99 1 1.00
Lobatto-HBVM(2,1) – – 1 1.00
Lobatto-4 or HBVM(2,2) 2 1.93 2 2.00
Lobatto-HBVM(3,2) – – 2 2.00
Lobatto-HBVM(4,2) – – 2 2.00
Lobatto-6 or HBVM(3,3) 3 2.99 3 3.01
Lobatto-HBVM(4,3) 4 3.98 3 3.01
Lobatto-HBVM(5,3) – – 3 3.01
Lobatto-HBVM(6,3) – – 3 3.01

Table 4.2: Expected and observed weak and strong order of convergence for HBVMs based on
Lobatto quadrature applied to the single integrand Hénon–Heiles problem. The observed order is
calculated using the same data from which Figure 4.2 was made.

In Figure 4.2, both ms and weak (Hamiltonian) error convergence for of Lobatto-HBVMs are
shown, with the ms error calculated by comparing the approximation to a reference solution
generated using Gauß-10 and smaller stepsize. The expected and observed error convergence
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orders for the solution, in the strong or ms sense, and the Hamiltonian, in the weak sense, are
reported in Table 4.2.

The collocation methods maintain the same strong and weak order of convergence, whereas
the HBVMs with extra stages (i.e. k ≥ s) have the Hamiltonian error down to machine precision
for all stepsizes. The exception to this is HBVM(4, 3) (for both Gauß and Lobatto quadrature),
which converges with order four. This matches the expected results for convergence of O

�

∆tk
�

rather than O (∆ts). The phenomenon of closely matching global error size for methods of the
same order that was seen for the deterministic case (Section 3.3) is also observed in the ms error,
which is its stochastic analogue.

4.3.3 Polynomial Hamiltonian of Degree Six

The experiments of the previous section are now repeated on the problem with Hamiltonian of
6th degree seen in Section 3.3.3, i.e.

H(X ) = H(Q, P) =
1
3

P3 −
1
2

P +
1
30

Q6 +
1
4

Q4 −
1
3

Q3 +
1
6

, x0 = [0,1]T . (4.22)

As noted there, an additional 3s silent stages are needed to conserve the Hamiltonian exactly.
Error convergence results are shown in Figure 4.3 and Table 4.3. For this problem as well as the
SIHS Kepler problem, fewer stepsizes are included in the plots, as the numerical solution of the
methods with the lowest order blows up with larger stepsizes.

Some point values for the largest stepsizes with unreasonably large Hamiltonian error vari-
ance has been removed from the plots and order calculations. This high variance, as well as
somewhat erratic error convergence, can be attributed to the Newton iterations not converging
fully in each timestep. Therefore the irregular behaviour does not reflect the methods’ "true"
properties. It is only the values of HBVM(3,1), HBVM(5, 2) and HBVM(6,2) that are affected.
When the offending points are removed, they demonstrate the expected error convergence.

From the table and the plots, one can observe that the methods demonstrate ms order very
close to one, two and three for methods with parameter s = 1, 2,3 respectively. For the Hamilto-
nian error measured in the weak sense, the methods with k = 3s preserves the Hamiltonian
down to machine precision (reported as "–" in the tables). The error convergence order for meth-
ods with k < 3s is almost the same as is expected, but consistently deviating more from the
expectation for larger number of silent stages r = k − s. HBVM(6, 3) does have slightly higher
convergence, but the value which causes this behaviour is more uncertain than the rest, most
likely due to non-converging Newton iterations. HBVM(7,3) preserves the Hamiltonian for the
stepsizes considered here, even though it is not expected to do so in general.

In Figure 4.4, the solution to the SIHS approximated by the conservative Lobatto-HBVM(6, 2)
(Figure 4.4a) and non-conservative Lobatto-HBVM(2, 2) (Figure 4.4b) is plotted against the con-
tours of the Hamiltonian function. The order of the methods, the stepsize and the time interval
is identical to the method seen in Figure 3.7, where the deterministic equivalent of the problem
was solved.

The individual points of the approximated solutions, connected with light blue and red lines
in the plot, are now of a greater distance between each other and more randomly dispersed; for
the ODE, these lines were completely covered by the points. Even so, the points generated by
the conservative HBVM(6,2) stays neatly on the same level set. The Lobatto method of the same
order does not manage to preserve the Hamiltonian, however, veering significantly away from
the expected level in both directions. This supports the convergence findings.
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Figure 4.3: Weak and strong error convergence of HBVMs based on Lobatto quadrature in weak
(Hamiltonian) and strong sense for the canonical single integrand problem with H and initial
values as in (4.22). The methods are based on parameters s ∈ {1,2, 3} and k from k = s (standard
collocation) and up to theoretical conservation.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Gauss-2 or HBVM(1,1) 1 1.00 1 0.97
Gauss-HBVM(2,1) 2 1.97 1 0.97
Gauss-HBVM(3,1) – – 1 0.97
Gauss-4 or HBVM(2,2) 2 1.98 2 1.97
Gauss-HBVM(3,2) 3 2.96 2 1.97
Gauss-HBVM(4,2) 4 3.88 2 1.97
Gauss-HBVM(5,2) 5 4.75 2 1.97
Gauss-HBVM(6,2) – – 2 1.97
Gauss-6 or HBVM(3,3) 3 2.99 3 2.95
Gauss-HBVM(4,3) 4 3.96 3 2.94
Gauss-HBVM(5,3) 5 4.80 3 2.94
Gauss-HBVM(6,3) 6 6.77 3 2.94
Gauss-HBVM(7,3) 7 – 3 2.94

Table 4.3: Expected and observed weak (Hamiltonian) and strong (ms) order of HBVMs based on
Gauß quadrature applied to sixth degree H from (4.22). The observed orders are calculated from
the same data as the plots in Figure 4.3.
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(a)

(b)

Figure 4.4: Contour plots of H of SIHS (4.22) and approximation of one realization generated by
Lobatto-HBVMs with (σ0,σ) = (1,1). Further features are found in figure title and legend.

4.3.4 Kepler Problem

For the single integrand stochastic variant of the Kepler problem of 3.3.4, which has the Hamilto-
nian and angular momentum invariants

H(X ) = H(Q, P) =
1
2

PT P −
1
∥Q∥

, G(X ) = G(Q, P) =Q1P2 − P1Q2 (4.23)

the intial values of (3.25) are again used:

x T
0 =

�

x T
0 , x T

0

�

=

�

1− e, 0, 0,

√

√1+ e
1− e

�

, e = 0.5. (4.24)

This problem was also approximated by Li et al. [46]. A long term error plot for a single real-
ization approximated by the same methods as applied in Figure 3.10 for the SIHS is presented
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in Figure 4.5. As in Figure 4.1, the error is much larger than for the corresponding ODE, and
while the Gauß-8 has slightly better performance in terms of conserving the Hamiltonin, their
long term behaviour is still comparative. Only the Gauß collocation method preserves the angular
momentum, which is expected.

10 7

10 5

10 3

10 1

||x
ap

pr
ox

x e
xa

ct
|| 2

Gauss-8 or HBVM(4,4)
Gauss-HBVM(4,2)
Gauss-HBVM(4,3)

10 12

10 10

10 8

10 6

|H
(x

ex
ac

t)
H

(x
ap

pr
ox

)|

Hamiltonian Error

200 400 600 800 1000
t

10 16

10 13

10 10

10 7

10 4

|G
(x

ex
ac

t)
G

(x
ap

pr
ox

)|

Invariant error

Kepler Problem, t = 2 8

Figure 4.5: Long term error development for selected methods on the SIHS Kepler problem (4.23)
with initial values (4.24).

The error convergence results are shown in Figure 4.6 and Table 4.4. The reference solution
is generated with Gauß-10 (of order five for single integrand problems) and a smaller stepsize
than used in the plots. As for Figure 3.8 and Table 3.2, some values with high error variance are
removed from the plots. The reasoning is the same as for the above: Their greater variance is
most likely caused by non-converging Newton iterations, which would cause incorrect qualitative
behaviour. Besides, the plots are already crowded enough as is.

As before, the HBVMs achieve ms order very close to the theoretical order. Again, the Hamilto-
nian error in the weak sense error is slightly worse than the theoretical order for an increasing
number of extra stages. HBVM(7, 3) virtually preserves energy for all but the largest stepsize.

One point to consider is that the reference solution is only of weak order five, whereas
HBVM(6,2), HBVM(6,3) and HBVM(7,3) are expected to be of weak order six and seven. The
step size used is still four times smaller than the smallest used in calculating the convergence —
it should not influence the data much.
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Figure 4.6: Convergence plots for SIHS Kepler problem (4.23) with initial values (4.24) for
Lobatto-HBVM(k, s) with s ∈ {1,2, 3} and k up to conservation.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Lobatto-2 or HBVM(1,1) 1 1.00 1 0.99
Lobatto-HBVM(2,1) 2 1.83 1 1.04
Lobatto-HBVM(3,1) 3 2.61 1 1.03
Lobatto-HBVM(4,1) 4 3.67 1 1.03
Lobatto-HBVM(5,1) 5 4.56 1 1.03
Lobatto-4 or HBVM(2,2) 2 1.98 2 1.97
Lobatto-HBVM(3,2) 3 2.96 2 1.97
Lobatto-HBVM(4,2) 4 3.90 2 1.97
Lobatto-HBVM(5,2) 5 4.91 2 1.97
Lobatto-HBVM(6,2) 6 5.78 2 1.97
Lobatto-6 or HBVM(3,3) 3 2.95 3 2.95
Lobatto-HBVM(4,3) 4 3.91 3 2.94
Lobatto-HBVM(5,3) 5 4.82 3 2.94
Lobatto-HBVM(6,3) 6 5.57 3 2.94
Lobatto-HBVM(7,3) 7 – 3 2.94

Table 4.4: Expected and observed weak (Hamiltonian) and strong (ms) error convergence order
of Lobatto-HBVMs applied to the SIHS Kepler problem. The same data is used to calculate the
observed order as to generate the plots in Figure 4.6.
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Implementation

When simulating SDEs, one are generally concerned with problems of very large scale. In addition
to carring the original dimensionality of the deterministic problem, a finer temproral discretiza-
tion is necessary in general to ensure both the stability of the numerical method as well as to keep
the error at a comparable size. However, one is generally not concerned with a single solution
given a set of initial conditions, or alternatively comparing the performance of the method across
a specter of intial conditions. Rather, the interest is in the properties of the distribution of the
stochastic process which arises from such deterministic initial conditions.

To get sufficiently accurate measurements of the distribution features, one needs to simulate
randomly sampled paths numbering in the thousands or even millions. Besides the need for good
(pseudo-)Random Number Generators (RNGs) which generate practically independent random
samples from a Gaußian distribution for the Wiener increments, this places large constraints
on both memory usage and and computational efficiency. However, while each timestep of a
one-step method is completely depenent upon the last timestep, each realization is completely
independent of any other sample path. Consequently, the problem of simulating many paths
becomes embarrassingly parallel.

python, consistently ranking as the most popular general-purpose programming language in
the world [60–62], isn’t very competitive in terms of computation speed out of the box. Even
with the commonly used numpy [63] and scipy [64], with backend consisting of Fortan and
different variants of C (C, C++ and Cython), the performance pales in comparison with pure C, C++
or Fortran. To make python competitive, one should turn to a variant of Just In Time (JIT) or
Ahead Of Time (AOT) compilation. The numba library [65] offers ways to JIT-compile most numpy
and scipy functions using simple function decorators, and also has easy to understand parallel
functionality. However, it does not support scipy’s efficient LU-factorization, which is used in the
implementation here.

Another option is the Domain Specific Language (DSL) jax [66], developed by Google, which
offers both JIT-compilation with similar syntax to numba and intuitive paralell mapping. In fact,
it offers its own very efficient implementation of many scipy and numpy functions, as well as
forward and backward automatic differentiation functionality working across many types of pro-
gramming structures and functions. What is more, it composes or "merges" operations during
compilation to reduce the total number of computations. It is designed to accelerate code on
Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs) specifically, however of-
fers a significant improvement on standard Central Processing Units (CPUs) as well, as will be
demonstrated here. After encountering the performance and implementation issues mentioned in
the paragraph above, the code base for this thesis was converted to jax. For those not interested
in using python, but want a similarly user-friendly language, the proprietary MATLAB, julia [67]
might be a feasible solution.

In this Chapter, the main features of the implementation related to this thesis is described.
For the sake of transparency, source code, the specialization project report [1] as well as a version
of this text can be found at [68].

51
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5.1 Implicit HBVM Solver

5.1.1 Implicit Runge–Kutta Solver

Compared to constructing solvers for explicit RK methods, in which each stage of the method can
be calculated iteratively as a single explicit expression, the procedure for general IRK methods,
such as the HBVMs, is somewhat involved. In fact, for a d-dimensional differential equation and
an s-stage RKmethod, one potentially need to solve a nonlinear system of d ·s equations iteratively
in every timestep of the approximation. Hairer and Wanner [51, Ch. IV.8] presents a strategy for
solving this problem through the use of simplified Newton iterations. Note that for Hamiltonian
systems, such iterations demand the availability of the Hessian of H.

For an IRK method (cf. Section 2.2.1)

yi = xn +∆t
s
∑

j=1

ai j f (tn + c j∆t, y j), i = 1, . . . , s (5.1a)

xn+1 = xn +∆t
s
∑

i=1

bi f (tn + ci∆t, yi), n= 0, . . . N (5.1b)

applied to the general ODE

ẋ = f (t, x(t)), x(t0) = x0 ∈ Rd , t ∈ [t0, T]

the strategy per timestep is this:

1. Substitute the s stage-approximations yi with a smaller variable zi = yi − xn to minimize
roundoff errors

2. Use the approximation of the Jacobian ∇x f (tn + ci∆t, yn + zi) ≈ ∇x f (tn, yn) =: d fn for
i = 1, . . . , s, which is constant for each timestep

3. Pick a good starting value (here, z0 = 0 has been used)
4. Solve the following linear system with respect to approximation increment ∆Zi ∈ Rd·s :

Γn∆Zi := (Id·s −∆tA⊗ d fn)∆Zi = −Zi +∆t(A⊗ Id)F(Zi) =: −G(Zi)

where Zi = [z1, . . . , zs]Ti and F(Zi) = [ f (z1), . . . , f (zs)]T

5. Terminate iteration when the approximation is adequate, which is when

ηi∥∆Zi∥ ≤ κ · Tol, ηi =
θi

1− θi
, θi =

∥∆Zi∥
∥∆Zi−1∥

with η0 =max {ηold , Uround}
0.8, where Uround is the rounding unit, and κ ∈ {10−1, 10−2}.

The matrix Γi is constant for every timestep, so the system needs factorizing only once per
timestep. Hairer andWanner [51, Ch. IV.8] recommend allowing for up to between seven and ten
iterations per timestep; if the calculation fails to terminate before that or the iteration diverges,
they recommend restarting the iterations with a smaller stepsize. Here, an equidistant stepsize
has been used, partially to allow for simulating Wiener Processes before the approximations and
making the process replicable. If the stepsize is adjusted during the numerical integration, the
simulated Wiener increment would have to be generated at each timestep. This is not impossible,
but make it far more difficult to compare different methods on the same simulated Wiener Pro-
cesses.

Due to some quirks in jax1 and personal inexperience with the software, the approximation
procedure does not terminate if the Newton iterations fail to converge. This might be a source of
unexpectedly large errors, as has been pointed out in Sections 3.2.1 and 4.3, but can be avoided
by initially picking a sufficiently small stepsize or adjusting the stepsize during integration, the
latter option demanding that the Wiener increments are simulated consecutively.

1It demands highly functional and vectorized code and has very limited support for conditional statements
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5.1.2 Silent Stages and Efficient Implementation

The s-stage Gauß and s+1-stage Lobatto collocation methods both have coefficient matrices A of
rank s and are irreducible (not counting the explicit initial step of Lobatto methods). In contrast,
for a HBVM(k, s), the coefficient matrix always has rank s regardless of the number of total stages
k. Naively applying the procedure above to the full coefficient matrix will be highly unfeasible for
high order HBVMs conserving H ∈ Pν exactly: as noted in Section 3.3.3, ν = 6 demands three
times as many stages as for the same order collocation method on which it is based.

However, as noted in virtually every paper related to HBVMs in particular and LIMs in general,
it is quite possible to sidestep this issue. In fact, thinking of the method in terms of the Butcher
table formulation might be counterproductive: Essentialy, r := k − s stages of a HBVM(k, s) can
be expressed as a linear combination of the remaining s stages. Brugnano et al. [26] denote the
s stages fundamental, whereas the r subsequent stages are denoted silent stage. The procedure
for a block-blended implementation of Gauß-HBVMs is outlined by Brugnano et al. [26], but is
not repeated here as there was no time to implement it, ironically. For the problems and methods
considered here, the extra computational cost was not debilitating, which will be demonstrated
later.

5.1.3 Simulation of SDEs

To get good estimates on the properties of the distributions of stochastic processess, relatively
large sample sizes of normally distributed variables has to be generated. Following the procedure
of Kloeden and Platen [37, Ch. 9.3 & 9.4], it is possible to calculate (1−α) confidence intervals
on the sample error mean by partioning the sample into a number of batches. This leads to an
obvious entry point to parallelism: run each batch in parallel on different computational devices
(CPUs, GPUs, TPUs). As noted before, every sample path should be independent. Consequently,
no information should pass between the batches as long as they are generated independently, i.e.
with different seeds and using RNGs with sufficiently large periods [39][Ch. 2.6]. Milstein and
Tretyakov [39] also points out that only a small part of the total period of pseudo-RNGs should
be used in a single simulation.

For replicability and accuracy of the generated samples, some caution in choice of random
number generator should be applied. The numpy library offers random number generation, but
has been modifying its routines over the last five years [69]. Its legacy methods use a bit gener-
ator based on the Mersenne Twister algorithm, which is a Generalized Feedback Shift Register
generator (GSFR) with a period of 219937−1 and has relatively good statistical properties [39, Ch.
2.6]. However, long periods are not in itself necessarily a good criterion; O’Neill [70] discusses
this, as well as other flaws of the Mersenne Twister. It is also noted to often need an unecessarily
large overhead in terms of time and space requirement for parallel systems [71].

As an alternative to the Mersenne Twister, O’Neill [70] proposes a family of RNGs dubbed
Permuted Congruential Generators (PCGs), which sidesteps many of the issues of Linear Congru-
ential Generators (LCGs). A 64-bit PCG is now the default RNG routine of numpy, also offering a
version especially suited to Parallel Random Number Generation (PRNG). In contrast, jax gen-
erates random numbers using Threefish algorithm, which are counter based and especially de-
signed for massively PRNG [71]. Both Threefish and PCG methods show better better statistical
properties than the Mersenne Twister, while simultaneously being faster, more computationally
efficient and less space-demanding, reproducible and suited to parallel computations [70, 71].

Although it should be possible to adapt stepsizes during the time integration by generating
the Wiener increments in parallel and in each timestep, the process would make it harder to
compare approximations from different methods along the same paths, as some methods might
have converging Newton iterations, whereas others might not. It would of course be completely
unfeasible when doing error convergence measurements, as the dependent variable is the step-
size. For orbital systems such as the Kepler problem, adaptive stepsize schemes based on known
features of the system has been developed for deterministic problems, even maintaining the mod-
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ified Hamiltonian of the sysetem [72]. It is not unthinkable that adaptive stepsize schemes for
SIHSes might be developed in a similar fashion.

For implicit methods such as are deployed here, the Gaußian variables of the Wiener incre-
ments has to be truncated to ensure that the one-step approximation stays bounded in expecta-
tion; the procedure is outlined in Section 4.1.2.

5.2 Performance

5.2.1 Calculation of Method Coefficients

An explicit expression for an arbitrary HBVM of k stages and s fundamental stages was written
in Section 3.1 as a function of matrices consisting of shifted and scaled Legendre polynomials
evaluated at k abscissae, as well as some integrated terms. For lower order methods, it does not
pose too hard a task to calculate these manually, but it can quickly become quite involved. There
exist several open-source Computer Algebra Systems (CASs) which makes it possible to calculate
the coefficients quite quickly and with little manual effort. One could for instance use sympy [73],
which is written in pure python and has good support for Legendre polynomials.

With the help of sympy, functionality to construct Butcher tables for arbitrary HBVMs was
written for this thesis. A selection of these are included in Appendix A. Although sympy offers
symbolic algebra solvers, it doesn’t allow algebraic expressions for methods based on polynomial
roots higher than quartic degree found with its CAS. However, for purely numerical expressions
of the matrices, the construction is relatively quick and equally precise for the use in the solver.

In Figure 5.3, timings of the algorithm constructing the Butcher tables as a function of total
number of stages are averaged over ten runs, with construction of methods of the same strong
order connected by lines. As can be seen, the construction time is a linear function of the number
of silent stages and closer to quadratic for the number of fundamental stages. More importantly,
it is relatively cost efficient, clocking in at about one minute even for HBVM(19,10), which has
order nineteen weak and order ten strong convergence, or deterministic global error convergence
order twenty and Hamiltonian error convergence of order thirty-eight. As such, calcualting the
method could demand but a small part of the total time spent generating solutions.

5.2.2 Automatic Differentiation

jax supports both forward and backwards differentiation with quite high precision and speed.
Moreover, it can differentiate through a series of operators within its own framework.

To assess the performance of the automatic differentiation on SIHSes, several test problems
are implemented both in terms of "explicit" expressions for f = J∇x H and ∇x f = J∇2

x H and
functions given by autmatically differentiating H once and twice for f and f . In addition to
already discussed problems, the Double Well SIHS with Hamiltonian

H(X ) = H(Q, P) =
1
2

P2 +
1
4

Q4 −
1
2

Q2, x0 = [
p

2,
p

2]T

is also implemented. The approximations for the two problem formulations are then compared
pathwise in norm against time, resulting in the plot seen in Figure 5.1. As can be seen, the differ-
ence between the two sets of solutions is quite small. In fact, for the chosen stepsize, the difference
between the solutions is much smaller than the method error (see Section 4.3), indicating that
the automatic differentiation can be used relatively safely.

5.2.3 Different Solver Implementations

Combining the features described above with the automatic differentiation routines of jax, one
can build a solver for any canonical Hamiltonian single integrand system using any HBVM has
been developed. As inputs it only needs an expression for the Hamiltonian H(x), the quadrature
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Figure 5.1: A comparison of solutions generated by Gauß-HBVM(4,2)with and without automatic
differentiation for three test problems with parameters σ = 1,∆t = 10−2, t ∈ [0,100] over four
batches with thousand simulations each. A 90% confidence interval is plotted around the solutions.

basis and the parameters k, s of the method, allowing it to solve the system for any x0, [t0, T],∆t
and number of simulated paths, given that the method is stable for these parameters.

To assess the performance of the "new" jax based implentation with and without automatic
differentiation ("autodiff"), it is compared with a solver written using only numpy and scipy func-
tions. Little work has been put into optimizing this "old" variant, yet it might be illustrative of
much scientific computing programs written with the help of said packages. Importantly, it is
not written for parallel computation, so it is greatly disfavoured by increasing the number of
simulation batches.

In addition to comparing the speed for the jax implementation with both automatic differen-
tiation and eplicitly stated functions, a "mixed" solver, where the vector field function f = J∇x H
and its Jacobian ∇x f = J∇2

x H is written in jax and JIT-compiled, while the rest of the solver
backend relies on numpy and scipy routines.

All these solver configurations are then used to simulate the Hénon–Heiles problem (4.21)
with variying simulation parameters which are collected in Table 5.2b. The simulation timings
are averaged over 10 runs. The tests are performed on a Lenovo Yoga Slim 7 14ARE05 using a
2.00 GHz "AMD Ryzen 7 4700U with Radeon Graphics" processor with eight cores and 16 GB
RAM. Figure 5.2 displays the results.

The computation time plotted against the number of silent stages, as seen in Figure 5.2a yields
some weird behaviour. The new solvers are slower for fewer than three extra stages than for ten
extra, oddly enough. Except for an anomalous value at three silent stages (not unexpected for
only ten runs), both the old and the mixed implementation (jax function evaluations but numpy
and scipy solver routines) demonstrate a linear increase in computational cost.

When considering a variable number of timesteps (Figure 5.2b), the old method initially
performs best, reflecting less dispatch overhead in numpy and scipy per operation. It is very quickly
outpaced by the mixed variant, which performs about three times better, yet demonstrates a
similar linear growth. Still, for larger numbers of timesteps, they are both completely outclassed
by the pure jax implementations, which beyond the initial one second of base time expenditure
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Silent Stages new autodiff old mixed

0 2.148 2.354 11.140 6.258
1 3.057 3.274 13.279 6.140
2 4.102 4.305 16.935 6.649
3 6.071 5.598 29.572 7.580
4 1.305 1.275 21.519 8.290
5 1.612 1.527 24.073 8.532
6 1.732 1.646 24.509 9.505
7 1.886 1.793 26.528 10.007
8 2.123 2.045 28.540 10.667
9 2.559 2.451 31.030 11.608

10 2.834 2.754 32.934 12.324

(a) Varied number of silent stages r = k− s.

Timesteps new autodiff old mixed

101 1.010 1.485 0.046 0.108
102 0.924 1.450 0.357 0.080
103 0.953 1.440 4.531 0.802
104 1.165 1.708 38.781 8.073
105 3.170 3.979 375.418 81.006
106 23.307 26.936 3139.148 810.461

(b) Varied number of timesteps.

Batches new autodiff old mixed

1 5.794 5.991 37.457 12.549
2 8.479 8.176 68.171 17.597
3 4.008 4.136 93.964 28.521
4 4.542 4.171 127.601 38.071
5 4.614 4.349 161.363 47.456
6 4.553 4.192 188.720 55.432
7 5.015 4.798 223.989 65.222
8 4.937 5.094 249.793 73.496

(c) Varied number of batches.

Simulations new autodiff old mixed

100 0.886 1.077 0.037 0.063
101 4.909 5.199 0.362 0.116
102 3.115 3.423 3.607 1.225
103 3.382 3.741 35.547 12.599
104 6.257 6.407 352.433 128.610
105 41.837 40.828 3971.330 1241.154

(d) Varied number of simulations.

Table 5.1: Timings of different solver configurations applied to the SIHS Hénon–Heiles problem
(4.21) with parameters as seen in Table 5.2. The leftmost column represents the value of dependent
variable, while the remaining values are timings in seconds averaged over ten runs. The data is
visualized in Figure 5.2.

Label Solver backend Function evaluations

new jax jax
autodiff jax jax + automatic differentiation

old numpy + scipy numpy
mixed numpy + scipy jax

(a) Features of the different solver configurations.

Figure & Table Number Method Timesteps Batches Simualtions

5.2a & 5.1a Gauß-HBVM(−, 4) 100 1 100
5.2b & 5.1b Gauß-HBVM(6,3) – 1 1
5.2c & 5.1c Gauß-HBVM(6,3) 100 – 100
5.2d & 5.1d Gauß-HBVM(6,3) 10 1 –

(b) Features of each performance timing series.

Table 5.2: Variables used in the performance timings seen in Figures 5.2 and Tables 5.1, with "–"
indicating the independent variable in each subfigure and -table. The solver configurations behind
each label is described in Figure 5.2a
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Figure 5.2: Computation time of four solver variants as function of varying problem parameters
when solving the SIHS Hénon–Heiles problem (4.21). In Figure 5.2a, the independent variable is
the number of of the HBVM; in Figure 5.2b, the number of timesteps are varied; in Figure 5.2d,
the number of simulations (for one batch) is varied; and in Figure 5.2c, the number of batches is
varied. The stepsize used is ∆t = 10−1. The solver configuration behind each label is summarised
remaining parameters for each series are collected in Table 5.2b.

does not need more than two seconds extra for hundred thousand timesteps compared to ten
timesteps. In fact, both the new solver (jax using formulas) and the autodiff solver (jax using
automatic differentiation) are more than hundred times faster for a million timesteps than the
old solver.

Figure 5.2c shows the performance of the methods using an increasing number of batches.
As is expected, the timings of the old and mixed solvers increase close to linearly as a function of
batch numbers. For the parallel new and autodiff implementation, however, eight batches (the
maximum number of computation cores available) takes no longer time to compute than one.
Still, this increases augments the relative speed by a factor of eight.

For a variable number of simulations per batch (Figure 5.2d), a slightly different pattern
emerges. The jax implementations initially demonstrate a jump in time expenditure (going from
one to ten simulation), at which point they stabilize at slightly below ten seconds per run, which
performance the keep up until reaching a hundred thousand batch simulations. Again, the speed
gain for the largest number of simulations for the new solver compared to the old is close to a
factor hundred.

It is unlikely that the performance gain of the new solver over the old observed for simulations
and timesteps variations can be combined for much additional speed gain. The computations hap-
pen on the same cores, so that when reaching the maximum computational capacity per time unit
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for the cores, which happens before hundred thousand timesteps and ten thousand simulations,
no additional speed gain per core can be had. Even so, combining with the gain from paralleliz-
ing, the new solvers are more than eight hundred times faster than the original implementation.
Moreover, the jax implementation could be expected to be even more advantageous if applied if
run on GPUs or TPUs.
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Figure 5.3: Construction timings for HBVM(k, s) based on Gaußian (Figure 5.3a) and Lobatto
(Figure 5.3b) quadrature as a function of total number of stages k, with each line connecting
timings of methods with the same number of fundamental stages s. The plotted values are timings
averaged over ten runs.
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Discussion

The HBVMs based on Gauß and Lobatto quadrature, being derived from an extended collocation
condition, has been shown to observe the theoretical behaviour outlined by Brugnano et al. [4,
26] through numerical experiments on determinsitic Hamiltonian systems. HBVMs with s fun-
damental and k total stages are shown to converge in solution with order 2s and in Hamiltonian
with order 2k. The behaviour observed for Lobatto-based methods is qualitatively the same as
that of the methods based on Gaußian quadrature when considering methods of the same order;
in other words, the Lobatto based HBVMs need an additional fundamental stage for the same
convergence results as the Gauß based methods. HBVMs with parameters such that k ≥ νs/2 for
Hamiltonians H ∈ Pν with the energy shown to be preserved accurately in two test problems.
Moreover, for general Hamiltonian systems they far outperform the Gauß(-Legendre) and Lob-
atto IIIA methods of the same order in terms of preserving the Hamiltonian. In addition, it has
been observed that the solution error has a weak linear growth for long time intervals, but the
Hamiltonian error stays bounded.

After presenting theory regarding convergence of RK methods on a class of SDEs which al-
lows a reformulation with a single integrand, as well as discussing properties of different kinds of
SHSes with particular weight on SIHSes, new order results for the HBVMs applied to SIHSes have
been presented: A HBVM(k, s), i.e. with s fundamental and k total stages, is expected to have ms
order of accuracy s and Hamiltonian error convergence in the weak sense of order k. Incidentally,
the result fits more neatly with the method nomenclature than for ODEs problems. Furthermore,
the exact energy-preservation condition is extended polynomial stochastic Hamiltonians for ca-
nonical SIHSes: For H ∈ Pν, a HBVM(k, s) preserves the energy exactly as long as νs ≤ 2k. Again,
the same convergence results are expected for Gauß based HBVMs as for those based on Lobatto
quadrature with one additional stage.

The experimental results for SIHS test problems were poorer than their deterministic coun-
terparts. While the ms error convergence almost perfectly matched the theoretical order, the
Hamiltonian error convergence was consistently worse than expected, falling slightly with every
additional extra silent stage below conservation. Moreover, the likely convergence failure of the
Newton iteration subroutine confounded the results, breaking the desired behaviour of the meth-
ods. Nevertheless, the performance was several orders better than for standard collocation meth-
ods. In addition, themethods were shown to exactly preserve all the polynomial test Hamiltonians
with the required number of silent stages. With enough extra stages, some of the methods did
preserve the non-polynomial stochastic Kepler polynomial down to machine precision.

Albeit SHSes might arise in many domains, the range of applications for single integrand
problems is smaller. Moreover, the results of Debrabant and Kværnø [5] and Cohen et al. [49]
are so general that the properties of any deterministic method allowing a B-series formulation
can be considered proven for single integrand problems. Furthermore, it has already been shown
that EQUIP methods, being an improvement on the HBVMs as they are both energy-preserving
and symplectic, also have these properties for single integrands [50].1

1albeit the author only became aware of this with one month remaining on the thesis
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Nevertheless, some effort has been put into developing an efficient and reliable solver based
on jax, which has been shown to be quite flexible in its configurations. It was demonstrated to
be far more expedient than comparative solvers using standard scientific python packages numpy
and scipy. It is possible that introduction of jax in scientific computing might make python com-
petitive compared to C languages and julia, although this must be ascertained by benchmarking
solvers implemented in other languages as well.

6.1 Further Work

Continuing the thread from above, there are several improvements possible for the solver. The first
and most obvious is to introduce a blended implementation of the HBVMs, which would make
the computation cost almost independent of the number of silent stages. Secondly, introducing
adaptive stepsize routines would solve the issues of non-convergent Newton iterations, making
the solver far more robust. Preferrably, the stepsize adaptation should respect the structure of the
phase space. This would involve generating Wiener increments in parallel and on the fly, so to
speak, wich is feasible with modern RNGs such as those embedded in numpy and jax. In addition,
other collocation polynomials could be used as basis for the HBVMs.

Another natural continuation of this endeavour is the adapation of other Line IntegralMethods
discussed in the thesis to single integrand problems; in particular could the Poisson Hamiltonian
Boundary Vaule Methods and Enhanced PHBVMs prove useful, as they have the strongest con-
servative properties. It would not pose much scientific progress for the reasons mentioned above,
but the prospect of high order energy and invariant preserving methods for stochastic Poisson
systems is intriguing. Finally, finding concrete systems which can be advantageously modelled
by SIHS would greatly motivate the application of HBVMs, as well as possibly spur interest and
drive development within the field.

In a broader scope, it would be interesting if the HBVMs could be adapted to solve Stra-
tonovich SHSes beyond the single integrand problem. One possible way to do this could be by
using the extended collocation condition as a simplifying assumption for stochastic B-series for-
mulation of SRK methods, in a similar manner done for symplectic conditions by Anmarkrud and
Kværnø [44]. Other possible approaches could involve splitting and composition, in a manner
akin to that of Chen et al. [48]. Suffice to say, there is much that can still be done.
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Selected HBVM Butcher Tables
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Table A.1: Butcher tables for HBVMs based on Gaußian quadrature.
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Table A.2: Butcher tables for HBVMs based on Lobatto quadrature.



Appendix B

Additional Convergence Results

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Lobatto-2 or HBVM(1,1) 2 1.99 2 2.00
Lobatto-HBVM(2,1) – – 2 2.00
Lobatto-4 or HBVM(2,2) 4 4.00 4 3.84
Lobatto-HBVM(3,2) – – 4 3.85
Lobatto-HBVM(4,2) – – 4 3.85
Lobatto-6 or HBVM(3,3) 6 5.84 6 5.99
Lobatto-HBVM(4,3) 8 8.1∗ 6 5.98
Lobatto-HBVM(5,3) 10.0 – 6 5.98
Lobatto-HBVM(6,3) – – 6 5.98

Table B.1: Expected and observed error convergence order in Hamiltonian and solution for de-
terministic Hénon–Heiles problem with Lobatto-based HBVMs, calculated using same data as seen
in Figure B.1b unless otherwise stated. ∗Approximate value read from figure
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Figure B.1: Convergence plots for HBVMs with Lobatto quadrature with s ∈ {1,2, 3} on Hénon–
Heiles problem for t ∈ [0,1]. In addition, slopes of order a are for a ∈ {2, 4,6, 8} in Figure B.1b
and a ∈ {3, 4,7, 9} in Figure B.1a.
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Figure B.2: Convergence of Lobatto-HBVM(k, s) for Hamiltonian of order 6 given by (3.22) for
s ∈ {1, 2,3} and k up to conservation.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Lobatto-2 or HBVM(1,1) 2 2.00 2 2.00
Lobatto-HBVM(2,1) 4 4.00 2 2.00
Lobatto-HBVM(3,1) – – 2 2.00
Lobatto-4 or HBVM(2,2) 4 3.99 4 3.98
Lobatto-HBVM(3,2) 6 5.96 4 3.99
Lobatto-HBVM(4,2) 8 – 4 3.99
Lobatto-HBVM(5,2) 10 – 4 3.99
Lobatto-HBVM(6,2) – – 4 3.99
Lobatto-6 or HBVM(3,3) 6 6.00 6 6.00
Lobatto-HBVM(4,3) 8 8.01 6 6.03
Lobatto-HBVM(5,3) 10 – 6 6.04
Lobatto-HBVM(6,3) 12 – 6 6.03
Lobatto-HBVM(7,3) 14 – 6 6.04

Table B.2: Table comparing expected and observed error convergence order measured Hamilto-
nian and Solution for Lobatto-HBVMs; themethods are applied to deterministic canonical Hamilto-
nian system with H ∈ P6 given by (3.22), calculated using same data as seen in Figure B.2.
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Figure B.3:Deterministic error convergence of Gauß-HBVMs for Kepler problem (3.23) with initial
values (3.25) over time t ∈ [0, 1] compared with slopes of relevant order.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Gauss-2 or HBVM(1,1) 2 2.00 2 2.06
Gauss-HBVM(2,1) 4 4.00 2 2.02
Gauss-HBVM(3,1) 6 6.02 2 2.03
Gauss-HBVM(4,1) 8 8.05 2 2.03
Gauss-HBVM(5,1) 10 9.92 2 2.03
Gauss-4 or HBVM(2,2) 4 3.88 4 3.99
Gauss-HBVM(3,2) 6 5.96 4 3.97
Gauss-HBVM(4,2) 8 8.23 4 3.97
Gauss-HBVM(5,2) 10 9.17 4 3.97
Gauss-HBVM(6,2) 12 11.63 4 3.97
Gauss-6 or HBVM(3,3) 6 6.06 6 5.96
Gauss-HBVM(4,3) 8 8.08 6 5.97
Gauss-HBVM(5,3) 10 10.10 6 5.97
Gauss-HBVM(6,3) 12 11.73 6 5.97
Gauss-HBVM(7,3) 14 – 6 5.97

Table B.3: Table of error convergence orders expected and observed for deterministic Kepler prob-
lem (3.23) with initial values (3.25). The HBVMs reported are based on Lobatto quadrature and
the order is calculated using the same data as seen in figure B.3
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Figure B.4: Convergence plots for single integrand Hénon–Heiles problem (4.21) for Lobatto-
HBVM(k, s) for s ∈ {1, 2,3} and k, k as described in figure legend and the remaining parameters
as described in Table 4.1.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Gauss-2 or HBVM(1,1) 1 0.98 1 1.00
Gauss-HBVM(2,1) – – 1 1.00
Gauss-4 or HBVM(2,2) 2 1.93 2 2.01
Gauss-HBVM(3,2) – – 2 2.00
Gauss-HBVM(4,2) – – 2 2.00
Gauss-6 or HBVM(3,3) 3 2.99 3 3.00
Gauss-HBVM(4,3) 4 3.97 3 3.01
Gauss-HBVM(5,3) – – 3 3.01
Gauss-HBVM(6,3) – – 3 3.01

Table B.4: Expected and observed order of convergence for HBVMs based on Lobatto quadrature
applied to the single integrand Hénon–Heiles problem. The observed order is calculated using the
same data from which Figure B.4 was made.
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Lobatto-HBVM(5,3)
Lobatto-HBVM(6,3)
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Figure B.5:Weak and strong error convergence plots for SIHS with Hamiltonian and initial values
(4.22) simulated with parameters from Table 4.1 using Lobatto-HBVMs with s ∈ {1,2, 3} and k as
described in legend.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Lobatto-2 or HBVM(1,1) 1 0.97 1 0.97
Lobatto-HBVM(2,1) 2 1.97 1 0.97
Lobatto-HBVM(3,1) – – 1 0.97
Lobatto-4 or HBVM(2,2) 2 1.98 2 1.98
Lobatto-HBVM(3,2) 3 2.96 2 1.97
Lobatto-HBVM(4,2) 4 3.91 2 1.97
Lobatto-HBVM(5,2) 5 4.26 2 1.97
Lobatto-HBVM(6,2) – – 2 1.97
Lobatto-6 or HBVM(3,3) 3 2.98 3 2.96
Lobatto-HBVM(4,3) 4 3.95 3 2.95
Lobatto-HBVM(5,3) 5 4.81 3 2.94
Lobatto-HBVM(6,3) 6 7.28 3 2.94
Lobatto-HBVM(7,3) 7 – 3 2.94

Table B.5: Expected and observed weak and strong order of HBVMs based on Lobatto quadrature
applied to sixth degree H from (4.22). The observed orders are calculated from the same data as
the plots in Figure 4.3.
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Figure B.6: Error convergence plots for SIHS Kepler (4.23) with initial values (4.24) for Lobatto-
HBVMs with s ∈ {1,2, 3} and k as described in legend; the remaining simulation parameters are
described in Table 4.1.

Method Name Hamiltonian Solution
Expected Observed Expected Observed

Gauss-2 or HBVM(1,1) 1 0.92 1 1.03
Gauss-HBVM(2,1) 2 1.85 1 1.02
Gauss-HBVM(3,1) 3 2.57 1 1.03
Gauss-HBVM(4,1) 4 3.68 1 1.03
Gauss-HBVM(5,1) 5 4.60 1 1.03
Gauss-4 or HBVM(2,2) 2 1.98 2 1.98
Gauss-HBVM(3,2) 3 2.96 2 1.97
Gauss-HBVM(4,2) 4 3.90 2 1.97
Gauss-HBVM(5,2) 5 4.91 2 1.97
Gauss-HBVM(6,2) 6 5.77 2 1.97
Gauss-6 or HBVM(3,3) 3 2.95 3 2.94
Gauss-HBVM(4,3) 4 3.91 3 2.94
Gauss-HBVM(5,3) 5 4.79 3 2.94
Gauss-HBVM(6,3) 6 5.57 3 2.94
Gauss-HBVM(7,3) 7 – 3 2.94

Table B.6: Expected and observed weak (Hamiltonian) and strong (ms) error convergence order of
Gauß-HBVMs applied to the SIHS Kepler problem. The same data is used to calculate the observed
order as to generate the plots in Figure 4.6.
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