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Abstract

Humans are the main cause of accidents at sea. It is therefore desirable in some cases to cre-
ate autonomous vehicles capable of operating without any human intervention. A framework
for visualisation and development of a digital twin and RL algorithms is developed in Unity
Game Engine. A digital representation of the Trondheim Fjord terrain is created, where wind
and rain is implemented by using real-time real world values for the area. Boats emitting
AIS signals in the area are also used to create digital representations of the ships. Virtual Re-
ality was implemented in the project which allows for both normal windowed visualisation
and virtual visualisation. In addition, the Milliampere 2 boat is represented accurately in the
project as a virtual object dictated by a flexible dynamical model. This dynamical model is
affected by external forces like wind and two thrusters attached to the bottom of the vessel.
As the real boat should have a LIDAR, a ray casting sensor array is used in the project to
mimic its real counterpart. A pooling algorithm for the sensor readings is used to reduce the
dimensions in the sensor from 220 to 9. This is used in an RL algorithm for controlling the
boat.
A RL algorithm using PPO is trained inside of Unity, where the goal is to follow a given path
as closely as possible while avoiding obstacles like land and other boats. After RL training,
the boat was given over 100 attempts to complete four paths of varying degree of difficulty.
The boat had a 100% success rate on both of the paths containing no obstacles. This suc-
cess rate dropped to 17% when obstacles were introduced. While the success rate was low
when obstacles were introduced, it is suggested that minor changes in Unity will improve
future training. A safety filter could be an good addition to ensure the RL model will not act
dangerously.

Video: https://youtu.be/h8PAtYfLLOc

Sammendrag

Mennesker er hovedårsaken til at det oppstår ulykker til sjøs. Det er derfor ønskelig i noen
tilfeller å ta i bruk autonome kjøretøy som er i stand til å fungere uten at mennesker må
blande seg inn. Et rammeverk for visualisering og utviklinger av en digital tvilling og RL-
algoritmer blir skapt i spillmotoren Unity. En digital representasjon av Trondheimsfjorden
blir skapt, der vind og regn blir simulert ved hjelp av sanntidsdata fra ekte målinger. Båter
som sender AIS-signaler i området blir også tatt i bruk for å skape digitale representasjoner av
hvert skip. VR blir også implementert i prosjektet, noe som gjør virtuell og vanlig visualisering
mulig. I tillegg så er en dynamisk modell av båten Milliampere 2 implementert på en nøyaktig
måte. Denne dynamiske modellen blir påvvirket av både vind og thrusterne som er montert
under båten. Siden den ekte båten skal ha en LIDAR, så blir en strålekaster brukt i prosjektet
for å etterligne LIDARen. En algoritme blir brukt for å slå sammen verdiene den beregner
og gjør at dimensjonene blir redusert fra 220 til 9. Dette blir brukt i en RL-algoritme for å
kontrollere båten.
En RL-algoritme som bruker PPO blir trent i Unity, der målet er å følge en gitt sti. Den skal
gjøre dette så godt som mulig mens den unngår hindringer som andre båter og land. Etter
treningen ble den gitt over 100 forsøk på å fullføre fire baner med økende vanskelighetsgrad,
der to av de inneholder hindringer. Båten klarte de letteste banene 100% av forsøkene, men
den fullførte bare 17% av gangene på de to banene med hindringer. Selv om fullføringsraten
var lav på banene med hindringer, så er det foreslått at noen små endringer kan forbedre
resultatene betydelig. Et sikkerhetsfilter kan være en god løsning for å ytterliggere forbedre
sikkerheten slik at båten aldri er i fare. Video: https://youtu.be/h8PAtYfLLOc

viii
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1 INTRODUCTION

1 Introduction

As the world develops, new ways of solving
problems have been unlocked. With the cur-
rent advances within machine learning and
thus reinforcement learning, one can use data
gathered from sensors together with modeling
and simulations to create and improve digi-
tal twins(DT). This project’s goal is to create
a suitable framework for developing reinforce-
ment learning algorithms, and looking into us-
ing Unity Game Engine for Digital Twin capa-
bilities.

1.1 Motivation and Background

Autoferry is a multidisciplinary project being developed by several NTNU departments. The
goal of the project is to create a ferry capable of navigating autonomously without being
controlled by any human[1]. The Autoferry project aims to eliminate the need for bridges
across any river by utilizing an autonomous boat to transport pedestrians. Thus, the boat
serves pedestrians at multiple locations and provides a more flexible solution than a bridge
would. By making the boat autonomous, one can essentially remove the human from the
loop during normal operation, which has many advantages. According to the Sanchez [2],
humans are the cause of 80% of all errors at sea. These errors can be caused by several
factors like lack of training, overconfidence, or lack of attention. Removing humans from
the loop and replacing them with an algorithm is thus desired if one would like to increase
safety while navigating the seas. Removing humans from the loop also means lower costs
regarding salaries and management. Unfortunately, manually programming an algorithm to
control a sea vessel is not a trivial task. The sea is a highly stochastic environment featuring
external forces like wind and ocean waves, and currents. An algorithm also has to consider
any possible scenario that could happen at sea. Programming an algorithm suitable for every
possible scenario in a highly stochastic environment will be a daunting task that will be
significantly time-consuming and costly, or in other words practically impossible. This is why
taking a different approach and using Reinforcement Learning(RL) might be more feasible. It
should be worth seeing if it is capable of creating an algorithm capable of navigating the seas.
An RL algorithm should cost just a fraction of the development cost because of the assumed
reduced development cost because a hand-designed algorithm would need to be capable of
handling every situation without human intervention. Unfortunately, an RL algorithm needs
to train and learn how actually to navigate a selected sea vessel. To let an algorithm learn
by using a real ship in the real world would be both dangerous and costly. This is why it
is desirable to look at creating a digital simulated environment that is realistic enough to
replicate the real counterpart. After training, the environment could be viable for providing
additional feedback to the algorithm during regular operation. This approach is called Digital
Twin and will be discussed later.
This project is a continuation of the specialisation project [3] and thus uses Unity Game
Engine to further develop an environment for development, visualisation and potential digital

1



1 INTRODUCTION

twin capabilities for an RL model. The specialisation project did discover that it was possible
to train RL models and represent the Milliampere boat in a digital representation of a real
environment inside of the game engine. The specialisation project did succeed, but fell short
in certain aspects. Utilising a game engine for scientific purposes is rather novel, but still not
quite unheard of. As of 9th of May 2022, 425 results match the search term ""Unity game
engine" digital twin" on Google Scholar. Out of these results, 198 articles were published
after the start of 2021. This suggests that using Unity Game Engine for digital twins is still
rather new.

2



1 INTRODUCTION

1.1.1 Literature Review

This project takes inspiration and discoveries from multiple sources The foundation of this
master thesis was made in the specialisation project developed in the autumn semester
2021[3]. While this project laid a decent foundation for this thesis, it still had a lot of short-
comings, like having a very simplified and thus inaccurate mathematical model of the boat.
It was attempted to implement a mathematical model of the boat, but Unity lacked proper
support for matrix calculations, which reduced the mathematical model into a simple dynam-
ical equation. The friction and dampening coefficients in the dynamical equation were just
simple constants that did not care which direction the boat traveled in, just the magnitude
of the velocity. The boat also lacked any vision component in the RL algorithm, which made
it unable to detect any obstacles. The RL algorithm in other words was only able to follow a
path and had to collision implemented. The environment was also quite lackluster by having
a low resolution and issues with "blocky" terrain. The environment was also textured with a
simple colour gradient, which gave it a cartoon-like style and thus an unrealistic look. While
a great start, the specialisation project had a lot of cut corners in order to create a presentable
project.
The model identification research paper for the Milliampere ferry[4] explores thoroughly the
dynamics of the Milliampere ferry being developed by NTNU. The research paper uses ex-
perimental data with optimisation algorithms to develop several dynamical models for the
Milliampere ship. Several models are proposed, where a fully-coupled model and a surge
decoupled model are developed. Different dynamical models were simulated and compared
against a real vessel, where both the surge decoupled, and the fully coupled model were both
verified to be accurate enough. The research paper suggests that the surge decoupled model
for the Milliampere ship is accurate enough for simulations while being significantly easier to
implement. In addition to developing a dynamical model for the ship, the paper also proposes
a model for the forces acted on the boat, like the thruster motors and wind forces. While the
thruster model was described well enough, the implementation of wind forces in this paper
were poorly described and had to be supplemented by the Handbook written by Fossen [5]
to give the full picture. Despite this fact, the paper overall provides a great foundation for im-
plementing a digital representation of the Milliampere boat, like for example in this project.
The research paper by Larsen [6] compares different RL algorithms in the task of path fol-
lowing and collision avoidance. This paper used the various RL algorithms on a dynamical
model of the Milliampere ferry, which makes this paper very relevant to the work done in
this project. The RL algorithms Proximal Policy Optimization(PPO), Deep Deterministic Pol-
icy Gradient(DDPG), Twin Delayed DDPG(TD3), and Soft Actor-Critic(SAC) are compared in
various environments and evaluated. The PPO algorithm was the best performing RL algo-
rithm of them all and was proven to be robust for all presented cases.
The book by Thor I. Fossen [5], supplements the model identification research paper [4] by
providing an expanded explanation of the theory behind for instance the dynamics of a boat
and the wind modeling. This is obviously the case when the article finding the dynamical
model [4] uses the theory in Fossen’s book for most of the fundamentals. This book has been
useful for when certain parts of the theory featured in [4] has been too shallow and required
deeper insight to be properly implemented in this project. This book will also come in handy
for potential expansions of the dynamical model once the possibility of more real world vari-
ables are introduced, like precipitation and temperature.

3



1 INTRODUCTION

1.2 Research Objectives and Research Questions

Determining the objectives is important for guiding the work.

1.2.1 Objectives

Primary Objective: To establish an extendable digital twin framework for autonomous sea
vessel

Secondary Objectives:

• Develop an expandable digital framework for autonomous ship navigation

• Improve the visual appeal and accuracy of the terrain F

• Fetch real world data and utilise them for calculations and visualisation

• Implement Virtual Reality(VR) visualisation

1.2.2 Research Questions

From what is known, Unity Game Engine has not been used much for scientific purposes. It
is therefore important to specify questions to guide the work.

• How usable is Unity Game Engine for simulating a
realistic RL environment?

• Will the algorithm trained in Unity become safe enough, proving that a RL in Unity is
usable for real use cases?

1.3 Outline of Report

Chapter 1 contains the introduction of the report. It also states the research questions, liter-
ature reviews and objectives.
Chapter 2 introduces the dynamical model of the sea vessel and thruster dynamics. The RL
section describes an overview of the algorithm. Some sections in the chapter presents first
what was done in the specialisation project and then introduces the improvements brought
into the master project.
Chapter 3 presents the methodology of the project, where it presents the development and
reasoning behind various aspects of the project. This includes the creation of the map, im-
plementation of live wind data, visualisation of real time rain, use and implementation of
a digital Light Detection And Ranging(LIDAR) sensor, the reward function and the setup of
the training, and finally the implementation of VR into the project. Keep in mind that the
implementation of the map is especially detailed because of how nontrivial the task is. The
usefulness of this knowledge will most likely also be useful for other projects, which is why
this specific section thoroughly explains the process.
Chapter 4 provides the results of the testing of the algorithm. In addition, the developed
project is discussed.
Chapter 5 Concludes the thesis by seeing the status on the research objectives and by an-
swering the research questions.

4



2 THEORY

2 Theory

2.1 Digital twin and capability level

The Digital Twin concept is relatively new. By looking in the top right side figure 2.1, the
representation of the physical object can be seen. This physical object is fitted with a deemed
significant amount of different sensors. These sensors then provide real-time bigdata for fur-
ther processing. Big data can be explained as simply being huge amounts of data containing
many different variables that can be hard to analyze by normal means. While it’s bigdata,
the spatio-temporal resolution might be an issue. Spatio-temporal data resolution refers to a
data’s resolution in both space and time. For example, one can imagine a data set containing
the temperature of an area represented as a grid. This data set can also contain past temper-
atures of said area grid. This data set thus is a spatio-temporal data set. The spatio-temporal
resolution of this data might be too low and could be unable to predict the future of the state
of the object. Models are because of this used together with the big data to predict the future
states of the object and fully create a digital representation of the object. With an accurate
digital representation, one can combine its behavior with the physical version of the object
and perform better decision-making and optimal control of the physical object. This assumes
that both the physical and digital representations receive the same data. As one can see on
figure 2.1, the green arrows indicate the real-time data flow and analysis. In addition to op-
timal control, one can use digital twins to create a more informed risk assessment, What-if
analysis, uncertainty quantification, and process optimization. By instead running the digi-
tal twins offline and simulating different scenarios, one can obtain deeper knowledge within
these. The digital twins that run offline and are separated from the physical object are then
called digital siblings. As one can see in the figure, the grey arrows and boxes represent data
flow from the digital siblings. The data obtained from the digital siblings can be stored and
used to develop future generations of improved objects. This is called a digital threads.

Risk Assessment
What if? Analysis
Uncertainty Quantification
Process Optimization

Hypothetical
Scenarios

Big Data

Decision Making and Public Engagement

Optimal Control

Modeling for Physical Realism

Scenario 1 Scenario 2 Scenario 3

Digital Siblings

Digital Twin

Wind Farm

Figure 2.1: Process of a Digital Twin. Adapted from [7]
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2 THEORY

0 1 2 3 4

0. Standalone 
Standalone description of the asset

disconnected from the real environment.  
The physical asset may not yet exist.

1. Descriptive 
CAD-models and real-time stream of sensor

data describe the up to date state of the asset 
 at any point of time. 

2. Diagnostic 
Can present diagnostic information which

supports users with condition monitoring and
troubleshooting. 

3. Predictive 
Can predict the system's future 

states or performance and can support
prognostic capabilities.

4. Prescriptive 
Can provide prescription or recommendations

based on what if / risk analysis and uncertainty 
quantification.

5

5. Autonomous 
Can replace the user by closing the control
loop to make decisions and execute control

actions on the system autonomously.

Figure 2.2: The capability levels of DTs on a scale from 0 to 5

The digital twin concept has been existed for a while. Unfortunately it can often be used in
a misleading way. The way a digital twin resembles its physical counterpart can vary. Because
of this, digital twins are divided into six categories as seen in figure 2.2. These categories
go from 0 to 5 and are in ascending order of complexity; standalone, descriptive, diagnostic,
predictive, prescriptive, and autonomous. A digital twin can be called a digital twin even be-
fore the physical object exists. The digital twin can then be used for the cost-benefit analysis,
which is useful in the production of the physical object for instance. One can use a CAD model
of the physical object combined with live sensor data to gain insight into areas of the physical
object that are impossible to measure, like stress forces inside of the object itself. This type of
digital twin is called a descriptive digital twin. A digital twin at the capability scale of 2 can
be used to detect errors or possible faults within the physical object. As an example, a digital
twin can determine from modeling and sensor readings that a part has been damaged. It is
important to note that standalone, descriptive, and diagnostic twins cannot provide any in-
sight into the future. However, predictive twins are capable of this and use models to predict
the future by using old and new states. This can be pretty useful in, for instance, predictive
maintenance. For example, the digital twin can determine that a part of the physical object
will suffer from fatigue and affect the rest of the system in the near future. Maintenance
personnel can then fix the issue before it happens. Prescriptive digital twins can use what if,
risk analysis, and uncertainty quantification to give recommendations. This is quite desirable
in decision support systems. At 5, the highest capability, one has an autonomous digital twin.
Here the digital twin and the physical object communicate both ways. The physical object
provides information regarding the situation, and the digital twin controls the physical object
towards the desired state. A fully autonomous system thus does not provide recommenda-
tions but instead makes its own decisions without human intervention. This is, for example
very useful for controlling vehicles without any drivers.[8]

2.2 Boat dynamics

The specialisation project had to significantly simplify the dynamical model of the boat. The
dynamical model of the boat was in the project modeled using the model in equation 2.3.

Figure 2.3: The Unity’s coordinate sys-
tem. x here is the forward
direction for the boat

p =

 x
z
θ

 (2.1)

τ =

 X
Z
N

 (2.2)

6



2 THEORY

Equation 2.1 represents the boat’s position in x and
z, where the boat’s position can be represented on an
2D plane. The θ represents the boat’s rotation along
the y-axis. With these variables, one can easily represent the boat on a 2D plane. An illus-
tration of this can be seen in figure 2.3. Notice that Unity’s coordinate system is left-handed
and θ is therefore represented with positive value in the opposite direction of what would be
normal.

Mp̈+D(ṗ)ṗ = τ (2.3)

The previous dynamical model as shown in equation 2.3, represents the behaviour of the
ship by representing the inertia M and the dampening D as purely diagonal matrices with no
interactions between the variables. D contains both linear and nonlinear components derived
from the research paper [4]. τ here represents the input forces from the thrusters mounted
underneath the boat. τ , as shown in equation 2.2, contains the forces in X and Z direction
and the torque N with respect to the y axis. Because this iteration of the boat had no external
disturbances, a disturbance vector τd was not added.

The dynamical model of the boat derived from article [4] is shown in equation 2.5.

η̇ = R(ψ)ν (2.4)

Mν̇ +C(ν)ν +D(ν)ν = τ + τ d (2.5)

η = [x, z, ψ]T (2.6)

ν = [u, v, r]T (2.7)

τ = [X, Y,N ]T (2.8)

This new mathematical model uses the surge decoupled model from the original research
paper because it was determined to be significantly easier to use in simulations, while at the
same time maintaining an accuracy deemed to be accurate enough [4]. The inertia matrix
in the surge decoupled model contains interactions between the different variables, which
means for example the velocity in Z will be affected by the angular velocity ψ. The previous
model developed in the specialisation project 2.3 did not contain any of these interactions,
which means the velocities and the angular velocity were fully decoupled.

Figure 2.4: The coordinate system for the dynamical model (red) and Unity’s coordinate system
(green)

As shown in equation 2.3, the coordinate systems are not the same and need to be related
to each other with a simple transformation matrix shown in equation 2.9. The dynamical sys-
tem only requires a simple sign change of the variables because the elements in the matrices
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only contain absolute values of the velocity vector. Do note that the sign of the rotation does
not change sign because Unity’s coordinate system is left-handed.

R =

 1 0 0
0 −1 0
0 0 1

 (2.9)

Such that

ν = [u, v, r]T = [ẋ,−ż, ψ̇]T (2.10)

M =

 m11 0 0
0 m22 m23

0 m32 m33

 (2.11)

C(ν) =

 0 0 c13(ν)
0 0 c23(ν)

c31(ν) c32(ν) 0

 (2.12)

c13(ν) = −m22v −m23r (2.13a)
c23(ν) = m11u (2.13b)

c31(ν) = −c13(ν) (2.13c)
c32(ν) = −c23(ν) (2.13d)

D(ν) =

 d11(ν) 0 0
0 d22(ν) d23(ν)
0 d32(ν) d33(ν)

 (2.14)

d11(ν) = −Xu −X|u|u|u| −Xuuuu
2 (2.15a)

d22(ν) = −Yv − Y|v|v|v| − Y|r|v|r| − Yvvvv2 (2.15b)
d23(ν) = −Yr − Y|v|r|v| − Y|r|r|r| (2.15c)
d32(ν) = −Nv −N|v|v|v| −N|r|v|r| (2.15d)
d33(ν) = −Nr −N|v|r|v| −N|r|r|r| −Nrrrr

2. (2.15e)
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Parameter Estimated Value Unit
m11 2389.657 kg
m22 2533.911 kg
m23 62.386 kg
m32 28.141 kg
m33 5068.910 kgm2

Xu −27.632 kg
s

X|u|u −110.064 kg
s

Xuuu −13.965 kg
s

Yv −52.947 kg
s

Y|v|v −116.486 kg
s

Yvvv −24.313 kg
s

Y|r|v −1540.383 gg
s

Yr 24.732 kg
s

Y|v|r 572.141 kg
s

Y|r|r −115.457 kg
s

Nv 3.524 sg
s

N|v|v −0.832 kg
s

N|r|v 336.827 kg
s

Nr −122.860 kg
s

N|r|r −874.428 kg
s

Nrrr 0.000 kg
g

N|v|r −121.957 kg
s

(2.16)

The coefficients in table 2.16 are used for the matrices 2.11, 2.12, and 2.14. They are
derived from [4] and the variable names are unchanged for clarity. By utilising this dynamical
system, one will be able to create a system that responds accurately when compared to its
real counterpart.

2.3 Thruster Dynamics

The thrusters in the specialisation project [3] used a simplified version of the thruster system
introduced in the Milliampere identification project [4], where the linear forces were calcu-
lated with a simple matrix 2.18. Figure 2.5 displays how the thrusters are configured on the
Milliampere ferry. Do note that Y in this illustration will be -Z in the Unity coordinate system.

Figure 2.5: The thruster configuration. Image borrowed from [9]

τ = T (α)F (2.17)
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τ =

[
sinα1 sinα2

cosα1 cosα2

] [
F1

F2

]
(2.18)

The old thruster system as shown in 2.18 calculated the forces applied on the sea vessel
in x and z direction. αx and αz are the angles of the thrusters, and F1, and F2 are the forces
applied to the sea vessel from the thrusters. τ thus calculated the forces in each direction
using these variables. It did not calculate the torque though. The torque was calculated by
Unity’s internal physics engine, where the force vectors and the position of the force was
given to the engine to calculate their interactions with the vessel.

An improved model presented in Article [4] is used here instead such that the input vec-
tor can be applied to the dynamical model. The previous thruster model was functional, but
Unity’s physics component’s capability of handling scientifically accurate physics is question-
able at best. An expanded force vector capable of being used in the dynamical model is used
instead.

T (α) =

 cosα1 cosα2

sinα1 sinα2

Lx sinα1 Lx sinα2

 (2.19)

The input force vector τ is capable of calculating the torque explicitly instead of having to
be calculated by Unity. This gives a greater control of the forces applied on the sea vessel and
is an overall upgrade compared to the specialisation course’s approach where the torque was
calculated in Unity’s physics engine. The variables used in 2.19 are the same as in 2.18, with
Lx as an additional variable describing the distance between centre of mass and the position
where the force is applied by the thrusters.

The old model used for modeling the thrusters was presented in the specialisation project
[3], but did not feature any modeling for the change in thrust and angle. The RL model
instead controlled the angle speed and change in force directly. The paper identifying the
dynamical model for the force thrust and change in azimuth angle presented equations that
fit the behaviour of the real thrusters[4]. Equation 2.20 describes the change in angle speed
as a sigmoid function.

α̇ = Kα
(αd − α)√

(αd − α)2 + ε2
(2.20)

αd here is the desired azimuth angle for each thruster. α is on the other hand the actual angle
of each thruster. The difference between α and αd equals the error between the two variables.
ε is the tuning parameter and dictates convergence of the sigmoid function. Kα is the rota-
tional transmission velocity constant for the thrusters. Equation 2.20 thus uses these values
to find the actual angle dynamics of a given thruster. Pedersen [4] ran several experiments to
determine the value of the constants and verified that a simulated environment gave satisfy-
ing results that mimicked the real system accurately. The values for the constants are given
in Table 2.21.

Parameters Estimated value
Kα1 34.458
Kα2 37.526
ε1 6.277
ε2 7.721

(2.21)

The dynamics of the thrust forces were also modeled quite simply in the specialisation
project [3]. The RL algorithm had direct control of the forces applied. The Optimization
Based System Identification for the milliAmpere Ferry research paper [4] also modeled the

10



2 THEORY

Figure 2.6: Thrust relative to RPM. Courtesty of [4]

force thrust of the boat. Equation 2.22 shows the simple equation for modeling the change in
rotation speed of the motor as described in the article by Pedersen [4].

ω̇ = Kω (ωd − ω) (2.22)

Where the constants for each thruster respectively is

Parameters Estimated value
Kω1 0.563
Kω2 0.591

(2.23)

While this equation does not directly provide the thrust force provided by the thrusters, one
can map experimental data to the rotational speed of the thrusters. Figure 2.6 shows the
experimental results from Pedersen [4] mapping the rotational speed of the thruster motors
to thrust in Newtons. To create a mapping from RPM to thrust, a regression of order 5 with a
zero point at the origin was done on the data. Keeping the force at zero when the propellers
are at 0 RPM makes sense because they should generally not produce any thrust while not
spinning. The regression yields the following function:

Fx = 10−16ω5
x − 2 ∗ 10−13ω4

x + 6 ∗ 10−9ω3
x + 9 ∗ 10−6ω2

x + 0.0036ωx (2.24)

One thus finds the force vector F , which can be applied to find τ in 2.17 is then used in 2.5.
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Parameter Value
AFw 2.9m2

ALw 8.6m2

Loa 5m
sL 0m

(2.26)

Table 2.1: Parameters used for the Milliampere boat

2.4 Wind Force

Strong enough winds can significantly affect vessels at sea. While larger vessels might not be
noticeably affected by calmer winds, smaller vessels can easily be affected. While developing
the dynamical system of the boat, it was discovered that the boat’s lightweight and flat bottom
made the wind forces significant enough to affect its position even at low wind speeds [4].
Therefore, it is reasonable to model the wind force and implement it into the dynamical
system.
The marine dynamics book written by Fossen [10] proposes a model for how wind forces
affect a moving vessel at sea. While the book’s model is 6DOF, the current model of the
Milliampere as proposed in [4] is only 3DOF. Because this project uses the model proposed
in that paper, the unused variables of the wind forces are thus ignored. The forces from the
wind on the sea vessel in 3DOF then becomes:

τwind =
1

2
ρaV

2
rw

 CX (γrw)AFw
−CZ (γrw)ALw
CN (γrw)ALwLoa

 (2.25)

Be aware that since the simulated environment uses a different coordinate system than the
one in the research paper, Y has been swapped with Z in equation 2.25. γrw is the relative
wind speed’s angle of attack on the vessel. AFw and ALw are the frontal area of the sea vessel
and the lateral area of the sea vessel respectively.
The parameters AFw, ALw, and Loa used in equation 2.25 are found in [4] by performing
analysis of a 3D model of the Milliampere ship. They represent the frontal area, longitudinal
area and the length of the vessel.
Vrw is the relative wind speed defined by

Vrw =
√
u2rw + v2rw (2.27)

where the components of the wind speed are defined as

urw = u− uw
vrw = v − vw

(2.28)

The angle of attack is given by

γrw = − atan 2 (vrw, urw) (2.29)

The air density ρa in Equation 2.25 varies by temperature and height. The air density at
sea level is provided in Table 2.2 at certain temperatures.
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◦C Air density, ρ (kg/m3)
−10 1.342
−5 1.317

0 1.292
5 1.269

10 1.247
15 1.225
20 1.204
25 1.184
30 1.165

Table 2.2: Air density relative to temperature. Courtesy of Fossen[10]

The coefficients in equation 2.25 are given by

CX (γrw) = −CDl
ALw
AFw︸ ︷︷ ︸

CDlAF

cos(γrw)

1− δ
2

(
1−CDl

CDt

)
sin2(2γrw)

CZ (γrw) = CDt
sin(γrw)

1− δ
2

(
1−CDl

CDt

)
sin2(2γrw)

CN (γrw) =
[
sL
Loa
− 0.18

(
γrw − π

2

)]
CY (γrw)

(2.30)

CDl in equation 2.30 is the longitudinal resistance coefficient.

CDl = CDlAF (γrw)
AFw
ALw

(2.31)

CDlAF (γrw) is a non-linear variable which varies depending on the wind’s angle of attack,
where 0 is the wind coming from the front, and π is the angle when the wind comes from
behind. The parameters for the vessel can be chosen in Table 2.32. As the vessel this project
is working on is a small ferry for pedestrians, the most sensible choice will be the parameters
suitable for a ferry.

With these parameters and with the wind speed and direction provided, one can then
insert the wind force into the dynamical model as a part of the input force τ .
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Type of vessel CDt CDlAF (0) CDlAF (π) δ κ
1. Car carrier 0.95 0.55 0.60 0.80 1.2
2. Cargo vessel, loaded 0.85 0.65 0.55 0.40 1.7
3. Cargo vessel, container on deck 0.85 0.55 0.50 0.40 1.4
4. Container ship, loaded 0.90 0.55 0.55 0.40 1.4
5. Destroyer 0.85 0.60 0.65 0.65 1.1
6. Diving support vessel 0.90 0.60 0.80 0.55 1.7
7. Drilling vessel 1.00 0.70− 1.00 0.75− 1.10 0.10 1.7
8. Ferry 0.90 0.45 0.50 0.80 1.1
9. Fishing vessel 0.95 0.70 0.70 0.40 1.1
10. Liquefied natural gas tanker 0.70 0.60 0.65 0.50 1.1
11. Offshore supply vessel 0.90 0.55 0.80 0.55 1.2
12. Passenger liner 0.90 0.40 0.40 0.80 1.2
13. Research vessel 0.85 0.55 0.65 0.60 1.4
14. Speed boat 0.90 0.55 0.60 0.60 1.1
15. Tanker, loaded 0.70 0.90 0.55 0.40 3.1
16. Tanker, in ballast 0.70 0.75 0.55 0.40 2.2
17. Tender 0.85 0.55 0.55 0.65 1.1

(2.32)

2.5 Reinforcement Learning

Reinforcement learning(RL) is a sub-category of machine learning (ML). Unlike supervised
learning, one of the main categories of ML, a RL problem does not have a proper "solution."
In, for example, a supervised classification problem, an algorithm has to classify a collection
of images if they, for example, feature a pony or not. The training set contains pictures where
if a picture contains a pony or not is already known. The algorithm then learns to look for
patterns that indicate a pony in the picture. In this example, there is a defined answer to a
given problem. This is usually not the case in RL. Instead, one has a reward system where
one is rewarded for correct behavior and punishment for bad behavior. Say you, for example,
have an artificial intelligence(AI) controlling a robot. You want this robot to reach the peak
of a mountain as fast as possible. There is no logical way to provide this AI with an "answer"
to this problem with supervised learning. Instead, you can use RL and reward the AI for
moving the robot higher up. It is also common to provide a constant negative reward to
foster efficiency. An AI reaching the peak will thus receive a higher score for reaching the
mountain peak faster. RL is thus a great way to find solutions to a non-trivial task where the
answer cannot be appropriately defined.

Unity Technologies has created its own RL toolbox to make RL easier to implement in the
Unity Engine while at the same time keeping it versatile, feature-rich, and open source. This
toolbox is called “Unity Machine Learning Agents Toolkit"[11], but is often abbreviated to
"MLagents", which will be what it will be called in this thesis. The toolbox handles the RL, the
interfacing between Unity and Python, and simplifies the handling of the agent’s observation
and action vector. Image 2.7 illustrates how the MLagents framework is built up and inter-
acts with the learning environment. Because MLagents is open source, one can also make
low-level changes in the code to tailor the toolbox to one’s needs.

The main policy gradient method used in MLagents is the Proximal Policy Optimisation
(PPO) method developed by OpenAI[13]. This is also the policy deemed the most suitable for
developing a RL neural network for an autonomous ship according to Larsen[6]. MLagents
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Figure 2.7: The MLagents framework overview. Image borrowed from Unity Technologies[12]

also does by default provide the off-policy method Soft Actor Critic (SAC), which also pro-
vided good results in Larsen’s article [6], but tends to be more unstable. SAC is also able to
train on old data and could be reasonable to switch to in case the gathering of training data
is too slow.

One major part of RL is the design of the reward function. A proper design of the re-
ward function is essential for the performance of an algorithm and an improper definition of
the function can lead to an exploitation of the reward function where the algorithm finds a
loophole to maximise the reward in an unintended way. An example of this can be seen in
OpenAI’s article [14], where the reward function used was the score in the boat racing game
Coastrunners 7. While the score did not directly correlate to winning the race, items provid-
ing score was spread along the course. Collecting these items could lead to progression in
the course and could lead to a neural network trying to complete a course as fast as possible.
Unfortunately the agent found an area where the agent could collect an infinite amount of
points and thus receive a high reward while not progressing the race at all. A proper design of
the reward function is as indicated by this example crucial for the performance of the agent
to make sure "loopholes" are unlikely to happen.

For remembering the previous actions, Long Short-Term Memory (LSTM) can be used
in the reinforcement algorithm. LSTM was originally introduced in 1997 [15] as a way for
algorithms to solve the issue of signals in back propagation being lost over time. One can thus
introduce memory cells, input gates, and forget gates which lets the neural network chose
which signals that are important to memorise or get rid of. LSTM can thus get utilised for
autonomous vehicles so it can remember what consequences its previous actions had and act
accordingly. LSTM is implemented in MLAgents and is readily available to be used.

2.6 AIS boat data

To add to the digital twin aspect of the project, one can add ship traffic to the simulation.
Adding real-world ship traffic to the simulation will provide a more challenging learning
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environment for the autonomous Milliampere ship. Tracking data of all commercial ships
above 15 meters and civilian ships above 45 meters are freely available on BarentsWatch
[16]. Barentswatch also provides an API for easy access for developers. All of this tracking
data is provided through the Automatic Identification System(AIS). AIS is a communication
standard developed by the International Maritime Organisation (IMO), a sub-organization of
the United Nations. The purpose of the AIS is to help ships avoid collisions by making their
presence known to other ships. The standard requires all commercial boats carrying passen-
gers, international boats above 300 gross tonnes, or boats in national waters above 500 gross
tonnes to carry an AIS transponder [17]. In addition to being a requirement for these boats,
the AIS system is also freely voluntary for all other ships.

The AIS standard transmits the ship’s position in GPS coordinates, ship name, a unique
ship ID called MMSI (Maritime Mobile Service Identity), ship type, velocity, heading, and
size. Additional info can also be provided, like destination, but are not required. This data
can be used to create a digital representation of a ship.

Figure 2.8: The dimensions A,B,C,D provided by the AIS. Courtesy of [18]

The ship dimensions are provided in AIS with the four parameters A, B, C, D. As shown
in Figure 2.8, the parameters grant the size of the vessel in meters by taking into account
the position of the AIS transponder. This makes sure the ship’s actual position is known by
offsetting the GPS coordinates provided by the transponder. Providing the ship’s dimensions
in a more naive way, like two parameters providing length and width of a vessel, could in
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some cases misposition ships by tens of meters on the largest vessels. To provide the most
realistic data possible, an offset to the GPS coordinates has to be done.

∆x = B − L

2

∆z = C − W

2

(2.33)

X = XUnity + cos θ∆z + sin θ∆x

Z = ZUnity + cos θ∆x+ sin θ∆z
(2.34)

One first converts the ABCD values given by the AIS system into offsets in X and Z respectively
in 2.33. These are then used in equations 2.34, where θ is the ship’s heading given by the
AIS. The heading given by AIS is zero when the ship points straight North. The equation also
assumes in the equations that XUnity and ZUnity are already converted into meters in Unity
with equation 3.4 and 3.5.

3 Methodology

3.1 Implementation of ship traffic

Being able to detect and avoid static obstacles like land can be a challenge in itself, while
detecting and avoiding moving traffic can be much more challenging for a RL algorithm. To
make the environment as realistic as possible, real ship data is being used to create obstacles
that reflect their real counterpart.

Implementing the ship traffic was done by accessing Barentswatch’s API [16]. The API
required first a token before accessing the AIS data. The token lasts for 3600 seconds and has
to be refreshed once the time runs out. After being granted the token, one now has the ability
to send requests to the Barentswatch server and retrieve data. While the token runs out after
3600 seconds, it has been decided to refresh the token a couple of minutes before it actually
expires just to keep a margin of error. This makes sure the token is much less likely to expire
while being used. The token’s expiry time is checked every time it is being used for retrieving
AIS data as a fail-safe.

https://www.barentswatch.no/bwapi/v2/geodata/ais/openpositions?Xmin=9.841570&

Xmax=11.224862&Ymin=63.315710&Ymax=63.817964

The request in 3.1 returns all of the open AIS ship data in a selected rectangular area. The data
provides coordinates in GPS coordinates. Using this request only works if you also provide
BarentsWatch with your access token.

The data was provided in a JSON format, which is a normal way for transferring data to
and from servers. The JSON file was converted into an array of objects. Each object from the
JSON file then contains all of the necessary information one needs to instantiate the objects
in Unity. The objects also contain additional information and variables that are unused right
now, but are readily available for future projects. Each object is then instantiated as a game
object that is represented on the map. A game object in the Unity engine can be described as
an object placed in the virtual world. These objects usually contain the necessary information
from the AIS for the gameobjects to behave properly, but backup values are used instead in
case the AIS for some reason is lacking critical information. This is usually the case when the
boats are moored or anchored while they keep the AIS transponder turned on.

17



3 METHODOLOGY

Figure 3.1: The simulation with red reference markers. Their size has been increased for visibility

One issue with the coordinates provided by the AIS is that the coordinates in Unity do
not correspond with the GPS coordinates. One thus has to map the GPS coordinates to Unity
coordinates. Two approaches were attempted to fix this. It was first attempted to use two
reference points that were placed on the map as shown in figure 3.1. The reference points
contain values for the position in the game engine and the real life coordinates, which had
been obtained by finding the GPS coordinates on the marker spots chosen in Google Maps.
The mapping was then done for both the x dimension and the z dimension.

Map =
GPSEngineHigh −GPSEngineLow
GPSRealHigh −GPSRealLow

(3.1)

Position = (AISP −GPSRealLow)Map+GPSEngineLow (3.2)

In formula 3.1, the relation between the GPS coordinates provided by the AIS and the engine
coordinates of the markers are done. For clarity, GPSEngine are the game engine coordinates
of the red markers, while GPSReal are the real world GPS coordinates of the red markers.
This relation is then used in formula 3.2. In this formula, The difference between the GPS
coordinates from AIS, AISP , and the GPS coordinates of the lower marker, GPSRealLow,
are multiplied with the Map constant. The lower marker’s engine position is then added to
get the proper conversion of the GPS coordinates into Unity engine coordinates. This map-
ping assumes the curvature of the earth is negligible and that the mapped area is locally flat.
While relatively simple to implement, it was discovered that the map of the project was too
large for this assumption. Indeed the curvature of the Earth is significant enough to deviate
the position of the boats by several meters in positions far away from the reference points.
A linear mapping was then deemed to not feasible for this project. A different approach was
instead done to ensure an accurate environment.
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Figure 3.2: Three red markers for GPS mapping. Their size has been increased for visibility

Because the Earth’s surface is curved, it is safe to assume that one can map the GPS coordi-
nates to Unity coordinates with a quadratic function. A third point on the map was placed
in the middle of the map. Three points were placed as shown in Figure 3.2, were used to
calculate the quadratic function as it then only has one unique solution. The GPS coordinates
and the position in Unity was then used to calculate a quadratic linear regression. Do note
that these functions have to be updated if one desires to change the map in any way.

Y = A+Bx+ Cx2 (3.3)

For this specific project, the quadratic equations for mapping the position to Unity units is as
follows. This regression assumes the origin lies in the middle of the map and that the map
has a width of 81920 units.

Unityx = −472256.0099033 + 25735.9430697x+ 1824.409308939x2 (3.4)

Unityz = −126048400− 4109910.1z + 33460.137z2 (3.5)

Do note there are other ways of translating the real position to the equivalent position in
Unity. A map at a larger scale could benefit by representing the objects in a spherical coordi-
nate system. This is for example the obvious choice if one were to represent the entire planet.
The position of the boats are updated every time the simulation receives new GPS data. The
GPS position is almost never 100% accurate and will usually cause some sudden movements
whenever the position is updated. To prevent this, the position is linearly interpolated be-
tween the old and new position to ensure a smooth transition between the old position and
the updated position.
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3.2 Terrain Generation

Proper terrain representation is important when it comes to visualisations that represent
the real world. Improper texturing can lead to incorrect representations of the terrain and
a lack of visual appeal. Terrain generation has been made sure to be made properly both to
maintain the details of the real world and to make the visualisation appealing and presentable
for an audience with limited knowledge of the project. As I have been approached by several
people at the university on how to properly represent real world terrain in Unity, parts of this
subsection will contain a detailed guide on how to do this. The guide in this subsection is the
result of trial, exploration, and dead ends. Its purpose will be to reduce the time spent on
terrain generation in future Unity projects.

The old project used a low resolution 8-bit RAW file to generate the terrain. This made
the terrain heights extremely blocky because of the limitation of only having 28 or 256 height
levels. The terrain was also poorly and unrealistically textured because the colouration was
done with a gradient script. The RAW file was also incredibly hard to handle in large resolu-
tions, as one RAW file was usually close to one gigabyte and would crash Unity. Because of
the large size of the RAW file, one was limited to using low resolution heightmaps.

Figure 3.3: The old map

As shown in figure 3.3, the textures were poor and the terrain had rather pointy features.
The ocean in this picture was also not really an ocean, but the lowest level of the terrain. As
a result of this, the water colour can be seen "climbing" up the island in figure 3.3. Because
of this, a new approach to generating terrain had to be done after the specialisation project.

This part of the terrain generation serves a detailed guide for generating real world terrain,
and is the best approach found. Terrain data for Norway was gathered by using Kartverket’s
Høydedata pages [19].
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Figure 3.4: The options used for the map data

Figure 3.4 displays the options used for the elevation data. "Elevation model" provides
literally the elevation model instead of a point cloud. "National elevation model" is then the
option used in the "type" category. This option combines the different height model measure-
ments into one large map. The dataset chosen can vary depending on what kind of project
one is looking for, but the one chosen for this project’s terrain was DTM10. There are two
categories of elevation models featured in Kartverket; DTM and DSM. The main difference
between them is that DTM (Digital Terrain Model) measures the height of the terrain without
any artificial constructions or trees, while DSM (Digital Surface Model) measures the terrain
height with buildings and trees included. DSM could be used in this project to display the
various cities and towns in the terrain, but the texturing method used in this project makes
this difficult. It is also unsure whether it will have a large performance impact. The number
after DTM represents how many square meters one datapoint represents, which means DTM1
will be very detailed at a resolution of 1 square meter per data point, while DTM50 will be
not detailed at all. If one represents the data height as a 2D image, each datapoint will be
represented by a pixel. DTM10 was thus chosen for this project because it is in a sweet spot
between being detailed while not impacting performance too much. The project format was
then chosen to be GEOTIFF which is the standard file format used for height maps.
After the data has been downloaded, it has to be processed. The data given is likely divided
into several square tiles depending on how large the terrain is. These square files could ac-
tually be imported into Unity as separate terrain tiles, but it was determined to be better
to combine them. The tiles have different heights and will not be tiled seamlessly in Unity,
which means combining the files is better. The amount of work required also decreases sig-
nificantly if one only work with a single large tile. The merging of the tiles was done by using
the program QGIS [20]. QGIS is a program that is used for visualising geographical data.
The data it can visualise is everything from wind data and temperature, to height maps and
cityscapes. It also uses GDAL [21] for processing the height maps. The .tif files were imported
and merged with the raster merge tool in QGIS. It is extremely important to merge the files
in the proper data type. UInt16 provides a much higher resolution than UInt8, which is what
Unity defaults to if the provided files are not UInt16. If done correctly, one should be provided
with a merged dataset. This dataset is then converted to PNG by using the following GDAL
command.
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gdal_translate -ot UInt16 -of PNG -scale InputFile.tif Destination.png

The command should give a PNG file that can be displayed in any image viewer. The image
can now be cropped to the desired selection in any image editing program that supports han-
dling 16 bit image files. Image editing programs that support 16 bit images are quite rare,
and the best option found was Photoshop. It is important to crop the image to a square image
of a size that fits 2x, where x is an integer, like 2048, 4096, 8192, 16384. The image is now
ready to be used in Unity.

Figure 3.5: The new map

For importing the heightmap, the Gaia library for Unity[22] was used. This library is used
by professional developers to develop good-looking maps in games and simulations. It was
chosen because of its ability to handle other file types and for its texturing algorithm. Unity
can only natively handle RAW files, which makes extremely large terrains like in this project
unfeasible. Gaia fortunately is able to handle PNG files that are much easier to handle. Once
imported, the image was imported by using the Gaia scanning tool. Because the data set here
is DTM10, the terrain and the Gaia stamping tool has to be scaled by 10 for the pixels to
represent 10 units in Unity. This is optional, but it is to make sure one unit in Unity is one
meter. Applying the terrain can be quite difficult if one upscales an already large image. This
project had a problem where the terrain itself was too large for the map stamper to handle
because of Unity’s use of 32bit float position. As the map had to be scaled 10x for each unit to
represent one meter, the map ended up becoming a total of 81920x81920 units, which Unity
was unable to handle out of the box. Everything thus had to be offset so the map’s position
also uses the negative values. In other words, the world origin has to be placed in the middle
of the map for it to work properly when the map is too large. Texturing of the map is also
handled by Gaia. Once configured properly, the map got a texture that looks much more
realistic than the old project did in figure 3.3. The old map used a gradient, while Gaia’s
texturing algorithm takes into consideration the height and slope of the map. For water, a
simple blue plane was used to represent water far away. A more detailed water provided
by Gaia follows the Milliampere boat. It is purely visual. It was attempted to let the more
detailed water stretch all across the map, but the increased amount of polygons decreased
the performance.
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Figure 3.6: Closeup of the new map

Image 3.5 and 3.6 shows the new map. The map
now looks significantly more realistic with proper en-
vironmental textures and smoother surfaces. The con-
tours of the sea are still jagged like in 3.3, but that is
mostly caused by the resolution of the heightmap data
from Kartverket. Any higher resolution than the one
provided here would be unfeasible at this scale be-
cause of the storage and computing power required.
For smaller projects with a smaller area, a DTM1
dataset should be considered. This concludes the ter-
rain generation section and its detailed guide for importing real world terrain in future
projects.

3.3 Weather system

Wind is important to take into account when one wants to recreate the conditions at sea. A
ship has to for example compensate for a strong side wind unless they want to be pushed
sideways and potentially miss their destination. It is thus an important factor to add to an
environment if one wants to develop a reinforcement algorithm that works in the real world.
To add more realism, it has been decided to use real time data given by the Norwegian Me-
teorological Institute(MET)[23]. They provide weather data of the entire Scandinavia. This
data is freely available for everyone and is updated about once per hour. The data sets used
are the post-processed data called "MET Post-Processed Products". They are the ones recom-
mended for this project’s use-case and provide variables that are statistically adjusted and in
a resolution of one square kilometer[24]. This dataset provides 12 variables which includes
temperature, wind speed, wind direction, altitude, precipitation amount, cloud coverage, air
pressure, and more. This project could have gone for the more advanced data set, but the
data set’s size of several gigabytes makes it not as feasible for a real-time system that needs
to update several times a day. On the other hand, this should not be a problem provided one
has a good internet connection and wishes to use this data for a more advanced weather
model. The wind system will only use wind direction and wind speed, but using the rest of
the variables provided by MET for further development should be a trivial task. One limi-
tation to this approach is the fact that wind is not static, and the wind data received from
MET only has a resolution of one hour. One can use the pre-processed data to create a proper
wind model that realistically shows how the wind changes over time in the fjord, but that
is beyond the scope of this project. One can also use historical data and create a Weibull
distribution together with an Autoregressive Moving-Average model to estimate wind speeds
between the datapoints[25]. This data will then unfortunately also be based on data that has
a resolution of one hour, and data with a higher resolution is most likely required to create a
proper model of the wind. A more simple approach is taken instead by keeping the original
value and adding uniformly distributed noise to it. An uniform distribution means the values
in the distribution have an equal chance of being selected randomly. In this case it is assumed
a uniform distribution between -10% and 10% of the wind speed will make the wind speed
dynamic enough for the simulated environment.

W = Wdata + U[−10%,10%] (3.6)

Equation 3.6 shows the equation that is used every five seconds to keep the wind speed
random. The direction of the wind is kept noise-less and equal to the data provided by MET.

In figure 3.7, one can see streaks in the air. This is the visual representation of the wind
data given by MET. The streaks of wind move in the correct direction and with correct speed.

23



3 METHODOLOGY

Figure 3.7: The wind is visualised with white moving streaks

The visual representation has no physical effect on any objects and are purely for looks and
to make it easier for the user to see which direction the wind blows in.
In addition to the wind system, visualisation of the rain has been implemented as well. The
data given by MET also provides precipitation in the desired area, which one can use to sim-
ulate rain. The data is sent into a particle system to control the amount of rain around the
agent. While this data is used purely for aesthetic reasons at the moment, one can use this
data for other purposes. Proposed uses are for example to make the amount of rain impact the
dynamical model of the ship in some way, like weight increase or change in friction from the
wind. This can for example be used in a digital twin approach as well, where this digital twin
knows how the rain is impacting the dynamical behaviour of the ship and uses the informa-
tion to feed it back to the physical system. The weather data also provides temperature, where
one can determine when freezing rain can accumulate and impact the behaviour of the agent.

A day-night cycle was also implemented by simply comparing the current time of the day
and adjusting the position in the sun accordingly. This is simply a calculation where one
assumes the sun moves smoothly 360 degrees around the map. A more advanced system can
be implemented if one desires to add a more realistic lighting system. A more realistic lighting
system can be desirable if one for example would like to add solar panels on the boat and let
the sun impact the behaviour in a digital twin approach.

3.4 Ray Perception

Detecting obstacles is crucial when it comes to navigating safely on the sea, as not being able
to detect them will obviously lead to accidents on the sea. One can imagine that navigating
without object detection is like if a captain would navigate by looking only at the ship’s GPS
and not at the view from the ship’s cockpit. It is therefore obvious that an autonomous vessel
needs something equivalent to our eyes to detect hazards. The feedforwad neural network
developed in the specialisation project[3] had no obstacle detection and was purely devel-
oped with path following in mind. It had in other words no ability to detect hazards and no
collision behaviour. To expand this NN, being able to detect obstacles must be implemented.
To detect obstacles, a ray perception sensor was added to the RL system. The ray perception
sensor is a part of the MLagents framework and is Unity’s equivalent of a real life Light De-
tection And Ranging(LIDAR) sensor. The sensor emits vectors from a specified origin point
and in a certain direction to then measure how far the vector is cast before it hits an obstacle.
This is then repeated until the sensor has created an array of distance measurements. Unity
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also supports sphere casting, a technique similar to ray casting where it checks if a sphere
traveling along a vector hits any obstacles. This is useful for reducing observation space, but
it will not be done in this project. The reason for this is that we would like the sensor in Unity
to resemble the LIDAR on the Milliampere as closely as possible and therefore use normal
ray casting. The perception sensor in the MLAgents library unfortunately does not support
editing of the observed values it outputs. The sensor writes automatically the observed val-
ues to the observation vector, which is not the desired functionality. The sensor also does not
support more than 100 ray casts from one module, one could add more sensors instead to
compensate, but the main issue where the component writes to the observation is still there.
One could edit the MLagents library to accommodate the features needed in this project, but
then a custom version of the library would be needed in case this project needs to be used on
a different machine. So instead it was determined to be much safer to instead make a new
ray casting sensor from the ground up.
As one can see in image 3.8, the rays are emitted from the agent and displays all ray collisions

Figure 3.8: Screenshot of the ray perception sensor

with a sphere. These spheres are purely visual for the sake of debugging and for demonstra-
tional purposes. These rays and spheres are in addition not visible if one for example uses
Virtual Reality(VR). Displaying these rays are demanding for the program, so using them out-
side of demonstrations and debugging is discouraged. One challenge with using ray casting
with a sufficient amount of resolution, is to handle the curse of dimensionality. As the amount
of variables increase, the training time for reinforcement algorithms increase as well. To keep
the observation vector length as short as possible, the rays are divided into sectors. By using
Algorithm 3 from Article [26], one can check whether a sector is "feasible" or not for the
given vessel. This is done by checking if the boat can fit between obstacles. If it is able to find
a passage between obstacles, then the sector will show the value of the longest ray. If it does
not find any fitting passage between the objects in a sector, the sector will instead report back
the shortest ray length. By doing this instead of using the values of each individual ray vector,
one can reduce the amount of variables. In this case the length of the observation vector from
the ray sensor is reduced from 220 to 9, where 9 is the amount of sectors. The time it takes
to train the neural network thus will be significantly reduced compared to using the ray casts
directly.
The ray casting sensor was fully remade from the ground up and currently supports an in-
finite amount of rays for measuring distance. This is much more flexible than the MLagents
ray perception sensor which only supports up to 100 rays. The ray cast indexing can also
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be toggled to be either clockwise or counter-clockwise. This was done to provide additional
flexibility to the sensor. Each ray is able to check if they collide with an object that is tagged
with a specified tag. For this purpose the rays detect only objects with the tags "obstacles" and
"land". The reason this is implemented is to make sure the rays do not collide with the agent
the rays are emitted from. It in addition makes sure the rays do not detect objects that are
unwanted for ray perception. There is also an angle offset for the ray casting to determine at
what degrees the indexing should start at. The default ray perception sensor could do this by
simply rotating the sensor component in the environment, but an additional offset option is
provided in the custom sensor component just for convenience. Sectors are also implemented
in the sensor, where one defines which angles each sector should contain. These sectors are
then used to determine which rays are going to be grouped together and processed in the
sector feasibility algorithm. At last, the processed values from the sector feasibility algorithm
are sent to the MLagents interface’s observation vector to be used by the neural network.

3.5 Reward Function

A reward function is essential for an RL algorithm. Without a reward function adequately
fit for the problem, the neural network might exploit the reward function and avoid solving
the problem in the expected way. Because this project is about an autonomous boat, safety is
of course important and must be reflected as such in the reward function. Properly defining
the reward function to make the neural network function as safe and efficient as possible is
therefore an important task.

In the specialisation project [3], the reward function 3.7 was used. The reward function
was derived from the article by Larsen [6]. Do note that the specialisation project did not
take collision into consideration, so the boat was only rewarded for following the path.

r
(t)
path =

v(t)

Vmax︸ ︷︷ ︸
Speed term

·
1 + cos

(
ψ(t)
)

2︸ ︷︷ ︸
Heading term

· 1

|ε(t)|+ 1︸ ︷︷ ︸
Distance term

(3.7)

rexists = (2αr) (3.8)

r(t) =

{
rcoll , if collision
r
(t)
path − rexists , otherwise

(3.9)

Scaling parameter Interpretation Value
αr Zero-reward relative speed 0.05
rcoll Collision reward −2000
ε(t) Distance from path -
v(t) Tangent speed vector i.r.t. path -
ψ(t) Angle i.r.t. forward vector -

Table 3.1: Variables and constants used for calculating the reward function

rcoll here is much higher than what can be observed in the paper by Larsen [6]. It is
actually equal to the score required for the episode to end early. This is the case because
it was observed that the agent would attempt to minimise the probability of colliding with
moving obstacles rather than trying to avoid them as it follows the path. Thus the agent will
focus on following the path until it manages to accumulate a score higher than the score
required for an episode to end before the maximum amount of steps are reached.
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rpath in 3.7 is divided into three terms; speed term, heading term, and distance term. The
speed term rewards the algorithm according to how high the measured speed of the agent
is in the direction of the given path. This is in this project calculated by calculating the dot
product of the speed vector and the normalised tangent vector on the closest point of the
path. Vmax makes sure the speed term never goes above 1. The speed term is then multiplied
with the heading term, which is a maximum of 1 when the agent’s heading is parallel to the
path. φ in the heading term is the angle between the velocity vector v(t) and the path. The
distance term contains εt, which is the normal vector between the agent and the closest point
of the path. The distance term is maximised when the agent is directly on the path. Overall,
the reward function will give a maximum score of 1 in each time step. This component of the
reward function remains relatively unchanged in this project compared to the specialisation
project [3]. The rexists in 3.9 is a constant punishment factor of the reward function which has
a purpose of making the NN as effective as possible and to stop it from idling unnecessarily.
This part of the reward function has been derived from Meyer[27].
The new addition in this project is ravoid.

ravoid = − 1

Max(0.001, εboat − Lboats − C
)Max(0, cos(vdir))||vboat|| (3.10)

LBoats =
LNearestBoat + LAgent

2
(3.11)

ravoid in equation 3.10 is slightly different from the avoidance reward in Meyer’s project [27].
While Meyer uses data from the ray perception sensor to determine how close the obstacles
are, this project’s collision avoidance function uses AIS data combined with Unity’s powerful
vector calculation toolbox to determine the distance between the objects and the heading.
This project’s reward function for avoiding boats takes the length of the nearest boat into
consideration. As the distance between the boats are calculated from the origins and not from
the closest points on the hulls, this is necessary. In addition, a long boat is more dangerous
to move close to as a long boat can more easily collide with the agent if it turns. The reward
function also got in addition vboat, the constant C, Lboat and εboat. vboat is the relative velocity
vector of the nearest boat compared to the agent. As a boat in motion is generally seen
as a more hazardous obstacle, the punishment for being close to the boat must reflect this
accordingly. As such, a boat approaching the agent with a low speed will punish less than if
it approached with a high speed. Calculating by using the relative velocity means the reward
function will also punish more harshly if the agent moves towards the boat at high speed.
The constant C represents an adjustable safety margin between the agent and the closest
boat. If the agent moves within the set meters of the closest boat, the reward function will
reach its asymptotic value and will give the agent the maximum punishment possible. Lboats
is a constant which contains the longest dimensions of the nearest boat and the agent, then
divided by two as shown in equation 3.11. This constant is added in this equation because
the position of the boats are calculated from their origin in Unity. Adding this constant will
thus set the asymptotic value of the function to be at minimum the distance where a collision
is possible. Dividing by zero is of course not a smart thing to do in a programming, so a
Max function has been added to make sure this never happens. While possible, dividing by
zero would likely never happen regardless in this case. The float variable εboat would have to
become exactly −(Lboats + C). Setting a limit to the denominator is still desired as then the
value of ravoid can be controlled easier. 3.10 εboat is simply the distance between the nearest
boat and the agent. As one wants to avoid colliding, it thus makes perfect sense to use make
the punishment for the collision avoidance proportional to the distance between the boats.
The heading is also used in the function to make sure the agent is punished for moving
towards danger. It calculates the cosine of the direction vector of the velocity. The value is
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clamped such that the value never goes below zero. This is to make sure to not give a positive
score for moving away from the boat, but to instead turn the punishment for moving away to
zero. So to simplify the purpose of ravoid; the length of the closest boat, the relative velocity,
and the safety margin creates an area around the boat that the neural network will try to
avoid. Though, moving away from the area will make ravoid equal to zero. Combined, r(t)
turns into the new reward function equation 3.12.

r(t) =

{
rcoll , if collision
r
(t)
path + ravoid − rexists , otherwise

(3.12)

It was unfortunately observed that this part of the reward function will encourage the agent
to avoid other boats instead of following the given path. This observation was also noted in
Larsen’s article [6], but confirmed during training in this project. According to Larsen, the
agent’s ability to observe the surrounding obstacles and make a decision accordingly makes
more sense. The agent should be able to determine how to avoid collisions through the rcoll
reward and not by being in the vicinity of other boats.
A very common event that occurred during training was the fact that the agent often ended up
in a local maximum where the best known solution to the problem was to spin fast around as
fast as possible around a point. This unintended behaviour had to be deterred, which meant
the reward variable ridle has to be introduced. At first only the fact that the agent remained in
one spot was considered. The first idea tested was to introduce a trailing sphere to the project.
This trailing sphere would record the position of the agent and then reenact the movement a
few seconds behind. The idea behind this was that the ball would be sufficiently behind the
agent when it was in motion, and would catch up to the agent if it remained in one area. The
intention was that the agent would then learn to stop spinning if it wanted to avoid being
punished. The equation for ridle thus became:

Figure 3.9: The trailing sphere catching up to the agent

ridle = Min(0,
εsphere − rsphere

rsphere
) (3.13)

In equation 3.13, εsphere is the absolute distance between the origin of the sphere and the
origin of the agent. rsphere is the radius of the sphere. The ridle function thus has a maximum
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reward of 0 and a minimum reward of -1. The reward function scales linearly proportionally
to how close the agent is to the origin. This equation unfortunately was observed to not work
under training, as the agent instead found a workaround and span fast like it did earlier
while moving slightly faster. The agent thus moved slightly out of reach of the sphere and
managed to avoid receiving a punishment from the sphere while still performing badly. The
other unintended behaviour observed during training was that the agent would never attempt
to return back to the path if it drifted away from it. This is likely because the trailing sphere
would obviously trail behind it. This means the agent would be punished for attempting to
return to where it came from. ridle had to be changed because of this.

ridle = ||ω2
agent|| ∗

1

Max(0.001, ||vagent||)
(3.14)

Equation 3.14 was instead used. This one takes into consideration the agent’s angular velocity
in radians and its absolute speed. This version of ridle intends to punish the agent for spinning
fast while at the same time not moving at a reasonable velocity. The angular velocity here
is squared to make sure the reward function does not punish at lower angular velocities to
any noticeable degree. To summarise, the final version of the reward function, as shown in
Equation 3.15 does not feature the ravoid function because of the issues mentioned earlier.
ridle is instead added to discourage idling. All this has turned equation 3.12 into equation
3.15.

r(t) =

{
rcoll , if collision
r
(t)
path + ravoid − ridle − rexists , otherwise

(3.15)

During the training of this problem, it was noticed that the neural network would not
learn properly without multiplying r

(t)
path with a constant higher than 1. The training speed

improved significantly once r(t)path was multiplied with 5. The final reward function used for
training thus becomes:

r(t) =

{
rcoll , if collision
5r

(t)
path + ravoid − ridle − rexists , otherwise

(3.16)

3.6 Training of Feedforward Neural Network

To speed up training, one has three options; one can duplicate the environments such that
one agent trains in each separate environment. The second option is to let one agent train
alone, but speed up the timescale as much as it is feasible. The third option is to let all the
agents train in the same environment and let each agent act as an obstacle to other agents.
The first option sounds rather reasonable, but one unfortunately has to render each environ-
ment separately to make the ray perception sensor work. This obviously makes training in
several environments rather taxing as one needs to render the entire map several times. Only
the basic optimisation of the map has been implemented, like long distance culling, where
the map has a much worse quality further away. Running several environments in parallel
still is too taxing and rather difficult to set up compared to the other techniques. Option
number two is very simple to implement and is the default and easiest of the techniques. The
default timescale is 20x real time speed, which means the agent can gather information equal
to 20 boats in real time. One issue with this technique is that the AIS boat data gathered is
unfortunately live data and cannot be easily be adjusted to 20x real time speed. A different
approach would then be needed specifically for the training. The third option avoids the issue
of both option one and two by letting the environment only be rendered in one instance and
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Figure 3.10: The training course for the agent

by making the other agents obstacles as well. This option unfortunately raises several issues
that can occur. Should the agents follow the exact same path? If one provides each agent with
their own path to follow, then the obstacles the AIS data provides could still be too sparse
to train on not all paths can remain on the most trafficked areas. How would collision with
other agents affect the path finding when they also can collide with each other? Will colliding
with other agents affect training and create an unnatural bias?
These questions are hard to answer and could be worth exploring in the future, but option
two seemed to be the best alternative for training the agent. Option two got fewer problems
than both option one and three. The only problem that then needs to be solved is the AIS
data being real time which conflicts with option two’s 20x timescale.

The proposed solution is to simply spawn boats with an uniformly distributed random
size heading in a random direction. These boats are spawned around the peripheral of the
ray perception sensor as it is a reasonable distance and is excellent for a possible scenario
where an unknown boat enters the agent’s range without an AIS transponder. These boats
travel in a random direction with a speed of between 0 and 6 m

s
. The boats also spawn

with a randomised width and length, where the boats can be between 5 and 50 meters
long, and 3 to 25 meters wide. These numbers were arbitrarily chosen, but are supposed
to give a decent representation of everything between the smallest boats to more normal-
sized commercial ones. Do note that all of the random numbers are picked from uniform
distributions, which means all values have an equal chance of being chosen. This provides
the RL algorithm obstacles that might be more difficult to navigate than static ones, but will
most likely train and generalise the agent faster.

As for training, it is very important to train the agent on a course that is both realistic and
provides generalised results. In other words, the course needs to be made in such a manner
that the agent will manage to navigate all possible paths. The course was because of this
placed in the Trondheim’s river, Nidelva. Nidelva has several curves and is narrow enough
that the agent has to avoid colliding with the side of the river. A part of the path is also places
in a more open area with little terrain nearby. Several stationary boats are placed and serve
as obstacles in addition to the moving boats that approach the agent. In addition to this, the
agent also starts each episode on a uniformly randomly chosen location on the curve between
the start and 80% of the curve, and with a start orientation equal to the forward direction of
the curve with a uniformly random value ranging from -45 to 45 degrees. Giving the agent a
random starting location will in theory reduce the likelihood of overfitting, but keeping the
agent’s starting orientation constant relative to the path will likely increase the likelihood of
overfitting. It was also observed during training that the agent had issues learning when the
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starting rotation was fully random. This is the reason why the range of randomness in the
starting orientation is only ±45 deg.

Figure 3.11: The agent during training

Figure 3.11 illustrates the agent training on the course. Do note that the edge of the terrain
is exaggerated because of issue with the terrain generation where the lower values are im-
properly mapped. This can be solved with some simple adjustments, but has not been done at
this stage. The obstacle boats have been placed by hand where some of them are obstructing
the path. This is to make sure the agent learns to avoid the obstacles in addition to following
the path. In addition to the placed static boats, random approaching boats are also spawned
in. These moving boats ignore terrain and only spawn on the peripheral of the ray percep-
tion sensor. While the more realistic approach would be to make the moving boats follow
the terrain in some way, this way of generating them is simpler and could perhaps make the
agent take into consideration unexpected events, like when an object suddenly approaches
from an area the agent previously thought only contained stationary obstacles. The randomly
spawned boats were only enabled after the agent was able to follow the path. This was done
because earlier iterations of the neural network likely trained poorly because of collisions
in the beginning. The agent would simply spin or stand still to reduce the probability of it
colliding with other boats.

The following parameters were used to train the agent:

These parameters were chosen to match the parameter values recommended by Unity’s RL
team [28], using the same values used in Larsen’s paper [6], and by trial and error. While all
of these parameters should work for any other similar project, one has to consider adjusting
the time scale to a value that suits the specific project. When one trains with a too high time
scale, the entire training can suffer from too large time steps, leading to simulation errors
when the training is then run at a normal time scale. One also has to hide and deactivate
every object and mesh that is unimportant for the training. Pointing the camera upwards and
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Parameter name Explanation Value
batch size Amount of steps in each batch 32
buffer size Amount of steps per model training 1024

learning rate Gradient Descent step size 2e−4

β "Randomness" parameter 1e−2

ε Allowed model change 0.1
λ Regularisation parameter 0.99

epoch Iterations of gradient descent performed 3
hidden units The width of each hidden layer in the NN 64
num layers Amount of hidden layers in the NN 2

Stacked observations How time steps used 2
Normalize Normalise state values to be between -1 and 1 true
Time Scale How many times faster than real time 5×

Table 3.2: Parameters used for training

away from most objects was discovered to lead to a large performance boost, as it would lead
to objects being culled from rendering. These actions make sure the frame rate and thus the
time steps in the training will remain high. For this project, a time scale of 5 combined with
140 frames per second was deemed to be enough for the training. When the agent performed
well, the time scale was further reduced to 1 to make sure there would not be any difference
at all between training and running in real-time.

The observation vector for the agent is as follows:

Observation name variable type
Signed distance between boat and path float
Angle of node and boat float
2D velocity of boat i.r.t. nearest point 2× 1 float
Signed angle of velocity i.r.t nearest path node float
Signed angle of velocity i.r.t. look-ahead node float
Angular velocity of boat 3× 1 vector
Angle of thrusters 2× 1 vector
Rotational speed of thrusters 2× 1 vector
Ray casting sectors 9× 1 vector

While the vector can be listed, it is hard to explain each element with one short sentence,
so each element will be explained. The signed distance between the boat and nearest point
of the path is interesting. While distance only makes sense to write as an absolute value,
nothing stops it from containing additional info. One can in other words also add a sign to
it to indicate whether the agent is on the right side or left side of the path. The angle of the
boat is also important to add as an observation. It is desirable to let the agent travel forward
facing the direction it should travel in. This also lets the agent eventually learn how it will
move at specific angles. After that, the velocity of the agent in x and z are the next elements
in the vector. These are specified in the coordinate frame of the path where x is the forward
direction and z is the cross product of x and the upwards vector. Because Unity works in
a left-handed system, this means z vector will point to the left. The following two signed
angles of velocity are there to make sure the agent knows which direction it is traveling in
relation to the nodes. Both the angles of velocity are derived from both path nodes to make
sure the agent will gain information about incoming curves. At last the angular velocity of
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the boat is given. This is of course to let the agent know how fast it is rotating. Then the
angle and the rotational speed of each thruster are provided in the observation vector. These
four values are added to the observation vector to make sure that the action space acts in a
closed-loop manner and not in open loop. The background for this is that the neural network
was earlier trained without observing the actual values of the thrusters, which was observed
to be close to unstable. All these observations are then normalised to make sure the weights
in the network do not "explode". This is fortunately dealt with in MLAgents where the mean
and spread of the previous observations creates a normal distribution to normalise the values.
Each episode is run for a maximum of 10 000 time steps or until the agent accumulates a
total score below -2 000.
For training, this command gets used.:

mlagents-learn ParametersFile.yaml --run-id=NameOfRun --time-scale 5 --force

After the agent started to perform with satisfying results and was close to being done, the
time scale was further reduced to real time to make sure the time scale would not affect the
final results. In other words, the training was paused, and then resumed by using

mlagents-learn ParametersFile.yaml --run-id=NameOfRun --time-scale 1 --resume

It was then trained until the results would no longer improve. The –resume command is
extremely important to use here, as using –force will delete all the training data and start the
training all over again.

During training, .onnx files will be created at set intervals. .onnx files will also be created
at the end of training. The Onnx file essentially represents the ML model and can be easily
imported into other projects. The opposite is true too. An RL model can be imported from a
different program and then used in Unity.

3.7 Virtual Reality

Digital projects are traditionally always displayed on a normal computer monitor. While this
visualisation technique works, it could be more immersive. Virtual Reality, often abbreviated
to VR, is a very sensible approach for making a visualisation more immersive. VR has been
attempted for centuries. The first concept for VR can be traced back to 1838 when Charles
Wetstone discovered that one could place two pictures next to each other from different per-
spectives to create a 3D effect [29]. This idea was then used later to create "virtual tourism"
where one could visit famous spots all over the world by viewing stereoscopic images. Fast
forward to recent times, modern computing power and technology makes it possible to wear
a headset that enables the user to view, interact, and move in a digital environment. It makes
sense to attempt to use this technology in this project to create a more immersive and ap-
pealing experience. It is also in addition a visualisation tool worth exploring as modern VR is
now powerful and cheap enough to be used for scientific purposes. As seen in the article by
Durukan [30], the majority of the scientific studies about VR that fulfills their criteria are less
than ten years old. This indicates that the use of VR in science is still being explored and will
further increase in popularity in scientific articles.

Unity has two libraries for VR support; one supports OpenXR and the other one supports
OculusXR. OculusXR is the interface Meta’s VR headsets use for interacting with applications,
while OpenXR is the interface almost every other VR product uses. This project uses OpenXR,
but it is trivial to add support to OculusXR as well. The VR headset being used is the HTC Vive
Cosmos. This VR headset was chosen as it is the headset that is available for the developer of
this project.
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Figure 3.12: HTC Vive Cosmos. Image courtesy of HTC Corporation

For adding OpenXR to the project it was simply a matter of installing the OpenXR library by
using Unity’s asset manager and adding the OpenXR camera rig. For this project it was added
in such a way that the user was standing on the boat.

The user can freely move around on the boat and receive a nice impression of being a
passenger on the boat. During testing it was noticed that the user can be afflicted by a long-
lasting motion sickness. This could be happening because the vessel moves on its own, but
could also be caused by tracking issues during testing. Moving the user in VR outside of
normal user movement should generally be avoided as it makes the visual input of the user
not correspond with what the user is actually feeling in real life. Shorter sessions of a couple
of minutes gave no ill effects to the user except for some slight discomfort for a few seconds
after removing the VR headset. Apart from the motion sickness, adding VR made the user
feel like a passenger of the boat, while viewing on a monitor did not. When viewing from the
monitor, the experience was more like viewing through a camera. Using VR is therefore seen
as a great addition to the visualisation and should be considered for similar projects.

Figure 3.13: Screenshot of the visual output going to the VR headset.

The VR module was later removed to reduce potential conflicts between the VR camera
and the normal camera. As said earlier, adding the VR module back to the project is trivial
and can be easily done in the future.
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3.8 Floating Point Error

In the specialisation project [3], it was observed that the Unity engine contained limitations
in positional accuracy. Unity stores the position of objects in a 32 bit floating number. As
one moves far away from the origin point of the world, the floating number has to contain
fewer digits behind the decimal point to store larger numbers. This is usually not noticeable
in the majority of cases where one does not let an object stay far away from the origin,
but this project’s map is tens of kilometers wide. As a result of this, the agent had issues
maintaining an acceptable accuracy at positions far away from the origin while traveling. The
most noticeable part of this inaccuracy was the vessel’s inability to move at a low velocity.
While staying 5000 units away from the origin, it would simply not move at all while moving
lower than 0.05 units per second. While this sounds insignificant, it was quite noticeable. As
the position is stored in a vector containing three elements, each element could have different
amounts of positional accuracy depending on the agent’s position relative to the origin. Say
the agent’s position was [10,0,5000], then the agent would seemingly move just fine in the x
axis, but would seemingly refuse to move in the z axis until it had gained enough velocity in
the z direction. This lead to the agent moving in straight lines when it was obviously supposed
to be moving diagonally. This could be fixed by increasing the size of the time step between
each physics update, but this would affect accuracy yet again. In the specialisation project,
this issue was avoided by simply letting the agent train close to the origin point. This was
possible because collision was not implemented and thus the map simply did not matter.
The floating point error issue cannot be ignored in this project unfortunately. Several solutions
are proposed; one can split up the map into several smaller tiles and only load a small number
of them. Once the agent moves too far away from the origin, a new set of tiles are loaded and
everything is moved closer to the origin. The second option is to keep the entire map as one
complete map like it is right now and move the agent to the origin once it moves too far away.
One can then compensate for this by shifting all of the world’s objects to a new position. One
can also rewrite parts of the physics engine to allow 64 bit positioning, which also fixes this
problem. Out of all of these proposed solutions, the second solution was chosen. Tiling real
map data was attempted and discovered to be time consuming. Tiling also requires one to
"stitch" the tiles together in a seamless way, and no good solution for this issue was found.
The reason why the third option was not chosen was because editing a physics engine is a
rather daunting task and it is unknown how much time needs to be spent on implementing 64
bit floating points. It is also unknown as to which degree this affects the performance of the
application. This could possibly be explored in a future project. The second solution instead
is a rather simple solution, but a messy one. It involved restructuring the entire project so
every object except for the agent became a child of a single object that in this project is called
"World Anchor". Once the agent moves 5000 units away from origin, the position of the agent
is set to zero and the World Anchor’s position is set to be the old position vector of the agent,
but with the opposite sign. Thus the relative position of everything has not changed, yet the
agent will remain around the origin and maintain its positional accuracy that is needed. This
will come at the cost of the positional accuracy of other objects. Objects moving far away
from the agent can experience the same inaccuracy as the agent did, but the objects will
be too far away from the agent to be noticeable. The floating point fix could be changed to
instead change the position of every object relative to the camera, but this again could affect
the accuracy of the agent. The floating point fix remained to only care about the accuracy of
the agent.
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4 Results and Discussions

While training, several iterations were made of the RL model. LSTM was at first attempted.
The reason why LSTM was attempted to be incorporated into the neural network was mainly
out of curiosity and to see if it would significantly improve the performance of the agent.
The plan was to use LSTM to observe the past states and thus make a better decisions based
on this. The idea behind this was that the RL model could use the past states to gain more
information like speed, heading and interactions between the action space and observation
space over time. Unfortunately it was observed that training with LSTM took a significantly
longer time than by simply using a normal feedforward neural network. After a week of train-
ing, the RL model with LSTM did not perform better than what a normal feedforward neural
network could achieve after a few hours of training. There are several reasons for why this
could be the case, but there are two main potential culprits, one general one and one specific
for this problem; a NN with LSTM simply takes significantly longer time to train because the
RL model in addition to training the feedforward NN also has to train the parameters that
control which past states to remember and forget. The one issue specific to this problem is
the vector of values gained from the ray perception sensor or LIDAR. The LSTM is known to
have issues with values suddenly changing position in the observation vector. This happens
in this case when the agent turns and the obstacles observed by the ray perception sensor
suddenly appear in different sectors and thus in different spots in the observation vector.
This creates an issue in the LSTM where it simply does not know which elements in the past
states to remember. A workaround to this issue would be to let the LIDAR maintain a con-
stant angle relative to the world. This would make sure that the obstacles observed in the
LIDAR will not change position in the observation vector anymore. Unfortunately this would
create yet another issue where one cannot use differently sized sectors in the LIDAR pooling
algorithm. As keeping differently sized sectors is very handy for when you want to maintain a
high perception resolution in the most important direction while having lower resolutions at
less important directions. If one instead has fixed sector sizes, one has to either sacrifice per-
ception resolution by increasing the sector angles, or training speed by increasing the sector
width. Sacrificing either of those is not viable in this problem, as the training speed is already
rather slow and having a low perception resolution can be dangerous in the real world. It
was thus decided that LSTM is not viable for this problem.
Normal feedforward neural networks were attempted again after this. MLAgents supports
stacked vectors, which was determined to come in handy in this project. The stacked vectors
use observations from past steps, almost like in LSTM and added them into the observation
vector. The intent of this was to gain interactions between each state to provide the neural
network with velocity and other time-based information. A stacked vector of three was at first
attempted, but the training again was slow and the results were lackluster. A stacked vector
of two, which means an observation vector with information from current step and last step
were instead used. This provided a higher training speed and thus a better performance. Un-
fortunately the agent would most of the time "wiggle" back and forth in a borderline unstable
manner. The theory behind this is that the action vector of the NN only provides the "desired"
value of the angle and speed of each thruster. The NN on the other hand does not provide
the actual values. From control theory, one can label this part of the NN as open-looped. The
algorithm merely controls the desired value of the thrusters, but has no information of the
actual state of the thrusters. It’s because of this the actual angle and rotational speed is fed
back into the controller through the observation vector. In addition to the open-loop issue,
an issue with one of the observation vector elements was spotted and was quickly fixed. A
stacked observation vector of two, which means current observation and the one previous
observation, were used. As a result of this, the performance improved significantly.
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4.1 Training Data

The training of the NN was done quite smoothly after some trial and error. As one can see
in figure 4.1, the cumulative reward decreased at some points during training. Significant
changes to the training were done at these times. At 7.7 million time steps, the performance
of the agent was determined to be good enough. Up until this point, the agent had only been
training with static objects. This is because it was observed in earlier iterations that colliding
with moving objects would severely impact the training and lead to the agent reaching a local
maximum where it would spin in one spot to avoid the moving boats. Moving boat obstacles
were added after this point. This can be seen by the sudden drop in cumulative score in
Figure 4.1. After 9 million time steps, the performance of the agent was determined to be
good enough and the time scale was decreased to 1 to make the training more realistic. As
a result of this, the cumulative reward for the agent increased suddenly before decreasing
again. This is likely because the time steps at this point are shorter which will increase the
time steps in each episode and an increase in reward. The agent also seemed to be impacted
by the better frame rate of the simulation. This was discovered to be likely caused by the
"max timestep" setting not being set high enough. Unity will skip physics time steps if the
frame rate is too low. This will hinder the program in outputting even less frames at the
cost of physics accuracy. This is a reasonable default feature to have in Unity as the main
focus of the engine is for running games. Games usually do not care too much about accurate
physics and can in most cases ignore physics accuracy to make sure the game runs smoothly.
This feature was not discovered until after the training was done, but it has been adjusted
afterwards to have a maximum time step of 1 second instead of 0.1 seconds. Future training
sessions will then most likely run much more accurately. At 11 million time steps an error in
the observation vector was discovered which likely impacted the behaviour. This was fixed
and the agent was trained some more to make sure the fix would impact the NN. The change
as seen in Figure 4.1 at 11 million time steps, lead to a sudden increase in performance. As
the cumulative is seemingly increasing, it is reasonable to let it train until the score plateaus,
but the training at this point in time had been significantly slowed down by setting the time
scale to 1. What would take a few hours to train at a time scale of 5, now would take several
days. An early stop was thus done.

Figure 4.1: The cumulative reward graph provided by Tensorboard

As seen in 4.2, the addition of moving boats seemed to not have been impacting the length
of each episode by much. The training would have been shorter and more efficient if the error
found at 11 million time steps was found earlier, but it is unsure how impacting the error was.
The error turned the element in the observation vector responsible for the agent’s angle into
an element where two different angles would become the same value. This happened because
of a misplacement of a cosine function and would make the agent’s position not fully defined.
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Figure 4.2: The episode length graph provided by Tensorboard

4.2 Testing of the Neural Network

A very important factor within RL is to check if the NN is generalised enough to be useful
for any situation. To test this, several test courses of increasing difficulty were proposed. The
agent then got at least 100 attempts to complete each course, where the score, time spent,
and success rate were calculated. The reason for this was to determine the performance and
the safety of the agent. A high score obviously indicates that the agent performs in an effective
and safe manner. It can be argumented to be safe because the reward function sets the score
to -2000 and ends the training at failed attempts. Thus being close to other vessels and
acting unsafely will increase the risk of gaining a bad score, which the agent should avoid.
The success rate of the agent was crucial in this case as it indicated if the proposed scenario
was feasible for the agent to complete. In the real world, a failed attempt at completing a
scenario might lead to hurt passengers, damages to vehicles, and possibly passengers being
stuck on the vessel and being unable to reach land. These test courses were rather similar
to the ones from the specialisation project [3], where they the paths had a similar shape.
The length of the new paths were much longer than the ones presented in the specialisation
project. This made comparisons between the new and old project possible. Unfortunately,
little data from the old project was recorded. No data from the old paths were recorded. Only
the actual behaviour of the agent was observed and described. The following paths were used
for testing in this project; a straight path without any obstacles, a straight path with randomly
placed static obstacles, a path with several turns, and finally an advanced path with several
turns and both dynamic and static obstacles. Each of the obstacles are presented below in the
same order as mentioned. Optimal weather conditions were provided in each environment,
which means the wind speed is zero. The rain was also set to be zero to keep the frame rate
at maximum. The score, time steps spent on successful attempts, success, and collisions were
recorded in each test run, where the mean, standard deviance of the score and time spent, as
well as the success rate and collision rate were calculated and displayed in a table. Because
it was desirable to test it in a realistic environment, a time scale of 1 was used in all test
environments.
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4.2.1 Straight line with no obstacles

An approximately 500 meter long straight line with no obstacles was used for the first test.

Figure 4.3: A straight 500 meter long path

Score Time Spent Success Rate Collision Rate
5585,1291[µ, σ] 3970,606[µ, σ] 1 0

Table 4.1: Results from straight path experiment without obstacles

4.2.2 Straight line with obstacles

For the second test path, the same path was used, but with uniformly randomly placed obsta-
cles. As the results from the previous experiment showed promising results, it makes sense to
use the same path but with obstacles in addition so one can see how adding obstacles affect
the outcome of the experiment. A random amount between 10 and 15 obstacles were placed
in each episode. The placement and size of each obstacle is random.

Figure 4.4: A straight 500m long path

107 tests are performed for this test course.
As one can see, the NN struggles to finish this course. A success rate of 17.2% and a

collision rate of 82.8% means this task is too difficult for the agent.
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Score Time Spent Success Rate Collision Rate
1209,2114[µ, σ] 3922,552[µ, σ] 0.172 0.828

Table 4.2: Results from straight path experiment with obstacles

4.2.3 Curved path with no obstacles

This path tests the performance of the agent by only considering it has to follow a curved
path. Although the performance in experiment 4.2.2 showed subpar results, it is still worth
checking out if the agent will perform just as well on a path featuring multiple curves as it did
in the first experiment 4.2.1. Although the distance between the start and end of the path is
still 500 meters, the distance traveled by the agent is about 1 km because of the curved path.
The agent here is expected to spend more time on the map. This will most likely also affect
the score on each successful episode as the map is longer and will thus keep on rewarding
the agent for longer. 192 episodes were performed on this specific path.

Figure 4.5: A curved path seen from above

Score Time Spent Success Rate Collision Rate
7775,2733[µ, σ] 8780,854[µ, σ] 1 0

Table 4.3: Results from curved path experiment with no obstacles

The performance in this experiment shows excellent results. Although the time spent is
significantly longer than in the first experiment 4.2.1, this still is acceptable because of the
curve’s longer and more difficult path.

4.2.4 Curved path with dynamic and static obstacles

The same curved path was used yet another time for the next experiment. The maximum
amount of possible static vessels in each episode were reduced to 20 and the size of each
were reduced slightly as well. This was done because the vessels at maximum size would in
certain cases block the path severely and make the path impossible to complete.
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Figure 4.6: The same curved path as figure 4.5, but with obstacles

Score Time Spent Success Rate Collision Rate
5173,4728[µ, σ] 3106,2026[µ, σ] 0.17 0.83

Table 4.4: Results from curved path with obstacles experiment

4.3 Discussion

As one can see from the results, the agent was able to follow the path quite nicely regardless of
difficulty provided. The mean time spent traversing the more difficult path without obstacles
is 4858 more time steps than what it would spend traversing the straight line. This is a
significant increase in time steps, but an acceptable one considering the increased length
the path gets from being curved. A success rate of 1 in both cases without obstacles while
running over 100 tests on each is a strong indication of its capability of following paths. The
performance of the old paths in the specialisation project on the other hand struggled in
certain maneuvers and would often end up spinning if it deviated slightly from the path. The
success rate of the specialisation project’s agent was not recorded, but one can safely assume
it was lower than 1.
Meanwhile the experiments with obstacles indicate that more work is required to make the
agent work with obstacles. A success rate of 0.17 in both obstacle experiments shows that
the current iteration of the RL model is not safe enough for being capable of transporting
pedestrians in the real world. According to Kujala [31], the possibility of a collision happening
when a different ship crosses a ship’s path is at 5 · 10−4 per encounter. This number is based
on AIS data in an area outside of Finland and the encounters happening between two large
ships. To compare the agent’s performance, the following formula for finding the probability
of a collision occurring per encounter is done.

1− P =
x−2∑
n=0

p(1− p)n (4.1)

Here in equation 4.1, P represents the probability of a test run succeeding at least once.
p on the other hand represents the probability of an encounter leading to a collision. This
probability calculation is a series, as each test run ends if the encounter leads to a collision.
The probability series is one unit shorter than the amount of possible collisions, because The
data from the experiment featured in Section 4.2.4 is used in these calculations. First the
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amount of ship encounters are calculated. We take the the best-case estimate and assume
every spawned ship crosses the agent’s path. The mean spawn time is at 37.5 seconds, the
fixed time step is 0.05 seconds, and the mean time spent each test run is 3106 steps. Each
test run here lasted for 62 seconds, which means about 2 boats were spawned on average.
In addition, static boats were placed, where the average placed was 18 boats, resulting in a
total of 20 possible collisions. As each run had a 0.17% success rate, one can calculate the
actual probability of a collision. Plugging the numbers into equation 4.1, one gets:

0.83 =
19∑
n=0

pn(1− p) (4.2)

Computing for p by using a solver yields:

p = 0.085 (4.3)

This in other words means the probability of any encounter from the experiment in Section
4.6 leading to a collision is at 0.085. This is as mentioned earlier a best-case estimate, but the
estimate shows the collision rate is still magnitudes higher than the estimated collision rate
shown in Kujala’s works [31]. These experiments were also performed at optimal conditions,
which means the wind speed was zero during the entire testing. This means the results would
likely be even worse if the agent was affected by strong winds during the experiments. Its
performance during training was acceptable and indicated good behaviour for evading obsta-
cles. This could mean the training environment was not varied enough, or that the test course
was too difficult compared to the training environment. These results can unfortunately not
be compared with the specialisation project as obstacles were not introduced at that point.
If the error in the observation vector was detected earlier, then the performance of the agent
during testing would likely be better. While the error should not have an impact on the de-
tection of an obstacle that is either static or moving, there is a possibility that the error could
have an impact on the agent’s response. Because the error caused the agent’s position to not
be fully defined, it is likely the agent would not respond to an approaching collision in an ap-
propriate manner. If one compares the results gained here versus the results gained by Larsen
[6], the results seem to be different. In Larsen’s paper, the agents would adhere nicely to the
path when only static obstacles were introduced, but would start to deviate once dynamic ob-
jects were introduced. The agent in this paper was observed to be follow the path closer and
more accurately compared to the PPO algorithm in Larsen’s paper, but it would also not care
about most of the obstacles before colliding became inevitable. As it stands now, one would
have to implement a "safety filter" as seen in [32]. The safety filter checks whether the agent’s
expected course will be safe or not. If not, then an algorithm made by hand will take over
and make sure the agent avoids dangers and can safely return to normal behaviour. It was
observed during testing that the continuous action space of the neural network acted more
like a discrete action space. In other words, the desired thruster force for instance was either
at maximum forward thrust or maximum backward thrust. This was not the case during the
first million time steps of training, where the action space was fully continuous. This means
the discrete action space behaviour has been gained during training and thus determined by
the NN to likely be the most optimal way of using the action space. To maintain a specific
thrust force, it would instead rapidly switch between each extremes. As the agent was fully
able to follow any path given, a discrete action space should be considered instead of a con-
tinuous action space to reduce the training time.
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4.3.1 Unity Engine Discussion

This entire project was implemented in Unity Game Engine with C#. It currently will work
fine with externally trained NNs as long as they are configured the way Unity currently ex-
pects them to be. This means that models can be trained in environments that are more
efficient than Unity or preferred by each developer, and then exported to Unity where the
environment is more visually appealing. One can also train a model in Unity directly as all of
the groundwork for it has been made already. The physics calculations done in this program
should also be quite accurate, but one needs to watch out when setting the timescale above 5
as the physics seem to deviate slightly from what can be seen in real time. The accuracy of the
physics seem to match closely with the real world as seen in Pedersen’s article [4]. With an
accurate dynamical model and with capabilities of communicating with external files, means
this program is well-suited for the implementation of a digital twin. The program also fetches
the amount of rain, wind speed and wind direction. Other variables are also readily available
to be used, like air temperature and cloud coverage, and can be used for creating more ad-
vanced weather.
The AIS representations that are used in the program right now work fine, but the AIS boats
currently only travel in straight lines, where the position gets updated every to the new posi-
tion in a jarring manner. This works fine for most vessels, but can be quite inaccurate if the
GPS signal from the boat transponder is inaccurate or has a slow update rate. It was also
noticed that the boat movements would often be quite unnatural during turning.
The ray perception sensor implemented here was implemented in a flexible and future-
focused manner that makes sure alternative changes can be easily implemented, which means
one can easily change the order of the rays, the amount of rays, size of different sectors, ray
lengths and different sector algorithms.
The terrain for the program provides a mostly accurate representation of the real world ter-
rain, but it does not feature any representation of artificial infrastructures or buildings. It
is definitely a big improvement over the previous iteration, but there is still room for im-
provement, like adding a representation of cities, making certain areas more detailed and
so on. As it stands right now, it is capable of being used mostly for visualisation purposes,
but additional work can be done to make it more accurate. This would be at a cost of map
size because of engine limitations and practicality, as an equally large map with more details
would take up a lot more space and memory than what most modern computer is capable
of handling. The agent should also behave the same regardless of how large the map is or
where it is located now. The floating point error fix solved the issues that has been with the
project since its inception.
VR was also implemented and tested. The VR visualisation was then removed after testing,
but should be trivial to implement again. VR should was discovered to be a very reason-
able visualisation, especially for showing people without any background knowledge in the
project. This is because one becomes more immersed in the world by standing inside of it
instead of looking at it through a screen.

5 Conclusion and future work

5.1 Conclusion

To conclude this project, one may look back at the objectives as shown in section 1.2.

Primary Objective:
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• Lay the foundation of a digital twin with access to real world values.
Secondary Objectives:

• To develop an expandable digital framework for autonomous ship navigation

• Improve the visual appeal and accuracy of the terrain

• Fetch real world data and utilise them for calculations and visualisation

• Implement VR visualisation
One will first consider the secondary objectives in order. A more accurate dynamical model of
the Milliampere boat was implemented in the project with more accurately modeled thrusters
as well. The positioning and dynamics of these thrusters can be easily changed to accommo-
date other configurations. A flexible digital LIDAR was also created such that one can test
different types of ray pooling algorithms. To test the capability of the autonomous ship navi-
gation, a model trained using RL was used. It was tested and was proven to be able to follow
any path provided according to the tests, with a completion rate of 100%. The model was
also shown to have issues avoiding obstacles, like static obstacles and other boats, where the
completion rate is reduced to 17% in both test paths with obstacles.
The visual appeal of the environment was also significantly improved by using a proper ter-
rain creator, but there is still room for improvement.
Real-time data provided by BarentsWatch and Norwegian Meteorological Institute are used
to generate a weather system which replicates the wind and rain occurring real time in
the Trondheim Fjord. AIS data provided by BarentsWatch lets real boats be represented in
the simulation. The wind currently affects the agent, while the rain is purely visual. Other
weather variables and AIS data can be used for further expansion.
VR was briefly attempted and found to work fine straight out of the box. Additional function-
ality should be doable.
As the secondary objectives were all completed, the primary objective has been fulfilled as
well. While the objectives were completed, there will always be ways to improve it. Suggested
improvements have been listed in Section 5.2.

First, how usable is Unity Game Engine for simulating a realistic RL environment? Unity
is generally usable for simulating a realistic RL environment. Dynamical models that are sci-
entifically proven to be accurate are able to be easily calculated in Unity. As long as the time
steps are small enough and the engine does not skip any time step, the engine will remain
accurate. The repercussion of skipping frames was explained in Section 4.1.

The second question was related to the safety aspect of the trained RL agent trained in a
Unity environment and implemented in the real world. One can, from the results, conclude
that the current algorithm is not safe enough. Some tiny adjustments should make the model
safer, but as the model is a black box, it cannot be guaranteed to be safe. Therefore, additional
work is required to make the algorithm safer.

5.2 Further work

There are several directions to expand this project in. Some of these proposals contain new
directions for the current project, or further improvement of the current systems. Remember
that this is only a list of proposed tasks and is non-exhaustive. The tasks can be changed, or
new ones can be added. The proposed future tasks for this project is as follows:
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This project laid the foundation for a digital twin, but did not fuse together the digital
twin and the physical object. Thus the most interesting and preferred direction of this project
is to combine this project with a physical autonomous vehicle and use the project as a digital
twin. Unity should be capable of interfacing with an external program where it can both send
and receive data. This could in return be extremely useful for the Autoferry project, where
data provided by the physical object can be processed and used for a digital visualisation and
for detecting possible hazards that would be impossible without a digital twin. One can look
at similar digital twin projects, like the one by Matulis [33], where a digital twin for a robot
arm is created and used for improving its real behaviour.

Norwegian Meteorological Institute has a freely open dataset of weather data that is up-
dated hourly with a grid size of 1x1 square kilometers. Thus the spatio-temporal resolution
might be too poor. A more advanced weather system can then be implemented and used to
create an even more accurate digital twin. The data used in this project has also so far used
only a few of the variables the data provide. Utilising more of the data provided might turn
the weather more realistic. The AIS data given by BarentsWatch is excellent for representing

boats, but the way the data provided is used can be improved. Right now the position and
rotation of the boats can jump around in an unnatural way every time there is an update.
The solution for this in the project was to do a linear interpolation (lerp), which hides this
data update slightly. The interpolation hides the turning of boats poorly and needs to be im-
proved. It has been suggested to use historical data to predict the movement of the boat [34].

The current map is affected by the cities not being represented on the map. As a result of
this, the map resolution around cities can be quite poor. Using map data from Kartverket or
OpenStreetMap can be used to generate a 3D model of the cities and towns. The maps can
then be combined to create a hybrid map. The map can also be improved in other ways, like
for example by developing an algorithm that smoothes the mesh so the shoreline does not
look at "blocky". The current map also does not feature a proper ocean. Combining the cur-

rent height map with an ocean depth map can open up a new direction of the project where
one can simulate underwater vehicles and equipment. These devices can then be used in a
digital twin approach where the program fetch real time data and improves the behaviour
of the underwater devices. This can for example be to use ocean current data for improved
pathing both over and under water. The behaviour of the boats created by the AIS data can

be changed. The current AIS boats do not react to the agent because the agent does not exist
in the real world. Turning the boats into a pseudo-real representation of the boats could be
interesting and better for predicting the real world behaviour of the boats. By for example
making the AIS boats yield for approaching boats could likely improve realism. The behaviour
of AIS boats can then be changed to follow boating rules whenever they are near the agent.

As it currently stands, the model has issues avoiding obstacles. One can either improve the
current model, or implement a safety check to override its behaviour when the model is act-
ing dangerously. Minor changes to the training of the model as mentioned in Section 4.1
should make it behave safer, but as the model is essentially a black box, one cannot be fully
certain that it will behave well in all situations. A safety check algorithm thus has to be added
in addition to make sure it acts in a safe manner in all possible scenarios.
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6 APPENDIX

6 Appendix

6.1 Straight Line no obstacles test data

These are the test data from each run in the straight line test.

Score Time steps spent Did it complete? Did it collide?
7926 3850 1 0
5465 3718 1 0
6603 3732 1 0
5151 3733 1 0
5443 3726 1 0
5811 3715 1 0
5187 3732 1 0
5066 3925 1 0
4748 3724 1 0
4783 3732 1 0
5644 3707 1 0
5553 3715 1 0
6132 3704 1 0
5919 3736 1 0
5094 3726 1 0
5794 3718 1 0
6385 3733 1 0
5660 3718 1 0
4446 4625 1 0
3678 5554 1 0
2384 5501 1 0
2877 5651 1 0
7149 5697 1 0
8612 5960 1 0
12604 5510 1 0
7377 5327 1 0
5545 4618 1 0
5673 3736 1 0
6087 3717 1 0
5401 3707 1 0
6314 3710 1 0
5070 3729 1 0
5622 3721 1 0
5395 3717 1 0
5528 3726 1 0
6356 3727 1 0
5509 3731 1 0
4916 3721 1 0
5306 3723 1 0
5134 3737 1 0

49



6 APPENDIX

Score Time steps spent Did it complete? Did it collide?
5654 3715 1 0
5262 3740 1 0
4804 3729 1 0
5398 3727 1 0
5243 3727 1 0
5151 3745 1 0
5178 3731 1 0
5175 3721 1 0
4704 3736 1 0
5332 3730 1 0
5140 3723 1 0
5480 3707 1 0
5918 3727 1 0
5563 3727 1 0
5518 3713 1 0
4398 3746 1 0
5318 3735 1 0
5457 3715 1 0
6031 3716 1 0
5387 3731 1 0
5329 3729 1 0
5494 3719 1 0
5819 3726 1 0
5797 3717 1 0
6472 3727 1 0
6491 3751 1 0
5122 3709 1 0
5515 3731 1 0
6325 3723 1 0
5828 3714 1 0
5014 3754 1 0
5019 3714 1 0
5636 3721 1 0
5237 3704 1 0
6134 3726 1 0
5070 3726 1 0
4915 3740 1 0
4874 3719 1 0
4920 3737 1 0
5392 3719 1 0
5350 3736 1 0
5608 3727 1 0
5106 3723 1 0
4904 3728 1 0
6174 3723 1 0
5015 3740 1 0
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Score Time steps spent Did it complete? Did it collide?
5186 3738 1 0
6405 3701 1 0
6399 3718 1 0
5269 3763 1 0
5547 3738 1 0
5907 3721 1 0
4997 3737 1 0
5544 3721 1 0
4765 3711 1 0

6.2 Straight line with obstacles test data

The data from the straight line test with obstacles. A total of 116 runs.

Score Time steps spent Did it complete? Did it collide?
821 904 0 1
546 951 0 1
1794 2556 0 1
493 2631 0 1
-523 3039 0 1
2415 1463 0 1
2788 2725 0 1
5418 4722 1 0
401 1317 0 1
3570 3109 0 1
218 1565 0 1
4573 3738 1 0
1206 2628 0 1
-36 2692 0 1
3482 6077 1 0
347 3176 0 1
3239 3226 0 1
5202 2921 0 1
303 1100 0 1
-495 965 0 1
4658 3727 1 0
6224 3771 1 0
-656 637 0 1
-196 1365 0 1
235 1398 0 1
5979 3727 1 0
328 1426 0 1
-63 1540 0 1
585 2509 0 1
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Score Time steps spent Did it complete? Did it collide?
-60 1245 0 1
-60 1083 0 1
5306 3785 1 0
306 1958 0 1
-564 761 0 1
617 2563 0 1
598 1817 0 1
-155 1694 0 1
146 2062 0 1
2583 3145 0 1
4651 3501 0 1
4847 3747 1 0
151 1906 0 1
-3 1044 0 1
-114 2215 0 1
2639 2885 0 1
3419 3308 0 1
284 1079 0 1
-58 1604 0 1
-68 2046 0 1
-98 833 0 1
4942 3739 1 0
-565 607 0 1
-223 530 0 1
-248 466 0 1
-50 1949 0 1
-672 524 0 1
5297 3744 1 0
631 1232 0 1
99 1069 0 1
-366 1104 0 1
-249 640 0 1
-619 1549 0 1
315 2418 0 1
-193 696 0 1
-292 634 0 1
252 1640 0 1
-805 465 0 1
-60 1632 0 1
-486 662 0 1
4911 3734 1 0
-55 1073 0 1
-543 900 0 1
-68 1371 0 1
-350 1077 0 1
-419 876 0 1
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Score Time steps spent Did it complete? Did it collide?
-427 780 0 1
5490 3737 1 0
-132 616 0 1
205 1074 0 1
6600 3736 1 0
-584 826 0 1
176 2503 0 1
-463 745 0 1
3289 3076 0 1
392 1294 0 1
4601 3762 1 0
210 2212 0 1
5467 3734 1 0
-419 564 0 1
-34 1222 0 1
-82 854 0 1
-227 1251 0 1
2433 3149 0 1
290 792 0 1
-616 580 0 1
4413 3772 1 0
4635 3740 1 0
-145 1164 0 1
1626 2688 0 1
353 1168 0 1
4903 3732 1 0
694 2402 0 1
-534 730 0 1
-237 1429 0 1
-233 710 0 1
-145 717 0 1
-36 856 0 1
32 2360 0 1
6244 3782 1 0
-419 592 0 1
447 2757 0 1
557 2099 0 1
-215 1333 0 1
-281 886 0 1
5095 3758 1 0
-3 1601 0 1

6.3 Curved path with no obstacles test data

This is data from the third experiment 4.2.3.
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Score Time steps spent Did it complete? Did it collide?
7779 8685 1 0
4225 9063 1 0
4111 7924 1 0
6213 8890 1 0
7886 7621 1 0
9617 8314 1 0
5962 8965 1 0
10427 8977 1 0
7965 8187 1 0
6037 8232 1 0
8691 9615 1 0
7540 7575 1 0
6543 8845 1 0
11438 10166 1 0
11684 8199 1 0
6477 9431 1 0
5368 7937 1 0
5938 8875 1 0
4597 8926 1 0
5462 8454 1 0
8314 8259 1 0
5654 8197 1 0
15561 9606 1 0
11768 10895 1 0
7322 8520 1 0
9236 8008 1 0
10808 8575 1 0
6257 9686 1 0
2326 8198 1 0
12085 9381 1 0
8135 8119 1 0
4353 9348 1 0
8487 8735 1 0
9916 8543 1 0
9729 8548 1 0
5077 8738 1 0
7750 8996 1 0
10367 8097 1 0
4794 8391 1 0
5739 9080 1 0
5321 9442 1 0
10593 8231 1 0
3338 9303 1 0
6964 9063 1 0
7414 7787 1 0
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Score Time steps spent Did it complete? Did it collide?
9926 8555 1 0
9287 10413 1 0
11763 10163 1 0
4500 8345 1 0
11451 8886 1 0
4702 8015 1 0
9360 10734 1 0
7980 13169 1 0
4110 9821 1 0
10741 11181 1 0
5790 10164 1 0
7763 8615 1 0
4816 7972 1 0
11146 8180 1 0
5753 8694 1 0
5679 8661 1 0
2891 8442 1 0
8694 9288 1 0
8330 8127 1 0
11726 7492 1 0
8160 8343 1 0
12125 8823 1 0
8895 9305 1 0
4449 8073 1 0
5529 8041 1 0
9021 8296 1 0
6573 8583 1 0
5469 8870 1 0
5901 7403 1 0
9204 8334 1 0
6289 8056 1 0
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Score Time steps spent Did it complete? Did it collide?
4628 8407 1 0
8499 8985 1 0
7281 9287 1 0
6351 8430 1 0
9773 9442 1 0
8086 8125 1 0
6029 8152 1 0
6742 9283 1 0
5887 8261 1 0
7298 7817 1 0
5344 8695 1 0
3847 8156 1 0
12395 8947 1 0
7953 9233 1 0
4663 8087 1 0
12162 7709 1 0
11367 8758 1 0
10176 9199 1 0
6903 9391 1 0
7461 8073 1 0
5996 8897 1 0
14940 8660 1 0
8536 8876 1 0
12098 8849 1 0
6599 9057 1 0
12503 10026 1 0
6504 8425 1 0
11575 8317 1 0
6158 9236 1 0
6164 8286 1 0
7385 7986 1 0
6373 7616 1 0
5495 8349 1 0
12918 9144 1 0
6228 8281 1 0
10779 9213 1 0
7694 7857 1 0
13641 9136 1 0
7997 8460 1 0
3071 7804 1 0

56



6 APPENDIX

Score Time steps spent Did it complete? Did it collide?
4769 9009 1 0
6246 8487 1 0
10955 8915 1 0
5402 9905 1 0
9710 6653 1 0
7062 8338 1 0
5961 9611 1 0
12377 10122 1 0
10945 9965 1 0
6596 8211 1 0
7847 8106 1 0
4775 8612 1 0
6354 10371 1 0
7989 8705 1 0
9903 8373 1 0
8348 10074 1 0
6716 9640 1 0
6779 8724 1 0
10136 9339 1 0
7653 8330 1 0
12526 9302 1 0
6266 7474 1 0
12998 8740 1 0
2289 7852 1 0
11109 8370 1 0
13802 7809 1 0
7159 7691 1 0
6033 8365 1 0
10486 10186 1 0
12279 8759 1 0
7409 8094 1 0
4850 10035 1 0
7361 8388 1 0
7102 9216 1 0
5830 7995 1 0
12293 11002 1 0
4350 8880 1 0
5109 8960 1 0
6920 8367 1 0
10974 7566 1 0
2904 8032 1 0
7507 9026 1 0
9290 10230 1 0
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Score Time steps spent Did it complete? Did it collide?
11898 8866 1 0
9440 8962 1 0
4374 8343 1 0
8574 9218 1 0
11359 9524 1 0
5057 11264 1 0
8911 7723 1 0
10358 8861 1 0
5651 7238 1 0
5886 9173 1 0
8204 9100 1 0
4329 8375 1 0
6922 8949 1 0
5102 7829 1 0
4936 10058 1 0
9801 9084 1 0
7734 8771 1 0
2771 8367 1 0
6398 8377 1 0
8271 8581 1 0
8464 10140 1 0
4747 7652 1 0
12645 9878 1 0
5449 10331 1 0
7296 7782 1 0
8653 9044 1 0
3827 8412 1 0
11954 9141 1 0
8281 8273 1 0
8689 8679 1 0
5602 7440 1 0
9029 9327 1 0
4063 8573 1 0

58



6 APPENDIX

6.4 Curved path with dynamic and static obstacles test data

Score Time steps spent Did it complete? Did it collide?
1546 837 0 1
992 1081 0 1
10304 4712 0 1
8417 2958 0 1
14525 6337 1 0
4223 2586 0 1
3945 3493 0 1
7513 6193 1 0
1363 1258 0 1
7924 6576 1 0
18594 6773 1 0
5866 2791 0 1
5594 6384 0 1
9604 5640 1 0
2925 2209 0 1
4815 3919 0 1
8071 4070 0 1
3256 1372 0 1
19936 7048 1 0
2139 1080 0 1
3656 2652 0 1
6525 3664 0 1
2419 1436 0 1
4082 3280 0 1
3477 2462 0 1
1577 946 0 1
8665 5821 0 1
3178 1346 0 1
2009 2516 0 1
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Score Time steps spent Did it complete? Did it collide?
5061 2568 0 1
2237 2368 0 1
3122 1708 0 1
3101 1439 0 1
3343 4170 0 1
7768 4399 0 1
1549 1367 0 1
2064 2280 0 1
6892 3154 0 1
1132 1052 0 1
6805 5962 1 0
3799 1265 0 1
1957 2812 0 1
3452 1149 0 1
7069 4654 0 1
2788 1457 0 1
2402 2199 0 1
4239 1847 0 1
4342 3019 0 1
1778 1232 0 1
3111 778 0 1
2840 2882 0 1
1724 2266 0 1
3389 709 0 1
19497 6956 1 0
4261 3810 0 1
3079 1983 0 1
15645 6924 0 1
3328 1409 0 1
4216 2022 0 1
19616 7482 1 0
4311 1895 0 1
15727 6430 1 0
6761 5455 1 0
-1757 146 0 1
-2003 13 0 1
13340 6503 0 1
4175 1114 0 1
8639 5626 1 0
5458 5795 1 0
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Score Time steps spent Did it complete? Did it collide?
2535 1259 0 1
1654 1532 0 1
-2000 1 0 1
10130 4040 0 1
6615 4650 0 1
3675 3552 0 1
9800 6589 1 0
1560 1716 0 1
6108 2402 0 1
11019 5371 0 1
3436 2118 0 1
1939 1032 0 1
2695 2382 0 1
1589 858 0 1
10678 6698 1 0
2261 2048 0 1
1200 782 0 1
5174 3730 0 1
2803 1402 0 1
6095 4553 0 1
7419 5128 0 1
2224 1868 0 1
6298 2615 0 1
3325 1243 0 1
14960 6762 1 0
11593 5578 0 1
8010 3174 0 1
27852 6805 1 0
3529 1558 0 1
1833 1805 0 1
2313 2409 0 1
5810 5129 1 0
1407 983 0 1
3215 1546 0 1
7698 3635 0 1
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Score Time steps spent Did it complete? Did it collide?
-311 385 0 1
-404 346 0 1
-449 346 0 1
8115 6555 1 0
10494 5027 0 1
739 1112 0 1
5940 6147 1 0
3995 3858 0 1
2684 1263 0 1
5306 3712 0 1
3450 2777 0 1
4000 3254 0 1
4935 4003 0 1
6460 4767 0 1
2038 1313 0 1
1259 1341 0 1
3142 4458 0 1
3807 2178 0 1
3498 1891 0 1
2710 1786 0 1
2711 3397 0 1
3742 4625 0 1
10302 6378 1 0
900 1000 0 1
4282 1372 0 1
316 896 0 1
16107 6864 1 0
5946 1920 0 1
3723 2713 0 1
5470 3808 0 1
6252 2961 0 1
3343 1394 0 1
3286 3309 0 1
2022 1802 0 1
9935 6533 1 0
3350 1593 0 1
8683 6191 1 0
2094 788 0 1
1841 2324 0 1
16293 6738 1 0
1741 2078 0 1
2886 4568 0 1
3019 1553 0 1
11609 6638 1 0
3415 2141 0 1
4180 3808 0 1
2762 2438 0 1
-1949 73 0 1
-2009 167 0 1
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