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Abstract

In recent years, drones have become household objects. Due to cheaper and more
advanced electronics, drone technologies which once were exclusive to militaries
and other large institutions have become commercially available for smaller com-
panies and even private use. Today, drones are being used in many applications
ranging from recreation and racing to maintenance inspections and transport.
One of the companies providing transportation services using drones is the Nor-
wegian company Aviant, which is the collaboration parter of this thesis.

When performing drone operations such as transport in Beyond Visual Line Of
Sight (BVLOS) scenarios, an important security aspect is to have predetermined
rally points along the flight path. These rally points represent safe landing areas
that the drone can land on if any issues were to occur. Today, companies such as
Aviant plot these landing areas manually using digital maps. In this thesis, we
introduce and compare two deep learning-based systems that can automatically
detect safe landing areas in the context of vertical take-off and landing unmanned
aerial vehicles using an onboard, downward-facing camera.

Detecting safe landing areas for drones is a well explored field. However, lim-
ited research exists using deep learning-based approaches, and we therefore wish
to explore this field in this thesis. In addition to the systems mentioned above, we
also present a PCA-based color mapping technique capable of correcting colors
in images and a pixel geolocator capable of translating image pixels into GPS
coordinates. Furthermore, we present a labeled drone-video dataset, in addition
to a synthetic dataset containing aerial images of people. We also introduce a
method for using the safe landing area detection system to validate manually
chosen rally points.

Even though the SLAD systems presented in this thesis are capable of successfully
detecting good landing areas, they are not considered robust enough to operate
fully autonomously. However, they can operate with minimal human oversight,
and with some further work, possibly fully autonomously.
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Sammendrag

De siste årene har droner blitt hverdagslige. P̊a grunn av rimeligere og mer
avansert elektronikk har droneteknologi, som en gang var forbeholdt forsvarssek-
toren og andre store institusjoner, blitt kommersielt tilgjengelig for mindre bedrifter
og privat bruk. I dag benyttes droner innen mange omr̊ader, fra fornøyelse og
kappløp til inspeksjoner og transport. En av bedriftene som tilbyr leveransetjen-
ester ved bruk av drone er det norske selskapet Aviant, som er samarbeidspart-
neren for denne oppgaven.

N̊ar en utfører droneoperasjoner som er utenfor visuell synslinje, er et viktig
sikkerhetstiltak å ha forh̊andssbestemte landingspunkter langs flyruten. Dersom
noen problemer skulle oppst̊a, kan dermed dronen lande p̊a disse landingspunk-
tene. I dag bestemmer aktører slik som Aviant disse punktene manuelt ved bruk
av digitale kart. I denne oppgaven introduserer vi to dyp lærings-baserte systemer
som automatisk kan detektere trygge landingsomr̊ader for ubemannede droner.
For å gjøre dette benytter vi et nedovervendt kamera som viser terrenget under
dronen.

Å detektere landingsomr̊ader for droner er allerede et omr̊ade som har blitt fors-
ket mye p̊a. Likevel er det lite av denne forskningen som benytter metoder basert
p̊a dyp læring. Vi ønsker derfor å utforske dette i denne oppgaven. I tillegg til
systemene nevnt tidligere, presenterer vi ogs̊a en PCA-basert metode for fargeg-
jenoppretting som kan korrigere farger i bilder og en piksel-geolokator som kan
oversette piksler fra bildene til GPS koordinater. Vi presenterer ogs̊a et merket
datasett som best̊ar av dronevideoer, i tillegg til et syntetisk datasett som in-
neholder bilder av mennesker i fugleperspektiv. Vi introduserer ogs̊a en metode
for å bruke systemet for deteksjon av landingspunkter til å validere de manuelt
utvalgte landingspunktene.

Selv om systemene for å detektere trygge landingpunkter som presenteres i denne
oppgaven er i stand til å finne gode landingspunkter, er de ikke p̊alitelige nok til
å kunne operere helt autonomt. Likevel er de egnet til å operere med litt men-
neskelig tilsyn, og med mer arbeid og forskning kan de muligens operere helt
autonomt.



iii

Acknowledgements

We wish to thank our supervisor Gabriel Kiss, co-supervisor Frank Lindseth and
the Aviant representative Torjus Bakkene for the support during this project.

Agnar Martin Bjørnstad, Torstein Emdal Otterlei
Trondheim, July 1, 2022



Contents

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 6
2.1 Aviant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Drone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Mission planning . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Flights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Internal setup of drone . . . . . . . . . . . . . . . . . . . . . 11

2.2 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Metrics in object detection . . . . . . . . . . . . . . . . . . 13
2.2.2 YOLOv5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Swin Transformer . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.4 ConvNeXt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Metrics in Image Segmentation . . . . . . . . . . . . . . . . 18
2.3.2 Unet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Geolocating Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1 Generating Camera Rays . . . . . . . . . . . . . . . . . . . 21
2.4.2 Rotatating the Camera Rays . . . . . . . . . . . . . . . . . 22
2.4.3 Translation and Raytracing . . . . . . . . . . . . . . . . . . 24
2.4.4 Geolocation to pixel . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Splitting videos into train, validation and test sets . . . . . . . . . 25
2.6 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . 26
2.7 Structured Literature Review Protocol . . . . . . . . . . . . . . . . 28

iv



CONTENTS v

2.7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.8 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8.1 SLAD using Artificial Landmarks . . . . . . . . . . . . . . . 31
2.8.2 SLAD using Natural Landmarks . . . . . . . . . . . . . . . 31
2.8.3 Color restoration . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Method 36
3.1 Drone Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.1.2 Data Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.3 Dataset Partitioning . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Pretraining Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 Potsdam Dataset . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Unreal Engine 4 Dataset . . . . . . . . . . . . . . . . . . . . 44

3.3 Color Restoration using Principal Component Analysis . . . . . . . 47
3.3.1 Overall Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.2 Change of Principal Components Basis . . . . . . . . . . . . 48
3.3.3 Generalize to Unseen Images . . . . . . . . . . . . . . . . . 51

3.4 Converting Segmentation to Rally Points . . . . . . . . . . . . . . 53
3.5 Pixel Geolocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Mapping from Pixels to Coordinates . . . . . . . . . . . . . 54
3.5.2 Mapping from Coordinates to Pixels . . . . . . . . . . . . . 55

3.6 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.6.1 Tested Architectures . . . . . . . . . . . . . . . . . . . . . . 57
3.6.2 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.6.3 Segmentation-based SLAD System . . . . . . . . . . . . . . 60

3.7 Rally Point Verification . . . . . . . . . . . . . . . . . . . . . . . . 61
3.8 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8.1 Tested Architectures . . . . . . . . . . . . . . . . . . . . . . 63
3.8.2 Training Setup . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.8.3 Object Detection-Based SLAD System . . . . . . . . . . . . 64

4 Results 66
4.1 Color Restoration using Principal Component Analysis . . . . . . . 66
4.2 Pixel Geolocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4 Rally Point Verification . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS vi

5 Discussion 77
5.1 Drone Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.2 Data Labeling . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1.3 Data Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Pretraining Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.1 Potsdam Dataset . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Unreal Engine 4 Dataset . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Answering Research Question 1 . . . . . . . . . . . . . . . . 80

5.3 Color Restoration using Principal Component Analysis . . . . . . . 81
5.3.1 Discussion of Results . . . . . . . . . . . . . . . . . . . . . . 81
5.3.2 Answering Research Question 2 . . . . . . . . . . . . . . . . 81

5.4 Converting Segmentation to Rally Points . . . . . . . . . . . . . . 82
5.5 Pixel Geolocator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.1 Answering Research Question 3 . . . . . . . . . . . . . . . . 83
5.6 Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6.1 Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.6.2 Impact of Color Restoration . . . . . . . . . . . . . . . . . . 86
5.6.3 Answering Research Question 1,2 and 4 . . . . . . . . . . . 87

5.7 Rally Point Verification . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.1 Components . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.7.2 Answering Research Question 5 . . . . . . . . . . . . . . . . 89

5.8 Object Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.8.1 Pretraining . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.8.2 Impact of Color Restoration . . . . . . . . . . . . . . . . . . 91
5.8.3 Answering Research Question 1,2 and 4 . . . . . . . . . . . 92

6 Conclusion and Future Work 95
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 98

Appendices 105
A Literature Review Table . . . . . . . . . . . . . . . . . . . . . . . . 106
B Reference images for PCA . . . . . . . . . . . . . . . . . . . . . . . 108
C Result images from color restoration . . . . . . . . . . . . . . . . . 111
D Masks from Segmentation Models . . . . . . . . . . . . . . . . . . . 113
E Results from Object Detection-based System . . . . . . . . . . . . 120
F Results from Segmentation-based System . . . . . . . . . . . . . . 127
G Rally Point Verification Examples . . . . . . . . . . . . . . . . . . 134



List of Figures

2.1 One of Aviants drones. . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Mission from Sandmoen to Haltdalen . . . . . . . . . . . . . . . . . 8
2.3 Ground Risk Model and Air Risk Model . . . . . . . . . . . . . . . 10
2.4 Components in a drone. . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Example of object detection application . . . . . . . . . . . . . . . 13
2.6 IoU scores in object detection . . . . . . . . . . . . . . . . . . . . . 13
2.7 IoU formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.8 Precision-Recall curve . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Swin-T architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.10 Types of image segmentation . . . . . . . . . . . . . . . . . . . . . 19
2.11 TN, FN, FP and TP in segmentation . . . . . . . . . . . . . . . . . 20
2.12 Unet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.13 Roll, pitch and yaw on plane . . . . . . . . . . . . . . . . . . . . . 22
2.14 PCA of a multivariate Gaussian distribution . . . . . . . . . . . . . 27
2.15 Orientations of principal components . . . . . . . . . . . . . . . . . 28

3.1 Sample images from NT02 and NT04 . . . . . . . . . . . . . . . . 37
3.2 Setup for capturing video . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Missions in dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4 Overview of the labeling process of the collected video . . . . . . . 39
3.5 Automatic labeling of trees in snow . . . . . . . . . . . . . . . . . . 42
3.6 Example image from the Potsdam dataset . . . . . . . . . . . . . . 44
3.7 Example image of Unreal Engine dataset . . . . . . . . . . . . . . . 46
3.8 Comparison of different axis in the PCA color restoration . . . . . 49
3.9 PCA of image colors . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.10 Scatter plots of PCA color restoration distributions . . . . . . . . . 52
3.11 Converting segmentation mask to specific rally points . . . . . . . 53
3.12 Comparison of points from pixel geolocator . . . . . . . . . . . . . 56
3.13 3D view of drone with estimated and actual locations . . . . . . . 56

vii



LIST OF FIGURES viii

3.14 Single class prediction to multi class . . . . . . . . . . . . . . . . . 60
3.15 SLAD pipeline for segmentation . . . . . . . . . . . . . . . . . . . . 61
3.16 SLAD pipeline for object detection . . . . . . . . . . . . . . . . . . 65

4.1 Color Mapper Results Example . . . . . . . . . . . . . . . . . . . . 67
4.2 Color Mapper Reference Image Example . . . . . . . . . . . . . . . 67
4.3 An overview of the accuracy measuring of the pixel geolocator . . . 69
4.4 Prediction on image of person by the segmentation-based SLAD

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.5 Output examples of the rally point verification system . . . . . . . 74
4.6 Prediction on image of person by the object detection-based SLAD

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

1 Reference images used for PCA color restoration . . . . . . . . . . 110
3 Results from color restoration . . . . . . . . . . . . . . . . . . . . . 112
4 Results from color restoration . . . . . . . . . . . . . . . . . . . . . 113



List of Tables

2.1 Technical specifications of the Foxtech drone . . . . . . . . . . . . 7
2.2 Classification of risks . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Search term groups for literature review . . . . . . . . . . . . . . . 29
2.4 Inclusion and quality criteria for literature review . . . . . . . . . . 30

3.1 Flights in the dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Categories used when manually labelling images . . . . . . . . . . 43
3.3 Occurrences of obstacles in the collected dataset . . . . . . . . . . 43
3.4 Occurences of obstacles in the Potsdam dataset. . . . . . . . . . . 44
3.5 Occurences of obstacles in the Unreal Engine 4 dataset. . . . . . . 46
3.6 Converting single class semantic segmentation to multiclass . . . . 59

4.1 Accuracy of pixel geolocator . . . . . . . . . . . . . . . . . . . . . . 68
4.2 Ids for segmentation models . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Results from segmentation . . . . . . . . . . . . . . . . . . . . . . . 71
4.4 Results from the segmentation-based SLAD system . . . . . . . . . 71
4.5 Recall of rally point verification . . . . . . . . . . . . . . . . . . . . 73
4.6 Ids for object detection models . . . . . . . . . . . . . . . . . . . . 75
4.7 Results from the object detection-based SLAD system . . . . . . . 75
4.8 Overview of sizes of missed obstacles by SLAD systems . . . . . . 76

A Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
B Search engines used in literature review . . . . . . . . . . . . . . . 107

ix



LIST OF TABLES x

Acronyms

AP Average Precision

CNN Convolutional Neural Network

CVAT Computer Vision Annotation Tool

GPS Global Positioning System

BVLOS Beyond Visual Line Of Sight

IoU Intersection over Union

mAP Mean Average Precision

PCA Principal Component Analysis

SIFT Scale Invariant Feature Transform

SLAD Safe Landing Area Detection

SLAM Simultaneous Localization And Mapping

UAV Unmanned Aerial Vehicle

UTM Universal Transverse Mercator

VPN Virtual Private Network

VTOL Vertical Take-Off and Landing

QGC QGroundControl



Chapter 1

Introduction

1.1 Background and Motivation

In recent years, drones have become household objects. Due to cheaper and more
advanced electronics, drone-technologies which once were exclusive to militaries
and other large institutions have become commercially available for smaller com-
panies and even private use. Today, drones are being used in many applications
ranging from recreation and racing to maintenance inspections and transporta-
tion.

A challenge that arises when flying drones BVLOS, such as in long-range trans-
portation, is to maintain safety. In these cases, drones often have to fly over
inhabited areas to reach their destinations. A crash in these areas could cause
damage to both property and people. Therefore, in order to maintain high safety
standards, reliable technical systems and procedures are required. Governments
impose strict legislation regarding drone transportation, which is an ongoing pro-
cess in Norway and other countries. Actors such as Aviant [Aviant, 2022] use con-
siderable amounts of resources to ensure that flight paths go over low-risk areas.
An important part of the safety measures by Aviant is to have pre-programmed
intermediate safe landing areas along the flight path, called rally points. In case
of emergency, the drone may attempt to land on the nearest rally points. Evi-
dently, their real-time state is not considered when they are chosen. An obstacle
such as a car or a tree that is not visible on satellite imagery could therefore
obstruct the landing zone.

In order to monitor the drone, Aviant uses an on-board, downward-facing camera
that streams video to an operator. The aim of this thesis is to use this camera

1



CHAPTER 1. INTRODUCTION 2

to attempt to automatically propose new rally points. In addition, we will try to
verify the manually determined rally points to ensure their quality. In this way,
the quality of a landing area can be determined without using additional sensors,
which would incur extra cost and weight. The survey [Shah Alam and Oluoch,
2021] provides a suitable framework for classifying drones and associated land-
ing zone detection techniques. According to the terminology used in the survey,
the problem we choose to explore in this thesis concerns using monocular vision
techniques to find outdoor unknown static landing zones for a Vertical Take-Off
and Landing (VTOL) Unmanned Aerial Vehicle (UAV).

1.2 Goals and Research Questions

A significant amount of research has been conducted in the field of Safe Landing
Area Detection (SLAD) for drones, as will be explained in Section 2.8. However,
there is limited research exploring SLAD using deep learning-based computer
vision techniques with a monocular, downward-facing camera feed. In this thesis,
we are therefore going to further explore this area, as stated below.

Goal Explore the use of deep learning computer vision techniques in the context
of safe landing area detection for VTOL UAVs with monocular aerial vision.

When capturing video from the drones, we observed that the onboard camera
on one of the drones produced videos with distorted colors. In addition, the
captured videos contained few instances of some classes such as people, vehicles,
buildings and power lines. When exploring the use of deep learning computer
vision techniques in the context of safe landing area detection, these issues need
to be addressed. We therefore introduce five components, some of which address
the color and class imbalance issues, while the rest constitutes the components
required to create a safe landing area detection system. The components are:
(1) a synthetic dataset that can provide more examples of situations that rarely
occur in the collected images, (2) a method capable of restoring the images with
distorted colors, (3) a system that can geolocate pixels in the images from the
video stream, (4) a system capable of detecting safe landing areas from images
and (5) a system that can verify predetermined landing areas along the flight
path. We then associate a research question with each of these components.

Research question 1 Can synthetic data be beneficial in generating rare situ-
ations when trying to train a deep learning-based system for safe landing
area detection?
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In this thesis, we have collected videos from Aviant’s drones, and used them
to train deep learning-based systems. However, there are certain features that
would be valuable to detect, but rarely occur in the videos. One of the most
important of these rare features is people. It is therefore of scientific value to ex-
plore whether pretraining the systems on a synthetic dataset that contains many
people could improve their ability to detect people on videos from the drones.

Research question 2 How can images with distorted colors be restored to their
original colors, and will this improve the effect of pretraining the deep learn-
ing models?

One of the drones that captured videos had issues with the colors. There was
a red hue on almost all of the images it captured. This might pose problems
for deep learning networks that are initialized with weights from regular colored
datasets, like Imagenet [Russakovsky et al., 2015]. Even though this was an issue
on only one of the drones, videos from this drone constitute the vast majority of
the collected videos. Hence, it is crucial to find out if this has a negative impact
on the performance of the deep learning models, and if it is possible to restore
the colors to fix the issue.

Research question 3 How and with what accuracy can detected landing areas
be converted into Global Positioning System (GPS) coordinates?

A central part of the safe landing area detection system is to be able to convert
the detected landing zones from the aerial images into GPS coordinates. In addi-
tion, we want to be able to determine where the predetermined, hand-picked rally
points are located in the aerial images. In this way, the drone’s flight controller
can locate the proposed safe landing areas, and the predetermined safe landing
points can be visually verified.

Research question 4 Which deep learning-based computer vision technique pro-
vides the best results in determining safe landing areas?

The field of computer vision includes multiple sub-domains. Two of these are im-
age segmentation and object detection. The properties of these methods, which
we will explain in Section 2.3 and 2.2, make them particularly suitable for detect-
ing safe landing areas. We will therefore explore two architectures for detecting
safe landing areas based on each of these two methods.
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Research question 5 How effectively can a deep learning-based system for safe
landing area detection verify predetermined landing areas?

Aviant uses hand-picked rally points as emergency landing areas, as we will ex-
plain in Section 2.1.2. These are plotted using digital maps, and do not consider
the current state of the landing area. It would therefore be of operational and sci-
entific value to explore whether the safe landing area detection system is capable
of verifying these predetermined rally points as the drone is flying above them.
This research question builds upon Research question 3 and Research question
4, as both of these are necessary in order to get an effective mapping from GPS
coordinates to a location in the image and evaluate the predetermined rally point,
respectively.

1.3 Research Method

Because of the technical nature of the research goal, the research method will
largely consist of design and experimentation. We will create a series of subsys-
tems, that when combined creates a system that performs the desired action of
detecting safe landing areas. Because we want to explore results from different
system architectures when using different deep learning models and image aug-
mentations, many combinations need to be tested and compared. To do this,
we will first test the performance of each subsystem using appropriate metrics
depending on their purpose. After this, we will test the systems as a whole using
custom metrics that reveal details of their performance and behavior, and do this
for each combination.

1.4 Contributions

In the work towards the research goal, a selection of contributions have been
produced. These are listed below. In addition to these tangible contributions, we
have also contributed with scientific insight into the architecture and performance
of a deep learning-based system for safe landing area determination.

1. A PCA-based color mapping technique capable of correcting colors in images

2. A pixel geolocator capable of translating image-pixels into GPS coordinates
and vice-versa

3. A labeled drone-video dataset consisting of 11733 images

4. A synthetic dataset containing orthophotos with models of people
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5. A segmentation-based system capable of detecting safe landing areas from
downward-facing drone videos

6. An object detection-based system capable of detecting safe landing areas from
downward-facing drone videos

1.5 Thesis Structure

The thesis starts with a Background chapter. This chapter contains both general
background knowledge and technical background theory related to the research
project. It also includes a Structured Literature Review of previous work. In the
next chapter, Method, we will go through the technical details of our approaches.
This section uses the presented background theory to explain each of the sub-
modules in the project. At the end of the method chapter, these submodules
are combined into two complete SLAD systems and one system for Rally Point
Verification. In the Results chapter, we will present the results acquired from
these systems. Then, we will discuss our approach in light of the results in the
Discussion chapter. Eventually, we will end the thesis with a chapter containing
Conclusion and Future Work.



Chapter 2

Background

In this section we will go through some of the background theory that is required
in order to explore our research goal. This includes an overview of how Aviant
operates, in addition to some of the background theory about segmentation and
object detection. Eventually, we will elaborate on the theory behind our pixel
geolocator, present our literature review and go through previous work in the field.

2.1 Aviant

2.1.1 Drone

Aviant transports biological samples between destinations that are up to 120km
apart. They use VTOL drones to transport these samples. One of these drones
is depicted in Figure 2.1. The drones have two ways to fly: fixedwing and mul-
tirotor mode. In fixedwing mode, the drone flies like an airplane. It has wings
and a motor that is attached to the back, which pushes it forward. This is a
very efficient mode of flight. However, if the drone were to land in this mode,
it would need wheels and a small runway. This is an issue, as it imposes great
restrictions on the areas in which it can perform a safe landing. In order to solve
this problem, the multirotor mode is used. In this mode, the drone uses the
four vertical propellers to fly like a quadcopter. This means that it can take-off
and land vertically, effectively reducing the required landing area. However, this
mode of flight is much less energy efficient and the velocity is very limited, so
this flight mode is only used for take-off, landing and hovering.

The technical specifications of the drones used by Aviant are listed in Table
2.1. By looking at the maximum cruising speed, the flight time and the max-

6
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imum payload capacity, it is clear that the drones are suitable for long-range
transportation of lightweight cargo. Aviant uses a cruising speed of 23m/s in
fixedwing mode.

Figure 2.1: One of Aviants drones. (Source: Tom Erik Holthe, Aviant)

Specification Value

Max cruise speed 110km/h
Flight time 2.5h
Max payload capacity 3kg
Wingspan 250cm
Length 140cm

Table 2.1: Technical specifications of the Foxtech drone that Aviant uses.
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(a) A mission from Sandmoen to Haltdalen.

(b) A closer look at the end of the mission from Figure 2.2a

Figure 2.2: The mission from Sandmoen to Haltdalen. (Maps from [Google Maps,
2005])
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2.1.2 Mission planning

During flight, the drone is following a preprogrammed path. Such a path is part
of a mission. A mission is composed of several components in order to safely and
effectively get the drone to its destination. One of Aviants missions is depicted
in Figure 2.2a. This mission goes from Sandmoen to Haltdalen and is about
70km long. Figure 2.2b shows a close-up view of the end of the mission. Here
we can see its individual components. The most conspicuous component is the
flight path, the thick yellow line with points. These points are called waypoints,
and each of them has a latitude, longitude and a height above sea level. When
flying a mission, the drone is pursuing a path that resembles a straight line from
its position to the next waypoint. The actual path it plans to fly is a bit more
complex. However, since this is not relevant in our case, it will not be elaborated
on.

When the pursued waypoint is within a certain range of the drone, it proceeds
to pursue the next waypoint in the mission, and so on, until it reaches a landing
point. Here it goes from fixedwing mode to multirotor mode and lands vertically.
Along the flight path, there are rally points. These are points where the drone
can make an emergency landing if anything unexpected happens during flight.
The rally points have a light orange color and are marked with an R in Figure
2.2b. Furthermore, the entire flight path and the rally points are encapsulated
in a geofence, the yellow polygon. If the drone hits the geofence during flight, it
lands on the nearest rally point or lands straight down, depending on the settings.

The rules and regulations that Aviant follows are specified by the European
Union Aviation Safety Agency [EASA, 2021]. The airspace that needs to be
considered in missions is visualized in Figure 2.3. The Flight Geography is the
area in which the drone is allowed to fly, this is where the waypoints are located.
The Contingency Volume is a buffer volume around the Flight Geography. The
drone is allowed to be in the Contingency Volume, but needs to initiate actions
to get the drone back into the Flight Geography zone. The Operational Volume
is the union of the Flight Geography and the Contingency Volume. The rally
points are located on ground level in this volume. The border between the Flight
Geography and the Contingency Volume is where the geofence is located. Out-
side the Contingency Volume there is the Ground Risk Buffer for ground risks,
and the Air Risk Buffer for air risks. These are places where the drone under
no circumstances, even in emergencies, should be located. As the drone would
then be too close to risks. Table 2.2 classifies the different risks into Hard/Soft
Ground Risks and Air Risks. Hard risks must be avoided, while soft risks should
be avoided.
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Figure 2.3: Ground Risk Model and Air Risk Model. (Source: [EASA, 2021])

Rally points are considered safe points to land during a flight. Hence, according
to Aviant’s internal guidelines, a rally point must satisfy the requirements below:

1. Free of obstructions to the best of our knowledge

2. Low or no population density

3. Close enough to the flight path such that the drone can reach it

4. Located inside the operational volume

Furthermore, a good rally point is characterized by the two following traits.

1. There is a road nearby

2. The terrain is flat

The first trait reduces the work needed to retrieve the drone after an emergency
landing on the rally point. The second trait mitigates the risk of damaging the
drone during such a landing. Rally points have been used in almost all events
where an emergency has occurred, which is why it is imperative to have rally
points evenly distributed along the flight path. The alternative is for the drone
to land straight down from its current position. This might be necessary if the
drone for some reason cannot reach the closest rally point, for instance, if it is
too low on battery.
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Table 2.2: Classification of risks.

2.1.3 Flights

Every time a drone is flying, it is called a flight. Each flight has a flight crew
and a mission. The flight crew carries out the preflight checks and monitors
the drone during flight. The pilot has a touchpad with QGroundControl (QGC)
[QGC, 2015] installed. This is used to send high level instructions to the drone,
like take-off, land at the nearest rally point, fly back to take-off position and fly
in a circle. The latter command can be used if something temporarily prevents
the drone from continuing its flight, like incoming traffic ahead. The drone also
has a downward-facing camera, that streams video in real-time to QGC. This is,
amongst other things, used to check that the landing area is clear of obstructions.

GPS and a cellular connection such as 5G are critical components in a flight.
5G is used for communication between QGC and the drone, while GPS is used
by the drone for navigation. If any of these components fail, the outcome may be
critical. In the event of a sustained loss of GPS, the drone lands straight down,
regardless of what is underneath. If it experiences a sustained loss of cellular
connection, it lands at the nearest rally point.

2.1.4 Internal setup of drone

Figure 2.4 shows the components in the drone. The Flight Controller is a real-
time system that controls the drone, this is where the autopilot is running. The
companion computer is an onboard computer that, amongst other things, com-
municates with the Flight Controller and streams video from the camera. The
MAVLink Router [MAVLink, 2017] on the companion computer is the main
source of communication between the commander and the drone. MAVLink
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Figure 2.4: Components in a drone.

[Koubâa et al., 2019] is a protocol that is used for communication, between the
Flight Controller and the MAVLink Router. It goes over a serial port cable, and
between the MAVLink Router and QGC it goes over UDP [UDP, 1980]. The
video is streamed from the camera to a v4l2rtsp server [v4l2rtspserver, 2015] and
streamed by UDP in H.264 format [Hsiao et al., 2011] to QGC.s

2.2 Object Detection

Object detection is the task of locating and classifying objects in an image. The
location of an object is captured by a bounding box. A bounding box is a
rectangular area that covers the entire object of interest. The most common
scenario is to have the bounding boxes parallel to the edges of the image. If the
bounding boxes can take on any orientation, it is called multi-oriented object
detection. Figure 2.5 shows a typical application of object detection algorithms:
detecting cars. The goal of the algorithm is to predict bounding boxes that match
the ground truth bounding boxes as closely as possible, in addition to determining
the type of object in the bounding box. Figure 2.6 shows how the predictions
of an object detection algorithm need to align with the ground truths. Notice
that some of the objects in Figure 2.5 are partially occluded. This is one of the
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challenges that object detection models need to handle.

Figure 2.5: Example of object detection application: detecting cars on roads.
(Source: [Hackem, 2020])

Figure 2.6: IoU scores of object detection. The better the prediction, the higher
is the IoU. (Source: [Adrian Rosebrock, 2017])

2.2.1 Metrics in object detection

In order to quantitatively measure the performance of an object detection model,
metrics that compare the predictions to the ground truth are needed. One of the
most fundamental metrics in object detection is the Intersection over Union (IoU).
The IoU measures the degree of overlap between two bounding boxes. Figure 2.7a
shows how the IoU is calculated. The intersecting area is divided by the union
area of the two bounding boxes, hence the name. The IoU ranges from 0 to 1,
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where the former indicates no overlap and the latter indicates perfect overlap.
When measuring the quality of a predicted bounding box, the formula in Figure
2.7b is used to compare it to the ground truth. As we will see, the IoU is the
foundation for other metrics used in object detection. It is important to note that
the IoU is not only used as a quantitative measure of a bounding box’s quality
relative to the ground truth. It is also used by object detection algorithms to
filter away potentially bad predictions in favor of better ones.

(a)

(b)

Figure 2.7: Formula for IoU. (Image a source: [Adrian Rosebrock, 2016])

Bounding boxes are categorized into one of three different categories, as listed
below. All four possible combinations of true/false and positive/negative are
listed for clarity.

• True positive (TP ): number of predictions with IoU ≥ α with a ground
truth bounding box

• False positive (FP ): number of predictions with IoU < α for all ground
truth bounding boxes

• False negative (FN): number of ground truths that no prediction has IoU
≥ α

• True negative (TN): the background region, correctly not detected by the
model. This metric is not used.

A prediction is either true positive or false positive as it may or may not have
a sufficient IoU with a ground truth bounding box. Likewise, a ground truth
bounding box is classified as false negative if no predicted bounding box has a
sufficient IoU.

TP , FP and FN are the numbers needed to calculate precision and recall for a
model. Equation 2.1 shows how to calculate the precision. The precision mea-
sures the portion of predictions that actually are relevant. Ie. a low precision
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means that the model produces many predictions that are not correct, relative
to the number of predictions that are correct. The formula for recall is stated in
Equation 2.2. The recall is the degree to which the model manages to detect all
ground truth bounding boxes. I.e. a low recall means that only a small portion
of the ground truth bounding boxes are detected.

Precision =
TP

TP + FP
=

TP

all detections
(2.1)

Recall =
TP

TP + FN
=

TP

all ground truths
(2.2)

The output from an object detection model often contains many predictions with
confidence for each prediction ranging from 0 to 1, increasing with model cer-
tainty. The question then becomes what to consider to be a positive classification.
Lowering the confidence threshold will result in more positive predictions that
the model has less confidence in. From the equations above, it is clear that the
impact of this is an increased recall, as some less confident predictions probably
are correct, at the cost of decreased precision. The proportion of true positive
predictions is probably lower for less confident predictions. In the same way, in-
creasing the confidence threshold has a tendency to lower the recall and increase
the precision. This trade-off between precision and recall can be visualized as a
precision-recall curve. Figure 2.8 shows a precision-recall curve.

Figure 2.8: Example of a precison-recall curve. (Created by the authors)
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To measure how precise an object detection algorithm is, the Average Preci-
sion (AP) is calculated. The AP is the area under the precision-recall curve.
It is commonly evaluated at IoU thresholds 0.5 or 0.75. The Mean Average
Precision (mAP) is the mean of all the class AP.

2.2.2 YOLOv5

YOLO [Redmon et al., 2015] is an acronym for you only look once, and consists
of a unified model that simultaneously predicts multiple bounding boxes and
class probabilities for those boxes. The model divides the image into a grid, and
for each grid cell, it predicts a certain amount of bounding boxes, confidence
for those boxes and class probabilities. If the center of an object falls into a
grid cell, that grid cell is responsible for detecting that object. Since the model
only consists of a single neural network, it is able to run very fast. In certain
cases, YOLO has proven to be able to run at more than a hundred fps. In ad-
dition, YOLO reasons globally about the image when making predictions. This
makes the system able to encode contextual information about classes as well as
their appearance. YOLO has become one of the primary object detection tech-
niques, and it has been incrementally improved upon since it was first introduced.
YOLOv2 [Redmon and Farhadi, 2016] improved recall and localization by intro-
ducing batch normalization and anchor boxes. YOLOv3 [Redmon and Farhadi,
2018] uses a more complex model backbone called DarkNet-53, a 106 layer neural
network complete with residual blocks and upsampling networks to improve the
detection of smaller objects. YOLOv4 [Bochkovskiy et al., 2020] comes with a
combination of modern improvements to the architecture. YOLOv5 [YOLOv5,
2020] does not have a paper, but is an implementation of YOLO that includes
various improvements by the open-source community.

2.2.3 Swin Transformer

Transformers were initially presented by researchers at Google in the paper At-
tention Is All You Need [Vaswani et al., 2017], and were created as an alternative
for Recurrent Neural Networks to handle Natural Language Processing tasks such
as translating and summarizing text. However, in the paper An Image Is Worth
16x16 Words: Transformers For Image Recognition [Dosovitskiy et al., 2020], an-
other team of researchers from Google proposed an image recognition technique
using transformers. The unique capability of transformers is their ability to in-
corporate self-attention. Self-attention is a mechanism that allows the inputs of
the model to interact with each other and find out which of them that should be
emphasized when making a prediction.
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Swin Transformer [Liu et al., 2021] from Microsoft Research Asia is a recent pro-
posal that presents a transformer-based backbone architecture for vision tasks.
The goal of a backbone architecture is to provide a proven method of effec-
tive feature extraction and has primarily consisted of Convolutional Neural Net-
work (CNN) architectures in the past. Instead of dividing each input image into
patches, it also divides them into windows. The swin transformer block then
calculates the attention between the patches in each window and ignores the rest
of the patches. The windows then slide across the image embedding to calculate
the attention over a new group of patches. This technique has a lot in common
with how CNNs work and is an attempt to circumvent the quadratic calculations
required for conventional self-attention. An overview of the swin transformer
architecture is shown in Figure 2.9.

Figure 2.9: An overview of the Swin-Transformer architecture. (Source: [Liu
et al., 2021])

2.2.4 ConvNeXt

ConvNeXt was introduced by researchers at Facebook in the paper A ConvNet
for the 2020s [Liu et al., 2022]. It was developed in an attempt to create a modern
CNN architecture capable of competing with transformer-based methods such as
Swin-Transformer. The architecture of ConvNeXt is based on a standard ResNet
architecture [He et al., 2015], but is gradually modernized to include the favorable
features of a vision transformer [Dosovitskiy et al., 2020]. These improvements
can be separated into changes on macro and micro level:

Macro level:

1. Changing stage compute ratio

2. Changing stem to “Patchify”
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3. Introduce depthwise convolution similar to ResNeXt [Xie et al., 2016]

4. Using inverted bottlenecks

5. Using 7×7 depthwise conv in each block

Micro level:

1. Replacing ReLU with GELU

2. Fewer activation functions

3. Fewer normalization layers

4. Substituting batch normalization with layer normalization in each residual
block

5. Separate downsampling layers

All these improvements are incorporated into the final ConvNeXt model.

2.3 Image Segmentation

Image segmentation is the process of partitioning an image into non-overlapping
segments on the pixel level. There are different ways to segment an image. Figure
2.10 shows the difference between semantic, instance and panoptic segmentation.
In semantic segmentation, each pixel is assigned a value corresponding to the class
of the object that it is a part of. In instance segmentation, each semantic class is
categorized along with the particular instance of that class. This means that each
pixel is labeled according to what type of object it is part of in addition to which
instance of that object class in the image it constitutes. Panoptic segmentation
is a combination of both semantic segmentation and instance segmentation, as
each pixel in the image belongs to both a class and an instance.

2.3.1 Metrics in Image Segmentation

IoU is also used in the segmentation context. However, when it comes to how
True Negatives, False Negatives, False Positives and True Positives are decided,
it is slightly different from object detection. They are listed below, and shown in
Figure 2.11. This is then further used to calculate the AP and mAP.

• True positive (TP ): The pixel is correctly categorized as part of its category

• False positive (FP ): The pixel is incorrectly categorized as part of a cate-
gory
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Figure 2.10: Types of image segmentation. (Source: [Kirillov et al., 2019])

• False negative (FN): The pixel is incorrectly categorized as not part of its
category

• True negative (TN): The pixel is correctly categorized as not part of a
category

F1 =
2TP

2TP + FP + FN
(2.3)

Another metric is the F1 score, also called the Dice coefficient. The F1 score is
calculated by taking 2*Area of Overlap divided by the total number of pixels in
each image, see Equation 2.3. F1 score and IoU give similarity values between 0
and 1, and are always positively correlated. To a large degree, the two metrics
serve the same purpose. However, when taking the average score over a set of
inferences, IoU tends to penalize single instances of bad classification more than
F1 score. If a model is providing overall good results, but with some bad outliers,
IoU will put more emphasis on the outliers, and F1 and IoU might therefore end
up favoring different models.



CHAPTER 2. BACKGROUND 20

Figure 2.11: Illustration of True Negative, False Negative, False Positive and
True Positive in segmentation (Created by the authors).

CA =
TP + TN

TP + FP + FN + TN
(2.4)

Classification accuracy is the proportion of the number of correctly classified
pixels to the total number of pixels in the segmented image. The formula for
classification accuracy is shown in Equation 2.4.

2.3.2 Unet

In this thesis, we will test three segmentation models: Unet, Swin-Transformer
and ConvNeXt.

Unet was originally developed by researchers from the University of Freiburg to
perform biomedical image segmentation. Unet builds upon the architecture of the
Fully Convolutional Neural Network [Long et al., 2014]. It includes a contracting
path, an encoder, and an expansive path, a decoder. The encoder acts as a feature
extractor and learns abstract representations of the input images using a series
of encoder blocks with convolutional layers. The decoder part of the network
generates the actual segmentation mask, and uses deconvolution to upsample the
compressed image representation. Between the encoder and decoder, there are
skip-connections that provide the decoder with the representations learned at
each corresponding step of the encoder block. This helps the network get a more
precise localization of masks. An overview of the Unet architecture is shown in
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Figure 2.12. Notice that the output segmentation map is not the same resolution
as the input mask in this illustration. This is because the illustration shows an
example using unpadded convolutions. If padded convolutions were used instead,
the input and output would be the same size.

Figure 2.12: An overview of the Unet architecture. (Source: [Ronneberger et al.,
2015])

2.4 Geolocating Pixels

To be able to pinpoint the real-world location of pixels in an image from the video
stream is a crucial component in a system for determining safe landing areas, as
potential landing areas have to be conveyed as pairs of latitude and longitude
to the flight controller. Hence, an elementary understanding of rotations in 3D
space and raytracing is needed to comprehend how a pixel in an image might be
mapped to a position on earth.

2.4.1 Generating Camera Rays

A camera captures the light that passes through its lens. The light is going from
the outside world and into the camera. However, when we are to geolocate a pixel
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on the resulting image, it is easier to imagine that the ray goes the other way:
from the camera, through the lens and down to the ground. When we geolocate
a pixel, we first have to find the direction of the ray relative to the camera. For
this purpose, let us define a 3D-coordinate system where the camera is placed
in origo, and rotated such that it is facing down the z-axis while the upper left
corner of the image has positive x and y coordinates. Consider the plane that
is parallel to the xy-plane and goes through (0, 0,−1). This plane is defined by
Equation 2.5.

z = −1 (2.5)

If the camera were to take an image of size width × height of this plane. The
area that we would see on the image would depend on the field of view in the
direction of the height and width of the image, FOVh and FOVw, respectively.
The coordinates of a pixel in row i and column j in the image are defined by
Equation 2.6.

cij =

FOVh(
1
2 − i

height )

FOVw(
1
2 − j

width )
−1

 (2.6)

2.4.2 Rotatating the Camera Rays

Figure 2.13: Illustration of roll, pitch and yaw on a plane. (Source: [Auawise,
2010])
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All rotations on a body in 3D space can be represented by rotations along three
orthogonal axes. In aviation, these rotations are called roll, pitch and yaw. These
rotations are displayed in Figure 2.13. Defined by a right-hand coordinate system
centered in the drone with the first axis forward on the drone, the second axis
parallel to the wings oriented outwards from the right-wing of the drone, and
the third axis pointing down. The rotation along each axis is called roll, pitch
and yaw, respectively. Positive orientation is in the clockwise direction for all axis.

Roll, pitch and yaw are intrinsic rotations, ie. the axes of rotation are rotated
along with the plane of rotation, in contrast to extrinsic rotations, where rota-
tions happen along the originally fixed axes. The consequence of this is that the
order in which the rotations are needs to be taken into account, as the other axes
of rotation are dependent on the preceding rotations.

Rotation along each axis in Figure 2.13 can be described by a rotation matrix.

Rx(γ) =

1 0 0
0 cos(γ) − sin(γ)
0 sin(γ) cos(γ)

 (2.7)

Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (2.8)

Rz(α) =

cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1

 (2.9)

Equation 2.7, 2.8 and 2.9 represents rotation along the first, second and third
axis, respectively. Hence, γ, β and α corresponds to roll, pitch and yaw. The
combined rotation matrix is computed in Equation 2.10.

R(γ, β, α) = Rz(α)Ry(β)Rx(γ) = (2.10)[
cos(α) cos(β) cos(α) sin(β) sin(γ)− sin(α) cos(γ) cos(α) sin(β) cos(γ) + sin(α) sin(γ)
sin(α) cos(β) sin(α) sin(β) sin(γ) + cos(α) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ)

− sin(β) cos(β) sin(γ) cos(β) cos(γ)

]

To rotate the ray from the camera in Equation 2.6, it is left multiplied with
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the rotation matrix in Equation 2.10. By dividing by the length of the camera
ray, we end up with a rotated camera ray scaled to length 1. However, we first
need to align the roll axis of the drone with the first axis of the world reference
frame and the pitch and yaw axes with the negative second and third axis respec-
tively. The orientation of rotations for pitch and yaw are thus flipped, and they
have to be negated. Furthermore, the offset of the yaw then becomes a quarter
of a rotation. This is shown in Equation 2.11.

rij(γ, β, α) =
R(γ,−β, π

2 − α)cij

||cij ||
(2.11)

2.4.3 Translation and Raytracing

Up until now, the position of a pixel in an image has been transformed into a
camera ray, scaled and then rotated according to the orientation of the drone.
Thus, the next step is to translate the drone to its position in the Universal
Transverse Mercator (UTM) projection [Snyder, 1987] and trace the camera ray
down to the terrain.

p0 =

x0

y0
h0

 (2.12)

Let Equation 2.12 define the position, p0, of the drone in the UTM projection.
The drone has x0, y0 and h0 as x, y and z coordinates, respectively. h0 is the
drones height above sea level.

pt = p0 + t ∗ rij(γ, β, α), 0 ≤ t (2.13)

Furthermore, by combining this equation with Equation 2.11 multiplied with the
parameter t, we end up with Equation 2.13. This equation is a parameterization
of the ray that goes from the drones position, p0, and in the direction of the
rotated camera ray, rij(γ, β, α). The parameter t specifies the number of meters
from the drone.

pt,z = H(pt,x, pt,y) (2.14)

Let H(x, y) be the height above sea level for a point in UTM with coordinates
x and y. Evidently, the point where the ray hits the ground is where the height
of the ray equals the height of the terrain, as shown in Equation 2.14. Hence,
the ray in Equation 2.13 needs to be traced from the drone and down to the
ground, in order to georeference a pixel in the original image. Consequently, the
value tground that solves Equation 2.14 provides the position, ptground

of the ray-
traced pixel in the UTM projection. Finally, ptground

needs to be converted from
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the UTM projection to geographic coordinates in the World Geodetic System 84
(WGS 84) [Dpt.Defense, 1991]. This transformation is commonly known and is
therefore omitted.

2.4.4 Geolocation to pixel

The previous sections explained how to go from a pixel in an image to a geolo-
cation. However, by some small adjustments, it is possible to go the other way
around: from a geolocation to a pixel on the image. In this case, it is actually
helpful to imagine the actual path of the ray, contrary to Section 2.4.1. In that
case ptground

was the unknown, here i and j are unknown, while ptground
is known.

Firstly, the point needs to be converted fromWGS 84 to coordinates in the chosen
UTM projection. The resulting point is shown in Equation 2.15.

ptground
=

 xtground

ytground

H(xtground
, ytground

)

 (2.15)

If we rearrange the terms in Equation 2.13, we get the ray from the drone to the
ground, as stated in Equation 2.17.

tground ∗ rij(γ, β, α) = ptground
− p0 (2.16)

By left multiplying this equation with the inverse of the rotation matrix, R(γ,−β, π
2 − α)-1,

and rearranging the terms, we end up with the ray that is rotated back into the
reference frame of the drone and scaled to go from origo to the plane in Equation
2.5. Equation 2.17 shows this.

cij
||cij ||

=
R(γ,−β, π

2 − α)-1(ptground − p0)

tground
(2.17)

Where ||cij || equals −1 divided by the z-component of the right hand size of the
equation. We have then calculated cij , and we can go on to rearrange Equation
2.6 to solve for i and j to get the pixels in the image. If 0 ≤ i < height and
0 ≤ j < width, then the point is inside the image.

2.5 Splitting videos into train, validation and
test sets

In order to train, validate and test a model, the dataset is split into three disjoint
sets, called training, validation and test. Each of these serves its own purpose.
The training set is used to fit the parameters of the model. Models with a large
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hypothesis space are often able to fit the training set too well to generalize be-
yond it. This is called overfitting, and it constrains the model’s predictive power
outside the training set. Because of this, a separate dataset to control the amount
of overfitting is needed.

This is where the validation set comes in. The purpose of the validation set
is to provide an unbiased estimate of the model fit on the training set while si-
multaneously tuning the hyperparameters of the model. The validation set gives
a much better estimate of the generalization error than the training set, as the
model is not directly fit to this dataset. However, as the hyperparameters of the
model are tuned to performance on the validation set, bias is introduced. This is
where the third and final dataset comes into the picture, the test set.

The purpose of the test set is to provide a final unbiased estimate of the gener-
alization error of the model. This is used after model training on the training
set and hyperparameter tuning on the validation set. No further changes to the
model are supposed to happen after it has been tested on the test set, as bias
would then be introduced here as well. The training set usually constitutes be-
tween 60% and 90% of the original dataset, while the remaining dataset is often
split equally between the validation and test set.

2.6 Principal Component Analysis

Here we will go through the background theory regarding Principal Component
Analysis (PCA). We will use this method later on for color restoration.

PCA is a popular dimensionality reduction technique. PCA is an orthogonal
linear transformation, where the data is transformed in such a way that the
greatest variance of the data comes to lie on the first axis, the second greatest
variance on the second axis and so on. It performs a change of basis on the data
by computing the principal components of the data. The first principal compo-
nent is the line in which the spread of the data varies the most, which is the line
that minimizes the mean squared distance from the line to the points. The n-th
principal component is the line that is perpendicular to the n− 1 first principal
components and minimizes the squared distance from the line to the points.

Let X ∈ Rn×p be the data matrix with n data points, p features for each
data point and column-wise zero empirical mean. Additionally, let w(k) =
(w1, ..., wp)(k) be the k-th principal component. Then, Equation 2.18 and 2.19
shows how the k-th principal component is defined.
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X̃k =

{
X if k = 1

X−
∑k−1

s=1 Xw(s)w
⊺
(s) if k ∈ N\{1} (2.18)

w(k) = argmax
||w||=1

{||X̃kw||} (2.19)

(a) PCA of sampled points from a multi-
varite Gaussian distribution.

(b) Projection of the sampled points from
2.14a in the the principal components.

Figure 2.14: PCA of a multivariate Gaussian distribution. (Created by the au-
thors.)

N (
[
3 2

]
,

[
2 1.5
1.5 2

]
) (2.20)

The concept of PCA is easy to understand when carried out in two dimensions.
In Figure 2.14a we have plotted the result of sampling 1000 times from the mul-
tivariate Gaussian distribution in Equation 2.20, as well as found the principal
components of the sampled points. The principal components are translated to
start from the empirical mean of the samples. Their lengths are scaled to 3 times
the square root of the corresponding eigenvalues. These figures are projected
into the principal component space and plotted in Figure 2.14b. It is clear from
these two figures that the latter is only a translation and rotation of the former.
More specifically, to go from Figure 2.14a to Figure 2.14b we first subtract the
empirical mean of the sampled points (x = 3.01 and y = 2.03) and then we ro-
tate the resulting points clockwise by about 45◦, as this is the angle between the
first principal component and the first axis. As we see from the two figures, the
first principal component captures the most variance, and the second principal
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component is perpendicular to the first, and captures the rest of the variance.
One should note that the signs of principal components may be flipped. Mean-
ing that in 2.14a there are four different combinations of signs for the principal
components. All of these combinations are plotted in Figure 2.15. The reader
should also note that PCA is sensitive to scaling of the variables, as the variance
along each of the axis would differ. For instance, if we were to plot the length
and weight of objects, the units that we choose to measure each of them in, will
affect the resulting PCA. For example, if we chose kg instead of g to measure
the weight, the variance in the weight would diminish compared to the variance
of the length. To mitigate this effect, the variables are often standardized.

Figure 2.15: The four different combinations of orientation for the principal com-
ponents. (Created by the authors)

2.7 Structured Literature Review Protocol

To find papers for the literature review, the search engines Oria, IEEE Xplore,
Google Scholar and Papers with Code were utilized (Table B). The search terms
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were selected to be related to multiple aspects within the field of SLAD. The
full overview is listed in Table 2.3. Even though we sought papers that satisfied
as many term groups as possible, studies that only partially satisfied the search
criteria were also included. This was done in order to research specific fields like
object detection and segmentation.

The papers that were chosen to be read were judged based on how well their
abstract section satisfied the inclusion criteria in Table 2.4. A cutoff score of 2
was chosen, which means that papers that were assigned a score of 2 or higher
were studied further. The motivation behind the inclusion criteria is explained in
Section 2.7.1. The overview of papers in the literature review, the search engines
that were used, the search terms, and their given score can be found in the table
in Appendix A. The year limit indicates the time filter applied in the search. An
overview of the search engines is provided in Appendix B. After the papers from
the literature review had been read, those considered to be the most relevant to
our research project were selected. These papers are presented in Section 2.8:
Previous Work.

Group 4 in the search term overview in Table 2.3 did not contribute to any
meaningful difference in the search results. This is probably due to the words in
this group being covered by Groups 3 and 6. Therefore, none of the papers in
the overview in Appendix A have G4 in the search term column.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6

Term 1 Camera Drone Landing Obstacle On-board Safe
Term 2 Vision UAV Zone Object Autonomous Emergency
Term 3 Segmentation Vehicle Area Trajectory Automatic Failure
Term 4 Object Detection Flight Site Obstruction Unknown
Term 5 Monocular Aerial Ground Clear Static
Term 6 Deep learning Rotorcraft

Table 2.3: Search term groups containing different synonyms.
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Criteria ID Criteria

IC 1 The study’s main concern is finding drone landing areas using
monocular vision

IC 2 The study focuses on a subject directly related to finding safe
landing areas for drones

IC 3 The study uses or fully focuses on deep learning-based techniques
like segmentation or object detection

IC 4 The study is a primary study presenting empirical results

Table 2.4: Inclusion and quality criteria for literature review.

2.7.1 Motivation

The motivation behind each of the inclusion criteria in Table 2.4 is presented
below.

1. IC1 was chosen because a constraint of our research task is to perform
SLAD using a single camera view, often referred to as monocular vision.
The research in this field would therefore be the most relevant in the context
of our research goal.

2. IC2 was chosen so that the review also would include previous research re-
lated to drone landing in general, not only systems using monocular vision.

3. IC3 concerns deep learning-based techniques specifically, as it is necessary
to explore and learn from the previous work in this area. This is important
considering it is part of our research goal to develop a deep learning-based
system.

4. IC4 was chosen as it is valuable that the papers we study present empirical
data that can be used as an indicator of the performance of their methods.

2.8 Previous Work

The previous research in the field of SLAD can be separated into studies using
artificial and natural landmarks. Both of these scenarios will be discussed in 2.8.1
and 2.8.2 respectively. Because of the lack of universally applied benchmarks in
this task, each study is evaluated on the qualitative and quantitative results
presented. During the project, we found it necessary to perform color restoration
on our collected data. Therefore, a selection of previous work within the field of
color restoration is presented in Section 2.8.3.
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2.8.1 SLAD using Artificial Landmarks

A research area that is well investigated is SLAD using an artificial landmark.
An artificial landmark is a special marker that serves as a guiding position for the
drone. The drone might use different sensors and techniques in order to perceive
the landmark and its location relative to the drone. The task is then for the
drone to land on the landmark itself.

The study A Fast and Accurate Marker Tracker For Autonomous UAV Land-
ing By Visible Light Camera Sensor On Drone [Nguyen et al., 2018] introduces
a modified YOLO-technique called LightDenseYolo to recognize the landmark
using a single camera.

The same authors use two CNNs [LeCun et al., 1989] to perform super-resolution
[Park et al., 2003] and then landmark detection in the study Deep Learning
Based Super-Resolution Reconstruction and Marker Detection For Drone Land-
ing [Truong et al., 2019].

Development Of An Automated Camera Based Drone Landing System [Demirhan
and Premachandra, 2020] is another paper using an artificial landmark. However,
this paper does not utilize deep learning for detection. Instead, the authors use
an advanced edge detection algorithm to recognize the unique edges within the
”H” on the landing area.

Landing Area Recognition using Deep Learning for Unmanned Aerial Vehicles
[Lee et al., 2020] uses a relatively simple approach. The faster R-CNN network
[Ren et al., 2015] is trained on a custom, hand-labeled dataset to detect a land-
mark marked with an ”H”. The accuracy of detected landmarks reaches just
above 90%. The system is also able to determine whether the landmark is ob-
structed, and classify it as unsafe.

2.8.2 SLAD using Natural Landmarks

Natural landmarks are properties in natural terrain that can be recognized and
used to determine safe landing areas. SLAD using natural landmarks is usually
a more complex task than SLAD using artificial landmarks. One reason for this
is that artificial landmarks always have the same form, making it easier to train
computer vision systems that recognize them. Research in the field of safe land-
ing area detection using natural landmarks (unknown environments) is presented
below.
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Monocular Vision Slam-Based UAV Autonomous Landing In Emergencies and
Unknown Environments [Yang et al., 2018] is a paper using Simultaneous Lo-
calization And Mapping (SLAM) [Durrant-Whyte and Bailey, 2006] to perform
SLAD. This method first uses the Oriented FAST and Rotated BRIEF feature
tracker [Rublee et al., 2011] on multiple frames to generate coarse depth measure-
ments. These depth measurements are used to create a 3D point cloud. The 3D
point cloud is then converted into a 2D grid map. The grid map is then divided
into different regions, and the flattest region is determined to be the best landing
area. A downside of this approach is that the drone needs to fly around and scan
an area to create the depth map before SLAD can be executed.

The study A Vision-Based Guidance System For UAV Navigation and Safe Land-
ing Using Natural Landmarks [Cesetti et al., 2009] presents a SLAD system using
optical flow [Beauchemin and Barron, 1995] for depth perception. Natural land-
marks are detected using Scale Invariant Feature Transform (SIFT) [LoweDavid,
2004], which is invariant to image translation, scaling and rotation, and partially
invariant to illumination changes. First, an image sequence of the landing area
is used to find the SIFT features. These are then used to estimate the optical
flow in two successive frames. This optical flow is then used to extract depth
information from the image. This is done by using feature matching and cal-
culating the distances between the features. A flatness value of the given area
is then estimated from the depth information, and a threshold value is used to
decide if the surface has variable depth. If it does not, the area is determined to
be a safe landing area. The system is capable of estimating depth both when the
drone is flying horizontally, and when it is landing vertically. The system seems
to provide reasonable landing area recommendations. However, it is only capable
of evaluating a whole frame at the time, not a specific location. In addition, it
depends on constant movement to estimate depth, meaning the drone will have
to keep descending to evaluate the area beneath it. This can be unfavorable in
certain situations.

Automated Emergency Landing System For Drones: SafeEYE Project [Bektash
et al., 2020] uses deep learning in order to perform SLAD. A downward-facing
camera is used to capture the terrain below the drone. The image is then divided
into 78 smaller frames of 180x180 pixels. Each frame is classified by a CNN called
LeNet [Lecun et al., 1998] to either be a LandingField or NotLandingField. The
CNN is trained to classify frames with green grass fields with low color variation
as a LandingField. A problem with this approach is that it is tied to finding
green, uniform areas, which might make the system ineffective when flying over
forests. Another aspect is that at higher altitudes, the frames will cover large
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areas, and the system will therefore only classify large green plains as safe landing
zones.

Timely Autonomous Identification of UAV Safe Landing Zones [Patterson et al.,
2014] relies on Canny edge detection [Canny, 1986] in combination with ordi-
nance surveys to decide safe landing areas. It extracts features from images by
analyzing different forms of noise and including information from the ordinance
survey. It then uses a fuzzy-set classification with the categories terrain suitabil-
ity, roughness and distance to man-made features to determine an overall safety
score of a landing zone. Areas with a lot of obstacles like trees and rivers will
have many edges, while open areas with a low amount of edges will be judged by
their roughness. This way, the system is capable of correctly classifying suitable
landing areas. The weakness of the method lies in evaluating areas with complex
patterns and surfaces.

An Automatic Zone Detection System For Safe Landing of UAVs [Kaljahi et al.,
2019] uses a Gabor filter [Daugman, 1988] in eight directions to analyze an image
frame. The Gabor filter is used for texture analysis. Regions in the image that
are homogenous and plain will receive a Gabor response of low value, close to
zero. The pixels that receive a low Gabor response are regarded as a Candidate
Pixel. To eliminate spurious pixels that have been wrongly classified as candidate
pixels, Markov Chain Codes (MCC) [Puterman, 2014] are used. The MCC works
based on the fact that the states of the pixels should be defined based on the
high probabilities of neighboring pixels. The result is Candidate Regions (CR),
of which the larger is selected based on a threshold value. This process is carried
out on all eight of the resulting Gabor frames. The CRs in the different frames
are then compared using Chi-square similarity [Gagunashvili, 2009], and those
which are most similar are fused together. This results in a final, single frame that
contains the proposed safe land region. The study compares the system’s capa-
bilities to [Patterson et al., 2014], and the Gabor filter-based system seems to give
more reasonable recommendations. However, it classifies water as a safe landing
zone, as water qualifies as a homogenous and plain surface. In addition, it is not
able to correctly evaluate buildings, and struggles with images of higher altitudes.

Free LSD: Prior-Free Visual Landing Site Detection for Autonomous Planes
[Hinzmann et al., 2018] uses a comprehensive framework for SLAD for a fixed-
wing, non-VTOL drone using a downward-facing camera. Firstly, Canny edge
detection [Canny, 1986] is applied to find edges in the frames. Then, distance
transform is applied and a threshold is set. The result is a partitioning of the
original RGB frame into the regions that are similar and separated by edges, for
instance, grassy areas and fields. A binary Random Forest classifier [Breiman,



CHAPTER 2. BACKGROUND 34

2001] is then used to find which of these regions are grass. The homogenous
grass regions are then regarded as Regions of Interest (ROI). Consecutive cam-
era frames are used to determine coarse depth measurements, and the ROIs are
combined with these measurements using a Rotating Caliper algorithm [Tous-
saint, 2000] to associate an overall grade of the potential sites. These points are
given to a Fine Evaluation backend that evaluates the points using a 3D point
cloud. Finally, because this is a fixed-wing non-VTOL drone, an approach vector
is calculated using the local wind field in combination with the location of local
hazards. The approach seems to perform well, even though it is more constrained
than our research task as the drone requires a considerably larger area to land. In
addition, because of the frameworks’ dependence on edge detection, it is depen-
dent upon large rectangular areas which have a uniform color and low roughness.
This might be unfavorable in Norwegian conditions where fields often are barred
and rough.

2.8.3 Color restoration

To explore Research Question 2 regarding color restoration, we also need to
go through some previous work in this field. Color restoration is a fairly well-
explored field, and is currently dominated by neural networks.

A use-case of color restoration is in underwater photography, in which the water
creates a green or blue tint on the images depending on the depth. In the paper
UWGAN: Underwater GAN for Real-world Underwater Color Restoration and
Dehazing [Wang et al., 2019] the authors present a Unet configuration that is
capable of removing the color distortion created by the sea.

In the paper FC4: Fully Convolutional Color Constancy with Confidence-weighted
Pooling [Hu et al., 2017], researchers from Microsoft Research propose a fully
convolutional network architecture in which patches throughout an image can
carry different confidence weights according to the value they provide for color
constancy estimation. Color constancy is the problem of inferring the color of
the light that illuminated a scene, usually so that the illumination color can be
removed [Barron, 2015]. This network, called FC4, proved to be an effective
method to reduce and even remove illumination distortion from images.

In the paper An Efficient PCA–Based Color Transfer Method [Abadpour and
Kasaei, 2007], the authors propose a PCA-based color transfer method which
utilizes small sample areas of a source image and a reference image to recolor the
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source image.

The paper Color correction for multi-view images combined with PCA and ICA
[Shao et al., 2007] presents another method of correcting a source image using
a reference image using PCA and independent component analysis (ICA). This
method is intended to correct the colors of images using multiple views of the
same scene. The method is demonstrated to be capable of removing slight color
distortions in images.

In the paper Color Converting of Endoscopic Images Using Decomposition The-
ory and Principal Component Analysis [Ansari et al., 2019], the authors use PCA
to transfer the color space of a source image to a target image. In this use case,
they try to restore RGB colors to narrow-band imagery in endoscopic medical
tests. Narrow-band imaging is a technique used to improve visibility inside the
human body by increasing blue and green wavelengths.

In Section 3.3, we present a new PCA-based color restoration method inspired
by the PCA-based techniques mentioned above.
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Method

In this chapter we will explain the decisions and setup behind the individual com-
ponents that are included in our segmentation and object detection-based systems.
Towards the end of the chapter, we will explain how each of these components
are combined into the overall systems.

3.1 Drone Dataset

3.1.1 Data Collection

In order to train, validate and test the SLAD system, collecting data is a nat-
ural first step. Hence, the video that is streamed from the drone to QGC, as
described in Section 2.1.3, needs to be stored. This was carried out by creat-
ing a systemd service onboard the companion computer that listens to the video
stream on system boot. The stream capture component is depicted in Figure 3.2.
By having the service on the drone, we avoid congesting the Virtual Private Net-
work (VPN). However, this means that the captured videos need to be extracted
manually. Another risk of storing the videos onboard the companion computer
is that it might run out of storage, as the flights are very long, and hence also
the videos. The drone stores telemetry data while flying in addition to streaming
video to an operator. If the computer ran out of storage it could interfere with
the mission of the drone. This risk was mitigated by choosing a low resolution, of
320× 240, for the videos. This resolution was chosen in accordance with Aviant,
as it was low enough to not take a lot storage space, but still enough to clearly
see objects on the ground. In addition, real-time video compression was applied
to the video stream, such that 1 hour of video only required about 500MB of
memory. The videos were also routinely transferred from the companion com-

36
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(a) An image from a video collected by
NT02.

(b) An image from a video collected by
NT04.

Figure 3.1: Sample images from NT02 and NT04.

puter in order to reduce the risk of running out of storage.

The data collection was started 17th of March 2022 and lasted until the 19th
of May 2022. The stream capture service was set up on two of Aviant’s opera-
tional drones: NT02 and NT04. A total of 38 videos were collected in this time
period. The videos are from different routes, in varying weather conditions and
captured at different times of the day. All of these three factors diversify the
features of the collected data and increase the feature space. Figure 3.3 shows
all the different routes that NT02 and NT04 flew in time period stated earlier.
Table 3.1 shows when they were flown. 19th of May, during the data collection
period, NT04 became the first drone to officially cross a border between two
countries in Northern Europe [Iver Waldahl Lillegjære, 2022].

There were some issues with the captured videos. As can be seen in Figure
3.1a, the video of NT02 was detailed, but suffered from a red tint. Attempts
were made to try to remove this distortion, but the issue was a broken pin con-
nector on the camera of the drone. There were also issues with the video captured
by NT04, as can be seen in Figure 3.1b. These videos had their color intact, but
issues with the lens had created a white blur effect. In Section 3.3, we will show
how we restored the colors in the red videos of NT02 using the blurry videos
from NT04.
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Figure 3.2: Setup showing the required components within the drone to capture
video.

From To Mission path Dates

Sandmoen Haltdalen 3.3a 22.03, 22.03, 23.03, 29.03,
29.03, 01.04, 22.04, 18.05

Haltdalen Sandmoen 3.3a reversed 22.03, 22.03, 23.03, 29.03,
29.03, 01.04, 22.04, 22.04

Kongens gruve Sandmoen 3.3b 01.04
Sandmoen Kongens gruve 3.3b reversed 01.04
Sandmoen Sørungen and back 3.3c 12.04, 12.04, 13.04, 11.05

Langørjan, circles 3.3d 19.03, 19.03, 19.03, 31.03,
31.03, 04.03, 04.03, 04.03
09.05, 09.05, 10.05, 10.05

Langørjan, 8◦ test 3.3e 21.03, 21.03, 31.03

Funäsdalen Røros and back 3.3f 19.05

Table 3.1: Flights captured on video in the data collection period. The dates
marked in bold are the selected flights that were labeled and put in the dataset.
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(a) Sandmoen -
Haldtalen

(b) Kongens gruve -
Sandmoen

(c) Sandmoen -
Sørungen - Sandmoen

(d) Langørjan, circle. (e) Langørjan, 8◦ test.

(f) Funäsdalen-Røros-
Funäsdalen.

Figure 3.3: Overview of all the missions that were flown in the data collection
period (Maps from [Google Maps, 2005]).

Figure 3.4: Overview of the labeling process of the collected video.
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3.1.2 Data Labeling

The videos from the drone had to be labeled to be used in model training, vali-
dation and selection. The categories used are listed in Table 3.2. Only snow and
field are considered safe areas to land, the rest are obstacles.

Manual Labeling

To label images manually, Computer Vision Annotation Tool (CVAT) [CVAT,
2022] was set up and hosted on a Linux server owned by the authors. The
categories that were used for labeling the images are listed in Table 3.2. In
total, 11733 images were manually labeled. The categories field and trees were
special categories that determined what areas of images should be handled by
the automatic labeling system.

Automatic Labeling of Snow and Trees

In accordance with the safety procedures outlined in Section 2.1.2, a significant
portion of missions are over desolate areas to avoid risk. Consequently, most
of the obstacles in each frame of the collected data are trees. Furthermore, as
the videos were recorded in March and April, most of the ground was covered
in snow. Hence, if we consider snow-covered areas as safe for landing, there is a
stark contrast between safe landing areas and obstructed ones, as the trees are
not covered in snow. This conspicuous difference in color between trees and snow
enables a simple and automatic approach for labeling trees and snow, which ac-
counts for a substantial part of the collected data.

The technical structure of the automatic labeling system is simple, yet effec-
tive on the collected data. The process is visualized in Figure 3.5. The image is
first grayscaled, then all pixels with a value of 150 or more, in a range from 0
to 255, are labeled as snow, while the rest is labeled as trees. In the rightmost
image in the figure, this mask is overlaid on the original image. We see that this
provides a very accurate detection of the trees in the image.

Combining the Labelings

When labeling an image, we combine the manually labeled mask with the au-
tomatically labeled mask. The manually labeled mask has precedence over the
automatically labeled mask for all categories, except when the manually labeled
category is tree. Because of a limitation in CVAT which makes it impossible to
create holes in masks, trees in the middle of fields had to be manually labeled.
An example of this is the pink area in the Manually labeled mask in Figure 3.4,
which ends up being labeled more accurately by the automatic labeling system
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in the Multiclass mask image. Here, the manual labeling specifies the areas in
which the trees are located, then the automatic labeling system improves upon
this mask. Trees outside of this special case did not have to be manually labeled,
as they would be handled by the automatic labeling system.

To see why the Manually labeled mask has precedence over the Automatically
labeled mask, we consider two cases, the case where the Manually labeled mask
says that there is an object while the Automatically labeled mask do not, and the
opposite case, where the Manually labeled mask says that the area is landable
while the Automatically labeled mask says otherwise.

In the first case, we have snowy areas that are not suitable for landing, for
example if there is snow on the roof of a building. An example of this is the
snow on the building in the Original image in Figure 3.4. We see that this area is
considered to be a safe landing area in the Automatically labeled mask. Therefore,
the manual labeling is prioritized over the automatic labeling if there is a conflict
between the labeling of obstacles.

In the second case, we have dark areas that are actually safe to land on. These
are wrongfully considered to be obstacles by the automatic labeling system. In
these areas, a special field category was used in the manual labeling to signify
an area that is safe to land on. The classifications from the automatic labeling
system were then omitted in these areas. The brown area around the houses
in the Manually labeled mask in Figure 3.4 is therefore considered to be a safe
landing area in the Multiclass mask, despite the classification from the automatic
labeling system in the Automatically labeled mask.

Binary Masks

As shown in Figure 3.4, the multiclass mask is eventually merged into a binary
mask representing whether the area is safe to land on or not. The reason we
use binary masks as opposed to multi-class masks is that it is not necessary for
the models to encode the differences between obstacles. The actual information
that is valuable in our case is whether the area is safe for landing or not. The
assumption behind this decision is that it might be easier for the networks to
learn our desired behavior when it only needs to regulate two classes. This way,
no excess information is encoded into the network, but only the information that
is valuable. Furthermore, this means that the concept of obstacle may generalize
to objects that are not part of the dataset, but occur in the real world.
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Figure 3.5: Automatic labeling of trees in snow. The leftmost image is the
original, the center image is the image after being grayscaled, and the rightmost
image shows the generated tree mask on top of the original.

3.1.3 Dataset Partitioning

As the collected dataset is to be used for model training, hyperparameter tuning
and testing, it is split into three sets for training, validation and testing. A divi-
sion of approximately 70% of the images for training, 15% for validation and 15%
for testing was chosen. When deciding how to split the data, we need to consider
the distribution from which the data is sampled. As we are dealing with images
that originate from videos, the images have a temporal aspect. This means that
features that occur in one image are likely to be in preceding and succeeding ones
as well. Consequently, if the images were randomly split into three datasets, data
leakage would occur and both the validation and test set would lose their purpose.

Hence, when splitting the dataset, 30 frames directly preceding and succeeding a
chosen segment of consecutive images are discarded to alleviate this problem, as
no frames in each of the sets would have any overlap. Due to the safety require-
ments for missions, as explained in Section 2.1.2, populated areas are avoided.
This has a direct consequence on the features observed in the videos and their
temporal placement. The majority of people, buildings, vehicles and roads are
observed at the beginning and end of the videos, as the drone takes off and lands
in sparsely populated areas. While the rest of the video from the flights, which
constitutes the vast majority of the flight time, is mostly limited to the three
features: rivers, trees and snow. Hence, the normal way of dividing temporal
data into train, validation and test sets, which is to split the data into three
contiguous disjunct parts, is considered unfavorable as the feature space in each
of the datasets would then be very different from one another.

Table 3.3 shows the number of images containing different obstacles. We see
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that there are few people, power lines, roads and vehicles in the dataset. In fact,
there are only four instances of unique persons and two instances of power lines.

Category Color(RGB) Description

People 196, 30, 8 Red
Power Line 205, 120, 161 Light pink
Road 11, 236, 9 Green
Vehicle 192, 255, 193 Light green
Water 29, 26, 199 Blue
Building 206, 190, 59 Yellow
Trees 211, 80, 208 Pink
Other obstacle 68, 218, 116 Light green
Snow 0, 0, 0 Black
Field 0, 0, 0 Black

Table 3.2: The categories used when manually labelling images. Black indicates
safe landing area.

Dataset People Power line Road Vehicle Water Building Trees Other LA Total

Train 207 40 85 215 2430 1042 3651 708 6668 7532
Validation 126 0 128 0 512 108 769 27 1805 1985
Test 152 90 123 30 410 103 903 70 2096 2216
Total 485 130 336 245 3352 1253 5323 805 10569 11733

Table 3.3: Number of images containing different obstacles in the collected drone
dataset. Note that this is images in total, not unique instances. There are
multiple images of the same instance of an obstacle.

3.2 Pretraining Datasets

3.2.1 Potsdam Dataset

The Potsdam dataset [Potsdam, 2016] is a dataset of true orthophoto taken over
the german city Potsdam. It comes with labeled ground-truth masks for seman-
tic segmentation. The labeled classes include Impervious surfaces, Building, Low
vegetation, Tree, Car and Clutter/background. Because it is taken over a city, it
largely consists of images of urban environments. However, since the city is not
that dense, it also includes trees and park areas. The purpose of selecting this
dataset for pretraining was because the drone videos contained limited examples
of buildings and cars. The Potsdam dataset contains a variety of buildings and
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cars, and has a visual similarity to our own real-world data.

The dataset originally comes as 38 large patches with a resolution of 6000x6000.
A script was used to split these up into images with a resolution of 500x500. This
results in a total of 5472 images with accompanying segmentation masks. The
classes mentioned earlier were evaluated whether they could be designated as safe
landing areas. Of the classes, Impervious surfaces and low vegetation were deter-
mined to be safe landing areas, and therefore given the same color (black). The
other classes were given appropriate mask colors in accordance with Table 3.2.
Since this dataset only will be used for pretraining, a test set is not necessary. A
training/validation set split was therefore chosen at 80/20 %. An example of an
image from the Potsdam dataset can be seen in Figure 3.6.

(a) RGB image (b) Multiclass mask (c) Converted binary mask

Figure 3.6: Example image from the Potsdam dataset (Source: [Potsdam, 2016]).

Dataset People Power line Road Vehicle Water Building Trees Other LA Total

Train 0 0 0 2281 0 3277 3557 3073 4224 4266
Validation 0 0 0 553 0 818 883 742 1048 1062
Total 0 0 0 2834 0 4095 4440 3815 5272 5328

Table 3.4: Number of occurences of obstacles in the Potsdam dataset.

3.2.2 Unreal Engine 4 Dataset

The Unreal Engine dataset is an artificial dataset generated by the authors. It
contains scenes from the 3D game engine Unreal Engine [Unreal Engine, 2022].
The drone videos (Section 3.1.1) contained few examples of people, and this syn-
thetic dataset was generated for the purpose of helping the system detect people
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in the terrain.

The dataset was generated using a plug-in to Unreal Engine called Airsim [Air-
Sim, 2017]. AirSim allows us to simulate a drone camera taking pictures over a
map. In addition to taking RGB orthophotos, AirSim also provides functionality
to simultaneously generate exact masks. By specifying which objects are to be
labeled with which colors, our script can then generate a pixel-perfect mask-RGB
picture pair. The masks include objects of the categories trees, water, building,
other obstacles and people. Images with accompanying masks can be seen in Fig-
ure 3.7.

The camera was programmed to move across the map in steps, and appropriate
coordinates with different offsets were determined to avoid capturing overlapping
images. Four maps were chosen to be included in the dataset: Landscape Moun-
tains [LandscapeMountains, 2020], Stone Pine Forest [StonePineForest, 2021]
and City Park [CityPark, 2021]. These were chosen because they all imitate na-
ture, with the objective of getting a closer resemblance to the captured real-world
data. In addition, the maps provide their own respective terrains. The Landscape
Mountain map provides a snowy winter landscape, the Stone Pine Forest map
provides a pine forest, while the City Park map provides a flat park-landscape
with unique features such as buildings and playgrounds.

To further imitate the real-world data, three height intervals were set in or-
der to get images from different heights. This was done in order to replicate
the situation when the drone is taking off or landing and to simulate flight at
different heights above ground. The different elevations can be seen in Figure 3.7.

To place people on the maps, a pre-made collection of people-models called People
Pack [PeoplePack, 2019] was used. This collection of people was chosen because
it contains models of people of different sexes and ethnicities. Having a diverse
selection of people might not matter as much when the images are taken from
high altitude, as they are then only represented by a few pixels. However, when
taking images from a lower altitude, more details are visible, and it might there-
fore be beneficial to have a wider selection of people. In order to maximize the
exposure of people to the neural networks, a whole crowd of people was placed
all over the maps. This made it so that one frame could contain up to about 50
models of people.

To further add to the realism of the images, the time of day was also incor-
porated. Unreal Engine can render different lighting conditions based on the
time of day. 7 timestamps were chosen, and the images were captured once for
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each height at each timestamp. The timestamps were chosen to get a variety of
shadows in the images. The hours at night when it was darkest were not selected,
as the research in this thesis focuses on SLAD in daylight conditions. As with the
Potsdam dataset, a training/validation split of this dataset was chosen at 80/20%.

The synthetic Unreal Engine dataset and its potential weaknesses will be dis-
cussed in Section 5.2.

Figure 3.7: An example of images in the synthetic Unreal Engine dataset with
corresponding masks. The images are taken from three different elevations.

Dataset People Power line Road Vehicle Water Building Trees Other LA Total

Train 2473 0 74 0 542 345 3580 1155 3705 3729
Validation 560 0 0 0 62 104 898 273 924 924
Total 3033 0 74 0 604 449 4478 1428 4629 4653

Table 3.5: Number of occurences of obstacles in the Unreal Engine 4 dataset.
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3.3 Color Restoration using Principal
Component Analysis

The images from NT02 do not have the correct color, as illustrated in Figure
3.1a. This might be an issue, as pretraining could be less effective if the data
distributions are significantly different. Hence, we have to map the red-tinted im-
ages from NT02 to the correct colors. This poses a problem, as the ground truth
colors are unknown. Fortunately, NT04 has flown some of the same missions as
NT02. And even though these videos suffer from a white fog effect caused by the
lens, it does not have the same color issue as NT02. It is possible to exploit this
by matching similar images from flights by NT04 and NT02 and use the color
palette from the former to color the latter.

We take inspiration from the previous work on color restoration which we ex-
plored in Section 2.8.3. We did not want to apply yet another neural network
to this task, as two consecutive neural networks in the SLAD system might be
slow and unpredictable. Therefore, we present a color restoration technique using
PCA.

3.3.1 Overall Idea

To map the colors in one image to the colors of another, the authors propose
an approach where the principal components of the colors of two similar images
are calculated separately. Then the colors of the source image are transformed
to its PCA space and inversely transformed by the principal components of the
other. To generalize this mapping to unseen images, the process is repeated
several times for other pairs of similar images from the two drones, then the
mappings are averaged. In total, there are more than 16 million (2563) colors
that are possible to map from, and equally as many to map to. The colors in the
images used for mapping do not span this entire spectrum. To cover more col-
ors, a breadth-first search is employed to cascade the transitions to nearby colors.

The approach outlined above relies upon four critical assumptions:

1. The two distributions have a similar shape

2. Corresponding features in the two distributions have the same place relative
to their distribution

3. The domain of the mapping is the possible colors

4. Colors that are close to each other have a similar mapping
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The overall idea of this color mapping method is to rotate one color distribution
to another. This is what is stated in assumptions 1 and 2. The first assumption
is necessary as PCA is used to find the orientation of the color distributions. If
the shape of the distributions is not similar enough, the transformation might be
misaligned. The second assumption comes on top of the first one, in the sense
that it is not enough that the distributions have a similar shape. Features in the
images need to be placed similarly in their distributions. This means that when
we rotate one distribution to the other, similar features in the two images occupy
similar areas. The third assumption assumes the domain of the mapping function.
For this approach to work, one color has to map to another color regardless of
the colors of the surrounding pixels, the brightness of the image etc. Intuitively it
makes sense that a color always maps to another color regardless of other factors
than its color. However, it is trivial to come up with a counterexample, where
this assumption is violated. For instance, when gray scaling an image, a 3D space
of colors is mapped onto a range of grayscale by Equation 3.1, and information
is lost. Thus, mapping from the grayscale domain to the color domain would
violate the third assumption as a shade of gray maps to a plane of colors, not
just one.

g(r, g, b) = 0.3 ∗ r + 0.59 ∗ g + 0.11 ∗ b (3.1)

The last assumption is necessary to increase the domain of the mapping. The
colors in the training images are not enough to make a satisfactory mapping for
the colors in images outside the training set. This assumption means that we
can simply increase the domain of the mapping by just expanding the transfor-
mation to the nearby colors. Such an expansion would increase the domain of
the mapping cubically with the radius of the expansion, as there are three color
channels.

3.3.2 Change of Principal Components Basis

Let the cr,g,b denote a color with r, g and b as values for the amount of red, green
and blue. An image can be converted to a multiset of c, where each c corresponds
to the color of a pixel in the image. Let W f and W t be the eigenvectors of the
covariance matrices for two images that fulfill the above requirements. Then one
can transform the colors of one image to the other by first transforming the colors
to its image PCA space, then inversely transforming to the other, as given by
Equation 3.2.

crt,gt,bt = crf ,gf ,bfW
f (W t)−1 (3.2)

To get a good mapping, image pairs fulfilling assumptions 1 and 2 is necessary.
Hence, images where NT04 and NT02 flew over the same area are good can-
didates. However, even though some of the missions are identical, features in
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the images from those flights are noticeably different, as the videos from NT04
are about a month after the videos from NT02. This means that the amount
of snow present in the videos is significantly less in flights by NT04 than NT02.
Furthermore, the time of day needs to be taken into account, as shadows are a
distinct feature. Consequently, only a few images from NT02 flights share the
same features as images from NT04 flights.

Figure 3.8: Comparison of resulting colors when changing axis in the PCA color
restoration.

The signs of the principal components are arbitrary, as explained in Section 2.6
Principal Component Analysis. This means that a principal component can be
flipped. When mapping between the two color distributions, this needs to be
taken into account. Otherwise, the distribution will not be rotated correctly to
the other. Hence, the signs of the principal components in W f might have to be
changed.

As there are 3 principal components, and each one of them can either be flipped
or not, there are 8 possible transformations (23). Figure 3.8 shows all the different
ways to flip the 3 principal components. In the second row, the first principal com-
ponent is flipped, in the second and fourth column the third principal component
is flipped, and in the third and fourth column, the second principal component is
flipped. It is evident that the first principal component should not be flipped, as
the second row of images is not having the correct colors, so we can disregard this
row. Furthermore, we see that the second principal component determines the
color of the tree tops. If it is flipped they are a shade of white. Otherwise, they
are light green. Hence, we can disregard the former images. When comparing
the two remaining images, we see that the only significant difference is the color
of the snow. It either has a red or a green shade. None of them are perfect, but
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we think that the latter looks more natural.

The result is that the image in the first row and the second column is the correct
mapping from the red image in Figure 3.9. The order in which the images were
discarded might seem natural: grouping similar images and choosing the most
natural-looking. But this is linked to the variance that each principal component
explains. The first principal component encompasses the most variance, hence by
flipping this, we get entirely different images. The second principal component
is less so, resulting in somewhat different images. And the last principal compo-
nent, which explains the least amount of variance, is where we have to study the
tiny amount of snow to spot the difference.

The above approach is repeated for all pairs of images with similar features.
These reference images are depicted in Appendix B. The images selected, cover
most of the features that are seen in the videos. The images from NT02 are from
flights carried out 29.03, 01.04, 13.04 and 22.04, and the images from NT04 are
from flights carried out 09.05, 11.05 and 18.05.

The top row in Figure 3.9 shows the original red image that is used in Figure
3.8, the target image and the resulting image. The bottom row shows the scatter
plot of the colors in the images directly above. From these plots, we see that the
rightmost, final color distribution is just the first one that has been translated
and rotated in accordance with the distribution in the middle.
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Figure 3.9: PCA of image colors. The red image is captured by the NT02 drone.
The center image is a distorted image captured by the NT04 drone. The right-
most image is the original red image after applying the colors from the center
image using the color mapping technique. The bottom row shows a scatter plot
of the colors in each image. More examples of color-restored images are provided
in Appendix C.

3.3.3 Generalize to Unseen Images

Repeating the approach above means that we can get a good estimate of the
mapping from the colors that are present in the training images. As the chosen
training set is limited, and the color variation in them restricted, this mapping
does not have a sufficient domain to be able to generalize to unseen images.
Hence, to expand the domain, a breadth-first search starting from the elements
in the domain is used. A maximum euclidean distance of 5 is searched. This
expands the number of mappable pixels from 94943, the number of colors present
in the images in the left column in Figure 1, to 1392893. Thereby, increasing the
domain of the mapping by a factor of 14.6. The domain of the mapping then
covers about 8.3% of all the possible colors. This is showed in Figure 3.10. Images
in the same column display the same scatterplot from different angles, such that
the 3D structures of the distributions are clearer. The leftmost column displays
the colors in the training images from NT02 and the column to the right displays
the colors that they are mapped to. The rightmost and second rightmost columns
display the same distributions after the breadth-first search. By comparing the
rightmost columns to the leftmost columns, we see that they are identical, except
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that the former has substantially more points than the latter. The rightmost
column clearly outlines the boundaries of the mapping, as it is very visible which
colors are part of the mapping, and thus can be restored through the restoration
process. From this column, we see that shades of white, green, red, orange and
yellow are the colors that can be restored.

Figure 3.10: Scatter plots of PCA color restoration distributions.
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3.4 Converting Segmentation to Rally Points

In Section 3.1.2, we described the process of how we labeled the images we col-
lected from the drones. These labeled masks tell us where there are obstacles
in the images. However, to find the best landing area for the drone, we need
to find the areas in the masks that are as far away from obstacles as possible.
Therefore, we present a method to convert a semantic segmentation mask into a
set of landing areas.

Figure 3.11: Converting segmentation mask to specific rally points.

Figure 3.11 illustrates the different steps in this process. Starting from the left,
we have the input image and the corresponding semantic segmentation mask,
which comes as a result of the labeling process described in Section 3.1.2. From
the semantic segmentation, we find the distance to the closest obstacle for each
pixel by using a modified version of Dijkstra’s algorithm [Dijkstra, 1959] where
the cost to a node is the distance from the closest node. The result of this is an
image like the second from the right in the figure. The further away the closest
obstacle is from the pixel, the brighter the color of the pixel. By looking at this
image, we see that there is one global optimum, and several local optima. To
find the best landing area, one simply chooses the brightest pixel. The radius of
the landing area then becomes the distance from this point to the closest obstacle.

The question then becomes if other landing areas should be considered and how.
One can not simply choose the second and third brightest pixel as the second and
third best places to land, as these are often situated right next to the brightest
pixel. In that case, these points are essentially just off-center placements in the
original landing area. Hence, we choose the second-best landing area to be the
brightest pixel that is at least 1.5 times the radius of the best landing area away
from the brightest pixel. This allows for some degree of overlap between the
landing areas, while not being too close to each other. The third best landing
area then has to obey this restriction for both the best- and the second best
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landing area. This process is repeated until the best potential landing spot has
a distance of fewer than 10 pixels to the closest obstacle. 10 pixels is chosen as
this is approximately 10m when the drone is 100m above the ground. The result
of this can be seen in the rightmost image in Figure 3.11.

3.5 Pixel Geolocator

Even if we can evaluate which areas in the terrain below the drone that contains
obstacles, and which are safe for landing, this information is of little use if it is in
a format that cannot be used by the drone. Therefore, we need a way to convert
the pixels in the images into GPS coordinates. We also need to go the other way
around, from a GPS coordinate to a location on the image, in order to verify a
rally point. To do this, we introduce the pixel geolocator.

We outlined the steps for geolocating pixels and the process of going from a
GPS coordinate to a point in the image in Section 2.4. We implemented these
steps in Python. To find the correct orientation of the drone, the roll, pitch and
yaw were extracted from the drone’s gyroscope (γ, β, α). These values were used
to calculate rij(γ, β, α) from Equation 2.11. Right before the drone transitions
from multirotor mode to fixedwing mode, it rotates to face the correct orienta-
tion for the flight path. This abrupt change in yaw was used to synchronize the
metrics from the flight controller and the video stream. Furthermore, FOVh and
FOVw is measured to be 1 and 1.4, respectively.

To find the point where the ray hits the ground, we need to approximate the
elevation of the terrain, this corresponds to H(x, y) in Equation 2.14. Elevation
maps from Høydedata [Høydedata, 2017] was used for this purpose. They have
collected elevation data from Norway and created national elevation maps with
resolutions of 2500m2, 100m2 and 1m2. Due to storage considerations, the reso-
lution used for ray tracing in our case was chosen to be 100m2. This means that
for every 100m2 there is an estimate of the height above sea level. We call this
H̃(x, y) and uses this as an approximation of H(x, y), as stated in Equation 3.3.

H(x, y) ≈ H̃(x, y) (3.3)

3.5.1 Mapping from Pixels to Coordinates

By including the approximation for H, we can proceed to trace the ray to the
ground. Equation 2.14 then becomes Equation 3.4.
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pt,z = H̃(pt,x, pt,y) (3.4)

To find the t that satisfies Equation 3.4, we check the elevation of the terrain
and the height of the ray for every meter in the ray direction, until it either hits
the ground or reaches 500m. This is stated in Equation 3.5. The drone is never
more than 120m above the terrain. Meaning that the point that is straight down,
will never be more than 120m away from the drone. However, when it is in the
middle of a turn, the camera is no longer filming the ground directly below, as
the camera is following the rotation of the drone. Hence, to account for this we
chose the upper threshold for t to be 500m, as we expect that any point further
away is too noisy.

tground = min({t|H̃(pt,x, pt,y) ≥ pt,z, t ≤ 500, t ∈ N}) (3.5)

Then we need to find tground that solves Equation 3.4. Raytracing is an active
area of research, and there are several ways to optimize for performance. This is
a necessity in scenarios with high image resolution, high frame rate and multiple
reflections [Deng et al., 2017]. However, in this scenario, we only have a few rays,
a frame rate of 10 frames per second, and no reflections. Hence, to solve Equation
3.4, t is linearly spaced from 0 to 500 with a spacing of 1. The first occurence
where ptn,z ≤ H̃(ptn,x, ptn,y) is the value of t̃ground.

3.5.2 Mapping from Coordinates to Pixels

To go from a UTM coordinate to a location in an image is simpler than the above
approach, as the only ray tracing needed is to calculate where the camera ray hits
the plane in Equation 2.5. We can see an example of this mapping by looking at
the images in Figure 3.12. Figure 3.12b shows the location of the rally point in a
satellite image, while Figure 3.12a shows the resulting point when mapping from
the GPS coordinates onto an image from the drone. In the upper left corner, we
see that the drone is currently in a roll of −19◦. Figure 3.13 is a 3D view of the
drone, and illustrates the deviation between the points in Figure 3.12.
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(a) Resulting location in image (b) Actual GPS location

Figure 3.12: Comparison of points from pixel geolocator. (Rightmost image from
[Norge i bilder, 2005])

Figure 3.13: 3D view of the drone with estimated and actual locations from the
pixel geolocator. (Satellite imagery from [Norge i bilder, 2005], image of drone
provided by Aviant.)
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3.6 Segmentation

One of the techniques we will use to extract information from the images is image
segmentation. Image segmentation might be a particularly suitable technique for
safe landing area detection using monocular vision. This is because segmentation
classifies each pixel in the image, which again makes its output very rich in
information. This information can be valuable, considering we do not have any
other sensors that can evaluate the real-time state of the ground, except for a
single camera. Towards the end of this section, we will bring together the systems
presented in this chapter, and introduce the unified segmentation-based SLAD
system.

3.6.1 Tested Architectures

The segmentation architectures tested in this thesis are Unet, Swin-Transformer
and ConvNeXt.

Unet was chosen because it is one of the most implemented segmentation meth-
ods according to [Papers with code, 2018]. Even though it has been surpassed
by newer models in certain benchmarks, it can in our case serve as a valuable
benchmark to compare with.

Swin-T was chosen because it has achieved state-of-the-art performance in seg-
mentation benchmarks such as COCO and ADE20K. In addition, the swin-
transformer incorporates the relatively new concept of transformers. It is there-
fore of scientific value to evaluate whether transformers can prove beneficial in
our use case.

ConvNeXt is a new CNN-based architecture from researchers at Facebook. It
was created to match the performance of transformer-based methods while using
a more traditional CNN architecture. This model was chosen as it is of scientific
value to see how an advanced, state-of-the-art, CNN-based architecture performs
in our use case.

Both Swin-Transformer and ConvNeXt are backbones used in combination with
UPerNet [Xiao et al., 2018]. UPerNet is a perceptual parser that is capable of
considering unique characteristics such as objects, parts, materials and textures
when performing segmentation. It is used in conjunction with most state-of-the-
art backbone architectures.
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3.6.2 Training Setup

Computers

All training and testing were performed on the authors’ personal computers.
The two computers had their own discrete graphics processing units (GPU), the
Nvidia [Nvidia, 1993] RTX2070 Super and the RTX3080. Each of the systems
had 8 GB and 10 GB of graphics memory, respectively.

Ground Truth

The ground truth masks for the segmentation networks are binary masks created
from labeled images as explained in Section 3.1.2: Data Labeling.

Frameworks

For Swin-T and ConvNeXt, we used the framework MMsegmentation [MMSeg-
mentation, 2020], which had implementations of both architectures. To train
Unet, an implementation from the Segmentation Models PyTorch (SMP) library
[SMP, 2019] was used. Both MMsegmentation and SMP use PyTorch [PyTorch,
2019].

Pretraining

In order to explore the use of pretraining on synthetic data as stated in Research
Question 1, we needed to train the image segmentation networks both with and
without pretraining using the pretraining dataset presented in Section 3.2. How-
ever, since the images in the collected video contain a red hue, the color difference
between the drone videos and the pretraining dataset might be severe enough to
influence the effect of pretraining. Therefore, we also need to test the pretraining
using images that have been processed by the color restoration technique pre-
sented in Section 3.3.

This leaves us with four possible training setups that have to be tested for each
of the three segmentation networks:

1. Trained with pretraining and then on color restored images

2. Trained with pretraining and then on red images

3. No pretraining, but trained only on color restored images

4. No pretraining, but trained only on red images
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This way, we can explore both the effect of pretraining and whether the color
discrepancy between the two datasets affects the pretraining, as stated in research
question 2.

Average Precision for Obstacles

It would be useful to have a metric that captures to which extent the models
manages to detect the different types of obstacles. The AP is well suited for this
purpose, as explained in Section 2.3.1. In order to do this, we need a mask for
each type of object. However, the presented segmentation networks are trained
for single-class, binary semantic segmentation. Hence, we cannot calculate the
AP directly. On the other hand, we can go from single to multi-class if we assume
that the model correctly predicts the underlying class.

The way in which we do this is displayed in Table 3.6. When a pixel is pre-
dicted to be landable area, this also becomes the final prediction. However, if
it is predicted to constitute a part of an obstacle, the final prediction for that
pixel depends on the ground truth. If the ground truth is an obstacle, the final
prediction is that obstacle. Otherwise, the final prediction becomes the closest
obstacle to that pixel. The closest obstacle is found by breadth-first search start-
ing from the logical and of predicted obstacles and the ground truth obstacles.
This means that there might be islands in the prediction of obstacles where no
part of the island overlaps a ground truth obstacle. These islands are set to be
forests, as this is by far the most common obstacle. The effect of this might
be that the forest AP is impaired to some degree. The effect of this might be
that the forest AP is impaired to some degree. Furthermore, as we assume that
the model always correctly predicts the underlying class, this metric may have a
tendency to overestimate the performance of the models.

Obstacle of category X Landable area

Obstacle Predicted to be category X Predicted to be the closest category
Landable area Predicted to be landable area Predicted to be landable area

Table 3.6: Converting single class semantic segmentation to multi class.

Figure 3.14 shows the result of this transformation. From the rightmost and
second rightmost images, we see that most of the pixels fall into the upper left
or lower right category in Table 3.6. The upper part of the building is not a part
of the ground truth obstacle, but it is predicted as such, hence it falls into the
upper right category in the table. In the ground truth image, there are also some
trees in the lower-left corner that are missing in the prediction. These areas go
into the lower-left category in the table. There are no islands in the image.
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Figure 3.14: Converting a single class prediction to multi class.

3.6.3 Segmentation-based SLAD System

We will now combine the systems presented in this chapter to form the segmentation-
based SLAD system. The system follows the pipeline illustrated in Figure 3.15.

Firstly, the images might be processed by the color restoration module presented
in Section 3.3. However, this step is optional. The image is then given to one
of the segmentation networks presented in Section 3.6.1. This network is trained
to recognize many types of obstacles, and will produce a binary mask showing
the regions of the image that it considers to be suitable (black) and unsuitable
(white) for landing. However, these regions need to be translated into specific
points. Therefore, this mask is given to the rally point converter presented in
Section 3.4. The converter finds the points which are the furthest away from
obstacles, and therefore the most suitable landing areas for the given image. The
pixel coordinates of the safe landing areas are then given to the pixel geolocator
presented in Section 3.5, which converts these into GPS coordinates. The GPS
coordinates can then be given to the flight controller of the drone, so that the
safe landing areas can be used as rally points.
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Figure 3.15: An overview of the SLAD pipeline using the segmentation-based
approach.

3.7 Rally Point Verification

By combining the two first modules in Figure 3.15, color restoration and the seg-
mentation network, with the coordinate to pixel mapping from Section 3.5.1, we
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can automatically verify or refute rally points in the video feed when the drone
flies over them.

This is achieved by mapping several points that are in the vicinity of the rally
point to their respective locations in the image. We can then proceed to take a
logical and of this mask and the prediction from the segmentation network, then
take the sum of the result. If the sum is greater than zero, the Segmentation net-
work has predicted that there is at least one obstacle in the immediate vicinity
of the rally point. Consequently, it is classified as unsafe.

As the drone flies over the rally point, we get several images of the same rally
point from different angles. Naturally, when the drone is right above the rally
point, it would have a better view of its surrounding area than if it were far
away. This means that we need a way of combining classifications of the same
rally point from different images for a final classification. We choose the simplest
way of combining these results, which is to say that if the rally point is verified in
at least one image, then the final classification is that it is verified. This method
is undoubtedly prone to bad segmentation predictions on just a single image.
More sophisticated methods that do not have this weakness could be considered.
However, this weakness can also be mitigated by increasing the required radius
around the rally point.

A rally point is classified as either verified, refuted, partially spotted or out of
frame. Given a clearance radius, r, a rally point is said to be verified if the entire
clearance area is present in an image and simultaneously predicted safe by the
segmentation network. On the other hand, if the entire clearance area is present
in at least one image, but the segmentation network never predicts the entire
area to be safe, the rally point is refuted. If the rally point is present in at least
one image, but the entire clearance area is not, the point is considered to only be
partially spotted. No prediction from the segmentation network is used, as the
view that the drone has over the area is too bad to reliably verify or refute the
rally point. The remaining rally points, that are not present in any image, are
classified as out of frame.

3.8 Object Detection

The other technique we will use to extract information from the images is object
detection. Object detection might be a suitable technique for safe landing area
detection because these networks are created to recognize specific areas in images,
typically certain types of objects. This resembles the aim of a safe landing area
detection system, in which we want to pinpoint specific areas in an aerial image
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that are considered to be safe. This differs from image segmentation, which
typically outputs more general knowledge about the overall contents of an image.

3.8.1 Tested Architectures

Since Swin-Transformer and ConvNeXt are considered to be state-of-the-art meth-
ods also within object detection, we choose to also use these for our object
detection-based SLAD system. This way, we get a more direct comparison with-
out any major architectural differences. However, since Unet is an architecture
solely used for image segmentation, we also included the well-known object detec-
tion architecture called YOLO. This way, we can compare the segmentation-based
and object detection-based systems using two similar architectures (Swin-T, Con-
vNeXt), and one architecture that is unique to each of the techniques (Unet,
YOLO).

YOLO [Redmon et al., 2015] was chosen as it is one of the primary methods
within the field of object detection. Since its introduction in 2015, YOLO has
been one of the most implemented object detection methods according to Pa-
pers With Code [Papers with code, 2018]. According to Google Scholar [Google
Scholar, 2004], the original YOLO paper has been cited over 24000 times.

3.8.2 Training Setup

Computers

The training and testing of the object detection architectures were performed on
the same computers stated in Section 3.6.2.

Ground Truth

The ground truth target points for the object detection networks were gener-
ated using the method outlined in Section 3.4: Converting segmentation to rally
points. This method utilizes the labeled frames from Section 3.1.2: Data La-
beling to find the best landing points. Essentially, we are here trying to train
the task performed by the rally point converter in the segmentation-based SLAD
system into the object detection network.

Frameworks

For the object detection versions of Swin-T and ConvNeXt, we used the frame-
work MMdetection [MMDetection, 2018]. As explained in Section 2.2, many
versions of YOLO exists. In this thesis, we used the YOLOv5 [YOLOv5, 2020]
framework. This framework uses the base YOLOv4 [Bochkovskiy et al., 2020]
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architecture with some enhancements provided by the open-source community.
Both MMdetection and YOLOv5 use PyTorch [PyTorch, 2019].

Pretraining

When it comes to exploring whether pretraining on our pretraining dataset is
beneficial, the same situation as explained in Section 3.6.2 applies. We therefore
need to train four combinations for each of our object detection architectures,
similarly to our training setup for the image segmentation networks.

Avoidance Score

To measure how well different models avoid the different types of obstacles in the
dataset, we implemented a custom metric. The metric captures to which extent
the models tend to avoid an object type when making predictions. It goes from
0 up to 100, where lower is better. To calculate the score for a certain type of
object, we loop through the images where that type of object is present. For each
image, we count the number of bad predictions that are caused by this object
type. A prediction is considered to be bad if more than half of an instance of
that object type is inside the predicted landing area, or if the object is closer
than half the radius of the predicted landing area to the center of the predicted
landing area. The number of bad predictions is then divided by the total number
of predictions in those images. The Avoidance score is therefore the portion of
predictions that are considered bad due to a type of object.

3.8.3 Object Detection-Based SLAD System

We will now combine some of the systems presented earlier in this chapter to
form the object detection-based SLAD system. The system follows the pipeline
illustrated in Figure 3.16.

Similarily to the segmentation-based system in Section 3.6.3, the images might
firstly be processed by the color restoration system presented in Section 3.3.
However, this is optional. The image is then given to the object detection net-
work, which is trained to detect suitable landing areas in the image. The point
coordinates of the detected landing areas are then given to the pixel geolocator
explained in Section 3.5, which converts these into GPS coordinates. The GPS
coordinates can then be given to the flight controller of the drone, so that the
safe landing areas can be used as rally points.

In contrast to the segmentation-based system in Section 3.6, the approach using
object detection requires fewer parts. This is because the neural network itself
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returns a position in the video frame, which then directly can be converted into
a GPS coordinate.

Figure 3.16: An overview of the SLAD pipeline using the object detection-based
approach.



Chapter 4

Results

In this chapter, we will go through the results from each of the subsystems of
the SLAD-system architectures. We will only state the results here, and provide
discussions in Chapter 5.

4.1 Color Restoration using Principal
Component Analysis

It is difficult to find a quantitative measure of the performance of the PCA color
mapping as there are no ground truth images to compare with. Hence, the results
of the color mapper is evaluated using a qualitative comparison. To save space
in this thesis, we show a few examples in Figure 4.1, and provide a selection of
32 images in Appendix C.

Notice the artifacts in Figure 4.1c). Of the images in Appendix C, Figure 2a)
and Figure 3f), g), h), i), k) and n) contain some artifacts of various degree.
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Figure 4.1: The left column shows some of the collected images, while the right
column shows the images after the colors have been restored using the color
mapper. More examples are provided in Appendix C.

Figure 4.2: Example of one of the images used to calibrate the color mapper.
The leftmost image shows the captured video with color distortion, the center
image shows the captured color video with fog, and the rightmost image shows
the first image after the PCA color mapper was calibrated. All of the reference
images used for PCA calibration are provided in Appedix B.
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4.2 Pixel Geolocator

The accuracy of the pixel geolocator was measured by comparing the in-video
output of the system to the actual GPS location. Firstly, the GPS-locations of
65 predetermined rally points were plotted into a video using the pixel geolocator.
Then, the GPS positions were plotted in Google Maps [Google Maps, 2005] and
Norge i bilder [Norge i bilder, 2005], and compared to the resulting output in the
video. The difference between the points was then measured using the built-in
distance tool of the two map services, in addition to using an online coordinate
distance calculator [Boulter, 2004]. An overview of the deviation between the
two points is shown in Table 4.1. The average of these deviations ended up being
9.95m. Figure 4.3 shows the points from the table with the distance between
them.

Num Actual point Output point Deviation (m)

1 62.93188, 11.19731 62.93187, 11.19733 2.0
2 62.94357, 11.21108 62.94356, 11.21120 6.0
3 62.94745, 11.20906 62.94730, 11.20890 18.5
4 62.96144, 11.13444 62.96149, 11.13445 5.3
5 62.97301, 11.12270 62.97286, 11.12287 18.5
6 62.98753, 11.10556 62.98756, 11.10580 12.5
7 62.99246, 11.10019 62.99248, 11.10034 7.5
8 63.02604, 11.07394 63.02602, 11.07402 5.0
9 63.02973, 11.07134 63.02966, 11.07162 16.2
10 63.03814, 11.06302 63.03810, 11.06314 7.0
11 63.04822, 11.04285 63.04832, 11.04297 11.0
12 63.07014, 11.01214 63.07014, 11.01238 11.0
13 63.09375, 10.98386 63.09369, 10.98400 10.0
14 63.09688, 10.97554 63.09685, 10.97571 8.0
15 63.10473, 10.95232 63.10464, 10.95252 13.5
16 63.11237, 10.90525 63.11238, 10.90538 6.0
17 63.13348, 10.87976 63.13341, 10.87989 10.0
18 63.23129, 10.70259 63.23124, 10.70260 5.0
19 63.32198, 10.50547 63.32185, 10.50566 16.0
20 63.33749, 10.38170 63.33742, 10.38177 10.0
Avg 9.95
SD 4.74

Table 4.1: Overview of the accuracy of the pixel geolocator with average accuracy
and standard deviation. The points are shown in Figure 4.3.
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Figure 4.3: An overview of the accuracy measuring of the pixel geolocator. The
point coordinate written in each image is the location the system claims the blue
point is in. The red point is the actual location of the coordinate. The points
are listed in Table 4.1.
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4.3 Segmentation

Here we will provide the results from the segmentation networks. An overview
of all the models with associated information is provided in Table 4.2. Table 4.3
provides the results from the generated masks from the segmentation networks.
This table therefore provides information about the general mask predictions of
each model. Note that this is before specific landing areas are extracted from
them. To view the mask predictions from each model, see Appedix D.

Table 4.4 shows the results for the actual landing areas after being extracted
from the aforementioned masks. It is therefore the contents of this table that is
directly comparable to the results of the object detection-based system presented
in Section 4.7. To view examples of the outputs of the segmentation-based sys-
tem, see Appendix F.

Notice that the AP LA scores in Table 4.3 and 4.4 are not the same. The AP LA
scores in Table 4.3 consider the average precision of the whole mask. The AP LA
scores in Table 4.4 consider the average precision of the circular landing areas.

ID Backbone Framework Pretrained Image color
Seg Unet Res P mobilenet v2 Unet Y Restored
Seg Unet Red P mobilenet v2 Unet Y Red
Seg Unet Res mobilenet v2 Unet Restored
Seg Unet Red mobilenet v2 Unet Red
Seg SwinT Res P Swin-T UperNet Y Restored
Seg SwinT Red P Swin-T UperNet Y Red
Seg SwinT Res Swin-T UperNet Restored
Seg SwinT Red Swin-T UperNet Red
Seg CNX Res P ConvNeXt-T UperNet Y Restored
Seg CNX Red P ConvNeXt-T UperNet Y Red
Seg CNX Res ConvNeXt-T UperNet Restored
Seg CNX Red ConvNeXt-T UperNet Red

Table 4.2: Ids for segmentation models.
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ID F1 mAP AP People AP Power Line AP Road AP Vehicle AP Water AP Building AP Tree AP Other AP LA

Seg Unet Res P 91.8 65.6 0.035 24.2 62.6 94.5 86.3 94.6 87.1 43.8 97.6
Seg Unet Red P 93.7 60.0 0.035 20.0 59.2 86.4 76.6 92.5 68.7 41.0 95.9
Seg Unet Res 96.0 62.6 0.035 22.3 59.8 92.0 81.3 88.5 84.1 37.5 98.3
Seg Unet Red 92.7 63.6 0.035 23.2 64.5 92.9 81.4 89.8 87.6 35.1 98.2
Seg SwinT Res P 92.6 62.8 0.054 22.3 61.9 90.4 87.3 85.1 82.8 39.0 96.1
Seg SwinT Red P 89.3 62.9 0.035 22.5 58.8 94.1 88.3 86.1 83.0 37.4 96.3
Seg SwinT Res 93.5 61.9 0.035 22.6 56.7 92.3 88.1 86.3 83.0 32.1 96.4
Seg SwinT Red 92.0 60.6 0.035 21.7 57.2 86.2 86.3 85.2 82.1 30.7 95.8
Seg CNX Res P 92.3 64.8 0.035 22.5 62.1 94.3 86.2 86.9 84.0 50.6 96.6
Seg CNX Red P 93.2 63.8 0.054 22.2 60.0 92.4 86.1 86.4 83.5 47.7 96.1
Seg CNX Res 93.6 64.5 0.035 22.0 61.9 91.7 86.1 88.7 83.7 50.7 96.1
Seg CNX Red 91.3 63.7 0.334 22.1 59.9 92.2 84.6 87.7 83.1 47.3 96.0

Table 4.3: Results from the mask output of the segmentation networks. The
listed results indicate Average Precision (AP).

ID AP LA mAS AS People AS Power Line AS Road AS Vehicle AS Water AS Building AS Tree AS Other

Seg Unet Res P 82.2 17.0 71.1 26.0 2.2 0 5.5 0 30.8 0
Seg Unet Red P 79.6 16.2 65.5 32.2 2.0 0 0.2 0 29.3 0
Seg Unet Res 81.6 18.1 71.1 30.6 0 0 3.6 0 39.4 0
Seg Unet Red 81.8 16.6 69.4 32.0 0 0 0.9 0 30.2 0
Seg SwinT Res P 85.6 19.4 71.1 36.3 0 0 4.2 0 43.8 0
Seg SwinT Red P 81.2 20.2 71.1 36.0 0 0 0 0 54.6 0
Seg SwinT Res 84.1 20.7 71.1 36.4 0 0 3.0 0 54.9 0
Seg SwinT Red 81.3 20.0 71.1 36.0 0 0 0 0 52.8 0
Seg CNX Res P 87.2 21.1 71.1 37.9 6.5 0 0 0 53.6 0
Seg CNX Red P 81.0 21.6 71.1 38.9 6.5 0 0.1 0 56.5 0
Seg CNX Res 86.4 20.4 71.1 35.9 0.3 0 0.5 0 55.0 0
Seg CNX Red 78.9 21.6 71.1 36.2 2.5 0 0.1 0 63.0 0

Table 4.4: Results from the landing area outputs of the segmentation-based SLAD
system. The results listed are Avoidance Scores (AS) and Average Precision of
the Landing Areas (AP LA).
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Figure 4.4: Single-point predictions from the segmentation-based SLAD system.
Notice that there is a person in the upper part of the image, which is marked by
a white mask in the ground truth. None of the models manages to recognize the
person. More predictions from this system are provided in Appendix F.

4.4 Rally Point Verification

The rally point verification was tested on a flight by NT02 from Haltdalen to
Sandmoen on April 1st. In total, there were 114 rally points in the mission.
Table 4.5 lists the results from the rally point verification system. Out of all the
rally points in the mission, 50 were not present in any image when mapped by
the pixel geolocator. Furthermore, 6 and 14 points were only partially spotted
when the circle of interest was 10m and 12m, respectively. We see that out of the
remaining rally points that could be verified, the 10m threshold lead to a recall
of 67.2%, while 20m gave a recall of 36%.
From Figure 4.5 below we see a selected number of verifications and refutations of
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Clearance Recall Verified Refuted Partially Out of Total
Radius Spotted Frame

10m 67.2 39 19 6 50 114
20m 36 18 32 14 50 114

Table 4.5: Recall for rally point verification.

rally points by using Seg Unet Res P. The figure shows the different combina-
tions of classifications that are present for the video used for verification. When
a rally point is verified or partially spotted, the earliest verification or partial
spotting is displayed. If the rally point is refuted, the last frame of refutation is
shown. In 4.5a), both thresholds verify the rally point, however the 10m radius
manages to verify the rally point earlier as the entire area of the circle is inside
the frame before the 20m. We can see this as the rally point is closer to the top
in the 10m case than in the 20m case. For 4.5b), the 20m radius prevents the
entire area to be inside the image, but for the 10m radius it is inside and can
therefore be verified.

In 4.5c), circles for both distances are completely inside the frame, and the 10m
radius requirement verifies the point. However, the 20m radius refutes it because
of the trees within this threshold. In 4.5d) neither distance is ever sufficiently
within the image frame to evaluate the area. For 4.5e), the obstacles within the
10m radius leads to the point being refuted. In the 20m case, the entire area is
never completely inside the image. In 4.5f), both radii refutes the rally point.
Note that there are no instances of partially spotted-verified, partially spotted-
refuted and refuted-verified for 10m-20m as this is impossible. Additional rally
points that are either verified, refuted or partially spotted are depicted in Ap-
pendix G.
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Figure 4.5: An overview of predictions from the rally point verification system.
The leftmost column shows the hand-picked rally points. The center column
shows the points covered by a circle with a radius of 10m. The rightmost column
has circles with a radius of 20m. The points are evaluated based on the area
of the circle. If the circle is green, the rally point is considered to be safe. If
it is red, it means the point is considered unsafe. Yellow means that the entire
circle is never completely inside any images in the video, and can therefore not
be evaluated.
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4.5 Object Detection

Here we will provide the results from the object detection-based SLAD system.
An overview of all the models with associated information is provided in Table
4.6. Table 4.7 contains the avoidance scores for different categories, in addition
to the average precision of the predicted landing areas (AP LA). Table 4.8 shows
some of the best performing segmentation and object detection models, and the
sizes of the objects they fail to detect. To see the predictions from the object
detection models, see Appendix E.

ID Backbone Framework Pretrained Image color
OD Yolo Res P New CSP-Darknet53 YOLOv5s Y Restored
OD Yolo Red P New CSP-Darknet53 YOLOv5s Y Red
OD Yolo Res New CSP-Darknet53 YOLOv5s Restored
OD Yolo Red New CSP-Darknet53 YOLOv5s Red
OD SwinT Res P Swin-T Mask R-CNN Y Restored
OD SwinT Red P Swin-T Mask R-CNN Y Red
OD SwinT Res Swin-T Mask R-CNN Restored
OD SwinT Red Swin-T Mask R-CNN Red
OD CNX Res P ConvNeXt-T Cascade Mask R-CNN Y Restored
OD CNX Red P ConvNeXt-T Cascade Mask R-CNN Y Red
OD CNX Res ConvNeXt-T Cascade Mask R-CNN Restored
OD CNX Red ConvNeXt-T Cascade Mask R-CNN Red

Table 4.6: Ids for object detection models.

ID AP LA mAS AS People AS Power Line AS Road AS Vehicle AS Water AS Building AS Trees AS Other

OD Yolo Res P 82.7 22.5 73.7 45.0 0 0 2.6 0 58.6 0
OD Yolo Red P 77.8 22.1 67.1 46.6 0 0 8.4 0 49.5 0
OD Yolo Res 80.7 20.5 66.4 37.5 0 0 4.3 0 55.9 0
OD Yolo Red 79.5 20.7 69.7 38.9 0 0 3.1 0 53.7 0
OD SwinT Res P 82.4 16.6 80.2 37.7 0 0 5.0 0 10.0 0
OD SwinT Red P 82.0 16.3 74.0 36.9 0 0 6.0 0 13.8 0
OD SwinT Res 70.3 15.0 55.1 44.7 0 0 5.5 0 14.5 0
OD SwinT Red 69.3 15.2 55.1 36.0 0 0 10.3 0 20.4 0
OD CNX Res P 70.9 15.2 37.5 42.3 4.5 0 13.1 0 24.5 0
OD CNX Red P 72.2 16.6 48.1 42.4 4.1 0 12.4 0 25.7 0
OD CNX Res 70.6 16.9 63.6 38.6 0 0 10.4 0 22.9 0
OD CNX Red 72.4 12.6 21.1 35.6 7.2 0 12.6 0 24.0 0

Table 4.7: Results from the landing area outputs of the object detection-based
SLAD system. The results listed are Avoidance Scores (AS) and Average Preci-
sion of the Landing Areas (AP LA).
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ID 1− 4 5− 16 17− 64 65− 256 257− 1024 1025− 4096 4097− 16384 ≥ 16385

Seg Unet Res P 79.1 6.9 2.9 1.8 0.7 0.6 5.7 2.3
Seg CNX Res P 89.7 3.9 1.1 0.0 0.8 0.0 3.1 1.5
OD Yolo Res P 76.4 13.2 5.7 0.9 0.4 0.0 2.6 0.7
OD SwinT Res P 75.4 9.8 4.1 1.3 0.5 0.1 5.3 3.6

Table 4.8: Sizes of missed obstacles.

Figure 4.6: Predictions from the object detection-based SLAD system. Notice
that there is a person in the upper part of the image, which is causing the ground
truth areas to be split into three distinct points. None of the models manages to
recognize the person. More examples of predictions from this system are provided
in Appendix E.
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Discussion

In this chapter, we will discuss the results presented in Chapter 4 and relate them
to the research questions presented in Section 1.2. In addition, we will address
strengths and weaknesses in the technical systems and the performed research.

5.1 Drone Dataset

5.1.1 Data Collection

The data collection setup described in Section 3.1.1 proved to be a reliable and
efficient way to collect videos from the drones without any noticable performance
overhead during flight.

Since we were well within the limit of taking up too much storage space, the
resolution of the videos could have been increased. In this thesis, the data collec-
tion system was connected to a v4l2rtsp server. However, it is possible to set up
GStreamer [Gstreamer, 2004] instead. GStreamer is able to have multiple streams
with different resolutions. The result of this would have been that we could have
had a higher resolution on the collected data, while the video stream to QGC
had the same resolution. This would have enabled us to capture more detailed
videos. However, it could have interrupted the stream to Aviant’s operators.
This is because the stream with the lower quality would have to be compressed
in real-time, and the delay to QGC could increase. Still, this is something that
could have been explored.
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The red hue in videos from NT02 was believed to be due to a bad pin con-
nector. This is unfortunate, as a large portion of the collected videos was from
this drone. Attempts to check if this problem was caused by software issues
were unsuccessful. No comprehensive hardware debugging was attempted. How-
ever, measures to alleviate this issue on videos that were already captured were
prioritized, as elaborated on in Section 3.3.

5.1.2 Data Labeling

By merging manual and automatic labeling, the strengths of both approaches
were combined to create accurate ground truths. Manual labeling is the classical
way to generate ground truth labels. It was time-consuming, but yielded accurate
masks on objects that could not be labeled automatically. The automatic label-
ing approach was a very efficient way to label trees. The quality and quantity
of the masks generated by this approach are impossible to achieve with manual
labeling due to time limitations. Consequently, the combinations of these two
approaches enabled the creation of such a large dataset.

The automatic labeling system is very simple, yet effective. However, the conse-
quence of this is that in its simplicity, minor details are ignored in favor of the
general concept that darker areas are obstacles. An example of this is shown in
Figure 6a) in Appendix D. We see that, as the tree tops are so bright due to the
illumination from the sun, they are considered to be safe areas to land, which is
clearly wrong. Furthermore, shadows are sometimes considered as obstacles due
to their darker appearance. This is evidently not as bad as the former weakness,
as it is better to miss a safe landing area than it is to land on an unsafe area.
Still, this is a weakness in the labeling that needs to be improved.

5.1.3 Data Partitioning

The collected drone dataset contains representative features and is of adequate
size to train deep learning models. Furthermore, it is successfully split into three
disjoint sets in a way that prevents data leakage. However, when we look at the
dataset as a whole, it is unfortunately dominated by the winter season. This is
because of the timing of the data collection period. This may be a limiting factor
to the generalizability of the results from this dataset.
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5.2 Pretraining Datasets

Here we will discuss the dataset used for pretraining. We will also lay the ground-
work for addressing Research Question 1: Can synthetic data be beneficial in
generating rare situations when trying to train a deep learning-based system for
safe landing area detection?

5.2.1 Potsdam Dataset

The intention behind the inclusion of the Potsdam dataset was to get a more di-
verse selection of buildings, in addition to more examples of cars. It also provides
some more examples of clutter, which are regarded as other obstacles in our case.

There is a weakness regarding the Potsdam dataset. This is, that the area in
the dataset that is considered to be landable might contain obstacles. This is be-
cause the original dataset had low vegetation labeled as its own class. As stated in
Section 3.2, the area comprising low vegetation was designated as safe. This was
done because this label mainly covered flat, green areas. However, this label also
covered a small amount of bushes and low vegetation that would not be suitable
for landing. This presumably did not have a significant impact on training, as
there were not many instances of this. Taller vegetation was covered by the tree
label, which further constrained the issue.

Other missing labels in the Potsdam dataset are roads, people and power lines.
The absence of these masks is not considered to be a big issue, as the intention
behind the inclusion of this dataset was to get more training data of cars and
buildings. However, manual labeling of these missing features could have been
beneficial to get extra training samples, especially of power lines, as there are so
few examples of this in the drone dataset.

5.2.2 Unreal Engine 4 Dataset

The main purpose of the Unreal Engine 4 Dataset is to compensate for the lack
of people in the Drone Dataset and the Potsdam Dataset. It also gives a more
nuanced labeling of trees than what is provided by the automatic labeling in the
Drone Dataset, as the labeling is pixel perfect and not dependent on brightness,
but rather the actual placement of the object in the scene.

However, there are certain weaknesses regarding the people in this synthetic
dataset, for instance with the selection of people-models. Even though the mod-
els constitute a diverse selection of people, the breadth of people can always be
better. Furthermore, there is also an issue with the pose of the people. All the
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models have an unnatural pose, standing with their hands out. This reduces
the resemblance between people in the synthetic dataset and people in real-life
situations, which have all sorts of poses when they are outside.

There is also an issue with the roads in the dataset. They could not be added
to the mask due to a limitation in Unreal Engine 4 where they are a part of the
ground texture. They could therefore not be individually isolated. In Table 3.5,
the 74 frames in the dataset that contains roads are therefore depicting intersec-
tions and bridges, that are not a part of the ground texture.

Another issue could be with the height at which the images were taken. Some
images were taken at very high altitudes, making the people in the frame very
small. In certain cases, each person only constituted a few pixels of the image.
Even though three height levels were set to try to mitigate this, as stated in
Section 3.2, the images that were taken at the highest altitudes still suffer from
this. Therefore, it might have been beneficial to generate images only at low
to medium heights. This way, the dataset would be more specialized towards
its original purpose of helping the systems detect people. In addition, it would
alleviate the risk of confusing the neural networks, as it can be hard for them to
differentiate between people and features of the terrain in images taken at high
altitudes.

5.2.3 Answering Research Question 1

The Potsdam Dataset and the Unreal Engine 4 Dataset lay the foundations for
answering Research Question 1. The quality and diversity in these datasets are
essential in order to successfully learn concepts that also occur in the Drone
Dataset, but to a significantly less extent. Furthermore, this combined pretrain-
ing dataset is relatively balanced. People, vehicles and buildings appear almost
just as frequently. This is a desirable property. However, to fully answer the Re-
search Question, we first need to discuss the results from the segmentation and
object detection-based SLAD systems. We will therefore revisit this question in
Section 5.8.3.



CHAPTER 5. DISCUSSION 81

5.3 Color Restoration using Principal
Component Analysis

Here we will discuss Research Question 2: How can images with distorted colors
be restored to their original colors, and will this improve the effect of pretraining
the deep learning models?

5.3.1 Discussion of Results

It is hard to create a suitable qualitative measure of the quality of the color
mapping technique, as stated in Section 4.1. Therefore, a quantitative analysis
is performed. As we see from Figure 4.1, the color mapping has certainly been
effective, and the restored images contain more realistic colors than the raw im-
ages with red hue. However, there are still slight differences between colors in the
blurry images and the restored images. An example of this can be seen in Figure
4.2, which depicts one of the images used to calibrate the color mapper. Here we
can see the color differences of the grass and gravel in the blurry color image and
the restored image, even though this is a reference image. This is because there
is information loss in the red images, as stated by assumption 3 in Section 3.3.
Therefore, it is not possible to create a perfect mapping. Considering this, we
view this difference to be acceptable, and the results have exceeded the authors’
expectations.

Ideally, one would not require techniques like color restoration as the collected
data would provide video of adequate color accuracy to give a good mapping be-
tween collected and already existing data. In addition, any technique that alters
the colors or quality of imagery has the potential of creating defects. An example
of this is the artifacts created by our color-mapping technique, shown in Figure
4.1c). The artifacts are not that serious, and do not make the images useless
as features in the images are still clearly visible. However, they are significant
enough to potentially disturb deep-learning networks.

5.3.2 Answering Research Question 2

The color restoration technique proposed in this thesis constitutes the first step
in Research Question 2. The images with restored colors are conspicuously better
than their red counterparts. Despite this, the restoration process also introduces
artifacts, in addition to not covering the entire domain of all the colors in the
Drone Dataset. The effect this has on the neural networks is discussed in 5.6.2
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and 5.8.2 for Segmentation and Object Detection, respectively. We will provide
the final conclusion of RQ2 in Section 5.8.3, after going through these discussion
sections.

5.4 Converting Segmentation to Rally Points

Using Dijkstra’s algorithm to go from segmentation to object detection proved to
be very fast for an image of size 320 × 240. Hence, when comparing the perfor-
mance of segmentation-based approaches to object detection-based approaches,
the performance overhead of converting the segmentation predictions can almost
be neglected.

When finding the best rally points from a segmentation mask, the area that
each pixel represents is assumed to be equal for all pixels in the image. If the
drone has a flat surface underneath and a roll and pitch of both 0◦, the outermost
pixels of the image would cover more area than the central ones. So even in the
simplest case, this assumption proves false. The shortcomings of this assumption
are especially apparent when the terrain is rugged or the drone is in the middle
of a turn. The second image in Figure 4.3 depicts the latter case. However, this
is an assumption that simplifies and speeds up the calculations. The alternative
is to use the pixel geolocator, which would likely yield a result closer to the real-
world distances between obstacles. However, as the average error for geolocation
is about 10m, the resulting depth map would not be perfect.

This module does not distinguish between different obstacles in the image, it
considers an obstacle to be just that, an obstacle. This might be a fair assump-
tion as we do not want to collide into anything. However, some obstacles are
especially important to avoid. For instance, it is much worse to injure a person
than it is to hit a tree. Additionally, persons and vehicles are obstacles that
might move when the drone tries to land, while obstacles like trees, houses and
roads do not. This means that one could consider weighing distances to obstacles
when determining the best places to land, as some obstacles might move or are
less desirable to collide into.

5.5 Pixel Geolocator

Here we will discuss Research Question 3: How and with what accuracy can de-
tected landing areas be converted into geolocation coordinates? and the ability of
the associated system: the pixel geolocator.
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For SLAD systems using monocular video, converting pixels to geolocation co-
ordinates with high accuracy is especially important. This is because the whole
SLAD system is dependent on a correct and accurate conversion. If the system
finds the best landing area in the image, it is of no use if the location of this area
is altered by a subsequent system.

When locating a point from a pixel, there are errors in every sensor and measure-
ment. The intrinsic rotations, the GPS coordinates from the flight controller,
the field of view of the camera and synchronization between the video stream
and the clock of the flight controller are the sources of error that are present
when locating a point from a pixel or vice versa. As we can see in Table 4.1, the
result of this is that the pixel geolocator has an average deviation of 9.95m and
an empirical standard deviation of 4.74m. This might sound like a lot, but this
deviation is largely due to the drone being about 100m up in the air, traveling at
speeds of about 23m/s, combined with the previously mentioned sources of error.
When the drone attempts to land, the height above ground shrinks, and conse-
quently the error should too. This is because a divergence of a certain amount of
pixels translates into a shorter distance when the drone is closer to the ground.
Furthermore, this makes the argument as of why the landing area needs to be of
a certain size, as the estimation of its location is on average 9.95m off.

One could argue that the pixel geolocator not necessarily needs to be that ac-
curate at high altitudes. This is because as the drone lands, the output of the
pixel geolocator should become more accurate, and the chosen rally point should
therefore correct itself to a more accurate position. The drone could therefore
alter its landing area as it descends.

One potential improvement can be seen in Figure 4.3, in which the point from
the pixel geolocator (blue) tends to generally be further down and to the right
from the actual location (red). Tuning the pixel geolocator by moving the output
points closer to the actual points could reduce the average deviation of 9.95m.

5.5.1 Answering Research Question 3

When it comes to Research Question 3, we have found a competent method for
converting landing areas to geolocation coordinates. Even though there is room
for improvement, the pixel geolocator has been more than sufficient for us to
explore our research goal. However, before being ready for real-world use, its
accuracy would have to be improved. The potential sources of error mentioned
earlier should be tested and addressed to increase the accuracy. Still, the im-
provements lie in sensor accuracy and tuning of constants. The overall setup and
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logic behind the system would still remain the same, and it is this that constitutes
the contribution of this thesis.

5.6 Segmentation

Here we will discuss the Segmentation-based SLAD-system presented in Sec-
tion 3.6.3, and how it performs related to Research Question 1: Which deep
learning-based computer vision technique provides the best results in determining
safe landing areas?. We will also explore whether the synthetic dataset had any
effect, as mentioned in Research Question 4: Can synthetic data be beneficial in
generating rare situations when trying to train a deep learning-based system for
safe landing area detection?

5.6.1 Pretraining

The aim of the pretraining was to improve performance on the classes vehicle,
building and person. To determine whether pretraining benefited these cate-
gories, we can consider their average precision in Table 4.3.

Vehicles

When it comes to detecting vehicles, the models seem to generally benefit from
pretraining. For each of the three model-architectures, the best performing model
on vehicles is always a pre-trained model:

• Seg Unet Res P: 94.5%

• Seg SwinT Red P: 94.1%

• Seg CNX Res P: 94.3%

The Potsdam dataset, which is included in the pretraining dataset, contains many
examples of vehicles, as can be seen in Table 3.4. Therefore, this result is a strong
indicator that the models can benefit from pretraining.

Buildings

The observed benefit of pretraining when it comes to detecting vehicles does not
apply when it comes to detecting buildings. For each architecture, the best model
at detecting buildings are:

• Seg Unet Res P: 94.6%
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• Seg SwinT Res: 86.3%

• Seg CNX Res: 88.7%

Notice that Seg SwinT Res and Seg CNX Res do not contain a P, meaning they
are not pretrained. The reason why pretraining does not unequivocally improve
building detection might be because of a mapping problem. The Potsdam dataset,
which constitutes the majority of buildings in the pretraining dataset (3277/3622
occurrences, see Table 3.4 and 3.5), contains many buildings such as apartment
complexes and dense neighborhoods. These buildings might not be similar enough
to the rural houses and huts in the drone dataset. Therefore, the mapping be-
tween the buildings in the pretraining dataset and the drone dataset is too diver-
gent for the networks to benefit from pretraining. This theory is strengthened by
the fact that pretraining increases the precision of vehicle detection, as vehicles
appear the same in the Potsdam dataset and the drone dataset.

However, it must also be stated that the pretrained Unet models, Seg Unet Res P
and Seg Unet Red P seems to benefit considerably from pretraining when it
comes to detecting buildings. This could indicate that the primary problem lies
not in the similarity between the datasets, but rather in the model architectures.
Unet contains fewer trainable parameters than Swin-T and ConvNeXt, which
might make it more robust to the variations of the buildings in the Potsdam
dataset and the drone dataset.

People

The special Unreal Engine dataset was included in the pretraining dataset in
order to increase the amount of training data containing people. According to
Table 4.3 the average precision for the people category is very low, below 0.334%
for every model. The reason for this is that people detection is flawed. The
primary issue is that from high altitudes, people are so small that it is hard to
recognize that it is a person. Another issue is that because of the limited amount
of people in the drone dataset, the test set only includes a single person. As can
be seen in Table 3.3, only 152 frames in the test set contain people, and this is the
same person in all of those frames. The person is not particularly visible, and it
is therefore understandable that the networks do not manage to detect him/her.
A single image from the test-set containing the person is shown in Figure 4.4.
Even though this image is one of those in which the person is most visible, one
can barely see the person. In addition to these issues are those of the Unreal
Engine dataset mentioned in Section 5.2.2.

Considering these issues with the detection of people, and the fact that many
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of the average precisions in Table 4.3 are repeating, these values are most likely
not a result of the network managing to detect the person. They are more likely
to be a result of coincidence or randomness.

Specific class trade-off

An interesting observation when studying the results from the segmentation net-
works is that the models with the best average precision at overall landing area,
the AP LA column in Table 4.3, tends to be models that are not pretrained. The
best models when it comes to average precision of landing area are:

• Seg Unet Res: 98.3%

• Seg SwinT Res: 96.4%

• Seg CNX Res P: 96.6%

This might indicate that there is a trade-off occurring when applying pretraining.
Average precision of the other classes could be sacrificed for increased precision
in the specific classes of vehicles and buildings, as these are prevailing in the
pretraining dataset. However, this theory is weakened by Seg CNX Res P, as
this model is pretrained, and still has the highest average precision when it comes
to landing area, in addition to having the best AP score on vehicles among the
ConvNeXt models.

5.6.2 Impact of Color Restoration

When it comes to evaluating whether color restoration has an effect on the sim-
ilarity between the pretraining set and the drone dataset in the context of the
segmentation networks, we can look at the difference between the pretrained
models. As stated earlier, the pretraining dataset mostly consists of images con-
taining vehicles, buildings and people. Therefore, these are the primary classes
that should be considered when evaluating the similarity between the pretraining
dataset and the red/restored drone dataset.

The pretrained Unet models seem to benefit considerably from color-restored
images. Seg Unet Red P manages an AP of just 86.4% on vehicles, while
Seg Unet Res P achieves 94.5%. The AP score of buildings is also improved when
using restored images. The same applies to ConvNeXt. Seg CNX Red P achieves
an AP of 92.4% on vehicles, while Seg CNX Res P manages to get 94.3%. Simi-
lar to Unet, ConvNeXt also benefits from restored images when it comes to the
AP score of buildings.
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As stated in Section 5.6.1, the best models for detecting vehicles for each ar-
chitecture are all pretrained. However, one of these models is not trained on
restored images. Seg SwinT Red P has an AP of 94.1% on vehicles, which is
the highest of all the Swin-T models. Still, this model is trained on the drone
dataset with red images. The pretrained Swin-T model trained on restored images
(Seg SwinT Res P) achieves an AP of just 90.4% on vehicles. Seg SwinT Red P
also has a better AP score on buildings.

If we take the provided examples into consideration, they do not unconditionally
indicate that color restoration leads to a better mapping between the pretraining
dataset and the drone dataset. However, considering that Swin-T is a unique
architecture that includes advanced features such as self-attention, it might be
possible that color restoration is generally beneficial, just not in the case of Swin-
T. This theory is strengthened by the fact that even though Unet and ConvNeXt
have architectural differences, they both benefit from color restoration. We would
therefore consider it plausible that the color restoration leads to a better map-
ping between the pretraining dataset and the drone dataset when it comes to
segmentation.

5.6.3 Answering Research Question 1,2 and 4

In Section 5.6.1, we discussed the effect of pretraining the segmentation networks.
In this discussion, we explained that there is a weak indication that pretraining
might be beneficial for segmentation, especially when it comes to vehicles. To
also consider the pretraining results of the object detection models, we will ad-
dress Research Question 1: Can synthetic data be beneficial in generating rare
situations when trying to train a deep learning-based system for safe landing area
detection? in Section 5.8.3.

In Section 5.6.2, we discussed the impact of color restoration when pretrain-
ing the segmentation models. We explained that there is a plausible link between
color restoration and the improved effect of pretraining. We therefore take this
observation into account, and address Research Question 2: How can images with
distorted colors be restored to their original colors, and will this improve the effect
of pretraining the deep learning models? in Section 5.8.3. This way we can ad-
dress the research question after having discussed the impact of color restoration
when training the object detection networks.

When it comes to choosing which segmentation model that performs best, there
is not any clear winner. If we look at the average precision results in Table 4.3,
the model which seems to perform the best is Seg Unet Res P. The AP results
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in this table tell us about the quality of the segmentations generated by the net-
works. If we want to look at the rally point outputs of the whole SLAD system,
we need to look at Table 4.4. These values tell us about the Avoidance Score,
which represents how often there are obstacles in the predicted landing areas.
According to this table, Seg CNX Res P seems to be the best model, as this has
the best average precision when it comes to landing area (87.2). It has a bit
higher mean avoidance score (mAS) than most of the others. This is probably
because it predicts landing areas that are a bit larger than they should be. This is
also reflected in the relatively high avoidance score in the tree category. However,
landing area predictions that are a bit too large do not matter as long as they
are in the correct place. The drone will attempt to land in the center of the area,
so obstacles in the periphery of the area are not harmful. Since this model has
such a high average precision of the landing areas, this indicates that the areas
are in fact placed in favorable locations. We will take the observations regarding
this model into account, and compare them to the best object detection model
in Section 5.8.3. This way, we can answer Research Question 4: Which deep
learning-based computer vision technique provides the best results in determining
safe landing areas?.

5.7 Rally Point Verification

Here we are going to discuss the Rally Point Verification system presented in Sec-
tion 3.7 and how it performs related to Research Question 3: How effectively can
a deep learning-based system for safe landing area detection verify predetermined
landing areas?

5.7.1 Components

The rally point verification system is a combination of the segmentation sys-
tem and the pixel geolocator. Consequently, strengths and weaknesses in these
systems affect the overall performance of the combined system, the rally point
verification system.

The tested segmentation architectures perform well and are sufficient to detect
most stationary obstacles that are filmed during flight, as discussed in Section
5.6. This insight needs to be taken into account when evaluating the performance
of the rally point verification system, as it is trivial to come up with a case where
the recall of the rally point verification system is close to 100% due to the seg-
mentation system wrongfully predicting almost anywhere to be landable. This is
not the case here.
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The area that is needed to be clear of obstacles increases quadratically with
the uncertainty of the pixel geolocator, as the exact whereabouts of the rally
point is unknown, and needs to be added into the radius that needs to be clear
of obstacles. The 20m radius represents just that, the uncertainty in the pixel
geolocator in addition to the clearance radius around the rally point. As we see
from Table 4.5, the number of verified rally points are more than halved due to
the increase from 10m to 20m. Thus, even though the pixel geolocator has an ok
average deviation, decreasing the uncertainty in the pixel geolocator is something
that should be prioritized in order to improve the overall performance of the rally
point verification system.

Furthermore, we approximated the elevation of the terrain by using data from
Høydedata with a resolution of 100m2. We can actually see the consequence of
this by looking at the 20m radius in Figure 4.5 a) and b). We see that a small
piece of those circles is separated from the rest of the circle. This is due to the
height difference in the discretization in the respective areas. More conspicuous
examples of this can be seen in Appendix G. To test the effect the resolution of
the discretization has on the overall performance of the rally point verification,
one could have run the above experiment with different grid sizes. As rally points
are mostly located in flat areas, in accordance with the second desirable property
of rally points listed in Section 2.1.2, this was not believed to have a substantial
negative impact on the performance of the system. Hence, this was not tested.

5.7.2 Answering Research Question 5

Regarding Research Question 5, we see that the proposed deep learning-based
system reliably manages to verify predetermined landing areas that are directly
underneath the drone. Even though not all rally points are verified in the video,
it is possible that subsequent flights will be able to verify the rally points that
were outside the camera frame. If repeated flights do not manage to verify a
specific rally point and rather refute it, a module to notify about this behavior
could be implemented. Thus, rally points that in reality are not safe could be
automatically detected and then manually removed from the missions.

5.8 Object Detection

Here we will discuss the Object detection-based SLAD-system presented in Sec-
tion 3.8.3, and how it performs related to Research Question 1: Which deep
learning-based computer vision technique provides the best results in determining
safe landing areas?. We will also explore whether the synthetic dataset had any
effect, as mentioned in Research Question 4: Can synthetic data be beneficial in
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generating rare situations when trying to train a deep learning-based system for
safe landing area detection?

5.8.1 Pretraining

The aim of the pretraining was to improve performance on the classes vehicle,
building and person. To determine whether pretraining benefited these cate-
gories, we can consider the avoidance scores in Table 4.7.

Vehicles and Buildings

Because none of the predicted landing areas ever contained any vehicles or build-
ings, it cannot be said with certainty whether pretraining provided any benefit
for detecting these classes. This can be seen in Table 4.7, where the columns AS
Vehicle and AS Building only contain zeroes. This is in principle a good result, as
this means that all models have learned to predict landing areas that avoid these
classes. However, it allows little discussion to be made regarding pretraining.

People

The people class provided some more interesting results. Since lower is better
when it comes to Avoidance Score, we can see that none of the best models for
detecting people are pretrained. These are:

• OD Yolo Res: 66.4%

• OD SwinT Res/Red (tie): 55.1%

• OD CNX Red: 96.6%

This provides strong evidence that the object detection system has not benefited
from pretraining on our pretraining dataset when it comes to detecting people.
The reasons for this are most likely the same as outlined in Section 5.2.2 regarding
the weaknesses of the Unreal Engine dataset and the issues of the people class
mentioned in Section 5.6.1. In addition, one can see in Figure 4.6 that the object
detection-based SLAD system is not recognizing the person in the test set. The
models which do not have any predictions in this figure most likely consider the
terrain to be unsuitable for landing, as they do not consider the area next to the
person to be safe either.

Average Precision Landing Area

An interesting observation is that the average precision of the predicted landing
area compared to the ground truth seems to be positively impacted by pretrain-
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ing. This can be seen in the AP LA column in Table 4.7. The best models at
AP LA for each architecture were:

• OD Yolo Res P: 82.7%

• OD SwinT Res P: 82.4%

• OD CNX Red: 72.4%

Especially the Swin-T models seem to benefit considerably by pretraining. Both
the pretrained Swin-T models manage to get over 12 percentage points better
average precision on landing area than their non-pretrained counterparts. The
same applies to OD Yolo Res P, which has an improvement in accuracy of over
2 percentage points from the YOLO model in second place (OD Yolo Res). On
the other hand, pretraining seems to not provide any benefits to ConvNeXt, as
the best of these models is OD CNX Red.

Because of the elements discussed in the paragraphs above, it is hard to evaluate
whether pretraining actually provide any benefit when it comes to the object
detection-based SLAD system.

5.8.2 Impact of Color Restoration

To evaluate whether color restoration has an effect on the similarity between the
pretraining set and the drone dataset in the context of the object detection net-
works, we can look at the difference between the pretrained models. Also in this
case it is the classes of vehicle, building and people that should be evaluated.

As stated earlier, since the classes vehicle and building both have zero as their
avoidance score for all models, these classes cannot be considered in evaluating
whether color restoration has had any impact. We therefore need to look at
the people class. In this case, there seems to be no improvement when training
on color-restored images. The Res P network performs worse than its Red P
counterpart in the case of Yolo and Swin-T. ConvNeXt gained somewhat of an
improvement. However, it is important to consider the issues with the people
class, as some of these results could be random.

If we look at the average precision of landing area (AP LA), Yolo and Swin-
T seem to gain slight improvements from retraining on color-restored images.
OD Yolo Res P has over 5 percentage points better average precision than
OD Yolo Red P. On the other hand, ConvNeXt achieves worse performance when
trained on color-restored images.
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Considering the elements discussed above, it is hard to evaluate whether the
color restoration provides a better mapping between the drone dataset and the
pretraining dataset. We do not have any indicators that can tell us whether color
restoration has helped when it comes to detecting vehicles or buildings. Still,
the average precision of landing area seems to be positively impacted in two out
of three models. Therefore, we can consider it plausible that the color restora-
tion causes better similarity, which again makes the models benefit more from
pretraining.

5.8.3 Answering Research Question 1,2 and 4

We now return to the Research Questions mentioned in Section 5.6.3.

Research Question 1: Can synthetic data be beneficial in generating rare sit-
uations when trying to train a deep learning-based system for safe landing area
detection?
Now that we have discussed both segmentation and object detection, we can take
the results from both of these sections into account when addressing this research
question. The conclusion from Section 5.6.3 was that in case of the segmenta-
tion networks, there is a weak indication that pretraining might be beneficial.
In Section 5.8.1 regarding pretraining the object detection models, we concluded
that it is hard to evaluate. However, there is some observed benefit from pre-
training when it comes to the average precision of the landing areas. Therefore,
we conclude that the networks in general benefit slightly from pretraining on our
pretraining dataset.

However, the research question specifically focuses on the synthetic Unreal En-
gine dataset. Since we mixed the Potsdam and Unreal Engine datasets into a
combined pretraining dataset, we do not have a satisfactory method to directly
answer this research question. The purpose of the Unreal Engine dataset was to
provide more training examples of people. From the discussions in Sections 5.6.1
and 5.8.1 about pretraining and people, neither of the methods seems to have
benefited from pretraining when it comes to detecting people. Also, the prob-
lems associated with the detection of people also need to be taken into account.
Therefore, we cannot conclude whether synthetic data can be beneficial in this
context or not. This needs to be researched further. The main improvement one
can do is to have a pretraining dataset that solely consists of synthetic data. In
addition, it would be beneficial to incorporate measures to create synthetic data
that more closely resembles the real-world dataset. It is very much possible that
the application of synthetic data can provide substantial benefit, as large actors
such as Waymo and Tesla utilize synthetic data for their self-driving systems
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[Waymo, 2021] [Anyverse, 2021].

Research Question 2: How can images with distorted colors be restored to their
original colors, and will this improve the effect of pretraining the deep learning
models?
We can now answer Research Question 2, as we have discussed the impact of the
color restoration technique on training the segmentation models in Section 5.6.2
and the object detection models in Section 5.8.2.

As stated earlier, we consider the color restoration method to be a success. The
colors of the restored images are more realistic and natural than those with a red
hue. However, we also need to answer whether the color restoration provides a
better resemblance with the pretraining dataset. The anticipation was that the
models might benefit more from the pretraining if the colors in the datasets were
more similar. The conclusion in Section 5.6.2 was that in the case of the seg-
mentation models, there were clear indicators that certain models benefited from
retraining on color-restored images. The conclusion in Section 5.8.2 was that
since two out of three pretrained models achieved better results when retraining
on color restored images, we also regard the color restoration to be beneficial in
the case of the object detection models.

Because both architectures seem to have benefited from retraining on the color-
restored images, we conclude that this has been beneficial. The cases in which
the pretrained models performed worse than the non-pretrained ones might be
because of weaknesses in the pretraining dataset itself, rather than the color sim-
ilarity.

Research Question 4: Which deep learning-based computer vision technique
provides the best results in determining safe landing areas?
We can now address Research Question 4, as we have discussed the results from
each of the two SLAD systems.

The best performing object-detection model seems to be OD SwinT Res P. This
model has neither the best AP LA score, nor the best mAS. Still, it has a nice
trade-off between the two, achieving practically the same AP LA score as the best
OD model (OD Yolo Res P), with a substantially better mAS score. In addition,
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it is exceptionally effective at avoiding trees, with an avoidance score of just 10
in this category.

From Section 5.6.3, we have already established that Seg CNX Res P is the best
of the segmentation models. When we compare the best OD model with the
best segmentation model, we discover that it is not easy to determine which is
best. Even though the two SLAD systems depend on different architectures, their
results are surprisingly hard to evaluate. If we look at their stats in Table 4.4
and 4.7, we see that while Seg CNX Res P has a higher AP LA score of 87.2 vs
82.4, OD SwinT Res P has a lower mean avoidance score of 16.6 vs 21.1. This
is primarily because OD SwinT Res P is so good at avoiding trees. This means
that the OD-based SLAD system is slightly more careful when selecting points
than the segmentation-based system, most likely at the expense of landing area
size. Therefore, both of the SLAD system architectures presented in this thesis
have proven their feasibility. Further research is required into both of these ar-
chitectures to determine which is the most suitable. However, we would like to
emphasize the convenience of the segmentation-based method, as this also can
be used as part of the system to validate predetermined rally points. This is
something that is especially useful in our use case.
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Conclusion and Future
Work

6.1 Conclusion

The overall goal of this thesis was to explore the use of deep learning computer
vision techniques in the context of safe landing area detection using monocular
vision. In the pursuit of this goal, we have explored many different areas, in-
cluding color restoration and generating synthetic data. We have also created
and tested a series of subsystems: color restoration system, rally point converter,
pixel geolocator, rally point verifier, segmentation networks and object detection
networks. When combined, these subsystems constitute two functioning SLAD
systems: one dependent on image segmentation and one dependent on object
detection. Both of these SLAD systems are capable of successfully detecting
landing areas that are free of obstacles and safe for the drone to land on.

However, when it comes to the feasibility of a deep learning-based safe landing
area detection system using monocular vision, we have identified certain chal-
lenges:

• By solely using a single camera to interpret the terrain below the drone,
the elevation of the terrain is not taken into account. This could cause the
drone to land on steep slopes.

• The SLAD systems in this thesis were largely trained on images that con-
tained snow, this limits their generalizability.

• The ability of the deep learning systems to detect small features heavily

95
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depends on the resolution of the images. In our case, the resolution was
not sufficient for the system to detect people.

• The black box nature of neural networks makes their behavior unpre-
dictable. Therefore, it is not known what predictions the SLAD systems
will generate if they encounter objects they have not been trained on.

Considering these challenges, we would not consider any of the SLAD systems
presented in this thesis to be robust enough to select new rally points completely
autonomously. On the other hand, one could argue that the rally points provided
by the SLAD systems are better than some of the current, hand-picked rally
points, considering some of these are not in a safe area. Still, the safest application
of the systems presented in this thesis is probably to recommend new rally points
that then can be confirmed by a human. In addition, using the rally point
verification system, the SLAD systems can also be used to notify human operators
if a rally point seems to be obstructed, for example by new building activity or
vegetation. The systems provided in this thesis are more than capable enough to
fulfill these use-cases. For complete autonomous operation, some further work is
required.

6.2 Future Work

To further contribute to the research goal of this thesis, there exists many oppor-
tunities for improvement in future work. This includes measures to address the
challenges outlined in the conclusion above, but also in other areas.

Data from multiple sources might be beneficial when determining landing
areas. Therefore, one could explore including more cameras and sensors such as
LIDAR. With multiple cameras, one can also use techniques to extract depth
from the images. One of the strengths of the pixel geolocator is that it also
allows for geolocation conversion in the case of multiple cameras. A combined
system that utilizes both downward and forward-facing cameras could therefore
be devised. However, one of the main benefits of a monocular SLAD system is
that a single camera adds little extra weight to the drone.

More diverse data from different parts of the year so that the dataset in-
cludes more diverse terrain would be beneficial for generalizability. Another way
of achieving this could be to augment the data we already have collected, for
example by replacing the snow with fields and similar.

Increasing the resolution of the video stream can be beneficial in order to
detect smaller obstacles more reliably. In this thesis, there were limitations from
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Aviant that restricted what resolution we could choose. If we were to increase the
resolution, we would have to re-evaluate these restrictions in cooperation with
Aviant.

Automatic labeling using height data is an interesting aspect one could
explore to label even more data automatically. By including a Digital Eleva-
tion Model (DEM) in the automatic labeling system, stationary obstacles could
be detected. There exist two different kinds of DEMs. A digital surface model
includes the earth’s surface in addition to all objects on it, such as trees and
buildings. A digital terrain model includes only the surface of the earth, without
the objects on top of it [Li et al., 2005]. By looking at the difference between
these two models, one could determine where there are obstacles on top of the
ground. Since the masks we use are binary, obstacle or no obstacle, this infor-
mation could be used to automatically generate binary masks. In combination
with drone footage or satellite imagery and the pixel geolocator, this could be
used to train the SLAD system. Furthermore, one could impose restrictions on
the labeling such that only flat areas are regarded as safe for landing. To achieve
this kind of automatic labeling, the performance of the pixel geolocator would
have to be improved.
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A Literature Review Table
Paper Search Year Search term Criteria Score

Engine Limit

A survey of safe landing zone detection techniques for autonomous NTNU 2021 G2∧G3∧G5∧G6 IC: 2,3 2
unmanned aerial vehicles (UAVs)
On-board vision autonomous landing techniques for quadrotor: A survey IX 2016 G1∧G3∧G5 IC: 2,3 2
Evaluation of Safe Landing Area Determination Algorithms for NTNU 2011 G2∧G3∧G6 IC: 2,4 2
Autonomous Rotorcraft Using Site Benchmarking
Evaluation of Runtime Monitoring for UAV Emergency Landing NTNU 2022 G2∧G3∧G6 IC: 1,2,3,4 4
Automated Emergency Landing System for Drones: SafeEYE Project IX 2020 G2∧G3∧G6 IC: 1,2,3,4 4
Surface-Condition Detection System of Drone-Landing Space using IX 2020 G1∧G2∧G3 IC: 2,3,4 3
Ultrasonic Waves and Deep Learning
Visual-based Safe Landing for UAVs in Populated Areas: Real-time NTNU 2022 G2∧G3∧G6 IC: 1,2,4 3
Validation in Virtual Environments
Computer Vision for Autonomous UAV Flight Safety: An Overview and NTNU 2021 G1∧G2∧G3∧G5∧G6 IC: 1,2,3,4 4
a Vision-based Safe Landing Pipeline Example
Autonomous Detection of Safe Landing Areas for an UAV from IX 2006 G1∧G2∧G3∧G5∧G6 IC: 1,2,4 3
Monocular Images
A Vision-Based Guidance System for UAV Navigation and Safe Landing NTNU 2010 G1∧G2∧G3∧G6 IC: 1,2,4 3
Using Natural Landmarks
Vision-based UAV Safe Landing exploiting Lightweight Deep Neural Networks NTNU 2021 G1∧G2∧G3∧G6 IC: 1,2,3 3
Timely autonomous identification of UAV safe landing zones NTNU 2014 G2∧G3∧G5∧G6 IC: 1,2,3,4 4
Survey on Computer Vision for UAVs: Current Developments and Trends NTNU 2016 G1∧G2 IC: 2,3 2
Vision based autonomous landing system for UAV: A survey IX 2014 G1∧G2∧G3∧G5 IC: 1,2 2
An automatic zone detection system for safe landing of UAVs NTNU 2019 G2∧G3∧G5∧G6 IC: 1,2,3,4 4
Landing Area Recognition using Deep Learning for Unmanned IX 2020 G1∧G2∧G3 IC: 1,2,3,4 4
Aerial Vehicles
Monocular vision SLAM-based UAV Autonomous Landing in Emergencies NTNU 2018 G1∧G2∧G3∧G5∧G6 IC: 1,2,4 3
and Unknown Environments
Aerial image segmentation by use of textural features IX 2016 G1∧G2 IC: 3,4 2
LUAI Challenge 2021 on Learning to Understand Aerial Images PWC 2021 G1∧G2 IC: 3,4 3
PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation PWC 2021 G1∧G2 IC: 2,3,4 3
Semantic Segmentation Of Aerial Images With An Ensemble Of CNNs NTNU 2016 G1∧G2 IC: 3,4 2
Semantic Labeling of Large-Area Geographic Regions Using Multi-View and NTNU 2020 G1∧G2 IC: 3,4 2
Multi-Date Satellite Images and Noisy OSM Training Labels
UVid-Net: Enhanced Semantic Segmentation of UAV Aerial Videos by IX 2020 G1∧G2 IC: 2,3,4 3
Embedding Temporal Information
SPIN Road Mapper: Extracting Roads from Aerial Images via Spatial and GS 2021 G1∧G2 IC: 3,4 2
Interaction Space Graph Reasoning for Autonomous Driving
Image Segmentation using deep learning: A survey GS 2021 G1 IC: 2,3 2
Multitask Learning of Height and Semantics From Aerial Images IX 2019 G1∧G2 IC: 4 1
Map Creation from Semantic Segmentation of Aerial Images Using NTNU 2018 G1∧G2 IC: 2,3,4 3
Deep Convolutional Neural Networks
LightDenseYOLO: A Fast and Accurate Marker Tracker for Autonomous GS 2018 G1∧G2∧G3 IC: 1,2,3,4 4
UAV Landing by Visible Light Camera Sensor on Drone
Autonomous Vision-based Target Detection and Safe Landing for UAV NTNU 2018 G1∧G2∧G3∧G5∧G6 IC: 1,2,4 3
Multi-Model Estimation Based Moving Object Detection for Aerial Video GS 2015 G1∧G2 IC: 3,4 2
Development of an Automated Camera-Based Drone Landing System GS 2020 G1∧G2∧G3∧G5 IC: 1,2,4 3
Unmanned Aerial Vehicle Emergency Landing Site Identification System GS 2015 G1∧G2∧G3∧G6 IC: 1,2,4 3
using Machine Vision
Free LSD: Prior-Free Visual Landing Site Detection for Autonomous Planes GS 2015 G2∧G3∧G5 IC: 1,2,4 3
Computer vision in autonomous unmanned aerial vehicles-A systematic GS 2019 G1∧G2∧G5 IC: 2 1
mapping study

Table A: Evaluation of papers in Literature Review
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Search Engine ID URL

Oria NTNU ntnu.oria.no
IEEE Xplore IX ieeexplore.ieee.org
Google Scholar GS scholar.google.com

Papers With Code PWC paperswithcode.com

Table B: The search engines used in the literature review
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B Reference images for PCA
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Figure 1: Reference images used for PCA color restoration. The leftmost column
are the original images. The center column shows the most similar colored image,
which is used to create the target distribution. The rightmost column shows the
images with restored colors.
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C Result images from color restoration

Figure 2
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Figure 3: A selection of images showing the results from the color mapper. Unlike
the images presented in Appendix B, the color mapper has not been calibrated
on these images.
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D Masks from Segmentation Models

Figure 4
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E Results from Object Detection-based System

Figure 11
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F Results from Segmentation-based System

Figure 18
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G Rally Point Verification Examples

Figure 25
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