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Abstract

Since the advent of modern virtual reality headsets in 2016, VR has seen success
and opportunities within teaching and visualizing, and continues to increase in
popularity with standalone VR devices like the Meta (formerly Oculus) Quest 2.
Like virtual reality the idea of ray tracing is not a novel one, but it only recently
became feasible to use it in practice, and it is widely used in the movie industry
for producing high quality realistic renders. Ray tracing is also seeing real-time
applications today with technology like the Nvidia RTX graphics cards that feature
hardware support for important ray tracing processes.

Concepts within ray tracing can be difficult to learn from a book. This thesis
explored how ray tracing could be taught by utilizing VR. The PathVis application
was developed for the SteamVR platform using the Unity game engine, and lets
the user trace rays and paths interactively in VR by using a ray gun. The appli-
cation is structured as a zig-zagging hallway that introduces concepts one by one
until reaching a gallery room where the user has access to a virtual camera that
can render images with a simple path tracing rendering algorithm. The rendering
algorithm supports diffuse, reflective, refractive and emissive materials, but the
algorithm is simplistic and does not perform branching or shoot shadow rays. The
user is required to perform simple tasks to proceed through the hallway, starting
with a tutorial that teaches the user how to navigate and interact with the ap-
plication. Concepts are introduced via "booths" along the walls and the learning
material is presented as text as well as narrated audio.

User testing was conducted on two versions of the application to evaluate
the usability and whether users enjoyed this type of learning. Users felt that ray
tracing was a good use case for a VR application and enjoyed using the interactive
ray gun. The PathVis application can act as an introduction to ray tracing, and be
used as a supplement to other learning methods.

Two playthroughs of the application were recorded for demonstration pur-
poses, without narration (6:46): https://youtu.be/ho7HpW9-PHs and with nar-
ration (15:20): https://youtu.be/a7GscTKB0hw
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Sammendrag

I årene etter at moderne virtual reality headsets kom på markedet i 2016 så har VR
blitt brukt til læringsspill og visualisering med gode resultater, og populariteten
til VR fortsetter å vokse med enkeltstående enheter som Meta (tidligere Oculus)
Quest 2. Raytracing er på samme måte som VR ikke et nytt konsept, men det tok
en stund før raytracing kunne kjøres raskt nok til å kunne brukes i praksis. I dag
brukes raytracing mye i filmindustrien for å produsere realistiske bilder med 3D-
grafikk. Ny teknologi har også gjort det mulig å raytrace i sanntid, som f.eks. ved
bruk av grafikkort innen Nvidias RTX-serie som har maskinvare for å kjøre viktige
deler av prosessen innen raytracing.

Konsepter innen raytracing kan være vanskelig å lære seg fra en bok. Denne
masteroppgaven utforsket hvordan raytracing kan bli undervist ved å ta i bruk
VR. Applikasjonen PathVis ble utviklet ved bruk av Unity og kjører på SteamVR-
plattformen, og lar en bruker eksperimentere med raytracing og path tracing inter-
aktivt ved å skyte individuelle rays og paths fra en pistol (ray gun). Applikasjonen
er strukturert som en korridor som går i sikk-sakk, og konsepter innen raytracing
blir introdusert gradvis til brukeren ender opp i et større galleri-rom, hvor bruk-
eren har tilgang til et virtuelt kamera som kan rendre bilder ved bruk av en enkel
path tracing-algoritme. Algoritmen har støtte for diffuse (matte), reflektive, re-
fraktive og lysende materialer. Brukeren må utføre en rekke enkle oppgaver for å
kunne gå videre i korridoren, og blir først lært hvordan å bevege seg rundt i VR
og hvordan objekter kan plukkes opp. Konseptene bak raytracing blir introdusert
i "båser" langs veggene, og læringsmateriellet blir presentert gjennom både tekst
og tale.

Brukertesting ble gjennomført på to versjoner av PathVis for å evaluere bruk-
barheten og om brukere liker denne formen for læring. Brukerne føte at raytracing
var et godt bruksområde for VR, og likte interaktiviteten som pistolen (ray gun)
gav dem. PathVis-applikasjonen kan fungere som en introduksjon til raytracing
generelt, og kan brukes som et tillegg til andre læringsformer.

To videoer ble laget for å demonstrere applikasjonen, både uten tale (6:46):
https://youtu.be/ho7HpW9-PHs og med engelsk tale (15:20): https://youtu.
be/a7GscTKB0hw
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Chapter 1

Introduction

Since the release of the Virtual Reality headsets Oculus Rift and HTC Vive in 2016,
VR has seen a steady growth in adoption and software applications over the years
in addition to hardware improvements. Virtual reality lets the user experience a
3D environment from within instead of looking at a flat 2D projection on a screen.
This fact makes VR a great place to visualize things that are three-dimensional in
nature, with ray tracing being an example.

1.1 Motivation

Ray tracing became a household term after the introduction of Nvidias RTX line of
graphics cards, with many current and upcoming games utilizing ray tracing for
some of their graphical effects[1]. To simulate light behavior by tracing rays into
a three-dimensional scene is not a novel concept, and ray tracing as we know it
today can be traced back to the 1980s[2][3][4]. It took a while before ray tracing
caught on because of its heavy computational needs, but as hardware became
more performant and ray tracers more efficient and sophisticated, ray tracing
started seeing use in the movie industry for rendering animated movies and vi-
sual effects[5]. Today ray tracing is also being used in real-time applications like
video games for tasks that traditional rasterization techniques are inferior at, like
reflections and shadows[6][7].

Because ray tracing took so long to become performant, the TDT4230 - Graphics
and Visualization course left ray tracing out of the curriculum for some time, but
has since been added back due to the comeback of ray tracing. Learning the inner
workings of ray tracing by reading from a textbook can be difficult, so the goal
of this thesis is to implement an application that can present to a user how ray
tracing works by putting users with no prior knowledge of the topic in a virtual
3D environment where they can inspect ray tracing at their own pace and gain an
intuition for how it works and how it could be implemented in practice.

1
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1.2 Goal and Research Questions

The objective of this master thesis is to implement a 3D application that lets a
user learn about ray tracing and path tracing by interactively tracing individual
rays as well as rendering ray traced images, all within an immersive virtual reality
environment with full positional tracking. Three research question were defined
for the thesis:

• RQ1: How can virtual reality be used for teaching ray tracing?
• RQ2: Can a ray tracing rendering algorithm be visualized in virtual reality?
• RQ3: What do users think about learning in virtual reality compared to

traditional learning methods?

1.3 Contributions

There are a few examples of VR educational applications aimed at teaching com-
puter science. At the Norwegian University of Science and Technology there have
been previous master thesis projects in which VR educational application was de-
veloped and tested. One such application explored how VR could be used to teach
sorting algorithms in an algorithm and data structures course [8]. Another exam-
ple is an application that teaches concepts within artificial intelligence [9]. Both
projects were met with interest from the test users, but that the use of VR did not
always give a clear benefit in terms of learning.

Computer graphics topics tend to be visual in nature, but some concepts can be
hard to grasp when presented via text or static images. In this project, an appli-
cation was developed that allows for interactive ray tracing and path tracing in
a virtual environment. The application can introduce and visualize ray and path
tracing to users in VR. The application does not require extensive knowledge of
VR, and was tested by users who had a varying amount of existing experience
with VR. The application runs on any SteamVR-compatible VR headset such as
the HTC Vive, Meta (formerly Oculus) Quest 2, Valve Index and Windows Mixed
Reality. The Unity project for the application is available in a public repository on
Github [10]. Links to demonstration videos and a download of the final build can
be found in Section 5.1.

1.4 Thesis Structure

This report is structured as follows: Chapter Chapter 2 gives an overview of VR and
its use in teaching, followed by background theory for ray tracing and a descrip-
tion of the technology used. Chapter Chapter 3 describes the methods used for
developing the PathVis application. The design and implementation of the PathVis
application is described in detail in Chapter 4. Chapter 5 presents the results of
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the user tests and Chapter 6 discusses the results and potential improvements that
can be made.





Chapter 2

Background and Related Work

2.1 Overview

This section introduces and gives a brief history of virtual reality and instructional
games, followed by a description of the fundamentals of ray tracing. At the end is
a section on the technology used to implement the application, and related work
regarding the use of virtual reality for teaching.

2.2 Theory

2.2.1 Virtual Reality

The idea of entering a virtual reality powered by machines dates back to the 1960s,
with the Sensorama being the first implementation of such a system [11][12]. The
Sensorama showed a stereoscopic film accompanied by stereo sound, scent, wind
and vibration to engage as many senses of the viewer as possible, but it was not
an interactive system. The first Head-Mounted Display (HMD) was constructed by
Ivan Sutherland around the same time, which tracked the position and orientation
of the user’s head and could draw primitive wireframe graphics [11][12]. HMDs
became the most viable implementation of virtual reality, though there were other
approaches like CAVE that projected stereoscopic images on the walls of a room
[11]. Virtual reality saw a lot of excitement in the 1980s and 1990s but the limita-
tions of computer hardware at the time lead to disappointment, and the popularity
of virtual reality quickly faded.

VR saw a comeback in 2012 with the Kickstarter project for the Oculus Rift, as
computer graphics had become powerful enough to deliver a much better expe-
rience, and the HMD could be made very affordable [13]. The first development
version of the Oculus Rift (DK1) provided rotational tracking and a stereoscopic
view. The second development version, Oculus Rift DK2 added positional track-
ing utilizing an external camera sensor and infrared diodes on the outside of the
HMD[14]. Positional tracking adds another level of immersion, as the movement

5
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of the user in physical space corresponds to movement in the virtual space. HMDs
with only rotational tracking are referred to as having Three Degrees of Freedom
(3DoF), whereas positional and rotational tracking combined is referred to as Six
Degrees of Freedom (6DoF).

In 2015, the HTC Vive headset was revealed, featuring a different approach for
positional tracking that utilizes special sensors on the HMD that keep track of laser
pulses emitted by external base stations. This tracking system opened for a much
larger tracked area and introduced the notion of room-scale VR [15]. As gamepad
controllers are not feasible for walking around in VR, the Vive has wireless motion
controllers for each hand that are also tracked in VR space.

Both the Oculus Rift and the HTC Vive were released to the consumer market
in 2016. The Oculus rift got its own motion controllers shortly after release. In the
years that followed, many new PC VR headsets have appeared on the market or
been announced, like the Windows Mixed Reality line of headsets, Pimax, Oculus
Rift S, HTC Vive Pro and Valve Index [16].

In recent years, standalone VR has become a popular option for VR, mainly
because of accessibility and affordability of the Meta Quest 2 (formerly Oculus
Quest 2), which offers positional tracking through the use of onboard cameras,
removing the need for external sensors or base stations as well as the need for a
powerful PC. The fidelity of VR applications running on standalone VR systems is
lower than those running from a PC, as the hardware has to be small and light
enough to fit within the headset itself. For better fidelity, the Quest 2 can be used
as a PC VR headset by connecting it to a PC with a cable or wireless link.

As the virtual reality HMDs primarily display graphics, they can be categorized
by what system powers the graphics:

• Personal Computers (PCVR): These VR headsets are connected to a com-
puter that processes the tracking of the VR hardware and renders the im-
ages to be shown in the headset. HTC’s Vive line of headsets and the Valve
Index are examples of these. 6DoF tracking can be achieved either through
external sensors or onboard cameras. PCVR headsets are typically tethered
to a PC with a cable that provides the video signal and power, but some
headsets like the Vive can also use a wireless adapter. The adapter is then
responsible for transmitting the video stream wirelessly as well as powering
the headset from a battery.
• Play-Station VR (PSVR): Instead of a PC, the PSVR connects to Play-Station

gaming consoles.
• Phone VR: Mobile phones are inserted into these headsets to act as both the

display and processing system. Examples of Phone VR are Google Cardboard
and Samsung Gear VR. These typically only offer 3DoF tracking.
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• Standalone VR: These headsets have the processing system built into the
headset itself. Meta Quest 2 is an example of this, though it can also connect
to a PC to act as a PC VR headset. Connecting to a PC can be done either
through a cable or wirelessly.
• Cloud based: Similar to wirelessly streaming from a PC, it is also possible to

stream from a remote server in the cloud and to an untethered or tethered
thin client. Nvidia’s CloudXR system is an example of this, which currently
supports both tethered PCVR headsets and standalone Android-based head-
sets.

2.2.2 Instructional Computer Games

As computer technology became more affordable, it seemed inevitable that com-
puters would become a staple in homes as well as in schools. In 1980 Malone [17]
postulated that computers could be utilized in educational settings through the
use of instructional games. Examples of instructional games will be presented in
Section 2.4. For instructional games to be a success they need to be enjoyable, and
so Malone emphasized three characteristics of good computer games: challenge,
fantasy and curiosity.

The challenge in a computer game can facilitate learning, by requiring the
player to learn a skill in order to reach a goal. Goals should be clear and com-
pelling, and can be assisted by adding an element of fantasy like a story that the
player can progress through as they learn new skills. Feedback is also important,
as players must know when they are getting closer to the goal, and when they are
not. The element of curiosity motivates learning independently from the goals or
the fantasy, and curiosity can be distinguished into two categories: sensory and
cognitive. Sensory curiosity stimulates the senses of the player, which can be both
auditory and visual. Sound and visuals can be used to enhance the fantasy ele-
ment, or to provide a reward for reaching a goal. Cognitive curiosity arises from
the need of having knowledge be consistent and complete, and as such the cog-
nitive curiosity of a player can be engaged by presenting information that is new
to the player, or that somehow clashes with their existing knowledge.

2.2.3 Ray Tracing

P(t) = A+ t~b (2.1)

Ray tracing is a method of rendering 2D images from 3D scenes by tracing
"rays" for each pixel of the image until they hit surfaces in the scene (Figure 2.1).
Additional rays can then be traced towards lights and other surfaces, enabling
effects like reflection, refraction and shadows to be simulated [2].

A ray can be modeled as a line in 3D space with an origin A and a direction
vector ~b. Equation 2.1 then defines a point along the ray using the parameter t.
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Eye

Figure 2.1: Tracing rays from the eye into a scene

A ray intersects a surface if its surface equation and the ray equation 2.1 share a
point. Ray tracing can thus render parametric surfaces like spheres or planes with-
out needing to first make a mesh consisting of triangle primitives[18]. In practice
however, triangular meshes are preferred as they can be used to model any 3D
surface and the ray-triangle intersection routine can be made very efficient[19].

Distributed Ray Tracing

Early ray tracing was limited to rendering sharp shadows, sharp reflections and
sharp refraction, as lights were modeled as singular points and rays intersecting
a point on a reflective surface were always reflected in the same direction. To get
over this hurdle, Cook et al. [3] introduced distributed ray tracing in 1984, which
distributes rays in various dimensions to capture fuzzy phenomena like motion
blur, glossy reflections, blurred transparency, depth of field and penumbras (soft
shadows).

The need for distributing rays arises from the complexity of the shading func-
tion (Equation (2.2)), as described in [3]:

The intensity I of the reflected light at a point on a surface is an inte-
gral over the hemisphere above the surface of an illumination function
L and a reflection function R[1].

I(φr ,θr) =

∫

φi

∫

θi

L(φi ,θi)R(φi ,θi ,φr ,θr)dφidθi (2.2)

where
(φi ,θi) is the angle of incidence, and
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(φr ,θr) is the angle of reflection.

Early ray tracing made assumptions that simplified the reflectance and illumi-
nation functions, which in turn made it only possible to produce sharp reflections,
refractions and shadows. Distributed ray tracing solves this by shooting rays in di-
rections according to the distribution of the illumination, reflection and refraction
functions.

2.2.4 Path Tracing

Since all rendering algorithms try to simulate how light scatters between surfaces,
a generalized rendering equation (Equation (2.3)) was introduced in 1986 by
Kaiyja and James [4]:

The rendering equation is

I(x , x ′) = g(x , x ′)[ε(x , x ′) +

∫

S
ρ(x , x ′, x ′′)I(x ′, x ′′)d x ′′] (2.3)

where:
I(x , x ′) is related to the intensity of light
passing from point x ′ to point x ′

g(x , x ′) is a "geometry" term
ε(x , x ′) is related to the intensity of emitted light
from x ′ to x ρ(x , x ′, x ′′) is related to the intensity of light scattered
from x ′′ to x by a patch of surface at x ′

This equation does not attempt to model all optical phenomena but is instead a ge-
ometrical optics approximation, modeling the emission, transport and scattering
of light. Path tracing is a method that gives numerical solutions to this rendering
equation. As a monte carlo method, path tracing converges towards an approxi-
mate result by tracing paths of rays from the eye and into the scene. Many samples
are taken by tracing multiple paths for each pixel, and the results for all the paths
are averaged together into one value for each pixel. Higher number of samples
taken give less noisy images.

Motion Blur

Motion blur is the phenomenon of fast moving objects appearing blurred or smeared
in an image. In photography this happens when objects move during the time at
which the camera shutter is open. Distributed ray tracing makes motion blur pos-
sible by introducing the concept of time, and randomly distributing rays across a
period of time. Each ray checks for intersections with the scene as it appears in
a single instant of time. For this to be possible, the representation of the scene
needs to be defined across a range of time, so rays know where all the objects in
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the scene are at the time of their occurrence [3]. As results are averaged together,
areas in an image that had moving objects will show a blend between the objects
and the background.

Surface Normals

The surface normal is the vector that is normal (perpendicular) to a surface. It
is used extensively within ray tracing, and defines the direction the surface faces.
Unless stated otherwise, the normal vector is treated as a unit (normalized) vector
pointing to the outside of the surface.

Texture Coordinates

To be able to map textures onto 3D geometry, a 3D surface needs to have texture
coordinates defined across its surface. In triangular meshes, texture coordinates
are defined at each vertex and interpolated across each triangle. Texture coordi-
nates are commonly wrapped to the [0,1] range, and referred to as UVs or UV
coordinates, as the XYZ coordinates are used for the position of a vertex.

2.2.5 Materials

Surfaces in the real world have many different types of appearances; bright sur-
faces reflect more light than dark ones, glass will refract light, lamps will emit
light. When rendering surfaces of different types, it is useful to use the concept
of a material. The amount and color of the light that is reflected from a surface
depends on the properties of its material and the incident light ray.

Diffuse Materials

Diffuse materials model matte surfaces that scatter incident light randomly, inde-
pendent on the direction of the incident light ray. A perfectly diffuse material is
said to have Lambertian reflectance, and reflects incident light in all directions
equally [20]. One way to simulate Lambertian reflection is to randomly choose
the reflected light direction by picking a random point on the unit sphere offset
by the surface normal [18] as shown in Figure 2.2.

Reflective Materials

Reflective materials scatter light more prominently in some directions than others.
Perfectly reflective surfaces like mirrors always scatter the light in the direction
of the incident light ray reflected across the surface normal vector, as seen in Fig-
ure 2.3. Fuzzy reflections can be achieved by adding a small random component
to the reflected vector [18].
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Incident ray

Surface normal

Randomly chosen 

reflection direction
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Figure 2.2: Choosing a direction to send the reflected ray.
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Figure 2.3: Reflection across the surface normal.
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Incident ray
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incidence
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Figure 2.4: Refraction of a light ray entering a material.

Refractive Materials

Refraction is when a ray of light changes direction when passing into a different
material, as shown in Figure 2.4. The incident ray can enter the material, depend-
ing on the angle of incidence - the angle between the incident ray and the surface
normal. In reality these materials both refract and reflect, e.g. glass and water,
with more light being reflected as the angle of incidence increases. To simulate
refraction, each material is given an Index of Refraction (IOR) n (Equation 2.4)
which specifies the speed of light c in vacuum divided by the speed of light in the
material v.

In practice empty air is treated as having an IOR of 1.0, with common materials
like water having an IOR of 1.333 [21]. The direction of refracted light can then
be calculated using Snell’s Law (Equation 2.5) [18].

n=
c
v

(2.4)

sinθ2

sinθ1
=

n1

n2
(2.5)

Bounding Volume Hierarchies

Every traced ray needs to test for intersections with the scene. When scenes con-
tain many primitives, it is too expensive for each ray to test if it intersects with
each primitive. One solution is to first test if rays intersect with a bounding volume
before testing for ray-primitive intersections. If the ray does not intersect with the
bounding volume, it doesn’t intersect with any of the primitives contained within,
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and all the expensive ray-primitive tests are avoided. A common approach is to
use a hierarchy of axis-aligned bounding boxes [22], as the more accurately the
bounding volume represents the group of primitives, the fewer ray-primitive tests
are wasted.

2.2.6 Ray and Path tracing vs Rasterization

The power of ray and path tracing lies in its simplicity and elegance compared to
the traditional computer graphics approach. The traditional approach is to feed a
3D scene through a pipeline that performs transformations, clipping, projection,
hidden surface elimination and finally shading and texturing [22]. This rasteriza-
tion based technique for rendering has significant limitations, notably reflections,
indirect lighting and shadows [7]. In comparison, ray and path tracing has no
issues dealing with reflections, indirect light and shadows, and the simplest path
tracer needs only a well defined 3D scene with methods to test for intersections
to be able to produce realistic images [18].

The downside of ray and path tracing is the computational burden - testing for
intersections and gathering enough samples to reduce noise is expensive. Path
tracing has become the method of choice in the movie industry for its accuracy
and flexibility, and where render time is less important due to massive render
farms [5]. Recent advancements in hardware is also making real-time ray and
path tracing possible, like the Nvidia Turing architecture which features hardware
acceleration of bounding box and ray-triangle intersection tests [6][7].

2.3 Technology

2.3.1 Game Engine Chosen

To develop an application that can be viewed in a VR HMD, a game engine is
typically used. Game engines have built-in systems that handle all the core func-
tionality that makes a game run; graphics, input handling, audio playback, asset
loading and more. With a game engine a developer is able to focus on creating
the functionality that is specific to their own game or application. For VR develop-
ment, there are two common choices of game engine: Unity and Unreal Engine.
Unity is easy to pick up and works well for independent developers, whereas Un-
real Engine is more suitable for larger teams and projects. As Unity was chosen
for this project, there will not be a description of Unreal Engine.

Unity is a game engine that supports development of 2D, 3D, VR and AR soft-
ware on many different platforms. It is popular among independent developers as
the engine is free to use to develop and publish a game with, if the revenue from
the game is below a certain threshold. Learning resources are numerous thanks
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to its popularity, with many tutorials and courses available for many topics within
game development.

In Unity, development takes place in the editor (Figure 2.5), which consists
of panels that serve different purposes. The Scene Panel acts as a viewport and
shows the currently opened scene, with scenes being the context in which objects
exist. Objects can have Components attached to them depending on their role,
and the components appear in the Inspector Panel when an object is selected. The
Hierarchy Panel gives an outline of the scene, showing the names of all the objects
in a hierarchy depending on their parent-child relationships. The Project Panel is a
file browser that gives access to the assets available within the project, and assets
can be dragged into the scene from here.

The role of an object depends on the components attached to it: for an object
to be visible it needs a Renderer component, which has a pointer to a 3D mesh.
Physics is supported by having objects with Collider components. Unity comes with
many components that can be added to objects, but it is also possible to create
your own components via scripting. When a script component is attached to an
object, the developer can write code in the high-level programming language C#
which interfaces with Unity’s Scripting API.

Figure 2.5: Screenshot of the Unity Editor

2.3.2 VR Software

To make an application able to interface with VR devices, a software layer referred
to as a runtime is used. Tracking data from the hardware is relayed to the applica-
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tion to update the positions of the virtual camera and controller models. Frames
are rendered by the application and displayed in the VR HMD. The runtime is
also responsible for providing a basic environment outside of the VR application,
including the ability to display a virtual boundary at the edge of the defined play
space. Software Development Kits (SDKs) are used to develop applications for
specific VR runtimes.

When the HTC Vive and Oculus Rift launched in 2016, there were two main
choices for VR developers. The Oculus SDK could be used to develop applications
for the Oculus platform, and the OpenVR SDK integrates with the SteamVR plat-
form. The Oculus platform only officially supported Oculus devices like the Rift
and later Rift S, whereas the SteamVR platform could be used with most PCVR
devices including the HTC Vive, Oculus Rift and later also the Windows Mixed
Reality devices. The SteamVR platform was chosen for this project because of its
ability to run with any PCVR device.

SteamVR Unity Plugin

The SteamVR Unity Plugin from Valve is used to let Unity applications smoothly
interface with SteamVR [23]. The plugin is responsible for loading 3D models
for the correct VR controllers and handling the input from them. An interaction
system is included to enable developers to quickly get their application usable
within VR. To make a scene usable with SteamVR, a camera rig or Player prefab is
placed within a scene. Many other example prefabs and scenes are also included to
demonstrate how the interaction system can be used in practice. When developing
an application with this plugin, the result is a portable executable file that can be
run on any PC that has the SteamVR runtime installed.

XR Interaction Toolkit

The XR Interaction Toolkit is Unity’s own framework for developing VR and AR ap-
plications [24]. It consists of components that support many different interaction
tasks crucial for VR, including controller input handling, object grabbing, canvas
UI interaction and a VR camera rig for room-scale VR.

Many things have changed in the VR software landscape since the project of
this thesis began. When development of the prototype started, the XR interaction
toolkit was not compatible with SteamVR, and so the SteamVR plugin was chosen
for developing interactions for the application.
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2.4 Related Work

Virtual Reality in Education

Today, there are many existing educational VR applications available on popular
VR platforms such as the Oculus Store and Steam. A market analysis [25] of such
VR educational applications from 2019-2021 provides an overview of the most
popular areas for VR applications, finding that nature, space, medicine, art and
history to be the most prominently featured topics.

The content within educational VR applications is typically presented either as
360° video or 3D models. Using 3D models and environments makes it possible
to give applications a higher degree of interactivity compared to 360° video, as
well as increased immersion by the user being able to move around in the vir-
tual environment with 6DoF. The immersion and presence offered by VR opens
up new possibilities for teaching complex topics, especially those that pertain to
shapes and spatial ability [26]. Complex datasets can also be visualized in a more
manageable way with VR, like tracing neurons in microscope scans of the brain
[27] or displaying geophysical data [28]. All of these applications benefit directly
from the extra dimension that virtual reality gives, but VR can also help with data
that isn’t necessarily three-dimensional in nature, like teaching sorting algorithms
[29][8].

Many studies have explored the use of VR for learning in comparison to less
immersive technology. A review of 29 such studies found that in most cases the
use immersive virtual reality offered a benefit for the learning outcome, partic-
ularly for teaching highly complex or conceptual problems that require spatial
understanding and visualization[30]. In some studies, the immersive VR did not
offer any significant benefits over more traditional technology like a 2D video. The
novelty of VR within educational contexts mean that learning outcomes may be
hindered by users’ unfamiliarity with the technology, and needs to be considered
when comparing outcomes with other learning methods.

VirtSort

One example of a VR application that teaches a concept within computer science
is the VirtSort application by Kong and Kruke [8], which puts students into a
virtual environment where they can learn three different sorting algorithms by
interacting with boxes on a table. The application was tested with students and
showed that VR could be used as an effective tool for learning, though some users
new to VR had trouble interacting with the application in the intended way.
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Virtual Reality for AI Education

Another application that utilizes virtual reality for teaching is the one developed
by Sølve [9], which teaches concepts within artificial intelligence. The learning
material is presented within an escape room environment, and the user has to
progress through the rooms by solving 3D-puzzles, doing calculations and quizzes.
The testing of this application indicated that users appreciated 3D visualizations
of difficult concepts, as well as "learn-by-doing".





Chapter 3

Methodology

3.1 Overview

This chapter describes the research and development methods used to develop
interactive ray tracing in Unity, and how the user tests were carried out.

3.2 Research Methodology

To teach concepts of ray tracing to potential users, it was first decided that a firm
understanding of ray tracing would be needed, and the chosen method to achieve
this was to implement a standalone ray tracing application, and then evaluate
which of the concepts could be visualized in VR. The VR application was then to
be developed using an iterative development process, with user testing being used
to gain feedback and make improvements.

3.2.1 Standalone Ray Tracer

A standalone ray tracing application was implemented in C++ based on the ma-
terial from the three books Ray Tracing in One Weekend[18], Ray Tracing: The
Next Week[31] and Ray Tracing: The Rest of Your Life[32].

The ray tracer features diffuse, metallic, glass, emissive and volumetric ma-
terials, as well as motion blur, texture mapping and depth of field. The renderer
supports rendering spheres, planes and boxes by using ray-sphere and ray-plane
intersection equations. To improve performance, the OpenMP API was used to
make the rendering routine multithreaded. Figure 3.1 shows two example ren-
derings produced by the standalone ray tracer.

19
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(a) The Cornell Box

(b) Refractive, reflective, diffuse, emissive and volu-
metric materials

Figure 3.1: Example renders from the standalone ray tracer
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The standalone ray tracer implements path tracing in a simple brute force fash-
ion. For each pixel in an image, rays are traced from the camera and into the
scene. Upon hitting a surface, new rays are traced in the direction of the reflec-
tion as dictated by the material of the surface that was hit. This continues until
the max number of reflections per path is reached. As path tracing is a numeric so-
lution to the shading equation, rendering continues to trace paths for every pixel
over and over, and averages the results to give the final image. Because diffuse
reflections are essentially random, small light sources will have a low probability
of being hit, and the result is a lot of noise at low sample counts. An easy solution
to this is to make light sources large.

Due to the simplicity and compelling results given by the path tracing algorithm
in the standalone ray tracer, it was decided that the VR application developed for
this thesis should be themed around path tracing. Features from the standalone
ray tracer were implemented as C# scripts in Unity, with interactive ray tracing
functionality made possible by the use of Raycasts offered by Unity’s physics sub-
system, as presented in Section 4.4.2.

3.2.2 Iterative Development

Being a solo project, there was less need for a strict development process, but the
overall development would follow the Waterfall Model:

1. Requirements: a number of requirements were defined as to what the ap-
plication should let the user do.

2. Design: The elements of the application were designed and planned out.
3. Implementation: The features were implemented in the application and

tested on their own.
4. Testing: The overall application was to be tested by users.

The chosen game engine made rapid prototyping possible: 3D scenes were
assembled and tested in VR to confirm that basic functionality was in place. Addi-
tional features were developed and tested one by one, until a final design of the
environment and the functionality was reached. This final functionality would
then go on to be tested by users.

3.3 Stages of Development

The development of the application was split into two major stages, with the sec-
ond stage further being divided into two smaller parts for two user tests.

3.3.1 Prototype

The first stage of the project was to develop a prototype of the application that
would let users see the path tracing algorithm visualized in VR. The prototype ap-
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(a) The prototype ray gun vi-
sualizing a traced path

(b) The ray tracing camera and booths of the
prototype

Figure 3.2: The prototype application

plication featured a ray gun (Figure 3.2a) and a ray tracing camera (Figure 3.2b)
that could interactively trace rays and paths into "booths" and visualize the result.

This prototype was then to be tested by users to determine what features of
the application should be developed further. The prototype was completed in late
2020, at a time where the widespread COVID-19 pandemic made in-person user
testing impossible. Because of this, no user testing was performed on the prototype
version of the application.

3.3.2 PathVis

Development of the application continued in 2022, and with pandemic restric-
tions being lifted, in-person user testing was now possible. The environment of
the application was redesigned from a passive exploratory experience to a linear
progression based one, with new features in addition to improvements to features
already present in the prototype like the ray gun and ray tracing camera. A tutorial
was also added to make the application accessible to users who had never used
VR before, and would introduce the controls and forms of interaction.

Since the application intends to visualize and teach path tracing, the name
PathVis was chosen, and the remainder of this thesis will refer to the application
by its name. In this development stage, two user tests were conducted to evalu-
ate PathVis. The first part of this stage focused on the new linear progression and
tutorial that was tested in the first user tests. The second part used the feedback
gathered from the first user test to improve and polish the tutorial, level design
and functionality to prepare PathVis for the second user test.
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3.4 Technology

This section describes the software and hardware that was chosen for developing
PathVis. Figure 3.3 illustrates the overall development process for the project and
the relations between the chosen software.

Standalone
Ray Tracer

PathVis
application


Unity Plugin

Runtime

asset creationfeatures

Any SteamVR-compatible HMD

develop
& build


run

display

Figure 3.3: An illustration of the overall development process for the project.
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Game Engine

Unity was chosen as the game engine to use for the project, as the author has
previous experience with the engine, and it is a popular choice for newcomers to
game development. Unity allows for quick prototyping and testing of functionality,
even for VR applications.

Asset Creation

Figure 3.4: Creating the level for PathVis in Blender

While Unity has an asset store with free assets of varying quality, the free 3D
software Blender was used for creating the models and environments for PathVis
(Figure 3.4), as the author had experience with the software. Creating assets from
scratch meant that assets with consistent quality could be tailor-made for PathVis
to ensure they would perform well in VR. Blender also has support for viewing
scenes in VR, which is useful for testing rough designs of 3D environments com-
pared to viewing them on a flat 2D monitor. This feature helps identify problems
early on in the design phase, such as the height of a table being too low or too
high.

VR Platform

When development started, the author already had access to an HTC Vive system,
which features motion controllers and utilizes external base stations for positional
tracking in space. To make the application usable with as many VR HMDs as possi-
ble, it was determined that PathVis would use the SteamVR runtime, as SteamVR
supports all PC-based HMDs as well as the standalone Quest 2 via PC tethering.

The SteamVR framework with the OpenVR SDK provides an abstracted layer for
VR development, which means developers do not have to worry about differences
between VR headsets and controllers or VR runtimes. The SteamVR Plugin for
Unity features many prefabs and scripts useful for getting started quickly, as well
as example scenes that can be tested in VR.
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The choice of PC VR means that in-person testing requires more setup, depend-
ing on the headset it may necessitate setting up a PC with cables and base stations.
The advantage of PC VR is the extra power available, which would prove to be
useful for the interactive ray tracing features within PathVis.

3.5 Evaluation

This section describes the method that PathVis was tested by users. User testing
was initially planned for the prototype application as well, but the COVID-19 pan-
demic restrictions made this unfeasible. Two user tests were carried out during the
second stage of development.

3.5.1 User Testing

User testing was conducted to gain feedback on the usability and functionality
of PathVis. The target audience was initially students of computer graphics, but
throughout development it became clear that PathVis could be used as a general
introduction to ray tracing, as there are no theory-heavy goals to complete within
the application. The supervisor handled acquisition of testers, most of which had
some background within computer science. Users were observed during the test
and asked to fill out an online survey when they had completed the test.

Test stations

As PathVis requires a PC with SteamVR to run and enough space for room-scale
VR, the tests were conducted in a PC room large enough for two test stations. For
the first test station, SteamVR was installed onto one of the PCs in the room and an
HTC Vive Pro was set up with 3 base stations to provide positional tracking. The
second test station consisted of a powerful laptop connected to an Acer OJO 500.
This HMD is one of the Windows Mixed Reality headsets and provides positional
tracking by using cameras built into the HMD itself.

A virtual boundary was defined for both test stations, for the desktop station this
was done by running Room Setup in the SteamVR application and then drawing
the boundary by defining points in the room with one of the VR controllers. For
the laptop station, the boundary was defined in the Windows Mixed Reality Portal
application by moving the headset itself through space to draw the boundary.

To make sure users would not wander too far, chairs were set up between the
test stations, acting as a physical boundary in case the virtual one was ignored.
Figure 3.5 shows the test stations as they were set up for the first user test, with
the laptop test station with the Acer OJO visible on the left, and the desktop with
the Vive Pro in the back.
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Figure 3.5: The two user testing stations

Carrying out the test

When users showed up for the test, they were first asked if they had previous
experience with VR, and then given a brief introduction on how to equip and
adjust the HMD at the test station. They were then given the VR controllers and
the PathVis application was launched on the test station. The overall introduction
was short, with users finding themselves inside the application within 1 minute
after receiving the HMD.

Users were then observed both in the physical world as well as what they were
doing in the application, via the displays on the test station PCs. Upon reaching
the end of PathVis, the VR equipment was retrieved from the user, and they were
instructed to fill out the survey accessible via a QR-code link posted on the door.

3.5.2 Data Generation

To generate data for evaluation of the application, the two main methods were sur-
veys and observation. Observation would provide qualitative data, and the survey
would provide both qualitative and quantitative data. The same data generation
methods were used for both user tests.

Survey

The survey was used to gather feedback from testers in an organized way. A Sys-
tem Usability Scale (SUS) form was used to evaluate the usability of the PathVis
application. This form consists of 10 questions with five options for each. The
benefits of SUS is the ease of use, and it can give reliable results even with small
sample sizes [33].
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In addition to the SUS form, the survey has additional questions relating to
experience and interest with VR and computer graphics, as well as VR learning
potential. These also use a five option response type. To provide qualitative data,
the survey also has a number of questions that let the user answer with text. These
questions mainly asked about the users’ experience with specific features within
PathVis. The surveys for the first and second user tests were created with Google
Forms, which provides an easy way to create and conduct surveys online. The full
set of questions and statements used for the surveys are included in Appendix A.

Observation

In both user tests, users were observed during their playthrough of the application.
Both the physical behavior of the user in VR as well as their behavior inside the
PathVis application was observed. The displays on each test station would show
what the users were seeing inside the HMDs.
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Implementation

4.1 Overview

This chapter goes into detail on the development of the prototype application and
the two versions that were user tested.

4.2 Concept

The act of tracing a ray lies within the very name of ray tracing, so it was im-
mediately clear that the application needed to visualize a ray in 3D space being
traced or drawn from one point to another. With the depth perception and posi-
tional tracking that VR gives, drawing rays as lines works well. The application
also needed to introduce a number of different concepts within computer graphics
to the user, and the form chosen for this was to introduce different concepts at
different locations within the virtual application. The user would then be able to
learn and play with a concept at one location before moving to the next one.

It was decided that the user would be the one to perform ray tracing, by giving
them a ray gun that could shoot visible rays that would then interact with objects
and surfaces in the application. Most VR controllers are shaped somewhat like
a gun with a trigger button, so a virtual ray gun would make for a good virtual
depiction of the held controller.

Ray tracing and path tracing are typically used to render images of 3D scenes
with realistic shadows and light. Because of this, the application would also need
to give the user a way to render images, in the form of a virtual camera that could
be picked up and moved around. The camera would perform the same type of ray
or path tracing as the ray gun, but produce an image of a part of the virtual scene.

To bridge the gap between individual rays shot by the ray gun and a full image
rendered by a camera, the application would also need a way to visualize rays
being traced through a grid of pixels that would eventually lead to an image.

29
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4.3 Requirements

As the goal of the application was to teach ray and path tracing by visualizing it in
VR, a number of functional requirements were defined before development of the
application started. In addition, a number of non-functional requirements were
defined for the development and performance of the application.

In the second stage of development it became apparent that a tutorial was
needed to teach users how to move and interact with the virtual objects. A first
iteration of the tutorial was implemented before the first user test, and the feed-
back gathered during the test was then used to define a number of functional
requirements for the tutorial that would be tested in the second user test.

Non-Functional Requirements

• NFR1: The application should run at a high framerate in VR to avoid dis-
comfort.
• NFR2: The appearance of the virtual environment should be immersive and

comfortable.
• NFR3: Unity Prefabs should be used where possible to speed up creation

and modification of objects.
• NFR4: Script components should be generalized and reusable for many ob-

jects.

Functional Requirements

• FR1: The application should let the user trace rays interactively.
• FR2: The application should be able to visualize a traced path.
• FR3: The application should let the user render images with path tracing.
• FR4: The application should be usable with most consumer VR HMDs.

Tutorial Functional Requirements

• T-FR1: The user should be taught how to teleport themselves through virtual
space.
• T-FR2: The user should be taught how to pick up objects.
• T-FR3: The user should be taught how to teleport with objects.
• T-FR4: The user should be taught how to release objects that stick to the

hand.
• T-FR5: The user should be taught how to interact with buttons.
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4.4 Design and Implementation

This section details the development of the PathVis application. The core features
needed for interactive ray and path tracing in VR were implemented during the
prototype stage and further improved upon for the later stage of development.
Some features were changed or improved between the two user tests as well.

4.4.1 VR Functionality

When starting the project, the author already had prior experience with setting up
scenes in Unity, but needed to learn how to build an application so that it would
run with SteamVR. As mentioned in Section 2.3.2, the SteamVR plugin for Unity
comes with examples and prefabs that simplifies the process of getting an empty
scene to run in VR. A "Player" prefab from the plugin was used, which provides all
needed functionality for the application to run in SteamVR and display realistic
hand or controller models.

Locomotion

Figure 4.1: The teleportation beam

With room-scale VR, movement in physical space translates to movement in
virtual space, letting the user explore the 3D environment naturally. However, vir-
tual environments are typically larger than the defined physical bounds of a VR
play space. As such, another method is required for moving greater distances. VR
applications and games typically use one of two methods for moving (locomo-
tion): continuous movement or teleporting.
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Continuous movement is how a player character is usually moved in a non-VR
game or application, with input making the character smoothly move through
space. This is also possible in VR by having the virtual space move in relation
to the user, but can introduce motion sickness for users as it appears the floor is
moving when they are standing still.

Teleporting on the other hand moves the user through virtual space instantly,
typically with a short fade to make the transition more comfortable. This elimi-
nates the motion sickness that continuous movement causes, as the virtual space
remains still at all times except during the faded transition. To make PathVis ac-
cessible to users who are new to VR, it was decided that teleportation would be
the type of locomotion used.

The SteamVR plugin includes a prefab for teleporting, which handles controller
bindings and lets surfaces be defined as areas that a user can teleport onto. Tele-
porting is performed by pressing a button on the VR controller to initiate a telepor-
tation beam that can be aimed at a point on the floor the user wishes to teleport
as shown in Figure 4.1. The beam also shows an outline of where the new virtual
bounds of the play space will be after teleporting. When releasing the button, the
user is teleported to the new space with a short fade transition. For a surface to be
eligible for teleporting, it requires a Teleport Area component from the SteamVR
plugin. These components can be locked and unlocked at run-time, making it easy
to control the areas that a user is allowed to go to.

Interaction

Figure 4.2: Interacting with virtual buttons and objects

Interacting with objects or user interfaces in VR can be done in a number of
ways. One method is to implement a 2D user interface on a wall and then make it
interactable with virtual laser pointers on the VR controllers. Another method is
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to model physical 3D buttons that the user can press by touching the button with
the virtual hand model.

The examples included with the SteamVR plugin typically implemented but-
tons as objects with an Interactable and a Throwable component. The Throwable
component gives the object the ability to be picked up, dropped and thrown, but
can also call functions when the object is picked up. Buttons in PathVis were made
with this component by having the object not attach to the hand when it is "picked
up". To operate such a button, the user presses a button on the VR controller when
the virtual hand is close enough to the virtual button for a highlight to appear, as
shown in Figure 4.2.

With the Throwable component, carrying an object requires the user to keep
holding a button on the VR controller, which can be straining for objects that
should be carried for longer times. To solve this, a new ToggleThrowable compo-
nent was made that extends the existing functionality of the Throwable compo-
nent, by letting the "held" state be a toggle. When the user releases the button
that was used to pick up the object, the object remains attached to the hand, and
a different button can be pressed to release the object again. This would be used
for the ray gun (Section 4.4.7) as this object was to be carried for longer periods
of time by the user.

4.4.2 Interactive Ray Tracing

With interactive ray tracing being a goal for PathVis, the application needed a
way to perform ray tracing in real time. One way to trace rays in Unity is to use a
Raycast. Raycasts shoot rays from a point and check for intersections with physics
Colliders present in the scene [34]. Information about successful ray intersections
are stored in a RaycastHit data structure. Of particular interest for image render-
ing are the normal (Vec3), point (Vec3) and textureCoord (Vec2) values of the Ray-
castHit, as these are essential for the path tracing algorithm that is implemented
in PathVis.

To visualize path tracing intuitively, it was decided that the ray traced 3D scene
would also be displayed in VR and lit with precomputed (baked) lighting, so that
the ray traced image mostly matches the scene in the VR environment the user is
already exploring. To avoid having the path tracing algorithm render everything
in the VR scene, the path tracing only checks for intersections on objects that
have a custom RaytracingParticipator component. This component also defines
the material properties used for the interactive ray tracing, including material type
(Lambertian, Mirror, Refractive, Lamp) and material-specific values like roughness
for mirrors and IOR for refractive materials.
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Figure 4.3: An overview of the interactive ray tracing system used in PathVis
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Interactive ray tracing was implemented in two script components: VisualTracer
and RasterPixels. The VisualTracer component is used for tracing individual paths
of rays and visualizing them as lines, whereas the RasterPixels component is used
for tracing many paths for image rendering. These scripts use a simplified version
of the path tracing algorithm from the standalone ray tracer. The scripts use ray-
casts to check for intersections with objects and read the values of RaytracingPar-
ticipator components to determine where to shoot the next ray in a path. The max
number of bounces per path was made configurable, but set to 6 by default. To
avoid booths interfering with each other, the max ray length was set to 5 meters,
and an invisible barrier was added to prevent rays from exiting booths. Figure 4.3
gives an overview of the overall components used to implement interactive ray
tracing.

As Raycasts only detect intersections with the outside of a physics collider, re-
fraction is made more difficult to implement. The refraction when a ray enters an
object is detected correctly, but there is no refraction when a ray exits an object.
To solve this problem, refractive objects in PathVis were given an additional inside
collider, with the surface normals pointing in the opposite direction. For correct
refraction, the inside collider uses a RaytracingParticipator with an IOR value that
is inverse of the IOR in the outside collider.

LineRenderer components are used to make rays visible in 3D space. These com-
ponents draw a line between two or more points, with the color and width being
configurable both from within the Unity editor and via custom scripts. In the pro-
totype application, the visualized paths were drawn instantly as soon as the path
tracing algorithm finished. To make the rays and paths be drawn gradually from
the origin, the drawing was put into a coroutine that updates positions of the end-
points in LineRenderer components every frame. The path is still traced instantly
however, which is not a problem with scenes that are mostly static.

4.4.3 Prototype Level Design

To demonstrate different concepts within computer graphics and how they are
used in ray and path tracing, the environment in the prototype version of the
application was designed as a museum-like hallway with "booths" cut into the
walls. Each booth would introduce a concept or graphical effect and let the user
experiment by interacting with the ray gun and ray tracing camera.

The prototype environment consisted of eight booths along the walls of a big
hall, with each booth featuring a different scene. The big hall was made to appear
somewhat realistic in its visuals, with the intention that users would feel immersed
and experience a form of sensory curiosity when exploring each exhibit.
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Figure 4.4: The prototype application level design

4.4.4 Tested Level Designs

Figure 4.5: The level used in the first user test.

With the prototype being a purely exploratory experience and no goals to be
fulfilled, the level design was redesigned into a more linear sequence of booths
separated by gates that required goals to be completed before the user could
progress. Figure 4.5 and Figure 4.6 give an overview over the levels that were
used in the user tests.

Instead of a straight hallway with booths on each side, the hallway was turned
into a series of 90-degree turns, with a booth cut into the wall at each turn. This
made the booths more visible to the user while progressing through the applica-
tion, and at the same time prevented the user from having to turn 180 degrees to
see a new booth. Colored stripes in the theme of the Cornell Box were added to
the walls to make corners more visible, with the left walls being colored red and
the right walls colored green as shown in Figure 4.7.



Chapter 4: Implementation 37

Figure 4.6: The level used in the second user test.

The gallery-like presentation of the prototype was reduced to a gallery room
that serves as the final area of the application, where the user gets to explore
graphical effects that are possible with the path tracing algorithm they learned
about. This gallery room has 6 booths instead of the 8 featured in the prototype.

4.4.5 Tutorial

To be able to explore the learning materials available in PathVis, a user first needs
to know how to use the application. A tutorial was designed and developed to
meet the Tutorial Functional Requirements as specified in Section 4.3. The first
iteration of the tutorial was tested in the first user test, and the gained feedback
was used to improve the tutorial into the second iteration used in the second user
test.

When PathVis is launched, the user appears in the tutorial area, with text and
graphical instructions on the walls describing how to proceed. The teleporting
prefab from the SteamVR plugin vibrates the VR controllers and shows a tooltip
indicating what button is used for teleporting. The first iteration of the tutorial
was very short, and introduced teleporting, grabbing and releasing sticky objects
all in the same area. This proved to be an issue, and as a result the tutorial was
extended into three areas teaching the concepts one by one. The second iteration
also included audio narration as a supplement to the text descriptions on the walls,
as described in Section 4.4.11.

How to use teleportation is communicated to the user in multiple ways: a pic-
ture in the starting area shows how the teleport beam should be aimed at the floor,
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Figure 4.7: Booth located in the corner of a 90 degree turn in the hallway.

and a picture of what button on the VR Controller to use. To progress to the next
part of the tutorial the user has to successfully teleport at least twice.

The next part of the tutorial introduces how to grab objects, with a floating
holographic hand with an arrow indicating that the user should put their hand
close to a cube before pressing the specified button on the VR controller, as shown
in Figure 4.2. A gate blocks the way to the next area, to open it the user has to
pick up a cube and place it in a yellow square that is 4 meters away. Because
of the great distance, the user has to teleport while holding the cube. When the
cube is placed in the square, the gate opens and the next area is made eligible for
teleportation (Figure 4.8).

The third part of the tutorial teaches the user how to drop objects that remain
attached to the hand. Like the second part, the user has to place an object in a
yellow square to open a gate, but the object is a green cylinder, to differentiate it
from the cubes. When the second gate opens, the user has completed the tutorial,
having used teleportation both with and without holding an object, and also how
to release objects that stick to the hand. While the tutorial does not explicitly
require the user to interact with a virtual button, buttons are interacted with in
the same way as picking up cubes.
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Figure 4.8: The yellow gate is only opened after a cube has been placed in the
yellow square.

Figure 4.9: The booth that introduces path tracing to the user.
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4.4.6 Introducing Path Tracing

The first booth that the user reaches after the tutorial is a booth that gives a simple
overview of the path tracing algorithm used in PathVis. The booth (Figure 4.9)
consists of a big lamp and a virtual 3D camera model, and the user has access to
three buttons on a control panel in front of the booth. The left button is labeled
with a camera icon, the center button is a narration button, and the right button
is labeled with a lamp icon.

Pressing the lamp button makes a yellow "ray" of light be drawn from the lamp,
and upon hitting a surface it will bounce until it reaches a maximum number of
bounces. Pressing the camera button makes a cyan ray be drawn from the camera,
and it will bounce around the booth in the same way. If a ray from the camera hits
the lamp directly or indirectly, the path consisting of all the rays turn white, indi-
cating that a successful path to a light source was found. The concept introduced
here is that light can be simulated with rays originating either from a camera or
from a light source, but that it is more useful to use the camera as the origin.

4.4.7 Ray Gun

(a) Ray gun in its initial state (b) Fully upgraded ray gun

Figure 4.10: The ray gun as it appears in VR.

A good use of VR controllers is to give the user something interactive to hold.
The ray gun in PathVis literally puts the path tracing algorithm in the hands of
the user. The ray gun was designed to appear like a high tech instrument, with
a sharp point where rays are shot from. To provide sensory curiosity, the ray gun
makes a distinct sound when a ray is fired, and a different sound is made when a
ray hits a surface. The circular display at the back of the gun shows the color of
the light that was recorded from the path tracing algorithm used by the gun. In a
way, the gun can be perceived as a camera with a resolution of a single pixel. The
model for the gun was created in Blender by the author.
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(a) Normal Vector (b) Reflection Vector (c) Lambertian Reflection

Figure 4.11: The vectors that the ray gun can visualize.

When the user pulls the trigger on their VR controller while holding the gun, a
ray is fired into the scene with a distinct cyan line. The ray is not drawn instantly,
but is instead gradually drawn from the origin. The ray gun has several modes of
operation, with the most basic one only letting it trace single rays that end when
they hit a surface inside a booth. If a ray does not hit any booth, the cyan line is
drawn in a faded way.

Visualizing Normals and Reflection

The ray gun uses the VisualTracer component which instantiates objects with LineRen-
derer components as shown in Figure 4.3. The drawn lines are used to visualize
rays and vectors. The width of the line was defined by a custom script component
that made the line gain an appearance of an arrow.

Normal vectors are visualized as purple arrows, and are perpendicular to the
surface that a ray from the ray gun hits as shown in Figure 4.11a. Reflection vectors
are visualized as yellow arrows (Figure 4.11b), and their direction depends on the
properties of the material of the hit surface. Surfaces with Lambertian reflectance
were given an additional visualization of the sphere where a random point was
picked to determine the direction of the reflection vector (Figure 4.11c).

Path Tracing

Path tracing is visualized by shooting an additional ray from the point that the
first ray hits. This additional ray is shot in the direction of the reflection vector as
determined by the material on the hit object. This process continues until 6 rays
are traced, which form a path of rays. When the entire path is drawn, the light
that is found is propagated back down the path, coloring each ray in the path until
reaching the gun, and then displaying the result on the circular display at the back
of the gun Figure 4.12.
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Figure 4.12: Visualized traced path from the ray gun. Light from the emissive
white cube is reflected twice before reaching the gun, and is colored green when
reflecting off of the green cube.

Upgrading the Ray Gun

The ray gun gets upgraded with more functionality as the user progresses through
PathVis, and the current state of the gun is represented with colored rings of light
inside the gun. You can see the colored rings in Figure 4.10, with the different
colors corresponding to the following functionality:

• The cyan ring indicates the ability to trace rays.
• The purple ring indicates the ability to visualize normal vectors.
• The yellow ring indicates the ability to visualize reflection vectors.
• The white ring indicates the ability to perform path tracing and record light.

The method used to upgrade the gun was changed based on the feedback gath-
ered from the first user test. In the version of PathVis used for the first user test,
the ray gun was upgraded by having the user shoot and hit colored targets. Each
target had an icon indicating the feature to unlock, starting with normal vectors,
then reflection vectors and finally path tracing.

In the version used for the second user test, the ray gun is upgraded automat-
ically when the user arrives at a booth where a new feature is required. Further-
more, the speed of the ray gun is increased when the user reached the pixel grid
camera (Section 4.4.9) to reduce the time the user has to wait between tracing
each path.

Changes from the Prototype

The prototype version of the ray gun (Figure 3.2a) displayed the returned color
in a "color ball" on top of the gun, as well as colors for each ray segment of the
traced paths being displayed in similar color balls over each hit point. The ray gun
had a different display at the back that would show data from the RaycastHit such
as the XYZ values of the normal vector at the hit point as well as number of ray
bounces in the path. The text on this display was hard to read as well as not being
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used for anything, so the display was removed and a new circular display was put
in place, serving the role of the color ball.

4.4.8 Ray Tracing Camera

(a) Rendering a booth (b) Printing a picture (c) Comparing prints

Figure 4.13: The RT camera and its functionality.

Since rendering an image with path tracing requires tracing a substantial
amount of paths, a virtual camera was made to do it automatically. The ray tracing
camera (RT camera for short) uses the RasterPixels component which performs
a similar path tracing routine as the ray gun, but renders an image by storing
the results in a texture that is displayed in the virtual viewport (Figure 4.13a).
The camera appears as a viewing frustum containing the viewport and a floating
translucent ball representing the ray origin. A control board is located below the
origin, with three knobs and text labels.

The camera is activated by interacting with the ON/OFF knob. When the cam-
era is turned on it operates continuously like a progressive path tracer, displaying
the number of samples per pixel as well as the elapsed time. A second knob is used
to change between three different rendering modes. The camera can be picked up
by the handles on each side of the control board, and the ray origin can be grabbed
directly and moved to create lens effects like tilt-shift, wide angle or zoom of the
rendered image. Rendering is restarted each time the camera or ray origin moves,
or when the rendering mode changes.

As rendering restarts each time the camera is moved, an option to print a ren-
dered picture onto a grabbable picture frame was implemented. Pressing the Print
knob (Figure 4.13b) on the control board creates a picture frame with a copy of
the rendered texture, which will slide out of the bottom of the control board. The
picture frame can be grabbed by the user and will remain floating in the air when
released. The picture frame includes a text label showing the rendering mode,
elapsed time and number of samples at the time of printing. By printing multiple
pictures with different modes and number of samples, the results can be compared
visually by the user as seen in Figure 4.13c.
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(a) PathTracing (b) SimpleRT (c) Normals

Figure 4.14: The different rendering modes of the RT camera.

The mode knob on the control board cycles between three rendering modes:

• PathTracing (Figure 4.14a): Renders images using the path tracing algo-
rithm as described in Section 4.4.2.
• SimpleRT (Figure 4.14b): Renders images with solid colors, textures, reflec-

tions and refractions, with simple shading based on surface normals.
• Normals (Figure 4.14c): Displays the XYZ coordinates of surface normals as

RGB color values.

For performance reasons, the RT camera renders pictures at a resolution of
320x240. The rendering process takes place in a coroutine that renders a number
of rows of pixels every frame. In the prototype application, only a single row of
pixels would be rendered each frame. To speed up rendering without affecting VR
performance too much, a maximum frame time value was implemented, letting
rows of pixels continue to be rendered until the frame time limit is hit. To guide
the user in placing the camera, the camera switches to real-time ray tracing using
the SimpleRT mode at a resolution of 32x24 while the camera or ray origin is held
by the user.

Changes from the Prototype

The prototype RT camera did not have the printing feature, instead having a but-
ton that would cycle between resolutions for the rendered image. An additional
"UVs" rendering mode was also featured, displaying X,Y texture coordinates as R,G
color values. This mode was removed as the application would not teach texture
coordinates, as well as a lack of texture coordinates for some of the collider types
used for interactive ray tracing, which would appear black in this render mode.

4.4.9 Pixel Grid Camera

To bridge the gap between the ray gun that can trace individual paths and the RT
camera that can render images with thousands of pixels, a visualization of rays
being traced through a grid of pixels was deemed necessary. The initial design
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(a) First version (b) Second version (c) Second version, filled

Figure 4.15: The two versions of the pixel grid camera

(Figure 4.15a) was a simplified version of the RT camera with a much lower res-
olution, which would remain static and could be turned on and off from a button
on the wall. This camera visualized rays in the same way as the ray gun, tracing
a path for one pixel at a time but but at a higher speed than the ray gun.

Based on observations of users during the first user test, the pixel grid camera
was redesigned to be more interactive and to let the user do the path tracing
themselves by shooting rays from the ray gun through the pixel grid. A floating
circle was added as an indicator for the camera origin and where to use the ray gun
from. A floating holographic model of the ray gun with an arrow (Figure 4.15b)
was added to indicate the correct use of the pixel grid camera. The new pixel
grid camera also presented the opportunity to add a goal for the user to fulfill;
to render a picture by tracing paths with the ray gun as shown in Figure 4.15c.
The pixel grid camera gives an element of sensory curiosity as the grid of pixels is
filled by the ray gun.

Each of the pixels in the pixel grid camera are implemented with an Interac-
tivePixel component and a box collider. A larger box collider is placed between
the camera origin circle and the pixels (Figure 4.3). When the VisualTracer com-
ponent on the ray gun traces a ray that intersects both the large collider and one
of the pixel colliders, it is registered as a valid hit and the color of the pixel is
updated once the visualized path has finished drawing. A separate InteractivePix-
elTracker component is notified on each valid hit, and keeps track of the number
of filled pixels as well as total samples.

4.4.10 Gallery Room

In order to showcase the graphical effects that are possible with the path tracing
algorithm used in PathVis, a large "gallery room" was designed and implemented.
The gallery room has six booths along the left and right wall as shown in Fig-
ure 4.17c. The intended purpose of this room is for the user to use the RT camera
to explore the behavior of its rendering algorithms. These booths are larger than
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any of the previous booths, extending all the way to the floor and letting the user
teleport or move themselves into a booth if they wish. Some booths have objects
that can be picked up and moved by the user.

The prototype application was an early version of the gallery room, having eight
booths instead of six. Some booths were cut entirely and others were changed to
become the versions used in the user tests. An explicit goal was added before the
second user test, requiring the user to render and print at least one picture of
each of the six booths in order to complete the playthrough. The printed pictures
also appear on the far wall of the gallery room, with a text label indicating the
graphical effect showcased (Figure 4.16).

Figure 4.16: The gallery room picture wall after a completed playthrough

Each booth is designed to showcase a different graphical effect, some requir-
ing the PathTracing rendering mode of the RT camera while others can also be
demonstrated with the SimpleRT mode. The user can also use the ray gun in any
booth to explore while letting the RT camera render continuously. The design and
purpose of each booth is described in the following sections.

Global Illumination

This booth is a variant of the Cornell Box, a popular model for testing rendering
algorithms. The left and right walls are colored red and green respectively and a
large lamp is situated in the ceiling. Two tall white boxes are placed within the
booth as well as two small cubes that the user can pick up. The strongly colored
walls will diffusely reflect light onto the white boxes, giving them a slight color
tint. This booth is intended to be used with the PathTracing mode on the RT cam-
era. The ray gun can be used to find paths where light bounces between a colored
wall and a white object before reaching the gun.
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Ambient Occlusion

A simple way to achieve ambient occlusion is to treat rays as entering the sky when
no intersections are found, and letting the sky act as a light source. This causes
open areas to be well lit since most reflected rays will enter the sky, but areas that
are less open to the sky will be shaded. This booth is designed to appear like a
simple city with "buildings" of different heights. Instead of walls, this booth has a
large white sky that acts as a light source. When rendered with the PathTracing
mode on the RT camera, areas between the "buildings" will appear more shaded
than the "rooftops". The ray gun can also be used to verify that rays hitting surfaces
in open areas will bounce into the sky more often than rays hitting surfaces in
covered areas.

Noise

The path tracing algorithm used in PathVis is a simple brute force algorithm based
on the one implemented in the standalone ray tracer (Section 3.2.1). For diffuse
materials, a random reflection direction is chosen each time, unaffected by the
location of light sources in the scene. As a result of this, scenes with small light
sources are difficult to render, appearing very noisy and requiring many more sam-
ples to converge to an acceptable result. All other booths in PathVis deliberately
use large light sources to hide this issue, but this booth showcases the limitations
of PathVis by having two very small light sources; a lamp and a window. The RT
camera can be used to see the noisy renders in practice, and the ray gun can be
fired into the scene to gain an intuition for why the result is so noisy.

Refraction

A common real-life example of refraction is a straw placed in a glass of water. If the
straw is positioned at an angle, the straw will appear to bend below the surface
of the water. This booth was designed to appear like a large tub of water, with
three large straws placed within. When rendered with the RT camera in either the
SimpleRT or PathTracing mode, the straws appear to bend as the rays refract at
the water surface.

Reflection

To showcase reflections and rough reflections, this booth has spheres with reflec-
tive materials. Rough reflections are achieved by modifying the reflection vector
by a small random component. The ray gun can be used to see the how the be-
havior of the reflection vectors differ between the spheres. To give the spheres
something interesting to reflect, the booth has a wooden texture on the floor and
right wall, and a rainbow texture on the left wall. A simplified version of the Stan-
ford bunny [35] is also placed in the booth with a reflective golden material. Both
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the SimpleRT and PathTracing modes of the RT camera can be used to see the
reflections.

Motion Blur

Motion blur is made possible with ray tracing by distributing rays across time. In
PathVis the same effect is achieved by letting objects move during rendering. The
three objects in this booth move continuously and in different patterns. In the top
left is a sphere that moves to randomly chosen positions within a small space. The
sphere in the middle moves back and forth on a diagonal line, and the cube in
the bottom right rotates. When rendered with the RT camera, the objects will first
appear to smear across the image as rows of pixels are rendered, but over time
more samples will be taken with the objects in different positions, and the result
averages out to a smooth blur.

4.4.11 Audio Narration

Text can be difficult to read in VR, depending on the HMD that is used and the
size and placement of the text. To present a lot of information in VR, it can be
more suitable to utilize audio narration. An audio narration system was designed
and implemented in preparation for the second user test of PathVis. The system
consists of recorded speech that is played when the user interacts with a narration
button, as shown in the left of Figure 4.2.

Buttons were chosen as the method to initiate playback, as then the user can
control when and where they want to hear narration. Narration buttons turn green
while narration is playing, and playback can be stopped by pressing a green nar-
ration button. Only one narration button can be playing at a time. The narrated
audio is played from an AudioSource component that is localized within the rele-
vant booth. This way, the user can hear where the sound is coming from, as if the
booth is speaking to them.

Each booth in PathVis has one narration button associated with it, and the
recorded speech reads out loud the text and tasks for that particular booth. The
audio narration goes into more detail than the text boxes in each booth and some-
times provides hints for the tasks the user has to perform, as the text boxes were
deliberately made brief to make reading less of a burden in VR.

4.4.12 Exterior

To make the hallway in PathVis appear less closed and maze-like, large windows
were cut into the walls in several areas (Figure 4.17). The outside world was
given a backdrop consisting of a spherical panoramic texture depicting a grassy
and rocky field [36]. As the gallery room and other parts of the hallway would be
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visible through the windows, a simple 3D exterior was modeled in Blender, making
the hallway appear to be located within a concrete building. The windows also
provide light to the virtual environment, preventing it from appearing too dark
and secluded.

(a) Tutorial windows (b) View of grassy field (c) Gallery windows

Figure 4.17: The exterior as viewed through windows in the walls and ceiling
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Results

This chapter gives a brief description of the final application and its performance
including video demonstrations and a link to the application itself. The evaluation
data from the user tests is then provided and will be discussed in the next chapter.

5.1 The PathVis Application

The final application is the result of the implementation process as described in
Chapter 4. This is also the version of PathVis that was tested in the second user
test.

Video Playthrough

Two recorded playthroughs of PathVis were made for demonstration purposes.
The first is a quick playthrough without the use of narration buttons, and the
second one is a longer video where all narration buttons are played back. Both
videos were recorded using the same version of PathVis as the one that was tested
in the second user test.

• No Narration (6:46): https://youtu.be/ho7HpW9-PHs
• With Narration (15:20): https://youtu.be/a7GscTKB0hw

Download the Final Version

The final version of PathVis can be downloaded from the link below. The appli-
cation requires a PC with SteamVR installed and a VR HMD connected in order
to run. The Unity project for the application can also be downloaded from the
Github repository [10].

https://github.com/rikeri/Pathvis/releases/tag/build
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(a) RT camera off (b) RT camera on

Figure 5.1: SteamVR Frame time performance graph: The top and bottom graphs
show CPU and GPU timings respectively.

Performance

The environment in PathVis is mostly static meshes lit with baked light. This makes
the application run well on any VR-ready system when the RT camera is not in use.
Figure 5.1a shows the SteamVR frame timing performance graph while PathVis is
running. The blue area is the time used by the CPU and GPU for each rendered
frame, and the light green area is the unused time budget. As long as the CPU and
GPU timings stay within the green area, the application is able to deliver frames at
the full refresh rate of the VR HMD. When the RT Camera is active, some frames
are dropped leading to slight lag and judder that can be observed when moving
the virtual controllers around.

5.2 Evaluation

In this section, the results from the two user tests are presented. The first user test
took place on April 1st 2022, with the second user test being divided over 3 days
between May 19th to 24th 2022.

5.2.1 First User Test

The first user test had 7 test users that tried the version of PathVis as shown in
Figure 4.5. All users had a background in computer science, but not necessarily
experience with computer graphics. Most users were completely new to VR or had
tried VR only a few times in the past.

The result from the survey is presented in Figure 5.2 while the SUS scores are
shown in Figure B.1 in Appendix B. Calculating the SUS score as described in [33]
gives an average score of 78.2 for the first user test. A SUS score of 68 is considered
average, and a score between 68 and 80.3 has grade B and is considered good
[37].
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Figure 5.2: Responses for the general questions of the first survey.
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Text Responses

The survey included four questions where the user could write a text response.
The four questions focus on the users’ experience with the tutorial, ray gun, ray
tracing camera and overall suggestions for potential improvements that could be
made to PathVis. The full answers are provided in Appendix B.1.2, and a summary
of the responses are provided in this section.

• Tutorial: Most users managed to pass through the tutorial without issues.
Some users had trouble grabbing or releasing objects, and wished for a bet-
ter introduction to the controls.
• Ray Gun: All users expressed a positive experience with the ray gun, finding

it fun to use and experiment with. Users liked to see the visualized rays and
paths that the ray gun produced.
• Ray Tracing Camera: Users liked the ability to render and print pictures,

but that the camera could be improved by having it serve an actual use.
Some users found the camera to be difficult to move in order to take pictures
of the booths in the gallery room. One user mentioned that the path tracing
rendering of the camera was rather slow.
• Improvement Suggestions: Users suggested a more iterative form of teach-

ing the learning material, and a more clear distinction between ray tracing
and path tracing. One user expressed frustration with reading text in VR,
and suggested the addition of narration. Another suggestion was to give the
gallery room an explicit goal of printing pictures with the camera.

Observations

Observing the users during the tests provided valuable insight for features that
could be improved before the next user test. Some issues were discovered as mul-
tiple users would consistently run into the same problems. The list below gives
an overview of some of the observations, and changes that were made before the
second user test.

• Multiple users tried to pick up objects by using the teleport beam, or did not
understand why the beam could not be used on the walls.

◦ The tutorial was expanded to feature an area focusing on only tele-
porting without objects, to make users comfortable with teleportation
before introducing object pickups.

• Users would quickly shoot each of the upgrade targets for the ray gun, with-
out experimenting with the functionality that they unlocked. One of the up-
grade targets was located in a branch of the hallway, which multiple users
had trouble finding.

◦ The branch in the hallway was removed, and more booths were intro-
duced to teach concepts one at a time. Upgrading the ray gun was
made to happen automatically as users reached new booths. More
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gates were added, requiring the user to use the new ray gun func-
tionality before proceeding.

• Users tried shooting the ray gun through the pixel grid camera.

◦ The pixel grid camera was redesigned to be interactive and usable with
the ray gun.

• Users were not sure what to do in the gallery room, as there was no clear
goal.

◦ A goal to render and print a picture of each booth was added.

• Users often skipped reading text and passed by booths that did not indicate
a goal for the user to fulfill.

◦ Narration buttons were added for each booth, and more booths were
given explicit goals.

5.2.2 Second User Test

The version of PathVis shown in Figure 4.6 was tested by 11 users, including 6
of the 7 testers from the first user test. Like the first user test, many testers were
new to or had limited experience with VR. Of the 11 users, 10 responded to have
a background in computer science.

The result from the survey in the second user test is presented in Figure 5.3
with the SUS scores shown in Figure B.2. The calculated average SUS score for
the second user test is 74.1 which corresponds to a grade B. An additional SUS
score was calculated for the returning testers only, with a result of 79.6.

Text Responses

Like the survey used in the first test, the second survey includes questions where
the user can write a text response. The same four questions from the original test
were used, and a question relating to the use of narration button was added. The
full answers are provided in Appendix B.2.2, and a summary of the responses are
provided in this section.

• Tutorial: Most users managed to pass through the tutorial without issues.
Some users suggested a better introduction to the controls.
• Ray Gun: Users found the gun easy and fun to use. One user suggested that

the gun use a laser pointer to make it easier to aim. Another user suggested
the rays and vectors could be made more distict by using dotted lines in
addition to different colors.
• Ray Tracing Camera: Users found the RT camera nice to use, but clunky

at times. Some users said the task of taking pictures was repetitive, and the
camera could benefit from having additional tasks.
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• Narration Buttons: Of the users who responded that they used the narra-
tion buttons, they enjoyed being able to listen to content instead of reading,
which could be difficult with glasses or contact lenses.
• Improvement Suggestions: Users appreciated the use of VR to teach path

tracing, but felt that the current state of PathVis was more like a tutorial
and wished there was more of a "game" with more complex and open ended
tasks for the user to perform.

Observations

The users seemed to run into fewer problems during the second user test, based
on observing how the users behaved outside and inside the application. The list
below gives and overview of the observations made during the second user test.

• Some users skipped past the very first area that introduced VR controls and
narration buttons, either accidentally or on purpose.
• Several users played around with the cubes in the tutorial, throwing them

around to see how they would react.
• How much a user would move in the physical world greatly differed among

the participants. Some users would stand in a single spot and use in-game
teleporting to move around. Other users would walk until they reached the
bounds of the physical space, sometimes lightly bumping into a table or a
chair.
• Users who were not using narration buttons did not immediately learn of the

goal in the gallery room, instead ending up exploring each booth without
taking a picture, and having to go back when they read the goal on the far
wall.
• At the pixel grid camera, some users would not shoot through the camera

origin circle, and appeared to be confused when some of the rays would not
fill in pixels.
• Booths with no gates and goals for the user to fulfill were sometimes skipped

entirely.
• Some users printed pictures in the gallery room with an unintended RT

camera render mode. For instance, the ambient occlusion booth would be
rendered with SimpleRT which does not produce ambient occlusion.
• The goal at the booth introducing normal vectors was to hit a surface whose

normal vector pointed downwards. All users eventually understood that
they needed to hit the ceiling in the booth for the goal to be fulfilled.
• The goal in the diffuse reflection booth was to hit the same spot three times,

but proved to be difficult to fulfill as the required precision was too high.
• Users would not teleport into any of the gallery booths on purpose, and

would not pick up or interact with any of the interactive objects within
booths.
• The printed pictures from the RT camera would not be used for anything,

and users tended to only grab pictures in order to print more for the goal.





Chapter 6

Discussion

This chapter discusses the results from the two user tests that were presented
in Chapter 5, then the author reflects on the development process and various
elements and limitations of the PathVis application. At the end is a discussion of
the requirements and research questions for the project.

6.1 User tests

During development, the PathVis application was only tested by the author and
the supervisor a few times. The first user test was the first time that valuable
feedback could be gathered for the project. The feedback was used to improve
features in PathVis that were difficult to use, and to add additional functionality
that was then tested in the second user test.

6.1.1 Participants

The original target audience for PathVis was to be students who were studying
computer graphics, but due to time constraints it was not easy to find a lot of
testers from this group. As a result, the users who participated in the tests were
mostly people who had studied or were currently studying computer science. The
supervisor was responsible for scheduling the test and contacting the test partici-
pants for both the user tests.

6.1.2 Survey Responses

This section will discuss the statements with structured responses from the surveys
used in both user tests. As both surveys used the same questions, responses for
both are discussed at the same time. The responses were given in a 5-point scale
ranging from Strongly Disagree to Strongly Agree. Two average scores were given
as value between 1 to 5 respectively.
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I have experience with using VR

Average Score: 1.7 (1st test) | 2.5 (2nd test)
Most testers responded as having little to no experience with VR, which meant
that valuable insight could be gathered for how to make PathVis accessible to as
many people as possible. The second user test had a few users who agreed or
strongly agreed to this statement. As an educational tool it is important that the
user quickly learns how to use the tool, so they can then focus on the learning
material.

I have knowledge and/or experience with 3D Computer Graphics

Average Score: 3.4 (1st test) | 3.4 (2nd test)
This statement was used to determine whether the testers fell within the original
target audience for PathVis or not. Prior experience with computer graphics is not
required to play through PathVis, as there are no complex tasks that the user has to
carry out. If PathVis were to be developed further in the direction of an educational
tool, the addition of tasks that test the user on more in-depth knowledge would
be necessary.

I think ray tracing is interesting

Average Score: 4.4 (1st test) | 4.0 (2nd test)
Similar to the previous statement, an interest in ray tracing is possibly an indicator
for the target audience. A person with zero interest in ray tracing would have little
benefit or motivation to play through PathVis. An interest can also mean that the
user is more likely to experiment with the tools available in the application to
explore how ray tracing works.

I learned something from using PathVis

Average Score: 3.9 (1st test) | 3.8 (2nd test)
PathVis can teach the user how a simple path tracing algorithm works in practice,
which is the aim of this statement. It is also possible that users who were new to VR
felt like they learned how to use VR after playing through PathVis, as PathVis starts
with a tutorial that teaches concepts used in many VR games and applications.
Some users strongly disagreed to this statement, likely because they already had
knowledge of ray tracing and PathVis did not introduce anything new.

I think VR has potential for educational use

Average Score: 4.4 (1st test) | 4.4 (2nd test)
Most users responded agreed to this statement, indicating that VR can be used in
an educational context. As virtual reality devices become more accessible like the
standalone Meta (formerly Oculus) Quest 2, it is possible that VR will see more
use as an educational tool.
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I feel like this way of learning is a good supplement to traditional learning
methods (books, lectures, videos, etc.)

Average Score: 4.0 (1st test) | 4.2 (2nd test)
The majority of the test participants agreed with this statement, possibly related
to the visual presentation of the learning material within PathVis. VR can be used
to introduce a concept within computer graphics by visualizing it in 3D, giving the
user an intuitive understanding that can then be followed up by more traditional
methods.

I think there was too much text to read in PathVis

Average Score: 1.9 (1st test) | 1.9 (2nd test)
Most users disagreed to this statement, with approximately the same average score
for both user tests. Text in VR can be difficult to read for several reasons, mainly
resolution and visual clarity. The resolution of the displays in VR HMDs has in-
creased over time, but the lenses can be equally important for visual clarity. The
lenses used in VR HMDs typically give a "sweet spot" with clarity in the center, but
worse visual clarity near the edges. As a result the user has to move their head
to focus on text as they read it, which can lead to fatigue. This was taken into
account when developing PathVis, and the text boxes on walls were kept short
and concise.

I used the narration buttons to listen to the text instead of reading

Average Score: 2.5 (2nd test)
This statement was only used for the second user test survey, as the narration but-
tons were a new addition. Some users preferred to read text themselves, but other
users seemed to like using the narration buttons. The response to this statement
indicates that users either did not use the narration buttons at all, or they used
them every time. It is possible that the extra step of having to reach the narration
button on the wall made it more of a hassle to use. Another possible reason for
testers avoiding narration buttons could be the fact that the tutorial did not explic-
itly demonstrate the usage of a narration button, but from observation it seemed
that all users would eventually press a narration button at least once to see what
it did. The reason for using a button format was that users could decide them-
selves when to listen to narration, but perhaps the usability could be improved if
a button on the VR controller was used to start the narration playback.

6.1.3 Observations and Text Responses

This section will discuss the responses to the open questions as well as observa-
tions of the users. Like the previous section, results from both user tests will be
discussed at the same time, highlighting differences between the two tests.
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Tutorial

The tutorial section was put into PathVis to teach the user how to move themselves
around in the environment and how to interact with objects and buttons. The first
version of the tutorial tried introducing too many concepts at once, causing confu-
sion for some users. The second tutorial worked better, as users first learned how
to teleport themselves before they were taught how to pick up objects. Multiple
users played around with the cubes in the tutorial, throwing them around and
seeing how they interacted with each other. This may have been a case of users
exploring VR technology for the first time.

While the second tutorial had better results than the first, some users still had
issues with remembering the buttons to use on the VR controllers. The controllers
are represented by virtual hands in PathVis, which may have been distracting for
users who did not have any previous experience with VR controllers. Some users
also tried to pick up a cube by squeezing it between the virtual hands, when the
intended method is to pull the trigger on a controller when a hand is close enough.
The SteamVR plugin for Unity has a feature for highlighting a button on the virtual
controller, but this feature proved to be difficult to use in practice, as the virtual
controller model turned invisible when an object was picked up.

Ray Gun

Most users had a positive impression of the ray gun, finding it interesting and
fun to use. Some users kept holding the ray gun even in areas where it was not
intended, such as when reaching the RT camera. A small poster was added on the
wall for the second user test to remind users that the ray gun can be dropped.
The idea behind the gun was that the user gets to experiment with ray tracing
interactively, but some users would only use the ray gun when explicitly required.

When users reached the booth that introduced reflection vectors, they would
often shoot the ray gun forwards onto the floor of the booth, making it difficult to
notice the yellow reflection vector as it would appear behind the normal vector.
This booth did not have a goal to fulfill, and it would probably be more engaging if
the user was required to shoot a ray that would be reflected in a specific direction
to hit a target indirectly.

The diffuse reflection booth had a goal of hitting the same exact spot three
times, in order to demonstrate that the yellow reflection vector was chosen ran-
domly every time. The script component responsible for tracking the hits was
made to only count hits if they fell within a certain distance from the first hit.
This distance was chosen so that the user would need to focus in order to fulfill
the goal. In practice, this distance was made too small, and many users had to
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make many attempts before fulfilling the goal. Increasing the distance or design-
ing a different goal for demonstrating diffuse reflection would likely improve this
booth.

Ray Tracing Camera

The RT camera had a more mixed reception. Users liked rendering and printing
images but felt that the camera was not as useful as the ray gun. The printing
feature was not used in a meaningful way other than having pictures show up on
the picture wall of the gallery room. Printing multiple pictures required the user to
grab and remove the printed picture before printing new ones, which some users
did not like. To complete the goal in the gallery room, some users would quickly
print a picture of each booth, without seeming interested in the actual rendered
result.

To make the RT camera more engaging to use, the user could be tasked to
assemble a scene by stacking light sources and objects on top of each other, and
then rendering the result with the camera. This was already possible with the
grabbable objects located in the various booths, but users did not interact with
these objects, as it was not clearly communicated which objects were grabbable
and which were static parts of the environment.

Some users found the rendering speed of the RT camera to be slow and ex-
pressed a wish for better sampling. As mentioned in Section 4.4.2, the rendering
routine takes place in a script component and is limited to the time available for a
frame. A more efficient implementation of interactive ray tracing could be benefi-
cial, as the brute force path tracing routine is unable to handle point light sources.

Improvement Suggestions

The overall impression of PathVis seemed to be that teaching ray tracing and other
computer graphics topics is a good use case for VR. However, some users said the
PathVis application felt like a tutorial without a "game" to follow up what the user
learned. Booths that did not have any explicit goals were often skipped, and the
application could be made more engaging by adding more goals that give better
feedback to the user.

6.2 Development Process

Developing a VR application alone can be a challenge, as there are many differ-
ent types of skills required. The game engine and VR SDK with its examples and
prefabs can help for part of the process, but the developer is still responsible for
assembling the scenes and creating the scripts and making sure that they work
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well when used in VR. When starting the project, the author already had experi-
ence with creating 3D models and textures with the Blender software, as well as
experience with assembling static scenes in Unity. This made development of the
application easier, as the author could focus on becoming familiar with creating
script components and how to use the interaction components provided by the
SteamVR plugin.

Development followed a general process of designing, implementing and test-
ing individual features based on the requirements. Since the interactive ray trac-
ing elements were core features, they were developed first with the rest of the
application being a simple test environment resembling an early concept of the
"booths" that are featured in the tested version of PathVis. After the core features
were mostly implemented, the prototype environment was modeled and put into
place. Further development of the core ray tracing features continued, ensuring
that it worked with the environment as expected.

Perhaps the most difficult part of developing for VR was the interaction system.
While the SteamVR plugin provided a good basis for teleporting and grabbing ob-
jects, there was no easy way to create a UI with the Unity Canvas UI components. A
custom laser pointer interaction system for pressing UI buttons was developed but
later cut, as it required a lot of manual setup to make each button work. Had the
development of the project started today, it is likely that the XR Interaction Toolkit
would be chosen as the SDK, as it has a wider set of interaction components that
are better integrated with Unity.

6.3 Visualization in VR

A key benefit of using VR in an educational application is the added immersion
offered by the 6DoF stereoscopic view made possible by the HMD. This gives the
user depth perception and makes it easier to gain a spatial understanding of a
visualization compared to one that is viewed on a flat 2D screen. The visualization
of rays in PathVis could be more difficult to understand when viewed on a 2D
screen, as the lack of depth perception and ability to move around naturally in
space makes it hard to see where exactly rays exist within 3D space. The sentiment
from the test users supports the notion that visualizing ray tracing is a good use
case for VR.

If PathVis is launched on a system with no HMD is plugged in, it will run with
a basic desktop interaction scheme as provided by the SteamVR plugin for Unity.
Using the mouse and keyboard, it is possible to "fly" through the application and
interact with buttons by clicking on them. It is not possible to play through the
entire application however, as the ray gun will not work in the basic desktop inter-
action scheme and instead will remain stuck to the cursor, preventing any further
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interactions. PathVis was designed and tested as a VR-only application, as the vi-
sualizations work best in VR.

6.4 Booths

The learning material in PathVis is presented as text and narration associated
with each booth. Booths were chosen as they offer an easy way to differentiate
between the environment of PathVis itself and the specific areas where interactive
ray tracing can be used. The smaller booths in the narrow hallway part of PathVis
start at kitchen counter top height and extend upwards, giving the user the ability
to interact with objects inside. The text description for each booth is typically
located on the back wall of the booth. Putting the text outside the booth would
prevent the visualized rays from obscuring the text, but it would require the user
to look outside the booth to read. The audio narration gives a more comfortable
presentation of material, and users who used the narration buttons seemed to
have a smoother experience with PathVis. However, many users preferred not to
listen to audio, which means that the option for both text and audio narration is
necessary.

To improve the booths, they could be redesigned to appear more like a museum
exhibit, with text located on an angled board near the user, with the contents of
the booth on display above the text. Another option is to find a different format to
present the ray tracing concepts. The advantage of a booth is that it has walls and
a ceiling that rays will bounce off of - without them, rays would often escape into
space. The booths in the gallery room let the user teleport into the booth if they
wish, but no users would intentionally teleport into a booth, possibly because they
had become accustomed to the smaller booths in the hallway section. A potential
solution is to make a booth into a room for the user to explore. The room will
contain rays just like the booth, and can be linked to other rooms via doors. Each
room could then be used to teach its own concept within ray tracing, with specific
objects and tasks for the user to solve, similar to the escape room format used by
Sølve [9].

6.5 Educational Games

The environment of PathVis facilitates both sensory and cognitive curiosity: sen-
sory curiosity is achieved through its semi-realistic appearance of the interior and
exterior, as well as the booths along the walls that the user needs to teleport to
to see the contents of. The functionality of the ray gun and RT Camera provoke
cognitive curiosity, especially if the user has some notion of what ray tracing is but
doesn’t necessarily know how it works in practice. Watching the RT Camera ren-
der images in its scan-line fashion can also appeal to curiosity, as the user watches
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how the first noisy samples are taken and anticipates how the image will look as
it gets refined over time.

While PathVis does have goals that the user is required to fulfill to proceed, it is
unclear if this can be considered "gameplay". There is no score given for fulfilling
goals and there is no clear skill that the user learns, other than being able to use the
ray gun and RT camera. Educational games typically have some kind of fantasy
element to make the experience more engaging. Some users wished there was
more to PathVis, and expected more of a game after reaching the gallery room.
PathVis in its current state is more of a demonstration of ray tracing elements, but
it does let users experiment with the ray gun and picking up objects if they desire.
Multiple users seemed to have fun playing around with the cubes in the tutorial,
indicating that there is potential to use the grabbing mechanic as a fun gameplay
element.

The question is how to design fun gameplay that also teaches ray tracing in line
with the curriculum in computer graphics courses. The path tracing algorithm in
PathVis is simple, lacking many of the more advanced concepts like shadow rays
and bounding volume hierarchies (BVHs). A way to visualize a BVH was planned
for the prototype, but later deemed out of scope. The author has a number of
ideas for potential tasks that could be implemented to teach ray tracing in a more
engaging way, which will be described in the following sections.

Playing with Bounding Volume Hierarchies

The purpose of BVHs is to reduce the number of intersection tests for a ray. To teach
the concept to users, they could be tasked to define bounding volumes by drawing
boxes within boxes with the VR controllers. A number of rays could then be shot
into the scene, registering how many intersection tests were required and giving
the user a score. This would challenge the user while simultaneously demonstrat-
ing how BVHs are used.

Playing with Reflection and Refraction

Reflection and refraction is already visualized in the current version of PathVis,
appearing as rays bouncing or getting bent when hitting surfaces. Paths of rays
are static, remaining in place after being fully drawn. For a user to experiment
with different angles of reflection they need to keep firing the ray gun. One user
expressed a wish for a laser pointer on the gun that would always be on, making it
easier to aim. Such a "laser pointer" that traces a full path every frame can be used
to showcase reflections in real time. The ray gun did function in this fashion during
development, but with diffuse reflection, the traced paths would be different every
frame, leading to an uncomfortable amount of visual noise.
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A task that demonstrates reflection and refraction could be designed with a laser
pointer that the user has to direct to a target, by placing reflective and refractive
objects to direct the laser beam around obstacles. With the beam updating in real
time, the user could gain an intuition for how a refractive object bends the beam
depending on how the user holds the object with the controller. Another possible
task to challenge the user could be a guessing game, where the user has to guess
the correct angle of refraction or reflection by moving the tip of an arrow, or
arrange elements in a booth to obtain a given effect.

6.6 Limitations

The interactive path tracing in PathVis relies on the Physics Raycast function in
Unity, which tests for intersections on colliders rather than the meshes that are
rendered in-game. Mesh colliders can use the same mesh as the rendered meshes,
but colliders do not support interpolated surface normals which results in a faceted
look when rendered with the PathVis path tracer. On the other hand, parametric
colliders like sphere and capsule colliders can be rendered smoothly, but these
colliders do not return any texture coordinates to the RaycastHit so they cannot
be textured.

The algorithm of PathVis is a simplified version of the standalone ray tracer
(3.2.1), and does not implement depth of field, antialiasing or volumetric materi-
als. The standalone ray tracer was based on the Ray Tracing In One Weekend[18]
book, and as such it is a naive brute force path tracer that does not shoot shadow
rays or favor shooting rays towards light sources. In practice this means that scenes
with a small light source will appear very noisy, as few paths end up hitting the
light source. This makes PathVis unable to render scenes lit by a directional or
point light source, e.g. a sunny day. The rendering engine of PathVis could be
improved by using more sophisticated sampling methods.

The booths in PathVis were made with these limitations in mind: the light
sources in each exhibit are large, none of the spheres have textures and the vi-
sual mesh of the Stanford bunny was made faceted to correspond with the path
traced results. Objects with refractive materials were given an inner copy with
inverted surface normals and IOR to enable refraction when a ray exits the object.

Performance

The PathVis path tracer runs as a script component on the RT Camera, which
means that it executes in the main game thread. The first iterations of the render-
ing script traced paths for all pixels in the render texture every frame, but this only
allowed for very low resolution images to be rendered. The rendering routine was
made into a coroutine that yields control back to the main thread after rendering



68 Rikard Storheil Eriksen: Visualizing Ray Tracing in Virtual Reality

a number of pixels in the render texture. The prototype version of PathVis had the
coroutine render only one row of pixels each frame, but this lead to a slow RT
camera and underutilized CPU performance. To make the RT camera faster, the
coroutine was made to render rows of pixels until nearing a defined maximum
frame time. This did indeed speed up rendering, but the timekeeping of the script
is not precise enough and leads to the CPU exceeding the time budget, as shown
in Figure 5.1b. When the application uses too much time to deliver a frame, it may
be dropped and the VR runtime will reproject the last rendered frame to preserve
the user’s comfort.

One possibility of speeding up the path tracing is to Utilize the Unity C# job
system, which offers multithreading for enhanced performance. The standalone
ray tracer (3.2.1) saw increased performance when its rendering routine was par-
allelized by using multiple threads to render different pixels of the image. Paral-
lelizing the rendering routine of PathVis might lead to issues or complexity that
gets in the way of the interactivity, and PathVis is made to be a simple path tracer
rather than a performant one.

6.7 Teaching Computer Graphics

The current version of PathVis could be expanded to include more concepts within
computer graphics, especially those that are already used to some extent within
PathVis, like UV coordinates and texture mapping. There may also be potential for
visualizing basic concepts like vectors and vector operations; 2D vectors are easily
visualized with traditional technology, but 3D vectors may be easier to understand
when viewed in VR with depth perception. In addition, the interaction that VR
offers can give users an engaging way to learn 3D vector operations. The tracked
VR controllers can be used to define points and vectors that the user can play with
and see the results of different vector operations, and how it changes as vectors
are moved around.

To teach a wider range of topics, the addition of a menu system and level loading
would be required, as there is currently no way to restart the application without
exiting it completely. Instead of extending the PathVis application, it is also pos-
sible to bring just the interactive ray tracing functionality to other Unity projects;
PathVis application was developed in Unity using the SteamVR plugin, but most
of the interactive ray tracing functionality was implemented as scripts that are not
dependent on the components from the plugin.

6.8 Fulfilling Requirements

This section discusses how the PathVis application fulfills the requirements as de-
fined in Section 4.3.
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Non-Functional Requirements

• NFR1 (VR Framerate) The environment in PathVis is designed as a static
mesh with baked lighting, making the application run well on most GPUs.
The framerate is smooth throughout the application, but slight judder and
lag may be experienced when the RT camera is active. When lag happens,
the VR runtime is responsible for reprojecting frames. No users expressed
any discomfort relating to this lag.
• NFR2 (Immersive Environment) The virtual environment is designed as

a hallway with windows showing a backdrop of a grassy field. Baked light
and reflection probes give a semi-realistic appearance of the environment.
Windows help make the hallway feel more open and less like a maze.
• NFR3 (Unity Prefabs) Prefabs were widely used during development to

implement the goal and gate system, narration buttons, ray gun and RT
camera retriever buttons and more. Once prefabs were in place, the original
prefab could be modified and the changes would propagate to all the other
linked prefabs.
• NFR4 (Reusable Scripts) Script components were made generalized where

possible, such as the RaytracingParticipator component used on every object
that the ray gun could hit. The component responsible for tracing visual rays
for the ray gun was reused for the ray tracing introduction booth and the
first version of the pixel grid camera. Some tasks and functionality in PathVis
required new script components that were created in an ad-hoc fashion, as
the functionality was not necessary in more than one area.

Functional Requirements

All the functional requirements are successfully fulfilled by the functionality avail-
able in PathVis. The ray gun fulfills FR1 and FR2, with the RT camera fulfilling
FR3. By developing the application for the SteamVR runtime, FR4 is fulfilled as
SteamVR works with most consumer VR HMDs.

Tutorial Functional Requirements

The fulfillment of these requirements was tested in the two user tests.

• T-FR1 Users are taught to teleport by requiring them to do so to proceed.
The first version of the tutorial had some users confused, but the second
version worked better and all users managed to learn how to teleport.
• T-FR2 Picking up objects is taught to the user by a holographic hand pointing

towards a cube, indicating that the user needs to move the virtual hand close
to the cube to grab it. Some users tried picking up the cube by squeezing it
with both hands, but eventually all users managed to pick up the cube the
correct way.
• T-FR3 In order to proceed through the first gate in the tutorial, the user has

to successfully teleport with an object. Users would try using the teleport
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beam with the same hand they were holding an object with, but eventually
learned to use the other hand.
• T-FR4 Learning how to drop sticky objects was not clearly communicated

in the first version of the tutorial. The second version added a picture indi-
cating the button to use, and users managed to learn how to drop objects
more quickly.
• T-FR5 Narration buttons in the tutorial introduce the user to buttons, though

they are not required to interact with them to proceed from the tutorial.
However, interacting with buttons is done in much the same way as picking
up an object, and users seemed to be able to press the buttons in the booth
immediately after the tutorial.

6.9 Research Outcome

This section will discuss how the findings from developing and user testing the
PathVis application can answer the four research questions as defined in Sec-
tion 1.2

RQ1: How can virtual reality be used for teaching ray tracing?

The method used for teaching ray tracing in the PathVis application is to let a user
explore a virtual environment and interactively trace rays by using a ray gun. By
letting the user be in control of the act of tracing a ray, the experience is made
more engaging.

RQ2: Can a ray tracing rendering algorithm be visualized in virtual
reality?

The PathVis application can visualize a simple brute force path tracing rendering
algorithm, by drawing paths of rays as lines in 3D space. Ray tracing and path trac-
ing are closely related, with path tracing being a more specific use of ray tracing.
The PathVis application also features a virtual camera that uses the same render-
ing algorithm to render pictures. A "pixel grid camera" is also featured, where the
ray gun can be used to trace paths and storing the result in pixels, which visualizes
the process of rendering a picture using ray tracing.

RQ3: What do users think about learning in virtual reality compared
to traditional learning methods?

Users generally liked seeing the visual learning materials in the PathVis applica-
tion, and felt that this type of learning could work well as an introduction to a
topic before learning more via traditional learning methods. Users expressed that
using the ray gun felt like a good way to learn ray tracing. Users that had never
tried VR before quickly become comfortable with moving around in VR.
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Conclusion and Future Work

7.1 Conclusion

The current wave of VR technology has seen successful applications for teaching
and visualizing. Ray tracing is a powerful method of rendering effects that are
difficult or impossible with traditional rasterization techniques, and is widely used
in the movie industry to render high quality. The project of this thesis was to
implement a VR application that could visualize key concepts within ray tracing
and evaluate how this could help with teaching.

A prototype application was developed but could not be evaluated by user test-
ing due to the COVID-19 pandemic restrictions at the time. The prototype applica-
tion featured a ray gun and a virtual camera that the user could interact with. The
ray gun could visualize paths of rays, and the camera could render pictures of vir-
tual "booths". In the second stage of development, the application was extended
to feature a tutorial and further build upon the features from the prototype. The
new environment was designed as a zig-zag hallway that introduced ray tracing
concepts one by one and requiring the user to fulfill goals to proceed.

Two versions of the PathVis applications were tested by users, with feedback
from the first user test being used to implement changes and improvements to
the application before the second test. The user tests showed that there is great
potential for using VR to teach ray tracing and other computer graphics topics,
as the virtual environment can give a more intuitive understanding of concepts
like rays and paths when they are visualized as lines in a 3D environment. Most
users felt like they learned something from the application, and that this type of
learning could be a good supplement to traditional methods.
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7.2 Future Work

The PathVis application in its current version can act as a good introduction to
ray tracing, and as a demonstration of a simple path tracing rendering algorithm.
However, there are several areas that could be developed further.

Target Audience

The initial target audience of the application was to be students of computer
graphics, but the participants of the user test were mostly people with a back-
ground in computer science but not necessarily graphics. For PathVis to be used
as an educational tool for computer graphics courses, it would be beneficial to test
the application with students from such a course. Feedback from a test like this
can then be used to determine where to develop the application further.

Tasks and Gameplay

Tasks in the current version of PathVis are limited in scope, and most tasks do
not test the user on their knowledge of the ray tracing concepts, instead focusing
on demonstrating and letting the user experiment on their own. This makes it
accessible to people who are not students of computer graphics, and it can serve
as a good introduction for ray tracing. In order to teach more substantial subject
matter, more engaging tasks and gameplay elements should be explored.

Standalone VR

PathVis was developed using the Unity game engine and SteamVR plugin, and
can be used with any SteamVR compatible VR HMD. A PC with SteamVR installed
is required to run the application, which makes the application less practical to
use compared to the ease of use of a standalone VR system. As standalone VR
hardware becomes more powerful, it should be possible to port some or all of the
functionality of PathVis to an application that can run on a standalone VR device.
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Appendix A

Survey

This chapter contains all the text and questions used in the second user test survey,
since this survey was identical to the one used in the first user test, apart from
the few additional questions relating to the first user test and narration buttons.
Responses to the questions and statements could have one of three types:

• A binary choice between Yes and No.
• A 5-point scale from Strongly disagree to Strongly agree.
• A text field where the user could write a text response.

A.1 Second User Test Survey

PathVis user testing feedback

Thank you for trying out PathVis! Please give feedback from your experience with
the app by filling out this online questionnaire.

PathVis was created by Rikard Storheil Eriksen for their master thesis project at
the Norwegian University of Science and Technology (NTNU).

All collected data is anonymous and will be used for research purposes in the
master thesis report.

• Did you participate in the first user test of PathVis (Friday April 1st 2022)?
(Yes/No)
• Do you study or have you studied computer science? (Yes/No)
• Did you reach the final room in your playthrough of PathVis? (Yes/No)

We need to know about users’ experience with VR and Computer Graphics. Please
choose the options that describe you best.

• I have experience with using VR (5-point scale)
• I have knowledge and/or experience with 3D Computer Graphics (5-point

scale)
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• I think ray tracing is interesting (5-point scale)

Usability

How much do you agree with the following statements about the usability of
PathVis?

• I think I would like to use this application frequently (5-point scale)
• I found the application unnecessarily complex (5-point scale)
• I thought the application was easy to use (5-point scale)
• I think that I would need the support of a technical person to be able to use

this application (5-point scale)
• I found the various functions in this application were well integrated (5-

point scale)
• I thought there was too much inconsistency in the application (5-point scale)
• I would imagine that most people would learn to use this application very

quickly (5-point scale)
• I found the application cumbersome to use (5-point scale)
• I felt very confident using the application (5-point scale)
• I needed to learn a lot of things before I could get going with this application

(5-point scale)

PathVis and learning

How much do you agree with the following statements about what you could
learn from PathVis?

• I learned something from using PathVis (5-point scale)
• I think VR has potential for educational use (5-point scale)
• I feel like this way of learning is a good supplement to traditional learning

methods (books, lectures, videos, etc.) (5-point scale)
• I have a better understanding of ray tracing after using PathVis (5-point

scale)
• I think there was too much text to read in PathVis (5-point scale)
• I used the narration buttons to listen to the text instead of reading (5-point

scale)

Open questions

Please answer each question as well as you can.

• What did you think about the tutorial area? Did you have any problems with
getting to the next areas? (text response)
• What did you think about the ray gun? What did you like/dislike about it?

(text response)
• What did you think about the ray tracing camera? What did you like/dislike

about it? (text response)
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• Did you use the narration buttons? If so, what did you like/dislike about the
narration? (text response)
• Do you have any suggestions for how PathVis could be improved? (optional)

(text response)





Appendix B

Evaluation

This chapter contains the extra results from the surveys that were used in the two
user tests. The results for the general questions were presented in Chapter 5.

B.1 User Test 1

B.1.1 SUS Survey Results
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I think I would like to use this application frequently

I found the application unnecessarily complex

I thought the application was easy to use

I think that I would need the support of a technical
person to be able to use this application

I found the various functions in this application were
well integrated

I thought there was too much inconsistency in the
application

I would imagine that most people would learn to use
this application very quickly

I found the application cumbersome to use

I felt very confident using the application

I needed to learn a lot of things before I could get
going with this application

Strongly Disagree Disagree Neutral Agree Strongly Agree

Figure B.1: The SUS scores from the first user test
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B.1.2 Text Responses

The survey also included questions with text responses where users could describe
their experiences of elements in PathVis. The first three questions were required,
with the last question being optional.

What did you think about the tutorial area? Did you have any problems with
getting to the next areas?

• Grabbing objects doesn’t seem obvious when you never tried VR before
• It would’ve been nice to get a better introduction to the buttons available on

the controller before using the headset. It’s hard to figure out what buttons
these things have if I can’t see them :)
• It took me a bit to get the hang of it but it was on afterwards
• Decent, though I didn’t realize where the grip button was at first
• It was well made
• The tutorial area was very friendly and relaxing. The movement from an

area to the other was pretty easy and straightforward.
• The texts were easy to understand, not confusing. No issues on getting to

the next area.
• Decent, though I didn’t realize where the grip button was at first

What did you think about the ray gun? What did you like/dislike about it?

• Cute
• It’s super intuitive to use once you know how to do it. Sometimes I wished

I could shoot faster, i.e. that the rays don’t take as much time traveling.
• I liked the tracing thing, but was not very sure on what to expect from it
• Excellent idea
• It was very useful and fun. I can imagine that people using this app will love

to experiment with it. It provides a great idea regarding all the scattering
that takes place in a 3D scene. Nothing to dislike really.
• The ray gun was cool. It was easy to handle and made the understanding of

Ray casting interesting and easy to learn.
• I found it very cool, nice to see the way the light gets reflected and bent

What did you think about the ray tracing camera? What did you like/dislike
about it?

• It’s nice to see all the possibilities
• I didn’t really find it useful for anything. I knew before how ray tracing

works and I had coded some basic ray tracing algorithm before, so I didn’t
really have any benefit. (There’s a lot of lower-level things about rendering
which I don’t know yet, but this was nothing new.)
• I liked it. I think it’s neat to know what happens with actual light



Chapter B: Evaluation 83

• Some explanation of the different views would be nice, maybe something
analogous to a tooltip that pops up as you cycle through the options
• The interface of the camera is very nice and easy to follow. I have a comment

though for the cameras provided for the small exhibition rooms at the final
area: I could not easily "move" the cameras in order to focus on the corre-
sponding exhibition room. I have managed to do that one or two times but
I could not understand how I actually did that.
• The on/off button of the camera was a bit confusing. In the beginning, it

was not clear that the text underneath the button showed the current state
(on/off). I really liked that you could take photos.
• The path tracing was rather slow :)))) I think it worked really well though

Do you have any suggestions for how PathVis could be improved? (optional)

• It explains ray tracing at one level of difficulty. All the concepts were ex-
plained in a simple way. It would be cool to start even simpler and then to
dive even deeper into the topic, i.e. to explore it in multiple iterations. I’m
unsure if this matches what you have in mind for the tutorial, but generally
I find iterative learning approaches to be superior.
• Maybe add some form of instructions or directions in text on what button

does what in the physical controller
• If you could somehow reduce the amount of reading you have to do. I find

it a bit frustrating to read in VR. Narration could maybe be an option.
• Same as my latest comments. It would be good if there was an explicit mov-

ing manipulation for the cameras at the final area so that the user can easily
focus the camera to the desired exhibition scene.
• Overall it was a great app. A good detail was the windows with the open

sky. Two suggestions could be: make a clear suggestion to the user to print
more photos at the last room. Highlight the end of the process (eg an exit
sign)
• Clarify distinction between path tracing and ray tracing
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B.2 User Test 2

B.2.1 SUS Survey Results
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I think I would like to use this application frequently

I found the application unnecessarily complex

I thought the application was easy to use

I think that I would need the support of a technical
person to be able to use this application

I found the various functions in this application were
well integrated

I thought there was too much inconsistency in the
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this application very quickly
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I needed to learn a lot of things before I could get
going with this application
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Figure B.2: The SUS scores from the second user test

B.2.2 Text Responses

The second user test asked the same questions, with an additional one relating to
the narration buttons.

What did you think about the tutorial area? Did you have any problems with
getting to the next area?

• No
• It was easy to get started. A nice addition could be a visualization of the VR

controller with instructions on how to use each button.
• It was ok. A bit or feedback when you fail a task would be nice. For example

if you’re not hitting the same spot every time
• Path is straightforwardn no problem to go to the next area
• I already have experience with VR, so no
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• The tutorial was improved. Nice to see visuals in addition to text. I do see
that you got quite insistent in telling people about the grip button.
• No, there were no problems. Sometimes it would’ve been nice to know

the task not just at the end of the room, but rather at the beginning, but
I wouldn’t call this a problem. I just had to teleport back and forth one time
more often than I could’ve.
• It was clear what I was supposed to do and what tasks I had to complete.
• I had no problems here.
• Once I figured out how to use the teleporter, I had no problems.
• I strongly suggest, It should be a small introduction about the controls. I

was struggling to find the buttons in the control. Before putting the glass, I
preferred to look at it and try it. There are a lot of unnecessary texts that I
was confused what is the goal now.

What did you think about the ray gun? What did you like/dislike about it?

• I liked it, but maybe a light/translucent “laser pointer” that is always on
would make it easier to shoot it accurately.
• Liked it, nothing to complain about! Everything is more fun when you get

to shoot things :)
At the start I was a bit confused of the different colors that the rays got. E.g.
at one point I forgot the normal vector was pink. Perhaps you could separate
them with something else than only colors? For example, dotted line.
• it’s easy to use and the fact that you can get it when you need it is quite

useful
• Easy to use, good to experiment with while listening to explanations
• I’m not sure if the ray colors were intuitive all the time
• Returning black rays from areas with color seemed odd, but most of the

time it was fine.
• The gun worked flawlessly.

Generally it would be nice to be able to hold something and have a gun and
teleport myself, but well, I only have two hands.
• It was good
• I liked it. Good example of theory
• Nice 3D model and good responsiveness to the control.
• It was really interesting. With ray gun I start to like the test. I had more

confident for next levels.

What did you think about the ray tracing camera? What did you like/dislike
about it?

• It feels a bit clunky at times with the manual pointers that must be inter-
acted with through vr only (no hotkeys), but otherwise good. You could also
maybe do more with it, e.g. create some task for the user that incentives
them to use it for more than just taking a photo.
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• Cool! the Path tracing was a bit slow, so it ended up that I often did not wait
for it to "finish" rendering.
• I likes that you could switch modes. I don’t like that you need to grab a

picture before printing another one
• Nice but repetitive
• As a still image it was good, but it was hard to get different angles
• A little slow :P It’s cool though, and I like that you can adjust the perspective

easily.
• I think it’s the right concept to explain ray tracing. I wonder if it can be

extended a bit. For example, there was still a gap between me shooting
the rays through the grid and the camera doing everything autonomously.
Maybe add an animation where the camera shoots all the rays?
• I think it had a great performance, especially in comparison with the previ-

ous run.
• Not as meaningful as the ray gun, but a cool gadget.
• Like: The ball to change the focal length Dislike: Slow sampling
• The button for camera was behind a lot of other options. At first I was con-

fused that what I should do in this step and asked for guide.

Did you use the narration buttons? If so, what did you like/dislike about the
narration?

• Narration was solid! Maybe add some hotkey to rewind x seconds in case
you miss something.
• Used it once or twice and it was good!
• I liked them because it makes the run faster. They complement the whole

experience
• Reading in VR can be a bit annoying especially with glasses, narration makes

it easier
• Not really
• Get a better mic... or just get some professional to do the narration. It’s fine

though.
• I think it’s very useful for people who prefer to listen to content rather than

reading it, so it’s cool that the buttons were there. I’m not that person.
• I tried to, but I could not listen anything
• No
• Yes, I liked the narration button and used it a lot. This helped me because

sometimes the text didn’t look very sharp (possibly a contact-lens-related
problem?).
• I used but then I turned off. I found it a lot of details. I preferred to read

Do you have any suggestions for how PathVis could be improved? (optional)

• It feels like a tutorial, but when you get to the end, there’s no “game”. If
you ever have the time, maybe consider adding some sandbox-like area in
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the end where the user gets to do more. For instance, some way to create
your own scene would be nice. You could motivate them to play around by
giving them more complex/open ended tasks than the simple ones required
to get through the initial areas.
• Nothing I can think of now, but I think this is a very good application for

using VR in education! Often the VR applications for education could easily
been done in a different format, but using this to teach graphics/path tracing
was a very good use case :)
• The wood room where I had to shoot three rays at the exact same place was

hard. I think it could benefit from less precision
• Reduce the sensitivity in the "shoot rays at exact same spot" part. Took quite

a few tries to get it right.
• Just the one suggestion for the camera two questions earlier.
• - I couldn’t clearly identify the vector directions in the early experiments.

- Being new to the VR stuff: I was overwhelmed by the functions and in-
formation input (teleporting, looking for the narration button and trying to
activate it, the virtual fence) -> Most of my attention was on the “game-
play” instead of learning about the rays. - The reflected rays from the ray
gun looked 2D to me (similar problem as mentioned before with the vectors)
• I preferred some introduction or one test as a demo to explain the test better.

As a user the first time and especially at first was a bit confusing but at the
end I was so fast and knew what I need to do. I should mention I don have
much experience with VR and gaming.
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