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Abstract

For applications requiring large amounts of image data, the availability and us-
ability of such images often conflict with privacy regulations like GDPR. Naive
anonymization methods (e.g. masking, blurring) result in images wildly different
from the original ones, making the data unusable for applications requiring real-
istic image content. Current realistic full-body anonymization works well on single
images but tends to create significant changes in the appearance of the generated
person for small changes in backgrounds and poses. In this thesis, we propose a
model that generates more consistent anonymizations for changes in the input,
paving the way for realistic video anonymization. Our model is trained to recon-
struct the original person in the image, such that the model is forced to use a
latent variable ~z when synthesizing the person’s appearance. When used to an-
onymize the Market1501 dataset, our model outperforms our StyleGAN baseline
by a wide margin in terms of retaining the same identity across various images.
The improved model has no increase in inference time, but increasing consistency
leads to a decline in image quality and diversity. We will, through this thesis, dis-
cuss several challenges related to consistent full-body anonymization and propose
new directions for further research in the field.
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Sammendrag

Det finnes mange datasystemer som krever store mengder bildedata, men tilgjen-
geligheten og kvaliteten på denne bildedataen begrenses ofte av personvenrnsreg-
uleringer som GDPR. Et problem er at banale anonymiseringsteknikker som blur-
ring og maskering lager bilder som ser veldig annerledes ut enn originalbildene.
Dette fører til at datasett anonymisert med disse teknikkene er uegnet i tilfeller
der det kreves realistisk bildeinnhold. Det finnes i dag fullkroppsanonymiserings-
modeller som fungerer bra til å generere realistiske enkeltbilder, men disse skaper
store endringer i en persons utseende ved små endringer i bakgrunns- og positur-
informasjon. I denne rapporten legger vi fram en realistisk fullkroppsanonymiser-
ingsmodell som gir mer konsekvente anonymiseringer ved endringer i bakgrunn
og positur, og kommer dermed et steg videre på veien mot realistisk videoan-
onymisering. Modellen vår er trent til å rekonstruere den originale personen i
bildet, slik at modellen tvinges til å bruke den latente variabelen ~z når den be-
stemmer utseendet til personen som skal genereres. Når modellen vår brukes til
å anonymisere Market1501-datasettet er den overlegent bedre enn utganspunkt-
modellen vår basert på StyleGAN i å generere samme person på tvers av bilder.
Den forbedrede modellen gir ingen økning i hvor lang tid anonymiseringen tar,
men å øke konsekventheten fører til en nedgang i bildekvalitet og mangfold i de
generte bildene. Vi vil gjennom rapporten diskutere flere utfordringer relatert til
konsekvent fullkroppsanonymisering og komme med forslag til hva som burde
unsersøkes i videre forskning på feltet.
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Chapter 1

Introduction

Modern computer vision models require large amounts of labeled training images
to function properly. However, gathering images of people often conflicts with
privacy regulations. Systems exist for both realistic face and full-body anonymiz-
ation, but no system can consistently anonymize the same body for varying poses
and backgrounds. This master thesis explores how to create realistic full-body an-
onymization models robust to changes in pose and background, paving the way
for better video anonymization.

1.1 Motivation

Computer vision datasets should preferably come from real and varied environ-
ments and contain clear, identifiable objects. However, capturing high-quality im-
age data from self-driving vehicles poses a problem, as many images will contain
identifiable persons. Strict privacy regulations (e.g. GDPR) make it illegal in many
regions to collect and store images containing Personal Identifiable Information
(PII) without explicit consent. In the self-driving vehicle case, asking every person
captured on camera for consent is not feasible, so an anonymization pipeline is
needed.

Pixelation, blurring, or masking of the persons in the dataset are standard an-
onymization techniques used in many applications, such as Google Street View
[1]. However, these approaches severely distort the original data. An effective
measure to counter this is to replace the depicted individuals with realistically
generated people. The goal of such an anonymization pipeline is to keep the ori-
ginal dataset distribution intact while at the same time preserving privacy. More
work on systems for realistic anonymization might open up the possibility for a
larger amount of high-quality image and video datasets to be open to the public.
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2 Towards Consistent Full-Body Anonymization

Several systems exist for realistic anonymization of faces. However, only oper-
ating on faces is insufficient in many cases as a person could be identified through
other identifiers on their body. Realistic anonymization operating on full bodies is
still in its infancy today, and the current state-of-the-art generates highly incon-
sistent anonymization results for videos.

1.2 Goal and Research Questions

The goal of the thesis is as follows:

• Goal: Create a two-stage realistic full-body anonymization pipeline able to
generate the same person consistently for various poses and image contexts.

A more consistent realistic full-body anonymization pipeline will allow for
new anonymization scenarios, such as better anonymization of videos. This, in
turn, means that anonymized datasets can be better suited to tasks such as track-
ing, which is crucial for applications like self-driving vehicles. Our anonymization
pipeline will consist of two stages where the first stage consists of finding the per-
sons in the images, and the second stage consists of replacing these persons. To be
able to reach the goal of creating such a pipeline, we will, throughout the report,
try to answer several research questions (RQs):

• RQ1: What are the main challenges of consistent full-body anonymization?

The task of consistent full-body anonymization is not explored in current literat-
ure, so highlighting and searching for challenges in the domain is key to bringing
the field forward. Challenges can be found by examining existing literature for
similar tasks and through experimentation.

• RQ2: What datasets and pose estimation methods are suited for the task of
consistent full-body anonymization?

For any computer vision task, the properties of the training dataset will severely
impact how the final model will function. In our case, we have two major decisions
regarding the choice of dataset. First, what kind of training images should we use
for the best possible anonymizations? And second, how should the persons in the
dataset be represented (e.g. in terms of pose information) before being sent into
our anonymization model?

• RQ3: How can we improve on existing anonymization techniques to make
them more consistent?
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Creating a new system entirely from scratch is probably not the best way to go
forward with this task. Basing the system on existing techniques and trying to find
improvements for those techniques will make development swifter and possibly
bring up interesting new questions.

• RQ4: How can we evaluate anonymization consistency?

Most subfields of deep learning are based on experiments, so having quantit-
ative metrics able to describe the performance of a given system reliably is crucial.
In our case, finding out how to evaluate consistency would be very beneficial for
further development of consistent anonymization systems.

1.3 Research Method

We will answer the research questions through analysis of existing literature and
experiments. The results from the experiments will be analyzed quantitatively by
using several metrics and qualitatively through images and video. Qualitative eval-
uation is especially important for generative models, as creating reliable metrics
assessing the quality of generated images is a difficult problem. We will analyze
both the final model and several ablation models created to assess the impact of
improvements made to the system throughout the thesis period.

1.4 Contributions

We propose a full-body anonymization model that generates more consistent an-
onymizations than previous methods. The model is trained to generate an appear-
ance vector from the original person pixels and use this appearance vector when
generating the anonymized person. By forcing the model to use this appearance
vector, the model becomes less sensitive to the background and pose of the original
person when anonymizing. The new model provides increased temporal consist-
ency for video without increasing the inference time.

Our contributions can be summarized as follows:

1. We explore the task of consistent full-body anonymization, relates the task
to existing literature, and highlight key challenges to overcome.

2. We create a model able to do more consistent anonymization than current
state-of-the-art in full-body anonymization, paving the way for better video
anonymization.
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3. We discuss key challenges for our model, dataset, pose detection, and met-
rics and encourage further research and development in several areas.

All code used in the thesis, including config files, is included along with the
thesis document to ensure reproducibility of the results. In addition, we have in-
cluded final model weights for the StyleGAN baseline model and our final model.
The dataset will be published as open-source at a later point in time.

1.5 Thesis Structure

Chapter 2 will introduce the reader to the field of computer vision, methods for
gathering human pose information from images, generative models, and common
metrics in the field. Then, chapter 3 will compare our task of consistent full-body
anonymization to similar tasks, as well as examine and compare common datasets
used in related research. Chapter 4 will introduce the FDH dataset, our baseline
model based on StyleGAN, and improvements done to this model to make the
anonymization process more consistent. In chapter 5 we will present the results
of the model, both quantitatively and qualitatively, and in chapter 6 we will discuss
the results of chapter 5 in terms of the research questions. Finally, chapter 7 will
conclude the thesis and propose several directions for further research.



Chapter 2

Background

The field of computer vision, and particularly the parts related to generative mod-
els, has seen considerable improvements in the last decade. This chapter will first
introduce the reader to the field of computer vision, common computer vision
tasks, and common model architectures. We then move on to explain various com-
puter vision models able to give information about the whereabouts of humans
in an image, as these models will later be used in dataset generation. Finally, we
move on to the field of generative models and GANs in particular, as GANs are
currently state-of-the-art for generating realistic images and will be used in our
models in chapter 4. At the end of the chapter, metrics used later in the thesis for
assessing the quality of generated images will be covered.

This introductory chapter assumes the reader is familiar with basic machine
learning theory and neural networks. We refer the reader to the books “Deep
Learning” [2], “Pattern Recognition and Machine Learning” [3] and “Artificial In-
telligence: A Modern Approach” [4] for a good introduction to the theme.

2.1 Computer Vision

From an engineering point of view, computer vision aims to build autonomous
systems that could perform some of the tasks the human visual system can perform
[5]. With improvements in machine learning, the introduction of convolutional
neural networks, and major improvements in computer hardware, the capabilities
and performance of computer vision systems have skyrocketed in the last years.

The field of computer vision is mainly driven by empirical research with a lot
of experiments. Researchers compete on standardized tasks using standardized
image datasets and standardized metrics for assessing the results. The field moves

5
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forward by the creation of new tasks, datasets, and metrics, as well as competition
to beat the computer vision model currently having the highest metric scores for
the various tasks. The current best model for a given task is often referred to as
“state-of-the-art”.

2.1.1 Common Tasks in Computer Vision

As mentioned, the field of computer vision moves forward by new tasks, new
datasets, new metrics and new models. As the field advances, the tasks get more
challenging, the datasets get larger and more varied, the metrics become more
precise and useful, and the models get bigger, more complex, or even completely
changed. Below are some of the most common computer vision tasks with much
recent research.

Classification

Classification is the task of assigning a label to an image given a limited set of
labels. A classification task could be to distinguish images of cats and dogs or
to predict handwritten digits from images. The most influential benchmark data-
set for image classification is the ImageNet Dataset [6], where the benchmarking
version of the dataset contains 1000 different classes. The performance of clas-
sification models is often measured through the accuracy, meaning the amount
of class predictions it got right, or top-k accuracy for different k. Top-k accuracy
metric means the amount of predictions where the right class was present among
the k most probable class predictions from the modl.

Object Detection

The goal of object detection is to predict the location and class of multiple ob-
jects in a single image. Object detection is more general than classification, as the
image is not limited to having just one type of object present. In addition, the
number of objects present and their position can be read from the results. Object
detection is based on bounding boxes in image coordinates, so to create object de-
tection training data, one must create a bounding box with a class label for each
object present in the image. Object detection is useful in many scenarios, such
as detecting people from camera data in a self-driving vehicle. A common bench-
marking dataset for object detection is the Common Objects in Context (COCO)
Dataset [7], containing 80 classes for object detection. The most common metric
for object detection models is Mean Average Precision (mAP), which takes both
precision and recall of the model into account. Precision in this case is the amount
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of given predictions being correct, while recall is the amount of total objects the
model was able to find.

Segmentation

Segmentation is the task of predicting class labels for individual pixels, thus seg-
menting the image into different regions. This allows for more fine-grained po-
sitioning than object detection, as one is not limited to bounding boxes. There
are multiple segmentation tasks, such as semantic and instance segmentation. Se-
mantic segmentation gives every pixel in the image a class label, while instance
segmentation takes it one step further by also separating instances of the same
class from each other. Instance segmentation can, in this sense, be seen as a com-
bination of segmentation and object detection as it gives both a class label and
a mask for every object present. It is worth noting that when moving from clas-
sification to object detection to segmentation, the labeling process becomes in-
creasingly more time-consuming as more fine-grained information is needed. A
common metric used for segmentation is Mean Intersection Over Union (IoU),
meaning the mean mask intersection over mask union for every class.

Object Tracking

Object tracking extends object detection to videos, where detected objects are
tracked across frames. Each object has an associated id, and the model must en-
sure that the ids are consistent throughout the video. Common problems in object
tracking include losing an object for some time and assigning a new id to it, as
well as id shifts when two objects come close to each other.

Keypoint Estimation

Keypoint estimation is the task of predicting points of interest related to an object
in an image. These points can, for example, correspond to human joints or edges
of clothes [8]. Both Single(fixed)-Object Keypoint estimation and Multi-Object
Keypoint estimation exist, with Multi-Object Keypoint estimation being signific-
antly more challenging, as it is not known beforehand how many objects will be
present in each image. Possible use-cases of keypoint estimation include analyzing
videoes of moving athletes or predicting certain diseases based on footage of how
babies move.
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Person Re-Identification

Person re-identification is the task of matching persons of the same identity in
images. The images in question can be captured with various angles, viewpoints,
lenses, and cameras, and the people in the images can be captured at different
points in time. Given a probe image (query), the person re-identification task
is to search in a gallery (database) for images that contain the same person.
[9]. To assess the quality of the system, a Cumulated Matching Characteristics
(CMC) curve is often used, showing the probability that a query identity appears
in different-sized candidate lists. However, when multiple ground truth images
exist, the amount of matched candidates is not taken into account with CMC,
making mAP a more accurate metric [9].

2.2 Extracting Image Features with Convolutions

A convolution is a mathematical operation taking two functions as input and pro-
ducing a new function. In computer vision, the word convolution is a misnomer,
as the actual process being done is often a cross-correlation, defined in the discrete
2D case as:

F[i, j] =
kX

u=�k

kX

v=�k

h[u, v] · I[i + u, j + v] (2.1)

Here, F is the output function while h and I are input functions. Both F , h,
and I are 2-dimensional discrete functions that are used to represent greyscale
images, while k is half the width of h rounded down. For most computer vision
purposes, the cross-correlation is done with an input image F and a very small
image h (typically 3x3), known as a kernel. Often, we say that a kernel is look-
ing for features in an image, so the resulting grid output from a convolution is
often called a feature map. One example of a hand-crafted kernel is the Sobel ker-
nel [10] seen in Equation 2.2. The Sobel kernel is designed to check for vertical
edges in an image, and an example of its use can be seen in Figure 2.1. While the
kernel in Equation 2.2 is made for greyscale images with one input channel, a gen-
eral image kernel will have as many channels as the input image (3 for an RGB
color image). In most computer vision scenarios today, the values of a kernel h
for convolution are not hand-crafted but rather optimized through some machine
learning training process.
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Figure 2.1: Edge detection by computing a cross-correlation with the horizontal
sobel kernel Sx from Equation 2.2. The kernel is passed through the image pixel
by pixel and the output pixel is calculated by a weighted summation of the 3x3
pixel grid surrounding the input pixel. Left: The original greyscale image, Right:
The resulting image from applying the kernel, often referred to as a feature map.

A convolutional neural network will typically contain many convolutional lay-
ers, each with its own set of kernels looking for features. Each layer will apply
its kernels to the input image (or set of feature maps) and stack the output fea-
ture maps channel-wise to create the input for the next layer. In addition, a non-
linear activation function is applied to the values of each feature map to ensure
the network can learn non-linear mappings. A typical convolutional architecture
consists of multiple convolutional layers combined with downsampling operations
(such as max-pooling) which cuts the spatial resolution of the input in half. An
example of such a convolutional architecture used for classification can be seen in
Figure 2.2. Convolutional neural networks work better than fully-connected net-
works on images because they are translational invariant and use the same para-
meters across the whole image. This makes them more robust to small changes in
the input, which in turn makes them better at generalizing to new, unseen images.

When a model such as the one in Figure 2.2 is trained, it is expected that
the feature maps, as they get smaller and smaller, will contain more semantic
meaning. The first feature maps might contain information regarding edges, while
the next might contain more information about textures and patterns. In the end,
the activations in the feature maps might represent more semantically meaningful
information, such as the presence of a dog. The set of all convolutional layers and
downsamplings used before the data is further processed is often referred to as a
backbone, and the features coming from such a backbone might be useful for other
tasks than what the model is initially trained for. The backbone features can, for
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Figure 2.2: Illustration of the VGG network [11] for classification. The network
takes one an image as input, processes it into smaller and smaller feature maps
using convolutions and downsamplings before flattening the feature maps and
doing classification using a fully-connected neural network. In the image, conv
refers to convolutions, and FC refers to fully-connected network layers. Image
source: [12]

example, be used as in metric for finding out how realistic images are, which we
will see in section 2.13.

2.3 Object Detection using Region Proposals

Region proposal models for object detection (e.g. bounding box prediction) consist
of two stages. The first stage tries to find possible bounding boxes, and the second
stage tries to find if the possible bounding box should correspond to an object
class or be classified as background.

The first model to do this was R-CNN [13], which uses the Selective Search al-
gorithm [14] to create bounding box proposals before each of these is sent through
a convolutional classification network to predict the class. R-CNN yields good res-
ults but is extremely slow as one forward pass through the entire model is needed
for every bounding box. Fast R-CNN [15] makes the process faster by computing
the features of the input image only once using a convolutional network. Speed-
ing up the classification made the Selective Search algorithm the speed bottleneck
of the architecture, which led to the creation of Faster R-CNN [16]. Faster R-CNN
uses a separate neural network for region proposals, giving state-of-the-art per-
formance and close to real-time inference speeds.
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2.4 Instance Segmentation using Mask R-CNN

Mask R-CNN [17] is an extension of Faster R-CNN for instance segmentation. Mask
R-CNN adds an additional branch parallel to the detection network of Faster R-
CNN, which is used to predict the objects’ masks, as seen in Figure 2.3. This design
allows for accurate mask predictions while having a small overhead compared to
Faster R-CNN. Pretrained Mask R-CNN models exist open-source on the internet,
such as in the Detectron2 library [18].

Figure 2.3: The Mask R-CNN Network builds on top of Faster R-CNN by adding
a segmentation branch which is used for every region of interest found by the
region proposal network. Figure source: [17]

2.5 Data Augmentation

Data augmentation is the process of creating new, realistic data from existing data
so that the training set becomes more diverse. For images, this means applying
image transformations preserving the labels of the original images [19]. Some
typical image transformations are crop, mirror, and rotation – or all of them at
once. These transformations are often applied at random when data is loaded
during training, so each image becomes different each time it is loaded. Some
example of image transformations can be seen in Figure 2.4.

2.6 SMPL

The Skinned Multi-Person Linear (SMPL) model [20] is a parameterized 3D hu-
man body mesh model with separate shape and pose parameters. By specifying
the shape and pose parameters for the SMPL model, it is possible to generate 3D
meshes of humans in a wide variety of shapes and poses, as seen in Figure 2.5.
To create the SMPL body shapes, the authors align a common 3D human model
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Figure 2.4: Data augmentation using image transformations. The same image
transformation (text above each image) is applied to the satelite image (top row)
and the ground-truth binary segmentation mask (bottom row). The goal of data
augmentation is to create new images which possibly could have been present in
the training set. Figure source: [19]

Figure 2.5: Rendered SMPL models with different shape and pose parameters.
Image source: [20]

template with 6890 vertices and 23 joints to a large amount of 3D scans of real
humans. These aligned 3D models are then pose-normalized and analyzed us-
ing Principal Component Analysis (PCA) to create a parameterization of the 3D
human model template able to represent a large amount of human shapes with
relatively few principal components.

One crucial property the SMPL model creators wanted was for the model to
work with existing graphic engines. They therefore decided to do the movement of
the joints by using linear blend skinning. The problem with linear blend skinning
is that it tends to create unrealistic mesh deformations close to the model’s joints.
To counter these deformations, the authors used 3D scans of humans in a wide
variety of poses to create pose-dependent shape deformations able to counter the
deformations introduced by linear blend skinning.
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2.7 Dense Pose Prediction

The goal of dense pose prediction is to predict pose information for every pixel
on the human body. This is different from sparse keypoint prediction, where only
single points are predicted, such as the location of all body joints. The DensePose
model [21] does Dense Pose prediction by predicting pixel-to-model correspond-
ences between pixels in the image and a SMPL model. In a sense, dense pose
prediction is quite similar to instance segmentation, with the addition that all of
the predicted instance pixels should contain extra information regarding where
on the human body that pixel is located. The DensePose model is trained on the
DensePose COCO dataset consisting of human images manually labeled with some
surface points. The model outputs, for each human pixel, the corresponding body
part and the UV coordinate of the body part for that particular pixel. Illustrations
of these concepts are shown in Figure 2.6.

Figure 2.6: Illustration of DensePose concepts. Left: An image from the COCO
dataset. Middle-left: The predicted body parts from a DensePose model where
the gradient from blue to yellow corresponds to either the U or the V coordinate
for each body part. Middle-right: Visualization of the manually annotated model
points done on the image in the DensePose COCO Dataset. Right: The 24 body
parts as they are present on the SMPL model as well as a two-dimensional UV
map of all of the body parts. Image source: [21]

2.7.1 Continuous Surface Embeddings

Continuous Surface Embedding (CSE) [22] takes another approach on dense pose
estimation. Instead of slicing the SMPL model into 24 parts, the model now pre-
dicts for each human pixel a vector in a learned surface embedding space in R16.
This predicted vector can be used to find the closest SMPL vertex in embedding
space for every pixel, thus establishing pixel-to-vertex correspondences for every
human pixel in the image. The CSE model performs on-par or better than Dense-
Pose, partially because there are no “seams” between the part maps. An addi-
tional benefit of doing dense pose prediction this way is that the same scheme
can be used for different deformable surface models (e.g. on 3D models of anim-
als) without having to slice the models into parts. It is even possible to make a
DensePose predictor work on multiple object categories by using functional maps
[23] for modeling correspondences between the surface models.
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Figure 2.7: Illustration of continuos surface predictions. The model predicts a
learned surface embedding value for every human pixel in the image, which in
turn can be used to find pixel-to-vertex corresponences between input pixels and
the vertices of an SMPL model. Each color value in the illustration corresponds
to a specific SMPL vertex. Image adapted from: [22]

2.8 Editing Masks with Morphological Operations

Masks are binary images with a 0 or 1 at each spatial location and can be used to
represent the location of where something exists in an image. A mask can be “mul-
tiplied” pixel-wise with another image so that everything outside of the masked
area turns black. In addition, a mask is pretty easy to invert, as it can done by just
applying a “logical not” operation to each pixel. To edit masks, it is possible to use
operations based on mathematical morphology, such as dilation and erosion [24].
A morphological dilation is carried out by moving a structuring element through
an image and placing a pixel everywhere the structuring element intersects with
the existing mask, as illustrated in Figure 2.8. An erosion is performed much the
same way, except that the whole structuring element now needs to be inside of
the mask for a pixel to be placed in the final image. An erosion can only decrease
the size of a mask, while a dilation can only increase it.

2.9 Generative Models

A generative model tries to model the distribution of the input data, in contrast
to discriminative models, which try to separate the input distribution into several
categories. More specifically, a discriminative model tries to calculate the probab-
ility for a label Y based on input data X , so the model’s objective can be written
as P(Y |X ). All models discussed until now, such as image classification models,
Faster R-CNN, Mask R-CNN, and DensePose, can be classified as discriminative
models. On the other hand, a generative model tries to model the actual distri-
bution of the data P(X ), or the joint distribution P(X |Y ) if labels Y are provided.
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Figure 2.8: Illustration of a morphological dilation. The upper left shows the
input mask, while the upper right shows the resulting mask after dilation. The
dilation is done by moving the structuring element (shown in the lower right)
over the input mask image and placing a pixel everywhere the two intersect.
Image source: [24]

Generative models can generate new data instances or tell how likely a given data
instance X is to belong to the data distribution.

2.9.1 Variational Autoencoders

An autoencoder is a model which takes data X as input and tries to reproduce the
same data X as output [25]. Reproducing the output seems like a pretty easy task,
but the model contains a bottleneck where the dimensionality of the throughput
is severely smaller than the dimensionality of X . By introducing this bottleneck,
the model must create a compressed version of the input data by simultaneously
learning both a compression and a decompression function. A compressed data
point (or image) is often referred to as a latent vector, and the space of all possible
latent vectors is referred to as a latent space. The compression and decompression
functions in autoencoders are known as encoders and decoders, respectively, and
an illustration of the process can be found in Figure 2.9. It is worth noting that
an autoencoder can be trained in an unsupervised manner, as no image labels are
required.

Variational Autoencoders [26] is an extension of this scheme, where the lat-
ent variable is forced to follow a known distribution (e.g. Gaussian). By know-
ing the encoded distribution, it is possible to sample new data points similar to
the distribution of X , as well as check whether new input images create encoded
representations deviating heavily from the known latent distribution. Forcing the
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Figure 2.9: Illustration of an autoencoder for images. The image is put through
an encoder and transformed into a low-demensional latent representation before
being reconstructed by a decoder. The whole model it trained to do end-to-end
reconstruction in an unsupervised manner. Image source: [25]

latent variable to be gaussian has also shown to make the change in output im-
ages smoother and more interpretable when moving around in the latent space.
This effect can be seen in Figure 2.10, which shows samplings from a variational
autoencoder latent space of two dimensions.

Figure 2.10: Latent space of a variational autoencoder with a 2-dimensional lat-
ent space trained on the MNIST dataset. Since the latent space is Gaussian, the
points are sampled by using a grid on the inverse CDF of the Gaussian to better
represent the distriubution. Image source: [26]

2.10 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [27] is a framework where both a gen-
erative and a discriminative model are trained simultaneously while competing
against each other. The generative model, known as the generator, tries to create
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a mapping from a multidimensional latent vector ~z to images looking like the ones
in the training set. The discriminative model, known as the discriminator, tries to
separate the images coming from the generator from real images in the training
set. Since it is possible to compute gradients through the whole discriminator, the
discriminator can be used to create targeted feedback for the generator. As train-
ing progresses, both models become increasingly good at their tasks, and after a
while, the generated images will start to look much like the real ones. It is worth
noting that the generator never sees any real images directly during training and
is only trained by feedback from the discriminator. Calculating the loss using a
discriminative model is often referred to as adversarial loss, or simply GAN loss.
The optimization objective of the original GAN is given as:

min
G

max
D

V (D, G) = Ex⇠pdata(x)[log D(x)] +Ez⇠pz(z)[log(1� D(G(z)))]. (2.3)

In this equation, G is a generator function converting a latent vector to an
image. D is a function taking an image as input and outputting the probability of
that image belonging to the real data distribution. pdata(x) and pz(z) are the real
image distribution and the latent space distribution respectively. An illustration of
the GAN framework can be seen in Figure 2.11.

Figure 2.11: Illustration of the GAN framework. The generator uses randomly
sampled noise z to generate images, while the discriminator is fed both generated
and real images and tries to differentiate them from each other. The generator
improves by getting targeted feedback from the discriminator. Image source: [28]

2.10.1 Wasserstein GANs

Even though the original GAN was able to create impressive images at that time,
it is known for being notoriously hard to train and prone to collapsing. One of
the main problems is that the discriminator can end up in a state where it is
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able to differentiate the real and fake samples without giving the generator good
feedback. In a sense, training a good discriminator is different from training a
good binary classifier, as it should not only differentiate the two classes but also
provide helpful gradient values for how the generated samples can become more
real.

Figure 2.12: Gradients for an optimal WGAN disciminator compared to an
optimal original GAN discriminator when learning to differentiate two 1-
dimensional Gaussians. The original GAN discriminator ends up having a gradient
close to 0 for the generated samples, which means that the generator will not be
able to learn how it should change. Image source: [29]

Arjovsky et al. [29] propose the Wasserstein GAN, which instead of letting the
discriminator output a value between 0 and 1, extends the output to all positive
and negative values. It also states the discriminator outputs should be forced to be
K-Lipschitz continuous, meaning that the discriminator should satisfy the criteria
|D(x1)�D(x2)| K |x1� x2| for all x1 and x2 and a positive real-valued constant
K . This essentially means that there should be a speed limit on how much the
discriminator output values are allowed to change, inhibiting the creation of very
steep parts in the discriminator’s output space. The Wasserstein GAN enforces
Lipschitz continuity by using weight clipping in the discriminator, meaning that
the weight values of the discriminator are clamped to [�c, c] for some constant c.
A comparison between the original GAN discriminator and the Wasserstein GAN
discriminator trained on a 1-dimensional toy example can be seen in Figure 2.12.
Note that Arjovsky references the WGAN discriminator as a critic since it tries to
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assess the “realness” of images instead of classifying them as real or fake.

2.10.2 Gradient Penalties

Arjovsky et al. state in their paper that “Weight clipping is a clearly terrible way to
enforce a Lipschitz constraint”. This is partly because weight clipping pushes the
weights towards the extremes of the clipping range, yielding functions that are
too simple [30]. Gulrajani et al. [30] instead propose to use gradient penalties for
enforcing Lipschitz-continuity of the generator. The gradient penalties work by
penalizing the norm of the gradient of the discriminator with respect to its input.
The new GAN objective function with gradient penalties is shown in Equation 2.4.

L = Ex̃⇠Pg
[D( x̃)]� Ex⇠Pr

[D(x)]
| {z }

WGAN objective function

+�E x̂⇠P x̂
[(||r x̂ D( x̂)||2 � 1)2]| {z }
Gradient penalty

(2.4)

Since enforcing the gradient penalty everywhere is not possible, P x̃ is approx-
imated by uniformly sampling along straight lines between pairs of points sampled
from the data distribution Pr and the generator distribution Pg . This experiment-
ally results in good performance. Mescheder et al. [31] have later proposed a
similar gradient penalty, known as R1 regularization, which works well when only
performed on real images.

2.10.3 Averaging the Generator Parameters

Yaz et al. [32] found that using an average of the generator parameters yielded
more realistic and clean images. The motivation behind averaging is that the gen-
erator oscillates quite a bit during training and might not manage to converge
completely to an optimum. The authors try to average the generator using both
a moving average and an exponential moving average and found that exponential
moving average works best. The exponential moving average is defined as

✓ (t)EMA = �✓
(t�1)
EMA + (1� �)✓ (t), (2.5)

where ✓ (t) are the generator parameters at timestep t, ✓ (t)EMA is the averaged gener-
ator parameters at timestep t, and � is an hyperparameter used for the averaging
between 0 and 1, typically pretty close to 1. Note that the averaged generator is
never used during training and just for inference.
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2.10.4 Latent Spaces and Disentanglement

The z values used in the generator during training are drawn from a known dis-
tribution, most commonly a multivariate Gaussian Z ⇠ N (0, 1). The space of all
possible z values is often referred to as a latent space, and the generator’s job is to
map points in this latent space to output images. Radford et al. [33] show that a
generator during training unsupervisedly learns several higher-level representa-
tions and that interpolating between points in the latent space will create smooth
transitions between the created output images. It is even possible to do vector
arithmetic on the z values, as shown in Figure 2.13. The ability of a generator
to learn such higher-level concepts and separate them from each other is often
referred to as disentanglement.

Figure 2.13: Vector arithmetic in the latent space Z . The bottom images in each
column are created by an average of the z values used for the images above. Then
the z values of the bottom images are combined to create the image in the center
to the right. Eight other examples are generated from the center image to the
right by adding uniform noise sampled with a scale of +-0.25. Image adapted
from: [33]

2.10.5 Style-Based Generators

The StyleGAN model [34] created by Karras et al. makes a leap forward in terms of
disentanglement by introducing several changes to the generator based on style
transfer literature. The field of style transfer focuses on rendering images with
different styles, such as converting a landscape photograph into an image looking
like it was painted by Monet. For style transfer using deep learning, Huang et al.
[35] found it beneficial to look at the statistics of feature maps when performing
style transfer. Changing the mean and standard deviation of individual feature
maps from the content image to the mean and standard deviation of the corres-
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ponding feature maps from the style image made it possible to do real-time style
transfer for arbitrary styles. The component able to change the feature map stat-
istics from one feature map to another is called Adaptive Instance Normalization
(AdaIN) and is defined as

AdaIN(x , y) = �(y)
x �µ(x)
�(x)

+µ(y), (2.6)

where x is the content feature map and y is the style feature map. StyleGAN
uses much of the same logic, but instead of getting the means and standard devi-
ations from another feature map y , the means and standard deviation values are
created from ~z, which is sampled from a standard Gaussian distribution like in a
normal GAN. The new AdaIN operation for StyleGan becomes

AdaIN(xi , y) = ys,i
xi �µ(xi)
�(xi)

+ yb,i (2.7)

Where xi is a feature map and y is a style consisting of a standard deviation
and mean (bias) ys and yb respectively. By doing this AdaIN operation at every
layer in the generator upsampling process, the style values y end up making more
meaning, as they represent changes done at different scales in the generation
process. To create the y values from ~z, ~z is first sent through a fully-connected
mapping network f to create an intermediate latent vector ~w which is then put
through learnable affine transformations to generate the y values. In addition,
noise scaled by learnable scaling factors is added to each channel individually
after every convolution. The StyleGAN authors argue that adding noise makes it
easier for the generator to model stochastic variation (such as the exact placement
of hairs and freckles) without having to generate pseudo-random numbers from
earlier activations. The whole StyleGAN architecture can be seen in Figure 2.14.
Note that the input to the StyleGAN generator is a learnable constant vector that
is not dependent on ~z.

To ensure the StyleGAN model does not assume adjacent styles to be correl-
ated, the authors employ a regularization technique they call style mixing. Style
mixing means two sets of styles are used during the generation process for some
percentage of the images during training. More specifically, two vectors ~z1 and ~z2
are sampled and used to create two vectors ~w1 and ~w2, where ~w1 is used up to
a certain point in the generator, and ~w2 is used from there on and out. This way,
the model is trained to be able to combine multiple style values. Some results of
combining different styles from different ~z vectors are shown in Figure 2.15.

The authors of StyleGAN later found some problems in their original model,
which led to the introduction of StyleGAN2 [36], having several improvements
from the initial version. Firstly, StyleGAN2 features improved feature map modu-
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Figure 2.14: The StyleGAN generator architecture in comparison to a traditional
generator architecture. For StyleGAN, the latent variable ~z is mapped to an inter-
midiate latent vector ~w through a fully-connected mapping network f . ~w is then
transformed to style parameters y used in the AdaIN operations through learn-
able affine transformations A. Noise is added to each channel individually after
every convolution with the learnable scaling factors in B. Image source: [34]

lation to remove common blob artifacts. Secondly, skip connections in the gener-
ator were added to move away from progressive growing [37], which was found
to make objects “stick” to the same location when interpolating between latent
vectors. Finally, a path length regularizer was added to encourage the generator
to behave such that interpolating between points in the latent space creates con-
sistent changes to the generated images.

2.11 The Truncation Trick

The truncation trick [38] is a technique used during GAN inference where the
quality of the generated images is improved at the cost of variety. The technique
is performed during the creation of the latent variable ~z, where the values drawn
above a certain threshold are resampled. This technique creates more realistic and
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Figure 2.15: Example of StyleGAN disentanglement. The leftmost image and the
top row are each generated by sampling latent codes ~z from a normal distribution,
while the rest of the images are combinations of A and B. To create the combin-
ations, the coarse styles (resolutions 42 to 82) from B are used while the rest of
the styles are taken from A. Image adapted from: [34]

less diverse images because the generated ~z vectors are closer to the “center” of
the data distribution and further away from outliers. The amount of truncation
done during sampling is often specified by a variable t where t = 1 means no
truncation and t = 0 means maximum truncation, effectively setting ~z to the zero
vector.

2.11.1 The StyleGAN Multimodal Truncation Trick

Mokady et al. [39] propose an extended version of the truncation trick for Styl-
eGAN by approximating local distribution hotspots for the intermediate latent ~w
vectors. While the ~z vector is normally sampled using a standard Gaussian, the
~w vector can be of every possible distribution, possibly heavily multimodal. The
“hotspots” for the intermediate latent ~w distribution are found by sampling a lot
of ~w vectors for randomly drawn ~z vectors and computing a KMeans clustering
for all ~w. A ~w vector can now be moved towards the closest local clustering point
instead of a global mean when truncating. This extended truncation trick is suited
where ~w is multimodal and can be used to increase image quality with a lower
drop in diversity than when using the standard truncation trick.

2.11.2 Conditional GANs

Conditional GANs are GANs using additional label information for the generation
process. An early example of this is from Mirza et al. [40] which trains on the
MNIST dataset [41] containing 28*28 greyscale images of handwritten digits. The
MNIST label, representing which digit between 0 and 9 is present in the image,
is added along with the z value as input to the generator and is also added to the
discriminator along with an image.



24 Towards Consistent Full-Body Anonymization

2.12 Image-to-Image Translation

Figure 2.16: Examples of various image-to-image translation tasks, such as labels
to image, aerial image to map, recolorization, day to night and edges to photo.
Image source: [42]

Image-to-image translation is the task of transforming images of one domain
into images of another domain. Some common use-cases for image-to-image trans-
lation, in the paired case, are shown in Figure 2.16. These tasks are recognized by
the input and output images having structural similarities. However, the images
might differ in the number of channels and the range of values in each channel. In
this sense, the task of semantic segmentation (discussed in section 2.1.1) can be
seen as an image-to-image translation task. Another paired image-to-image trans-
lation task is image inpainting [43], which is the task of filling in missing regions
of an image. Work exists on unpaired image-to-image translation [44] as well,
such as transforming images of horses to images of zebras, but this is much more
difficult as no ground truth image translations are available.

One of the first models used for general paired image-to-image translation is
Pix2Pix [42], which can be seen as a conditional GAN where an input image is
used as conditioning for the generator. The discriminator’s job is to take in a pair of
images and check if they constitute a real pair or if one of them is generated. The
reason pairs of images must be supplied to the discriminator is that this ensures
that the generator learns a paired mapping and is not free to generate any real
image. An overview of the Pix2Pix architecture can be found in Figure 2.17.

The reason Pix2Pix is revolutionary is that it can handle a lot of paired image-
to-image translation tasks quite well. While some other work focuses on only one
of the tasks, such as recoloring [45], Pix2Pix is very versatile and does not re-
quire a hand-crafted loss function for every new task. This is because the GAN
discriminator can be seen as a “learnable loss function” able to adapt to the task
at hand.
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Figure 2.17: Pix2Pix architecture for the edges to photo case. The conditioning
(input image) is always passed to the discriminator, so that the generator is forced
to learn a paired mapping. Image source: [42]

2.12.1 Unet Encoder-Decoder Architectures

The generator in Pix2Pix employs a Unet architecture [46], which was created
initially to do biomedical image segmentation. It is called Unet as the architecture
resembles a U when illustrated, as seen in Figure 2.18. The Unet works similarly to
the encoder and decoder of an autoencoder, with the addition of skip-connections
between feature maps of the same spatial resolution. These skip connections make
the paths from input to output shorter, in addition to make it easier for the net-
work to handle the spatiality of the input content. When convolutions and down-
samplings are done to an image, semantic (or meaningful) information is created,
while the spatial information in the input is lost. The skip connections make sure
the decoder part of the model (right side of the U) can look at the information
coming from below when deciding what content it should contain and look at the
information coming from the “opposite” side of the U regarding where the content
should be placed. In the case of segmentation and image translation tasks in gen-
eral, keeping the spatial information from the input is essential to create precise
outputs.

2.12.2 Handling Multi-Modality in Image Translation

In many image translation tasks, there exists an ambiguity in how the final image
should become. When doing recolorization, it might be ambiguous what color
a bird should have, and when doing image inpainting of a face where one eye is
missing, it might be ambiguous if the eye should be open or closed. This ambiguity
is somewhat difficult to model when training with paired images as there is only
one ground truth to each input image. It is possible to add noise to the input of
Pix2Pix naively, but Pix2Pix will have no incentive to use the noise and will end up
mostly ignoring it. Zhu et. al. [47] propose the BicycleGAN model, which makes
the sure the noise is being used by adding an additional mapping E from an image
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Figure 2.18: Example of a Unet architecture. Each blue box corresponds to a
feature map with multiple channels, and the arrows represent transformations
from one feature map to another. The white parts of the feature maps to the right
represent copies from the left part of the architecture. Image source: [46]

x to the latent vector ~z and enforcing the cycles G(E(x)) = x and E(G(~z)) =
~z. BicycleGAN additionally uses Kullback-Leibler divergence loss to force the ~z
predicted by E to follow a normal distribution. Some results from BicycleGan can
be seen in Figure 2.19.

2.13 Evaluating Generative Models

Quantitative evaluation of generative model performance has traditionally been
challenging, as it is not easy to create an automated process able to judge the
quality of the generated images in the general case. Most image quality metrics in
use today take advantage of a pre-trained computer vision model to assess image
quality. The metrics are justified in that they, in many cases, seem to coincide with
human image quality judgment.

2.13.1 Inception Score

The Inception Score [48] is one of the early metrics to judge the image quality
of generated GAN images. The metric uses class probabilities computed with an
Inception v3 module [49] trained on the ImageNet dataset [6] when deciding on
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Figure 2.19: Example images from BicycleGAN in both night-to-day transla-
tion and edges-to-shoes translation. The left column shows the input image, the
second column shows ground truth image pair and the rest of the images are ran-
domly generated from the input image in their row. Image source: [47]

the quality. To get a good Inception Score, individual images should be classified
as a single (or few) classes, while the compound distribution should be flat (for
high variance).

To compare the distributions, the metric uses Kullback Leibler Divergence. A
problem with the Inception Score is that it is most suitable for measuring the
quality of images belonging to the 1000 image classes in the ImageNet dataset.
The training images used during training are not considered when computing the
metric at all, so for arbitrary domains, it might be better to use other metrics.

2.13.2 Fréchet Inception Distance

The Fréchet Inception Distance (FID) Score [50] is more general than the Incep-
tion Score as it uses statistics from images in the training set to compute the final
metric for the generated images. The FID Score works by collecting image features
(instead of class probabilities) from an Inception V3 network and calculating the
mean and covariance for each feature. This process is done for both real and gen-
erated images, and the two resulting distributions are compared using the Fréchet
Distance. Here, lower scores are better, as it means the model produces images
close to the training image distribution in feature space.

In the FID paper [50], they partially test the metric by checking how well
it reacts to various image distortions being applied to an image. Increasing the
applied amount of image distortions should ideally result in increasing FID scores.
An example of how the FID scores react to distortions are shown in Figure 2.20.
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Figure 2.20: Example of how increasing amounts of image distortions results in
almost monotonically increasing FID scores. The first 5 images show how the FID
score reacts to image distortions while the image in the bottom right shows how
FID score reacts by contaminating CelebA images [51]with ImageNet images [6].
Image source: [50]

FID CLIP

Recently, Kynkaanniemi et al. [52] have found that FID is not ideal as a general
perceptual metric to compare generative models. The main problem is that the
Inception model used for FID creates features that are highly sensitive to the pres-
ence of ImageNet objects. For many domains, such as face generation, relying
on ImageNet features does not always correlate that well with improved image
quality. They demonstrate this effect partially by creating an “attack” consisting of
hand-picking generated images containing certain ImageNet features and show-
ing that these images have significantly lower FID without improved image qual-
ity. In their paper, they propose to instead use features from a model trained on
a more general task than ImageNet classification and decide on using a Contrast-
ive Language-Image Pretraining (CLIP) [53] model. CLIP is trained on predicting
which caption goes to which image on a set of 400 million (image, text) pairs and
therefore has much more general features than the original Inception model used
for FID. The new FID metric is named FIDCLIP by kynkaanniemi et al.

2.14 Quantifying Image Similarity

Assessing image similarity is important both in generative modeling and other
fields. If we, for example, want to measure how good an autoencoder is at repro-
ducing the output, we need some way of comparing the input and output images.
To do this comparison using pixel-wise differences is, in general, not a good idea,
as looking at each pixel individually does not take image structures into account



Chapter 2: Background 29

and does not match well with human similarity judgments [54]. Only looking at
the pixel-wise differences will, for example, rate a blurred version of the image
as similar, while a version with some added noise might look very dissimilar. The
Learned Perceptual Image Patch Similarity (LPIPS) metric [54] instead measures
similarity using features from a convolutional network. The creators of LPIPS show
that measuring the similarity this way corresponds better with human judgments
for a wide array of image distortions. How the LPIPS metric is computed is shown
in Figure 2.21.

Figure 2.21: Computation of the LPIPS metrics. The two images are sent through
the same pre-trained network before their features are normalized, subtracted,
multiplied with weights w, sent through an L2-norm and averaged spatially. Im-
age adapted from: [54]

The authors provide several ways of calibrating the model weights to match
human quality judgments better, namely keeping the weights of the pre-trained
network fixed and only changing w, do the same without fixing the pre-trained
weights and training it all from scratch. When w is set to 1 everywhere, the com-
parison of the features is the same as measuring the cosine distance between them.





Chapter 3

Related Work

This chapter will describe how the problem of consistent full-body anonymization
differs from existing solutions for anonymization and human synthesis. We will
compare our task to similar tasks from recent literature and highlight the critical
challenges in our problem, which are not present for other architectures and data-
sets. At the end of the chapter, we will create a small framework for describing
different types of variation present in human datasets before comparing some of
the existing datasets using this framework.

3.1 From Face Anonymization to Full-Body Anonymiza-
tion

Several systems exist for face anonymization. DeepPrivacy [55] uses GANs condi-
tioned on face keypoints to generate new faces for a given image context. Condi-
tional Identity Anonymization Generative Adversarial Networks (CIAGAN) [56]
takes this process one step further regarding controllability by providing an input
identity into the anonymization process. The CIAGAN model is trained to make
the final identity looks closer to that of the given input identity, improving con-
trollability. It is worth noting that CIAGAN cannot regenerate the desired identity
completely, as the rest of the person’s head will look the same. Examples of gen-
erated results of CIAGAN are shown in Figure 3.1.

When moving from face anonymization to general full-body anonymization,
several new problems arise:

• No local context: Face anonymization models observe parts of the original
identity (e.g. contour of the face). In contrast, full-body anonymization ob-
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Figure 3.1: Examples of anonymizations from CIAGAN. The left column shows
the source image from anonymization and the top row shows the desired identity.
The final images become a mix of the two. Image source: [56]

serves no part of the original identity, meaning the context must be solely
determined by the “background” pixels.
• Harder edges: The edges of the regions to be anonymized will always be

connected to the background, making generating realistic edges harder.
• More variation: The shapes of the regions to anonymize will have a lot

more variation, especially when it comes to hair and body pose
• Environment interaction: Images of people, in general, contain much more

interaction with the environment and objects, as well as interaction with
other individuals and occlusions.

These problems combined make full-body anonymization quite a challenge
compared to the anonymization of faces. Especially if we want to anonymize im-
ages of all possible kinds, commonly referred to as in-the-wild images.

3.2 Full-Body Anonymization

The authors of CIAGAN demonstrated their model to work for full-body anonym-
ization. However, their method is trained for low-resolution images without high-
frequency details. Surface Guided GANs [57] increases the resolution and intro-
duces pose information gathered from a CSE model (subsection 2.7.1) when an-
onymizing. The pose information guides the model regarding where the different
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parts of the human body should be placed, as seen in Figure 3.2. Surface-Guided
GANs aim to create realistic and diverse anonymization fitting the given image
context. However, the model relies a lot on background information when gener-
ating people, which can lead to bad performance in terms of temporal consistency
between image frames.

Figure 3.2: Illustration of the two-stage anonymization process of Surface-
Guided GAN. Each person is detected individually by using a CSE model (subsec-
tion 2.7.1), before the person pixels are removed and a conditional GAN creates
a new person in its place by utilizing the CSE information. Image source: [57]

3.3 Full-Body Synthesis

There is a limited amount of work on full-body anonymization, but more work
exists on full-body synthesis, where the goal is to generate human images from
scratch. The task of full-body synthesis differs from anonymization in that the
model will not have a given image context (e.g. background) that the generated
person needs to match. Pose information is widely adapted for full-body synthesis
to guide the model when generating new images. For example, “Pose Guided Per-
son Image Generation” [58], use 18 human keypoints to guide the image genera-
tion process. Similarly, “Dense Pose Transfer” [59], uses denser pose information
from a DensePose [21] model for image generation, partly by warping an extrac-
ted DensePose texture to a new pose.

A common goal for full-body synthesis is that the input parameters used for
image generation are disentangled. In this context, “disentangling” refers to a sys-
tem’s ability to change certain aspects of the generated person without changing
other aspects in the process. For example, a disentangled full-body synthesis sys-
tem should be able to recreate the same person in a different pose without chan-
ging the person’s clothes, face, or hairstyle. Current work in this field includes
Disentangled Person Image Generation [60], which continues the work on Pose
Guided Image Generation by trying to explicitly disentangle foreground, back-
ground, and pose. Similarly, StylePoseGAN [61] uses dense pose representations
for disentangled human synthesis. StylePoseGAN, by utilizing DensePose inform-
ation as conditioning, can explicitly disentangle pose and appearance quite well
for high-fidelity output images (see Figure 3.3). StylePoseGan is trained on paired
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data from the DeepFashion dataset (further described in section 3.4) and uses a
combination of GAN loss and paired image reconstruction loss during training.

Figure 3.3: Example results from the StylePoseGAN paper. The StylePoseGan
model is trained on paired images from the DeepFashion dataset and can expli-
citly disentangle pose and appearance during the generation process, opening for
tasks such as pose transfer, garment transfer and controllable human synthesis.
Image source: [61]

Note that the aforementioned models’ goal is not anonymization but rather
other tasks such as pose transfer, image interpolation, virtual try-on, and control-
lable human generation. As these models are trained for creating images from
scratch and not for replacing existing image content by taking the image context
into account, they are not directly applicable for the task of full-body anonym-
ization. In addition, the datasets used by these models do not contain enough
variation for anonymization of in-the-wild images, as we will see in the following
sections.

3.4 Datasets used for Human Synthesis

For faces, there are mainly two datasets which are used for synthesis, the Celeb-
Faces Attributes Dataset (CelebA) [51] and Flickr-Faces-HQ (FFHQ) [34]. CelebA
contains images of celebrities while FFHQ contains images scraped from the pho-
tography website Flickr. Many papers also uses an edited and higher version of
the CelebA dataset, which is known as CelebA-HQ [37]. Some example images
from the CelebA and FFHQ datasets are shown in Figure 3.4.

For full-body human synthesis, Market-1501 [9] and DeepFashion [62] are
widely adapted. Market-1501 consists of images taken in front of a supermarket
at Tsinghua University in Beijing, boasting 32 668 annotated bounding boxes of
1,501 person identities. The subjects are captured from up to 6 different cameras
so that they are viewed from different angles. The DeepFashion dataset contains
multiple benchmark datasets for fashion-related computer vision tasks, with the
dataset most used for human synthesis being the In-shop Clothes Retrieval dataset,
containing 50 000 studio images of people in various kinds of clothing. When
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Figure 3.4: Example images from the CelebA dataset (top row) and FFHQ dataset
(bottom row).

mentioning DeepFashion later in this thesis, we will refer to the In-shop Clothes
Retrieval benchmark dataset and not the rest of DeepFashion. Figure 3.5 shows
examples from these datasets.

Both the Market-1501 and DeepFashion datasets contain identity mappings of
the subjects in the images, making it possible to create pairs of images with the
same person. Having paired images is an advantage for some human synthesis
tasks such as pose transfer, where the goal is to recreate a given person in a new
pose. By using paired data for pose transfer, it is possible to compare the generated
image to a ground truth image, for example by using similarity metrics such as
perceptual loss [63]. Having paired data in general open for more disentangled
representations of identity and pose. However, DeepFashion and Market-1501 lack
diversity. Both datasets are taken from a small domain of all the possible images
of people and are therefore not suited for full-body anonymization of in-the-wild
images. The variation is not that large, there are no examples of people interacting
with objects present in the images, as well as little diversity in background and few
examples of occluded people. Further analysis of the different types of variation
present in the human datasets will come in section 3.6.

3.5 The COCO-Body Dataset for Full-Body Anonymization

The COCO-Body dataset was introduced along with Surface-Guided GANs [57].
COCO-Body is generated by using a CSE model to create pixel-to-model corres-
pondences on person images from the COCO dataset. The pixels which are to be
anonymized for each person are found by applying a morphological dilation to the
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Figure 3.5: Example images from the Market-1501 dataset (top row) and Deep-
Fashion dataset (bottom row).

mask of all detected CSE pixels. The reason for applying the dilation is to try to
ensure the mask covers the whole body. As the images in the dataset are gathered
from COCO images, the COCO-Body dataset is highly diverse but does not have
paired data. Some examples of images in the COCO-Body dataset can be found
in Figure 3.6. Later in this thesis will use a dataset somewhat similar to COCO-
Body named Flickr Diverse Humans (FDH), which is more thoroughly described
in section 4.3.

Figure 3.6: Example images from the COCO-Body dataset. The colorful overlay
represents pixel-to-vertex correspondences from CSE (subsection 2.7.1), and the
outer blue edge is the dilated CSE region which represents the pixels which are
to be changed in the anonymization process. Image adapted from: [57]
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3.6 Factors of Variation in Human Datasets

The datasets mentioned throughout this chapter all have different degrees of vari-
ation, but they are varied in different ways. To be able to compare these datasets
in terms of their variation, we have created a simple framework separating the
types of variation into the broad categories of pose, appearance, and context. A
dataset’s variation in each of these “factors of variation” will significantly impact
how a model trained on such a dataset will be able to do full-body anonymiza-
tion for in-the-wild images. The definitions we have given for variation in pose,
appearance, and context will be outlined below.

Variation in Pose

Variation in pose describes how the human body is portrayed in the images. This
includes both the variation in the body poses of the people involved, as well as
variation in viewpoint and body occlusions. Note that this definition of pose is
different than in the SMPL model domain (section 2.6), where pose is solely re-
stricted to the rotation of body joints.

Variation in Appearance

Variation in appearance refers to the variance in how people in the images look.
This includes variation in gender, age, ethnicity, clothing, hair color, hairstyle, hats,
and so on.

Variation in Context

Variation in context refers to variation in the remaining possible factors that influ-
ence how the person in the final image will appear. This includes lighting (both
the direction and if the light is hard or soft), exposure, white balance, blur, con-
trast, colored light, Instagram filters, and probably a lot more. It is reasonable
to assume that the context will be similar between subject and background, but
there might be a slight mismatch in some cases.
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3.6.1 Human Image Dataset Comparison in Terms of Pose, Appear-
ance, and Context Variation

Table 3.1 compares the datasets mentioned throughout this chapter for faces and
full bodies. For each of the factors of variation from section 3.6, we give each
dataset a score of low, medium or high by qualitatively inspecting each dataset.
Note that these ratings are highly subjective and only presented to give the reader
a quick overview of the datasets. When we refer to “paired data” in Table 3.1, we
do not mean that the dataset is organized into pairs but that multiple images are
present for each identity, such that the construction of pairs is possible.

Table 3.1: A comparison of the widely adapted datasets for human synthesis and
anonymization. The definitions of pose, appearance, and context are described in
section 3.6. The rightmost column tells if the dataset has identity mappings for
the people present, so that it is possible to get paired images of the same person.

variation in variation in variation in contains
pose appearance context paired data

CELEB-A low medium medium yes
FFHQ low high medium+ no

Deepfashion medium medium low yes
Market-1501 medium medium medium yes
COCO-Body high high high no

The datasets only containing faces, namely FFHQ and CELEB-A, are given low
variance in pose as they are all seen from the front of the person with no occlusion.
The FFHQ dataset is rated higher for appearance, as it has a larger diversity in
terms of age, ethnicity, clothing, and so on for the people involved. In addition,
FFHQ is rated a bit higher for context as the amount of settings, types of lighting,
and cameras used seems to differ more.

Regarding the datasets containing entire bodies, COCO-Body is rated higher
in all categories, as it includes images with high diversity in pose, appearance,
and context. This is definitely not the case for DeepFashion and Market-1501.

3.7 Conclusion on Related Work

To sum up, while quite some work exists for face anonymization and controllable
face anonymization, the field of full-body anonymization is still in its infancy, with
no work present for consistent full-body anonymization as far as we know. Current
systems for full-body synthesis are able to disentangle pose and appearance quite
well, but these systems are not directly applicable to in-the-wild anonymization.
This is due to the fact that full-body anonymization systems are not designed for
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inpainting regions with a given background or handling image domains with large
variations in context and pose. In addition, image synthesis models rely heavily
on paired data to make them controllable.





Chapter 4

Method

This chapter will cover the dataset, model architectures, loss functions, and met-
rics used for the experiments in chapter 5. We will start by discussing desirable
properties of a consistent anonymization system before introducing the FDH data-
set used to train all our models. Then, we will describe our baseline model based
on StyleGAN before elaborating on the changes done to the model architecture
and loss function to make the anonymization process more consistent. At the end
of the chapter, we will describe the metrics which will be used to assess various
aspects of the final system.

4.1 Desirable Properties of a Consistent Full-Body Anonym-
ization System

For a consistent full-body anonymization system, the synthesis method should
ideally be able to insert any person in any given place for any given pose. In order
to achieve this, the model should be capable of disentangling appearance from
context and pose, such as these concepts are described in section 3.6. The gen-
erated person should have the same pose as the original person, and the context
of the generated pixels should match that of the original image. Ideally, only the
appearance of the generated person should change.

4.2 Choosing the Dataset

When choosing which dataset to use for anonymization, there is a heavy trade-off
between having diverse images or paired images, as described in subsection 3.6.1.
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If the model is to work for in-the-wild images, large variation is needed, but having
paired data might make it easier to create disentangled representations. In this
thesis, we decided to investigate how to make a model trained on unpaired images
more consistent rather than settling for a system only able to work in a limited
number of cases for current paired datasets. Based on this decision, we decided to
use a dataset with as much diversity as possible, namely the FDH dataset, which
is presented in the following section.

4.3 The FDH Dataset

The Flickr Diverse Humans (FDH) dataset is a new large dataset for full-body
synthesis of in-the-wild-images. FDH has much the same format as the COCO-
Body dataset described in section 3.5 but features increased diversity, a larger
amount of images, and better masks of the areas to be anonymized. The FDH
dataset was made mainly by my supervisor Håkon Hukkelås for other purposes
during the thesis period, with me contributing with some analysis and filtering,
which can be seen in Appendix A, as well as some discussion. The dataset is not
mentioned in current literature, so the following sections will provide a detailed
description of the content of FDH, the FDH dataset creation pipeline, and the
reasoning behind creating the dataset this way. Some examples of FDH images
can be seen in Figure 4.1.

Figure 4.1: Some example images from the FDH dataset with illustrated person
mask and pose information. From left in each group of images: Area to be an-
onymized, original image, CSE prediction with surrounding person mask.
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4.3.1 Base dataset

The FDH dataset is essentially a processed and filtered version of the Yahoo Flickr
Creative Commons 100 Million Dataset (YFCC100M) [64], which is a much lar-
ger and more diverse image dataset than the COCO dataset used for COCO-Body.
The YFCC100M dataset, as the name suggests, consists of 100 million Flickr im-
ages with Creative Commons licenses for research purposes. Flickr is a popular
photography website with a lot of different users from all over the world, so the
YFCC100M dataset contains images with a large variety of backgrounds, perspect-
ives, and lighting conditions. The people featured in the dataset have a large di-
versity in pose, clothing, ethnicity, body shapes, occlusions, and so on. Note that
basing the FDH dataset on YFCC100M means that FDH will inherit all the biases
which might be present in YFCC100M.

4.3.2 The FDH Dataset Creation Pipeline

The creation of the FDH dataset is done automatically by using existing predic-
tion models in the following processing pipeline: First, an YFCC100M image is
sent through both a Mask RCNN model and a CSE predictor. Second, the pipeline
checks for overlapping predictions for the two models. For cases where the pre-
dictions have sufficient overlap, an image of size 288 ⇥ 160 is cropped around the
human, and both the mask and CSE prediction are stored. Creating the dataset
this way ensures that all final images have one - and only one - person as a subject,
even though other people close to the subject can exist in the images. The process
is illustrated in Figure 4.2.

The reason both the Mask RCNN model and the CSE prediction model are
needed is that these models, even though they both detect humans, are trained
for different purposes. The CSE model is trained to predict model-to-vertex cor-
respondences and thus disregards some human parts we want to anonymize, such
as clothes and hair. The Mask R-CNN model, on the other hand, is better at pre-
dicting masks covering irregular clothes and hair but does not provide semantic
information as CSE does. Combining predictions from both models makes it pos-
sible to get both good pose and mask information. An example where the mask
from Mask R-CNN makes a better mask than the pixels from the CSE prediction
can be seen in Figure 4.3. We have decided to call the mask from Mask R-CNN a
person mask in the context of the FDH dataset.
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Figure 4.2: The FDH dataset creation pipeline. An input image is run through
both a CSE model and a Mask RCNN model before their outputs are combined
based on an IoU threshold. From this combined output, one image is cropped and
saved for each detected person.

4.3.3 Final Dataset Statistics

The final version of the FDH dataset contains 1 970 803 training images and 30
000 validation images. For each of the images, both the image data, a person
mask, a CSE mask, and the pixel-to-model correspondences from CSE are given.
It is worth noting that the raw CSE embedding values are not stored but rather the
vertex-correspondences for each pixel, meaning that there can be some clusters
of pixels in the CSE prediction having the same value.
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Figure 4.3: An example image from the FDH dataset illustrating the importance
of using both a CSE predictor and a Mask RCNN model. With a dilated CSE mask
as used in the COCO-Body dataset, the baggy clothes and long hair would not
have been sufficiently masked out. From left: Area to be anonymized, original
image and CSE prediction with surrounding person mask

4.4 Baseline Architecture Based on StyleGAN

The baseline model, to which we will be comparing our experiments, is a Styl-
eGAN architecture (subsection 2.10.5) adapted for image-to-image translation.
The baseline is illustrated in Figure 4.4 and differs from a standard StyleGAN in
that it has an added encoder in front of the generator. This encoder enables the
generator to consider the background pixels, the CSE detection, and the person
mask when producing the output image, thus turning the architecture into a con-
ditional GAN. The encoder is modeled more or less as a "reversed" version of the
StyleGAN decoder without the modulation of feature maps. Skip connections are
added between the feature maps of corresponding resolutions for the encoder and
decoder part of the generator in a U-net [46] fashion, such that the generator is
able to better utilize the spatiality of the input content. The decoder part of the
generator, as well as the discriminator, are identical to those used in StyleGAN2.

4.5 Conditional GAN Loss

This baseline generator is trained solely by feedback from the discriminator without
any other loss terms. The GAN optimization objective is similar to that in sec-
tion 2.10 with added conditional information, as follows:

min
G

max
D

V (D, G) = Ex⇠pdata(x)[log D(x |B, M)]+Ez⇠pz(z)[log(1�D(G(z|B, C , M)))].
(4.1)
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Figure 4.4: Baseline StyleGAN generator architecture. The model uses the back-
ground information, the person mask, and the CSE prediction as conditioning and
tries to use this information to generate a realistic person fitting the background.
The generator architecture follows the pattern of StyleGAN (subsection 2.10.5)
with an added Unet encoder providing skip connection inputs to the standard
StyleGAN decoder. The latent variable ~z is sampled from a gaussian distribution
with a mean of 0 and a variance of 1.

Here, B is the background pixels, M is the mask and C is the CSE embedding
values. G must now generate an image fitting B, C , and M , while D should check
if the generated image fit with the given B and M .

4.6 Reconstruction for Better Consistency

The baseline model’s main problem is that it relies heavily on the background and
pose when deciding the appearance of the generated person. Ideally, the input to
the encoder part of the generator should only supply the model with pose and
context information, while the person’s appearance should be given solely by the
generated ~z vector. This does not happen with the baseline StyleGAN generator,
where the person’s appearance is often drastically altered with minor changes to
the input background, pose, or person mask.

To create more consistent anonymizations, we propose to generate the latent
vector ~z from the original person pixels and train the model to reconstruct the
input. The reasoning behind this is to force the model to learn the mapping “ap-
pearance”! ~z ! “appearance”, with ~z representing all information not given as
input to the generator encoder. To pull this reconstruction scheme off and still be
able to sample new identities, we introduce two new terms to the loss functions
of the model, namely discriminator Feature matching loss and Kullback-Leibler



Chapter 4: Method 47

divergence loss.

4.6.1 Discriminator Feature Matching Loss

To train the model to reconstruct the input, we need a loss function that compares
the original image to the generated image. Doing this comparison pixel-by-pixel
is generally not a good idea, as looking at each pixel individually does not take
structure into account and is generally not a good way of measuring image simil-
arity [54]. A better option is to use features from a convolutional feature extractor
when comparing the images. Using a ResNet pre-trained on ImageNet to create
these features is possible. However, a model trained on ImageNet has not spe-
cifically been trained to separate different people from each other, which might
restrain reconstruction performance. With this in mind, we decided instead to use
the features coming from the discriminator for feature matching, as the discrim-
inator, over time, will be able to create more and more useful representations for
our dataset.

The goal of the feature matching loss is to make the features from the gener-
ated image be closer to the features of the original image, which is done in the
following way: We denote the feature maps coming from the real and generated
images as An and Bn, respectively, where n denotes the index of the feature map.
Here, index 1 has the highest spatial resolution, index 2 has the next-to-highest
spatial resolution, and so on. The loss value for one of the feature maps Ln

fm can be
written as the absolute value of the difference between values of the two feature
maps, as follows:

Ln
fm = |An � Bn| (4.2)

Note that n in this case denotes the index of the feature map. The process of
computing Ln

fm for different feature map resolutions n is illustrated in Figure 4.5.

We use a weighted sum of the feature matching losses for each resolution to
create the final feature matching loss, as expressed in Equation 4.3:

Lfm =
NX

n=1

�n
fm ·Ln

fm (4.3)

The weighting values �n
fm can technically be set to any real numbers. However,

in our experiments, we have either set them to 1 or 0, effectively turning on or off
feature matching for that specific resolution.

It is essential for the feature matching loss that the discriminator’s weight
values are “locked” and not updated while calculating the loss values. We do not
update the weights as doing so would encourage the discriminator to generate
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Figure 4.5: Illustration of how the discriminator feature matching loss is com-
puted. Both the original image and the generated image are put through the
same discrimanator, and a feature matching loss is computed for every feature
map resolution.

similar features for the two images, which would be counterproductive. We do
not want to tell the discriminator that these two images should be similar but
rather to tell the generator that it should generate images that look similar in the
eyes of the current version of the discriminator.

4.6.2 Kullback-Leibler Divergence Loss

The problem with introducing feature matching is that the distribution of ~z vectors
will have no incentive to keep being Gaussian and can essentially end up having
any possible distribution. Not knowing the distribution of ~z makes it problematic
to sample random ~z values and might make the generator less able to generalize
to new inputs because of the possible instability of ~z. To counter this, we generate
~z much the same way as in a variational autoencoder (subsection 2.9.1) and add
Kullback-Leibler (KL) Divergence loss.

The Kullback-Leibler Divergence [65] is a measure of the distance between
two probability functions and is in the continuous case shown in Equation 4.4.
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Dkl(P(z)||Q(z)) =
Z

P(z) · log
Å

P(z)
Q(z)

ã
dz (4.4)

If we have that Q is given by a gaussian distribution Q(z) = N (0,1), that J
is the dimensionality of z and that we assume P(z) to be gaussian, the Kullback-
Leibler Divergence between the two probability functions will follow by Equa-
tion 4.5 [26]:

Dkl(P(z)||Q(z)) = �
1
2

JX

j=1

(1+ log(�2
j )�µ2

j ��2
j ) (4.5)

Equation 4.5 is the KL Divergence loss term Lkl which we will use in our im-
proved model. By introducing this loss, the distribution of the ~z vectors will fight
between being turned into a Gaussian and providing reconstructive information
to the rest of the generator.

4.6.3 Total Loss

The final loss function used for the model is a weighted addition of the standard
GAN loss LGAN, the Feature Matching loss Lfm and the Kullback-Leibler loss Lkl
shown in Equation 4.6:

Ltot = LGAN +�fm ·Lfm +�kl ·Lkl (4.6)

Throughout the thesis period we have experiment with different values for the
weighting factors �fm and �kl.

4.7 Revised Generator Architecture With Apearance Map-
per

The revised architecture using input pixels to generate ~z is shown in Figure 4.6.
We have decided to call the mapping from input to ~z for an appearance mapper.
The appearance mapper is modeled much the same way as the encoder part of a
variational autoencoder.
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Figure 4.6: Revised generator architecture from Figure 4.4 with added appear-
ance mapper. The z-values are no longer drawn randomly but are instead created
with the help of the original person’s pixels in a process similar to the encoder
part of a variational autoencoder. Adding the appearance mapper makes it pos-
sible to train the model reconstructively from input to output.

4.8 Normalizing the Feature Matching Loss

During experiments, it was found that the discriminator feature loss increased as
time went on, even though the model was trying to minimize it. One of the reasons
for this loss increase is probably that the magnitude of the discriminator features
increases as the discriminator gets better at distinguishing fake images. To make
the feature matching loss more stable, we tried to normalize the features of each
feature map before calculating the feature matching loss. The normalization for
each specific feature map was done by combining the statistics from the feature
map of the real image with the statistics from the corresponding feature map of
the generated image.

4.9 Co-Modulation

To let the input play a more prominent role in the generation and possibly model
the context better, we experimented with implementing co-modulation [66] to
the system. Co-modulation lets the modulation parameters be dependent on both
the input and the ~z vector. To do this, a small separate network which we call
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a “Co-mod network” is added to the lowest resolution of the generator. This net-
work creates separate modulation parameters, which are merged with the original
modulation parameters through a single linear layer. This process is illustrated in
Figure 4.7.

Figure 4.7: Co-modulation added to the generator of the revised architecture
in Figure 4.6. Left: Original Generator. Right: Same generator with added co-
modulation. With co-modulation, the modulation parameters are decided partly
by ~z and partly by the input.

4.10 Improved Discriminator Conditioning

Throughout initial experiments, we found the model to be very sensitive to changes
in the person mask when anonymizing, especially regarding hair and clothes such
as shorts. We hypothesize that one reason for this sensitivity is that the discrimin-
ator focuses too much on the person mask when deciding if the images are real.
For example, the discriminator might learn that a mask looking like it contains a
pair of shorts will always come from a person wearing shorts. If the discriminator
learns such a connection, it will probably penalize the generator if the generator
tries to create a person wearing pants for a shorts mask. To make such connections
harder to spot for the discriminator, we try to alter the discriminator conditioning.
The new discriminator conditioning scheme is illustrated Figure 4.8 and consists
of giving the CSE mask as input to the discriminator while filling the conditioning
information with random noise so that the person mask is harder to pinpoint.
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Figure 4.8: Improved discriminator conditioning. Instead of using the person
mask, we send the embedding mask and a noise-filled version of the masked
image. Notice how the jacket is not masked out for the embedding mask.

4.11 Comparison Metrics

In chapter 5, we will measure the quality of the generated images by using several
metrics:

• LPIPS reconstructed: How much does the reconstructed image look like
the original image?
• LPIPS diversity: How diverse are different anonymizations of the same im-

age?
• LPIPS: How does a randomly generated image look compared to the original

image?
• FID: How do the distributions of the real and generated images compare?
• FIDclip: An improved version of FID by using features from a CLIP model
[53] instead of features from an ImageNet classifier.

The FID, FIDclip and LPIPS metrics are described in subsection 2.13.2 and sec-
tion 2.14. For LPIPS we will use the pre-trained w weights provided by the authors
of the paper. The LPIPS diversity metric measures the diversity in the generated
images by creating two random anonymizations for each validation image and
checking the LPIPS distance between the two generated images, as proposed by
Zhu et al. [47]. For the LPIPS diversity metric, higher is generally better, as it
means the outputs are more diverse. LPIPS diversity should, however, not be the
only metric to consider, as random noise, in general, will yield high diversity. We
therefore need to look at the combination of the diversity score and FID, where
we ideally want the combination of low FID and high diversity.
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Experiments and Results

This chapter will present our experiments and results. We will first state our exper-
imental plan before describing how the experiments were carried out. Then, we
will present qualitative and quantitative results for our final model by comparing
it to the StyleGAN Baseline outlined in section 4.4. We will also present some qual-
itative results regarding our model’s ability to do pose transfer and present an ex-
periment where we check how anonymizing a person re-identification dataset de-
grades the data quality. Finally, we will do an ablation study of the various model
improvements presented in chapter 4 and link to qualitative video examples.

5.1 Experimental Plan

We designed our experiments with the goal of improving the consistency of the
baseline StyleGAN model in mind. The initial hypothesis was that the better the
new model became at reconstruction, the better it would be at creating consistent
anonymizations. Therefore, we primarily aimed at minimizing the LPIPS distance
between the real and reconstructed images when deciding which experiments to
run, starting with only reconstruction loss before adding the KL Divergence loss.
After finding suitable weighting parameters for the loss functions, we performed
ablations on all improvements in chapter 4, evaluating the models both quantit-
atively and qualitatively on images and video. Finally, we ran our best model and
a comparatively large version of the StyleGAN baseline for an extended period to
reach model convergence.

For the experimental results in section 5.3, we will provide both quantitative
metrics and qualitative results. In addition, we will provide a video to better show
how our model works in the video anonymization setting.

53
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5.2 Experimental Setup

All experiments are run with the FDH dataset outlined in section 4.3 with 1 970
803 training images and 30 000 validation images. The dataset images are loaded
using random horizontal flip as data augmentation with a flipping probability of
50%. For all the models, we use the Adam optimizer with a learning rate of 0.001
and the discriminator is regularized using r1 regularization [31] epsilon penalty
[37]. We also use an exponential moving average of the generator as described in
subsection 2.10.3.

All ablation models are run for 12 million training images, while the final
model and the baseline StyleGAN model are run for 30 million images and 40
million images, respectively. Training is performed on the HEID cluster at the De-
partment of Informatics at NTNU. This cluster contains 16 v100 GPUs with 32 GB
of memory each. All ablation models are run on 1 GPU except for the larger model
trained on 2, resulting in training times of around 2.5 days for these models. The
StyleGAN baseline model is trained for 4.5 days on 4 GPUs, while the final model
is trained on 2 GPUs for 7.5 days.

The metrics used for validating the images are the ones described in sec-
tion 4.11. All metrics are computed exclusively on the validation images to meas-
ure how good the models are at generalizing to new, unseen images.

For more information regarding experiments, see the code attached to this
thesis, containing all config files used in the thesis, complete with hyperparamet-
ers. The code is not provided online as it is based on some unreleased code written
by my supervisor Håkon Hukkelås for the StyleGAN baseline. However, it might
become available on GitHub at a later point in time. The code contains a readme
so that it is easier to set up the project and find the config files used in the thesis.

5.2.1 Weighting of the Loss Functions

Through early experiments and some grid searching in the parameter space, we
found that weighting the loss function values with �fm set to 5 and �kl to 0.01
yielded best results. All experiments in section 5.3 are run with these hyperpara-
meters. The most important aspect of setting these parameters seems to be the
relativeness of �fm to �kl and not their absolute values.
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5.3 Experimental Results

The following subsections contain the results from all of our experiments in the
thesis.

5.3.1 Comparison of Final Model to StyleGAN Baseline

Table 5.1 compares our final model to the StyleGAN baseline for our metrics,
showing that our model has a drop in image quality and diversity compared to
the StyleGAN baseline. Figure 5.1 and Figure 5.2 give image examples to show
that our model better preserves the identity for changes in pose and background,
respectively. Figure 5.3 shows some randomly generated anonymizations to show-
case the diversity of the two models.

Table 5.1: Metrics for our model and StyleGAN Baseline. LPIPS Reconstructed
is not included for the StyleGAN baseline because that model is not trained for
reconstruction.

LPIPS LPIPS
FID # FIDCLIP # LPIPS # Reconstructed # Diversity "

StyleGAN 3.50 2.807 0.2352 - 0.1928
Ours 5.16 2.971 0.2152 0.1673 0.1561
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Figure 5.1: A comparison of how our model handles changes in poses compared
to our StyleGAN baseline. The input images are photoshopped to have the same
background but different pose. All anonymizations are done with maximum trun-
cation (t=0)
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Figure 5.2: A comparison of how our model handles changes in backgrounds
compared to our StyleGAN baseline. The input images are photoshopped to have
the same pose but different background. All anonymizations are done with max-
imum truncation (t=0)
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Figure 5.3: Diversity comparison between our model and StyleGAN baseline. All
images are anonymized randomly with no trunctation (t=1). One can clearly see
that the StyleGAN baseline provides more diverse anonymizations.
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5.3.2 Anonyizing With an Input Image for ~z

Figure 5.4 shows examples of our model reconstructing identities in new images
by latent from the appearance mapper.

Figure 5.4: Reconstruction examples for the final model. The images on the left
are used as input to the appearance mapper, and the output ~z vector is used to
anonymize all persons in the corresponding image to the right.
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5.3.3 Person Re-Identification

To assess the models’ ability to preserve appearance across multiple poses and
image contexts, we test how anonymizing a person re-identifaction dataset, namely
Market1501 [9], affects the effectiveness of a person re-identification model. The
anonymization is done by putting every image in the Market1501 dataset through
our anonymization pipeline while using the same ~z value for images of the same
identity. For validating the results, we use a pre-trained OS-net model [67] with
the validation script provided in the Torchreid library [68]. Table 5.2 shows that
our model outperforms the StyleGAN baseline in terms of retaining the identity
across images. However, there is still a massive drop in performance compared to
using the original dataset. Rank-k means that there is an identity match in the top
k matched images, while mAP also takes the number of correctly matched images
into account [9].

Table 5.2: Person re-identification results for anonymized versions of Market1501
compared to the original dataset. The validation is done using a pre-trained Osnet
model.

mAP " Rank-1 " Rank-5 " Rank-20 "
StyleGAN Baseline 3.2 10.5% 18.7% 28.3%

Our Model 14.5 41.0% 58.5% 71.6%
Without anonymization 82.6 94.2% 97.9% 99.2%

5.3.4 Ablation on Model Improvements

The ablations are modeled as incremental experiments where one new component
or improvement is added at a time. The first ablation model, “base”, is the basic
model outlined in section 4.7 with feature matching on resolutions 3 to 6 (which is
the last resolution). The second ablation model, “+more FM resolutions”, changes
so that the feature matching loss is run on resolutions 0 to 4, which we found to
work better. The third model “+ co-modulation” adds co-modulation as described
in section 4.9, while “+ impr disc conditioning” changes the discriminator con-
ditioning to the scheme outlined in section 4.10. Finally, “+ larger model” is the
same model trained with double the number of channels used in both the gener-
ator and the discriminator. The “StyleGAN Baseline” model is a StyleGAN model
with comparable size to the four first ablations trained for an equal number of
images.

Table 5.3 compares the various ablation models in terms of metrics, showing
that all ablations except for “+ impr disc conditioning” increase image quality and
reconstruction but decrease diversity. Figure 5.5 give image examples showing
how the ablation models react to changes in pose, while Figure 5.6 similarly shows
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how the ablation models react to changes in background.

Table 5.3: Metrics for ablation models

LPIPS LPIPS
FID # FIDCLIP # LPIPS # Reconstructed # Diversity "

StyleGAN Baseline 4.12 4.437 0.2461 - 0.198
Base 13.76 6.520 0.2464 0.197 0.170

+ more FM resolutions 10.25 6.492 0.2318 0.187 0.159
+ co-modulation 9.252 4.442 0.2274 0.185 0.149

+ impr disc conditioning 11.34 6.325 0.2273 0.187 0.141
+ larger model 7.569 4.283 0.2177 0.178 0.138
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Figure 5.5: A comparison of how the ablation models handle changes in pose.
All anonymizations are done with maximum truncation (t=0)
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Figure 5.6: A comparison of how the ablation models handle changes in back-
ground. All anonymizations are done with maximum trucation (t=0)
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5.3.5 Video Results

To give more insight into how the models compare for video anonymization, we
have provided a link to an illustratory video in Figure 5.7. The video contains
various qualitative results from anonymization on video. The results present in
the video are:

• Visualized detection information on video
• The StyleGAN baseline visualized on video
• The final model visualized on video
• The StyleGAN baseline and final model on video with maximum truncation
• The StyleGAN baseline and final model on video for different backgrounds

and poses
• Anonymization with ~z from input image on video for the final model
• A comparison of the ablation models with and without improved discrimin-

ator conditioning

For the videos marked with t = 0, we have used maximum truncation, mean-
ing that the ~z is set to the 0-vector. Otherwise, tracking is used to maintain the
same ~z for each person throughout the video. The persons who are only detected
by Mask RCNN and not the CSE model are anonymized by applying heavy blur.
All frames in all of the videoes are processed individually without taking the an-
onymized pixels in the adjecent frames into account. The last part of the video
contains a comparison between the two ablation models “+ co-modulation” and
“+ impr disc conditioning” to showcase the qualitative difference of adding the
improved discriminator conditioning described in section 4.10.

Figure 5.7: QR code to video with more qualitative results. If you are viewing
this on a digital device, you can also press this link: youtu.be0n_wob7CxwM.

https://youtu.be/0n_wob7CxwM


Chapter 6

Discussion

The results in chapter 5 show clear improvements in consistency but also expose
several problems regarding our optimization objective, the metrics, and the data-
set. This chapter will discuss the results of chapter 5 in detail, describe the lim-
itations of our model and approach, as well as pinpoint difficulties regarding the
choice of architecture and dataset. We will also discuss further challenges related
to consistent full-body anonymization and try to answer the research questions
from section 1.2.

6.1 Disentanglement

The experiments in chapter 5 suggest that our model does better at disentangling
pose, appearance, and context than the Baseline StyleGAN model. This can be
seen from our person-reidentification results in Table 5.2, where we show that
our model is better at generating persons with the same identity for varying im-
ages in the Market1501 dataset. We also show signs of increased disentanglement
qualitatively in our pose and background examples of Figure 5.1 and Figure 5.2,
as well as in the video from Figure 5.7. In these images and the video, we can
see that our improved model is better at generating the same person when the
background and pose change. However, this increase in consistency comes at a
price of reduced image quality and diversity, which we can see in Table 5.1. As
Table 5.1 suggests, the Baseline StyleGAN model outperforms our model in terms
of image quality and diversity, meaning that the baseline model is probably the
better choice if there is no need for consistency in the images to anonymize.
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6.1.1 The Relation Between Appearance and Pose

A problem with the current pose representation is that it gives away quite some
information regarding the original image subject. The CSE prediction contains
clues regarding the person’s body shape, while the person mask contains clues
regarding traits such as clothes and hair. This appearance information present in
the pose representation leads to biases in our model, such that it will only generate
anonymizations of one gender for certain pose information. This effect can be seen
in the video from Figure 5.7 and in the diverse results from Figure 5.3, where
especially pose information with long hair results in women being generated. The
pose information leaking appearance information is also a problem for clothes
such as shorts, where some models will be more likely to generate bare legs if the
mask seems to contain a pair of shorts.

Making an anonymization model where the generated appearance is totally
unaffected by the original pose is a very challenging problem in general, as these
two concepts are somewhat related. For example, generating a thin and long per-
son where there once was a sumo wrestler would require filing in many back-
ground pixels. The other way around, generating a sumo wrestler where there
once was a thin person would require filling in pixels outside of the person mask.
For in-the-wild images, many such edge cases exist regarding pose, such as afros,
long dresses, and hair blowing in the wind, to name a few. Examples of our model
being unable to totally transfer the appearance of images can be seen for the re-
construction images in Figure 5.4. These images show that generating dresses or
hats for the new pose information becomes a problem. Because of this intertwin-
ing of pose and appearance, generating the exact same person in every possible
situation is really tricky and might not be a realistic goal at all.

6.2 Assessing the Ablation Improvements

In Table 5.3, we show that the ablation improvements made to the model give
better results in terms of reconstruction, which we hypothesized to correlate well
with consistency. The exception to this trend of better reconstruction perform-
ance in the ablations is the addition of the improved discriminator conditioning,
which we introduced in section 4.10. From the metrics in Table 5.3, it might seem
that adding the improved discriminator conditioning results in lower perform-
ance. However, we will argue that the qualitative results in Figure 5.5, Figure 5.6,
and especially the video in Figure 5.7 suggest otherwise, at least in terms of dis-
entanglement.

One of the problems is that we do not know if an increase in reconstruction
performance happens because the model is better disentangled or if it is better
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at picking up hints from the pose and background information. The improved
discriminator conditioning from section 4.10 was designed to make it harder for
the model to pick up on pose hints, so it is not that weird that the resulting model
has decreased reconstruction capabilities.

We originally designed the new architecture outlined in section 4.7 so that
the ~z vector should be used when deciding on the generated person’s appear-
ance. However, nothing stops the model from also using the pose and background
information when choosing appearance, which it also does in many cases, as de-
scribed in subsection 6.1.1. Because of this, we argue that the reconstruction met-
ric alone is not a sufficiently good indicator of disentanglement. This fact can also
be seen for the models trained without KL loss, which are good at reconstruction
but bad at generalizing to new poses, as will later be discussed in section 6.4. The
lack of good metrics is a problem both for us when evaluating our models against
each other and for future researchers wanting to improve on our work. Using
person-reidentification degradation as an evaluation metric is a viable option but
also has problems, which are discussed in the next section.

6.3 Issues with Person Re-Identification

In subsection 5.3.3, we show that our model degrades the quality of a person-
reidentification dataset less than the StyleGAN baseline. However, there is still a
massive drop in all metrics for both models compared to a dataset without an-
onymization. This huge performance drop is not only our model’s fault but also
comes from the fact that our detection system is not good enough on the Mar-
ket1501 dataset. Our detection system could only create a CSE prediction for
72.4% of the images in Market1501. In addition, 22.5% of images did get a heavy
blur on the predicted Mask RCNN mask, and 5.1% of the images had no detection
whatsoever. The CSE detection rate of 72.4% means that a random pair of images
drawn from an anonymized dataset only has a 52,4% chance (squared detection
rate) of containing two images anonymized by our model. On the positive side,
there is only a 0.26% chance that a random image pair contains two images that
are untouched by our pipeline because of no detection. These issues show that
our models’ results in Table 5.2 are not comparable to the person re-identification
result on the original dataset. However, the discussed issues are equal for both our
final model and the StyleGAN baseline, meaning that it is reasonable to compare
the models’ performances to one another.

Several other aspects of our anonymization pipeline might also affect the per-
formance of the pre-trained re-identification model. Some of the anonymizations
might be based on CSE misdetections causing the generated images to look differ-
ent from how they should. In addition, the current system has no guarantee that
the identities generated are very different from each other. A random appearance
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vector ~z is created for each original identity, and some of these ~z might generate
identities close to one another, meaning that using different ~z values might lead to
different results. The problem of generating similar identities is especially the case
for our model, which has decreased diversity in the generated images. Finally, an-
onymization might alter the context/domain of the images in the dataset since the
anonymization model is trained on an image dataset with other properties. This
change in context/domain might be unfamiliar to the pre-trained re-identification
model. Training a person re-identification model from scratch might help alleviate
this problem but would require a lot more time.

6.4 Reconstruction Loss is Not Enough

To illustrate that KL Divergence loss is necessary, we show a reconstruction ex-
ample for a model trained without KL loss in Figure 6.1. As we can see, the out-
put is severely corrupted. The reason for this is probably that the generator cannot
tackle every possible ~z for every possible input pose and background, as the dis-
tribution of ~z can be highly irregular.

Figure 6.1: Failure case for a model trained without KL Divergence loss. The
image on the left is used as input to the appearance mapper, and the output ~z
vector is used to anonymize all persons in the image to the right. The result does
not resemble the input and contains severe artifacts. This effect seems to be more
prominent when the change of pose is greater.

6.5 The � Realism-Consistency Trade-Off

When introducing KL loss, setting the � values for the loss terms defined in sub-
section 4.6.3 is quite difficult, as setting these values seems to be giving a trade-off
between realistic anonymization and consistency. The model is quite sensitive to
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to the changes in the � values, and as stated in subsection 5.2.1, the ratio of �fm
to �kl seems to be more important than their absolute values.

Having a high ratio of reconstruction loss compared to KL loss increases recon-
struction performance and seems to make the model more temporally consistent.
However, increasing this ratio will also lower FID scores and eventually lead to
artifacts and images not matching the context, as shown in section 6.4. If the
reconstruction-to-KL ratio is small, however, the model will end up working much
like our StyleGAN baseline, with an increase in image quality (FID) and lower re-
construction. Choosing how much realism should be prioritized over consistency
is not straightforward and might depend on which trait one finds most import-
ant. The final parameters used in subsection 5.2.1 seem to give a decent trade-off
between realism and consistency. However, we have not done very extensive grid
searches in the hyperparameter space as our model takes much time and resources
to train.

One of the reasons why large reconstruction loss leads to less realism seems
to be that the GAN training is disturbed by the resulting heavy clash between
KL Divergence loss and feature matching. When increasing the feature matching
loss, the distribution of ~z will stray further away from a Gaussian, meaning that
the KL-loss will increase to push the distribution of ~z back to a Gaussian. After a
while, the KL-loss seems to stabilize around a certain value, and this value will
represent more or less how Gaussian ~z is, with lower values meaning that it is more
Gaussian. In Figure 6.2, we can see a correlation between high KL Divergence loss
and large differences between real and fake scores for real and generated images.
This large difference in real and fake scores is not healthy for GAN training. The
reason for the larger difference in real and fake scores is probably that ~z is less
Gaussian for higher KL loss, or that the feature matching loss is dominating the
gradients from the discriminator.
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Figure 6.2: Signs of unhealthy GAN training for a model with high reconstruc-
tion loss (blue) and a model with lower reconstruction loss (yellow). The KL-
divergence loss (top) is a lot higher when trained with more reconstruction loss,
meaning that ~z is diverging from a gaussian distribution. The real and fake scores
(bottom) are also further away from each other, meaning that training is more
unhealthy.
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6.6 Disentanglement Failures

The new model is able to disentangle pose, appearance, and context to some de-
gree, as illustrated qualitatively in Figure 5.1, Figure 5.2, and the video in Fig-
ure 5.7. However, it is still quite a way to go, and our model cannot yet do very
good video anonymization. Our model struggles especially when doing pose trans-
fer of input images, such as in Figure 5.4. In many cases, it will prioritize creating
more realistic results than accurately depicting the input individuals. One example
where the model is not able to disentangle the features in the input image is shown
in Figure 6.3. Here the model fails to reconstruct the shorts and bare arms of the
input image and seems to use a lot of the input context when anonymizing. How-
ever, as opposed to the model trained without KL Loss in Figure 6.1, the generated
people are more realistic.

Figure 6.3: Failure in disentanglement for the final model when doing recon-
struction. The image on the left is used as input to the appearance mapper, and
the output ~z vector is used to anonymize all persons in the image to the right.
The model fails to reconstruct the clothes of the input image and seems to use a
lot of the input context when anonymizing.

6.7 CSE Failures

When working on real-world video, the Mask RCNN model seems to do a better
job than the CSE model when it comes to detecting all individuals in the images.
For the current anonymization pipeline, we get around this by applying a heavy
blur to the Mask RCNN predictions without a corresponding CSE prediction, as
seen in the video in Figure 5.7. This blurring is obviously not ideal, as we want to
do as much realistic anonymization as possible.

The problems regarding CSE predictions can mostly be classified into these
three categories:
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• No detections: The CSE model does not create a prediction at all
• Misdetections: The CSE model creates a detection that does a bad job at

describing the person
• Temporal consistency in detections: The detections vary a bit from frame

to frame regarding the exact positioning of vertices.

Each of the problems for CSE described above propagates heavily into our
anonymization pipeline and can easily be spotted when observing the output. We
will propose several ways of handling these failures in chapter 7.

6.8 Research Questions

Below we will try to answer the research questions from section 1.2 based on what
we have found during literature analysis, experiments, and discussion.

RQ1: What are the main challenges of consistent full-body anonymiz-
ation?

Through dataset comparisons, we define the terms of pose, appearance and context
in section 3.6, and in section 4.1 we state that a consistent full-body anonymiza-
tion system should be able to disentangle these “factors-of-variation”. However, in
the anonymization/inpainting setting, totally separating pose from appearance is
difficult, as described in subsection 6.1.1. Based on this, an evident challenge re-
garding consistent full-body anonymization is to find out how, if at all, the model
should be allowed to tailor the generated person to the given pose information.
Allowing the model to use the pose information is somewhat problematic, as the
pose (and mask) information can change significantly between image frames in
a video or between different camera angles. However, there are many edge cases
for in-the-wild images, such as dresses, shirts, long hair, and afros which make not
taking pose information into account problematic.

In addition to the pose-appearance disentanglement issue, keeping the vari-
ance and the quality high in the generated images while at the same time improv-
ing consistency seems to be difficult, at least for our model with unpaired data.
This can be seen for our ablation models in Table 5.3 and is also discussed in
section 6.5.
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RQ2: What datasets and pose estimation methods are suited for this
task?

In section 4.2, we argue that there, for the current datasets described in subsec-
tion 3.6.1, is a trade-off between having paired images or diverse images. In this
thesis, we have worked in the unpaired setting and used images with as much
diversity as possible, which is essential if the system is to work for in-the-wild im-
ages. However, if one is able to create more diverse paired datasets or settle for
systems working in limited environments, adapting full-body synthesis techniques
to the task of full-body anonymization might surpass our proposed system in terms
of disentanglement. Further possible work regarding paired data is described in
subsection 7.2.1.

Regarding pose estimation, the current pose representation in FDH (section 4.3)
does a very good job at describing the pose of the detected person, making our
model’s job easier. The predicted person masks in FDH better match the underly-
ing person than the masks in COCO-Body, ensuring that our model sees less pixels
of the underlying person such as hair, edges of clothes, and so on. However, we see
a trade-off between accurate pose description of the anonymization subject and
how much of the person’s appearance (such as gender) can be inferred through
the pose information. Other pose estimation methods and suggestions to further
improve the disentanglement of our model will be discussed in subsection 7.2.4.

Another problem with the current pose estimation approach is that the CSE
predictions are not always point, as described in section 6.7. This is bad for our
video results in Figure 5.7 and also makes our person-reidentification results less
accurate, as described in section 6.3. Possible improvements to the CSE detection
system are discussed in subsection 7.2.3.

RQ3: How can we improve on existing anonymization techniques to
make them more consistent?

In this thesis, we have, for the unpaired dataset setting, shown that improving
on a conditional StyleGAN model by training it for reconstruction, as described
in section 4.6, improves consistency. The increase in consistency is shown both
by person re-identification results and qualitatively on images and video, as dis-
cussed in section 6.1. The results in Table 5.3 show that all improvements done
to the model, with the exception of improved discriminator conditioning, result
in improved metrics. However, we argue in section 6.2 that improved discrim-
inator conditioning is, in fact, beneficial by referring to qualitative results, thus
questioning our metrics for the experiments.
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RQ4: How can we evaluate anonymization consistency?

Throughout the thesis period, we have found that quantitative evaluation of con-
sistency (or disentanglement between pose, appearance, and context) through
metrics is a difficult problem. Our original thought was that monitoring our model’s
reconstruction capabilities would be a good measure of consistency. However,
we argue in section 6.2 that this is not always the case. We have also experi-
mented with measuring how applying anonymization degrades a dataset’s prop-
erties when it comes to person re-identification, as shown in subsection 5.3.3.
However, measuring the degradation of re-identification datasets has several chal-
lenges. In our case, re-identification results after anonymization are not compar-
able to results on an unanonymized dataset due to the detection problems de-
scribed in subsection 5.3.3. In addition, anonymizing a large person re-identification
dataset like Market1501 takes much time (about 40 minutes for our model with
cached detections), and the results will not tell that much regarding how the
model is at using image context when anonymizing.

Trying to measure consistency qualitatively through images and videos is al-
ways an option, as we have tried to do in Figure 5.1, Figure 5.2, and subsec-
tion 5.3.5. However, qualitative evaluation takes much time both for generating
the results and looking at them. In addition, the comparisons often become sub-
jective, and comparing the results qualitatively between different research papers
is problematic. We discuss possible further work regarding metrics better repres-
enting disentanglement performance in subsection 7.2.2.
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Conclusion and Further Work

This chapter will conclude the thesis and discuss further work regarding consistent
full-body anonymization.

7.1 Conclusion

Creating systems able to generate consistent realistic anonymizations for persons
in images will allow for more high-quality image and video datasets to be open
to the public. In this thesis, we have introduced definitions of pose, appearance,
and context in terms of consistent full-body anonymization and argued that a con-
sistent full-body anonymization pipeline needs to disentangle these three “factors
of variation”. For the unpaired dataset setting, we have shown that extending a
conditional StyleGAN model to try to make it learn the mapping “appearance”!
~z ! “appearance” increases consistency. Our new model exhibits improved res-
ults qualitatively on images and video while outperforming the StyleGAN baseline
when generating the same identity across images on the Market1501 dataset.
However, the increase in consistency is a trade-off with image quality and di-
versity, and our model is still far from entirely disentangling shape, appearance,
and pose. We argue through the report that creating a fully disentangled anonym-
ization model is very difficult, as such a model should be able to generate any
person in any context for every given pose, which is problematic for many real-
world edge cases. Finding out how to handle the entanglement between pose and
appearance present for subjects in real-world images is a real nut for consistent
full-body anonymization.

75
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7.2 Further Work

The task of consistent full-body anonymization is definitely not solved by this
report, with several remaining challenges regarding datasets, metrics, pose estim-
ation techniques, and model architectures. The following sections will describe
some possible key areas which should be in focus for further research.

7.2.1 Paired Data

State-of-the-art for disentangled human synthesis methods use paired data, as de-
scribed in chapter 3. Having paired data where it is possible to see the people to
anonymize from different angles, poses, and backgrounds simplifies the task of
creating a training pipeline for better disentanglement. The problem with paired
data, however, is that it is considerably harder to gather. Moreover, when the data
is harder to gather, it would probably also be less of it, meaning less variation as
described in section 3.6. One solution to the variation problem might be to train
the model on both paired and unpaired data by, for example, using 50 % of each
type. It would also be possible to create artificial pairs from single images by ap-
plying data augmentations such as random horizontal flipping, random cropping
and rotation, random white balance, and others.

One way of gathering paired data would be to use the same dataset genera-
tion pipeline described in subsection 4.3.2 but on video data. For example, one
can use a tracking model on the input videos to gather identity mappings of the
people present. Having video data (and not just pairs) might also open up the
possibility of using video-generation techniques [69] which takes adjacent frames
into account during generation. The YFCC100M dataset used to generate the FDH
dataset contains some videoes, but these do probably not have the same variation
present for the photos. In addition, there are also Multi-object tracking and seg-
mentation (MOTS) datasets [70] which might be suitable in this setting.

7.2.2 Improved Metrics

No perfect metrics exist for evaluating consistent full-body anonymization, as dis-
cussed in section 6.2. Developing reliable metrics that better reflect how well the
model performs consistent anonymization is an important avenue of further re-
search to better evaluate and compare models. As stated in section 2.1, both tasks,
datasets, models, and metrics are needed for progress in a subfield of computer
vision. Right now, for consistent full-body anonymization, the metrics are insuffi-
cient.
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In a sense, we want metrics able to tell how good we are at disentangling
pose, appearance, and context. Perceptual Path Length (PPL) [34] is one such
metric used for disentanglement but is primarily meant for unconditional GANs
and does not fit our purpose that well. We are not that interested in how the
generation is altered by changing ~z, but rather in how changes to input condition
and background alter the generation. Another option than PPL would be to have a
small amount of paired data to compare reconstruction from one frame to another.
This would work fine for reconstruction, but we also want a model able to create
diverse and new people who are consistent across frames.

Ideally, we might want some kind of pose-independent similarity measure so
that it would be possible to assess the similarity between two images with different
poses. One way of creating such a measure would be to anonymize rendered SMPL
models with various poses and check the l1 similarity for corresponding model
locations for the two anonymizations. This might work to some degree but misses
many edge cases such as clothes and hair and does not model how good the model
is at representing the context.

7.2.3 Improved Surface Predictions

Our proposed anonymization pipeline consists of two stages: detecting people and
generating new people. In this thesis, we have made much effort on the gener-
ation part, but not the detection part. Our detection pipeline is not that robust,
as described in section 6.7, and we are currently only using pre-trained models
for it. The detection pipeline is used both when generating the FDH dataset and
during inference, so all efforts to improve the detection system will probably lead
to improvements in both dataset quality and final model output.

One way of improving the CSE predictions might be to give an already pre-
dicted person mask as input to the CSE model. This way, it would be possible
to force every Mask RCNN prediction into having a corresponding CSE predic-
tion and eliminate the problem of having unmatched Mask RCNN predictions. In
addition, having a person mask as guidance when predicting the pose and only
having to predict one CSE embedding at a time might make the pose predictions
more accurate. Finally, having such a CSE model would open up the possibility of
adding pose information to datasets already having ground truth person instance
segmentations.

In addition, in the current dataset, we only save the pixel-to-vertex corres-
pondences for every person and not the raw CSE prediction. When doing gen-
eration, we paste the embedding value for each pixel-to-vertex correspondence
directly into the image, meaning that there will be some clusters of pixels having
the same embedding value. This also means that the dataset currently has a fi-
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nite set of possible CSE embedding values and that the model might have learned
to separate these values clearly from another. Our input pose conditioning from
“continuous surface embeddings” might, in fact, be read by our model as discrete
and not continuous. If we were to store the raw CSE predictions for the dataset,
this might lead to better temporal consistency, and more diverse anonymizations
as the model would not be that dependent on exact embedding input.

A final method of improving pose predictions might be utilizing synthetic data
to create a better pose predictor. This is already done for DensePose by Yan et
al. [71], but their solution might not be directly applicable to our problem. An
advantage of synthetic data for dense pose prediction is that no manual annota-
tion of model-to-image points is needed, as the rendering engine can compute all
these. If one decides to use the SMPL model for generating synthetic data, the
AMASS [72] dataset contains over 40 hours of SMPL animations, while datasets
like SURREAL [73] contain a library of SMPL textures. By making pose predic-
tions on animation, it might also be possible to add mechanisms to make the CSE
detection model more robust in terms of temporal consistency between frames.

7.2.4 Facilitating For More Possible Anonymizations

As discussed in subsection 6.1.1, the model still relies quite a bit on the input
pose and person mask information when choosing how to anonymize the person.
This is bad as it reduces the possible diversity of humans the models can output,
leaving some characteristics of the original person in the anonymization. Some
possible improvements regarding pose and person mask information for better
disentanglement are provided below.

Less Restrictive Pose Conditioning

One way of allowing for more possible anonymizations is to change to less re-
strictive pose information like sparse keypoints. Sparse keypoints will give less
information regarding certain aspects of the person, like the width of the hips and
the exact placement of various body parts. In addition, it might be easier to create
such pose-information temporally consistent across video frames. Sparse keypo-
ints will, however, lead to other challenges, such as ambiguity in which foot is in
front of the other and the exact angle the person is viewed from.

Data Augmentation on Person Masks

Even though we did some steps to improve how much the model relies on the
person mask information in section 4.10, it is still quite sensitive to masks con-
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taining characteristics like long hair, shorts, and t-shirts. One way of improving
this is to implement data augmentation on the person masks so that the correl-
ation between person mask and body becomes less apparent. This augmentation
should probably be done to both real and generated images and can be imple-
mented in several ways. One could, for example, do a morphological dilation with
various structuring elements or try to expand the person mask to mimic long hair
or clothes. However, a problem with this approach is that it is only possible to
increase the area of the person mask, as decreasing it might leave parts of the
person outside the mask.

7.2.5 Modelling the Context Information From Input

A problem with the current approach is that the context information in some cases
might not be given entirely from the background pixels. One example of this is the
concept of blur. If a portrait is taken at a considerable focal length and large aper-
ture, the background will be blurred while the person in front is sharp. With the
current approach, our model will have no way of knowing if the person should be
blurred as the background or if it should be rendered sharp. This poses a problem
if we want to do anonymization in image domains where parts of the image can
be blurred. Another example where context is different from the background is
when the subject and background are lit differently, such as when the subject is in
the shade or on a stage. One solution to this problem is to use input person pixels
when deciding on the context. However, to do this, one must be very certain that
identity information is not leaked through this context information.

7.2.6 Outlier Removal with Self-Distillation

Mokady et al. [39] propose a self-distillation approach to find and possibly re-
move outliers in uncurated datasets. The process is done by training a generative
model for reconstruction and removing the examples that the model is not able
to reconstruct sufficiently. The resulting dataset will contain a distribution that is
easier for the model to generate. This way of filtering has the advantage of being
specifically tailored to the model, as it leverages the fact that the generator will be
best at reconstructing the more common features in the dataset. Self-Distillation
is probably very applicable to our case, as it can be used both to find outliers and
images with misdetected pose information. The images with misdetected pose
information are generally more difficult for our generator to reconstruct as the
generator cannot rely that much on pose information when reconstructing these
images.
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7.2.7 Other Model Architectures

There are probably several possible directions for further development of the cur-
rent model architecture. Recent work regarding generators equivariant to trans-
lation and rotation [74], as well as architectures based on Transformers [75, 76]
might provide improvements over the existing system in terms of disentangle-
ment. In addition, there exists the possibility of more explicit separation of ap-
pearance, pose, and context in the ~z space. This is especially the case if the model
is to be trained on paired images, where it might be possible to enforce parts of
the ~z space to be the same between pairs of images.
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Appendix A

Filtering the FDH Dataset

When looking at images in the original FDH dataset, it was found that some im-
ages had bad CSE predictions. This was especially the case for images with weird
body poses, challenging perspectives, only small parts of the body showing, and
blur. Some examples of these misdetections can be seen in Figure A.1.

Figure A.1: Some images from the FDH dataset where the CSE predicitons have
failed, creating pose information unsuited for good anonymization.

Most of the failed predictions were characterized by having few predicted ver-
tices and often vertices predicted from all parts of the human at once. To try to
filter out some of the misdetected images, we decided to look at the following
filter criteria:

87
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• How many unique vertices are present in the image
• How many unique vertices are there per body part (e.g. head, leg, etc.) in

the image

A.1 Finding Body Parts From Vertices

To check for body parts in the image, we can use an existing mapping from vertices
to body parts. An illustration of this mapping in “texture space” where each body
part is color-coded can be found in Figure A.2.

Figure A.2: An illustration of the locations of body parts in texture space.

By having this mapping between vertices and body parts, we can go from
having a vertex value for each human pixel to having a body part value for each
pixel. This makes it possible to find both the number of body parts present in the
image and the mean amount of vertices per body part.

A.2 Comparing Filter Criterias for Finding Bad Detections

To check which filtering criteria are best for finding bad detections, it was ne-
cessary to go through at least some images manually. To make this process less
tiresome, we decided to start by checking the filtering criteria on a sample of 2000
images from the FDH dataset. The images were sorted based on the filter criteria,
and we looked at the bottom 100 images. Each of the images was placed into one
of three categories:

1. Should be filtered away
2. Should probably be filtered away
3. Should be kept

We decided to have three categories instead of two because it is difficult to
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draw a clear line for what can be counted as a misdetection. For some images, it
might depend a bit on the person deciding. Examples of images with borderline
failed detections can be shown in Figure A.3.

Figure A.3: Some images from the FDH dataset where it might be debatable
whether the detection should count as a misdetection or not. Images like these
are marked as “Should probably be filtered away”

The results from going through the 100 lowest-ranked images for both the
filter criteria “amount of unique vertices” and “amount of unique vertices per body
part” can be found in Table A.1.

Table A.1: Results from the two filter criterias on finding bad detections. The
results are based on the 100 lowest ranked images on a sample of 2000 images
from the FDH dataset.

Num unique Num unique vertices
vertices per body part

Should be filtered away 34% 41%
Should be probably be filtered away 32% 36%

Should be kept 34% 23%

In Table A.1, we can see that using the number of unique vertices per body
part gives a better distribution than just using the number of unique vertices. The
reason for this is mainly that many of the failures consist of quite a bit of vertices
but from different parts of the body. Some images filtered out by taking body parts
into account but not by just using unique vertices can be found in Figure A.4.

A.3 Using Other Filter Criterias

It was discussed whether or not to filter the dataset for characteristics other than
misdetections, for example, by the number of body parts and pixel standard devi-
ation in the images. Filtering by pixel standard deviation made us find some quite
challenging images in the dataset, as seen in Figure A.5. However, we decided
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Figure A.4: Some example images which where not included in the bottom 100
images when sorting solely by unique vertices and were included when also taking
body parts into account.

that filtering away anything other than misdetections would lead to less variation
in the dataset, which we do not want.

Figure A.5: Example of images in the dataset with low pixel standard deviation.
We decided to not filter on this criteria to keep the variation in the dataset as
large as possible

A.4 Choosing the Right Filter Value

After deciding to filter by “number of unique vertices per body part”, finding a
suitable threshold value was needed. To find the threshold value, we took the
2000 images sorted by filter value and classified the bottom 300 to check when
the amount of misdetections started to decrease. We decided only to check the
bottom 300 images as we did not believe it was necessary to filter out more than
15 % of the dataset.

The 300 images were classified using the same categories as in section A.2.
Since the distribution of the images is quite spread out over the filter values, we
plot the cumulative distribution of the images for each class against the filter value.
These plots can be found in Figure A.6. Here we can see a clear trend that images
with lower filter values are more likely to be misdetections.
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Figure A.6: The cumulative distribution of images with regards to “number of
unique vertices per bodypart” for each category of the 300 manually categorized
images from the 2000 FDH sample images.

Setting the final threshold based on the plots in Figure A.6 is not straightfor-
ward, but in the end, we decided to put the threshold at 135, which removes quite
a bit of the misdetected images, but at the same time keeping more than 50 % of
the good images. Setting the threshold at 135 means that we are removing about
10 % of the total images from the dataset. A 10 % data loss, in this case, is not
that big of a problem, as we have many Flickr images to use.

A.5 Conclusion on Filtering

Filtering by setting an explicit thresholding value does a good job at removing
misdetections but also removes quite a bit of usable images. If we had sufficient
resources and time for manual sorting, a better approach would have been to set
two thresholds and divide the images into three groups. Then it would be possible
to remove all images from the first group, manually filter all images from the
second group and keep all images from the last group. Manually filtering images
is, however, far too much work for one person writing a master thesis.
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