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Abstract
Integrity monitoring (IM) in autonomous navigation has been extensively researched, but currently available solutions are 
mainly applicable to specific algorithms and sensors, or limited by linearity or 'Gaussianity' assumptions. This study inves-
tigates a Solution Separation (SS) based framework for universal IM, scalable to multi-sensor fusion as each hypothesis 
assumes a whole sensor measurement set as faulty. Architecturally we consider that: 1) multi sensor systems must account 
for various sensor noise models which lead to inconsistent estimates of uncertainties, 2) a module must be able to detect 
sensor failure or sensor noise mismodeling and suggest better bounds for the error, without being constantly conservative, 3) 
some algorithms are computationally heavy to monitor in the SS setting or the provided covariances cannot be interpreted in 
IM. A hybrid SS architecture can be practical, where some solutions are evaluated with a navigation algorithm with known 
characteristics, although the all-sensor-in solution is evaluated with the monitored algorithm. Experiments are run on filter 
and smoothing-based navigation algorithms. In addition, we experiment with hybrid SS monitoring and time-correlated 
noise to evaluate the appropriability of our framework in the context of the above-mentioned requirements. This is a novel 
framework in the IM domain, directly integrable in existing navigation solutions and, in our opinion, it will facilitate the 
quantification of the effect of different sensors in navigation safety.

Keywords Universal integrity monitoring · Time-correlated noise · Error State Kalman filter · Log likelihood based fault 
detection · GTSAM

1 Introduction

We currently observe a tremendous interest in the develop-
ment of autonomous systems tasked to carry out safety–criti-
cal operations in varying and challenging conditions. Spe-
cific examples with major civilian interest are unmanned 
cars, surface vessels (e.g. autonomous passenger ferries) and 
aerial vehicles (e.g. air taxis and ambulances). Their opera-
tion may take place in dense urban-environments and the 
safe interaction with other users is of paramount importance. 

At the same time, their navigation should be as much unin-
terrupted as possible.

The Integrity Risk of a positioning system refers to the 
probability of an unavoidable state estimation error to result 
in a situation where the estimate deviates from the true value 
by more than a certain Protection Level (PL). A report from 
the European Global Navigation Satellite Systems Agency 
[1] emphasized that a well-established and trustable frame-
work to set integrity risks and compute PLs is mandatory for 
any safety critical application that uses position estimates 
as input. Integrity monitors can contribute to exceptionally 
safe autonomous system operation and this quantification 
can result in overcoming the trust burden from humans and 
achieve better compliance with local regulations. At the 
same time, they can promote a better understanding of the 
trade-off between safety and system availability [2, 3] and 
eventually motivate the development of more efficient navi-
gation solutions.

 * Vasileios Bosdelekidis 
 vasileios.bosdelekidis@ntnu.no

1 Department of Engineering Cybernetics, Norwegian 
University of Science and Technology, NO-7491 Trondheim, 
Norway

2 SINTEF, 7034 Trondheim, Norway

http://orcid.org/0000-0002-3907-8505
http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-022-01692-3&domain=pdf


 Journal of Intelligent & Robotic Systems           (2022) 106:7 

1 3

    7  Page 2 of 20

IM is a well-studied topic in safety–critical applications, 
e.g. in aviation. The concept of IM has been specially devel-
oped and extensively applied to Global Navigation Satel-
lite Systems (GNSSs). On the user side, the most widely 
used algorithm is called Receiver Autonomous IM (RAIM). 
RAIM consists of an independent Fault Detection module 
that evaluates the consistency of the positioning solution 
by using redundant satellite ranging measurements. A sec-
ond function of RAIM is the determination of PLs which 
are upper bounds on the positioning errors that the Fault 
Detector is not expected to detect. There are also numerous 
studies that attempted to transfer the knowledge gained in 
the aviation industry to land applications. Many of them are 
inspired by the RAIM method. There are two popular types 
of methodologies: SS and Residual-Based (RB) RAIM. In 
the former case several faulty measurement hypotheses are 
constructed, and PLs are computed using the same number 
of test statistics as hypotheses, while in the latter method a 
single RB test statistic is used [4]. An interesting example 
of SS-based IM is in feature-based navigation, e.g. land-
mark-based with camera or laser sensors, where multiple 
association hypotheses are used to evaluate the impact of 
errors to Feature Extraction or Data Association [5]. One 
of the interesting variations of RAIM that has also shown 
to be applicable to multi-sensor navigation is called Particle 
RAIM which uses a particle filter to form a multi-modal 
probability distribution over position [6].

Most of the research on the development of an IM exclu-
sively targets a specific sensor type. However, modern auton-
omous systems utilize advanced sensor fusion algorithms, 
exploiting auxiliary non-GNSS sensors like cameras or 
lasers together with the standard inertial or GNSS sensors. 
Most of the works that investigate the integrity of multi-
sensor systems are constrained by linearity assumptions 
(e.g. the research of Meng and Hsu [7]), or they attempt 
to develop an algorithm that performs both the estimation 
and IM collaboratively (e.g. the research of Mohanty et al. 
[6]). It is desirable for a universal IM framework to work 
with non-linear systems, that are commonly used today, and 
be independent from the navigation algorithm. To the best 
of our knowledge, research around a universal IM solution 
is still lacking. In this study we extend a SS method for 
IM to remove the linearity and Gaussian noise assumption. 
We evaluate our method with a filtering-based, as well as a 
smoothing-based, navigation algorithm.

The development of a universal solution must account for 
the particular error models of various sensors. Fault detec-
tion is a subprocess of an IM tasked to identify and isolate 
a faulty sensor, allowing the navigation system to continue 
its operation. Nevertheless, no widely adopted approach 
exists to account for time-correlated errors with unknown 
parameters. Our developed IM adopts a method by Cres-
pillo et al. [8] to account for time-correlations by introducing 

overbounding hypotheses in a SS context. These hypotheses 
are used conditionally, and the decision is made automati-
cally by a log-likelihood based algorithm. This leads to more 
reliable IM with tighter Protection Levels in comparison to 
methods with continuous overbounding.

We introduce an IM that is independent from the naviga-
tion algorithm, which enables easier integration with exist-
ing solutions. On a high-level, we utilize a SS methodology, 
where a sensor is completely excluded in each hypothesis. 
It is worth mentioning that some navigation algorithms are 
computationally heavy to execute repeatedly in a SS setting, 
or do not provide absolute covariances, or do not provide 
covariances at all. We experimented with a smoothing-based 
navigation algorithm. In this algorithm, we optionally use an 
Error State Kalman Filter (ESKF) implementation to evalu-
ate faulty hypotheses, independently of the smoothing-based 
navigation algorithm used in the all-source-in hypothesis.

For our experiments we selected to use one simulated 
UAV trajectory, and one real trajectory from a car driven in 
an urban environment. First, we evaluated the proposed IM 
on a ESKF implementation. We are confident that ESKF is 
a proper choice of a modern non-linear estimator, in com-
parison to the standard Extended Kalman Filter (EKF). 
We also evaluated the IM on an algorithm based on Factor 
Graph Optimization, which is a very popular algorithm in 
the domain of smoothing-based navigation.

The main contribution of our work is a novel IM archi-
tecture, which is navigation algorithm-agnostic, in terms of 
internal architecture as well as time complexity, and is scal-
able to various sensors and sensor noise models. A limitation 
is that the sensors should be capable to provide independent 
position solutions. In addition, the presence of a fault or, in 
the general case, the exclusion of a sensor can lead to chal-
lenges with sensor initialization or the calibration process, 
e.g. of a visual sensor. The sensor initialization or calibration 
of a sensor on the run is not addressed in this paper. More 
specifically, the contributions are the following:

• We demonstrate that a SS IM algorithm, working inde-
pendently of any navigation algorithm, can employ statis-
tics on Log Likelihoods of various measurement subsets: 
such metrics can identify presence of measurement faults 
as well as improve the understanding of underestimated 
uncertainties provided by the navigation algorithm. We 
propose a simple statistic based on the rolling standard 
deviation of Log Likelihood (LLRSD) of each subset that 
can accurately detect inconsistencies in time, instead of 
the already studied but more complex Log Likelihood 
Ratio (LLR) [9]

• Multi-sensor fusion must account for sensor noise models 
which lead to underestimated uncertainties and invalid 
bounds. We propose overbounding the common case 
of time-correlated noise. We observe that overbound-
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ing techniques, previously derived for Kalman Filter 
(KF)-like methods, provide promising results with our 
SS-based architecture with ESKF backend, even when 
the knowledge of noise model parameters is approxi-
mate. This is an empirical result and we do not provide 
theoretical guarantees of overbounding. Nevertheless, the 
important contribution of our framework is that account-
ing for a different sensor noise model is as easy as con-
structing hypotheses to apply appropriate overbounding 
techniques. This is useful, for example, when a sensor’s 
noise distribution has been learned offline under nominal 
or non-nominal conditions.

• There is wide variety of sensor fusion navigation algo-
rithms and in some cases position covariances are una-
vailable or cannot be interpreted in the absolute coordi-
nate system. In these cases the IM might fail. In addition, 
it can be inefficient to execute a computationally heavy 
navigation algorithm multiple times in the SS setting. It 
seems beneficial to incorporate a standardized algorithm 
for the evaluation of some hypotheses. We include results 
for a GTSAM algorithm for IMU and GNSS fusion, 
whose monitoring was done with and without the ESKF 
for evaluation of faulty hypotheses.

The remaining part of the paper is organized as follows. 
Section 2 presents related works. Section 3 introduces our 
proposed IM architecture (Section 3.1) and the methods for 
PL computation (Section 3.2), correlated noise overbound-
ing (Section 3.3) and the Fault Detection statistics (Sec-
tion 3.4). The data used for evaluation of our IM and the 
experimental results are discussed in Section 4. Section 5 
concludes the paper.

2  Related Work

2.1  On SS and the Benefits of SS vs RB RAIM

Joerger et al. [4] designed a fault detector and a non-least-
squares estimator in RAIM. In the first part of their work 
they focused on multi-measurement faults and that is why 
they derived analytical expressions of the worst-case fault 
magnitude and direction, along with an expression for the 
PL. By a comprehensive comparison they proved the supe-
riority of SS in comparison to RB in terms of the detection 
statistic, something that is justified by the fact that SS detec-
tion is directly related to the faulty measurement hypotheses. 
In addition, the non-least-squares estimator, that they devel-
oped in the second part of their work, achieved the optimi-
zation of the integrity risk, at the cost of lower accuracy. A 
formulation of both the integrity and continuity risk was 
made in the subsequent work of Joerger et al. [2], and from 
there they defined simple formulas for both the single and 

multiple measurement fault case. Their theoretical proofs 
are very important in the IM domain and their error bound-
ing formulas are used also by us. In SS the corresponding 
formulations are derived in the positioning domain. This 
makes SS more appropriate for a universal IM as it facilitates 
scalability to multiple sensors and independence from the 
navigation algorithm.

2.2  On Multi‑Sensor IM

A large number of available navigation platforms and algo-
rithms are multi-sensor based. However, multiple modalities 
of the various measurements, as well as the necessity for 
recursive estimation place many challenges to the classical 
IM methods. Multi-sensor IM has gained significant inter-
est but, to the best of our knowledge, proposed solutions in 
literature maintain some dependence on a specific navigation 
algorithm.

Gupta and Gao (2019)[10] introduced the Particle 
RAIM framework. At each time the position is weighted 
by incorporating its likelihood of generating the subset of 
measurements. In a subsequent work, Mohanty et al. [6] 
explored a GNSS and Camera integration with the Particle 
RAIM framework. Due to the use of the visual sensor, they 
accounted also for ambiguities during feature and image 
association, and for errors originating from sensor fusion. 
The Particle RAIM framework leverages collaborative 
estimation and IM, and uses the full probability distribu-
tion over position, instead of position point estimates. This 
means that this framework captures very well the uncertainty 
in the state estimation algorithm.

Meng and Hsu [7] considered the system state propaga-
tion as an additional measurement in a KF-based navigation 
algorithm. This allowed them to calculate the integrity of a 
recursive algorithm like KF which was impossible with other 
classic snapshot-based methods. The dependence, however, 
on KF-based algorithms is quite limiting. Otherwise, for 
scalability and due to the different nature of measurements, 
at each hypothesis a whole sensor is considered as faulty 
and their method works directly on output position solu-
tions. A method to maintain navigation integrity despite 
the multiple-sensor measurements was developed also by 
Appleget et al. [11]. They emphasized that traditional SS 
is not that effective in handling sensor faults that result in 
insignificant differences in state estimation. For this reason, 
their algorithm employs the expected value of the covariance 
of the measurement residuals in a moving average �2-test. 
Multiple filters are used, and residual covariance distances 
are calculated for each sensor/ subfilter pair. The residual 
measurement is based on the EKF’s predicted states.

Bhamidipati and Gao [12] utilized a linearized Graph-
SLAM framework for worst-case failure mode slope analy-
sis and, subsequently, IM when there are multiple faults in 
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both GNSS and vision. The visual observations are used 
to distinguish Line Of Sight (LOS) and Non Line Of Sight 
(NLOS) satellites by recognizing the sky, formulating the 
GNSS measurement covariances. The state vector updates 
are done before performing Fault Detection & Isolation, 
which depends on the comparison with an empirical distri-
bution of measurement residuals. Their method is capable to 
monitor multiple faults in both GNSS and vision. Neverthe-
less, their method was developed for specific sensors, applies 
measurement preprocessing, and performs estimation and 
IM collaboratively. Thus, it is not directly extendable to 
other sensor types or navigation algorithms.

2.3  On Sequential Estimation Navigation Integrity

Recursive IM has been a topic of interest for many research-
ers, beyond those who investigated multi-sensor fusion. For 
example, Arana et al. [13] presented a multi-hypothesis 
method that can monitor multiple landmark association 
faults at different times. They avoid assumptions in the 
nature of faults, as integrity is evaluated under the worst 
combination of sensor faults. The sequential method of Tanil 
et al. [14] used the innovation sequence from a single KF 
for fault detection before IM. For fault isolation, they pro-
posed that the sub-set solutions can still be extracted from 
the full-set solution without the need to run the sub-filters. 
However, neither of the methods are navigation algorithm-
independent, as they are based on the KF innovation vectors 
sequence. Nonetheless, both methods accounted for the fact 
that the estimation error and the fault detection are affected 
by faults back in time, and this is an important consideration 
also in our method.

2.4  On Fault Detection and Threshold Optimization

Fault detection and isolation is an important module in the 
IM process which improves the navigation solution’s reli-
ability. In the presence of redundant measurements, it is 
typical to identify measurement faults by comparing posi-
tioning solutions when using the full measurement set and 
different measurement subsets. Faults that can be isolated 
will be excluded and will not be considered in the integrity 
risk evaluation.

He et al. [9] highlighted that a detection statistic should 
account for both optimal availability and integrity, and it 
should be independent of underlying statistical assumptions. 
Taking this into consideration, they tested a nonlinear opti-
mization algorithm for the fault detection bound, using the 
cumulative LLR statistic. LLR and most other Log-Likeli-
hood based statistics do not rely on the internal procedure of 
a navigation method, but only on the measurement set, the 
position state estimations and the uncertainties. We selected 
to incorporate a simpler statistic that relies on the rolling 

standard deviation of maximum Log Likelihoods of each 
measurement subset for our Fault Detection module, and we 
include comparison results with the LLR statistic.

Jurado et al. [15] were interested in presenting a Solution 
Separation-based FD method without the assumptions of 
simultaneously redundant, synchronous sensors with valid 
measurement models and without constraining the statistical 
distribution of the faults. In the fault detection procedure, 
they refrained to rely on competing distributions (e.g. under 
all-source and faulty hypotheses) but rather they utilized a 
residual-based statistic under each hypothesis and each sen-
sor. Finally, the authors extended their method to multiple 
fault detection. However, the FD statistic depends on a state 
covariance matrix from the navigation algorithm which is a 
limitation in comparison to our SS-based method with stand-
ardized ESKF in backend.

2.5  On Integrity Monitoring of Smoothing‑Based 
Navigation

IM of Visual localization algorithms is quite challenging as 
there is a vast amount of measurements (e.g. landmarks and 
features), and it is common that more than one measurement 
are faulty at each time [16]. Visual localization is a typical 
example of applications that are better solved with optimiza-
tion instead of filter-based methods. It is therefore essential 
to test IM methods with an optimization-based navigation 
approach too. In the existing literature, an IM method tar-
geted to a nonlinear pose optimization problem was devel-
oped by Li and Waslander [16]. They emphasized that their 
method cannot guarantee that a proposed bound will always 
be valid, as is true for any nonlinear system with outliers. 
They employed a variation of the Parity Space Approach 
as statistical tests to remove multiple outliers for a batch of 
measurements, which eventually leads to PL calculation. An 
assumption in this test is that the noise of the measurement 
model follows a Gaussian distribution. One central contribu-
tion of our method is that the sensor measurement noise is 
not necessarily Gaussian, and we execute experiments where 
at least one sensor has time-correlated noise.

3  Proposed Method

In this section we describe the proposed IM method, where 
Fig. 1 outlines the high-level architecture. Previous literature 
has shown that a method that does collaborative estimation 
and IM is more efficient (position errors bounded reliably 
and tightly). However, such highly integrated methods seem 
inappropriate when we are interested in universality and 
easy adaptation in existing navigation solutions. We have 
therefore used a method that is independent of the navigation 
algorithm. An additional prerequisite for the universality of 
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our method is to facilitate the computation of reliable PLs 
in the presence of different noise models. A commonly used 
technique is to inflate the process noise covariances in a way 
to guarantee that the estimated state uncertainty overbounds 
the true error. We introduce the concept of overbounding 
hypotheses, where the estimator is run with the inflated 
noise covariances. These hypotheses can be employed con-
ditionally if a sensor appears to be inconsistent (see Sec-
tion 3.4). We experimented with overbounding hypotheses 
of time-correlated noise, which is common for many sensors 
(see Section 3.3). In our architecture it is straightforward to 
extend the system with techniques dedicated to other noise 
models by evaluating and computing bounds when the sen-
sors have different noise parametrization, that is, with addi-
tional hypotheses.

The method belongs to the class of SS methods operating 
in the position domain. In SS methods the estimation algo-
rithm runs each time for a subset of the input measurements. 
The different position estimates are compared together and 
with the all-source estimate (estimate after using the whole 
set of measurements). In this way we evaluate if some 
measurements are outliers and are correctly hypothesized 
as faulty. It helps also to quantify the uncertainty that is 
introduced by various measurements, resulting in more accu-
rate PL calculation. An important assumption that is often 
made in SS-based IM is that at each time there is no more 

than one fault in sensor measurements. However, it has been 
emphasized in previous literature that the maximum number 
of simultaneous faults related to different sensors might vary 
a lot. A typical integrity requirement considered in previ-
ous works is in the order of  10−7 − 10

−8 failures / hour of 
operation and agrees with the gold standard for automotive 
functional safety [17]. In a GNSS-only solution Fu et al. [18] 
determined that the probability of more than one satellites 
failing simultaneously is very low and insignificant for such 
integrity requirements. However, according to them, errors 
such as those in feature detection or in landmark locations 
will likely affect more than one vision measurements (e.g. 
pseudoranges and bearings to landmarks).

The current work develops an IM method that works uni-
versally and is scalable to a range of sensors. Therefore, 
the integrity is evaluated at a high level considering loosely 
integrated sensor measurements. This means that each time 
we hypothesize a sensor as faulty instead of its individual 
measurements. Nonetheless, it is not yet well studied how 
probable is the event of two or more sensors failing simul-
taneously and we tested the IM method on a system where 
only up to one sensor is failing at each time.

The next subsections first present this SS strategy which 
is scalable to multiple sensors. The formulation of the PL 
calculation follows. Section 3.3 describes how we deal with 
time correlated noise, a characteristic that is common for 

Fig. 1  Architecture of the proposed IM framework
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many sensors. Section 3.4 is dedicated to the log-likelihood 
based fault detection method, with application to overbound-
ing the mismodeled time-correlated noise.

3.1  SS on Sensor‑Level

The concept of SS is closely related to the allocation of an 
integrity risk budget, as the integrity risk tree demonstrates 
in Fig. 2. Instead of depicting a generic allocation among 
all the various errors that can contribute, this figure demon-
strates the proposed, on sensor-level, allocation. It is worth 
mentioning that the sensor set in the diagram serves only as 
an example, and we experimented only with a subset of the 
mentioned sensors. In the diagram, Nss denotes the number 
of fault hypotheses. Prisk is the predetermined integrity risk 
requirement. The integrity risk is allocated equally among 
all hypotheses. This is an arbitrary decision and may result 
in looser bounds.

SS is a procedure of evaluating the disagreement of the 
fault-free estimation (the nominal estimation of the navi-
gation algorithm) to the solution corresponding to fault 
hypotheses. Eventually, in our case, we seek the quantifica-
tion of this disagreement to identify a faulty sensor, or to 
estimate a PL that sufficiently bounds the error of a hypothe-
sis. This quantification depends on the output position states 
and estimated position uncertainty after the execution of the 
navigation algorithm with the hypothesized fault-free meas-
urement subset as input, therefore, it can be easily integrated 
with most existing navigation algorithms. Nonetheless, the 
experiments show that a universal IM should include its own 
estimation backend, due to two reasons: an algorithm might 
be computationally heavy to execute multiple times, or the 
position uncertainly of the algorithm might be incorrect, 
hard to use or unavailable. The developed multiple-hypoth-
eses IM allows the selection between the native algorithm 
under monitoring or a standard implementation of another 
algorithm for the evaluation of some hypotheses, where for 
the experiments we selected the ESKF.

The computational load that is introduced by a safety 
monitor is important to consider. Joerger et al. [2] proved 
that, in contrast to Residual Based (RB) methods, in SS there 
is no necessity to find the worst case fault vector magnitude 

and direction. However, it is required to run the filter mul-
tiple times. Nonetheless, parallelization seems feasible in 
this case.

Another challenge with a SS method is that it strongly 
relies on the redundancy of measurements among sen-
sors. In our case, this means that at least two redundant 
measurements are necessary to evaluate the bounda-
ries of a fault-tolerant (to one of these measurements) 
hypothesis. This indicates that the utilization of the low-
level measurements of a sensor might be necessary in 
some cases. For example, a solution to the redundancy 
issue, without sacrificing scalability, could be the utiliza-
tion of the limited number of pseudorange measurements 
to satellites, along with the single measurements from 
the non-GNSS sensors. It was mentioned before that the 
probability of more than one faulty satellite is lower than 
a typical integrity requirement, satisfying the redundancy 
requirement.

3.2  PL Computation

PL denotes a position error bound that is determined based 
on the integrity risk requirement. Mathematically, we will 
refer to PL , which is a vector of error bounds, as we work 
with multi-dimensional navigation. For each direction, it 
should be guaranteed that the probability of the error exceed-
ing the corresponding bound is smaller than the integrity 
requirement. That is, under a fault hypothesis i , the PL 
should satisfy the following inequality:

HMI stands for Hazardous Misleading Information and 
is the event ||�xi − x|| > AL & PL < AL , where x̂i  is the esti-
mated position state under hypothesis i , x is the true state, 
and AL is the vector of Alert Limits for each dimension. 
IREQi

 is the preset integrity risk requirement, allocated to 
the i th hypothesis. Here, as in many works, we select an 
equal allocation to each hypothesis, something that can 
result in a looser bound. P(Hi) is the probability of a fault 
hypothesis and can be computed offline during extensive 

(1)P
(
HMI|Hi

)
P
(
Hi

)
< IREQi

Fig. 2  Example integrity risk 
allocation on sensor-level
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simulation runs, but in our work and in most previous works 
on IM an arbitrary constant value was selected for all fault 
hypotheses. Then for the fault-free hypothesis we have 
P
�
H0

�
= 1 −

∑NSS

i=1
P(Hi).

By adding the contributions of each failure towards the 
integrity risk it is guaranteed that the overall PLs will bound 
the error and, therefore, the safety of the method. In the 
fault-free case, measurements follow a nominal distribution 
and we assume that the error follows a Gaussian distribution. 
Joerger et al. [4] derived a simple formula for the PL cal-
culation for a fault hypothesis i , obtained for the worst-case 
fault magnitude, and, in our case, for one of the dimensions 
it is given by:

where Q−1 the inverse tail probability of the standard normal 
distribution, �i the standard deviation of the fault-free solu-
tion under the i th hypothesis and TΔi

= Q−1
(

PCONT

Nss

)
�Δi

 
where PCONT continuity risk allocated to the fault hypotheses 
and �2

Δi
= �2

i
− �2

0
 , with �2

0
 the variance for the all-source 

solution.
The intuitive interpretation of Eq. 2 is that if we assume 

that the position error follows a standard normal distribution 
then the factors Q

{
IREQ

P(Hi)(Nss+1)

}
 will bound the probability of 

Hazardous Misleading Information. The second term, TΔi
 , 

can be considered a fault isolation threshold which has to 
satisfy the continuity risk requirement.

For the fault-free case we will have pL0 = Q−1
{

IREQ

2(Nss+1)

}
�i 

where we multiply by 2 because both tails of the error dis-
tribution need to be accounted for.

3.3  Overbounding Time‑Correlated Noise

It is a fact that the noise of some sensors is time-correlated 
and not white. The estimated covariance from some naviga-
tion algorithms will be unreliable unless the correlated noise 
is accounted for. Subsequently, in many cases the computed 
PLs will be unreliable.

A first order Gauss-Markov process (GMP) is the random 
process used in this work to model correlated noise. These 
processes are fully defined by a time constant � , steady state 
variance �2 and initial variance �2

0
 . The discrete first-order 

Gauss-Markov process is defined with the following equa-
tion for the discrete time step � [19]:

y denotes a random variable (in this case the correlated 
measurement noise), u(� ) a random variable that follows 

(2)pLi = Q−1

{
IREQ

P
(
Hi

)(
Nss + 1

)
}

�i + TΔi

(3)y(�) = �y(� − 1) + u(�)

zero-mean Gaussian distribution with variance �2
u
 and � is a 

coefficient in the range [0, 1].
The correlation time T is the lag time corresponding to 

an autocorrelation value of 1∕e , or:

For two samples m, n with m > n the autocorrelation 
of y(n) is

By combining it with Eq. 4 we find that: a = e−1∕T.
Crespillo et al. [8] designed a GNSS + Inertial Naviga-

tion System (INS) integration scheme where noise pro-
cesses are correlated and the parameter values are known 
only to reside in a (wide) range of values. Langel et al. [20] 
formulated a way to guarantee that the estimated covari-
ance from a KF overbounds the actual error distribution 
of the estimate. They based their proof on the propagation 
of the error matrix � = � − P , where P is the estimated 
covariance matrix of the KF and � is the covariance matrix 
to define, so that � ≥ P . To achieve that, they concluded 
that the process noise power spectral density matrix Q 
should be populated with the upper bound values of its 
individual elements. We should use the maximum time 
constant of the range and the upper bound for the uncertain 
steady-state variance parameter of the correlated noise, 
inflated by the ratio of the maximum and minimum values 
of the time constant:

Finally, the initial variance of the GMP is determined 
in a way to satisfy the condition E(0) ≥ 0 which is another 
prerequisite to have that � ≥ P at all t > 0:

We can set �2

0
 to this lower bound. Formal proofs are 

provided by Langel et al. [20].
This paper provides some empirical results after utiliza-

tion of this method with the IM with ESKF back-end. Spe-
cifically, in the simulation experiments run, a position sen-
sor, that behaves similarly to a GNSS, is used with noise 
that follows a GMP (see a next section for more details). 
As the paper by Langel et al. [20] demonstrated, the GMP 
noise in each sensor can be sufficiently accounted for by 
augmenting the state vector with additional bias states 
and a subsequent inflation of the process noise covariance 

(4)Autocorrelation(y(�), y(� + T)) =
1

e

(5)
Autocorrelation(y(m), y(n)) = am−n

⇒ Autocorrelation(y(�), y(� + T)) = �T

(6)� = �max

(7)�2 = �2

max

(
�max∕�min

)

(8)�2

0
≥

2�2
max

1 +
(
�min∕�max

)
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matrix Q . Time-correlated noise is just an example of the 
challenges that can deteriorate the quality of IM, and our 
proposed architecture is compatible with additional over-
bounding techniques to handle other challenging cases.

Appendix 1 serves as an introduction to the ESKF imple-
mentation and the strategy to use the GMP parameter values 
determined in Eq. 6, 7, 8 to inflate Q.

3.4  LLR and LLRSD for Fault Detection

He et al. [9] introduced a method to optimize the fault detec-
tion bound for improved integrity and availability. Their 
method uses the cumulative LLR to identify sensors that are 
likely faulty. An intuitive understanding of how LLR can be 
used in fault detection is the following: In the absence of the 
faulty measurement, someone expects a better agreement of 
the remaining measurements in comparison to the fault-free 
hypothesis, i.e. the LLR will be higher in this case. In our 
method we will see empirically that a simpler metric (only 
the faulty hypothesis is used in computations), which we 
call LLRSD, provides a better indication of the times when 
a measurement is faulty. For completeness the reader may 
consult Appendix 2 which includes an introduction to the 
LLR metric. The formulation of the LLRSD metric follows.

For a time interval a to b , let us accumulate the Log-
Likelihoods of a measurement subset yj containing all meas-
urements except the j th. This is the nominator of the LLR 
metric too (Eq. 27):

Then, similarly to Appendix 2, at each time k get the 
maximum, � j

k
= max

k−x+1≤a≤k
{LLk,j

a
}, 0 ≤ j ≤ m , with x the 

(9)LLb,j
a

=

b∑
k=a

ln p
(
y
j

k
|xk

)

accumulation time window size and m the total number of 
measurements.

Using a window of configurable size N it is attempted to 
find how much the maximum log-likelihood of subset j at 
current time ( � j

k
 ) deviates from log-likelihoods at previous 

times, inside the window.

where �j

k
=
∑k

z=k−N

�
j
z

N
  is the mean of the maximum log-

likelihoods in the window.
The experimental results, presented in Sections 4.2.1 and 

4.2.2, showed that the risk of fault misdetection is lower 
when using this metric than when using the LLR metric.

4  Experiments

This section introduces the trajectories, sensor combinations 
and integration strategies as well as the navigation algo-
rithms that were evaluated with the developed IM method. 
Table 1 will summarize the IM results for each trajectory 
and monitored navigation algorithm.

4.1  Data

We verify our method for two trajectories. The first trajec-
tory corresponds to a 3D UAV scenario with a GNSS and 
an IMU sensor with perfectly aligned reference frames. The 
noise processes of the sensors are Gaussian and the trajec-
tory was created in MATLAB. This trajectory is given in 
Fig. 3. The second trajectory includes data collected from 
a car driving in an urban environment with, among others, 
measurements from a GNSS receiver and an inertial sensor 

(10)LLRSD
j

k
=

�∑k

z=k−N
(� j

z
− �

j

k
)
2

N

Table 1  A comparison of the 
RBT values (see section 4.4) 
for the two trajectories and 
for various algorithms or IM 
setups, with or without the Fault 
Detection and Overbounding 
(FDO) module. Here, the 
measured RBT value for the 
ESKF navigation algorithm 
is used as reference for the 
comparisons at each row. In 
each case, only the maximum 
RBT value appearing in any of 
the dimensions is compared. 
The results for the two datasets 
are not directly comparable, as 
the accuracy of their GT might 
be different

Trajectory ESKF GTSAM GTSAM + ESKF 
hypotheses

UAV w/o FDO with FDO w/o FDO with FDO w/o FDO with FDO
Maximum RBT for � = 12

2

11.4  + 27.8%  + 349%  + 349% -10%  + 37.3%
Maximum RBT for � = 60

2

46.96 -37.6%  + 445%  + 445% -46.2% -50%
Full estimation + IM Avg execution time per step (s)
0.1183 0.1483 0.2264 0.2718 0.1551 0.1482

KITTI Maximum RBT for � = 12
2

15.73  + 12.7%  + 71%  + 71%  + 22%  + 31.3%
Maximum RBT for � = 60

2

15.73  + 12.7%  + 755%  + 755%  + 22%  + 31.3%
Full estimation + IM Avg execution time per step (s)
0.07 0.075 0.089 0.117 0.074 0.087
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module. This trajectory is included in the KITTI raw dataset 
[21]. It is shown in Fig. 4. We limit the experiments to a 
loose integration of position fix and IMU sensors. The name 
POS_SENSOR1 is used for the purpose of the text and refers 
to the GNSS sensor. The next subsection describes the navi-
gation algorithms under evaluation. For the testing of the 
fault detection method and the overbounding of correlated 
noise we synthesize the measurements of an additional posi-
tion sensor called POS_SENSOR2. Specifically, the time 
correlation between successive position measurement errors 
is modeled employing a Gauss-Markov process, as described 
earlier, according to the Eq. 3, and this noise is added around 

the measurements of POS_SENSOR1. The parameters of the 
noise are as follows:

T = 300s

�
u
= 0.3m

The frequencies of each sensor measurements are:

IMU: 10 Hz
POS_SENSOR1: 1 Hz
POS_SENSOR2: 2 Hz

The difference in frequency between the two position sen-
sors was accounted for in the measurement error matrices 
by setting the measurement noise covariance matrices as 
Rpos2 = Rpos1∕0.5  [22]. The elements in Rpos1 , that corre-
spond to the measurements of POS_SENSOR1, have been 
tuned for the simple POS_SENSOR1 + INS integration and 
based on estimated uncertainty consistency tests.

Figure 5 depicts the measurements of POS_SENSOR1 
and POS_SENSOR2.

Both trajectories contain also ground truth (GT) measure-
ments, with respect to the world North-East-Down (NED) 
frame, which we use for the computation of the estimation 
error.

4.2  Navigation Algorithms Evaluated with the IM

We evaluated the developed IM on a loosely coupled sen-
sor integration and on two types of navigation algorithms. 
The first was an ESKF, described is Section 4.2.1, and the 
second one was GTSAM, which is based on smoothing and 
is described in Section 4.2.2.

A fault hypothesis is constructed after considering the 
full measurement set of a sensor as faulty, thus, excluding 
it. Our SS-based IM executes the navigation algorithm for 
the original measurement set (all sensors are fault-free) and 
for the subsets under the fault hypotheses. The IMU is not 
hypothesized as faulty to ensure redundancy of measure-
ments at each time. Therefore, there are totally three hypoth-
eses in our experiments:

• All-source: all sensors are assumed non-faulty and used 
in the navigation algorithm

• Out-POS_SENSOR1: exclusion of the POS_SENSOR1
• Out-POS_SENSOR2: exclusion of the POS_SENSOR2

4.2.1  ESKF

The ESKF is a successor of the original KF and the EKF 
for the cases when either the process or the measurement 
model or both are nonlinear [23, 24]. In this approach, the 

Fig. 3  3D simulated trajectory of a UAV in NED coordinates. The 
starting and ending positions are indicated with a back circle and a 
red dot respectively

Fig. 4  2D collected data in NED coordinates from a real car drive. 
Trajectory from the KITTI raw dataset. An arrow indicates the start-
ing position and direction, and the red dot indicates the ending posi-
tion. Thus, the starting and ending position of the car are almost the 
same
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error in the states is estimated using a KF, instead of the 
state itself. The linearity in the error state dynamics means 
that the application of KF is feasible. Thus, ESKF takes 
advantage of KF’s optimal estimations [23]. This filter is 
typically used for the fusion of IMU data with any other 
kinds of sensors. We use this filter to loosely integrate one 
or two position sensors with the IMU sensor and validate 
the proposed IM. Appendix 1 is a brief introduction to the 
ESKF implementation.

4.2.2  GTSAM

GTSAM is a C +  + library that implements smoothing and 
mapping (SAM) in robotics and vision, using Factor Graphs 
and Bayes Networks as the underlying computing paradigm 
rather than sparse matrices [25].

We evaluate our IM with GTSAM with the IMU + posi-
tion sensor integration. Although this integration is far from 
being state-of-the-art, it should be a demonstrative exam-
ple of the straight-forward applicability of our method with 
more complex integrations used in smoothing-based navi-
gation. In GTSAM we use the implementation of an IMU 
factor as proposed by Lupton and Sukkarieh [26]. Figure 6 
compares the steps followed in standard inertial integration 
with those implemented in the IMU factor. This architecture 
allows the reparameterization of the navigation frame and the 
pre-integration of the inertial observations which facilitates 
the initialization of the system (all initial conditions become 
linearly dependent on the estimated states). In addition, the 
gravity vector must be considered after the observations are 
already integrated instead of accounting it during integration 
of the inertial observations in the velocity equation.

Fig. 5  The measurements of POS_SENSOR1 and POS_SENSOR2. 
The coordinates were converted to the NED system. (a) Measure-
ments in the 3D UAV trajectory North vs East direction (b) Measure-

ments in the 3D UAV trajectory East vs Down direction (c) Measure-
ments in the 2D KITTI trajectory North vs East direction
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Like most nonlinear optimization libraries, GTSAM opti-
mizes for a change with respect to a linearization point. This 
is very important to note, because in the case of GTSAM the 
covariance matrices are given in relative, and not absolute, 
coordinates [25].

4.2.3  IM of the GTSAM Navigation Algorithm using 
the ESKF Backend

Finally, we examine how the IM with ESKF backend behaves 
in the case of the GTSAM navigation algorithm. The idea 
here is to use the covariances estimated by ESKF to com-
pute the bounding PLs of the estimation error of GTSAM. 
Specifically, the optimization procedure in GTSAM is run 
for the all-sensor input. The ESKF estimates the covariances 
when leave-one-out sensor input is used (fault hypotheses). 
This is an alternative implementation of the IM and, as men-
tioned before, can result in higher efficiency, depending on 
the output format and time complexity of the monitored 
navigation algorithm.

4.3  Results and Discussion

4.3.1  ESKF Experiments

Figures 7 and 8 present, for each of the trajectories (2 or 3 
dimensions), the computed PL and the position error of the 
estimations relative to the GT positions and for different 
integrations of the POS_SENSOR1 and / or POS_SENSOR2 
with the IMU. It is reminded that we cannot use multiple-
hypothesis monitoring when solely the POS_SENSOR1 
or POS_SENSOR2 is used with the IMU due to lack of 

redundancy in the measurements. In that case we evalu-
ate only the fault-free hypothesis. The filter has quite good 
knowledge of the noise of the POS_SENSOR1 and the 
IMU, although the parametrization is not optimal. In the 
case of the simulated trajectory, it is observed that the IM 
fails to calculate PLs that actually bound the error, when the 
POS_SENSOR2 is used. This is especially visible in Fig. 7c, 
where the POS_SENSOR1 has been completely excluded. 
In the case of the KITTI trajectory, we observed that the 
IM achieved sufficient bounds when SS was employed in 
the presence of both POS_SENSOR1 and POS_SENSOR2.

Figure 9a shows for the UAV scenario the Pearson cor-
relation coefficient of the LLRSD or the LLR metric with 
the absolute position error, in the case of the integration of 
the POS_SENSOR1 + POS_SENSOR2 + IMU and for each 
hypothesis (in each hypothesis either the POS_SENSOR1 or 
the POS_SENSOR2 is assumed fault free.). Figure 9b depicts 
the mean and std values of the LLRSD and LLR metric for 
each hypothesis, at the times when the PLs do not bound the 
error. In both cases, there is a weak to medium positive cor-
relation among the metric in hypothesis H1 and the error in 
hypothesis H0 only on the East axis. There is also a weak neg-
ative correlation among the metric in hypothesis H2 and the 
error in hypothesis H1. The advantage of using the LLRSD 
metric over the LLR metric is apparent in Figs. 9b where it is 
straight-forward to identify that H1 is a valid hypothesis. In 
addition, the standard deviations (shown with the black verti-
cal lines on the bars) are in general lower for the LLRSD met-
ric and the H1 or H2 hypotheses, reducing the probability of 
fault misdetection. Figure 10 presents the results after apply-
ing the overbounding technique exclusively for the uncertainty 
of the measurements of the position sensors (see Section 3.3 

Fig. 6  Flowcharts comparing 
the steps in standard inertial 
integration (a) with those imple-
mented in GTSAM’s IMUFac-
tor (b). Figure from Lupton and 
Sukkarieh [26]
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Fig. 7  PL and absolute errors for various settings of POS_SEN-
SOR1 + POS_SENSOR2 + IMU loose integration with ESKF for 
the UAV simulated trajectory. We marked with green the parts of 
the error plot that exceed the corresponding PL. Each column corre-
sponds to one direction, North (left), East (middle), Down (right). (a) 

Utilization of measurements only from the POS_SENSOR1 and the 
IMU. (b) Utilization of measurements from both the POS_SENSOR1 
and POS_SENSOR2, along with the IMU. (c) Utilization of measure-
ments only from the POS_SENSOR2

Fig. 8  PL and errors for the POS_SENSOR1 + POS_SENSOR2 + IMU loose integration with ESKF for the KITTI trajectory. (a) North axis (b) 
East axis
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and Appendix 1), and for the times when the LLRSD value 
exceeds a preset threshold. The threshold used is 0.075 and 
was selected empirically based on the results for both trajec-
tories. Overbounding means that a higher bound is computed 
for the hypothesis that includes the faulty sensor. The LLRSD 

statistic can identify a faulty sensor, with the assumption that 
at most one sensor is faulty at each time. We confirm that 
the error is bounded almost all the time, avoiding very loose 
bounds when not needed.

Fig. 9  Comparison between the LLRSD and LLR metric for the 
POS_SENSOR1 + POS_SENSOR2 + IMU integration in ESKF 
for the UAV trajectory. The analysis was done for each hypothesis 
(denoted with H* in the labels) and each axis (North, East, Down) (a) 
Pearson correlation coefficient among the LLRSD or LLR metric and 

the absolute position error. (b) Mean and standard deviation of the 
LLRSD or the LLR metric in the regions where bounding failed (see 
Fig. 7). Each standard deviation is half the length of the black vertical 
line depicted on top of the corresponding bar

Fig. 10  IM of the ESKF with conditional overbounding for the UAV trajectory. The PLs and the true errors are shown for the (a) North axis (b) 
East axis (c) Down axis
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Figure 11 presents the evaluation of LLR and LLRSD 
for the KITTI trajectory. The figure and Table 1 show 
that overbounding did result in unnecessarily looser 
bounds. This was expected as the monitored algorithm 
was already configured with large enough measurement 
uncertainties for the IMU and POS_SENSOR1 sensors. 
This is an important result that shows that overbounding 
might deteriorate the IM performance depending on how 
the tuning of the parameters was done in the first place 
and how uncertain are the correlated noise parameters.

4.3.2  GTSAM Experiments

Figure 12 depicts the PLs and errors for the UAV trajectory 
for the IMU + POS_SENSOR1 + POS_SENSOR2 integra-
tion. It is apparent that it is overconfident to use the covariance 
returned from the GTSAM software. However, the LLRSD is 
still a simple way to detect that the noise of POS_SENSOR2 
is mismodeled. This is confirmed by Fig. 13 which shows the 
mean and standard deviation of the LLRSD and LLR metrics.

Fig. 11  Evaluation of IM of the ESKF with overbounding for the 
KITTI trajectory (a) LLRSD (left column) and LLR (right column). 
Each row from top to bottom depicts the results for the follow-
ing hypotheses and axes: Out-POS_SENSOR1 & North axis, Out-
POS_SENSOR2 & North axis, Out-POS_SENSOR1 & East axis, 

Out-POS_SENSOR2 & East axis (b) PL and error for the POS_SEN-
SOR1 + POS_SENSOR2 + IMU integration after conditional over-
bounding for the North (top row) and East (bottom row) axes. The 
decision for overbounding was only based on the LLRSD metric
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4.3.3  Experiments on GTSAM using the ESKF Backend 
for IM

The reduction of the execution time was apparent when 
this implementation was used instead of the GTSAM-
based evaluation for all hypotheses, as Table  1 dem-
onstrates. Figure 14 shows that PLs bound quite well 
the error in contrast to the PLs computed when purely 
GTSAM-based IM is used (Fig. 12). However, the uncer-
tainty is underestimated around the end of the trajectory. 
We remind that the overbounding technique was proven 
for KF-like algorithms.

4.4  Quantitative Evaluation of our IM Method

Li and Waslander [16] proposed a relaxed tightness met-
ric to quantitatively evaluate the performance of PLs. They 
highlighted that in the nonlinear system case with outlier 
measurements it is not possible to guarantee that the error 
will be sufficiently bounded by a given PL at all times. They 

proposed a novel Relaxed Bound Tightness (RBT) metric 
that quantifies both how much of the time the error is suf-
ficiently bounded and the tightness of the bound. This metric 
is calculated as follows:

where pLi and ei are respectively the PL and the error for a 
sample time i in one direction, N is number of samples, �i is 
the error covariance for the sample and � is a weight func-
tion that should penalize bounding failures more than loose 
bounds. It is given as:

To compute meaningful absolute RBT values the 
constant �  should be selected in a way to minimize 

(11)

(12)𝜌 =

{
1, pLi ≥ |ei|
𝜏, pLi < |ei|

Fig. 12  PL and errors for the POS_SENSOR1 + POS_SENSOR2 + IMU loose integration with GTSAM for the UAV trajectory (a) North axis. 
(b) East axis (c) Down axis

Fig. 13  LLRSD and LLR mean and standard deviation (black lines on the bars) for the POS_SENSOR1 + POS_SENSOR2 + IMU loose integra-
tion with GTSAM for the UAV trajectory
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Ƶ given an ideal bound v∗ . After assuming that the 
error follows a Gaussian distribution without outliers, 
the latter is calculated as the quantile function for a 
Gaussian distribution, depending on the predefined 
minimum probability of error bounding. However, here 
we arbitrarily selected a set of values between 12 and 
60

2 for �  to run the evaluation and compare the IM 
performance for different sensor integration schemes 
and navigation algorithms. Table 1 presents the results 
along with execution times. Overbounding is justifiable 
in safety–critical applications where bounding the error 
over long periods is a strict requirement, that is, for 
higher � . In contrast, overbounding methods are disad-
vantageous when tighter PLs are preferred (lower � ). In 
addition, one should consider that overbounding leads 
to longer execution times when IM is run sequentially, 
mainly due to the evaluation of more hypotheses. In the 
absence of bounding failures, the value of �  does not 
affect the RBT value, as is confirmed from the results 
for the KITTI trajectory.

Finally, Fig. 15 plots the RBT values for the simu-
lated UAV trajectory for a few selected � values in the 
range [1, 602] . The figure shows that additional criterium 
for the decision to utilize overbounding or not should be 

the algorithm that is monitored. Overbounding becomes 
justifiable already for a value of � = 500 for the ESKF 
case, whereas, for the GTSAM with ESKF backend, it is 
not justifiable until a value of � = 2000 . This is because 
the position error was generally lower in the GTSAM 
case. To generalize, the results highlight that overbound-
ing methods can be avoided in IM if the tuning of the 
noise parameters in the navigation algorithm has been 
done optimally (i.e. the position error is low) or if the 
noise parameters have been set conservatively (i.e. PLs 
will be already loose enough).

5  Conclusions

This paper is dedicated on the design of a universal 
IM solution for multi-sensor navigation that operates 
in the position domain. It is a SS-based monitor where 
an entire sensor’s measurement set is assumed faulty in 
each hypothesis. The monitor works directly with the 
output position states and uncertainties of the underly-
ing navigation algorithm. However, we suggest that the 
utilization of the monitored algorithm to evaluate all 
hypotheses can result in degraded performance when 

Fig. 14  PL and errors for the integration of the POS_SENSOR1, 
POS_SENSOR2 and IMU, in GTSAM for the UAV trajectory. Here 
we use the ESKF for the computation of the bounds in the fault 

hypotheses’ case. The filter underestimates the noise of the POS_
SENSOR2. We also use the conditional overbounding technique

Fig. 15  RBT values of examined IM algorithms, for various values of the unbounded error penalty constant � , for the UAV simulation trajectory. 
(a) North axis (b) East axis (c) Down axis



Journal of Intelligent & Robotic Systems           (2022) 106:7  

1 3

Page 17 of 20     7 

computationally heavy algorithms are evaluated or due 
to non-standardized format of provided covariances. 
Instead, we propose the utilization of a standardized fil-
ter for the evaluation of all but the fault-free hypotheses, 
and, therefore, our method removes the direct depend-
ance on output covariances from the navigation algo-
rithm. We selected the ESKF in our experiments as it 
usually has good performance with non-linear systems.

The challenge with an independent solution is the 
unreliable uncertainties provided by the navigation 
algorithm not caught by consistency checks. Despite the 
more efficient IM of solutions that run collaboratively 
with the navigation algorithm, we propose that measures 
based on measurements’ log likelihood (LL) can pro-
vide a good understanding of sensor measurement uncer-
tainties. This is especially helpful when the navigation 
algorithm only has very approximate knowledge of the 
measurement noise models. We include an overbound-
ing technique which is applied conditionally, based on 
the rolling standard deviation of LL. We experimented 
by synthesizing a measurement that includes time corre-
lated noise, something that is unknown in the navigation 
algorithm. Instead, the algorithm has some knowledge of 
broad ranges of values where the noise parameters lie. 
The results demonstrate the effectiveness of LL based 
measurements in providing sufficient indications of 
underestimated uncertainties. Previous theoretical results 
of overbounding the error of KF estimates in presence 
of correlated sensor noise were applied with the ESKF. 
Applying this method showed promising results: Protec-
tion Levels that are bounding the error and that are not 
too loose when not needed.

As the experiments confirmed, the proposed method’s 
architecture achieves the goal of universality in terms of 
navigation algorithm’s internal architecture as well as 
time complexity, while it is extendable to a variety of 
sensors with challenging noise models. A limitation of 
the method is that the included sensors should provide 
independent position solutions which is not true in many 
occasions, and, therefore, this remains a topic for future 
research.

The method and the experimental results are expected to 
be adoptable in future developments in multi-sensor navi-
gation platform IM. It is currently unclear how camera or 
LiDAR sensors affect the integrity and under which condi-
tions. Current single-sensor methods work with individual 
keyframes or landmarks and, due to the huge number of 
hypotheses, they are not directly scalable for multi-sensor 
fusion. Our architecture works with hypotheses on sensor-
level and avoids the scalability issues.

Appendix 1: ESKF and Gauss‑Markov Process 
Noise Overbounding

IMUs often suffer stochastic errors that cannot be estimated. 
It is common to model these errors as the sum of random 
constant turn-on-bias, a time-correlated process and a white 
Gaussian noise term [8]. Therefore, the angular rate and spe-
cific force measurements responsible for the linear accelera-
tion of the sensor can be expressed as:

where w̃b and f̃
b
 are respectively the measured turn rates 

and specific forces in 3 axes with respect to the body frame 
b , wb and f b their true values, bw,0 and bf ,0 are respectively 
the turn-on random constant bias of the angular rates and 
the specific forces, bw and bf  are the time-correlated biases, 
and nw and nf  are white Gaussian noise vectors. The time-
correlated biases are usually modeled with a Gauss-Markov 
process.

The ESKF estimated error state �x consists of the errors 
in position �� , velocity �v , angles vector �� , linear accelera-
tion bias �ba and angular velocity bias �bw . In our experi-
ments the second position sensor is affected by time-corre-
lated noise and, therefore, we have to account for it as well. 
Generally, the state vector can be augmented with additional 
states to account for additional time correlated errors, e.g. 
in position sensor’s measurements. Therefore, in the general 
case, the state vector becomes:

where m is the number of position sensors. In our experi-
ments m = 2 and, therefore, the total number of states will 
be 21.

Prediction

The continuous error state kinematics will be:

where n is the process noise with spectral density Q 
∈ ℝ

(12+3m)x(12+3m) where the velocity, orientation and bias 
estimates are modeled by white Gaussian processes.

The error state dynamics matrix A(x) and error state 
noise matrix G(x) are formulated by means of first 
order-approximations:

(13)w̃
b = wb + bw,0 + bw + nw,

(14)f̃
b
= f b + bf ,0 + bf + nf ,

(15)
�x =

(
��, �v, ��, �ba, �bw, �bpos1 , … �bposm

)T
∈ ℝ

15+3m,

(16)𝛿ẋ = A(x)𝛿x + G(x)n,
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with 0 and I without subscript indicating a 3x3 matrix of 
zeros and the 3x3 identity matrix respectively, the symbol S 
denoting the cross-product operation, q the attitude quater-
nion, R(q) the rotation matrix, pb∗ are the inverse time con-
stants of each sensor and gb∗ a component that will inflate 
the corresponding covariance of a bias state in Q . Then:

where �2
a
 and �2

w
 the noise variance of the accelerometer and 

the gyroscope respectively.
The FDO module conditionally selects to inflate the 

uncertainty that corresponds to a sensor by setting 
pb∗ = 1∕Tb∗ and g

b
∗
=

√
2

Tb∗

�2

b∗
  with Tb∗ and �b∗ given in 

Eqs. 6 and 7 as this design choice has been proven to lead in 
an estimated covariance P̂ that is larger than the true covari-
ance P [8].

The propagation matrix Ak and covariance matrix Qd 
in the discrete time model can be computed with the Van 
Loan’s method and the predicted covariance in discrete—
time, similarly to a standard KF becomes:

(17)

(18)G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

−R(q) 0 0 0

0 −I 0 0 015x3m

0 0 gbaI 0

0 0 0 gbwI

gbpos1 I
0 0

03mx12 0 ⋱ ⋮

0 … gbposm I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(19)Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�2
a
I � � �

� �2
w
I � �

� � I � �12x3m

� � � I

I � �

�3mx12 � ⋱ ⋮

� … I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(20)P̂k|k−1 = A
k|k−1P̂k−1|k−1A

T
k|k−1 + Qd(k|k−1)

Update

The measurement model relates to the true state as:

denoting as xt the true state vector and w the measurement 
noise modeled as a zero mean Gaussian with covariance 
matrix Rk.

However, as we aim for the estimation of the error state 
instead of the true state we require the relationship between 
the true state and the error state. This is formulated as:

Substituting in Eq. 16 and by linearizing around �x = 0 
(error state is small):

with H denoting the Jacobian. Having this model, we can 
directly retrieve the updated error state and covariance as in 
the EKF framework.

In the experiments presented in this paper the fixes are 
directly the measurements from the position sensors and the 
matrix H for the position update from POS_SENSOR i will be:

where  rposi the lever arm from body to POS_SENSOR i and 
H

′

posi
 is a 3x3m matrix which is non-zero only for the ele-

ments that correspond to bposi:

(21)z = h
(
xt
)
+ w,

(22)xt =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

� + 𝛿�

v + 𝛿v

q⊗

�
1

1

2
𝛿�

�

ba + 𝛿ba
bw + 𝛿bw

bpos1 + 𝛿bpos1
⋮

bposm + 𝛿bposm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

z ≈ h(x⊕0) +
𝜕h(x⊕𝛿x)

𝜕𝛿x

||||𝛿x=0𝛿x + w = h(x) +H𝛿x + w ,

(24)
Hposi

=
[
I � −R(q)S

(
rposi

)
�3x6 ⋮ H

′

posi

]
∈ ℝ

3x(15+3m),
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This completes an introduction to our ESKF implemen-
tation, where we focused on showing the application of the 
overbounding method.

Appendix 2: LLR for Faulty Sensor Detection

Let:
y0
k
 the subset that contains all measurements at time k

y
j

k
= [�1

k
, �2

k
,… , �

j−1

k
, �

j+1

k
,… , �m

k
] the subset that con-

tains all measurements except the j-th ( m the total number 
of measurements at time k).

We define the likelihood:

�k the observation from the sensor, �̃k the algorithm’s 
estimation for the same measurement.

For a time range a to b , the cumulative LLR between two 
observation subsets is:

Define � j
k
= max

k−x+1≤a≤k
{S

k,j
a } , x is the accumulation time 

window size, and �k = [�1
k
, �2

k
,… , �m

k
] is the test statistic.

So:

– If we have sensors that provide redundant measurements
– If we assume only up to one faulty sensor at each time

Then having hypotheses with one sensor excluded at 
each, a hypothesis that correctly assumes a sensor faulty 
will have much higher LLR than other hypotheses. Intui-
tively, it can be seen as a measurement of better agreement 
of all sensors.
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(25)H
′

posi
=
[
�3x3(i−1) I �3x3(m−i)

]

(26)p
�
y
j

k
�xk

�
=

m�
w=1&w≠j

1√
2�ck

e

�
(w)
k

−�̃
(w)
k

2ck ,

(27)Sb,j
a

=
�b

k=�
ln

⎛
⎜⎜⎜⎝

p
�
y
j

k
�xk

�

p
�
y0
k
�xk

�
⎞⎟⎟⎟⎠
, 1 ≤ j ≤ m
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