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Abstract: The paper considers the problem of formation path-following of multiple vehicles and
proposes a solution based on combining distributed model predictive control with parametriza-
tions of the trajectories of the vehicles using polynomial splines. Introducing such parametriza-
tion leads indeed to two potential benefits: a) reducing the number of optimization variables,
and b) enabling enforcing constraints on the vehicles in a computationally efficient way. More-
over, the proposed solution formulates the formation path-following problem as a distributed
optimization problem that may then be solved using the alternating direction method of multi-
pliers (ADMM). The paper then analyzes the effectiveness of the proposed method via numeri-
cal simulations with surface vehicles and differential drive robots.
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1. INTRODUCTION

Autonomous vehicles are increasingly used in a variety of
applications and environments. Formations of autonomous
aerial (Anderson et al., 2008), ground (Bergenhem et al.,
2012), surface and underwater (Das et al., 2016) vehicles
are used in exploration, monitoring, search and rescue, etc.
In many applications, the goal is to follow a prescribed
path. In the literature, the problem is commonly solved
using two types of methods — leader-follower and coordi-
nated path-following (see Das et al. (2016); Anderson et al.
(2008) for an overview).

In leader-follower schemes, one vehicle is chosen as the
leader of the formation. The leader then follows the path
without any further constraints, while the followers adjust
their speed and position to maintain the desired formation.
The control law for the followers can be based e.g.,
on backstepping (Cui et al., 2010) or model predictive
control (MPC) (Wang et al., 2021). The drawback of
leader-follower schemes is the lack of feedback due to the
unidirectional communication (i.e., the leader does not
adjust its velocity based on the followers).

In coordinated path-following schemes, each vehicle fol-
lows its own path. Formation is then achieved by coordi-
nating the motion of the vehicles. This can be done e.g.,
by a consensus algorithm (Borhaug and Pettersen, 2006)
or MPC (Kanjanawanishkul and Zell, 2008). The MPC
scheme in Kanjanawanishkul and Zell (2008) is based on
sampling. Consequently, any constraints on trajectories or
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states can only be enforced at discrete time-instances. In
other words, we have no control over the behavior of the
system between the samples. We can mitigate this issue
by decreasing the sampling time. However, by decreasing
the sampling time, we increase the number of optimized
variables, thus increasing the computational and commu-
nication requirements.

In recent years, researchers have focused on computation-
ally tractable MPC schemes. One possibility of reducing
the computational requirements is to parametrize the ve-
hicles’ trajectories using splines. Saska et al. (2016) have
proposed a spline-based path planning MPC algorithm
for first-order nonholonomic vehicles. The algorithm solves
the point-to-point formation tracking problem with static
obstacles. Another spline-based MPC algorithm has been
proposed by Van Parys and Pipeleers (2017). This algo-
rithm is applicable to a wider range of systems compared
to Saska et al. (2016), and it has been demonstrated on
point-to-point and trajectory tracking problems. However,
there is, to the best of our knowledge, no reported work on
how to apply spline-based MPC to the coordinated path-
following problem.

The goal of this paper is thus to propose a spline-based
MPC strategy for the coordinated path-following problem,
test its suitability for the purpose, and understand which
trade-offs characterize this scheme. As we explain in the
next section, spline-based MPC imposes some assumptions
on the structure of the model of the vehicles. The spline-
based MPC scheme can thus be seen as a trade-off between
lower computational requirements and more restrictive
assumptions on the model.
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Josef Matouš ∗ Damiano Varagnolo ∗ Kristin Y. Pettersen ∗

Claudio Paliotta ∗∗

∗ Norwegian University of Science and Technology (NTNU),
Trondheim, Norway

({josef.matous,damiano.varagnolo,kristin.y.pettersen}@ntnu.no).
∗∗ SINTEF Community, Trondheim, Norway

(claudio.paliotta@sintef.no).

Abstract: The paper considers the problem of formation path-following of multiple vehicles and
proposes a solution based on combining distributed model predictive control with parametriza-
tions of the trajectories of the vehicles using polynomial splines. Introducing such parametriza-
tion leads indeed to two potential benefits: a) reducing the number of optimization variables,
and b) enabling enforcing constraints on the vehicles in a computationally efficient way. More-
over, the proposed solution formulates the formation path-following problem as a distributed
optimization problem that may then be solved using the alternating direction method of multi-
pliers (ADMM). The paper then analyzes the effectiveness of the proposed method via numeri-
cal simulations with surface vehicles and differential drive robots.

Keywords: Formation path-following, Distributed model predictive control (DMPC),
Alternating direction method of multipliers (ADMM), B-splines

1. INTRODUCTION

Autonomous vehicles are increasingly used in a variety of
applications and environments. Formations of autonomous
aerial (Anderson et al., 2008), ground (Bergenhem et al.,
2012), surface and underwater (Das et al., 2016) vehicles
are used in exploration, monitoring, search and rescue, etc.
In many applications, the goal is to follow a prescribed
path. In the literature, the problem is commonly solved
using two types of methods — leader-follower and coordi-
nated path-following (see Das et al. (2016); Anderson et al.
(2008) for an overview).

In leader-follower schemes, one vehicle is chosen as the
leader of the formation. The leader then follows the path
without any further constraints, while the followers adjust
their speed and position to maintain the desired formation.
The control law for the followers can be based e.g.,
on backstepping (Cui et al., 2010) or model predictive
control (MPC) (Wang et al., 2021). The drawback of
leader-follower schemes is the lack of feedback due to the
unidirectional communication (i.e., the leader does not
adjust its velocity based on the followers).

In coordinated path-following schemes, each vehicle fol-
lows its own path. Formation is then achieved by coordi-
nating the motion of the vehicles. This can be done e.g.,
by a consensus algorithm (Borhaug and Pettersen, 2006)
or MPC (Kanjanawanishkul and Zell, 2008). The MPC
scheme in Kanjanawanishkul and Zell (2008) is based on
sampling. Consequently, any constraints on trajectories or

⋆ This work was partly supported by the Research Council of
Norway through project No. 302435 and the Centres of Excellence
funding scheme, project No. 223254.

states can only be enforced at discrete time-instances. In
other words, we have no control over the behavior of the
system between the samples. We can mitigate this issue
by decreasing the sampling time. However, by decreasing
the sampling time, we increase the number of optimized
variables, thus increasing the computational and commu-
nication requirements.

In recent years, researchers have focused on computation-
ally tractable MPC schemes. One possibility of reducing
the computational requirements is to parametrize the ve-
hicles’ trajectories using splines. Saska et al. (2016) have
proposed a spline-based path planning MPC algorithm
for first-order nonholonomic vehicles. The algorithm solves
the point-to-point formation tracking problem with static
obstacles. Another spline-based MPC algorithm has been
proposed by Van Parys and Pipeleers (2017). This algo-
rithm is applicable to a wider range of systems compared
to Saska et al. (2016), and it has been demonstrated on
point-to-point and trajectory tracking problems. However,
there is, to the best of our knowledge, no reported work on
how to apply spline-based MPC to the coordinated path-
following problem.

The goal of this paper is thus to propose a spline-based
MPC strategy for the coordinated path-following problem,
test its suitability for the purpose, and understand which
trade-offs characterize this scheme. As we explain in the
next section, spline-based MPC imposes some assumptions
on the structure of the model of the vehicles. The spline-
based MPC scheme can thus be seen as a trade-off between
lower computational requirements and more restrictive
assumptions on the model.

Distributed MPC for Formation
Path-Following of Multi-Vehicle Systems
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The remainder of the paper is organized as follows. In
Section 2, we present the general assumptions on the model
of the vehicles and formally define the formation path-
following problem. In Section 3, we propose the distributed
spline-based MPC scheme. Section 4 presents two case
studies. Finally, Section 5 gives some concluding remarks.

2. PROBLEM DESCRIPTION

In this section, we first introduce the assumptions on the
model of the vehicles. Then, we define the objective of
formation path-following and pose it as an optimization
problem.

2.1 Vehicle Model

Here, we discuss the dynamics of a single agent in the
network. Let x ∈ Rnx be the vector of states. We assume
that the state vector includes the position of the agent.
Without loss of generality, let the first nq states be the
position of the vehicle. We can then define the position
vector of the vehicle as

q =
[
x1, . . . , xnq

]T
. (1)

Since vehicles typically move in either two or three dimen-
sions, we assume that nq ∈ {2, 3}. Let u ∈ Rnq be the
vector of control inputs. We assume the dynamics of the
vehicle to be given by an ordinary differential equation

ẋ = f (x,u) . (2)

Note that we assume the number of inputs to be equal to
nq. In cases where this assumption does not hold because
the vehicle is overactuated, we need to reduce the number
of inputs by introducing a control allocation scheme (see,
e.g., Johansen and Fossen (2013)).

Let y ∈ Rnq be the output of the system. Note that, in
general, the output can be different from the position of
the vehicle. However, as discussed in the next paragraph,
it must be possible to obtain the position from the output.

We assume the system to be differentially flat (Fliess
et al., 1995), i.e., we assume that the input and state
can be determined from the output, its derivatives, and
antiderivatives. Moreover, we assume that the relation
between the output and the position is polynomial. In
other words, there exist suitable (nonlinear) functions ϕu

and ϕx, and a multidimensional polynomial function ϕq

of suitable dimensions such that, at any time,

u = ϕu

(
y, ẏ, ÿ, . . . ,y(r′)

)
, (3)

x = ϕx

(
y(−r′′), . . . ,y, ẏ, ÿ, . . . ,y(r′)

)
, (4)

q = ϕq

(
y(−r′′), . . . ,y, ẏ, ÿ, . . . ,y(r′)

)
, (5)

X

Y p(s)

XpY p

Rp(s)

a The inertial coordinate frame
(X,Y ), and the path-tangential
frame (Xp, Y p).

X

Y

Xp
Y p

∆pp
2

qd,2(s)

qd,1(s)

∆pp
1

b Example of a formation. In this
example, the relative positions are
∆pp

1 = [0, a]T ,∆pp
2 = −∆pp

1,
where a is some positive number.

Fig. 1. Illustration of the path-following problem.

where r′ and r′′ are positive integers.

To model the constraints on the dynamics of the vehicle,
we use a multidimensional function e. The set of feasible
states and inputs is given by{

(x,u)
∣∣e(x,u) ≥ 0

}
(6)

where the inequality is defined component-wise. We as-
sume that substituting (3), (4) into (6) yields a set of poly-
nomial constraints. In other words, we assume that there
exists a multidimensional polynomial function h such that

e(x,u) ≥ 0 ⇐⇒ h
(
y(−r′′), . . . ,y(r′)

)
≥ 0. (7)

2.2 Formation Path-Following

The goal is to control N vehicles, all subject to the
dynamics introduced in Section 2.1, so that they move
in a prescribed formation while their barycenter follows a
given path. Let p : R → Rnq be a function that represents
this path. We assume that the function is continuously
differentiable and its first derivative satisfies∥∥∥∥

∂p(s)

∂s

∥∥∥∥ = 1. (8)

This implies that for every path point p(s), we can define
a path-tangential coordinate frame and a corresponding
rotation matrix Rp(s) between the inertial and path-
tangential frames (a 2D example is shown in Fig. 1a).

Let then q1(t), . . . , qN (t) be the trajectories of the N
vehicles composing the fleet, and let ∆pp

1, . . . ,∆pp
N be

the desired positions of the vehicles in the formation,
relative to the barycenter. Using this notation, the desired
trajectory for agent i is given by

qd,i(s) = p(s) +Rp(s)∆pp
i , (9)

for a given s. An example formation is shown in Fig. 1b.

The objective of the control system is to steer the actual
vehicle positions qi(t) to follow the desired trajectories
qd,i. Ideally, this means that for a given function s(t) we
seek the actual positions to be such that

qi(t) ≡ qd,i
(
s(t)

)
, i = 1, . . . , N. (10)

Note that the path parameter s(t) from the previous
equation can be treated as an additional degree of freedom
when designing the controller. Consequently, we also need
to find a suitable control law for s(t). For this purpose, let
Ud be the desired speed of the barycenter of the formation.
When the vehicles follow the path perfectly, the actual
speed of the barycenter is given by

U(t) =
∥∥ṗ(s(t))∥∥ =

∥∥∥∥
∂p(s)

∂s
ṡ(t)

∥∥∥∥ = |ṡ(t)| . (11)

The equivalence above implies that the path parameter
s(t) should thus be chosen such that

ṡ ≡ Ud. (12)

2.3 A centralized solution to the path-formation problem

The problem of finding for each agent i its actuation
signal ui(t) that guarantees following the desired path
qd,i

(
s(t)

)
as close as possible can thanks to (3)–(5) be

transformed into the problem of finding a corresponding
output trajectory yi(t).

In general, it is not possible to find an output trajectory
yi(t) such that (10) is satisfied, since the dynamics of the
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The remainder of the paper is organized as follows. In
Section 2, we present the general assumptions on the model
of the vehicles and formally define the formation path-
following problem. In Section 3, we propose the distributed
spline-based MPC scheme. Section 4 presents two case
studies. Finally, Section 5 gives some concluding remarks.

2. PROBLEM DESCRIPTION

In this section, we first introduce the assumptions on the
model of the vehicles. Then, we define the objective of
formation path-following and pose it as an optimization
problem.

2.1 Vehicle Model

Here, we discuss the dynamics of a single agent in the
network. Let x ∈ Rnx be the vector of states. We assume
that the state vector includes the position of the agent.
Without loss of generality, let the first nq states be the
position of the vehicle. We can then define the position
vector of the vehicle as

q =
[
x1, . . . , xnq

]T
. (1)

Since vehicles typically move in either two or three dimen-
sions, we assume that nq ∈ {2, 3}. Let u ∈ Rnq be the
vector of control inputs. We assume the dynamics of the
vehicle to be given by an ordinary differential equation

ẋ = f (x,u) . (2)

Note that we assume the number of inputs to be equal to
nq. In cases where this assumption does not hold because
the vehicle is overactuated, we need to reduce the number
of inputs by introducing a control allocation scheme (see,
e.g., Johansen and Fossen (2013)).

Let y ∈ Rnq be the output of the system. Note that, in
general, the output can be different from the position of
the vehicle. However, as discussed in the next paragraph,
it must be possible to obtain the position from the output.

We assume the system to be differentially flat (Fliess
et al., 1995), i.e., we assume that the input and state
can be determined from the output, its derivatives, and
antiderivatives. Moreover, we assume that the relation
between the output and the position is polynomial. In
other words, there exist suitable (nonlinear) functions ϕu

and ϕx, and a multidimensional polynomial function ϕq

of suitable dimensions such that, at any time,

u = ϕu

(
y, ẏ, ÿ, . . . ,y(r′)

)
, (3)

x = ϕx

(
y(−r′′), . . . ,y, ẏ, ÿ, . . . ,y(r′)

)
, (4)

q = ϕq

(
y(−r′′), . . . ,y, ẏ, ÿ, . . . ,y(r′)

)
, (5)

X

Y p(s)

XpY p

Rp(s)

a The inertial coordinate frame
(X,Y ), and the path-tangential
frame (Xp, Y p).

X

Y

Xp
Y p

∆pp
2

qd,2(s)

qd,1(s)

∆pp
1

b Example of a formation. In this
example, the relative positions are
∆pp

1 = [0, a]T ,∆pp
2 = −∆pp

1,
where a is some positive number.

Fig. 1. Illustration of the path-following problem.

where r′ and r′′ are positive integers.

To model the constraints on the dynamics of the vehicle,
we use a multidimensional function e. The set of feasible
states and inputs is given by{

(x,u)
∣∣e(x,u) ≥ 0

}
(6)

where the inequality is defined component-wise. We as-
sume that substituting (3), (4) into (6) yields a set of poly-
nomial constraints. In other words, we assume that there
exists a multidimensional polynomial function h such that

e(x,u) ≥ 0 ⇐⇒ h
(
y(−r′′), . . . ,y(r′)

)
≥ 0. (7)

2.2 Formation Path-Following

The goal is to control N vehicles, all subject to the
dynamics introduced in Section 2.1, so that they move
in a prescribed formation while their barycenter follows a
given path. Let p : R → Rnq be a function that represents
this path. We assume that the function is continuously
differentiable and its first derivative satisfies∥∥∥∥

∂p(s)

∂s

∥∥∥∥ = 1. (8)

This implies that for every path point p(s), we can define
a path-tangential coordinate frame and a corresponding
rotation matrix Rp(s) between the inertial and path-
tangential frames (a 2D example is shown in Fig. 1a).

Let then q1(t), . . . , qN (t) be the trajectories of the N
vehicles composing the fleet, and let ∆pp

1, . . . ,∆pp
N be

the desired positions of the vehicles in the formation,
relative to the barycenter. Using this notation, the desired
trajectory for agent i is given by

qd,i(s) = p(s) +Rp(s)∆pp
i , (9)

for a given s. An example formation is shown in Fig. 1b.

The objective of the control system is to steer the actual
vehicle positions qi(t) to follow the desired trajectories
qd,i. Ideally, this means that for a given function s(t) we
seek the actual positions to be such that

qi(t) ≡ qd,i
(
s(t)

)
, i = 1, . . . , N. (10)

Note that the path parameter s(t) from the previous
equation can be treated as an additional degree of freedom
when designing the controller. Consequently, we also need
to find a suitable control law for s(t). For this purpose, let
Ud be the desired speed of the barycenter of the formation.
When the vehicles follow the path perfectly, the actual
speed of the barycenter is given by

U(t) =
∥∥ṗ(s(t))∥∥ =

∥∥∥∥
∂p(s)

∂s
ṡ(t)

∥∥∥∥ = |ṡ(t)| . (11)

The equivalence above implies that the path parameter
s(t) should thus be chosen such that

ṡ ≡ Ud. (12)

2.3 A centralized solution to the path-formation problem

The problem of finding for each agent i its actuation
signal ui(t) that guarantees following the desired path
qd,i

(
s(t)

)
as close as possible can thanks to (3)–(5) be

transformed into the problem of finding a corresponding
output trajectory yi(t).

In general, it is not possible to find an output trajectory
yi(t) such that (10) is satisfied, since the dynamics of the

agents are constrained by both (2) and (7). This means
that at any time t, there is a position error

q̃i(t) = qi(t)− qd,i
(
s(t)

)
. (13)

Thanks to (5), we can express q̃i(t) in terms of yi(t)

q̃i(t) = ϕq

(
y(−r′′)(t), . . . ,y(r′)(t)

)
− qd,i

(
s(t)

)
, (14)

and thus solve the problem by optimizing yi(t) and s(t).

The problem should be cast in a receding horizon fashion
to reject potential disturbances as the mission proceeds.
We thus propose to formulate the centralized problem of
optimizing a part of the trajectory, i.e., yi(t : t + T ),
s(t : t+T ), as that of optimizing the constrained problem

minimize
{yi(t:t+T )},s(t:t+T )

N∑
i=1

∫ t+T

t

q̃T
i (τ)Qp q̃i(τ)dτ

+

∫ t+T

t

Qs (ṡ(τ)− Ud)
2
dτ,

(15)

with T being the prediction horizon, Qp and Qs positive
weight matrices, q̃i the position error as defined in (14),
and subject to, for every agent i = 1, . . . , N , to the
constraints C1 to C3 below:

C1 the implicit constraint on the inputs and states, i.e.,

h
(
y
(−r′′)
i (τ), . . . ,y

(r′)
i (τ)

)
≥ 0, ∀τ ∈ [t, t+ T ],

C2 the constraint on the initial condition of the state of

the system, i.e., ϕx

(
y
(−r′′)
i (t), . . . ,y

(r′)
i (t)

)
= xi(t),

C3 the constraint on the initial condition of the path of
the agents, i.e., s(t). In other words, s(t) is not a
decision variable, while s(t+ τ) for any τ > 0 is.

We note that the variational problem above may not be
solvable using off-the-shelf hardware with limited comput-
ing power. For this reason, it will be rewritten below.

2.4 A distributed solution to the path-formation problem

Before doing this rewriting, we note that it is possible to
make (15) distributed by letting the path parameter s(t)
be a local variable (i.e., si(t)), and adding a synchroniza-
tion constraint on the set of si(t)’s. This leads to the local
reformulation

minimize
{yi(t:t+T ),si(t:t+T )}

∫ t+T

t

q̃T
i (τ)Qp q̃i(τ)dτ

+

∫ t+T

t

Qs (ṡi(τ)− Ud)
2
dτ,

(16a)

subject to h
(
y
(−r′′)
i (τ), . . . ,y

(r′)
i (τ)

)
≥ 0, (16b)

ϕx

(
y
(−r′′)
i (t), . . . ,y

(r′)
i (t)

)
= xi(t), (16c)

si(τ) = sj(τ), ∀j, τ ∈ [t, t+ T ] (16d)

where j is the index of the generic neighbor of agent i. This
formulation is again only an intermediate step towards the
approach proposed in this paper, as explained below.

3. A DISTRIBUTED SPLINE-BASED MPC
APPROACH TO THE PATH-FORMATION PROBLEM

The goal of this section is to show how constraining yi and
si to be splines enables rewriting the variational problem
above in a way that is computationally tractable.

For the sake of readability, we will use the convention for
which sans-serif fonts (e.g., y) indicate quantities relative

to splines, while serif fonts (e.g., y) indicate trajectories
parametrized in time as above.

3.1 Spline parametrization

Let b = [b1, . . . , bn]
T

be the vector of basis functions

of a B-spline, and let yi =
[
yTi,1, . . . , y

T
i,n

]T
be a generic

matrix and si = [si,1, . . . , si,n]
T

a generic vector of spline
coefficients. Assume then that the trajectories and path
parameters may be expressed as B-splines, i.e., as

yi(τ) =

n∑
l=1

yi,l bl(τ) = yTi b(τ), (17)

si(τ) =

n∑
l=1

si,l bl(τ) = sTi b(τ). (18)

This assumption implies the possibility of exploiting the
convex hull property

yi ≥ 0 =⇒ y(τ) ≥ 0, (19)

that implies that any polynomial constraint on a spline
can be replaced by a (stricter) constraint on the spline
coefficients. In other words, by assuming the output to be
a spline, we assume that there exists a function h such that

h (yi) ≥ 0 =⇒ h
(
y
(−r′′)
i (τ), . . . ,y

(r′)
i (τ)

)
≥ 0. (20)

This eventually enables us to rewrite the trajectory opti-
mization problems in Section 2 as corresponding spline-
based MPC problems.

To do so, each agent i must locally approximate the path
function and the associated rotation matrix as polynomials

p(s) ≈ p0 + p1 s+ . . .+ pm sm, (21)

Rp(s) ≈ Rp,0 +Rp,1 s+ . . .+Rp,m sm, (22)

over an interval [si(t), si(t) + sT ], where t is the current
time and sT is chosen such that sT ≥ UdT . We then need
to impose an additional constraint on the path parameter

si(t) ≤ si(τ) ≤ si(t) + sT , ∀τ ∈ [t, t+ T ] , (23)

to ensure that the polynomial approximation is valid.

This approximation transforms the criterion from (16a)
into a polynomial function. The optimization problem (16)
can then be reformulated in terms of spline coefficients

minimize
yi,si

Ji (yi, si) , (24a)

subject to yi ∈ Yi, (24b)

si ∈ Si, (24c)

si = sj , ∀j = 1, . . . , N, (24d)

where Ji is the objective function from (16a), reformulated
using the spline coefficients, and Yi and Si are the sets of
feasible coefficients given by (16b), (16c) and (23).

This optimization problem is then solved in discrete time-
steps. Similarly to collocation-based MPC, we can use the
results from the previous time-step to “warm-start” the
optimization problem. We do this by extrapolating the
previous results over the new horizon (see Fig. 2).

3.2 ADMM algorithm

In Boyd et al. (2011), it is discussed that ADMM tends
to converge to “modest accuracy” within a few iterations.
Due to this property, ADMM is often used to solve
distributed MPC problems.
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Fig. 2. Warm-starting the optimization problem. The grey
area represents the prediction horizon.

We assume synchronous bidirectional reliable communica-
tion. In other words, we assume that all vehicles exchange
information simultaneously and there are no packet losses.
Bidirectional communication implies that the communica-
tion network can be described by an undirected graph G =
(V, E), where V = {1, 2, . . . , N} correspond to the agents,
and E ⊆ V2 represents the communication between pairs
of agents, i.e., (i, j) ∈ E implies that agent i can exchange
information with agent j. We further assume that G is con-
nected.

We use relaxed ADMM (Bastianello et al., 2021) to solve
the problem. Let Ni be the set of neighbors of agent i.
Relaxed ADMM solves the optimization problem (24) by
introducing an auxiliary variable zji for all i ∈ V, j ∈ Ni.
The optimization problem is then solved iteratively in two
steps. First, we compute yi and si by solving

yi, si ← arg min
yi∈Yi,si∈Si

Li (yi, si, zji) , (25)

where Li(yi, si, zji) is the augmented Lagrangian given by

Li(yi, si, zji) = Ji(yi, si)−
∑
j∈Ni

zTjisi +
ρ

2
di ∥si∥2 , (26)

where ρ > 0 is a penalty and di is the cardinality of Ni.
In the second step, we update the auxiliary variables

zji ← (1− α)zji + α (2ρsj − zij) , (27)

where 0 < α < 1 is the step size. To perform this step,
each agent j ∈ Ni sends a packet

wji = 2ρsi − zji, (28)

to agent i. The update law (27) then becomes

zji ← (1− α)zji + αwji. (29)

To further reduce the needed communication bandwidth,
we only perform one ADMM iteration per MPC step. An
overview of the resulting distributed MPC is shown in
Algorithm 1.

4. CASE STUDIES

In this section, we demonstrate the proposed MPC scheme
on marine vehicles and differential drive robots. In both

Algorithm 1 ADMM for Distributed MPC

1: Initialization: Perform several ADMM iterations to
get y0i , s

0
i and z0ij

2: for k = 1, 2, . . . do every ∆T

3: Use extrapolation to estimate ŷki , ŝ
k
i and ẑkij

4: Perform one ADMM iteration using ŷki , ŝ
k
i and ẑkij

as the initial guess
5: end for

cases, the goal is to follow a sine-wave path given by

p(s) =
[
σ(s), 15 sin

( π

100
σ(s)

)]T
, (30)

where σ(s) is a function chosen such that (8) is satisfied
and σ(0) = 0. This path is then locally approximated using
a fifth-order polynomial with sT = 75.

In both case studies, the prediction horizon is set to 50
seconds. The path parameter and outputs are represented
by cubic splines with 11 breakpoints. Consequently, each
spline is represented by 13 coefficients.

In both case studies, we consider a formation of six
vehicles. The formation is chosen such that the vehicles
form an equilateral triangle with a side length of 20 meters.
The desired relative positions of the vehicles, as well as the
communication graph are illustrated in Fig. 3c.

4.1 Marine vehicles

In the first case study, we consider marine vehicles with
three degrees of freedom. The model presented in this sec-
tion describes both autonomous surface vehicles (ASVs)
and autonomous underwater vehicles (AUVs) moving in
the horizontal plane. First, let us present the assumptions
this model is based on.

A1 The vehicles are port-starboard symmetric.
A2 The vehicles are maneuvering at low speeds. Conse-

quently, the hydrodynamic damping is linear.
A3 The vehicles are affected by a constant irrotational

ocean current. Its velocity in the inertial coordinate

frame is given by V = [Vx, Vy]
T
.

Under these assumptions, the model of the vehicle is given
by the following differential equations (Fossen, 2011)

ẋ = ur cosψ − vr sinψ + Vx (31a)

ẏ = ur sinψ + vr cosψ + Vy (31b)

ψ̇ = r (31c)

u̇r = Fur
(vr) + τu (31d)

v̇r = X(ur)r + Y (ur)vr (31e)

ṙ = Fr(ur, vr, r) + τr (31f)

where η ≜ [x, y, ψ]
T
is the pose of the vehicle in the North-

East-Down (NED) coordinate frame, νr ≜ [ur, vr, r]
T
are

the relative (with respect to the ocean current) velocities
in the body-fixed coordinate frame, namely the surge
velocity, sway velocity, and yaw rate, respectively, and τu,
τr are the control inputs. The functions Fur

, Fr, X and
Y represent the Coriolis, centrifugal, and hydrodynamic
effects. Due to space constraints, the definitions of these
functions are omitted. For more details, the reader is
referred to Fossen (2011); Borhaug et al. (2007).
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Fig. 3. Graphical representations of the vehicles and the
formation used in the case studies.
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We assume synchronous bidirectional reliable communica-
tion. In other words, we assume that all vehicles exchange
information simultaneously and there are no packet losses.
Bidirectional communication implies that the communica-
tion network can be described by an undirected graph G =
(V, E), where V = {1, 2, . . . , N} correspond to the agents,
and E ⊆ V2 represents the communication between pairs
of agents, i.e., (i, j) ∈ E implies that agent i can exchange
information with agent j. We further assume that G is con-
nected.

We use relaxed ADMM (Bastianello et al., 2021) to solve
the problem. Let Ni be the set of neighbors of agent i.
Relaxed ADMM solves the optimization problem (24) by
introducing an auxiliary variable zji for all i ∈ V, j ∈ Ni.
The optimization problem is then solved iteratively in two
steps. First, we compute yi and si by solving

yi, si ← arg min
yi∈Yi,si∈Si

Li (yi, si, zji) , (25)

where Li(yi, si, zji) is the augmented Lagrangian given by

Li(yi, si, zji) = Ji(yi, si)−
∑
j∈Ni

zTjisi +
ρ

2
di ∥si∥2 , (26)

where ρ > 0 is a penalty and di is the cardinality of Ni.
In the second step, we update the auxiliary variables

zji ← (1− α)zji + α (2ρsj − zij) , (27)

where 0 < α < 1 is the step size. To perform this step,
each agent j ∈ Ni sends a packet

wji = 2ρsi − zji, (28)

to agent i. The update law (27) then becomes

zji ← (1− α)zji + αwji. (29)

To further reduce the needed communication bandwidth,
we only perform one ADMM iteration per MPC step. An
overview of the resulting distributed MPC is shown in
Algorithm 1.

4. CASE STUDIES

In this section, we demonstrate the proposed MPC scheme
on marine vehicles and differential drive robots. In both

Algorithm 1 ADMM for Distributed MPC

1: Initialization: Perform several ADMM iterations to
get y0i , s

0
i and z0ij

2: for k = 1, 2, . . . do every ∆T

3: Use extrapolation to estimate ŷki , ŝ
k
i and ẑkij

4: Perform one ADMM iteration using ŷki , ŝ
k
i and ẑkij

as the initial guess
5: end for

cases, the goal is to follow a sine-wave path given by

p(s) =
[
σ(s), 15 sin

( π

100
σ(s)

)]T
, (30)

where σ(s) is a function chosen such that (8) is satisfied
and σ(0) = 0. This path is then locally approximated using
a fifth-order polynomial with sT = 75.

In both case studies, the prediction horizon is set to 50
seconds. The path parameter and outputs are represented
by cubic splines with 11 breakpoints. Consequently, each
spline is represented by 13 coefficients.

In both case studies, we consider a formation of six
vehicles. The formation is chosen such that the vehicles
form an equilateral triangle with a side length of 20 meters.
The desired relative positions of the vehicles, as well as the
communication graph are illustrated in Fig. 3c.

4.1 Marine vehicles

In the first case study, we consider marine vehicles with
three degrees of freedom. The model presented in this sec-
tion describes both autonomous surface vehicles (ASVs)
and autonomous underwater vehicles (AUVs) moving in
the horizontal plane. First, let us present the assumptions
this model is based on.

A1 The vehicles are port-starboard symmetric.
A2 The vehicles are maneuvering at low speeds. Conse-

quently, the hydrodynamic damping is linear.
A3 The vehicles are affected by a constant irrotational

ocean current. Its velocity in the inertial coordinate

frame is given by V = [Vx, Vy]
T
.

Under these assumptions, the model of the vehicle is given
by the following differential equations (Fossen, 2011)

ẋ = ur cosψ − vr sinψ + Vx (31a)

ẏ = ur sinψ + vr cosψ + Vy (31b)

ψ̇ = r (31c)

u̇r = Fur
(vr) + τu (31d)

v̇r = X(ur)r + Y (ur)vr (31e)

ṙ = Fr(ur, vr, r) + τr (31f)

where η ≜ [x, y, ψ]
T
is the pose of the vehicle in the North-

East-Down (NED) coordinate frame, νr ≜ [ur, vr, r]
T
are

the relative (with respect to the ocean current) velocities
in the body-fixed coordinate frame, namely the surge
velocity, sway velocity, and yaw rate, respectively, and τu,
τr are the control inputs. The functions Fur

, Fr, X and
Y represent the Coriolis, centrifugal, and hydrodynamic
effects. Due to space constraints, the definitions of these
functions are omitted. For more details, the reader is
referred to Fossen (2011); Borhaug et al. (2007).

ψ

x

y

ξ2

ξ1

L

a Marine vehicle

x1

x2
x3

b Differential drive
robot

1

2

3
6

5

4

c Desired formation

Fig. 3. Graphical representations of the vehicles and the
formation used in the case studies.

Because the vehicle is underactuated (second-order non-
holonomic), we cannot use the origin of the body-fixed
frame (x, y) as the output of our system. Instead, we
choose a different point, located on the central axis (x-axis)
of the vehicle, as the output of our system (see Fig. 3a). In
the literature, this point is referred to as the hand position
of the vehicle (Lawton et al., 2003; Paliotta et al., 2019).
The hand position is defined as

y = [x+ L cos(ψ), y + L sin(ψ)]
T
, (32)

where L > 0 is the hand length.

The advantage of using the hand position is that we can
employ output-feedback linearization to simplify the dy-
namics. This procedure follows along the lines of Paliotta
et al. (2019) with one modification. In Paliotta et al.
(2019), the ocean current is assumed to be unknown. Here,
we assume that the vehicle either can measure the ocean
current or employs an observer that provides an accurate
estimate of the current (see, e.g., Zhu et al. (2016)).

We thus introduce the following change of coordinates
ξ1 = x+ L cosψ, (33a)

ξ2 = y + L sinψ, (33b)

ξ3 = ur cosψ − vr sinψ + Vx − Lr cosψ, (33c)

ξ4 = ur sinψ + vr cosψ + Vy + Lr sinψ, (33d)

and the following change of inputs[
τu
Lτr

]
= R(ψ)T

[
−Fξ3(ψ, ur, vr, r) + u1

−Fξ4(ψ, ur, vr, r) + u2

]
, (34)

where R : R → SO(2) denotes the rotation matrix and[
Fξ3(·)
Fξ4(·)

]
= R(ψ)

[
Fur

(·)− vrr − Lr2

urr +X(·)r + Y (·)vr + Fr(·)L

]
. (35)

Using output-feedback linearization, we have simplified the
system to a double integrator

ÿ = u. (36)
Having transformed the system model into the required
form, we validated the proposed method in numerical
simulations. The simulations were carried out on a 3DOF
model of the light autonomous underwater vehicle (LAUV)
developed at the University of Porto (Sousa et al., 2012).
The parameters are shown in Table 1a. The results are
shown in Fig. 4. The left plot shows how the vehicles
converge to the desired formation. The right plot shows the
path-following errors q̃i. We only show the first 50 seconds
since the errors converge to zero afterwards.

4.2 Differential drive robots

In the second case study, we consider differential drive
robots modeled as unicycles. The model is given by

Table 1. Simulation parameters
a Marine vehicles

Parameter Value

∆T 1

Qp

[
1 0
0 1

]

Qs 10
ρ 10
α 0.6
L 1

V

[
0.15
0.1

]

b Differential drive robots

Parameter Value

∆T 0.1

Qp

[
1 0
0 1

]

Qs 10
ρ 10
α 0.6

u1,min −1
u1,max 2
u2,min −π/8
u2,max π/8

ẋ1 = u1 cosx3, (37a)

ẋ2 = u1 sinx3, (37b)

ẋ3 = u2, (37c)

where x1, x2 give the position, x3 is the orientation of
the vehicle, and u1 and u2 are the tangential and angular
velocities.

Similarly to the previous case, we could use the hand po-
sition to enable the application of the spline-based MPC.
However, doing so would prevent us from imposing con-
straints on the inputs. Instead, we will use the procedure
from Van Parys and Pipeleers (2017). First, we introduce
z = tan x3

2 and use the following trigonometric identities

cosx3 =
1− z2

1 + z2
, sinx3 =

2z

1 + z2
. (38)

Next, we substitute z and a modified input ū1 = u1

1+z2 into

the first two lines of (37) to obtain

ẋ1 = ū1

(
1− z2

)
, ẋ2 = 2ū1z. (39)

We choose y = [ū1, z]
T
as the output of the system. The

states and inputs can then be expressed as

x1(t) =

∫ t

0

y1(τ)
(
1− y22(τ)

)
dτ + x1(0), (40a)

x2(t) =

∫ t

0

2y1(τ)y2(τ) dτ + x2(0), (40b)

x3(t) = 2 arctan y2(t), (40c)

u1(t) = y1(t)
(
1 + y22(t)

)
, (40d)

u2(t) =
2ẏ2(t)

1 + y22(t)
. (40e)

Let us assume that there are no constraints on the states
and the constraints on the inputs are given by

u1,min ≤ u1(t) ≤ u1,max, u2,min ≤ u2(t) ≤ u2,max, (41)

From (40d), (40e), the constraints can be expressed as

u1,min ≤ y1(t)
(
1 + y22(t)

)
≤ u1,max, (42a)

u2,min

(
1 + y22(t)

)
≤ 2ẏ2(t) ≤ u2,max

(
1 + y22(t)

)
. (42b)

We have thus shown how to express the states, inputs and
constraints in terms of the outputs.

The results of numerical simulations are shown in Fig. 5.
The parameters are shown in Table 1b. Due to the numer-
ical inaccuracies caused by (40) and arising primarily from
the multiplication and division of splines, the MPC time-
step ∆T must be shorter than in the previous case-study.

5. CONCLUSIONS

In this paper, we have proposed a distributed spline-based
MPC scheme for the formation path-following problem.
We have shown that using splines makes the distributed
control problem computationally tractable. Compared to
collocation, the spline parametrization allows us to repre-
sent a longer prediction horizon using fewer variables. This
is also beneficial for the communication, and thus makes it
easier to do distributed control in environments where the
communication bandwidth is limited (e.g., underwater).

One might argue that restricting the output to splines lim-
its the subspace of feasible trajectories. However, simula-
tion results show that cubic splines provide a good approx-
imation of many curves. Another limiting factor is the need
for differential flatness. However, it is often possible to
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Fig. 4. Results of numerical simulations with six marine vehicles.
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Fig. 5. Results of numerical simulations with six differential drive robots.

simplify the structure of the model to guarantee differen-
tial flatness. The proposed spline-based MPC scheme can
thus be seen as a trade-off between lower computational re-
quirements and more restrictive assumptions on the model.
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