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Abstract

Engineering of ferroelectric domains is crucial for utilizing ferroelectric materials
as electronic components such as capacitors, sensors, and transducers. At present,
ferroelectric domains can be controlled through chemical doping, microstructural
engineering, and by applying electric fields. Still, the techniques have varying results
based on the model system, and the mechanisms often remain to be explored in
detail. The aim of this thesis is to investigate two parameters; the impact of applied
mechanical pressure and the impact of electric fields on the ferroelectric domain
structure of polycrystalline ErMnO3.

To accomplish the first part of the goal, three samples were annealed under different
uniaxial pressures, 0MPa, 24MPa, and 47MPa. Then the micro- and nanostruc-
ture of both the in-plane and out-of-plane faces of the samples were inspected with
piezoresponse force microscopy and electron backscatter diffraction. The second
part of the goal was accomplished by examining a polycrystalline ErMnO3 sample
without the thermomechanical treatment with switching spectroscopy piezoresponse
force microscopy.

The experiments demonstrated that the higher applied uniaxial pressures resulted
in more and narrower striped domains and a new domain structure referred to as
”ripped domains”. Furthermore, it was found that the orientation of the grains had
a significant impact on the formation of the domains, and that intergranular stresses
also play a role. In contrast, the influence of electrical fields was found to be small in
the investigated range. The electric fields applied to the polycrystalline sample did
not result in polarization reversal, nor was any conclusive domain wall movement
detected.

Based on the results, it is concluded that the most viable option for controlling the
domain structure in ErMnO3 is by utilizing stress. Future work should focus on
improving the understanding of the local strain fields in the polycrystalline sample
and their effect on the domain structures. This could be done by utilizing finite
element simulations that can capture the strains induced by neighboring grains and
the orientation of the grains. Another exciting path would be to probe the ripped
domains with aberration-corrected high-angle annular-dark-field imaging to gain in-
sight into the mechanism responsible for their formation. The research presented in
this thesis is part of a larger search for new domain engineering strategies enabling
greater control of ferroelectric properties. This contributes not only to the better-
ment of devices relying on ferroelectrics such as capacitors, sensors, and transducers
but also to the understanding of fundamental physics.
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Sammendrag

Utforming av ferroelektriske domener er avgjørende for å bruke ferroelektriske mater-
ialer som elektroniske komponenter, eksempelvis kondensatorer, sensorer og trans-
dusere. For tiden kan ferroelektriske domener kontrolleres gjennom kjemisk doping,
mikrokonstruksjon og ved å bruke elektriske felt. Likevel har metodene varierende
resultater basert p̊a materialet, og mekanismene bak er ikke fullstendig forst̊att.
Målet med denne oppgaven er å undersøke to parametere; virkningen av p̊aført
mekanisk trykk og virkningen av elektriske felt p̊a den ferroelektriske domenestruk-
turen til polykrystallinsk ErMnO3.

Den første delen av målet ble oppn̊add ved å gløde tre prøver under forskjellige
belastninger, 0MPa, 24MPa, 47MPa, og deretter inspisere mikro- og nanostruk-
turen b̊ade i planet og ut av planet ved bruk av piezorespons kraftmikroskopi og
elektron baksprednings diffraksjon. Den andre delen av målet ble oppn̊add ved å
undersøke en polykrystallinsk ErMnO3 prøve uten termomekanisk behandling med
vekslingsspektroskopi piezorespons kraftmikroskopi.

Eksperimentene viste at de høyere belastningene resulterte i flere og smalere stripete
domener og en ny domenestruktur referert til som ”revnede domener”. Videre ble det
bestemt at orienteringen av kornene hadde en betydelig innvirkning p̊a dannelsen
av domenene, og at intergranulære spenninger ogs̊a spiller en rolle. Effekten av
elektriske felt var derimot liten i det undersøkte omr̊adet. De elektriske feltene
p̊aført den polykrystallinske prøven resulterte ikke i polarisasjonsreversering, og det
ble heller ikke oppdaget noen klar domeneveggbevegelse.

Basert p̊a resultatene, konkluderes det med at det beste alternativet for å kon-
trollere domenestrukturen i ErMnO3 er ved å utnytte stress. Fremtidig arbeid
bør fokusere p̊a å øke forst̊aelsen av de lokale tøyningene i den polykrystallinske
prøven og deres effekt p̊a domenestrukturen. Dette kan gjøres ved å bruke endelige
element-simuleringer som kan simulere tøyningene som oppst̊ar i korn p̊a grunn av
nabokorn samt orienteringen til kornene. En annen spennende vei videre ville vært
å undersøke de revnede domenene med aberrasjonskorrigert høyvinklet ringformet-
mørkefelt-avbildning for å f̊a innsikt i mekanismen som er ansvarlig for dannelsen
deres. Forskningen som presenteres i denne masteroppgaven er en del av et større
søk etter nye metoder for å utforme ferroelektriske domener for økt kontroll av de
ferroelektriske egenskapene. Dette bidrar ikke bare til forbedring av komponenter
som er avhengige av ferroelektriske materialer, eksempelvis kondensatorer, sensorer
og transdusere, men ogs̊a til grunnforskning innen fysikk.
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Chapter 1

Introduction

1.1 Background and motivation

Since the discovery of ferroelectricity in 1920 [1], ferroelectric materials have found
applications in several industries as high-dielectric-constant capacitors, ultrasonic
transducers, room-temperature magnetic field detectors, high-density non-volatile
memories, and much more [2, 3]. What makes ferroelectrics unique in comparison
to all other polar materials is their switchable spontaneous polarization which is ana-
logous to the switchable magnetization of ferromagnets [4]. Furthermore, the mac-
roscopic properties of a ferroelectric can be controlled through domain engineering,
which gives rise to great variation of properties even within chemically homogeneous
ferroelectrics [5–11].

Improper ferroelectrics are a particularly interesting sub-group of ferroelectrics. In
improper ferroelectrics, ferroelectricity arises as a by-product of structural or mag-
netic instabilities breaking the inversion symmetry of the unit cell [7]. Because the
ferroelectricity is coupled to properties other than polarization, improper ferroelec-
trics have additional functionality such as multiferroic hybrid domain walls [12] and
stabilized charged domain walls [13]. These additional functionalities make improper
ferroelectrics possible candidates for exiting future applications such as domain wall
nanoelectronics and next-generation capacitors [7, 14].

In some improper ferroelectric materials, vortex structures and charged domain
walls, shown in Figure 1.1.1, form naturally [7, 15]. These topologically protected
defects can be as small as a few nanometers and can have properties not found in the
bulk of the ferroelectric [7, 15, 16]. Because of this, they can function as information
carriers and electrical components and thus contribute to the miniaturization and
energy effectiveness of electronics [17–19].

Ferroelectric vortices have recently drawn interest in several ferroelectric materials,
including hexagonal tungsten bronzes [20], hexagonal ferrites [21], hexagonal gallates
[22], and hexagonal manganites [13]. As shown in Figure 1.1.1, the vortices are
situated at points where six domains meet. Investigation of the vortices has found
that they host unusual electrostatics and that they prevent the complete poling

1



CHAPTER 1. INTRODUCTION

of the ferroelectric domain structure by remaining stationary and preventing the
collapse of the domains [15, 23]. These attributes make vortices useful for domain
engineering, and possibly information storage [18, 19]. Despite the vortices not yet
being fully understood, they have already found possible uses. For instance, in
fundamental research where they have been used to test cosmological scaling laws
[24–26].

Figure 1.1.1: Ferroelectric domains in ErMnO3 with different polarizations, −P and
+P in black and white, respectively. A vortex core and a domain wall are indicated
by a red circle and a dashed magenta line, respectively. Adapted from ref. [27].

Thus far, methods for engineering ferroelectric domains include flexoelectricity in-
duced by large local strain gradients [28], thin-film thickness [29], chemical doping
[30], epitaxial strain [31], dislocations [32], annealing [33] and electric fields [23].
In addition, it was recently discovered that vortex cores could be moved under the
influence of non-uniform strain in improper ferroelectrics [34]. This discovery holds
promise for domain engineering in hexagonal manganites by using the vortices to
customize the ferroelectric domain structure. However, much is still unknown about
utilizing vortex cores for domain engineering.

1.2 Aim and scope of the work

The aim of this master thesis is to investigate the impact of mechanical pressure
and electric fields on the domain structure of polycrystalline ErMnO3. Therefore,
the study is divided into two parts pertaining to each of these influences.

The impact of mechanical pressure is investigated by applying three different pres-
sures: 0MPa, 24MPa, and 47MPa to the polycrystalline sample during the phase
transition from paraelectric to ferroelectric. Then the ferroelectric domain struc-
ture is characterized through piezoresponse force microscopy (PFM) and scanning
electron microscopy (SEM). Further investigation compares the orientation of the
grains and the resulting domain structure by utilizing electron backscatter dif-
fraction (EBSD). The impact of electric fields on the domain structure is probed
through switching spectroscopy piezoresponse force microscopy (SS-PFM) and ma-
chine learning approaches.

2



Chapter 2

Theoretical background

2.1 Ferroic materials

Order parameter
The word ferroic brings associations of iron because of the original iron-containing
ferromagnets, Fe3O4, discovered 2500 years ago [35]. Since then, many ferromagnets
that do not contain iron have been discovered, such as YCo5, Cu2MnSn, or MnNi3.
Indeed, a ferromagnet does not necessarily contain iron, nor does a ferroic material.
The definition of a ferroic is a material that develops a spontaneous alignment of
an order parameter, η, resulting in a macroscopic property that can be switched
by an external conjugate field [36]. The order parameter is the physical quantity
fully responsible for the ferroic phase transition, in which the crystal transitions
from a high symmetry prototype phase with point group G to the lower symmetry
ferroic phase with point group F [37]. The phase transition happens at a critical
temperature, Tc, known as the Curie temperature, and is non-disruptive, meaning
that no chemical bonds are broken. As a result, the symmetry elements of the ferroic
phase are always a subgroup of the symmetry elements of the prototype phase [38,
39]. The change in symmetry elements from point group G to point group F can be
used to predict the number of orientations, q, the order parameter can have in the
ferroic state. This is calculated by the following fraction q = |G|/|F |, where |A| is
the number of symmetry operations, including the identity transformation, in point
group A. For all ferroic phase transitions, q will be larger or equal to 2 [37, 39].

Primary ferroics
Currently, four primary ferroic order parameters are known [7]. These are mag-
netization in ferromagnets, polarization in ferroelectrics, strain in ferroelastics, and
toroidal moment in ferrotoroidics. These order parameters are switchable by their
respective conjugate fields; magnetic, electric, strain, and toroidal fields [7, 39–41].
The primary ferroic orders can be classified based on whether or not they break
space- and/or time-inversion symmetry, as seen in Figure 2.1.1, under the parity op-
erations. The figure illustrates that ferroelectricity breaks space-inversion symmetry,
ferromagnetism breaks time-inversion symmetry, ferroelasticity breaks neither, and
ferrotoroidicity breaks both [36, 41]. For a crystal to exhibit a primary ferroic order,
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it must have the correct crystal structure. This is clear from Neumann’s principle,
which states: ”The symmetry of any physical property of a crystal must include the
symmetry elements of the point group of the crystal” [39]. An example of this is fer-
romagnetism, which only exists in crystal structures where time-inversion symmetry
is broken.

Figure 2.1.1: Primary ferroic orders and their transformations under parity opera-
tions. Their order parameters changing sign under the correct symmetry operations.
Adapted from ref. [40].

Multiferroics
Materials with more than one primary ferroic order were defined as multiferroics in
1994 by Hans Schmid [42]. Since then, the definition has expanded to include more
than just the primary ferroic orders. It now also includes, e.g., antiferromagnetism
and multiphase systems [43]. Multiferroics can be divided into type 1 and type 2,
depending on whether the ferroic orders emerge individually or jointly. Multiferroics
have been sought after since the first half of the twentieth century because the order
parameters can be coupled, meaning that the conjugate field of one can influence the
other. For example, in some multiferroics with both magnetization and polarization,
the magnetic moment can be switched by an electric field, or the polarization by a
magnetic field [43, 44].

Domains
Regions with a similar orientation of the order parameter are known as domains [7].
The number of domain states in a ferroic equals q when there is no translational
symmetry change between the prototype and ferroic phases. Otherwise, the number
of domains, D, equals q multiplied with the number of translational domains, ν:
D = q · ν [37]. An example of this is hexagonal ErMnO3 which has two polarization
directions and three translational domains, and thus a total of six domain states.
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The interfaces between the domains, known as domain walls, are regions that sep-
arate the domains. These domain walls are planar topological defects and can have
interesting properties not found in any of the domains [45]. Domains and domain
walls will be discussed further in section 2.2 in the context of ferroelectric materials.

2.2 Ferroelectrics

Dielectrics and piezoelectrics
Ferroelectrics are a subgroup of dielectrics and can be found at the bottom of the
dielectric hierarchy as illustrated in Figure 2.2.1 [4]. Dielectrics are electrical insulat-
ors that can be polarized under the influence of an external electric field. Crystals
of all 32 point groups can be dielectric according to Neumann’s principle briefly
discussed in section 2.1. Piezoelectrics, a subgroup of dielectrics, require a non-
centrosymmetric crystal structure, only found in 20 of the point groups. Piezo-
electrics are characterized by the development of electric surface charge under the
influence of mechanical stress, known as the direct piezoelectric effect, and the de-
velopment of mechanical strain under the influence of an electric field, known as
the converse piezoelectric effect [4, 39]. Both effects are illustrated schematically in
Figure 2.2.2.

Figure 2.2.1: Symmetry hierarchy showing the relationship between dielectrics,
piezoelectrics, pyroelectrics and ferroelectrics. The number of point groups is given
in parentheses. Adapted from ref. [4].

Pyroelectrics and ferroelectrics
Pyroelectrics are a subgroup of piezoelectrics and require a crystal structure with a
unique polar axis which is only found in 10 of the point groups [4]. In comparison to
piezoelectric materials, a spontaneous polarization naturally develops in pyroelectric
materials below TC . If this spontaneous polarization can be switched by an external

5



CHAPTER 2. THEORETICAL BACKGROUND

electric field, the pyroelectric is also a ferroelectric. [4, 39]. Ferroelectrics are divided
into two sub-categories based on the origin of the ferroelectricity. The first is proper
ferroelectrics, where the electric polarization is the primary symmetry-breaking or-
der parameter. Proper ferroelectrics can further be divided into displacive, and
hydrogen-bonded ferroelectrics [39]. The second sub-category is improper ferroelec-
trics, where the electric polarization arises as a side-effect of structural or magnetic
instabilities [7]. Improper ferroelectrics include lone-pair ferroelectrics, geometric
ferroelectrics, charge ordering ferroelectrics, and spin-driven ferroelectrics [43].

Figure 2.2.2: Visualization of the piezoelectric effects. a) The direct piezoelectric
effect, polarization induced by stress, and b) the converse piezoelectric effect, strain
induced by electric field. Adapted from ref. [46].

Ferroelectric domains and domain walls
As mentioned in section 2.1, ferroelectric domains are classified by the orientation of
their polarizations [7]. In the simplest case, a uniaxial ferroelectric, the domains can
have one of two polarization orientations that are separated by 180°. The interfaces
between these domains are called 180° domain walls and are illustrated in Figure
2.2.3. In multiaxial ferroelectrics there are domain walls where the polarization
orientation differs with less than 180° such as 71°, 90°, and 109° domain walls [7,
47]. At the domain walls, the polarization gradually changes from one domain to
the other, as illustrated in Figure 2.2.3 a). How gradual this change is depends on
the amplitude of the order parameter and polar defects, and determines the width
of the domain wall. Domain wall widths in the range of 0.5 nm to 100 nm have been
reported [4, 15, 48, 49].

Ferroelectric domain walls can be either neutral or charged depending on how they
are oriented with respect to the spontaneous polarization [48, 50]. Neutral domain
walls separate domains with anti-parallel polarization orientations as shown in Fig-
ure 2.2.3 b) and carry no charge. Charged domain walls, on the other hand, host
uncompensated positive or negative bound charges, which create locally diverging
electrostatic potentials. This potential needs to be screened, which drives charge
carriers to the domain wall. Charged domain walls are known as head-to-head if the
polarization of the adjacent domains points toward the domain wall, as in Figure
2.2.3 c), and tail-to-tail if they point away from it, as in Figure 2.2.3 d). Charged
domain walls mainly form in improper ferroelectrics because they are very energet-
ically costly in proper ferroelectrics [7].
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Figure 2.2.3: Schematic illustrations of 180° domain walls. a) Illustration of the
gradual change in polarization between two oppositely oriented ferroelectric domains
(Ising-type domain wall), b) neutral domain wall, c) positively charged head-to-
head wall, and d) negatively charged tail-to-tail wall. The polarization directions
are indicated with arrows, and in panel b-d, the domain walls are colored red with
positive (+) and negative (-) bound charges indicated. a) is adapted from ref. [46],
while b), c), and d) are adapted from ref. [50].

Hysteresis and polarization reversal
All primary ferroics show hysteric behavior under the influence of their respective
conjugate fields, which means that all ferroelectrics have a hysteresis loop [38]. A
schematic ferroelectric hysteresis loop is illustrated in Figure 2.2.4. The hysteresis
loop shows the polarization of the ferroelectric as a function of the applied electric
field and is a key characteristic of all ferroelectrics.

Figure 2.2.4: Schematic illustration of ferroelectric hysteresis loop, with illustrations
of domain orientations (indicated by arrows) at each state numbered from 1 to 6.

To explain the correlation between the polarization reversal and the domain state,
the simplest case, a uniaxial ferroelectric, is utilized. Assume the ferroelectric is in
state 1, where the electric field is zero. In this state, most of the domain volume
fraction is oriented the same way, ”up,” and the ferroelectric has a certain remnant
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polarization, Pr. Then suppose an electric field is applied anti-parallel to the polar-
ization direction. In that case, the volume fraction of ”up” domains will be reduced
until the coercive field, −Ec, is reached and the net polarization is zero (state 2).
Further increasing the electric field strength, the volume fraction of ”down” do-
mains will increase until the ”down” polarization reaches saturation at −Ps (state
3). Then if the electric field is removed, the polarization will again be reduced to a
remnant polarization, −Pr, because the volume fraction of ”up” domains increases
(state 4). If then, an electric field is applied parallel to the ”up” orientation, the
net polarization will again become zero at the coercive field, Ec (state 5), and then
reach saturation at Ps (state 6) [4].

The process of switching from one polarization state to another is called polarization
reversal [51]. In the simplest case of polarization reversal, an electric field is applied
anti-parallel to the domain of a uniaxial mono-domain ferroelectric in order to reverse
the domain. The process is illustrated schematically in Figure 2.2.5. The first step
is the nucleation of domain nuclei, mainly on the surfaces of the ferroelectric, see
Figure 2.2.5 b). Second, the triangle-shaped domains grow through the sample,
Figure 2.2.5 c). Third, the domains expand sideways, Figure 2.2.5 d), and fourth
the domains coalesce until the polarization in the sample has been reversed, Figures
2.2.5 e) and f). In samples where both domain states are already present, the
polarization reversal process starts with the third step, see Figure 2.2.5 d), and
the domains mainly expand through domain wall movement. This is because the
nucleation and forward growth of the domains is more energetically expensive than
the sideways growth [51].

Figure 2.2.5: Schematic illustration of the polarization reversal process in a mono-
domain single crystal. a) Mono-domain state with ”up” oriented polarization, b)
nucleation of new domains, c) forward growth of new domains, d) sideways expansion
of new domains, e) coalescence of new domains, and f) mono-domain state with
”down” oriented polarization. Adapted from ref. [51].

2.3 Hexagonal manganites

The hexagonal manganites RMnO3 (R = Sc, Y, In, Dy-Lu) belong to the improper
ferroelectrics, which have several interesting properties such as exotic domain struc-
tures, conductive domain walls, and multiferroic coupling [13, 23, 52, 53]. Out of
the nine hexagonal manganites, YMnO3 has been studied the most [54]. However,
many of the attributes of YMnO3 can be generalized for the rest of the hexagonal
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manganites because they are isostructural [55]. As an example, all the hexagonal
manganites are type 1 multiferroics, and most of them order antiferromagnetically
at temperatures below 130K in addition to being ferroelectric. The spontaneous
polarization of the hexagonal manganites is small compared to many other fer-
roelectrics. For example, YMnO3 has a spontaneous polarization of 5.6 µCcm−2

[56], while BaTiO3 has a spontaneous polarization of 21µCcm−2 [57]. In addition,
while many ferroelectrics such as Gd2(MoO4)3, BiFeO3, and Bi2WO6 [58–61] are
ferroelastic, ErMnO3 and YMnO3 are co-elastic, meaning that they do not form
ferroelastic domain walls to release elastic stresses [22].

Crystal structure
The crystal structure of the hexagonal manganites is described by the polar space
group P63cm, in the ferroelectric phase, at ambient temperatures, and the centrosym-
metric space group P63/mmc, in the paraelectric phase, at temperatures above
1200K, depending on the R-ion [54, 62]. The crystal structure consists of altern-
ating non-connected layers of trigonal corner-sharing MnO5 bipyramids and layers
of R3+ ions. In the paraelectric phase, the bipyramids align along the c-axis, and
the R3+ ions form a flat layer in the ab-plane as seen in Figure 2.3.1 a). Below TC ,
in the ferroelectric phase, the size mismatch between the R3+ ions and the bipyr-
amids causes a structural transition, where sets of three bipyramids tilt away from
or towards a central R3+ ion, resulting in the ferroelectric structure shown in Fig-
ure 2.3.1 b). This mechanism, known as geometric ferroelectricity, is illustrated in
Figure 2.3.1 c).

Figure 2.3.1: VESTA illustration of para- and ferroelectric crystal structures
along with geometric ferroelectricity. a) The high temperature paraelectric phase
P63/mmc. b) The low temperature ferroelectric phase P63/cm. c) Illustration of
the mechanism behind geometric ferroelectricity. Orange, red and blue spheres rep-
resent R3+, O2− and Mn3+ ions, respectively. O2−

ip refers to the in-plane oxygen
ions that connect the bipyramids. a), b), and c) constructed in VESTA [63] using
crystallographic data from refs. [64, 65].
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The tilting of the bipyramids enlarges the unit cell volume by a factor of three, which
is known as trimerization. Because the trimerization can occur at three different
R3+ ion sites, it gives rise to three translational domains, α, β, and γ as illustrated
in Figure 2.3.2 a). The enlarged unit cell is also shown in the ferroelectric phase in
Figure 2.3.2 b) [53, 55, 66].

Figure 2.3.2: Schematic illustration of trimerization. a) High-temperature hexagonal
manganite structure with the unit cell indicated by a small diamond and three
trimerization states indicated by large diamonds. b) Low-temperature hexagonal
manganite structure with one unit cell indicated by a large diamond. R3+ ions
are differentiated by local symmetry and Mn3+ ions by location along the c-axis.
Adapted from ref. [67].

Transition debate
In 1965, Ismailzade and Kizhaev stated that the transition in YMnO3 from paraelec-
tric to ferroelectric happens at 930K based on temperature-dependent X-ray diffrac-
tion and pyroelectric measurements [68]. The latter was never reproduced. Then
contrary evidence was put forth by Lukaszewicz et al., who found that the transition
happens at 1270K [69]. Since then, two hypotheses have been discussed. The first
hypothesis involves two separate transitions, one where the structure changes and
one where the polarization emerges. The second hypothesis states that the trimer-
ization and the emergence of the polarization occur at the same temperature [53].
This debate was only recently settled through second harmonic generation in 2015
by Lilienblum et al.. They showed that the spontaneous polarization emerges simul-
taneously with the trimerization at 1259K [56]. From this it was further concluded
that the transition temperature of ErMnO3 was 1429K [24].

Polarization mechanism
When explaining the emergence of geometric ferroelectricity in hexagonal mangan-
ites, it is common to discuss the influence of the phonon modes K3 and Γ

−
2 [55, 70].

The symmetry label K3 represents the tilting of the MnO5 polyhedra, which causes
the trimerization of the unit cell and the corrugation of the R3+ ion layers, the latter
pertaining to the shift of the R3+ ions up and down in a 2:1 or 1:2 ratio as seen in
Figure 2.3.1 b). In the regions where the bipyramids tilt towards the central R3+

ion, the R3+ ions form a ◦◦◦ pattern. Where the bipyramids tilt away from the R3+

ion, a ◦◦◦ pattern is formed. The corrugation of the R3+ ion layer creates strong
local dipole moments with the O2−

ip ions, but these moments cancel each other out
[53, 55, 70, 71]. Thus, the K3 mode does not contribute to the spontaneous polariz-
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ation. However, the instability of the K3 mode pushes the Γ−
2 mode to a non-zero

equilibrium position which in turn shifts the R3+ ions additionally with respect to
the in-plane oxygen O2−

ip , resulting in a net polarization along the z-axis [53, 55, 70,
72]. It is the strong coupling between the K3(1) and Γ

−
2 (TO1) lattice modes that is

responsible for the polarization observed in the hexagonal manganites. Because the
polarization arises from the secondary order parameter, Γ−

2 , and not the primary
order parameter, K3, all hexagonal manganites are said to be improper geometric
ferroelectrics as discussed in section 2.1 [70].

Landau description
Landau theory is a phenomenological theory used to describe symmetry-breaking
phase transitions [73] and has therefore been used by several researchers to describe
improper ferroelectrics [66, 74, 75]. The order parameter of these improper ferro-
electrics has at least two components. These are often chosen as the amplitude of
the tilting, Q, and the azimuthal orientation of the tilt, Φ, as illustrated in Figure
2.3.3 a) [53]. The free energy of the hexagonal manganite system can be expressed
as:

f =
a

2
Q2 +

b

2
Q4 +

Q6

6
(c+ c′ cos 6Φ)− gQ3P cos 3Φ+

g′

2
Q2P 2 +

aP
2
P 2 (2.1)

where P is the local amplitude of the polar mode, and a, b, c, c′, g, g′ and aP are
calculated through ab inito calculations [66]. Plotting the free energy landscape
as a function of the strength, Q, and direction, Φ, of the bipyramidal tilting helps
to explain several phenomena, and a contour plot of the free energy is therefore
shown in Figure 2.3.3 b). From the plot, it is observed that the free energy has
six equidistant minima in the brim of the so-called Mexican hat. These minima
represent the six different trimerization states of the ferroelectric phase, α±, β±,
and γ±. Situated in the middle of the hat, at Q = 0, is the energy maxima where
the system is in the paraelectric phase [53].

Figure 2.3.3: Schematic illustration of the order parameter components Q and Φ,
and a contour plot of the free energy of uniformly trimerized states. a) Bird view
of tilting MnO5 bipyramids and the definition of the components, Q, and Φ, of the
order parameter. b) Contour plot of the free energy of uniformly trimerized states as
a function of the amplitude, Q, and azimuthal angle, Φ, of the K3 mode. The dashed
lines connecting energy minima correspond to different types of domain walls. a)
adapted from ref. [24] and b) adapted from ref. [66].
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The presence of the six domain states should, in principle, allow for pure antiphase
(AP), pure ferroelectric (FE), and mixed domain walls in the hexagonal manganites.
Nevertheless, only the latter has been observed thus far [23, 72]. The absence of
the AP and FE domain walls can, however, be explained by looking at Figure
2.3.3 b). From the figure, it is evident that a FE transition between two domain
states, such as α+ and α−, is energetically unfavorable as the structure would
have to pass through the paraelectric phase. An AP transition between γ− and
β− would also be unfavorable because the structure would have to pass through a
high-energy state as well. That leaves only the transition between adjacent domain
states that differ in polarization and translation, such as β− and γ+. These 60°
or 1/3π changes are the most energetically favorable transitions and explain the
observed domain sequence: α+, β−, γ+, α−, β+, γ−, in the hexagonal manganites,
where each domain is separated by a mixed domain wall [53, 66]. This intuitive
explanation is further supported by the results of a density functional theory (DFT)
study [76]. From this study, the researchers found that AP and FE domain walls
in hexagonal manganites always consist of two or three mixed domain walls, as
illustrated in Figure 2.3.4. The figure shows that the structure always passes through
the adjacent domain states from Figure 2.3.3 b) first, resulting in 2-3 atomic-scale
domain walls between the domains.

Figure 2.3.4: Domain walls in hexagonal manganites predicted by density functional
theory. a) Relaxed AP domain walls. b) Relaxed FE domain walls. The difference in
the widths of the intermediate domains is due to the type of domain walls separating
them from the original domains and is discussed in more detail in ref. [76]. Adapted
from ref. [76].
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2.4 Ferroelectric domain structures in hexagonal

manganites

There are currently two known topologically distinct domain structures in hexagonal
manganites, the vortex domain structure, displayed in Figure 2.4.1 a), and the
striped domain structure, displayed in Figure 2.4.1 b) [23, 25, 33, 34, 67, 75]. The
vortex domain structure is characterized by its vortex-antivortex pairs at points
where the six domain variants, mentioned in section 2.3, come together. It is also
the most commonly observed domain structure in as grown ErMnO3 single crystals
[24]. The striped domain structure, on the other hand, is characterized by long
stripe-like domains [34, 75]. It is also less common but appears, for example, when
hexagonal manganites are grown and subsequently annealed below their respective
TC [33]. However, if the sample is heated above TC and cooled again, the vortex
domain structure re-emerges, even though the striped domain structure is very stable
when it spans an entire sample [34]. Striped domains can vary greatly in size. Some
are the same size as vortex domains, while others can be as narrow as 25 nm across
[77]. The lower limit is thought to be around the size of a unit cell because the size of
ferroelectric domains in hexagonal manganites can be decreased without vanishing
[78]. Because high temperatures can transform the vortex domains into striped
domains, it is hypothesized that the vortex domains is a meta-stable state, and that
the striped domain structure is the ground state of the hexagonal manganites. This
means that, given enough time, the vortex domain structure will eventually evolve
into the striped domain structure [33]. However, this has not yet been observed
experimentally [34].

Figure 2.4.1: Illustration of the two ferroelectric domain structures in ErMnO3

reported in literature, a) vortex domain structure and b) striped domain structure.
Adapted from ref. [27] and ref. [34], respectively.

The ferroelectric domain structure is not a surface phenomenon but extends through-
out the whole ErMnO3 crystal [16]. The domain walls are described as interfaces,
with length, width, and depth, while the vortices are 1D strings penetrating the
bulk of the crystal [18, 26, 72]. The 3D vortex domain structure is schematically
illustrated in Figure 2.4.2 a) with a 1D vortex line indicated by a red dashed line.
Because of surface effects, the ferroelectric structure observed at the surface is not
representative of the structure in the bulk. For example, it has been observed that
surface domains can shrink anisotropically due to self-poling caused by a difference
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in oxygen content between the surface and the bulk of the ferroelectric. This surface
phenomenon favors the negatively polarized domains over the positively polarized
domains, such that the negative surface domains grow at the expense of the positive
surface domains [79]. The same shrinkage of surface domains is believed to happen
when utilizing non-contact electrical poling [16]. Examples of the shrunken domains
can be seen in the first panels of Figures 2.4.2 b) and c), where the positive surface
domains appear as thin bright lines. Figures 2.4.2 b) and c) also illustrate how
the domain structure changes in the bulk and how one vortex line can appear as
multiple vortices on the sample surface depending on how the crystal is cut. Striped
domains have not been investigated in the literature thus far.

Figure 2.4.2: Illustrations of the 3D structure of ferroelectric domains and vortices.
a) Schematic illustration of vortex domain structure in 3D, with a 1D vortex line
indicated by the dashed red line connecting the anti-vortex on the front of the cube
to the vortex on the top. b) and c) show panels and depth profiles of vortex cores
at different depths of a hexagonal LuMnO3 single crystal. Each depth is indicated
by a number and is separated by 2µm. Vortex and anti-vortex cores are labeled as
green and red, respectively. Subfigure a) adapted from ref. [18] while b) and c) are
adapted from ref. [26].

Vortex cores
There are two kinds of topological defects in the hexagonal manganites: the domain
walls and the vortex cores [18]. The domain walls have already been discussed in
section 2.2; thus, the focus here will be on the vortex cores. Vortex cores are about
4 unit cells wide and are the meeting points of six domains surrounding the core in
one of two possible sequences, α+, β−, γ+, α−, etc., or in reverse α−, γ+, β−, α+,
etc. The latter sequence applies to the anti-vortex cores [18]. Through aberration-
corrected high-angle annular-dark-field (HAADF) imaging and high-angle annular-
dark-field scanning transmission electron microscopy (HAADF-STEM), the inner
structure of the vortex cores in YMnO3 and ErMnO3 was probed [15, 18]. The
researchers found that the displacement of the R ions was reduced and disordered
within the vortices, resulting in the extinction of the polarization [15, 18].
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The researchers also found that the vortex cores host interesting electrostatics, mak-
ing them possible sources for new, unusual electronic transport properties [15]. Fur-
thermore, vortex cores are topologically protected, meaning that they do not change
with continuous deformations or perturbations which makes them able to withstand
strong electric fields [23, 75, 80]. This immovability is one of the reasons for why
complete poling of the ferroelectric structure in hexagonal manganites has failed
thus far in previous studies [23]. However, there is evidence of vortices moving un-
der the influence of a very strong electric field close to the edge of an YMnO3 single
crystal. However, the electric field was 500 kV cm−1 which is much higher than the
coercive field of 75 kV cm−1 [79].

As previously stated, the vortex cores are the meeting points of six domains. How-
ever, partial edge dislocations (PEDs) can break the symmetry of vortices and make
four-state vortices instead of the normal six-state vortices [81]. Examples of six-state
and four-state vortices are shown schematically in Figure 2.4.3 a) and b), respect-
ively. The PEDs blur the lines between domains and can allow for two different
translational domains to be connected without a separating domain wall by intro-
ducing an extra atomic plane in the structure. Thus, two translational domains with
the same polarization, such as β− and α−, can be connected as in Figure 2.4.3 b).
This makes it seem like the vortex core is surrounded by only four domains, α+,
γ−, β+ and (α − /β−) making a four-state vortex. The opposite can also happen
if the PEDs introduce an extra translational domain by splitting a domain in two,
as in Figure 2.4.3 c), where the γ+ domain is split in two by an α− domain. When
this occurs, an eight-state vortex is created [81].

Figure 2.4.3: Schematic diagrams of vortex cores with with domains indexed. a)
Normal six-state vortex, b) four-state vortex, and c) eight-state vortex. All vortices
are indicated with red circles. Domain indices in a) and b) were determined through
HAADF imaging by ref. [81]. Indices in c) are only correct with respect to polariz-
ation. Adapted from ref. [81].

Influence of strain on domain structure
The domain structure in hexagonal manganites can be engineered through cooling
rate [24, 25, 33], annealing temperature [26, 33], electric fields [23], and elastic strain
[34]. The latter was discovered in 2014 when Wang et al. [34] demonstrated vortex
core movement in hexagonal manganites by inducing strain in single crystals at
1413K. In their experiments, they put metal rods on single crystals of ErMnO3

with different geometries, triangular and rectangular, and cooled them across the
transition temperature. Schematics of the experiments are shown in Figures 2.4.4
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a) and b). The weight of the rod caused the single crystals to compress on the top
surface and stretch at the bottom. In the rectangular crystals, the compression and
stretching canceled each other out, as illustrated in Figure 2.4.4 c), and no striped
domains were observed. In the triangular crystal, on the other hand, the tip was
bent downward, resulting in an average normal strain along the x-axis with a large
gradient along the y-axis, as seen in Figure 2.4.4 d). After the thermomechanical
treatment, the researchers observed striped domains along the direction of the rod
in the triangular sample. They hypothesized that the non-uniform strain induced a
Magnus-type force, Fv, that pulled the vortex-antivortex pairs apart, thus morphing
the vortex domains into striped domains. The simplified expression for the force
acting on the vortices supports this notion. The expression is shown in equation
2.2:

Fv = Gh
π

3
[2εxy, (εxx − εyy)] (2.2)

where G is the coupling parameter, h is the thickness of the sample, εii is the normal
strain in the i-direction, and εxy is the shear strain in the xy-plane. Equation 2.2 has
a x-direction and a y-direction part separated by a comma, and shows that the shear
strain moves the vortices in the x-direction and that non-uniform normal strain,
εxx − εyy > 0, moves the vortices along the y-direction [34]. In their evaluations
of the strains and their influence on the vortices, only the in-plane strains were
considered because the out-of-plane strains do not couple to the trimerization phase
[34].

Figure 2.4.4: Schematic illustrations of the two experiments performed by Wang
et al. [34] and the average strain distributions in the crystals. a) Bird-view of
rectangular crystal with a centered metal rod, b) bird-view of triangular crystal
with metal rod off-centered in both x- and y-direction, c) average strain distribution
in the rectangular crystal, and d) average strain distribution in the triangular crystal.
Redness indicates the magnitude of the strain. Adapted from ref. [34].
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Further examination of the influence of strain on the domain structure was done
through phase-field simulations, which have long been used to investigate the evol-
ution of ferroelectric and ferromagnetic domain structures [82, 83]. Shi et al. and
Xue et al. found that phase-field simulations corroborate the results from Wang
et al. [34, 75, 84]. They also found that the magnitude of the strain affects the
straightness and density of the striped domains [75, 84]. The simulated effect of
increasing strains is illustrated in Figure 2.4.5, where the strain is increased from a)
to c). The phase-field simulations also enabled the researchers to inspect the mech-
anism behind the formation of the striped domains up close. Figure 2.4.6 illustrates
that when vortices and anti-vortices move away from each other, they collide with
other oppositely topologically charged vortices and annihilate, creating striped do-
mains. The simulations also show that the strains can create new vortex-antivortex
pairs, which increases the density of the striped domains [75, 84]. In addition to
this, the researchers also hypothesized that the simulated strains were greater than
those induced experimentally, because the domain frequencies in the simulations
were higher than what was observed by Wang et al. [75]. However, the frequency of
the striped domains depends on both the temperature and the non-uniform strain.
Increasing the latter results in higher domain frequency and reduces the size of the
domains, while increasing the temperature enhances the effect of the non-uniform
strain [75].

Figure 2.4.5: Simulated equilibrium domain structures at different strains in YMnO3

at 1199K. a) No strain, b) some strain, ε, in the upper half, and c) 2ε in the upper
half. Adapted from ref. [75].

Figure 2.4.6: Simulated temporal evolution of striped domains through creation and
annihilation of vortices in YMnO3 at 1199K. a) and b) show the creation of a new
vortex-antivortex pair close to bubble-like domains, while c) and d) show movement,
collision and annihilation of the vortices 2+ and 3−, and the formation of striped
domains. Adapted from ref. [75].
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2.5 Scanning probe microscopy

Scanning probe microscopy (SPM) is a technique in which a sharp tip is used to
raster-scan samples and collect information about their surface [85]. The technique
dates back to the early 1980s when Binning et al. successfully imaged the topo-
graphy of gold with atomic resolution using scanning tunneling microscopy (STM),
which relies on the tunneling of electrons [85, 86]. A few years later, in 1985, an-
other SPM technique was invented. Very similar to STM, but using the local atomic
and molecular forces, atomic force microscopy (AFM) proved to be one of the most
important SPM techniques [87, 88]. One major advantage of AFM is its ability to
scan almost any surface, unlike STM, which only works for conducting and semi-
conducting surfaces [88]. Several adaptations have been made from these two early
techniques, and there now exists a wide range of SPM techniques. Examples of
newer SPM techniques include: time-resolved STM, magnetic-field-sensitive SPM,
electric field-sensitive SPM, liquid-phase SPM, electrical transport-compatible SPM
and near-field SPM [88]. In this thesis, a form of electrical field-sensitive SPM,
called PFM, has been utilized and will be discussed in more detail in the following
subsection.

2.5.1 Piezoresponse force microscopy

PFM was first utilized by Güthner and Dransfield in 1992, when they locally poled
and subsequently imaged ferroelectric domains in a ferroelectric polymer film using
the tip of a SPM [89]. Since then, the technique has become the standard tool
for imaging ferroelectric domains [5]. PFM measures the piezoelectric response of
ferroelectric domains on the nanoscale, and can distinguish between domains based
on this response. During a PFM scan, a conductive tip is held in contact with
the sample surface while an oscillating voltage is applied to the tip. The local
electric field, created by the voltage, induces a piezomechanical response from the
material, causing it to deform slightly and the tip to move with the deformation.
This movement is then measured by a laser reflecting off a mirror on the cantilever
of the tip before hitting a photodetector, as illustrated in Figure 2.5.1 a). Finally,
the signal is extracted from the photodetector by a lock-in amplifier (LIA) [5].

In- and out-of-plane response
The piezomechanical response of a ferroelectric material depends on the orientation
of the polarization directly underneath the probe tip [5]. If the polarization is out-
of-plane, the deformation of the material is also out-of-plane, and the tip is moved
up and down, causing deflection of the cantilever as illustrated in Figure 2.5.1 b).
If the polarization is in-plane, the deformation causes buckling or torsion of the
cantilever, which is also illustrated in Figure 2.5.1 b). The different movements of
the cantilever move the laser in certain directions on the photodetector as illustrated
in Figure 2.5.1 c). Deflection and buckling result in a vertical signal, while torsion
gives a lateral signal [5].
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Figure 2.5.1: Schematic illustration of the forces acting on the PFM tip and their
effect on the cantilever and the PFM signal. a) PFM setup with forces indicated, b)
forces and the associated movement of the cantilever, and c) the possible movements
of the laser on the photodetector. Adapted from refs. [5, 90].

Because buckling and deflection both give a vertical signal, in- and out-of-plane
polarization is not easily distinguished. To describe the local deformation of the
sample more accurately, the in- and out-of-plane deformation must be separated
through a technique known as vector PFM. The technique works by scanning the
area of interest three times with different rotations, 0°, 90°, and 180°. The 90° rota-
tion allows for the separation of the in-plane deformations, while the 180° rotation
enables the separation of buckling from deflection [5]. However, all scanning force
microscope systems have a small degree of inherent crosstalk due to, for instance,
a slight misalignment of the readout laser plane and the detector [5]. This means
that, even when using vector PFM, it is challenging to accurately determine the
orientation of the polarization.

Resolution
With PFM, ferroelectric domain patterns with a sub 10 nm lateral resolution can
be obtained depending on the tip radius, and the elasticity and dielectric properties
of the sample [5, 90, 91]. The tip’s lateral resolution, W , can be determined by
moving it across a 180° domain boundary. When the tip approaches the domain
wall, the PFM signal becomes weaker as the volume fractions of the two measured
domains become more equal and cancel each other out. After the measurement, the
lateral resolution can be defined as the full width at half maximum (FWHM) of the
PFM signal across the boundary. Soergel et al. found that the relation between tip
radius, r, and lateral resolution was: W ≈ 1.2 · r for tips with conductive coatings,
and: W ≈ 3.3 · r for un-coated n-doped silicon tips [5].
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As described in section 2.4, the ferroelectric domain structure on the surface can be
different from the one in the bulk. Therefore, it is important to keep in mind how
deep the PFM is probing into the sample. For instance, if the surface domain is
relatively shallow, the PFM signal can be influenced by domains lying underneath
the surface domain [92]. Johann et al. reported a depth resolution of 1.7 µm when
using a diamond coated tip with a nominal radius of 50−70 nm and 5V. They also
found that using a larger tip radius increases the depth resolution, while increasing
the amplitude of the voltage does not [92].

Phase and amplitude
The LIA extracts and rectifies the periodic signal of the deformation from the noisy
environment [5]. The results of the LIA measurement can be represented as either
a phase, Θ, and a magnitude, M , or as two amplitudes, X and Y . The phase is
the difference in phase between the measured signal and a reference signal, while
the magnitude is the strength of the signal. The two representations are related like
polar and Cartesian coordinates through: X = M · sinΘ and Y = M · cosΘ. By
using Θ and M , two PFM images can be constructed. However, by using X or Y ,
all the information can be contained in one image, which is why X or Y is usually
referred to as the piezoresponse. Figure 2.5.2 shows the different values for Θ, M ,
and X corresponding to different polarization orientations.

Figure 2.5.2: Schematic illustration of polarization orientations and associated
phases, Θ, magnitudes, M , and amplitudes, X, in the vertical channel. Adap-
ted from ref. [5].
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Other AFM techniques
Resonance PFM is a technique where the alternating voltage resonance frequency
is set approximately equal to the contact resonance, fcont, of the cantilever, which
is the cantilever’s resonance frequency when the tip is in contact with the sample
[5]. The contact resonance frequency depends on the stiffness of the sample and the
resonance frequency, ffree, of the cantilever, which in turn depends on its stiffness.
As an approximation one can say that fcont ≈ 4 · ffree [5, 93]. Resonance PFM im-
proves the signal-to-noise ratio by utilizing resonance enhancement but also includes
topographic information in the acquired signal [5, 94].

Another variant of PFM is SS-PFM [95]. SS-PFM works by measuring the piezoelec-
tric response in a single point with voltage pulses that are increased and decreased
stepwise, as illustrated in Figure 2.5.3. Then the same procedure is repeated for
the rest of the area of interest until the voltage-dependent piezoelectric response in
each point has been mapped. SS-PFM allows the user to connect work-of-switching,
electromechanical activity, coercive bias, and imprint to distinct locations on the
sample. This gives insight into how local structures, topographic or ferroelectric,
affect the polarization switching; see the hysteresis loop in Figure 2.2.4 [90, 95].

Figure 2.5.3: Schematic illustration of the voltage pulses applied during SS-PFM.
Adapted from ref. [95].

Influence of electrostatic effects
Electrostatic effects are present in all the aforementioned techniques and can affect
their results [5]. Coulomb forces between the tip and the sample surface arise because
ferroelectric domains have surface charges, and the PFM tip is periodically charged.
However, this force does not necessarily move the tip. For the tip to move, either
the surface or tip must deform, or the tip-sample potential must change. The former
is unlikely, as demonstrated by previous experiments, where researchers found that
the deformation impact was insignificant. The researchers also found that the inter-
action between the charged tip and the polarization-induced surface charges can be
neglected when using a stiff cantilever with a spring constant greater than 2Nm−1

[5, 96]. Coulomb forces can also act directly on the cantilever and bend it, but since
the cantilever is quite big compared to the size of the imaged domains, the effect of
the interaction on the PFM measurement is small [5, 97]. The instrument used also
contributes to the electrostatic interactions. It has been found that there is a linear
relationship between the applied dc voltage and the PFM signal. The cause of this
contribution is imperfect electrical shielding [5].
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Chapter 3

Experimental

3.1 Thermomechanical treatment of ErMnO3

High-quality ErMnO3 powder was synthesized through a solid-state reaction between
Er2O3 (99.9% purity, Alfa Aesar, Haverhill, MA, USA) and Mn2O3 (99.0% purity,
Sigma-Aldrich, St-Louis, MO, USA). The calcination was done stepwise at 1000 °C,
1050 °C, and 1100 °C for 12 hours. Then the powder was sintered at 1400 °C for four
hours into cylinders with a diameter and height of 7.60mm and 5.13mm, respect-
ively. More information about the processing of the samples can be found in ref.
[8].

To investigate the impact of mechanical pressure applied during the ferroic phase
transition on the domain structure of ErMnO3, the cylinders were annealed under
three different mechanical loads. For the annealing process, the samples were put
into an Al2O3 die filled with coarse MgO powder to prevent the samples from re-
acting with the die. Then the samples were heated to an annealing temperature of
1220 °C at a rate of 5 °Cmin−1. The annealing temperature was set above the Curie
temperature of ErMnO3, TC ≈ 1156 °C, to reset the ferroelectric domain structure
[24, 56]. A 30-minute dwell time was used to ensure that the samples, the MgO
powder, and the pressing die were in thermal equilibrium. Then a uniaxial pres-
sure of 0MPa, 24MPa or 47MPa was applied to the samples while maintaining a
temperature of 1220 °C for 10 more minutes as illustrated in Figure 3.1.1. After-
ward, the samples were cooled with the applied pressure until room temperature
was reached. A constant cooling rate of 5 °Cmin−1 was used to prevent unwanted
cooling-rate-dependent variations in the domain structure, as demonstrated in refs.
[24, 33]. The temperature and pressure profiles for the annealing process are shown
in Figure 3.1.2.
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Figure 3.1.1: Schematic illustration of the samples under different pressures during
annealing. The color coding of the frames emphasizes the pressure used on the
samples, and is used throughout the thesis.

Figure 3.1.2: Temperature and pressure profiles of the thermomechanical treatment
of the polycrystalline ErMnO3 cylinders. First the temperature was increased to
1220 °C at a rate of 5 °C/min, and kept at this temperature for 30 minutes. Then
a uniaxial pressure, σApplied, of either 0MPa, 24MPa or 47MPa was applied to
the cylinders for 10 minutes, followed by cooling to room temperature at a rate of
5 °C/min while still under pressure. TC of ErMnO3 is indicated as well [24, 56].

After annealing, the samples were cut, as shown in Figure 3.1.3, into half-discs using
a diamond wire saw (SERIE 3000, Well, Germany). To gain insight into the micro-
and nanostructure parallel and perpendicular to the applied mechanical pressure,
2mm thick in-plane and out-of-plane samples were prepared. To characterize the mi-
crostructure, the samples were lapped with a 9µm-grained Al2O3 water suspension
(Logitech, Ltd, Glasgow, UK) and polished using a silica slurry (Ultra-Sol®2EX,
Eminess Technologies, Scottsdale, AZ, USA) to produce a surface roughness with a
root mean square (RMS) value of around 70 nm.
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Figure 3.1.3: Schematic illustration of the sample preparation after the thermomech-
anical treatment. Dashed lines indicate the cuts made. Colored faces indicate in-
and out-of-plane sample faces. The pressure was applied in the z-direction during
annealing.

3.2 X-ray diffraction

To determine the crystal structure and phase purity of the samples, X-ray diffraction
(XRD) was performed. A D8 Advance DaVinci with LynxEye super-speed detector
and Cu K-alpha x-ray source (Bruker, Billerica, MA, USA) was used with a scan
range of 10° to 75° 2θ.

3.3 Scanning electron microscopy

Micrographs of the polished samples were acquired by performing SEM with a Helios
G4 UX (FEI, Lausanne, Switzerland). Parameters used for imaging are displayed
in Table 3.3.1.

Table 3.3.1: Settings used for the acquisition of the SEM micrographs.

Setting Value
Acceleration voltage 1.00 kV
Beam current 0.20 nA
Working distance 3.7-4.2mm
Detectors ICE, SE and TLD

3.4 Scanning probe microscopy

To map the domain structure of the samples, PFM measurements were performed.
The initial images were taken using an NT-MDT Ntegra Prisma system (NT-MDT,
Moscow, Russia) with an electrically conductive tip. An overview of tips used is
provided in Table 3.4.1. During the measurements, the samples were excited using
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an alternating voltage with a frequency of 40.13 kHz, and an amplitude of 10V
applied to the bottom electrode. At the same time, the laser deflection was read
out by two LIAs (SR830, Stanford Research Systems, Sunnyvale, CA, USA) to
obtain the in- and out-of-plane piezoresponse. Prior to the measurements on the
polycrystalline ErMnO3, the PFM response was calibrated on a periodically out-of-
plane poled LiNbO3 sample (PFM03, NT-MDT, Moscow, Russia).

Table 3.4.1: Tips used for AFM measurements on ErMnO3 samples.

Tip name and company Tip radius Cantilever stiffness
Spark 150 Pt

(NuNano, Bristol, UK)
< 30 nm 18Nm−1

ASYELEC-01-R2
(Asylum Research, Santa Barbara, CA, USA)

25±10 nm 2.8Nm−1

DEP01
(TipsNano, Tallinn, Estland)

<10 nm 1.2-4.5Nm−1

DDESP10
(Bruker, Billerica, MA, USA)

100 nm 80Nm−1

Multi75E-G
(BudgetSensors, Sofia, Bulgaria)

25 nm 1-7Nm−1

To further investigate some exciting domain features, a Cypher S AFM (Asylum
Research, Santa Barbara, CA, USA) with an isolated environment and electrical
shielding was used to perform resonance PFM and acquire high-resolution images.
For the resonance PFM, the DEP01 tip was used with a lateral frequency of 7.1775×
105Hz, normal frequency of 3.0×105Hz, lateral tip voltage of 3V, and a normal tip
voltage of 1V.

In addition, SS-PFM was performed at Oak Ridge using a Cypher S AFM (Asylum
Research, Santa Barbara, CA, USA) with a Multi75E-G tip. The measurement
covered a grid of (128×128) points spread over an area of (15.1×15.1) µm2. In each
point, voltage pulses from 0V to 15V to −15V were applied stepwise as illustrated
in Figure 2.5.3. This was done twice. The sample investigated was synthesized
similarly to the other samples but without the thermomechanical treatment and is
called the Oak Ridge sample (OR-sample).

3.5 Electron backscatter diffraction

To map the orientation of the grains in the out-of-plane 47MPa sample, EBSD was
performed using an Ultra 55 FEG-SEM (Zeiss, Jena, Germany). The scan was per-
formed with an acceleration voltage of 10 kV, a working distance of 20.4mm and a
sample rotation of 70°. Prior to the scan, the sample was carbon coated to enhance
conductivity. A nominal area of (235× 235) µm2 was scanned, and Kikuchi diffrac-
tion patterns of (120× 120) pixels were recorded with a nominal step size of 0.5 µm.
The diffraction patterns were indexed utilizing the dictionary indexing method in
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EMsoft (version 5) [98]. Then, orientations were sampled from the Rodrigues Fun-
damental Zone using Cubochoric sampling [99], and diffraction patterns for ErMnO3

with the space group P63cm were simulated [62]. Then, EMsoft was used to op-
timize the match between the simulated and recorded patterns. The quality of the
match between the simulated and raw Kikuchi patterns is demonstrated in Figure
3.5.1. Finally, the orientation analysis was performed in Matlab [100] with MTEX
(version 5.8) [101].

Figure 3.5.1: Examples of Kikutchi patterns for ErMnO3. a) Raw Kikutchi patterns
from EBSD scan, and b) simulated best matching patterns after refinement.
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Chapter 4

Impact of mechanical pressure

4.1 Crystallographic analysis

X-ray diffractograms of the ErMnO3 samples annealed under different mechanical
pressures are presented in Figure 4.1.1. The X-ray diffractograms confirm the P63cm
space group, see Figure 2.3.1 b), as observed in ErMnO3 single crystals [27] and
shown in the inset of the figure. The XRD data indicates the absence of any sec-
ondary phases for the samples independent of applied mechanical pressure.

Figure 4.1.1: X-ray diffractogram of the ErMnO3 samples annealed at different
mechanical pressures with characteristic (hkl) peaks marked. The intensities have
been shifted laterally to make the comparison easier. Inset is the crystallographic
data for a ErMnO3 single crystal from ref. [27] for comparison.
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4.2 Microstructural analysis

SEM micrographs of the samples annealed under different pressures are shown in
Figure 4.2.1. Overview images used to analyze the grain size are presented in the
left column, while magnified images are presented in the right column. The micro-
structure features grains, grain boundaries, pores, and a mixture of inter- and intra-
granular microcracks. The microcracks likely originate from large thermal stresses
induced during cooling, as discussed previously for polycrystalline YMnO3 [102,
103]. In addition, ferroelectric domains and domain walls can be observed in the
SEM images depending on the imaging conditions. The domain contrast originates
from differences in electron emission yield, as explained elsewhere [16]. The magni-
fied images indicate that the domain structure is affected by the applied pressure.
By averaging over approximately 60 grains (20 for each pressure), their average size
is determined to be 12.8±1.7 µm. This indicates that the grain size is independent
of the applied mechanical pressure, which in turn indicates the absence of creep
[104]. Thus, the changes in domain structure can be attributed solely to the applied
pressure and not to a change in grain size as previously reported [8]. The impact of
mechanical pressure on the domain structure is investigated further in the following
section.

Figure 4.2.1: SEM micrographs of the in-plane samples annealed under different
pressures: a), b) 0MPa, c), d) 24MPa, and e), f) 47MPa. Domains, microcracks,
and pores are indicated by arrows, while a grain boundary is indicated by a dashed
line. The left column shows overview micrographs used for the grain size analysis
with dashed squares indicating the position of the magnified images. The difference
in contrast between the images is due to different imaging parameters. The right
column shows the microstructure of the grains in more detail.
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4.3 Nanoscale electromechanical analysis

4.3.1 Ferroelectric domain structures

To investigate the ferroelectric domain structure in more detail, PFM was per-
formed. Lateral PFM images of the in-plane and out-of-plane samples are displayed
in Figures 4.3.1 and 4.3.2, respectively. It is observed that the samples display the
well-established ferroelectric domain structure of ErMnO3, which consists of ferro-
electric 180° domain walls coming together in characteristic six-fold meeting points
known as vortices and anti-vortices [13, 23, 34, 67]. From this, it can be inferred
that the domain structure consists of the well-known six translational domains, α±,
β±, and γ±, that originate from the trimerization discussed previously in section
2.3. Besides the isotropic domains visible in Figure 4.3.1 a), striped domains are
also observed in Figure 4.3.1 b) and c). The domain contrast observed in the dif-
ferent grains varies depending on the orientation of the grains in the polycrystal, as
explained in section 2.5.1. Complementary PFM images showing the vertical PFM
contrast are presented in Appendix A, and some other interesting PFM images are
shown in Appendix B.

From the PFM images of both the in-plane and out-of-plane samples in Figures
4.3.1 and 4.3.2, a clear correlation between the applied mechanical pressure and
the size and frequency of the ferroelectric domains is observed. The 0MPa sample,
Figures 4.3.1 a) and 4.3.2 a), is characterized by large isotropic vortex domains
with no preferred orientation within each grain, while the 47MPa sample, Figures
4.3.1 c) and 4.3.2 c), is dominated by narrow striped domains that mostly align
within each grain. The 24MPa sample, Figures 4.3.1 b) and 4.3.2 b), shows an in-
termediate domain structure with some striped domains and some vortex domains.
The striped domains observed are similar to those reported for single crystals under
elastic strains, where the applied mechanical pressure transformed the vortex do-
main structure into the striped domain structure [34]. The formation of the striped
domains is thought to originate from the movement of vortices, and anti-vortices in
opposite directions under the influence of strain fields [8, 75, 84].

In addition to the vortex and striped domains previously reported in the literature,
a thus far unreported domain structure is observed in the 47MPa sample. This
new domain structure resembles ripped fabric and is hypothesized to be induced by
strain. Because of this, it has been named ”ripped” domains. The ripped domains
are only observed in the 47MPa samples indicating that high strains are necessary
for their formation. The three different domain structures, vortex domains, striped
domains, and ripped domains, are compared in Figure 4.3.3. The figure illustrates
the fundamental differences between the domain structures. The vortex domains
displayed in Figure 4.3.3 a) have meandering domains that are all connected directly
or indirectly by vortices. The striped domains, seen in Figure 4.3.3 b), are all
oriented more or less in the same direction and are usually not connected. The ripped
domains, shown in Figure 4.3.3 c), appear to be elongated in a general direction but
do not form continuous stripes. In fact, the ripped domains do not appear to have
any clear sub-unit domains like the vortex and striped domains have. Instead, the
ripped domains are connected randomly and without vortices.
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Figure 4.3.1: Lateral PFM images of the in-plane samples annealed under different
pressures: a) 0MPa, b) 24MPa, and c) 47MPa. The images show the lateral
piezoresponse of the xy-plane indicated in the inset of a). Grain boundaries are
indicated with dashed lines.
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Figure 4.3.2: Lateral PFM images of the out-of-plane samples annealed under dif-
ferent pressures: a) 0MPa, b) 24MPa, and c) 47MPa. The images show the lateral
piezoresponse of the xz-plane indicated in the inset of a). Grain boundaries are
indicated with dashed lines.
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Figure 4.3.3: Comparison of observed domains structures: a) vortex domains, b)
striped domains, and c) ripped domains.

4.3.2 Domain frequency and vortex density

As seen in Figures 4.3.1 and 4.3.2, the domains tend to decrease in size with increased
applied mechanical pressure. To quantify this trend, the average domain frequency
of each sample was calculated by averaging the domain frequency of each grain
in that sample. The domain frequency of each grain was calculated by drawing
a line across the grain and counting the number of domains intersected. The line
was drawn in such a way as to best reflect the domain frequency in the grain, and
around 20 grains were inspected for each sample. The average frequency of the
ferroelectric domains was 0.55 µm−1 in the 0MPa sample, 1.22 µm−1 in the 24MPa
sample, and 2.42 µm−1 in the 47MPa sample. The highest frequency observed was
in the 47MPa sample and was 15.87 µm−1. Representative images of the frequencies
are shown in Figure 4.3.4 to illustrate the difference and give a visual representation
of the different domain frequencies.

Figure 4.3.4: PFM images showing representative domain frequencies from the differ-
ent samples. a) shows a frequency of 0.75 µm−1 in the 0MPa sample, b) a frequency
of 1.25 µm−1 in the 24MPa sample, and c) a frequency of 3.75 µm−1 in the 47MPa
sample.
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To further investigate the trend, the average frequency of the ferroelectric domains
is plotted as a function of the applied mechanical pressure, and compared with
the available literature value of single-crystalline materials with the same cooling
rate. The plot in Figure 4.3.5 shows that the average domain frequency increases by
440% from 0MPa to 47MPa applied pressure. In addition, the plot demonstrates
that the average domain frequency of the 0MPa sample is similar to the single
crystal value from literature, which only differs by 0.15 µm−1. Furthermore, the
plot shows little variation between the in- and out-of-plane samples compared to
the difference between applied pressures. The plot also shows that the standard
deviation, indicated by the error bars, increases with the applied pressure. This
increase is connected to the anisotropy in domain structures primarily observed in
the 24MPa and 47MPa samples, as seen in Figures 4.3.1 and 4.3.2. That is, the
difference between the domains of different grains is greater in the 47MPa sample
than in the 0MPa sample. In the 47MPa sample, it is observed that some grains have
very narrow striped domains, while some have larger vortex domains, in contrast to
the 0MPa sample, which mainly hosts vortex domains of approximately the same
size.

Figure 4.3.5: Average domain frequencies for the polycrystalline ErMnO3 samples
cooled under different pressures at a rate of 5 °Cmin−1, compared to a single crystal
cooled at the same cooling rate. Single crystal value from ref. [33].

In order to investigate the effect of the mechanical pressure on the vortex density
of the ErMnO3 samples, the vortices in each grain were counted manually, and the
average vortex density for each sample was calculated. The plot of the vortex density
as a function of pressure is displayed in Figure 4.3.6. The plot shows that the average
vortex density for all the polycrystalline samples is 6-10 times lower than that of
the single crystals from the literature. Furthermore, the plot shows a negligible
change in vortex density with pressure. In addition, similarly to the frequency plot
in Figure 4.3.5, the standard deviation of the vortex density increases with pressure
due to an increase in domain anisotropy. The plot also shows a significant difference
in the vortex density of the two single crystals.
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Figure 4.3.6: Average vortex density for the polycrystalline ErMnO3 samples cooled
under different pressures at a rate of 5 °Cmin−1, compared to single crystals cooled
at the same cooling rate. Single crystal values from refs. [24] and [33].

4.3.3 Ferroelectric domain transitions

Several of the grains investigated with PFM showed more than one type of domain
structure; see Figure 4.3.3. This is not uncommon, and vortex and striped domains
have been observed in the same grains before, as might be expected when there is a
transition between the two [8]. Because of this, the grains hosting both striped and
ripped domains are especially interesting as they indicate a transition between the
two states. Interestingly, no mixed vortex and ripped domains have been observed.
PFM images of different locations displaying mixed striped and ripped domains are
shown in Figure 4.3.7. In Figures 4.3.7 a), b), and c), it appears that the striped
domains merge into ripped domains as the stripes get narrower, while Figure 4.3.7
d) shows rather large stripes transitioning to ripped domains. In Figure 4.3.7 e),
on the other hand, large blob-like domains (BLDs) appear at random locations
within the striped domains. From Figure 4.3.7, it is also observed that most of
the ripped domains are aligned within their grains, similar to the striped domains.
The exception is the ripped domains in Figure 4.3.7 f), which show no particular
alignment.
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The BLDs within the striped domains, seen in Figure 4.3.7 e), were further in-
vestigated by the use of resonance PFM. High-resolution PFM images of BLDs are
displayed in Figures 4.3.7 g) and h). The images show striped domains that appear
to stop abruptly, resulting in BLDs. In Figure 4.3.7 g), two of the domains can
be seen approaching one another and possibly forming a four-fold vortex. In Figure
4.3.7 h), a single domain penetrates the BLDs further than the rest but then appears
to stop abruptly as well. The lateral resolution in these images is approximated as
12 nm from the tip radius and its relation to the resolution as described in section
2.5.1.

Figure 4.3.7: PFM images of domain transitions in the 47MPa sample. a)-c) Smooth
transitions from striped to ripped domains, d) more abrupt transition, e) BLDs in
striped domains, f) non-directional ripped domain, and, g) and h) high-resolution
images of BLDs.
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4.4 Impact of grain orientation on the

ferroelectric domain structure

4.4.1 Grain orientation analysis

Because the domain structure varied significantly from grain to grain in the 47MPa
sample, it was of interest to determine the effect of grain orientation on the domain
structure. To obtain the orientations of the grains, EBSD was utilized to image
an area previously imaged by PFM on the out-of-plane 47MPa sample. The ini-
tial grain orientation analysis produced an orientation map of the scanned area, as
seen in Figure 4.4.1. The area for which PFM scans were performed beforehand is
highlighted in the middle of the orientation map. In the orientation map, the grains
are colored based on their orientations, following the color key in the figure. White
areas represent cavities and large cracks on the surface that could not be indexed.
The orientation of the larger grains is further illustrated by small hexagonal unit
cells, which more accurately depict their orientation. From the orientation map, no
apparent preferential orientation for the grains is observed. Furthermore, a signific-
ant number of grains, approximately 400, was used to determine the texture of the
sample.

Figure 4.4.1: Orientation map of approximately 400 grains obtained from EBSD
analysis. The hexagonal unit cells schematically display the orientation of the indi-
vidual grains. PFM measurements are done in the highlighted region. The sample
reference frame is illustrated by the coordinate system. The color key shows the
grain color based on orientation with respect to the x-axis.
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In addition to Figure 4.4.1, the pole figure and three inverse pole figures displayed in
Figure 4.4.2 also suggest that the grains have no preferential orientation. The pole
figure in Figure 4.4.2 a) shows the distribution of the {0001} plane normals (PNs)
in the sample reference frame defined in Figure 4.4.1. From Figure 4.4.2 a), it is
observed that the distribution of PNs is uniform. The inverse pole figures presented
in Figures 4.4.2 b), c), and d) show the distribution of different crystal PNs for the
x-, y-, and z-axis in the sample reference frame, respectively. To clarify, each point in
an inverse pole figure corresponds to the PN of a grain. The different crystal planes
are illustrated in Figure 4.4.2 e). The location of the point in the inverse pole figure
describes the orientation of the grain PN with respect to the axis of the inverse pole
figure. For example, if the inverse pole figure in Figure 4.4.2 d) had many points
close to the [0001] corner, then many of the grains would have their [0001] PN close
to parallel with the z-axis in the sample reference frame. However, the distributions
of PNs in the inverse pole figures are also uniform, suggesting that the grains have
no preferential orientation. The lack of a preferential orientation further supports
the lack of creep during the thermomechanical treatment [105]. The MatLab code
used to produce the different plots is presented in Appendix G.

Figure 4.4.2: Uniform distribution of grain orientations in the 47MPa sample il-
lustrated by a) pole figure showing the distribution of {0001} plane normals in the
sample reference frame, b), c), and d) inverse pole figures plotted for the sample
directions X, Y, and Z. e) Illustrations of the different crystallographic planes rep-
resented in the pole and inverse pole figures. The sample directions refer to the
different axes in the sample reference frame presented in Figure 4.4.1.
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4.4.2 Grain orientation and ferroelectric domain structure

Figure 4.4.3 compares the domain structure of grains laying approximately in the
xy-plane oriented at different angles with respect to the x-axis. The figure illustrates
that the domain structure and contrast change as the grains are rotated around the
z-axis. From the figure, it is observed that in the upmost row, where the grain is
oriented at an angle of nearly 90° with respect to the x-axis, the vertical domain
contrast dominates. The opposite is true for the lowest row, where the grain is
oriented at nearly 0°, and the lateral domain contrast dominates. Figure 4.4.3 also
shows that as the angle of the grain with respect to the x-axis increases from 0°
to 90°, the ferroelectric domain structure transitions from striped to ripped. In
addition, the figure also reveals that as the grain orientation changes, the direction
of the domain walls changes accordingly such that they align with the c-axis of the
unit cell. This is true for both the striped and ripped domains.

Figure 4.4.3: Grains lying approximately in the xy-plane rotated around the z-axis,
illustrated by unit cells, compared with the change in PFM contrast and domain
structure. The rotation means that the angle between the unit cells and the x-axis
decreases downwards. The asterisk indicates that the unit cell and PFM images
have been mirrored across a mirror plane along the x-axis.
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As displayed in Figure 4.4.3, striped domains are observed when the grains are
oriented at a low angle with respect to the x-axis, while ripped domains appear
when the angle approaches 90°. This indicates a transition from striped to ripped
domains, the angle of which was narrowed down to between 21.5° and 24.9° as shown
in Figure 4.4.4. The figure shows the lowest angle at which ripped domains were
observed, 24.9°, and the highest angle at which striped domains were observed, 21.5°.
No ripped domains were found at a lower angle, and no striped domains were found
at a higher angle, except for two grains, displayed in Figure 4.4.5. The two grains
lying approximately in the xy-plane, with angles of 34.3° and 44.4° with respect to
the x-axis, have vortex and striped domain structures, respectively. This indicates
that they experienced a lower strain than their orientation would otherwise suggest.
An explanation for this is found in the surroundings of the grains. Both grains were
located adjacent to large cavities in the structure, which could have relieved some
of the stress the grains experienced, similar to how pores reduce stress [106–108].

Figure 4.4.4: Orientation of grains, represented by unit cells, compared with a
transition from striped to ripped domains. The double asterisk indicates that the
unit cell and PFM images have been mirrored across a mirror plane along the y-axis.

Figure 4.4.5: Two exceptions to the rotation of the unit cell and the formation of
ripped domains. Both grains are adjacent to large cavities, which may have relieved
the stress of the grains, allowing them to break the trend shown in Figure 4.4.4.
The triple asterisk indicates that the unit cell and PFM images have been mirrored
across mirror planes along the x-axis and y-axis.
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After investigating how the domain structure and contrast of grains lying approx-
imately in the xy-plane were affected by rotation around the z-axis, the effect of
rotating around the y-axis was investigated as well. The result is shown in Figure
4.4.6 where the grain orientations with their respective ferroelectric domains are
displayed. The rotation around the y-axis appears to affect the ferroelectric domain
structure similarly to the rotation around the z-axis. That is, as the c-axis of the
grains align more with the z-axis, the striped domains become narrower, and the
domain structure changes from striped to ripped. In addition, the domain contrast
changes from mostly lateral to primarily vertical. However, contrary to Figure 4.4.3,
no alignment of the domain walls with the c-axis, and no transition angle for the
appearance of ripped domains was observed. The code used to produce the unit
cells in the plots is presented in Appendix H.

Figure 4.4.6: Representative grains lying approximately in the xy-plane rotated
around the z-axis, illustrated by unit cells, compared with the change in PFM con-
trast and domain structure. The rotation means that the angle between the unit
cells and the x-axis increases downwards. The double asterisk indicates that the unit
cell and PFM images have been mirrored across a mirror plane along the y-axis.
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Chapter 5

Impact of electric fields

After the study of the impact of mechanical pressure on the domain structure in
chapter 4, this chapter will look into the impact of electric fields on the domain and
domain wall dynamics in polycrystalline ErMnO3. That is, this chapter will focus
on the OR-sample introduced in section 3.4.

5.1 Piezoresponse force microscopy

Figure 5.1.1 shows both the vertical magnitude and phase from a PFM scan of the
OR-sample. The analysis focuses on the central grain. The scanned area features
both the vortex and striped domain structure as observed in other ErMnO3 grains
[8]. The vertical magnitude of the piezomechanical response is displayed in Figure
5.1.1 a). The figure shows that both domains have the same vertical magnitude
as expected from the literature discussed in section 2.5.1. The vertical phase of
the piezomechanical response is displayed in Figure 5.1.1 b), and illustrates that
the domains have a phase difference of about 180°. Because the phase difference
between the two domains is close to 180° in the vertical channel, the polarization of
the central grain is probably mostly out-of-plane, although there might be in-plane
contributions from buckling. Because of this, the rest of the analysis focuses on the
vertical response of the sample.

Figure 5.1.1: Vertical magnitude , a), and vertical phase, b), from PFM scan of the
OR-sample. Grain boundaries are indicated by dashed black lines.
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5.2 Switching spectroscopy PFM

To further probe the impact of electric fields on the ferroelectric domain structure of
polycrystalline ErMnO3, SS-PFM measurements were performed on the OR-sample.
The piezoelectric response was measured at different applied voltages for each point
in a 128×128 grid on the sample surface. Figure 5.2.1 displays the voltage-dependent
vertical piezoelectric response of the OR-sample. The figure illustrates that the fer-
roelectric domain structure remains unaffected by the applied voltages. Additionally,
in most regions, only a minor change in the piezoresponse is observed. However,
a significant change in piezoresponse is observed in a few regions. One of these
regions is indicated by a red dashed square. The origin of the piezoresponse change
is investigated in the next paragraph. Finally, it is also noted that some change
in the piezoresponse is observed at the grain boundaries, but this is not interesting
because it correlates with the topography.

Figure 5.2.1: Piezoresponse of OR-sample as a function of applied voltage. The red
dashed squares highlight the change in piezoelectric response.

To better visualize the areas where the piezoresponse was affected by the voltage,
the difference between the piezoresponse at 15V and -15V was computed and is
displayed visually in Figure 5.2.2 a). In the figure, the previously highlighted area
from Figure 5.2.1 is clearly visible as a pore and again highlighted with a dashed
red square. This area, along with other areas that show contrast in Figure 5.2.2 a)
can be observed as topographic features in Figure 5.2.2 b). Interestingly, the pores
in Figure 5.2.2 a) are dark, while the grain boundaries are bright. This reflects that
their piezoresponse changed oppositely in response to the applied voltage.

Figure 5.2.2: Comparison between difference in piezoresponse and topography of the
OR-sample. Change in piezoresponse correlated to topography indicated by simil-
arity between a) difference in piezoresponse at 15V and −15V, and b) topography
of the OR-sample.
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After having excluded the change in piezoresponse connected with the topographic
features of the sample, the voltage-dependent piezoresponse of the domains and
domain walls was investigated. Figure 5.2.3 shows the piezoresponse-voltage loops
(PVLs) along several lines in the PFM image. The lines were drawn in the fol-
lowing way to explore the piezoresponse in and between different domains. First,
the piezoresponse as a function of the applied voltage was investigated in a bright
vortex domain, see Figure 5.2.3 a). The green PVLs show that the bright domain
gives a positive piezoresponse regardless of the applied voltage and regardless of the
position. When the positive voltage is applied, the piezoresponse remains constant
at first and then suddenly increases at a critical voltage. Then when the negative
voltage is applied, the piezoresponse again remains constant before suddenly return-
ing to the low value at a critical negative voltage. The red line, displayed in figure
5.2.3 b), is drawn across a dark domain and connects two bright domains. The
red PVLs illustrate that the same behavior is found in the dark domains, where
the piezoresponse is negative regardless of the applied voltage. They also display a
gradual change in the PVLs when transitioning from bright to dark vortex domains.
The orange line, shown in Figure 5.2.3 c), is drawn across low-frequency striped do-
mains. The orange PVLs illustrate that there are abrupt changes in piezoresponse
between the dark and bright striped domains as well. Finally, the magenta line,
displayed in Figure 5.2.3 d), is drawn to investigate striped domains with high fre-
quency. The magenta PVLs show that the piezoresponse changes from positive to
negative with the applied voltage, similar to hysteresis loops, see section 2.2. Be-
cause the magenta loops show a mixed positive and negative piezoresponse, it is
difficult to discern which loop belongs to which domain type.

Figure 5.2.3: Piezoresponse-voltage loops along different lines in the vertical SS-
PFM image. The top row displays the domains investigated with each line.
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5.3 K-means clustering

In order to look for patterns in the piezoresponse of the sample, a k-means cluster
analysis was performed. In short, the analysis uses machine learning to group loca-
tions from the SS-PFM based on how similar their voltage-dependent piezoresponse
is. The result of the analysis for the region of interest, the central grain, is high-
lighted in Figure 5.3.1. The analysis was used to divide the grain into three clusters.
Cluster 1 is blue, cluster 2 is orange, and cluster 3 is yellow. By comparing the
cluster image in Figure 5.3.1 to the PFM images in Figure 5.2.1, it becomes clear
that clusters 1 and 3 correspond to the bright and dark domains, respectively. The
last cluster, cluster 2, corresponds to the domain walls separating the domains and
the topographic features of the grain, such as the pore highlighted in Figure 5.2.2.
However, not all of the domain walls are included in cluster 2.

Figure 5.3.1: K-means cluster analysis of vertical SS-PFM data. The Python module
used is presented in ref. [109].

Further inspection of the clusters was carried out by plotting the average piezore-
sponse of each cluster. The plots are displayed in Figure 5.3.2. The piezoresponse
of cluster 1 initially decreases with the applied positive voltage before it quickly
increases and reaches saturation at 15V. Then when the voltage is decreased, the
piezoresponse again increases until a critical voltage is reached around 0V. As the
voltage is decreased further, the piezoresponse rapidly decreases until saturation at
−15V is reached. Then finally, as the voltage again is increased, the piezoresponse
starts to increase but then decreases until it reaches a minimum at 0V. However,
regardless of the applied voltage, the piezoresponse remains mainly positive. The
same trend is observed for clusters 2 and 3. However, the piezoresponse of clusters
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2 and 3 are shifted vertically downwards such that cluster 2 shows both negative
and positive piezoresponse, and cluster 3 shows only a negative piezoresponse. It
is observed that the piezoresponse of cluster 1 matches the piezoresponse observed
for the bright domains in Figure 5.2.3, indicated by the green PVLs. Cluster 3, on
the other hand, matches the dark domains with its continuously negative piezore-
sponse, while cluster 2 matches the piezoresponse observed at the domain walls,
which transitions from positive to negative depending on the applied voltage.

Figure 5.3.2: Mean piezoresponse of clusters from k-means cluster analysis.

An additional analysis of the impact of electrical fields, not included here, is presen-
ted in Appendix E. The Python code used to perform the different analyses of the
electric fields on the domain structure is presented in Appendix F.
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Chapter 6

Discussion

6.1 Structural and microstructural analysis

The initial characterization of the structure was done through XRD. The absence
of secondary phases in the X-ray diffractogram, see Figure 4.1.1, indicates that the
ErMnO3 did not react with the MnO. From literature, it is established that high
temperature and pressure can affect the grain size of ceramics [110]. Therefore, fur-
ther characterization was carried out with SEM. The SEM micrographs in Figure
4.2.1 display an average grain size of 12.8±1.7 µm regardless of the applied pres-
sure, and indicate the minuscule effect of the applied pressure on the grain size.
Considering this, it is likely that the changes observed in the ferroelectric domain
structure originate from the strain induced by the applied pressure and not a change
in grain size, as previously observed for grains varying between 1.5 µm and 19.0 µm
in size [8]. Additional evidence of the structural rigidity of the samples was found
when EBSD was performed. The pole and inverse pole figures presented in Figure
4.4.2, showed that the approximately 400 grains investigated had no preferential
orientation, indicating the absence of creep in the 47MPa sample [105].

Another observed feature of the microstructure is inter- and intragranular cracks.
Cracks are present in all the samples, as observed in Figure 4.2.1. These cracks are
likely due to significant thermal stresses induced during cooling [102, 103]. Cracks
influence the formation of ferroelectric domains by releasing stress. Thus, cracks
appearing during the annealing could reduce the stress experienced by the grains
and affect the resulting domain structure. However, in most cases, the effect is
negligible, and the domain walls continue across the cracks as in Figures 4.2.1 b)
and c).

6.2 Global stress fields

The ferroelectric domain structure observed in the 0MPa polycrystalline ErMnO3

sample, displayed in Figure 4.3.1, is similar to the one described by Shultheiß et
al.[8]. The similarities include the presence of both the vortex and striped domains,
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as well as the confinement of ferroelectric domains to their respective grains, and
the tendency of domain walls to orient themselves with an angle of approximately
90° to the grain boundaries. The two domain structures observed, the vortex and
striped domains, have also been thoroughly documented for hexagonal manganite
single crystals previously [13, 27, 34, 56, 111]. However, in this thesis, the elastic
strain has been included as an additional degree of freedom and given rise to new
features not reported in the literature. These features include striped domains with
domain walls oriented parallel to the c-axis of the grain, as in Figure 4.4.3, and a
strong correlation between the domain frequency and the elastic strain illustrated
in Figure 4.3.4. In addition to these new features, a novel domain structure called
ripped domains, see Figure 4.3.3, has also been observed in the most strained sample.
The different features will be discussed further in the following paragraphs.

As mentioned in the previous paragraph, the application of uniaxial pressure on
the samples significantly impacted their domain structures. For instance, as shown
in Figure 4.3.5, the higher the applied pressure, the higher the average domain
frequency. The 0MPa sample had an average domain frequency of 0.55 µm−1 while
the 47MPa sample had an average domain frequency of 2.42 µm−1. This correlation
is thought to originate from the creation, annihilation, and expulsion of vortex pairs
which divides the vortex domains into narrower striped domains as described in
section 2.4. That strain can move vortices and cause vortex domains to evolve into
striped domains have been shown experimentally and with phase-field simulations
for single crystals [34, 75, 84]. However, this is the first experimental study of the
effect in polycrystalline hexagonal manganites. The results of which, presented in
Figures 4.3.1 and 4.3.2, show that the same trend holds for polycrystalline samples.

In contrast to the average domain frequency, the average vortex density did not
change significantly with the applied pressure, as seen in Figure 4.3.6. There are
two plausible contributions to this. The first contribution comes from the movement,
creation, and annihilation of vortices. At higher applied pressures, many vortices
are likely driven out of the grains, reducing the number of vortices [34]. However,
at the same time, some grains will contain more vortices because vortices can also
be created by strain [75]. If the two effects cancel each other out, the average vortex
density will remain constant for the different pressures. The second contribution
to the constant vortex density is how the vortices were counted. In the case of the
47MPa sample, the ripped domains were not included in the count, as they presented
a major uncertainty. If they had been included, the average vortex density of the
47MPa sample would have been lower because no vortices were observed in the
ripped domains.

The influence of the creation and expulsion of vortices with the applied pressure is
clearly visible in the standard deviations of the average vortex densities, represented
by the error bars in Figure 4.3.6. In the 0MPa sample, the grains contain vortex
domains that are mostly the same size and thus have nearly the same number of
vortices per area. At the higher pressures, on the other hand, the grains are divided
into two categories: type 1, with none or very few vortices, and type 2, with many
vortices. This duality results in the large standard deviations apparent in the figure.
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Another interesting feature of Figure 4.3.6 is the large difference in vortex density
between the polycrystalline 0MPa sample and the single crystals from the literature.
The single crystals have average vortex densities more than 6 and 10 times larger
than that observed in the 0MPa sample, even though they were all cooled at the
same rate. The origin of this discrepancy is likely the annihilation of vortex cores
at the grain boundaries due to intergranular stresses present in all polycrystalline
samples [8].

6.3 Local strain fields

Thus far, the discussion has focused on the average domain structure of the samples.
This section, on the other hand, will focus on the effect of the grain orientation on
the local domain structure. This was investigated by the use of PFM followed by
EBSD at the same location on the 47MPa sample. Figures 4.4.3 and 4.4.6 show the
three trends observed. The first trend is that as the orientations of the grains change,
the domain contrasts change too. This is expected as the polarization in ErMnO3

lies parallel with the c-axis of the grain and thus changes with its orientation. For
instance, in Figure 4.4.3, the upmost row displays good vertical contrast and poor
lateral contrast. This is because the c-axis of the upmost grain points in the y-
direction in the xy-plane, which causes the cantilever of the PFM to buckle since
the scan is along the x-direction. This phenomenon is described in more detail in
section 2.5.1. The lowest row in Figure 4.4.6 also shows a better vertical contrast
than lateral because the c-axis points out of the xy-plane and thus causes deflection
of the PFM cantilever. The opposite is seen in the lowest row in Figure 4.4.3, where
the c-axis is aligned with the x-axis resulting in torsion of the PFM cantilever and
a lateral signal.

The second trend observed in Figures 4.4.3 and 4.4.6 is that there is a change in the
domain structure of the grains as their orientation changes. For example, in Figure
4.4.3, the two lower rows display grains with striped domains where the c-axes of
the grains are close to parallel with the x-axis. However, in the upper rows, where
the c-axis is closer to parallel with the y-axis, narrower striped domains and ripped
domains are observed. This change in domain structure indicates that the grains
experience different strains at different orientations as these are correlated [34, 75,
84]. Figure 4.4.6 also shows a gradual change in the domain structure where the
striped domains get narrower and eventually ripped when moving downwards in the
figure.

The third trend, observed in Figure 4.4.3, is that the domain walls in both the
striped and ripped domains align parallel to the c-axis of the grain they are in.
This could suggest that the vortex cores travel more easily along the c-axis of the
crystal structure. The reason for this might be that there is less resistance along
the c-axis for the vortex core or because this is the axis in which the Magnus-type
force discussed in section 2.4 is pushing the vortex cores. However, the same trend
is not seen in Figure 4.4.6. In this figure, the domain walls orient in the same
direction within each grain, but the direction does not appear to correlate with
the orientation of the grain. This could indicate that the strains in these grains
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are primarily induced by neighboring grains pressing on the grains instead of the
orientation of the grains.

In order to further study the trends related to domain structure, a simple program
was written to simulate a grain under uniaxial pressure at different orientations
and calculate the associated experienced strains. The workings of the program are
explained in detail in Appendix C, and the Python code for the program is included
in Appendix ??. Figure 6.3.1 displays a plot of the simulated strains experienced
by a grain lying in the xy-plane rotated around the z-axis, similarly to the grains
in Figure 4.4.3. The plot shows that the difference between εxx and εyy increases as
the c-axis of the grain approaches parallel with the x-axis, or an angle of 90°. From
literature, it is theorized that this should increase the movement of the vortices and
lead to more and narrower striped domains [34, 75, 84]. However, this is the opposite
of what was observed in Figure 4.4.3, where the striped domains are narrower in the
grains with a c-axis close to parallel with the y-axis or 0°.

Figure 6.3.1: Simulated strains with the application of 47MPa along the y-axis as
a function of rotating the unit cell around the z-axis.

To investigate the trend observed in Figure 4.4.6, the same program was used to
simulate an orientation around the y-axis. Because the uniaxial pressure is applied
parallel to the y-axis, a grain rotation around the y-axis should not change the
experienced strain in the grain, as the plot shows. However, Figure 4.4.6 demon-
strates that the ferroelectric domains do change when the grain is rotated around
the y-axis. An explanation for this is found when one considers that the simple pro-
gram does not take strains from intergranular interactions into account. Thus, the
change in domain structure observed in Figure 4.4.6 suggests that the influence of
intergranular stresses from neighboring grains on the domain structure is significant.
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Figure 6.3.2: Simulated strains with the application of 47MPa along the y-axis as
a function of rotating the unit cell around the y-axis.

6.4 Ripped domains

Thus far, two types of domain structures have been reported in the literature, vortex
domains and striped domains, presented in Figures 4.3.3 a) and b), respectively [27,
34, 56, 111]. Interestingly, this study has discovered a potentially new type of
domain structure called ripped domains, displayed in Figure 4.3.3 c). As seen in the
figure, the ripped domains are fundamentally different from the vortex and striped
domains. In addition to the ripped domains, another domain structure was found
in some of the striped domains, where the striped domains appear to stop abruptly,
forming a BLD. These BLDs are presented in Figure 4.3.7 e). The ripped domains
and the BLDs are only found in the 47MPa sample and are therefore thought to be
the result of strains exceeding what is required for the formation of striped domains.
Furthermore, because both phenomena appear to break the normal ordering of the
domains observed in the vortex and striped domains, and because it is difficult to
distinguish between mixed striped and ripped domains and striped domains with
BLDs, the two phenomena are likely connected. One possibility is that the BLDs
are the precursor for the ripped domains. With this in mind, the origins of the two
phenomena will be discussed together in the following paragraphs.

The first hypothesis is that the phenomena are directly caused by increased strains,
similar to how increased strains transform vortex domains into striped domains as
discussed in section 2.4. The first evidence supporting this hypothesis is the fact
that ripped domains have only been observed in the 47MPa sample, indicating that
the strains in the 0MPa and 24MPa samples are not adequate. The second piece
of evidence is that, as discussed in the previous section, there is a strong correlation
between the orientations of the grains and the strains they experience. This is further
evidence because the ripped domains are only found at specific orientations within
the 47MPa sample. To be more specific, as Figure 4.4.4 shows, the ripped domains
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in grains lying in the xy-plane are only observed when the grains have an angle of
more than or equal to 24.9° with respect to the x-axis. The figure also shows that
vortex and striped domains in these grains are only observed at angles equal to or
below 21.5° with respect to the x-axis. The two exceptions to this, shown in Figure
4.4.5, are likely a result of the large neighboring cavities, which can relieve the stress
these grains experienced, similar to pores discussed in literature [106–108]. Further
support for the hypothesis that ripped domains are a result of great strains comes
from Figure 4.3.7. The figure displays several examples of mixed striped and ripped
domains in the 47MPa sample, similar to the mixed vortex and striped domains
found in the 24MPa sample as shown in Figure 4.3.2 b). Especially interesting are
Figures 4.3.7 a), b), and c), where there is a smooth transition from striped domains
to ripped domains as the striped domains get narrower. This gradual constriction of
the domains suggests the presence of a strain gradient and that the ripped domains
occur at the highest strain. This would be equivalent to the transition from vortex
domains to striped domains.

The second hypothesis for the formation of the ripped domains is that the strain is an
indirect cause and that the direct cause of the ripped domains is PEDs, discussed in
section 2.4. These PEDs can allow the formation of AP and FE domain walls which
breaks the typical domain sequence. Furthermore, it has been found that PEDs can
be introduced in BaTiO3 when a uniaxial pressure of 20-50MPa is applied [32]. It
is therefore not unreasonable to assume that some PEDs might have formed in the
polycrystalline ErMnO3 sample, which was exposed to a uniaxial pressure of 47MPa,
even though there are no indications of creep in the sample. Because the BLDs in
Figure 4.3.7 e) appear to break the typical domain sequence, they were investigated
further with high-resolution resonance PFM. The idea was to try and observe very
thin domains passing through the BLDs. The images from the investigation are
shown in Figures 4.3.7 g), and h), and have an approximate resolution of 12 nm.
No thin domains were observed to pass through the BLDs in the images, suggesting
that the striped domains do not shrink. However, even with the high resolution,
it is possible that the domains have become too narrow to be resolved from the
surrounding domains, as they can become as narrow as a few unit cells in theory
[78]. A plausible cause for such an anisotropic shrinkage of one domain type is self-
poling, as observed for vortex domains by Chae et al. [77]. This self-poling was
thought to be caused by a difference in the oxygen content on the surface and in the
bulk, making the negatively charged domains more energetically favorable on the
surface and leading to the shrinkage of the positively charged surface domains. A
similar effect may be the cause of the observed BLDs if the high strains experienced
by the grains affect the density of oxygen or other elements on the surface of the
grains. Further investigation of, for instance, defect densities is required to resolve
the question of the origin of blob-like and ripped domains.

6.5 Domain dynamics in polycrystalline ErMnO3

The electrical probing of the domain dynamics in the OR-sample bore several inter-
esting results. For instance, Figure 5.2.1 which displays the vertical piezoresponse
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as a function of the applied voltage, shows that the piezoresponse in most areas
remained unchanged by the applied voltages. Only in a few areas was a notice-
able change in the piezoresponse observed. However, the change in piezoresponse in
these areas was found to be correlated with the topographic features of the grain, as
shown in Figure 5.2.2, and thus not considered ferroelectric switching. Furthermore,
no change in the domain structure was observed. This might be due to domain wall
pinning by defects, or a higher coercive field due to the small grain size [22, 112].

Further analysis of the domain dynamics was done by analyzing the change in
piezoresponse at different voltages along lines in different domain structures, as
shown in Figure 5.2.3. The line analysis showed that the piezoresponse remained
positive in the bright domains and negative in the dark domains regardless of the
applied voltage. This could indicate that there is no ferroelectric switching in the
domains. The line analysis also showed that the transition across domains could
be both gradual and abrupt, which might be influenced by domain wall movement.
That is, if a domain wall moves towards the tip in response to the applied voltage,
it is expected that the piezoresponse would change more gradually than if there was
no domain wall movement [5]. This is because, as the tip moves from one domain to
another, it picks up a mixed piezoresponse of the two adjacent domains. The area
where it picks up this mixed response is increased if the domain wall moves with the
tip. The line analysis also found that for high-frequency striped domains, the loops
remained almost constantly in a mixed positive and negative state, similar to what
was observed at the transition between domains in Figure 5.2.3. This result could
stem from an average piezoresponse of the adjacent domains, as mentioned in ref.
[5], but domain wall movement could also be involved.

The results from the line analysis discussed in the previous paragraph were further
investigated through k-means clustering. The k-means clustering analysis grouped
regions of the sample into three different clusters based on how similar the piezore-
sponse was at the different applied voltages. The resulting clusters, displayed in
Figure 5.3.1, are easily explained by comparing the figure with Figure 5.2.1. Cluster
1 corresponds to the bright domains seen in Figure 5.2.1, while cluster 3 corresponds
to the dark domains. The last cluster, cluster 2, corresponds to the domain walls
and the topographic features of the grain. These observations are further supported
by the similarities between the PVLs from the line analysis and the average PVLs of
the clusters shown in Figure 5.3.2. The average PVLs, shown in Figure 5.2.1, better
illustrate the voltage-dependent piezoresponse of the different domains by reducing
the noise that is seen in the line analysis figure. The loops show that cluster 1 and
cluster 3 remain positive and negative, respectively, regardless of the applied voltage.
Figure 5.2.1, also shows that the loops, although they resemble the hysteresis loop in
Figure 2.2.4, are different. The biggest difference being the increase in piezoresponse
when the positive voltage is reduced back to zero. From the different analyses of
the voltage-dependent piezoresponse, it is not possible to conclude whether there is
ferroelectric switching in the sample or not. The change in piezoresponse can stem
from ferroelectric switching, but alternate candidates include Maxwell stress [113],
joule heating [114] and charge injection [115].
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Chapter 7

Conclusion and outlook

The aim of this thesis was to investigate the impact of mechanical pressure and elec-
tric fields on the ferroelectric domain structure in polycrystalline ErMnO3, which is
of special interest due to its robust domain structure and relatively easy synthesis.
This was primarily done using EBSD, PFM, and SS-PFM. The main conclusion
from the experiments is that the domain structure of hexagonal ErMnO3 can be
engineered with non-uniform strain, while no apparent change was observed when
electric fields were applied. The latter is possibly a result of domain wall pinning
due to defects or the enhancement of the coercive field due to grain size. When
influenced by strain, the domain structure gradually changes from vortex domains
to striped domains, and the striped domains become narrower with higher strain.
The engineering of the ferroelectric domains relies on the movement of the topolo-
gically protected vortex cores, which are not found in common ferroelectrics such as
BaTiO3 and Pb[ZrTi]O3. In these ferroelectrics, the strain moves the ferroelectric
domain walls resulting in a preferential orientation of the ferroelectric domains. The
findings in this thesis show that the interaction between elastic strains and the topo-
logically protected vortex cores supplies domain engineering with an additional tool
applicable to materials that host topologically protected vortex cores. This includes
other hexagonal manganites, hexagonal gallates, hexagonal tungsten bronzes, and
hexagonal ferrites.

While a correlation between the orientation of the grains and the ferroelectric do-
main structure was found, future work should focus on improving the understanding
of the strain fields in the polycrystalline material by utilizing finite element simula-
tions. Such simulations could give insight into the relative importance of the grain
orientation, geometry, and neighboring grains on the ferroelectric domain structure.
It would also increase the understanding of the formation of striped and ripped do-
mains. Further investigation of the ripped domains could include the use of HAADF
imaging to get a better understanding of the mechanisms on the unit cell scale. It
would also be interesting to probe deeper into the samples to see how the ripped
domains penetrate into the bulk. Lastly, temperature- and frequency-dependent
dielectric spectroscopy measurements are of importance to evaluate the collective
piezo- and dielectric response of the domain walls in the material for future applic-
ations in actuators, capacitors, and more.
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Appendix A

Vertical piezoresponse PFM
images

The PFM scan obtains information on the lateral and vertical piezoresponse. These
images are similar, but the contrast of different domains can vary greatly. The
vertical piezoresponse PFM images of the in-plane face are shown in Figure A.0.1,
while the images of the vertical face are shown in Figure A.0.2.
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Appendix B

Interesting PFM images

This appendix shows some interesting PFM images that were not included in the
results chapter of the thesis. Figure B.0.1 shows two candidates for 4-state and
8-state vortices discussed in section 2.4.

Figure B.0.1: Examples of 4-state and 8-state vortices observed in the 47MPa
sample.

Some other interesting domain structures are presented in the following figures.
Figure B.0.2 shows what is sometimes referred to as a bubble domain, while Figure
B.0.3 shows a ferroelectric swirl in the different channels.
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Figure B.0.2: Bubble domain seen in the 47MPa sample.

Figure B.0.3: Piezoresponse difference in swirling domains in the 47MPa sample.
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Appendix C

Grain orientation and strain
program

The orientations of the grains calculated in the EBSD are given by intrinsic Bunge
Euler angles [116]. That is, the orientation of a grain is given by the three angles
ϕ1, ψ, and ϕ2. The first angle ϕ1 is the angle of rotation around the original z-axis
of the grain. As the grain rotates, the local coordinate system of the grain changes
from the global x, y, z system to x′, y′, z′. The second angle, ψ, is then the angle of
rotation around the new x-axis, x′. Again, the local coordinate system changes and
becomes x′′, y′′, z′′. The third angle, ϕ2, is the rotation angle around the new local
z-axis, z′′.

The program takes in the three orientation angles of the grain, ϕ1, ψ, and ϕ2 and
stores them. Then three rotation matrices are defined:

a =

cosϕ1 − sinϕ1 0
sinϕ1 cosϕ1 0
0 0 1

 (C.1)

b =

1 0 0
0 cosψ − sinψ
0 sinψ cosψ

 (C.2)

c =

cosϕ2 − sinϕ2 0
sinϕ2 cosϕ2 0
0 0 1

 (C.3)

Then a full rotation matrix for extrinsic rotation of the grain is made, by multiply-
ing the matrices together in reverse. This enables the conversion from intrinsic to
extrinsic rotation due to the following relationship:
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a′ × b′ × c′ = c× b× a (C.4)

where, the left-hand side matrices represent intrinsic rotation and the right-hand
side matrices extrinsic rotations. Thus the complete extrinsic rotation matrix is
defined thus:

X = c× b× a (C.5)

Then the applied stresses are inserted into the stress matrix. In our case, the only
value inserted was the σy corresponding to the uniaxially applied pressure in the
y-direction of the out-of-plane face. The stress matrix is shown below:

σ =

σx τxy τxz
τxy σy τyz
τxy τyz σz

 (C.6)

Then the local stress experienced by the rotated crystal is calculated by multiplying
the stress applied in the global coordinate system with the rotation matrix:

σ′ = X × σ ×XT (C.7)

Then the elastic constant matrix is defined as follows:

C =


C1 C2 C3 0 0 0
C2 C1 C3 0 0 0
C3 C3 C4 0 0 0
0 0 0 C5 0 0
0 0 0 0 C5 0
0 0 0 0 0 C6

 (C.8)

The constants were acquired as described in section C.1.

Using the local stress matrix, σ′, a tensor is made:

σ =


σx
σy
σz
τxy
τxz
τyz

 (C.9)
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Then the local strain in the crystal with the given orientation is calculated by
multiplying the inverse constants matrix with the stress tensor:

ε = C−1 × σ (C.10)

C.1 Acquisition of constants

From the article by Poirier et al. [117] four of the constants, C1 =185GPa, C4 =298GPa,
C5 =98.6GPa and C6 =59.4GPa for YMnO3 at 4K were acquired. The remain-
ing constants were found with certain assumptions. The first assumption was that
interatomic forces are central if ions are at centers of symmetry, and the crystal is
stress free. With this assumption the following relation holds:

C2 = C1 − 2 · C6 (C.11)

This gave the result C2 =6.62GPa.

To find the last constant, C3, the Voigt-Reuss-Hill approximation[118] was used. By
using the elastic modulus, E =10.89GPa [119] and the shear modulus, G =4.67GPa
[119], the bulk modulus, B, of polycrystalline YMnO3 could be approximated by
the following expression by solving for B:

E =
9BG

3B +G
(C.12)

Then the three following expressions were combined and solved for C3:

B =
BV +BR

2
(C.13)

BV =
2C1 + 2C2 + 4C3 + C4

9
(C.14)

BR =
(C1 + C2)C4 − 2C2

3

C1 + C2 − 4C3 + 2C4

(C.15)

The result of the lengthy calculation was that C3 could be approximated as 19.99GPa.
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Appendix D

Python code for strain calculations

This appendix presents the Python code used to simulate the strains experienced
by the grains at different orientations.

#### Script for plotting the strains as the orientation of the

grains change↪→

import numpy as np

from numpy import cos, sin

import matplotlib.pyplot as plt

def Calc_and_plot_strains(sX, sY, sZ, tXY, tXZ, tYZ, phi1, Phi,

phi2, iAng, degrees):↪→

super_strain = [[], [], [], [], [], []]

for i in range(degrees + 1):

[phi1_0, Phi_0, phi2_0] = [phi1, Phi, phi2]

if iAng == 'phi1':

phi1_0 += i

elif iAng == 'Phi':

Phi_0 += i

else:

phi2_0 += i

# Turn angle into radians

rphi1 = np.deg2rad(phi1_0) # Rotation around the z-axis

rPhi = np.deg2rad(Phi_0) # Rotation around the x'-axis

rphi2 = np.deg2rad(phi2_0) # Rotation around the z''-axis

# z-axis

a = np.array([[cos(rphi1), -sin(rphi1), 0], [sin(rphi1),

cos(rphi1), 0], [0, 0, 1]])↪→

# x'-axis

b = np.array([[1, 0, 0], [0, cos(rPhi), -sin(rPhi)], [0,

sin(rPhi), cos(rPhi)]])↪→

# z''-axis
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c = np.array([[cos(rphi2), -sin(rphi2), 0], [sin(rphi2),

cos(rphi2), 0], [0, 0, 1]])↪→

x = (c @ b) @ a # The complete rotation matrix

stress = np.array([[sX, tXY, tXZ], [tXY, sY, tYZ], [tXZ,

tYZ, sZ]]) # Stress matrix in global coordinates↪→

# Calculate the stress matrix for local coordinates

stress_prime = x @ stress @ np.transpose(x)

# Make the stress tensor

stress_tens = np.array([stress_prime[0][0],

stress_prime[1][1], stress_prime[2][2],↪→

stress_prime[0][1], stress_prime[0][2],

stress_prime[1][2]])↪→

# Calculate the strains from the elastic constants and the

stress↪→

c = [181500, 62700, 199900, 298000, 98600] # Using MPa

# Make the elastic constants matrix

constants = np.array([[c[0], c[1], c[2], 0, 0, 0],

[c[1], c[0], c[2], 0, 0, 0],

[c[2], c[2], c[3], 0, 0, 0],

[0, 0, 0, c[4], 0, 0],

[0, 0, 0, 0, c[4], 0],

[0, 0, 0, 0, 0, 0.5 * (c[0] - c[1])]])

# Invert constants matrix

constants_inv = np.linalg.inv(constants)

# Multiply inverse matrix and stresses to get strains

strain = constants_inv @ stress_tens

# Put the strains for each orientation into the super strain

used to plot all the strains↪→

for i in range(len(strain)):

super_strain[i].append(strain[i])

## Make the data easier to look at by scaling it by 1000

for i in range(len(super_strain)):

super_strain[i] = [element * 1000 for element in

super_strain[i]]↪→

## Make plot

plt.figure(figsize=(12, 8))

plt.rc('axes', labelsize=20) # fontsize of the x and y labels

# decide what angle to use fo the x-axis of the plot

subscript = str.maketrans("0123456789", "")

if iAng == 'phi1':

angle = '\u03C6' + '1'.translate(subscript)

extra_x = phi1

elif iAng == 'Phi':

angle = '\u03A6'
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extra_x = Phi

else:

angle = '\u03C6' + '2'.translate(subscript)

extra_x = phi2

dist = degrees + 1

x = np.array(np.linspace(0, dist - 1, dist))

for i in range(len(x)):

x[i] += extra_x

plt.xlabel(angle)

y1 = []

y2 = []

y3 = []

y4 = []

y5 = []

y6 = []

# Put the different strains into their own lists

for j in range(len(super_strain[0])):

y1.append(super_strain[0][j])

y2.append(super_strain[1][j])

y3.append(super_strain[2][j])

y4.append(super_strain[3][j])

y5.append(super_strain[4][j])

y6.append(super_strain[5][j])

plt.ylabel('strains scaled by 1000')

L = 2

plt.plot(x, y1, label='\u03B5xx', lw=L)

plt.plot(x, y2, label='\u03B5yy', lw=L)

plt.plot(x, y3, label='\u03B5zz', lw=L)

plt.plot(x, y4, label='\u03B5xy', lw=L)

plt.plot(x, y5, ls='--', label='\u03B5xz', lw=L)

plt.plot(x, y6, ls =':', label='\u03B5yz', lw=L)

title = 'From: ' + 'phi1:' + str(phi1) + ' Phi:' + str(Phi) + '

phi2:' + str(phi2)↪→

plt.title(title, fontdict=None, loc='center', pad=None) # Title

of graph↪→

plt.legend(bbox_to_anchor=(1.085, 1.0), prop={'size': 9})

name = str(phi1) + '-' + str(Phi) + '-' + str(phi2) + '_' +

str(iAng) + '_plot'↪→

plt.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/EBSD/Simulations/NewPlots/' + name

+ '.png', dpi=100,

↪→

↪→

pad_inches=1)

def Calc_and_plot_strains_global(sX, sY, sZ, tXY, tXZ, tYZ, phi1,

Phi, phi2, iAng, degrees):↪→

super_strain = [[], [], [], [], [], []]
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for i in range(degrees + 1):

[phi1_0, Phi_0, phi2_0] = [phi1, Phi, phi2]

if iAng == 'phi1':

phi1_0 += i

elif iAng == 'Phi':

Phi_0 += i

else:

phi2_0 += i

# Turn angle into radians

rphi1 = np.deg2rad(phi1_0) # Rotation around the z-axis

rPhi = np.deg2rad(Phi_0) # Rotation around the x'-axis

rphi2 = np.deg2rad(phi2_0) # Rotation around the z''-axis

# z-axis

a = np.array([[cos(rphi1), -sin(rphi1), 0], [sin(rphi1),

cos(rphi1), 0], [0, 0, 1]])↪→

# x'-axis

b = np.array([[1, 0, 0], [0, cos(rPhi), -sin(rPhi)], [0,

sin(rPhi), cos(rPhi)]])↪→

# z''-axis

c = np.array([[cos(rphi2), -sin(rphi2), 0], [sin(rphi2),

cos(rphi2), 0], [0, 0, 1]])↪→

x = (c @ b) @ a # The complete rotation matrix

stress = np.array([[sX, tXY, tXZ], [tXY, sY, tYZ], [tXZ,

tYZ, sZ]]) # Stress matrix in global coordinates↪→

# Calculate the stress matrix for local coordinates

stress_prime = x @ stress @ np.transpose(x)

# Make the stress tensor

stress_tens = np.array([stress_prime[0][0],

stress_prime[1][1], stress_prime[2][2],↪→

stress_prime[0][1], stress_prime[0][2],

stress_prime[1][2]])↪→

# Calculate the strains from the elastic constants and the

stress↪→

c = [181500, 62700, 199900, 298000, 98600] # Using MPa

# Make the elastic constants matrix

constants = np.array([[c[0], c[1], c[2], 0, 0, 0],

[c[1], c[0], c[2], 0, 0, 0],

[c[2], c[2], c[3], 0, 0, 0],

[0, 0, 0, c[4], 0, 0],

[0, 0, 0, 0, c[4], 0],

[0, 0, 0, 0, 0, 0.5 * (c[0] - c[1])]])

# Invert constants matrix

constants_inv = np.linalg.inv(constants)

# Multiply inverse matrix and stresses to get local strains

strain = constants_inv @ stress_tens
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### Convert the local strain back to global coordinates

y = np.linalg.inv(x) # Inverse of x

# Make a strain matrix of the local strain tensor

strain_prime_mat = np.array([[strain[0], strain[3],

strain[4]], [strain[3], strain[1], strain[5]],↪→

[strain[4], strain[5],

strain[2]]]) # Local

strain matrstrain[5

↪→

↪→

# Rotate local strain matrix back to global

global_strain = y @ strain_prime_mat @ np.transpose(y)

# Make global strain tensor

global_strain_tens = np.array([global_strain[0][0],

global_strain[1][1], global_strain[2][2],↪→

global_strain[0][1], global_strain[0][2],

global_strain[1][2]])↪→

# Put the strains for each orientation into the super strain

used to plot all the strains↪→

for i in range(len(global_strain_tens)):

super_strain[i].append(global_strain_tens[i])

## Make the data easier to look at by scaling it by 1000

for i in range(len(super_strain)):

super_strain[i] = [element * 1000 for element in

super_strain[i]]↪→

## Make plot

plt.figure(figsize=(12, 8))

plt.rc('axes', labelsize=20) # fontsize of the x and y labels

# decide what angle to use fo the x-axis of the plot

subscript = str.maketrans("0123456789", "")

if iAng == 'phi1':

angle = '\u03C6' + '1'.translate(subscript)

extra_x = phi1

elif iAng == 'Phi':

angle = '\u03A6'

extra_x = Phi

else:

angle = '\u03C6' + '2'.translate(subscript)

extra_x = phi2

dist = degrees + 1

x = np.array(np.linspace(0, dist - 1, dist))

for i in range(len(x)):

x[i] += extra_x

plt.xlabel(angle)

y1 = []

y2 = []

y3 = []

y4 = []

85



APPENDIX D. PYTHON CODE FOR STRAIN CALCULATIONS

y5 = []

y6 = []

# Put the different strains into their own lists

for j in range(len(super_strain[0])):

y1.append(super_strain[0][j])

y2.append(super_strain[1][j])

y3.append(super_strain[2][j])

y4.append(super_strain[3][j])

y5.append(super_strain[4][j])

y6.append(super_strain[5][j])

plt.ylabel('strains scaled by 1000')

L = 2

plt.plot(x, y1, label='\u03B5xx', lw=L)

plt.plot(x, y2, label='\u03B5yy', lw=L)

plt.plot(x, y3, label='\u03B5zz', lw=L)

plt.plot(x, y4, label='\u03B5xy', lw=L)

plt.plot(x, y5, ls='--', label='\u03B5xz', lw=L)

plt.plot(x, y6, ls =':', label='\u03B5yz', lw=L)

title = 'Global strains, From: ' + 'phi1:' + str(phi1) + '

Phi:' + str(Phi) + ' phi2:' + str(phi2)↪→

plt.title(title, fontdict=None, loc='center', pad=None) #

Tittel på graf↪→

plt.legend(bbox_to_anchor=(1.085, 1.0), prop={'size': 9})

name = 'Global strains ' + str(phi1) + '-' + str(Phi) + '-' +

str(phi2) + '_' + str(iAng) + '_plot'↪→

plt.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/EBSD/Simulations/NewPlots/' + name

+ '.png', dpi=100,

↪→

↪→

pad_inches=1)

def Calc_and_plot_strainsX(sX, sY, sZ, tXY, tXZ, tYZ, phi1, Phi,

phi2, iAng, degrees):↪→

super_strain = [[], [], [], [], [], []]

for i in range(degrees + 1):

[phi1_0, Phi_0, phi2_0] = [phi1, Phi, phi2]

if iAng == 'phi1':

phi1_0 += i

elif iAng == 'Phi':

Phi_0 += i

else:

phi2_0 += i

# Turn angle into radians

rphi1 = np.deg2rad(phi1_0) # Rotation around the z-axis

rPhi = np.deg2rad(Phi_0) # Rotation around the x'-axis

rphi2 = np.deg2rad(phi2_0) # Rotation around the z''-axis

# z-axis
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a = np.array([[cos(rphi1), -sin(rphi1), 0], [sin(rphi1),

cos(rphi1), 0], [0, 0, 1]])↪→

# x'-axis

b = np.array([[1, 0, 0], [0, cos(rPhi), -sin(rPhi)], [0,

sin(rPhi), cos(rPhi)]])↪→

# z''-axis

c = np.array([[cos(rphi2), -sin(rphi2), 0], [sin(rphi2),

cos(rphi2), 0], [0, 0, 1]])↪→

x = (c @ b) @ a # The complete rotation matrix

stress = np.array([[sX, tXY, tXZ], [tXY, sY, tYZ], [tXZ,

tYZ, sZ]]) # Stress matrix in global coordinates↪→

# Calculate the stress matrix for local coordinates

stress_prime = x @ stress @ np.transpose(x)

# Make the stress tensor

stress_tens = np.array([stress_prime[0][0],

stress_prime[1][1], stress_prime[2][2],↪→

stress_prime[0][1], stress_prime[0][2],

stress_prime[1][2]])↪→

# Calculate the strains from the elastic constants and the

stress↪→

c = [185000, 66200, 199900, 298000, 98600] # Using MPa

# Make the elastic constants matrix

constants = np.array([[c[0], c[1], c[2], 0, 0, 0],

[c[1], c[0], c[2], 0, 0, 0],

[c[2], c[2], c[3], 0, 0, 0],

[0, 0, 0, c[4], 0, 0],

[0, 0, 0, 0, c[4], 0],

[0, 0, 0, 0, 0, 0.5 * (c[0] - c[1])]])

# Invert constants matrix

constants_inv = np.linalg.inv(constants)

# Multiply inverse matrix and stresses to get strains

strain = constants_inv @ stress_tens

# Put the strains for each orientation into the super strain

used to plot all the strains↪→

for i in range(len(strain)):

super_strain[i].append(strain[i])

## Make the data easier to look at by scaling it by 1000

for i in range(len(super_strain)):

super_strain[i] = [element * 1000 for element in

super_strain[i]]↪→

## Make plot

plt.figure(figsize=(12, 8))

plt.rc('axes', labelsize=20) # fontsize of the x and y labels

# decide what angle to use fo the x-axis of the plot
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subscript = str.maketrans("0123456789", "U+2080")

if iAng == 'phi1':

angle = '\u03C6' + '1'.translate(subscript)

extra_x = phi1

elif iAng == 'Phi':

angle = '\u03A6'

extra_x = Phi

else:

angle = '\u03C6' + '2'.translate(subscript)

extra_x = phi2

dist = degrees + 1

x = np.array(np.linspace(0, dist - 1, dist))

for i in range(len(x)):

x[i] += extra_x

plt.xlabel(angle)

y1 = []

y2 = []

y3 = []

y4 = []

y5 = []

y6 = []

# Put the different strains into their own lists

for j in range(len(super_strain[0])):

y1.append(super_strain[0][j])

y2.append(super_strain[1][j])

y3.append(super_strain[2][j])

y4.append(super_strain[3][j])

y5.append(super_strain[4][j])

y6.append(super_strain[5][j])

plt.ylabel('strains scaled by 1000')

L = 2

plt.plot(x, y1, label='\u03B5xx', lw=L)

plt.plot(x, y2, label='\u03B5yy', lw=L)

plt.plot(x, y3, label='\u03B5zz', lw=L)

plt.plot(x, y4, label='\u03B5xy', lw=L)

plt.plot(x, y5, ls='--', label='\u03B5xz', lw=L)

plt.plot(x, y6, ls =':', label='\u03B5yz', lw=L)

title = 'From: ' + 'phi1:' + str(phi1) + ' Phi:' + str(Phi) + '

phi2:' + str(phi2)↪→

plt.title(title, fontdict=None, loc='center', pad=None)

#plt.legend(loc='upper left')

plt.legend(bbox_to_anchor=(1.085, 1.0), prop={'size': 9})

name = str(phi1) + '-' + str(Phi) + '-' + str(phi2) + '_' +

str(iAng) + '_plot'↪→

# Calculating the difference between exx and eyy and the

magnitude of exy↪→
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diff1 = abs(y1[0] - y2[0])

diff2 = abs(y1[45] - y2[45])

diff3 = abs(y1[90] - y2[90])

exy1 = abs(max(y4))

exy2 = abs(min(y4))

# If one of the strains is high enough, write the name of the

plot and the strains to the text file.↪→

if diff1 > 0.35 or diff2 > 0.35 or diff3 > 0.35 or exy1 > 0.25

or exy2 > 0.25:↪→

textfile_name = 'All_orientations_with_high_strains.txt'

with open(textfile_name, 'a') as f:

f.write(name + 'strains: diff1=' + str(round(diff1,3)) + '

diff2=' + str(round(diff2,3)) + ' diff3=' +↪→

str(round(diff3,3)) + ' maxExy=' + str(round(exy1, 3)) + '

minExy=' + str(round(min(y4), 3)) + '\n')↪→

f.close()

# If the strains are high, also make the plot and send it to the

high strains folder↪→

plt.savefig(

'C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/EBSD/Simulations/AllSims/' +

name + '.png',

↪→

↪→

dpi=100, pad_inches=1)

plt.close() # Close th figure

def all_calc():

# This function iterates through all the possible orientations

and plots them. It also calculates the exx and eyy↪→

# and marks the ones with a high difference between exx and eyy.

angles = ['phi1', 'Phi', 'phi2']

for angle in angles:

for i in range(2):

for j in range(2):

for k in range(2):

Calc_and_plot_strainsX(0, -47, 0, 0, 0, 0,

phi1=90*i, Phi=90*j, phi2=90*k, iAng=angle,

degrees=90)

↪→

↪→

#### Calculate all possible orientations and find the ones with a

high difference between exx and eyy and a high exy.↪→

all_calc()

# phi1 0.0 - Phi 90.0 - phi2 0.0 (in-plane)

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=0.0, Phi=90.0,

phi2=0.0, iAng='phi2', degrees=90)↪→
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Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=0.0, Phi=90.0,

phi2=0.0, iAng='Phi', degrees=90)↪→

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=0.0, Phi=90.0,

phi2=0.0, iAng='phi1', degrees=90)↪→

# phi1 90.0 - Phi 0.0 - phi2 0.0 (out-of-plane)

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=90.0, Phi=0.0,

phi2=0.0, iAng='phi2', degrees=90)↪→

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=90.0, Phi=0.0,

phi2=0.0, iAng='Phi', degrees=90)↪→

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=90.0, Phi=0.0,

phi2=0.0, iAng='phi1', degrees=90)↪→

# phi1 0.0 - Phi 0.0 - phi2 0.0 (out-of-plane)

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=0.0, Phi=0.0,

phi2=0.0, iAng='phi1', degrees=60)↪→

# phi1 0.0 - Phi 90.0 - phi2 0.0 (in-plane and out-of-plane)

Calc_and_plot_strains(0, -47, 0, 0, 0, 0, phi1=0.0, Phi=135.0,

phi2=0.0, iAng='phi1', degrees=90)↪→

### Compare Global strains and Local strains

Calc_and_plot_strains_global(0, -47, 0, 0, 0, 0, phi1=0.0, Phi=90.0,

phi2=0.0, iAng='phi1', degrees=90)↪→

Calc_and_plot_strains_global(0, -47, 0, 0, 0, 0, phi1=90.0, Phi=0.0,

phi2=0.0, iAng='Phi', degrees=90)↪→
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Appendix E

Principle component analysis

In order to look for contributions to the behavior observed in the electrical analysis,
a principal component analysis with six components was performed. Figure E.0.1
shows the principal components as images. The two first principle components
appear to relate to the piezoelectric response due to the ferroelectric domains and
the topography, respectively. The other principle components most likely correspond
to other things such as noise and dirt.

Figure E.0.1: Principle components of the PCA illustrated as images.

Figure E.0.2 shows the piezoresponse of the different components plotted as functions
of voltage. The plot of the first component does not resemble anything, and neither
does the third to sixth. The second component plot, however, almost looks like a
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hysteresis curve. This also explains the switching behavior observed previously, and
if the interpretation of the components is accurate, then this further supports the
lack of switching in the ferroelectric domains.

Figure E.0.2: Piezoresponse of principle components from the PCA plotted as func-
tions of voltage.

Figure E.0.3 shows a cumulative and bar plot of the explained variance for the
principal components. The bars show the variance in piezoresponse explained by
each individual principal component, while the plot shows the cumulative variance
explained by the components. The figure shows that the two first components
explain about 88% of the variance. The plot also shows that using more than two
principal components does not add much to the explained variance. In fact, the
returns are quickly diminishing, which means that the other components likely are
redundant.

Figure E.0.3: Individual and cumulative variance explained by the principle com-
ponents from the PCA [109].
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Python code used for analysis of
electrical measurements

This appendix shows the Python code used to plot and calculate different things
regarding the impact of electric fields on the polycrystalline ErMnO3 sample.

### Most of this code was heavily inspired by code written by Kyle

Kelly, Oak Ridge National Laboratory in Tennessee, United States

of America.

↪→

↪→

import numpy as np

import matplotlib.pyplot as plt

import sidpy as sid

import h5py

import os

from matplotlib.animation import FuncAnimation

import tensorly as tl

from tensorly.decomposition import parafac

from mpl_toolkits.axes_grid1 import make_axes_locatable

from tensorly.decomposition import non_negative_parafac

from tensorly.decomposition import non_negative_tucker

from tensorly.decomposition import robust_pca

from tensorly.decomposition import parafac

from sklearn.decomposition import NMF

from pylab import *

from scipy.optimize import curve_fit

from matplotlib import colors

from scipy.cluster.vq import whiten, kmeans, vq

import scipy

from tensorly import metrics

import torch

from scipy.ndimage.interpolation import rotate

import pycroscopy as px

import gdown

import sklearn as sk
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import matplotlib.gridspec as gridspec

from BGlib import be as belib

from mpl_toolkits.axes_grid1 import AxesGrid

import pickle

import matplotlib.colors

def correct_phase_wrapping(plot_data):

min_ = np.min(data['Phase'])

max_ = np.max(data['Phase'])

data2_phacor = np.where(data['Phase'] > 1.5, data['Phase'] +

(min_ - max_), data['Phase'])↪→

data2_phacor = data2_phacor + np.pi + 0.22

if plot_data == 'yes':

plt.figure()

plt.hist(data['Phase'].ravel(), bins=100)

plt.figure()

plt.hist(data2_phacor.ravel(),bins = 100)

plt.axvline(np.pi, color ='red')

plt.axvline(0, color ='red')

plt.show()

return data2_phacor

def reshape_n_average_off_field_data(data):

data = data[:, 1::2] # Focusing on the off-field data

data = data.reshape(128, 128, 2, 128) # Reshape the data

data = data.mean(axis=2) # Take average of the two measurements

return data

def reshape_n_average_on_field_data(data):

data = data[:, 0::2] # Focusing on the on-field data

data = data.reshape(128, 128, 2, 128) # Reshape the data

data = data.mean(axis=2) # Take average of the two measurements

return data

# Downloading data

gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1ZzvfYf4i7-dZuIjiJ7DrbTsCbCUy7huT")↪→

gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1Wk77f2Waq2eklbU4fzI_Oz5npLdNnO_q")↪→

gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1Dt3o1c_3FZ5OqhVn5XMMUpZxXYFPPVkq")↪→

gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1EuhUYTvcZIfJpRioayTCXbSePJDKM_rl")↪→
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gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1obVNDuG2AS0CZ8iTSRXpabc5eqSpzdGc")↪→

gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1E3qS1M1knFnpvcQC_LYHscoW1SZetfTR")↪→

gdown.download("https://drive.google.com/uc?export=download&confirm ⌋

=0lFf&id=1ntHtxnZEZQYgC7ia2_M0TSEOzKtW3Lqg")↪→

### Extract data from file and then pickle relevant data ###

data = extract_BEPS_data('EMO_15um_HighDensityGrid_0043.h5',

phase_offset = 0, DeflInvOLS = 1)↪→

datadict = {'Amplitude' : data['Amplitude'], 'Phase' :

data['Phase'], 'BEPS_Voltage' : np.array(data['BEPS_Voltage'])}↪→

pickle.dump(datadict, open('extracted_data.pck', 'wb'))

data = pickle.load(open('extracted_data.pck', 'rb'))

### Phase wrapping corrected ###

data2_phacor = correct_phase_wrapping('no plot')

### Focus on relevant data ###

pr_off_avg = reshape_n_average_off_field_data(data['Amplitude']*np.c ⌋

os(data2_phacor)) # Average of off-field data for

piezoresponse

↪→

↪→

pr_on_avg = reshape_n_average_on_field_data(data['Amplitude']*np.cos ⌋

(data2_phacor)) # On-field

data

↪→

↪→

amp_data = reshape_n_average_off_field_data(data['Amplitude']) #

Average of off-field data for amplitude↪→

amp_data2 = reshape_n_average_on_field_data(data['Amplitude']) #

Average of on-field data for amplitude↪→

phase_data = reshape_n_average_off_field_data(data2_phacor) #

Average of off-field data for phase↪→

phase_data2 = reshape_n_average_off_field_data(data2_phacor) #

Average of on-field data for phase↪→

data2_pr = data['Amplitude']*np.cos(data2_phacor) # Piezoresponse

array↪→

data2_pr_off = data2_pr[:, 1::2] # Off-field data of

piezoresponse array↪→

def plot_voltage_as_a_function_of_indices(plott):

indices = linspace(0, 127, 128)

for i in range(len(indices)):

indices[i] = int(indices[i])

voltages = data['BEPS_Voltage'][0, 1:256:2]

volt = []
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for i in range(len(voltages)):

volt.append(voltages[i])

voltages = volt

if plott == 'yes':

plot(indices, voltages, 'index', 'voltage', 'Voltage as a

function of indices')↪→

return voltages

def plot_difference_between_images(data, cut, im_indices):

voltages = plot_voltage_as_a_function_of_indices('no')

fig = plt.figure(figsize=(8, 6))

gs = gridspec.GridSpec(10, 10 + 5, wspace=0.01, hspace=0.1)

minMax= []

factor = 100000

for j in range(2):

minMax.append(factor * min(np.array(data[:, :,

im_indices[j]]).flatten()))↪→

minMax.append(factor * max(np.array(data[:, :,

im_indices[j]]).flatten()))↪→

norm = Normalize(vmin=cut[0]*min(minMax),

vmax=cut[1]*max(minMax))↪→

# Image showing the difference

ax = fig.add_subplot(gs[:, :10])

ax.set_axis_off()

difference = (factor * data[:, :, im_indices[0]]) - (factor *

data[:, :, im_indices[1]])↪→

im = ax.imshow(difference, norm = norm, cmap='viridis')

axx = plt.subplot(gs[:, -1:]) # The axis for the color bar

cbar_ax = fig.add_axes(axx)

fig.colorbar(cm.ScalarMappable(norm=norm, cmap='viridis'),

cax=cbar_ax, extend='both')↪→

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Difference3', dpi=100,↪→

pad_inches=1)

def avg_cluster_resp(clusters, clx, data1_, pr_cluster, color, name):

clusters_list = []

for j in range(clusters): # Make a list for each cluster

clusters_list.append([])

for j in range(clx.shape[0]): # Add data to lists

if clx[j] == 0:

clusters_list[0].append(data1_[j, :])

elif clx[j] == 1:

clusters_list[1].append(data1_[j, :])

elif clx[j] == 2:
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clusters_list[2].append(data1_[j, :])

elif clx[j] == 3:

clusters_list[3].append(data1_[j, :])

elif clx[j] == 4:

clusters_list[4].append(data1_[j, :])

elif clx[j] == 5:

clusters_list[5].append(data1_[j, :])

elif clx[j] == 6:

clusters_list[6].append(data1_[j, :])

elif clx[j] == 7:

clusters_list[7].append(data1_[j, :])

mean_clust = []

for j in range(clusters):

mean_clust.append([])

for j in range(clusters):

mean_clust[j] = np.mean(clusters_list[j], axis=0)

cols = clusters

rows = 1

plt.rc('xtick', labelsize=20) # fontsize of the tick labels

plt.rc('ytick', labelsize=25) # fontsize of the tick labels

fig, ax = plt.subplots(rows, cols, figsize=(5*(clusters), 8),

sharey = True)↪→

for j in range(clusters):

ax[j].plot(data['BEPS_Voltage'][0, ::2], mean_clust[j])

ax[j].set_xticks([-15, -7.5, 0, 7.5, 15], ['-15', '-7.5',

'0', '7.5', '15'])↪→

ax[j].xaxis.set_tick_params(width=2, length=4) # Makes the

ticks on the x-axis bigger↪→

ax[j].grid(alpha=0.5)

ax[j].set_title('Cluster ' + str(j+1))

plt.tight_layout()

ax[0].yaxis.set_tick_params(width=3, length=6)

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Clusters/' + str(name) +

'means', dpi=150,

↪→

↪→

pad_inches=1)

def cluster_analysis(clusters, data, color, name, norm):

fig, ax = plt.subplots()

data1_ = tl.tensor(data)

data1_ = scipy.cluster.vq.whiten(data1_)

centroids, _ = scipy.cluster.vq.kmeans(data1_, clusters,

iter=20, seed=123456)↪→

clx, _ = vq(data1_, centroids)

pr_cluster = np.reshape(clx, (128, 128))
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plt.imshow(pr_cluster, cmap=color, norm=norm)

plt.colorbar()

fig.set_size_inches(8, 6)

plt.tight_layout()

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Clusters/' + str(name),

dpi=100,

↪→

↪→

pad_inches=1)

avg_cluster_resp(clusters, clx, data1_, pr_cluster, color, name)

def cluster_analysis_normal(clusters, data, colormap, name, sd):

fig, ax = plt.subplots()

data1_ = tl.tensor(data)

data1_ = scipy.cluster.vq.whiten(data1_)

centroids, _ = scipy.cluster.vq.kmeans(data1_, clusters,

iter=20, seed=sd)↪→

clx, _ = vq(data1_, centroids)

pr_cluster = np.reshape(clx, (128, 128))

plt.imshow(pr_cluster, cmap=colormap)

plt.colorbar()

fig.set_size_inches(8, 6)

plt.tight_layout()

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Clusters/Normal' +

str(name) + 'seed_' + str(sd) + '.png', dpi=100,

↪→

↪→

pad_inches=1)

plt.close()

avg_cluster_resp(clusters, clx, data1_, pr_cluster, color, name)

def hysteresis_of_area(x0, y0, x1, y1, image_data, voltage_data,

name):↪→

def plot_piezoresponse(dist, color, linex, liney):

linescan_pr = []

for u in range(dist):

linescan_pr.append(pr_off_avg[int(liney[u]),

int(linex[u]), :])↪→

linescan_pr = np.asarray(linescan_pr)

fig, ax = plt.subplots(1, dist, figsize=(6, 10))

for v in range(dist):

# The voltage is the same, but the piezoresponse is

different for the different pixels.↪→

ax[v].plot(data['BEPS_Voltage'][0, 1:256:2],

linescan_pr[v, :] * 2E5, color)↪→

# Get all the point within the square area defined by x0,y0 and

x1,y1↪→
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x_dist = x1 - x0

y_dist = y1 - y0

horizontal_lines = []

piz_lines = [] # Piezoresponses of all lines

for j in range(y_dist):

linex = np.linspace(x0, x1, x_dist) # Make equally spaced

point from x0 to x1↪→

liney = np.zeros(y_dist)+(y0 + j) # Make a list of the

same y-value for the line↪→

horizontal_lines.append([linex, liney])

# Get the piezoresponse for the line

linescan_pr = [] # The piezoresponse for each pixel of a

line↪→

for u in range(x_dist):

linescan_pr.append(pr_off_avg[int(liney[u]),

int(linex[u]), :]) # Piezoresponse for a pixel at

all voltages

↪→

↪→

# Get the average piezoresponse for the line

avg_linescan_pr = np.zeros(128)

for pixel in range(x_dist):

for pr in range(128):

avg_linescan_pr[pr] += linescan_pr[pixel][pr]

for q in range(128):

avg_linescan_pr[q] = avg_linescan_pr[q]/x_dist

piz_lines.append(avg_linescan_pr) # Add the average

responses from each line to the greater list↪→

# Average the response from all the lines

avg_resp = np.zeros(128)

for line in range(y_dist):

for val in range(128):

avg_resp[val] += piz_lines[line][val]

for t in range(128):

avg_resp[t] = avg_resp[t]/y_dist

data = voltage_data

plt.rc('axes', labelsize=20) # fontsize of the x and y labels

plt.rc('xtick', labelsize=25) # fontsize of the tick labels

plt.rc('ytick', labelsize=25) # fontsize of the tick labels

fig, ax = plt.subplots(1, 2, figsize=(14, 6))

ax[0].imshow(image_data.reshape(128, 128, 512)[:, :, 0])

#plt.colorbar()

LW = 5

for i in range(len(horizontal_lines)):

ax[0].plot(horizontal_lines[i][0], horizontal_lines[i][1],

color='red', linewidth= LW)↪→

# Plot the average piezoresponse for the area

ax[1].plot(data['BEPS_Voltage'][0, 1:256:2], avg_resp * 2E5)
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fig.tight_layout()

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PiezoArea' + str(name),

dpi=100,

↪→

↪→

pad_inches=1)

return avg_resp

def hysteresis_of_2_area(x0, y0, x1, y1, x2, y2, x3, y3, image_data,

voltage_data, name):↪→

def plot_piezoresponse(dist, color, linex, liney):

linescan_pr = []

for u in range(dist):

linescan_pr.append(pr_off_avg[int(liney[u]),

int(linex[u]), :])↪→

linescan_pr = np.asarray(linescan_pr)

fig, ax = plt.subplots(1, dist, figsize=(6, 10))

for v in range(dist):

# The voltage is the same, but the piezoresponse is

different for the different pixels.↪→

ax[v].plot(data['BEPS_Voltage'][0, 1:256:2],

linescan_pr[v, :] * 2E5, color)↪→

# Get all the point within the square area defined by x0,y0 and

x1,y1↪→

x_dist = x1 - x0

y_dist = y1 - y0

x_dist2 = x3 - x2

y_dist2 = y3 - y2

horizontal_lines = []

horizontal_lines2 = []

piz_lines = [] # Piezoresponses of all lines

piz_lines2 = []

for j in range(y_dist):

linex = np.linspace(x0, x1, x_dist) # Make equally spaced

point from x0 to x1↪→

linex2 = np.linspace(x2, x3, x_dist2)

liney = np.zeros(y_dist)+(y0 + j) # Make a list of the

same y-value for the line↪→

liney2 = np.zeros(y_dist) + (y2 + j)

horizontal_lines.append([linex, liney])

horizontal_lines2.append([linex2, liney2])

# Get the piezoresponse for the line

linescan_pr = [] # The piezoresponse for each pixel of a

line↪→

linescan_pr2 = []

for u in range(x_dist):
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linescan_pr.append(pr_off_avg[int(liney[u]),

int(linex[u]), :]) # Piezoresponse for a pixel at

all voltages

↪→

↪→

linescan_pr2.append(pr_off_avg[int(liney2[u]),

int(linex2[u]), :])↪→

# Get the average piezoresponse for the line

avg_linescan_pr = np.zeros(128)

avg_linescan_pr2 = np.zeros(128)

for pixel in range(x_dist):

for pr in range(128):

avg_linescan_pr[pr] += linescan_pr[pixel][pr]

avg_linescan_pr2[pr] += linescan_pr2[pixel][pr]

for q in range(128):

avg_linescan_pr[q] = avg_linescan_pr[q]/x_dist

avg_linescan_pr2[q] = avg_linescan_pr2[q] / x_dist

piz_lines.append(avg_linescan_pr) # Add the average

responses from each line to the greater list↪→

piz_lines2.append(avg_linescan_pr2)

# Average the response from all the lines

avg_resp = np.zeros(128)

avg_resp2 = np.zeros(128)

for line in range(y_dist):

for val in range(128):

avg_resp[val] += piz_lines[line][val]

avg_resp2[val] += piz_lines2[line][val]

for t in range(128):

avg_resp[t] = avg_resp[t]/y_dist

avg_resp2[t] = avg_resp2[t] / y_dist

data = voltage_data

plt.rc('axes', labelsize=20) # fontsize of the x and y labels

plt.rc('xtick', labelsize=25) # fontsize of the tick labels

plt.rc('ytick', labelsize=25) # fontsize of the tick labels

fig, ax = plt.subplots(1, 3, figsize=(21, 6))

ax[0].imshow(image_data.reshape(128, 128, 512)[:, :, 0])

LW = 5

for i in range(len(horizontal_lines)):

ax[0].plot(horizontal_lines[i][0], horizontal_lines[i][1],

color='red', linewidth= LW)↪→

ax[0].plot(horizontal_lines2[i][0], horizontal_lines2[i][1],

color='orange', linewidth=LW)↪→

#plt.axis('off')

# Plot the average piezoresponse for the area

ax[1].plot(data['BEPS_Voltage'][0, 1:256:2], avg_resp * 2E5,

color='red')↪→

ax[2].plot(data['BEPS_Voltage'][0, 1:256:2], avg_resp2 * 2E5,

color='orange')↪→
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fig.tight_layout()

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PiezoArea' + str(name),

dpi=100,

↪→

↪→

pad_inches=1)

return avg_resp

def draw_m_lines(image_data, voltage_data, name, x0, y0, x1, y1, x2,

y2, x3, y3, x4, y4, x5, y5, x6, y6, x7, y7):↪→

def plot_piezoresponse(dist, color, linex, liney, name):

plt.rc('axes', labelsize=20) # fontsize of the x and y

labels↪→

plt.rc('xtick', labelsize=35) # fontsize of the tick labels

plt.rc('ytick', labelsize=45) # fontsize of the tick labels

linescan_pr = []

for i in range(dist):

linescan_pr.append(pr_off_avg[int(liney[i]),

int(linex[i]), :])↪→

linescan_pr = np.asarray(linescan_pr)

fig, ax = plt.subplots(1, dist, figsize=(3*dist, 9),

sharey=True)↪→

for j in range(dist):

# The voltage is the same, but the piezoresponse is

different for the different pixels.↪→

ax[j].plot(data['BEPS_Voltage'][0, 1:256:2],

linescan_pr[j, :] * 2E5, color)↪→

ax[j].set_xticks([-10, 0, 10], ['-10', '', '10'])

ax[j].xaxis.set_tick_params(width=3, length=7) # Makes

the ticks on the x-axis bigger↪→

ax[0].yaxis.set_tick_params(width=5, length=10)

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Stripes/StripeImage' +

str(name) + '--' + str(color) + ' Stripe',

↪→

↪→

dpi=50, pad_inches=1)

dist1 = int(np.sqrt( (x0-x1)**2 + (y0-y1)**2))

dist2 = int(np.sqrt((x2 - x3) ** 2 + (y2 - y3) ** 2))

dist3 = int(np.sqrt((x4 - x5) ** 2 + (y4 - y5) ** 2))

dist4 = int(np.sqrt((x6 - x7) ** 2 + (y6 - y7) ** 2))

linex1 = np.linspace(x0, x1, dist1)

liney1 = np.linspace(y0, y1, dist1)

linex2 = np.linspace(x2, x3, dist2)

liney2 = np.linspace(y2, y3, dist2)

linex3 = np.linspace(x4, x5, dist3)
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liney3 = np.linspace(y4, y5, dist3)

linex4 = np.linspace(x6, x7, dist4)

liney4 = np.linspace(y6, y7, dist4)

data = voltage_data

# Making the figure with stripes

cut = [0.5, 0.5]

minMax = []

for j in range(2):

minMax.append(min(np.array(data[:, :, 0].flatten())))

minMax.append(max(np.array(data[:, :, 0].flatten())))

norm = Normalize(vmin=cut[0] * min(minMax), vmax=cut[1] *

max(minMax))↪→

fig1, ax = plt.subplots(1, 1, figsize=(8, 6))

im = ax.imshow(image_data.reshape(128, 128, 512)[:, :, 0],

cmap='viridis')↪→

fig1.colorbar(im)

LW = 2

color1 = 'red'

color2 = 'darkorange'

color3 = 'magenta'

color4 = 'cyan'

color5 = 'yellow'

color6 = 'lime'

color7 = 'maroon'

color8 = 'hotpink'

plt.plot(linex1, liney1, color=color1, linewidth= LW)

plt.plot(linex2, liney2, color=color2, linewidth=LW)

plt.plot(linex3, liney3, color=color3, linewidth=LW)

plt.plot(linex4, liney4, color=color6, linewidth=LW)

plt.axis('off')

fig1.tight_layout()

fig1.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Stripes/StripeImage' +

str(name), dpi=100,

↪→

↪→

pad_inches=1)

plot_piezoresponse(dist1, color1, linex1, liney1, name)

plot_piezoresponse(dist2, color2, linex2, liney2, name)

plot_piezoresponse(dist3, color3, linex3, liney3, name)

plot_piezoresponse(dist4, color6, linex4, liney4, name)

def pca(pca_amp,d1,d2,d3,volt_spec,type_,num_comp):

X_vec = tl.tensor(pca_amp)

pca = sk.decomposition.PCA(n_components=2)

pca.fit(X_vec)
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# Comment/uncomment as necessary to normalize

X_vec = (X_vec - np.min(X_vec)) / np.ptp(X_vec)

nc = num_comp

# Select decomposition type ('PCA' or 'NMF')

decomposition_type = type_

# Run decomposition

if decomposition_type == 'NMF':

clf = sk.decomposition.NMF(n_components=nc, random_state=42)

elif decomposition_type == 'PCA':

clf = sk.decomposition.PCA(n_components=nc, random_state=42)

else:

raise NotImplementedError('Available methods: "PCA", "NMF"')

X_vec_t = clf.fit_transform(X_vec)

exp_var_pca2 = clf.explained_variance_ratio_ # Explained

variance↪→

components = clf.components_

n_pixels = int(X_vec_t.shape[0]**(1/2))

rows = int(np.ceil(float(nc)/5))

cols = int(np.ceil(float(nc)/rows))

gs1 = gridspec.GridSpec(rows, cols)

fig1 = plt.figure(figsize = (15,7))

for i in range(nc):

ax1 = fig1.add_subplot(gs1[i])

j = 0

ax1.plot(volt_spec,components[i])

ax1.set_title('Component ' + str(i + 1))

fig1.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PCA/PCA_' + str(nc) +

'_components_plot',

↪→

↪→

dpi=100, pad_inches=1)

gs2 = gridspec.GridSpec(rows, cols)

fig2 = plt.figure(figsize = (4*cols, 4*(1+rows//1.5)))

for i in range(nc):

ax2 = fig2.add_subplot(gs2[i])

ax2.imshow(X_vec_t[:, i].reshape(d1, d2), cmap = 'jet')

ax2.set_title('Component ' + str(i + 1))

fig2.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PCA/PCA_' + str(nc) +

'_components_map',

↪→

↪→

dpi=100, pad_inches=1)

# Explained variance

cum_sum_eigenvalues2 = np.cumsum(exp_var_pca2)

fig3 = plt.figure(figsize=(8, 6))
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ax = fig3.add_subplot()

plt.bar(range(0, len(exp_var_pca2)), exp_var_pca2, alpha=0.5,

align='center', label='Individual explained variance')↪→

plt.step(range(0, len(cum_sum_eigenvalues2)),

cum_sum_eigenvalues2, where='mid',↪→

label='Cumulative explained variance')

plt.xticks([0, 1, 2, 3, 4, 5], ['1', '2', '3', '4', '5', '6'])

print(exp_var_pca2)

for i in range(len(exp_var_pca2)):

ax.text(i-0.25, exp_var_pca2[i] + 0.05,

str(round(exp_var_pca2[i]*100, 1)) + '%', fontsize=12)↪→

plt.ylabel('Explained variance')

plt.xlabel('Principal component')

plt.legend(loc='center right')

fig3.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PCA/PCA_' + str(nc) +

'_explainedVariance',

↪→

↪→

dpi=100, pad_inches=1)

def plot_piezoresponse(data, indices, cut, rows, cols):

voltages = plot_voltage_as_a_function_of_indices('no')

fig = plt.figure(figsize=(2*cols, 2*rows))

gs = gridspec.GridSpec(10*rows, 10*cols + 2, wspace=0.01,

hspace=0.1)↪→

minMax= []

factor = 100000

for j in range(len(indices)):

minMax.append(factor * min(np.array(data[:, :,

indices[j]]).flatten()))↪→

minMax.append(factor * max(np.array(data[:, :,

indices[j]]).flatten()))↪→

norm = Normalize(vmin=cut[0]*min(minMax),

vmax=cut[1]*max(minMax))↪→

for i in range(len(indices)):

ax = fig.add_subplot(gs[(i // cols) * 10 : (i // cols + 1) *

9 + (i // cols) * 1 +1, (i % cols) * 10 : (i % cols) *

10 + 9])

↪→

↪→

ax.set_axis_off()

ax.set_title(str(round(voltages[indices[i]], 1)) + ' Volt',

fontsize=8)↪→

im = ax.imshow(factor * data[:, :, indices[i]], norm = norm,

cmap='viridis')↪→
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axx = plt.subplot(gs[:, -2:]) # The axis for the color bar

cbar_ax = fig.add_axes(axx)

fig.colorbar(cm.ScalarMappable(norm=norm, cmap='viridis'),

cax=cbar_ax, extend='both')↪→

fig.set_size_inches(8, 6)

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Piezoresponse4', dpi=200,↪→

pad_inches=1)

def plot_topography(topo, cut):

data = np.loadtxt(topo)

fig = plt.figure(figsize=(8, 6))

gs = gridspec.GridSpec(10, 10 + 5, wspace=0.01, hspace=0.1)

minMax = []

factor = 1000000000

minMax.append(factor * min(np.array(data[:, :]).flatten()))

minMax.append(factor * max(np.array(data[:, :]).flatten()))

norm = Normalize(vmin=cut[0] * min(minMax), vmax=cut[1] *

max(minMax))↪→

ax = fig.add_subplot(gs[:, :10]) # Add topography to figure

ax.set_axis_off()

mAp = 'viridis'

im = ax.imshow(data, cmap=mAp)

axx = plt.subplot(gs[:, -1:]) # The axis for the color bar

cbar_ax = fig.add_axes(axx)

fig.colorbar(cm.ScalarMappable(norm=norm, cmap=mAp),

cax=cbar_ax, extend='both')↪→

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/Topography3', dpi=100,↪→

pad_inches=1)

def plot_pfm(data, cut):

voltages = plot_voltage_as_a_function_of_indices('no')

fig = plt.figure(figsize=(8, 6))

gs = gridspec.GridSpec(10, 10 + 0, wspace=0.01, hspace=0.1)

minMax= []

factor = 10000

minMax.append(factor * min(np.array(data[:, :, 0]).flatten()))

minMax.append(factor * max(np.array(data[:, :, 0]).flatten()))

norm = Normalize(vmin=cut[0]*min(minMax),

vmax=cut[1]*max(minMax))↪→

ax = fig.add_subplot(gs[:, :10])

ax.set_axis_off()

im = ax.imshow(data[:, :, 0], cmap='viridis')

cax=cbar_ax, extend='both')
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fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PFM_0V', dpi=100,↪→

pad_inches=1)

### Making my own colormap ####

cmap1 = colors.ListedColormap(['blue', 'yellow','orange', 'red',

'magenta', 'cyan', 'black'])↪→

cmap2 = colors.ListedColormap(['blue', 'orange', 'yellow', 'red',

'magenta', 'cyan', 'black'])↪→

cmap3 = colors.ListedColormap(['yellow', 'red', 'orange', 'blue',

'magenta', 'cyan', 'black'])↪→

cmap4 = colors.ListedColormap(['blue', 'orange', 'magenta', 'red',

'yellow', 'cyan', 'black'])↪→

boundaries = [0, 1, 2, 3, 4, 5, 6, 7]

norm = colors.BoundaryNorm(boundaries, cmap1.N, clip=True)

fa1 = 'dodgerblue'

fa2 = 'darkorange'

fa3 = 'gold'

cmapx = colors.ListedColormap([fa1, fa2, fa3, fa3])

boundaries2 = [0, 1, 2, 3]

norm2 = colors.BoundaryNorm(boundaries2, cmapx.N, clip=True)

### Difference in piezoresponse between +15V and -15V ####

plot_difference_between_images(pr_off_avg, [0.4, 0.4], [32, 96])

### Cluster analysis ###

cluster_analysis(2, data2_pr_off, cmap1, 'Cluster2', norm)

cluster_analysis(3, data2_pr_off, cmap2, 'Cluster3', norm)

cluster_analysis(4, data2_pr_off, cmap3, 'Cluster4', norm)

cluster_analysis(5, data2_pr_off, cmap4, 'Cluster5', norm)

cluster_analysis(6, data2_pr_off, 'jet', 'Cluster6')

cluster_analysis(3, data2_pr_off, cmapx, 'NEWCluster3_v2', norm2)

### Plot average hysteresis loop for an area ###

area1 = hysteresis_of_area(56, 36, 61, 41, data2_pr, data, 1)

area2 = hysteresis_of_area(80, 80, 85, 85, data2_pr, data, 2)

area3 = hysteresis_of_area(88, 96, 93, 101, data2_pr, data, 3)

area4 = hysteresis_of_2_area(80, 80, 85, 85, 88, 96, 93, 101,

data2_pr, data, 4)↪→

# # Plot the average of the bright and dark areas

avg_hysteresis = []

for i in range(len(area2)):

avg_hysteresis.append((area2[i] + area3[i])/2)
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avg_hysteresis = np.array(avg_hysteresis)

fig = plt.figure(figsize=(8,8))

plt.plot(data['BEPS_Voltage'][0, 1:256:2], avg_hysteresis * 2E5)

fig.savefig('C:/Users/Olav Sandvik/OneDrive -

NTNU/10.semester/Figures/OakRidge/PiezoAreaAverage', dpi=100,↪→

pad_inches=1)

#### Line scans ####

draw_m_lines(46, 45, 55, 56, # RED

44, 92, 54, 102, # ORANGE

10, 110, 20, 100, # MAGENTA

30, 120, 40, 110, # CYAN

80, 10, 80, 24, # YELLOW

20, 68, 30, 78, # LIME

70, 85, 84, 85, # MAROON

90, 85, 90, 99, # HOTPINK

data2_pr, data, 1)

draw_m_lines(data2_pr, data, 3,

46, 45, 53, 53, # RED

44, 92, 52, 99, # ORANGE

30, 120, 37, 112, # MAGENTA

70, 85, 80, 85) # LIME

### Principle component analysis ###

X_vec = pca(data2_pr_off.reshape(16384,256),128,128,256,data['BEPS_V ⌋

oltage'][0,::2],type_ = 'PCA', num_comp =

6)

↪→

↪→

X_vec = pca(data2_pr_off.reshape(16384,256),128,128,256,data['BEPS_V ⌋

oltage'][0,::2],type_ = 'PCA', num_comp =

4)

↪→

↪→

### Plotting the piezoresponse as a function of voltage

indices = [0, 11, 22, 32, 64, 75, 86, 96]

plot_piezoresponse(pr_off_avg, indices, cut=[0.4, 0.4], rows=2,

cols=4)↪→

### Plot topography

plot_topography('Survey_EMO0014_topo.txt', cut=[0.999, 0.999])

### Plot PFM

plot_pfm(pr_off_avg, cut=[0.5, 0.5])
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MatLab code for analysis of EBSD
data

This appendix presents the MatLab code used to analyze the EBSD data and pro-
duce several of the plots presented in section 4.4.

% ErMnO3

% 2022-05-03

% Håkon Wiik Ånes (hakon.w.anes@ntnu.no)

% Mofidied by Olav Wadseth Sandvik

clear all

home

res = '-r150';

plotx2east

plotzIntoPlane

dir_kp = 'C:\Users\Olav Sandvik\OneDrive -

NTNU\10.semester\Results\EBSD_experiment\EBSD';↪→

dir_mtex = 'C:\Users\Olav Sandvik\OneDrive -

NTNU\10.semester\MatLab_EBSD\Plots\Pos5';↪→

lattice_parameters = [6.1 6.1 11];

angles = [90 90 120] * degree;

cs = crystalSymmetry('622', lattice_parameters, angles, 'mineral',

'ErMnO3');↪→

ebsd = EBSD.load(fullfile(dir_kp, 'xmap_refori.ang'), cs,...

'convertEuler2SpatialReferenceFrame', 'setting 2')

% Define ROI

dx = ebsd.y(2) - ebsd.y(1);

roi = [108 62 55 55]; % In EBSD scan unit, um
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% Inspect ROI

figure

plot(ebsd, ebsd.ci)

mtexColorMap black2white

rectangle('position', roi, 'edgecolor', 'r', 'linewidth', 2)

% Restrict data to ROI

ebsd = ebsd(inpolygon(ebsd, roi))

% %% Plot normalized cross-correlation (NCC) score

figure

plot(ebsd, ebsd.ci)

mtexColorbar('title', 'NCC')

mtexColorMap black2white

export_fig(fullfile(dir_mtex, 'maps_ncc.png'), res)

%% Filter data based on NCC score

ebsd2 = ebsd;

ebsd2(ebsd2.ci < 0.21).phase = -1;

%% Reconstruct grains

[grains, ebsd2.grainId, ebsd2.mis2mean] = calcGrains(ebsd2,

'angle',...↪→

5*degree);

%% Plot IPF color key

ipfkey = ipfHSVKey(ebsd.CS);

figure

plot(ipfkey)

export_fig(fullfile(dir_mtex, 'ipfkey.png'), res)

% Plot IPF color maps and IPF density plots

directions = {xvector, yvector, zvector};

titles = {'x', 'y', 'z'};

for i=1:3

ipfkey.inversePoleFigureDirection = directions{i};

omcolor = ipfkey.orientation2color(ebsd2.orientations);

% IPF maps

figure

plot(ebsd2, omcolor)

hold on

export_fig(fullfile(dir_mtex, ['maps_ipf' titles{i} '.png']),

res)↪→

% IPF density plots

figure
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plotIPDF(ebsd2.orientations, omcolor, directions{i}, 'all')

export_fig(fullfile(dir_mtex, ['ipf' titles{i} '_scatter.png']),

res)↪→

end

%% (0001) pole figure

figure

plotPDF(ebsd2.orientations, Miller(0, 0, 1, ebsd.CS), 'grid', 'all')

export_fig(fullfile(dir_mtex, 'pf0001_scatter.png'), res)

%% Unit cell

cS = crystalShape.hex(ebsd.CS);

%% Plot orientation map with unit cells from big grains

grains_ermno3 = grains('indexed');

big_grains = grains_ermno3(grains_ermno3.grainSize > 200);

big_grains_id = big_grains.id;

for i=1:3

ipfkey.inversePoleFigureDirection = directions{i};

omcolor = ipfkey.orientation2color(ebsd2.orientations);

figure

plot(ebsd2, omcolor)

hold on

plot(grains_ermno3.boundary)

hold on

plot(big_grains, 0.5*cS, 'linewidth', 2, 'colored')

legend('off')

export_fig(fullfile(dir_mtex,...

['maps_grains_ipf' titles{i} '_cell.png']), res)

end

%% Plot map of misorientation to mean orientation within each grain

figure

plot(ebsd2('indexed'), ebsd2('indexed').mis2mean.angle / degree)

caxis([0, 3])

mtexColorbar('title', 'Misorientation to mean orientation [deg]')

mtexColorMap LaboTeX

hold on

plot(grains_ermno3.boundary)

export_fig(fullfile(dir_mtex, 'maps_grains_mis2mean.png'), res)

%% Plot map of kernel average misorientation (KAM)

kam = ebsd2.KAM;

figure

plot(ebsd2, kam / degree)
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caxis([0, 0.5])

mtexColorbar('title', 'Kernel average misorientation [deg]')

mtexColorMap LaboTeX

hold on

plot(grains_ermno3.boundary)

export_fig(fullfile(dir_mtex, 'maps_grains_kam.png'), res)

%% Plot map of grain orientation spread (GOS)

figure

plot(grains_ermno3, grains_ermno3.GOS / degree)

caxis([0, 1.5])

mtexColorbar('title', 'Grain orientation spread [deg]')

mtexColorMap LaboTeX

hold on

plot(grains_ermno3.boundary)

export_fig(fullfile(dir_mtex, 'maps_grains_gos.png'), res)

%% Plot disorientation color key

ckey2 = axisAngleColorKey(ebsd2('indexed').CS);

ckey2.oriRef = grains(ebsd2('indexed').grainId).meanOrientation;

ckey2.maxAngle = 1 * degree;

figure

plot(ckey2)

export_fig(fullfile(dir_mtex, 'color_key_disori.png'), res)

%% Plot disorientation color map

omcolor = ckey2.orientation2color(ebsd2('indexed').orientations);

figure

plot(ebsd2('indexed'), omcolor)

hold on

plot(grains_ermno3.boundary)

export_fig(fullfile(dir_mtex, 'maps_grains_disori.png'), res)

%% Write data to file

% Grains

gam = ebsd2.grainMean(kam);

gam(isnan(gam)) = -1;

fid = fopen(fullfile(dir_mtex, 'grains.txt'), 'w+');

fprintf(fid, '#id,phase,size,gos,gam\n');

dataMat = [...

grains.id,...

grains.phase,...

grains.grainSize,...

grains.GOS,...

gam,...
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];

fprintf(fid, '%i,%i,%i,%.5f,%.5f\n', dataMat');

fclose(fid);

% KAM

fid = fopen(fullfile(dir_mtex, 'kam.txt'), 'w+');

fprintf(fid, 'kam\n');

fprintf(fid, '%.5f\n', ebsd2('indexed').KAM);

fclose(fid);

% Misorientation to mean orientation angle

fid = fopen(fullfile(dir_mtex, 'mis2mean.txt'), 'w+');

fprintf(fid, 'mis2mean\n');

fprintf(fid, '%.5f\n', ebsd2('indexed').mis2mean.angle);

fclose(fid);

close all force

sprintf('Done with process')
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Appendix H

MatLab code for simulating grain
orientations from EBSD data

This appendix presents the MatLab code used to produce the figures that compare
grain orientation and ferroelectric domains in section 4.4. In addition, it was also
utilized to produce the unit cells seen in the simulated strain figures in section 6.3.

% ErMnO3

% 2022-05-03

% Håkon Wiik Ånes (hakon.w.anes@ntnu.no)

% Modified by Olav Wadseth Sandvik

clear all

home

res = '-r200';

plotx2east

plotzIntoPlane

dir_kp = 'C:\Users\Olav Sandvik\OneDrive -

NTNU\10.semester\Results\EBSD_experiment\EBSD';↪→

dir_mtex = 'C:\Users\Olav Sandvik\OneDrive -

NTNU\10.semester\MatLab_EBSD\Plots';↪→

lattice_parameters = [6.1 6.1 11];

angles = [90 90 120] * degree;

cs = crystalSymmetry('622', lattice_parameters, angles, 'mineral',

'ErMnO3');↪→

ebsd = EBSD.load(fullfile(dir_kp, 'xmap_refori.ang'), cs,...

'convertEuler2SpatialReferenceFrame', 'setting 2')

%% Filter data based on NCC score

ebsd2 = ebsd;
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ebsd2(ebsd2.ci < 0.21).phase = -1;

%% Reconstruct grains

[grains, ebsd2.grainId, ebsd2.mis2mean] = calcGrains(ebsd2,

'angle',...↪→

5*degree);

%% Unit cell

cS = crystalShape.hex(ebsd.CS);

%% Big grains

grains_ermno3 = grains('indexed');

big_grains = grains_ermno3(grains_ermno3.grainSize > 400);

big_grains(1)

%% Make the figure

ipfkey = ipfHSVKey(ebsd.CS);

ipfkey.inversePoleFigureDirection = xvector;

omcolor = ipfkey.orientation2color(ebsd2.orientations);

% Simulated grain

ori1 = orientation.byEuler([70.5 99.8 146.7] * degree, cs);

figure

plot([100 100] + ori1*cS*20, 'linewidth', 1, 'colored')

legend('off')

%% Close figures and show that the process is finished

%close all force

sprintf('Done with process')
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