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Abstract (English) 

Aim: The aim of this study is to develop an automatic assessment of the hand-to-hand contact, 

head centered, and body symmetry items of the movement optimality score. The automatic 

assessment is developed by producing movement features using quantifiable variables extracted 

from video-based motion tracking data. Additionally, analyse how accurate individual and sum of 

movement features differentiate and predict CP and non-CP outcomes in high-risk infants. 

Method: Seven features were developed using the motion tracking data. The movement features’ 

ability to differentiate CP and non-CP outcome groups was assessed using the area under the curve 

(AUC) of the receiver operating characteristic (ROC) curve, and the difference in distribution 

using the Mann-Whitney U test. The predictive capability in singular cases was assessed using the 

combined sensitivity and specificity, and the mean difference in prediction score between the CP 

and non-CP outcome groups.  

Result: The AUC for the feature values ranged from .474 to .611. Some features displayed a 

difference in distribution between the CP and non-CP outcome groups. However, the difference 

was not statistically significant, Mann-Whitney U p = .106 to .704. The mean difference between 

the outcome groups for the features following conversion to prediction score was -.085 to .186 p 

= .031 to .474. The mean difference for the combined prediction score was .750 p = .031.  

Conclusion: This study proves that an automatic assessment of this type of MOS items can be 

produced, and some features can differentiate between CP and non-CP outcome groups. Individual 

features have limited ability to predict CP outcome, however, combining features increases the 

predictive capability. 

 

Abstrakt (Norwegian) 

Mål: Målet med studien er å utvikle en automatisk vurdering av «hand-to-hand contact», «head 

centered» og «body symmetry» elementene i «movement optimality score» (MOS). Denne 

automatiske vurderingen oppnås gjennom produksjon av bevegelsestrekk basert på kvantifiserbare 

variabler hentet fra videobasert bevegelsessporingsdata. I tillegg analysere hvor nøyaktig 

individuelle- og summen av bevegelsestrekk skiller- og forutsier CP- og ikke-CP-utfall hos 

høyrisiko spedbarn. 

Metode: Syv bevegelsestrekk ble utviklet med bevegelsessporingsdataen. Bevegelsestrekkenes 

evne til å skille CP- og ikke-CP-utfallsgruppene ble vurdert med arealet under kurven (AUC) av 

receiver operating characteristic (ROC) kurven, og forskjellen i distribusjon mellom gruppene 

testet med Mann-Whitney U-test. Den prediktive evnen i enkeltindivider ble vurdert med 

kombinasjonen av sensitiviteten og spesifisiteten, i tillegg til forskjellen i gjennomsnitt av 

prediksjonsscoren mellom CP- og ikke-CP-utfallsgruppene. 

Resultat: AUC for bevegelsestrekkverdiene varierte fra .474 til .611. Noen bevegelsetrekk viste 

en forskjell mellom CP- og ikke-CP-utfallsgruppene, men forskjellen var ikke statistisk 

signifikant, Mann-Whitney U p = .106 til .704. Forskjellen mellom utfallsgruppene da 

bevegelsestrekkene ble konvertert til en prediksjonsscore var -.085 til .186 p = .031 til .474, og 

forskjellen mellom utfallsgruppene for den samlede prediksjonsscoreen var .750 p = .031.  

Konklusjon: Denne studien viser at en automatisk vurdering av denne typen MOS elementer er 

mulig, og noen bevegelsestrekk evner å skille CP- og ikke-CP-utfallsgruppene. Individuelle 

bevegelsestrekk har en begrenset evne til å forutsi CP-utfall, men prediksjonsevnen øker ved å 

kombinere bevegelsestrekk. 
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1 - Introduction 

Cerebral palsy (CP) is a term used to describe multiple permanent non-progressive disorders 

affecting movement, posture, and activity. The condition is caused by damage to the brain or 

abnormal brain development during pregnancy, birth, or early infancy (1). The prevalence of CP 

as of 2013 in the general population was 2.1 per 1000 (2). There are many known high-risk factors 

for the development of CP, including but not limited to; low birth weight, shortened gestational 

age, and neonatal encephalopathy (2). The group at highest risk is infants with a gestational age of 

fewer than 28 weeks, with a prevalence of 112 per 1000 (2). A clinical diagnosis of CP is done 

based on both clinical and neurological signs, most commonly when the child is between 12 and 

24 months of age (3). The gross motor function classification system (GMFCS) is commonly used 

in conjunction with a CP- and subtype-diagnosis as a way of describing the degree of disability an 

individual case exhibits. The scoring system ranges from I to V, where someone with GMFCS I 

might only have some limitations with advanced motor skills, while GMFCS V has no means for 

independent mobility (4). Accurate early prediction of CP could facilitate earlier implementation 

of interventions that may have a positive influence on the child’s development as the plasticity of 

the brain is at its highest (5,6). Possibly improving the outcome of motor function, cognitive skills, 

communication, and more (6). In addition, due to the elevated risk of mental health problems in 

parents, interventions targeting parent-infant interactions and cognitive behavioural therapy may 

have a positive influence on parental mental health and parent-infant relationships (6). 

 

The current most accurate method of assessing the risk of CP development before 5 months of age 

is observational general movement assessment (GMA) in conjunction with cerebral imaging 

(MRI) (3). However, MRI requires expensive equipment leaving GMA the most suitable low-cost 

method for all infants at risk (3). GMA consists of classifying an infant's fidgety movements as 

normal, abnormal, or absent based on a 3-to-5-minute video recording. This video recording needs 

to be conducted under certain conditions for reliable analysis. The infant must lie on its back, 

awake, content, and without any distractions (7). The fidgety movements are only present during 

a specific period, from about 6 to 9 weeks to 16 to 20 weeks corrected age (CA), before conscious 

movements become predominant (8). The absence of fidgety movements during this period is 

highly predictive of the development of CP (9,10). A summary of a small selection of observational 

GMA studies from the past ten years is displayed in table 1. 

 

Table 1: A summary of previous studies using Prechtl’s GMA method for observational prediction of CP in infants.  

Study Sample Size 1 Sensitivity (%) Specificity (%) Accuracy (%) 

Øberg (8) 87 (10) 100 70 74 

Dimitrijevic (11) 79 (11) 100 85 87 

Crowle (12) 202 (11) 100 92 93 

Brogna (13) 574 (22) 100 97 97 

Støen (14) 405 (42) 100 85 87 
1 Sample size and the number of infants with later CP diagnosis in parenthesis. 
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The movement optimality score (MOS) expands upon the GMA, evaluating the FMs, movement 

character, age-adequate movement repertoire, observed movement patterns, and observed postural 

patterns (15–18). These five categories total a score from 5 to 28, where 28 is optimal (15). 

Previous research found that although 95% of children who later developed CP did not exhibit 

FMs, 100% had a non-optimal MOS. They also found a strong correlation between the MOS and 

functional outcome with GMFCS (15). Both the GMA and MOS require extensive clinician 

training and experience, making the widespread application of the methods for all high-risk infants 

unrealistic (19). The subjective nature of the observational methods can also be a source of 

inaccuracies (19). Research on the inter-observer reliability for FM assessment found high 

agreement when GMA observers differentiate normal and non-normal FMs, but the experience of 

the observer was important. Additionally, once FMs are further divided into sub-categories like 

intermittent FMs, continuous FMs, etc, the inter-observer agreement is reduced (20). 

 

Due to the challenges associated with observational GMA and MRI as early prediction methods 

for CP, the development of low-cost automated assessment of CP has received considerable 

attention in recent years (21,22). Studies have explored various methods for gathering movement 

data with 3D motion tracking (23), wearable movement sensors, and more (22), but the most 

feasible method thus far is video capture (21). Video capture has the advantage of not influencing 

the infants’ movements, being non-intrusive, not reliant on specialised equipment, and easily 

applicable considering the current state of video- and smartphone cameras. Several studies using 

video capture have been conducted with various means for analysis. A summary of these studies 

is displayed in table 2. Most previous quantitative studies attempt to classify the FMs in the infant’s 

movements similarly to observational GMA. This can be challenging due to the complexity and 

variability observed in infant’s spontaneous movements, as well as the variability of movement 

over time throughout a recording (24). Including GMA experts to classify and annotate normal 

and abnormal epochs in GMA videos for machine learning algorithms would reintroduce the inter-

observer reliability as a potential confounder (20). 

 

Table 2: Summary of previous studies using video-based automated movement analysis for prediction of CP in 

infants. An expanded version of table 1 in Ihlen et al. 2020. 

Study Sample Size 1 Sensitivity (%) Specificity (%) Accuracy (%) 

Adde (25) 30 (13) 85 88 87 

Rahmati (26) 78 (14) 50 95 87 

Rahmati (27) 78 (14) 86 92 91 

Stahl (28) 82 (15) 85 95 94 

Orlandi (29) 127 (16) 44 99 92 

Ihlen (30) 377 (41) 93 84 85 
1 Sample size and the number of infants with later CP diagnosis in parenthesis. 

 

The development of video-based motion tracking systems allows for the quantification of specific 

movement characteristics within the overall movements of the infant (31,32). Additionally, vast 
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amounts of video recordings with corresponding CP outcomes are becoming available through 

research and clinical implementation of observational GMA (14,29,33,34). These developments 

could permit a different approach to automated early prediction of CP in high-risk infants that were 

not previously available. Facilitating the development of CP prediction models investigating 

specific individual movement- and postural characteristics within the infants’ spontaneous 

movements. This can allow for the quantification of items within observed movement patterns and 

observed postural patterns categories of the MOS, and possibly the discovery and development of 

additional features previously undetectable with observational GMA. The observed movement- 

and postural patterns items in the MOS can be divided into two main categories, 1: Items with 

compound movements consisting of complex changes of speed and direction in specific limbs or 

body parts requiring several subsequent frames of the video recording to detect, like the kicking 

and swipes items. 2: Items with a binary state which can be extracted and evaluated on any singular 

frame of the video recording like the head centered and body symmetry items (15). The complexity 

of items in the first category likely requires annotation and machine learning to quantify. Due to 

this, only items of the second category were considered in this study. Additionally, items based on 

the mouth-, tongue-, and eye movements were not included as the motion tracking data utilised do 

not provide movement information on these body parts. 

 

The aim of this study is to develop an automatic assessment of the hand-to-hand contact, head 

centered, and body symmetry items of the movement optimality score. The automatic assessment 

is developed by producing movement features using quantifiable variables extracted from video-

based motion tracking data. Additionally, analyse how accurate individual and sum of movement 

features differentiate and predict CP and non-CP outcomes in high-risk infants. 

 

2.0 - Method  

2.1 - Study participants 

This study adopts a pre-existing dataset consisting of 557 high-risk infants with known CP or non-

CP outcomes. The participants were prospectively enrolled in various studies between September 

2001 and October 2018 (14,25,35,36). The participants originate from four countries, the United 

States (248 infants), Norway (190 infants), India (82 infants), and Belgium (37 infants), each with 

a specific composition of high-risk factors. The infants originating from the United States and 

Norway consisted of heterogeneous high-risk factors including short gestational age, low birth 

weight, neurological abnormalities etc. All infants from India had neonatal encephalopathy and all 

infants from Belgium had perinatal stroke. All participants were video recorded at 9-18 weeks CA 

during the FMs period, according to Prechtl’s GMA standards, and considered for diagnosis 

between 12- and 89-months CA by a paediatrician. Parental consent for all infants was obtained 

before inclusion in the respective studies (32). 

 

 

 



6 
 

2.2 - Motion tracking data 

This study utilises the motion tracking data for the high-risk infants outlined in the previous 

paragraph, the motion tracking data was developed by a separate study (31,32). The motion 

tracking data consists of the x and y coordinates of 19 body keypoints and is normalised to 30 

frames per second. The name, number, and location of all body keypoints and a visual example of 

the location are outlined in figure 1. 

 

 
Figure 1: Name, number, and location of all body keypoints in the video-based motion tracking data. The list and 

visual adapted from Groos, Adde, et al. 2022 (31). 

 

2.3 - MOS item quantification 

Each MOS item selected for this study was assessed to find suitable variables capable of extracting 

the movement characteristics outlined in a previous definition of the item (15). The features 

selected were based on the definition used by Einspieler 2019 if the evaluation criteria of the MOS 

item were sufficiently explained and the body keypoints in the motion tracking data provided the 

necessary movement information. The original definition, variables selected, and features selected 

for head centered-, body symmetry- and hand-to-hand contact is displayed in table 3, 4, and 5 

respectively.  
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Head centered 

Table 3: Displays the original definition, variables selected, and features selected for head centered item of the MOS.  

Original definition Variables Features 

 

 

The head can be kept 

centered for at least 10 s; 

chin and sternum are in 

one line. Score atypical if 

the head cannot be 

centered, i.e., is tilted or in 

lateral position. 

 

 

 

 

 

→ 

 

Head centered angle: 

The angle between the 

infant's head and body. 

 

Nose-to-centre distance: 

The distance from the 

infant’s nose to the 

centre of the infant’s 

head. 

 

 

 

 

 

→ 

Head centered time: 

Percentage of the motion 

tracking data where both 

feature variables are less 

than a specified threshold. 

 

Head centered percent: 

Length of the longest 

segment of the motion 

tracking data where both 

feature variables are less 

than a specified threshold. 

 

Head centered variable calculation 

The variable head centered angle was calculated using regression lines representing the head and 

body of the infant. The head regression line is composed of the head top (number 1) and upper 

neck (number 5) body keypoints. The body regression line is composed of the upper chest (number 

9) and mid pelvis (number 13) body keypoints. The angle between the two regression lines was 

calculated using the slope of the regression lines using equation 1. The absolute value of the angle 

is utilised as the feature only measures the degree of asymmetry.  

 

𝐻𝑒𝑎𝑑 𝑐𝑒𝑛𝑡𝑒𝑟𝑒𝑑 𝑎𝑛𝑔𝑙𝑒 =  tan−1 |
𝑆𝑙𝑜𝑝𝑒𝐵𝑜𝑑𝑦  −  𝑆𝑙𝑜𝑝𝑒𝐻𝑒𝑎𝑑

1 + 𝑆𝑙𝑜𝑝𝑒𝐵𝑜𝑑𝑦  ∗  𝑆𝑙𝑜𝑝𝑒𝐻𝑒𝑎𝑑
| 1 

 

The variable nose-to-centre distance is calculated using the infant's nose body keypoint and the 

head regression line to represent the centre of the infant's head. A tracking point called x head 

centre was created where the head regression line intercepts the y value of the nose body keypoint. 

The y value of the tracking point equals the y value of the nose body keypoint and the x value is 

calculated using the y value of the nose body keypoint, slope of the head regression line, and the 

intercept of the head regression line using equation 2. The nose-to-centre distance was calculated 

in the x-axis by subtracting the x head centre value from the x nose value using equation 3. An 

illustration of the head centered variables in the context of the motion tracking data is displayed in 

figure 2. The segment of python code executing the head centered angle and the nose-to-centre 

distance calculation is displayed in figure 3. See appendix B for full code implementation. 

 

𝑋𝐻𝑒𝑎𝑑 𝑐𝑒𝑛𝑡𝑟𝑒  =  
(𝑌𝑁𝑜𝑠𝑒  −  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐻𝑒𝑎𝑑)

𝑆𝑙𝑜𝑝𝑒𝐻𝑒𝑎𝑑
2 
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𝑁𝑜𝑠𝑒 − 𝑡𝑜 − 𝑐𝑒𝑛𝑡𝑟𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  |𝑋𝑁𝑜𝑠𝑒 – 𝑋𝐻𝑒𝑎𝑑 𝑐𝑒𝑛𝑡𝑟𝑒| 3 

  

 
Figure 2: Illustration of the head centered variables. Head centered angle (left), with regression lines used for the angle 

calculation highlighted in red. Nose-to-centre distance (right), the distance measured between the nose body keypoint, 

and the head centre tracking point highlighted in red.  

 

 
Figure 3. The segment of python code used to extract the head centered variables from the motion tracking data with 

other unrelated elements of the code removed.  

 

Figure 3 code explanation 

1: Creates two separate lists containing the indexes of the x values of the body keypoints used to 

calculate the body regression line, and the head regression line. 

3: Establishes a loop through the lines in the data frame, a particular segment, or the full motion 

tracking data. Each line of the data frame contains the motion tracking data from one frame of the 

recording. All variables for all features are calculated within the same loop in the full code. 

4 – 7: Greatest NumPy arrays containing the coordinate values of the body keypoints used to 

calculate the regression lines. Separate arrays for the x and the y values for each regression line. 
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Indexes of the x values are stated in the lists from line one, and indexes of the y values are the 

index of the corresponding x index plus one.   

8 & 9: Checks for and adjusts the edge cases where the x values of both body keypoints of the 

regression line are identical causing a problem with the calculation of the regression lines.  

11: Calculates the slope and intercept of the regression lines using the NumPy.polyfit function. 

The variable r_body is the body regression line, and r_head is the head regression line. The variable 

name + [0] contain the slope, and the variable name + [1] contain the intercept.  

12: Calculates the angle between the body and head regression line using equation 1. The angle is 

simultaneously converted from radians to degrees, and to the absolute value. The value is stored 

in the variable hc_ang.  

14: Calculates the x value of the head centre tracking point using equation 2. Value is stored in the 

variable x_headcentre. The if statement is needed to act in edge cases where the slope of the 

regression line is exactly zero, performing the calculation with 0.0001 instead of the slope to avoid 

division by zero error. The variable df.iat[frame,4] contains the y value of the nose body keypoint 

in the current line in the motion tracking data. The value is stored in the variable x_headcentre.  

15: Calculates the absolute distance between the x_centre and df.iat[frame,3]. The variable 

df.iat[frame,3] contains the x value of the nose body keypoint in the current line of the motion 

tracking data (equation 3). The value is stored in the variable nose_dist. 

 

Body symmetry 

Table 4: Displays the original definition, variables selected, and features selected for head centered item of the MOS. 

Original definition  Variables  Features 

 

 

 

 

 

 

An imaginary line 

through the shoulder 

joints and an imaginary 

line through the hip 

joints run parallel. Score 

atypical if this is not the 

case throughout the 

recording. 

 

 

 

 

 

 

 

 

 

→ 

 

 

 

 

 

 

Body symmetry angle: 

The angle between one 

line spanning the 

infant's shoulders and a 

second line spanning 

the infants’ hips. 

 

 

 

 

 

 

 

 

 

→ 

Body symmetry time: 

Percentage of the motion 

tracking data where the feature 

variable value is lower than a 

specified threshold.  

 

Body symmetry percent: 

Length of the longest segment of 

the motion tracking data where 

the feature variable value is 

lower than a specified threshold. 

 

Body symmetry large 

asymmetry percent: 

Percentage of the motion 

tracking data where the feature 

variable value is higher than a 

specified threshold. 
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Body symmetry variable calculation 

The body symmetry angle was calculated using two regression lines. One represents the infants’ 

shoulders, and the other represents the infants’ hips. The shoulder regression line is composed of 

body keypoint 6, 9, and 10 and the hip regression line is composed of body keypoint 13, 14, and 

17. The angle between the two regression lines was calculated with the slope of the regression 

lines using equation 4. The absolute value of the angle is utilised as the feature only measures the 

degree of asymmetry.  An illustration of the two regression lines in the context of the motion 

tracking data is displayed in figure 4. The segment of python code executing the body symmetry 

variable calculation is displayed in figure 5. See appendix B for full code implementation. 

 

𝐵𝑜𝑑𝑦 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 𝑎𝑛𝑔𝑙𝑒 =  tan−1 |
𝑆𝑙𝑜𝑝𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟  −  𝑆𝑙𝑜𝑝𝑒𝐻𝑖𝑝

1 +  𝑆𝑙𝑜𝑝𝑒𝑆ℎ𝑜𝑢𝑙𝑑𝑒𝑟  ∗  𝑆𝑙𝑜𝑝𝑒𝐻𝑖𝑝
| 4 

 

 
Figure 4: Illustration of the body symmetry variable with the regression lines used to calculate the angle highlighted 

in red.  

 

 
Figure 5. The segment of python code used to extract the body symmetry variables from the motion tracking data with 

other unrelated elements of the code removed.  
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Figure 5 code explanation 

1: Creates separate lists containing the indexes of the x values of the body keypoints used to 

calculate the regression lines. 

3: Establishes a loop through the lines in the data frame, a particular segment, or the full motion 

tracking data. Each line of the data frame contains the motion tracking data from one frame of the 

recording. All variables for all features are calculated within the same loop in the full code. 

4 - 7: Greatest NumPy arrays containing the coordinate values of the body keypoints used to 

calculate the regression lines. Separate arrays for the x and the y values for each regression line. 

Indexes of the x values are stated in the lists from line one, indexes of the y values are the index 

of the corresponding x index plus one.   

8: Checks for and adjusts for edge cases where the x values of both body keypoints of the 

regression line are identical causing a problem with the calculation of the regression lines.  

10: Calculates the slope and intercept of the regression lines using the NumPy.polyfit function. 

The variable r_shoulder is the shoulder regression line, and r_hip is the hip regression line. The 

variable name + [0] contain the slope, and the variable name + [1] contain the intercept. 

11: Calculates the angle between the shoulder and hip regression lines using equation 4. The angle 

is simultaneously converted from radians to degrees, and to the absolute value. The value is stored 

in the variable bs_ang. 

 

Hand-to-hand contact 

Table 5: Displays the original definition, variables selected, and features selected for head centered item of the MOS. 

Original definition  Variables  Features 

 

 

 

Both hands are brought 

together in the midline and 

the fingers of both hands 

repetitively touch, stroke 

or grasp each other. Score 

atypical if asymmetrical, 

or if both hands are fisted. 

 

 

 

 

 

 

→ 

 

 

Hand-to-hand distance: 

The distance between the 

right and left wrist body 

keypoints.  

 

Average hand-to-centre 

distance: The distance 

from the average wrist 

position to the centre of 

the infant’s body.  

 

 

 

 

 

 

→ 

Hand-to-hand time: 

Percentage of the motion 

tracking data where both 

feature variable values are 

lower than the specified 

threshold.  

 

Hand-to-hand percent: 

Length of the longest 

segment of the motion 

tracking data where both 

feature variable values are 

lower than the specified 

threshold. 
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Hand-to-hand contact variable calculation 

The variable hand-to-hand distance is the hypotenuse of the distance between the x values and the 

y values of the wrists (body keypoints 8 and 12) using equation 5.  

 

𝐻𝑎𝑛𝑑 − 𝑡𝑜 − ℎ𝑎𝑛𝑑 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋𝑅𝑖𝑔ℎ𝑡  −  𝑋𝐿𝑒𝑓𝑡)
2

 +  (𝑌𝑅𝑖𝑔ℎ𝑡  − 𝑌𝐿𝑒𝑓𝑡)
2

5 

 

To calculate the average hand-to-centre distance variable a new tracking point was created to 

represent the average position of both wrists, this was achieved using equations 6 and 7. A tracking 

point called x body centre was created where the body regression line intercepts the y value of the 

average hand position. The y value of x body centre equals the y value of the average hand position, 

and the x value of x body centre is calculated using the y value of the average hand position, slope 

of the body regression line, and the intercept of the body regression line using equation 8. The 

average hand-to-centre distance variable was then calculated by subtracting the x body centre value 

from the x value of the average hand position as outlined in equation 9. An illustration of the hand-

to-hand distance and average hand-to-centre distance is displayed in figure 6. The segment of 

python code executing the hand-to-hand contact item variable calculation is displayed in figure 7. 

See appendix B for full code implementation. 

 

𝑋𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑 =  
(𝑋𝑅𝑖𝑔ℎ𝑡  + 𝑋𝐿𝑒𝑓𝑡)

2
6 

 

𝑌𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑 =  
(𝑌𝑅𝑖𝑔ℎ𝑡  +  𝑌𝐿𝑒𝑓𝑡)

2
7 

 

𝑋𝐵𝑜𝑑𝑦 𝑐𝑒𝑛𝑡𝑟𝑒  =  
(𝑌𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑  −  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐵𝑜𝑑𝑦)

𝑆𝑙𝑜𝑝𝑒𝐵𝑜𝑑𝑦
8 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 ℎ𝑎𝑛𝑑 − 𝑡𝑜 − 𝑐𝑒𝑛𝑡𝑟𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  |𝑋𝐴𝑣𝑒𝑟𝑎𝑔𝑒  −  𝑋𝐶𝑒𝑛𝑡𝑟𝑒𝑙𝑖𝑛𝑒| 9 
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Figure 6: Illustration of the hand-to-hand contact variables. Hand-to-hand distance (left), with the distance measured 

between the wrist body keypoints highlighted in red. Average hand-to-centre distance (right), with the distance 

measured between the average hand position to the body centre tracking point highlighted in red.  

 

Figure 7. The segment of python code used to extract the hand-to-hand contact variables from the motion tracking 

data with other unrelated elements of the code removed.  

 

Figure 7 code explanation 

1: Creates separate lists containing the indexes of the x values of the body keypoints used to 

calculate the regression line and the average hand position.  

3: Establishes a loop through the lines in the data frame, a particular segment, or the full motion 

tracking data. Each line of the data frame contains the motion tracking data from one frame of the 

recording. All variables for all features are calculated within the same loop in the full code. 

4 & 5: Greatest NumPy arrays containing the coordinate values of the body keypoints used to 

calculate the regression line. Separate arrays for the x and the y values. Indexes of the x values are 

stated in the list from line one, the indexes of the y values are the index of the corresponding x 

index plus one.   
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6: Checks for and adjusts for edge cases where the x values of both body keypoints of the 

regression line are identical causing a problem with the calculation of the regression lines.  

8: Calculates the slope and intercept of the regression line using the numpy.polyfit function. The 

variable r_body is the body regression line. The variable name + [0] contains the slope, and the 

variable name + [1] contains the intercept. 

10: Calculates the hand-to-hand distance using the math.hypot function of the math library to 

execute equation 5. The value is stored in the variable hand_dist. 

11. Calculates the average x position of the wrist body keypoints (equation 6). The value is stored 

in the variable x_handaverage.  

12: Calculates the average y position of the wrist body keypoints (equation 7). The value is stored 

in the variable y_handaverage. 

13: Calculates the x value of the new tracking point along the body regression line (equation 8) 

The value is stored as the variable x_bodycentre. 

14: Calculates the absolute distance between the x_bodycentre and x_handaverage (equation 9). 

The value is stored in the variable hand_centre_dist. 

 

2.4 – Variable- and feature threshold search 

For the features to resemble the intended movement characteristic of the original MOS items, 

initial upper and lower bounds were established for each variable using a visual comparison of the 

original video and a digital rendering of the movement tracking data. A program was developed 

to create the digital rendering of the motion tracking data along with the current values for each 

variable. A side-by-side comparison of the original video and digital rendering at approximately 

the same frame can be seen in figure 8, and the full code for the program creating the digital 

rendering can be seen in Appendix C. The comparison was performed on a separate infant outside 

of the subject pool for this study. Subsequently, a grid search was performed for each feature to 

find the variable values best able to distinguish between the CP and non-CP groups. The grid 

search started with values evenly distributed between the selected upper and lower bounds for the 

variable. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve was 

used to narrow the search towards the value or combination of values best able to distinguish 

between the groups. For features utilising the same variables, the variable thresholds are the same. 

The sensitivity and specificity for the full spectrum of possible thresholds were extracted with the 

ROC curve using the variable values providing the best AUC for the feature. The time or 

percentage threshold used to determine a positive and negative prediction for each feature was 

selected based on the best combined sensitivity and specificity, with both weighted equally. For 

the head centered time feature, a threshold was already established in the original definition of the 

item at 10 seconds. In this case, the sensitivity and specificity were analysed concurrently with the 

variable grid search to find values best suited for this threshold plus or minus two seconds. 
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Figure 8: Illustration of the visual comparison of the initial threshold search. Original observational GMA video 

recording (left) and digital rendering of the video-based motion tracking data (right) of the same infant at 

approximately the same frame. The digital rendering includes the current frame number and the current value of each 

of the feature variables. 

 

2.5 - Variable test 

The value for each variable is compared to the threshold established in the grid search. If both 

values or single value in the case of body symmetry is within the specified threshold value, a “1” 

is appended to a list representing the feature. If either variables or the single variable in the case 

of body symmetry is not within the specified threshold value a “0” is appended to the same list 

(equation 10 and inverse of equation 10 for the large asymmetry variable). Any variable measuring 

distance between two body keypoints or other constructed tracking points in the motion tracking 

data (nose-to-centre distance, hand-to-hand distance, and average hand-to-centre distance) is 

transformed such that the variable states the percentage of the distance of the infant's upper body 

measured as the distance between the upper chest and mid pelvis body keypoints using equation 

11. This was done to reduce the impact of video camera position and the size of the infant as 

confounding factors. The calculation of the variable values and the body distance variable is 

repeated for each line of the motion tracking data representing one frame of the video recording 

each.  

 

𝑓(𝑥) = {
0, 𝑥 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 1, 𝑥 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
10 

 

𝐵𝑜𝑑𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑋𝑈𝑝𝑝𝑒𝑟 𝑐ℎ𝑒𝑠𝑡  − 𝑋𝑀𝑖𝑑 𝑝𝑒𝑙𝑣𝑖𝑠)
2

 + (𝑌𝑈𝑝𝑝𝑒𝑟 𝑐ℎ𝑒𝑠𝑡  −  𝑌𝑀𝑖𝑑 𝑝𝑒𝑙𝑣𝑖𝑠)
2

11 
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2.6 - Feature value 

Following the classification of the variables for all frames of the motion tracking data, the binary 

list is used to find both the percentage and length of the longest segment of the motion tracking 

data where the variable or variables in question are within the specified threshold. The percentage 

is calculated by summing all the items in the list, divided by the number of items in the list, and 

multiplied by 100 to convert it into percentage (equation 12). The longest time segment of the 

motion tracking data is calculated by using a function in the intertools library identifying the 

longest uninterrupted segment of  “1” in the list and dividing by 30 frames per second to convert 

it to seconds (figure 9). The segment of python code executing the variable threshold test and 

feature value test is displayed in figure 9.  

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑎𝑙𝑢𝑒 =  
∑ 1

∑ 0 + ∑ 1
 ∗  100 12 

 

 
Figure 9. The segment of python code executing the variable threshold test and feature value test with other 

unrelated elements of the code removed.  

 

Figure 9 code explanation 

1: Calculates the distance between the upper chest- and mid-pelvis body keypoints using the 

math.hypot function of the math library to execute equation 11. The distance is stored in the 

variable as body_dist. 

3 - 6: Tests each variable value against the variable threshold established in the grid search stored 

elsewhere in global lists. A “1” is added to a new list if both variables are within the threshold, and 

a “0” is added if any of the variables are not within the threshold (equation 10). These calculations 

are part of the loop that repeats for every line of the data frame. 

8: Calculates the value of the head centered time feature. The segment tests the hc list (created in 

line 3) for the longest segment of uninterrupted “1” in the list. Divides the length of the segment 

by 30 to convert to seconds and stores the result rounded to two decimals in the variable hc_time. 

9: Exception occurs in the previous calculation if no instance of 1 is found in the hc list, sets the 

variable hc_time to 0. 

10: Calculates the head centered percent feature (equation 12). Divides the total number of items 

in the hc list by the total number of “1” in the hc list. Multiplied by 100 to convert to percentage, 

rounded to two decimals, and stored in the variable hc_pct.  
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11 - 17: Identical steps are performed to find the time- and percent features of the hand-to-hand 

contact item and the body symmetry item as was done on the head centered feature in lines 8 - 10. 

The values are stored in the variables h2h_time, h2h_pct, bs_time, bs_pct and bsl_pct respectively. 

 

2.7 - Feature prediction score 

Each feature is given a score of “1” or “0” depending on the feature value in comparison to the 

feature threshold. A “1” represents a negative CP prediction and a “0” represents a positive CP 

prediction. For features where a lower feature value is more indicative of a positive test, a “1” is 

allocated if the feature value is higher than the feature threshold (equation 13). For features where 

a higher value is more indicative of a positive test, a “1” is allocated if the feature value is lower 

than the feature threshold (inverse of equation 13). The segment of the python code executing the 

feature prediction test is displayed in figure 10. 

 

𝑓(𝑥) = {
0, 𝑥 < 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

 1, 𝑥 ≥ 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
13 

 

 
Figure 10. The segment of the python code executing the feature prediction test with other unrelated elements of the 

code removed.  

 

Figure 10 code explanation 

1 - 7: Each line tests the previously calculated feature value against the corresponding feature 

threshold (equation 13). A “1” is appended to the feature_score list if a negative test result is 

observed and a “0” is appended to the same list if a positive test result is observed.  

 

2.8 Program development and statistical analysis 

All programs developed for this study were written in python programming language using spyder 

integrated scientific development environment. The main program for motion tracking data testing 

utilises the libraries pandas, NumPy, glob, math, and intertools. Pandas’ library is used for 

importing CSV files, exporting the main results as CSV and data frame management in the 

program. NumPy library is used for calculating the regression lines as well as constructing the 

needed arrays for the calculation. Glob library is used to iterate through all CSV files in specific 

folders. Math library is used for the inverse tangent-, radians to degrees- and hypotenuse 

calculation.  Lastly, the intertools library is used to identify the length of the longest segment of 

uninterrupted identical items a list.  

 



18 
 

Results were analysed using IBM SPSS Statistics for Windows, version 27 (IBM Corp., Armonk, 

N.Y., USA). Test of normality was performed with the Shapiro-Wilk test and the statistical 

significance of the difference in distribution was tested with the Mann-Whitney U test. The 

difference in the feature score between the outcome groups was tested with the independent 

samples T-test. ROC curve analysis was used to find the variable threshold values for each feature, 

and the ROC curve coordinates were exported to Microsoft Excel to calculate the combined 

sensitivity and specificity for each possible threshold to find the largest combined total. 

Additionally, the ROC curve coordinates were used to provide the sensitivity and specificity of 

the individual feature scores and sum of features scores, which in conjunction with the number of 

positive and negative cases in the data set enables the calculation of accuracy. P-values less than 

0.05 were considered statistically significant. 

 

3.0 - Results 

3.1 - Results of the threshold search 

The threshold for each feature variable is displayed in table 6. The threshold value for each feature 

determining positive or negative prediction for the feature is displayed in table 7. Results for the 

training data set are displayed in appendix A.  

 

Table 6: The variable threshold values developed in the grid search on the training data set. 

Variable Threshold 

Head centered angle 12 degrees 

Nose-to-centre distance 5 percent of body distance 

Hand-to-hand distance 25 percent of body distance 

Average hand-to-centre distance 6 percent of body distance 

Body symmetry angle 8 degrees 

Body symmetry large asymmetry angle 20 degrees 

 

Table 7: The feature threshold values developed in the grid search on the training data set. 

Feature Threshold 

Head centered time > 11.5 seconds 

Head centered percent > 17.5 percent 

Hand-to-hand time > 1 second 

Hand-to-hand percent > 0.5 percent 

Body symmetry time < 7.5 seconds 

Body symmetry percent > 20 percent 

Body symmetry large asymmetry < 23.5 percent 

 

3.2 - Main results 

Shapiro Wilks test of normality indicates that no feature value is normally distributed (p = 0.000 - 

0.009).  
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Head centered features 

The AUC and distribution of the head centered features are displayed in figure 11. Head centered 

time in panel A and head centered percent in panel B. The AUC for the head centered time- and 

percent features was .611 (95% CI = .488 - 734), and .606 (95% CI = .478 - 733) respectively. The 

box plot indicates some difference in distribution between the CP and non-CP outcome groups for 

both features, although the difference was not statistically significant Mann-Whitney U p = .106 

for the head centered time feature and p = .123 for the head centered percent feature.   

 

 

Figure 11: Displays the ROC curve and difference in distribution between the CP and non-CP outcome groups with 

the box plot for the head centered features. Head centered time (A) and head centered percent (B). 

 

Hand-to-hand features 

The AUC and distribution of the hand-to-hand contact features are displayed in figure 12. Hand-

to-hand time in panel A and hand-to-hand percent in panel B. The AUC for the hand-to-hand time- 

and percent feature was .548 (95% CI = .425 - .672) and .551 (95% CI = .427 - .674) respectively. 

The box plot indicates a difference in distribution for both features, the difference was not 
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statistically significant, Mann-Whitney U p = .402 for the time feature and p = .379 for the percent 

feature. Both hand-to-hand contact features are impacted by a low prevalence for the CP and non-

CP outcome group, although the prevalence is slightly lower in the group that later developed CP. 

77 (65.3%) of the non-CP outcome group and 15 (71.4%) of the CP outcome group measured no 

hand-to-hand contact in the motion tracking data. 

 

 
Figure 12: Displays the ROC curve and difference in distribution between the CP and non-CP outcome groups with 

the box plot for the hand-to-hand contact features. Hand-to-hand time feature (A) and hand-to-hand percent (B). 

 

Body symmetry feature 

The AUC and distribution of the body symmetry features are displayed in figure 13. Body 

symmetry time in panel A, body symmetry percent in panel B, and body symmetry large 

asymmetry in panel C. The AUC for the body symmetry time, body symmetry percent and body 

symmetry large asymmetry percent features was .474 (95% CI = .333 - .615), .534 (95% CI = .404 

- .664), and .552 (95% CI = .417 - .688) respectively. The box plot indicates limited differences 

between the CP and non-CP outcome groups, with the largest difference displayed by the body 
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symmetry percent feature. No difference in distribution was statistically significant Mann-Whitney 

U p = .704 for body symmetry time feature, p = .621 for body symmetry percent feature, and p = 

.446 for body symmetry large asymmetry feature.  
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Figure 13: Displays the ROC curve and difference in distribution between the CP and non-CP outcome groups with 

the box plot for the body symmetry features. Body symmetry time feature (A), body symmetry percent (B), and body 

symmetry large asymmetry percent (C). 

 

Feature prediction score 

The results following conversion to binary CP prediction using the feature thresholds can be seen 

in table 8. Six features had positive predictive ability, the body symmetry time did not. The mean 

difference between the CP and non-CP outcome groups ranged from -.085 to .186. The mean 

difference for hand-to-hand time and the combined total was statistically significant, the hand-to-

hand time mean difference was .186 (p = 0,031) and the mean difference for the combined total 

was .750 (p = 0.031). The mean difference for the remaining features difference was not 

statistically significant measured with the independent sample T-test. Both hand-to-hand features 

had high sensitivity but low specificity and both body symmetry percent and body symmetry large 

asymmetry had low sensitivity but high specificity. The sensitivity, specificity, and accuracy for 

each possible threshold for the combined total score of the test data set can be seen in table 9. 

 

Table 8: The sensitivity, specificity, and accuracy for each feature on the left, and results of the independent sample 

T-test for each feature, and the combined total on the right 

 Predictive power  Independent sample T-test 

Feature Sens. 1 Spec. 2 Acc. 3  Mean non-CP  

N = 118 

Mean CP  

N = 21 

Mean diff Sig.4 

HC time 57.1 54.2 54.7  .542 .429 .114 .351 

HC pct 47.6 66.9 64.0  .669 .524 .146 .235 

H2H time 100 18.6 30.9  .186 .000 .186 .031 

H2H pct 90.5 26.3 36.0  .263 .095 .168 .098 

BS time 38.1 53.4 51.1  .534 .619 -.085 .474 

BS pct 23.8 89.8 79.9  .898 .762 .136 .080 

BSL pct 23.8 84.7 75.5  .847 .762 .086 .404 

Total --- --- ---  3.941 3.190 .750 .031 
1 Sensitivity (%). 2 Specificity (%). 3 Accuracy (%). 4 Two-sided p 

 

Table 9: The sensitivity, specificity, and accuracy of the combined total score for all thresholds. 

Threshold Sensitivity Specificity Accuracy 

0.5 0 99.2 84.2 

1.5 14.3 95.0 82.8 

2.5 28.6 81.4 73.4 

3.5 57.4 61.0 60.4 

4.5 85.7 34.7 42.4 

5.5 95.2 16.1 28.0 

6.5 100 6.8 20.8 
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4.0 – Discussion 

The aim of this study was to develop an automatic assessment of the hand-to-hand contact, head 

centered, and body symmetry MOS items by developing movement features using quantifiable 

variables extracted from video-based motion tracking data. Additionally, analyse how accurate 

individual and sum of movement features differentiate and predict CP and non-CP outcomes in 

high-risk infants. 

The results suggest that quantifying this category of MOS items with the intent of differentiating 

between CP outcome groups is feasible. The head centered and hand-to-hand contact features can 

to a reasonable extent differentiate between the CP and non-CP outcome groups, but any individual 

feature’s ability to predict the development of CP in singular cases is limited. However, the 

predictive capability of multiple combined features surpasses that of any individual feature the 

combination is composed of. This reflects one of the findings of Einspieler 2019. They found that 

the absence of an individual movement pattern by itself could not predict the degree of functional 

limitations. The combination of several atypical movements and postural patterns often in 

conjunction with abnormal or cramped-synchronised movement character and the lack of FMs was 

predictive of GMFCS outcomes (15). 

No previous studies using exclusively the score of the observed movement and or postural patterns 

of the MOS to predict the development of CP were found. However, a study investigating the 

relationship between the MOS at 3 to 5 months and neurological outcome found that a non-optimal 

MOS predicted CP with 100% accuracy, with all infants in the study who developed CP had a 

MOS between 5 and 7. Although this is promising, they also found a large variety in the quality 

of movement and posture among those with normal development. With only 35% of normally 

developing infants displaying optimal motor performance (37). A different study analysing the 

GMA and MOS among extremely preterm infants observed almost identical distribution within 

the FM category and the quality of other movements category. The posture category did not display 

the same similarity (38). Although this does indicate a correlation between the FM and movements 

categories, the study did not follow up with CP outcome.  

4.1 - Head centered item 

Among the group who later developed CP in this study, 57.1 % displayed atypical head centered 

time i.e., no segment of 11.5 seconds or more with head centered detected in the motion tracking 

data. This is almost identical to Einspieler 2019, which found that 60.1% of infants in their study 

(exclusively infants with later CP diagnosis) displayed atypical head centered posture (15). The 

similarity suggests that the head centered time feature developed in this study bears a satisfactory 

resemblance to the original head centered MOS item and its threshold for normal or atypical 

assessment. The head centered percent feature did not exhibit the same level of similarity, with 

47.6% of the infants developing CP scoring atypical on the feature.  
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The method for extracting the nose-to-centre distance in this study is likely subject to inaccuracies 

in particular circumstances. The variable is measured exclusively in the x-axis of the motion 

tracking data causing the distance measured during frames where the head regression line is not 

exactly perpendicular to the x-axis to be inaccurate. This inaccuracy would increase with a larger 

deviation from the y-axis, and the distance measured would increase or decrease depending on the 

direction of a simultaneous rotation or tilt of the infant’s head. Considering the head centered angle 

regularly surpasses the 12-degree threshold, the inaccuracy caused by this issue could be 

significant depending on the simultaneous position of the body regression line. Rather than 

calculating the distance exclusively in the x-axis, the line measured could be perpendicular from 

the head regression line towards the nose body keypoint. Altering the approach for variable 

extraction for this variable could make the feature more reliable in asymmetrical positions. The 

same inaccuracy is present for the average hand-to-centre distance variable for the hand-to-hand 

contact features, but to a lesser extent due to the body regression line being more in line with the 

x-axis in most cases. The method for calculating the head centered angle seems to be considerably 

more robust. Although it might be worth investigating if the variable is better suited to differentiate 

the outcome groups by including the upper chest body keypoint in the regression line calculation. 

4.2 - Body symmetry item 

The body symmetry features developed in this study did not resemble the distribution of normal 

and atypical body symmetry in Einspieler 2019. In this study, the body symmetry time, body 

symmetry percentage, and body symmetry large asymmetry features found 38.1%, 23.8%, and 

23.8% respectively to be atypical among the positive CP group, compared to 65% in Einspieler 

2019 (15). The body symmetry time feature was the only feature developed in this study with no 

predictive capability, with the CP group scoring higher than the non-CP group on the test data set. 

Although the body symmetry percentage and large asymmetry features were able to differentiate 

between the groups, the difference was small and not significant. Lastly, the body symmetry large 

asymmetry percentage feature provided the least mean difference among the features with a 

positive predictive capability.  

Although the movement characteristics for the body symmetry item is concise and the body 

symmetry angle is a direct quantification of the MOS item, this suggests that the features developed 

should be re-evaluated. A possibility of a more accurate way of recreating this MOS item could be 

a feature calculating the average body symmetry angle throughout the motion tracking data using 

the body symmetry angle developed. 

4.3 - Hand-to-hand contact item 

In this study the prevalence of any hand-to-hand contact during the extent of the motion tracking 

data was low, 34,7% for the non-CP group, 28.6% for the CP group, and 33,8% combined. 

Although the prevalence is low, it is significantly higher than the 10% hand-to-hand contact 

observed in Einspieler et al 2019, which was regardless of normal or atypical classification of the 

observed feature. This might suggest that the variable thresholds developed in this study 
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determining what is considered hand-to-hand contact were lower than for the GMA observers in 

Einspieler 2019 (15). Alternatively, the “repetitively” part of “both hands repetitively touch, stroke 

or grasp each other” in the MOS item definition could also be the cause for this discrepancy. In 

this present study hand-to-hand contact is registered regardless of length or repetitive nature as 

soon as both variable threshold values are simultaneously met. Another implication that might be 

derived from these findings, is that the similarity of occurrence in both outcome groups indicates 

that the eventual CP outcome has negligible influence on the prevalence of hand-to-hand contact. 

This would contradict the notion put forth in Einspieler 2019 that the low prevalence of hand-to-

hand contact was due to the lack of visuomotor coordination caused by a sample consisting of 

exclusively positive CP outcomes (15). 

 

The hand-to-hand contact item definition consists of two separate elements. First, whether the 

hands are brought together over the midline of the infant, and second, how the fingers touch once 

the hands are over the midline (15). In the original MOS, the classification of the item as normal 

or atypical is centred around the way the fingers are positioned during contact (15). The available 

detail in the motion tracking data makes it impossible to extract the position and movement of the 

fingers of the infants. A variation of the item was chosen in this study despite the inability to extract 

finger movement and because of a theory that arm movements against the line of gravity might be 

a relevant predictive factor. 

 

4.4 - Variable and feature threshold 

This study used CP outcome to develop thresholds for the variables and features. The exception 

was head centered time feature which had a pre-established threshold in the MOS item definition 

(15), and the initial upper and lower limitation for the variable threshold to maintain the intended 

movement characteristics of the MOS item. This removes most of the human subjectivity from the 

development of the variables and features. Developing the features based on the outcome without 

input from GMA experts has the advantage of eliminating the subjective thresholding of GMA 

experts or preferences of a GMA team (39). It might in turn remove the clinical relevance of the 

features established through previous observational research on GMA and MOS (10,15–18).  

Like the variable and feature threshold selection, the combined sensitivity and specificity with both 

weighted equally is used as the main measure for predictive capability. Using accuracy as a 

measure of predictive capability or as a basis for selecting variable- or feature thresholds with the 

current data sets would bias towards high specificity at the expense of sensitivity. This is due to 

the training and testing motion tracking data sets consisting of 15.1% positive CP outcomes, which 

is to be expected in a representative group of high-risk infants with various high-risk factors (2). 

The approach used in this study to use sensitivity and specificity to determine thresholds does 

result in lower accuracy for each of the features, however, it eliminates this bias. 
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4.5 - Study limitations and future aspects 

The scope of this current study is limited, quantifying 3 out of 36 total MOS items within the 

observed movement- and postural patterns categories, with the developed features displaying 

varying levels of significance differentiating the CP and non-CP outcome group distributions. 

Additionally, this study exclusively investigated one item subtype within the two categories, 

focusing on items that can be identified and extracted on any singular frame of the motion tracking 

data. Considering these limitations, it is unknown how the result of this current study translates to 

other items, particularly the compound movement items, and finer movement items containing the 

eyes, mouth, fingers, etc. Hence, future studies quantifying MOS items should include a wider 

selection of items and include items of the types not investigated in this study. The 19 body 

keypoints available in the video-based motion tracking data used in this study do not facilitate the 

extraction of finer movements of the mouth, eyes, and fingers. With further development of these 

systems, more MOS items could be more realistic targets for quantification in future studies on the 

subject. Regarding the more complex MOS items with compound movement spanning several 

frames of the motion tracking data, the currently available detail should be sufficient to facilitate 

extraction, but the complexity of these movements might require machine learning with GMA 

expert annotation to accomplish. Expert annotation would reintroduce the potential issue of inter-

observer reliability, with differing subconscious thresholds between the observers doing the 

annotations. Although the inter-observer reliability is high when differentiating between normal 

FMs and non-normal FMs with experienced observers (20). A study investigating the inter-

observer agreement within the four other categories of the MOS found a lower agreement for the 

observed movement and postural patterns than for FMs. Additionally, the agreement was based on 

the score of the category, which is decided based on the number of normal versus atypical items. 

Making the inter-observer agreement on individual items potentially lower due to potential chance 

agreements on the category (39).  

The current study directly interpreted the score of individual features and the sum of the scores of 

the features developed. This rudimentary method is likely a suboptimal approach for the analysis 

of the combination of features. More sophisticated methods could produce more significant 

differences between the outcome groups. Methods such as partial least square regression, taking 

the covariation between features into account (40,41), have been used in some previous 

quantitative CP prediction studies (27,30). Future studies quantifying individual movement 

features of the MOS should investigate the possibility of clustering features to improve the 

capability.  

Although most of the features developed in this current study did not achieve statistical 

significance, the results are promising and do justify further research and development. Improving 

or replacing features developed for the MOS items in this current study and adding features for 

additional items of the movement and postural patterns categories. As well as implementing better 

analytical methods for differentiating CP and non-CP outcome groups and predicting outcomes in 

individual cases using the combination of features. With continuing development of an automatic 
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video-based assessment of individual movements, particularly three applications of the assessment 

should be investigated.  

First, whether a combined assessment of features score can differentiate between different GMFCS 

outcomes in infants with CP outcomes. Many studies have observed significant correlations 

between the movements observed during the FM period and eventual GMFCS classifications in 

positive CP outcome cases (15,25,30). Ihlen et al 2020 assessed the proportion of risk-related 

movements with video-based motion tracking using multivariate empirical mode decomposition. 

They found that the proportion of risk-related movements in cases with a GMFCS outcome of IV 

or V was significantly higher than that of cases with a GMFCS of I-III (30). Einspieler 2019 found 

a strong association between the MOS and GMFCS classification. In their study, no infant with a 

positive CP diagnosis achieved an optimal MOS (25 - 28), but 3% had a high score of 20 - 24. 

Among these, nine were classified with a GMFCS I, and the remaining three were classified with 

GMFCS II. Furthermore, a MOS over 14 was associated with lower functional disability with a 

GMFCS outcome of I or II, while infants with eventual GMFCS IV or V typically scored less than 

eight. Additionally, they found that excluding the FM category had a negligible impact on the 

predictive capacity regarding GMFCS outcomes. Excluding the FM category from the MOS 

increases the combined impact of observed movement- and postural patterns in the analysis from 

29% to 50%. This suggests that the two categories should have some predictive capability 

regarding GMFCS outcomes in positive CP cases (15).  

Second, investigating the possibility of quantifiably recreating previous observations regarding 

specific movements and the development of certain CP subtypes. Previous studies have found 

associations between a reduction in certain segmental movements on one side and the development 

of unilateral CP (42–44). The association was also observed in Einspieler et al 2019 with 63% of 

the infants who later developed unilateral CP showing a higher frequency of movements in the 

unaffected arm, with the remainder similar quantity of segmental movements. They also found 

that 58% of the infants later diagnosed with dyskinesia displayed circular arm movements, and 

that infants who were diagnosed with dyskinesia had more atypical postural patterns than those 

diagnosed with spasticity (15).  

Third, there are numerous studies on the development of an automatic assessment of FM, many of 

them also based on video recording during the prominent FM period (25–30). There could be 

possibilities for combining a fully developed version of the automatic video-based assessment of 

movement and postural patterns with an automatic video-based assessment of FMs. Essentially 

creating a fully quantified video-based version of the MOS, performing all parts of the assessment 

based on a single video recording. Any such combination would benefit from both the assessment 

of FMs and the assessment of individual movement features utilising the same method for 

interpreting. Making the CIMA model in Ihlen 2020 the most applicable of the previously 

mentioned studies as it utilises similar video-based motion tracking (30).  
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Conclusion 

The aim was to develop and test an automatic assessment of the hand-to-hand contact, head 

centered, and body symmetry items of the MOS by developing movement features using 

quantifiable variables extracted from video-based motion tracking data on high-risk infants. 

Additionally, analyse how accurate individual and sum of movement features differentiate and 

predict CP and non-CP outcomes in high-risk infants. The results show that individual movement 

and postural features of the category examined can be quantified and some features can 

differentiate CP and non-CP outcome groups. Individual features had limited predictive capability 

in individual cases, however, combining features elevated the predictive capability. The head 

centered features closely mirrored that of previous findings, the remaining features might warrant 

re-evaluation. The scope of the study was limited and should be replicated with a larger set of 

features including more varieties in item type. Future studies should also investigate if the 

combination of quantified features can predict GMCFS outcome and if specific quantified 

movement features can predict CP subtype. 

 

Appendix A. Result for the training data set 

Shapiro Wilks test of normality indicates that no feature value is normally distributed (p = 0.000 - 

0.021).  

 

Head centered 

The AUC and distribution of the head centered features on the training data set are displayed in 

figure A1. Head centered time in panel A and head centered percent in panel B. The AUC for the 

head centered time- and percent features was .653 (95% CI .578 - 728), and .637 (95% CI 559 - 

716) respectively. The box plot indicates a large difference in distribution between the CP and 

non-CP outcome groups for both features Mann-Whitney U p = .000 for the head centered time 

feature and p = .001 for the head centered percent feature. The confidence interval and Mann-

Whitney U test indicate statistically significant difference in between the CP and non-CP groups 

for both features.  
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Figure A1: Displays the ROC curve and difference between the CP and non-CP outcome groups with the box plot for 

the head centered features for the training data set. Head centered time feature (A) and head centered percent (B). 

Hand-to-hand contact 

The AUC and distribution of the hand-to-hand contact features are displayed in figure A2. Hand-

to-hand time in panel A and hand-to-hand percent in panel B. The AUC for the hand-to-hand time- 

and percent feature was .561 (95% CI .485 - .637) and .560 (95% CI .484 - .636) respectively. The 

box plot indicates a difference in distribution for both features Mann-Whitney U p = .087 for the 

time feature and p = .091 for the percent feature. The confidence interval and Mann-Whitney U 

test indicate the difference between the CP and non-CP groups was not statistically significant for 

any of the features. 
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Figure 12: Displays the ROC curve and difference between the CP and non-CP outcome groups with the box plot for 

the hand-to-hand contact features for the training data set. Hand-to-hand time feature (A) and hand-to-hand percent 

(B). 

 

Body symmetry 

The AUC and distribution of the body symmetry features are displayed in figure A3. Body 

symmetry time in panel A, body symmetry percent in panel B, and body symmetry large 

asymmetry in panel C. The AUC for the body symmetry time, body symmetry percent and body 

symmetry large asymmetry percent features was .563 (95% CI .475 - .651), .522 (95% CI .436 - 

.609), and .508 (95% CI .419 - .598) respectively. The box plot indicates limited differences 

between the CP and non-CP outcome groups. No difference in distribution was statistically 

significant Mann-Whitney U p = .142 for body symmetry time, p= .600 for body symmetry 

percent, and p = .845 for body symmetry large asymmetry. The confidence interval and Mann-

Whitney U test indicate the difference between the CP and non-CP groups was not statistically 

significant for any of the features.  
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Figure A3: Displays the ROC curve and difference between the CP and non-CP outcome groups with the box plot for 

the body symmetry features for the training data set. Body symmetry time feature (A), body symmetry percent (B), 

and body symmetry large asymmetry percent (C). 
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Feature test 

The results following conversion to binary CP prediction using the feature threshold values can be 

seen in table A1. Most features had a statistically significant difference in mean score between the 

CP and non-CP outcome groups except body symmetry percent and body symmetry large 

asymmetry tested with independent sample t-test. The sensitivity, specificity, and accuracy for 

each of possible threshold for the combined total score of the test data set can be seen in table A2. 

 

Table A1: The sensitivity, specificity and accuracy for each feature on the left, and results of the independent sample 

T-test for each feature and the combined total on the right 

 Predictive power  Independent sample T-test 

Feature Sens. 1 Spec. 2 Acc. 3  Mean non-CP  

N = 304 

Mean CP  

N = 54 

Mean 

diff 

Sig. 4 

HC time 70.4 56.6 58.7  .566 .296 .270 .001 

HC pct 59.3 66.5 65.4  .664 .407 .257 .001 

H2H time 96.3 18.4 30.2  .184 .037 .147 .007 

H2H pct 92.6 22.7 33.2  .227 .074 .153 .010 

BS time 66.7 48.4 51.1  .484 .333 .150 .041 

BS pct 18.5 87.5 77.1  .875 .815 .060 .233 

BSL pct 29.6 81.9 74.0  .819 .707 .115 .050 

Total --- --- ---  3.819 2.667 1.152 .001 
1 Sensitivity. 2 Specificity. 3 Accuracy. 4 Two-sided p 

 

Table A2: The sensitivity, specificity, and accuracy of the combined total score. 

Threshold Sensitivity Specificity Accuracy 

0.5 5.6 100 85.8 

1.5 13.9 97.0 84.4 

2.5 48.1 79.6 74.9 

3.5 74.1 59.5 61.7 

4.5 94.4 29.6 39.4 

5.5 98.1 11.8 24.9 

6.5 100 4.3 18.7 

Appendix B. Full code for the main test program 

The full version of the main python code used for variable calculation, feature value calculation 

and feature score calculation is displayed in figure B1, B2 and B3. A short explanation of the code 

below each figure.   
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Figure B1: The first segment of the main code developed to calculate and test the features. 

 

Code explanation for figure B1 

1 - 5: Imports the necessary python libraries. 

7 - 10: Lists containing the threshold values for all variables and features. 

13: Dictates which folder the program is to be executed on e.g., training, test or validation. 

14: States the path to the folder. 

15: Creates an empty dictionary. 

16: Creates a new data frame including the empty dictionary from 15. 

17: Imports the labels csv file containing the CP or non-CP outcome of each subject in all data sets 

as a new data frame. 

18: Creates a loop through all csv files in the folder designated by the folder and path variables. 

Allowing all csv files to be tested one by one. 

19: Opens the current csv file in the loop from the previous line. Information is stored in the 

variable df. 

20: Sends the data frame of the current csv file to be tested in the function starting at line 25. All 

feature scores and feature values are returned as the dictionary variable new_row.  

21: New_row is added to the data frame created in line 15. The program then loops back to line 18 

and repeats with the next csv file in the folder.  

22: Dictates the name output file.  

23: The data frame from line 15 is exported as a csv. 
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Figure B2: The first segment of the main code developed to calculate and test the features.  

 

Code explanation for figure B2 

25: Loop previously mentioned in figure 3, 5 and 7. 

26 - 30: Creates the index lists and empty lists used during the variable, feature value and feature 

score calculations. 

29: Reads the CP or non-CP outcome of the current file. Saved in the variable lablerow. 

32 - 61: Fully integrated version of the code explained in and below figure 3, 5 7, 9 and 10. 
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Figure B3: The first segment of the main code developed to calculate and test the features. 

 

Code explanation for figure B3 

63 - 80: Fully integrated version of the code explained in and below figure 3, 5 7, 9 and 10. 

82 - 93: Creates the new_row variable that is returned and added to the new data frame. Contains 

the Video ID, CP or non-CP outcome as 1 or 0, feature scores, total score and feature values of the 

current file.  

94: Returns the new_row variable to line 20 of the main segment.  

96: Initialises the code starting at main in line 12.  

 

Appendix C. Full code creating the digital rendering of the motion tracking data 

The program used to convert the motion tracking data to a video representation is displayed in 

figure C1, C2 and C3. A short explanation of the code below each figure. The videos created was 

used to compare to an original video to determine upper and lower bounds for the variables before 

the grid search to ensure similarity between the original MOS item and the features developed 

here.  

 



36 
 

 
Figure C1: The first segment of the code developed to create video rendering of the motion tracking data. 

 

Code explanation for figure C1 

1 - 8: Imports all necessary python libraries.  

11: States the path to the file or files that is the source for the video or videos.  

12 - 14: Creates a new folder called “Aminations” in the folder containing the files.  

15:  Creates a loop through all csv files in the folder designated by the path variable. Allowing all 

csv files to be rendered one by one. 

16: Creates a data frame containing the data from the current csv file of the loop.  

17: Sends the csv file to the plotfigure function starting at line 21. A list of is returned containing 

a figure per frame of the motion tracking data, stored in the variable figs.  

18: The list of figures is sent to the fig_to_img function starting at line 91. A list of images is 

returned and stored in the variable imgs. 

19: Sends the list of images to the render_avi function starting at line 103. 

22: Creates a list containing the x value indexes of all body keypoints used to plot the full figure, 

and an empty list storing the figures created. 

23 - 41: Same as in the main code and the code explained in figure 3, 5 and 7. 
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Figure C2: The first segment of the code developed to create video rendering of the motion tracking data. 

 

Code explanation for figure C2 

43 - 52: Same as in the main code and the code explained in figure 3, 5 and 7. 

54 - 82: Plots all information on the figure. 

84 & 85: Flips the y axis of the plot to orient the figure correctly.  

86: Removes the axis from the figure. 

87: Adds the current figure to the figs list. 

88: Closes the current figure before it loops back to calculate and plot the next figure.  

89: Returns the list of figures to the main segment of the code.  
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Figure C3: The first segment of the code developed to create video rendering of the motion tracking data. 

 

Code explanation for figure C3 

91 - 100: Converts the figures received to images. 

101: Returns the list of images to the main function. 

103 - 109: Combines the images to a video and exports the video as an avi file. 

111: Starts the program by initiating the main function.  
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