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Abstract: Multi-material 3D printers are able to create material arrangements possessing
various optical properties. To reproduce these properties, an optical printer model that accurately
predicts optical properties from the printer’s control values (tonals) is crucial. We present two
deep learning-based models and training strategies for optically characterizing 3D printers that
achieve both high accuracy with a moderate number of required training samples. The first one
is a Pure Deep Learning (PDL) model that is essentially a black-box without any physical ground
and the second one is a Deep-Learning-Linearized Cellular Neugebauer (DLLCN) model that
uses deep-learning to multidimensionally linearize the tonal-value-space of a cellular Neugebauer
model. We test the models on two six-material polyjetting 3D printers to predict both reflectances
and translucency. Results show that both models can achieve accuracies sufficient for most
applications with much fewer training prints compared to a regular cellular Neugebauer model.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

An optical printer model is a predicting function from an arrangement or ratio of printing
materials to the optical properties of the resulting print. Optical characterization of the printing
system is the process of fitting the model’s parameters, which requires test prints and optical
measurements. For appearance 3D printing the model needs to be inverted to reproduce distinct
optical properties or visual attributes, such as color or translucency. Therefore, the accuracy of
these models plays a crucial role for the final print quality.

1.1. Material arrangements, material cross-contamination and dot gain

Material arrangements in multi-material printing systems are specified by a voxel distribution in
print resolution. A voxel is the smallest geometric structure (cuboid) that a 3D printing system
can address. Most systems use anisotropic voxels with a much smaller extent orthogonal to the
slice plane. Commonly each voxel can be filled with only one material. Some printing systems
allow variable drop sizes and can fill a voxel with multiple materials.

The printer model has to consider two major effects:

1. Mechanical dot gain caused by material cross-contamination: Due to mechanical limitations,
a printing system is generally not capable of filling a voxel with the intended material(s)
perfectly. There is some cross-contamination of materials between neighboring voxels. In
3D printing, a mixing of materials across voxels is also necessary to ensure the structural
integrity of the object.

2. Optical dot gain caused by light transport blurring: For translucent printing materials,
incident light is transported through multiple voxels before it leaves the objects. Its spectral
power distribution (SPD) is altered by all voxels in its path. Voxels filled with dark material
surrounded by voxels filled with bright materials appear therefore bigger, which is called
optical dot gain.
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Light transport is described by the Radiative Transfer Equation (RTE) [1] and requires the
knowledge of the intrinsic optical properties of the printing materials, i.e. spectral absorption,
scattering and phase function. Furthermore, refractive indexes of the printing materials are
required since Fresnel reflection at the material-air interface and between the materials impact
light transport as well. Using the RTE it is principally possible to simulate the light transport
within heterogeneous media using a Monte-Carlo-based path tracer [2]. This was done in the
context of 3D printing by Sumin et al. [3], who employed the physical-based rendering engine
Mitsuba [4] for local path tracing. There are, however, various problems with Monte-Carlo-based
approaches:

1. It is difficult to measure the intrinsic optical properties of the printing materials.

2. It is difficult to measure material cross-contamination (material mixing between voxels)
but it must be considered for accurate simulations.

3. Due to the high resolution of modern 3D printing systems, Monte-Carlo approaches are
slow. Even for computing the appearance of small objects (a few centimeters), billions of
voxels must be considered and a simulation may take days on today’s consumer hardware.

Because of the shortcomings of Monte-Carlo-based approaches, optical printer models use
either phenomenological quantities such as measured reflectances of selected printing material
arrangements or simplifications of the RTE.

Almost all models do not directly use voxel-based material arrangements as input but material
ratios (or transformed ratios) instead. This assumes intrinsically that material distributions
are dominated by high spatial frequencies minimizing material agglomerations. Modern 3D
halftoning methods produce material arrangements possessing such blue-noise characteristics [5].
This minimizes graininess and apparent banding artifacts, particularly in smooth color transitions,
by exploiting the human visual system’s low contrast sensitivity for high spatial frequencies. We
refer to material ratios or transformed material ratios as tonal values and denote the tonal value
space by T .

1.2. Measuring optical properties

In this paper, we aim to accurately predict color and translucency of the arrangement of printing
materials corresponding to each tonal value in T . To fit an optical printer model and to evaluate
its accuracy, we need a thorough specification of how color and translucency of test prints are
measured:

For color, we measure reflectance spectra in an off-specular 45/0 measurement geometry [6] as
shown in Fig. 1(a) using a white backing and compute CIELAB values for the CIE D50 illuminant
and the CIE 1931 observer. For measuring the reflectances of highly translucent materials, edge
loss [7] must be considered, which is a darkening effect caused by subsurface light transport
away from the illuminated area. For this, the illuminated area D must be much bigger than the
detection area A [8] (both is adjusted by circular apertures). To avoid measurement bias by edge
loss for highly translucent printing materials we use D ≈ 90A. The reflectance corresponding to
a tonal value v ∈ T is determined by

rλ,D(v) = rw
λ

∫
A Eλ,D(v, x) dx∫

A Ew
λ,D(x) dx

(1)

where λ ∈ [400nm, 700nm] is the wavelength, Eλ,D(v, x) is the radiance emitted perpendicularly
from the print’s surface at point x ∈ R2 when illuminated at area D, Ew

λ,D(x) is the radiance
emitted perpendicularly from the surface of the opaque white reference (Lambertian) at point x
using the same illumination and rw

λ is the reference white’s reflectance.



Research Article Vol. 29, No. 2 / 18 January 2021 / Optics Express 617

Fig. 1. Setup for reflectance (a) and transmittance (b) measurements for determining lateral
and vertical light transport within printing material arrangements (shown here idealistically
in a voxel grid) to compute the translucency quantity α [11]. Setup (a) with white backing
and D ≈ 90A is used for spectral color measurements.

For translucency, optical properties can be light transport distances/profiles parallel to the
surface normal [9,10]. In this paper, we use the one-dimensional quantity α proposed by
Urban et al. [11]. It considers subsurface light transport parallel and orthogonal to the surface
normal creating visual cues (shine through effects, reduction of high-spatial-frequency luminance
contrasts) used by the human visual system to judge the degree of translucency [12,13]. For
measuringα, two spectrophotometric reflectance measurements using black backing (see Fig. 1(a))
and a spectrophotometric transmittance measurement (see Fig. 1(b)) are required in addition to
the color measurement. The two reflectance measurements use different illumination areas, D1
and D2, adjusted by two apertures. D1 is equal to the detection area, i.e. D1 = A, causing severe
measurement bias by edge loss for highly translucent materials and D2 is much bigger than the
detection area, D2 = 16A, resulting in less edge loss. The resulting reflectance measurements,
rλ,D1 (v) and rλ,D2 (v), are used to compute the edge-loss difference [7], a quantity that describes
subsurface light transport distances orthogonal to the surface normal. The definition of the
α-value for a printing material arrangement defined by the tonal value v ∈ T is based on vertical
light transport determined by the measured transmittance t(v), lateral light transport determined
by the edge loss difference measured by rλ,D1 (v) and rλ,D2 (v), and the lightness of the color
measurement. We refer for more details to Urban et al. [11].

1.3. Resource efficiency and contribution

In addition to accuracy, an important property of optical printer models is resource efficiency,
i.e. the number of required training prints and measurements to fit the model’s parameters
shall be as small as possible without scarifying accuracy. This is particularly important because
multimaterial 3D printing is time-consuming and expensive, w.r.t. machine and material costs.
Furthermore, optically characterizing a printing system is a recurring process because of inter-
and intra-printer variability and the rapidly growing number of combinable printing materials.

In this paper we make the following contributions:

1. We propose a deep learning model for accurately predicting optical properties of a print
from tonal values and a learning strategy requiring only a small number of training samples.
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2. We propose a deep-learning-based approach for multidimensionally linearizing the cellular
Neugebauer model to improve its prediction accuracy requiring only a small number of
training samples.

3. We propose a loss function for training both models balancing reflectance, color and
translucency errors using the ratio of the corresponding just noticeable differences under
indoor viewing conditions.

2. Related work

2.1. Phenomenological models

Simple phenomenological optical printer models are adapted from 2D color printing. They
usually operate on so-called effective tonal values computed from the input tonal values, called
nominal tonals, to correct for mechanical dot gain. This correction is coined linearization and
uses mostly 1D-functions per tonal [14] but also higher-dimensional functions have been proposed
[15]. For duotone printers, e.g. using white and black materials, the simplest phenomenological
model is the Murray-Davies model [16], which is just a linear interpolation between reflectance
spectra of the printing materials. The canonical extension to N inks is called Neugebauer Model
[17], that uses multilinear interpolation of the so-called Neugebauer primary reflectance spectra
corrected for mechanical dot gain. The Neugebauer primaries consists of the base-materials
and any mixture with equal material ratios, i.e. an N material printer has 2N Neugebauer
primaries. The interpolation weights can be determined by the Demichel equations [18,19].
The prediction performance of the Neugebauer model is rather low already in 2D printing [20]
because it neglects subsurface light transport. This can be addressed by an extension introduced
by Yule and Nielsen [21–23] who applied a simple power function to the Neugebauer primaries.
Various enhancements of the Yule-Nielson modified spectral Neugebauer model were proposed
[24,25] yielding a prediction performance within the noise-level of 2D printing systems. For
3D printing systems, the Yule-Nielsen modified Neugebauer model, however, performs poorly
[26]. Furthermore, it is conceptually not well suited to model 3D printing systems able to
reproduce multiple levels of translucency, since using just one parameter (Yule-Nielson n-value)
intrinsically relies on constant translucency of the substrate.

Another popular model is the Clapper-Yule model [27,28]. It considers multiple internal
reflections at the material-air interface and can be adapted to various materials [29,30]. Also the
Clapper-Yule model intrinsically assumes constant translucency of the substrate [31].

A way to arbitrarily improve the prediction performance of phenomenological models is to
separate the tonal-value space into cells and evaluate the models within each cell. The most
popular model is the cellular Yule-Nielsen spectral Neugebauer model and its modifications
[15,32]. The improved model performance comes at the expense of more training prints and
spectral measurements. For joint color and translucency reproduction with a 6-material 3D
printer more than 3500 patches were necessary to achieve an average CIEDE2000 prediction
error of 2.3 that is sufficient for most applications [33]. Babaei and Hersch proposed a cellular
Yule-Nielsen modified spectral Neugebauer Model using barycentric subdivision of the tonal
value space [34]. This reduces the number of required prints and measurements particularly if
many materials are used. A disadvantage is that the barycentric subdivision is less localized than
the common cube-based subdivision and the interpolation yield larger maximum errors.

2.2. Models based on RTE-simplifications

The advantage of the models based on RTE-simplifications is the limited number of necessary
printed samples required for parameter fitting.

The simplest model is based on the Kubelka-Munk-Theory [35] that only considers two
opposite collimated fluxes parallel to the surface normal. This two-flux approximation of the RTE
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was used to model light propagation in layered arrangements of materials with different refractive
indexes to fabricate spatially-varying translucencies [9,10]. The Kubelka-Munk-Theory assumes
an infinite extent of the layers and their homogeneity. Since this does not hold for high-frequent
3D-halftones, the resulting color errors are rather high. Hensley and Ferwerda reported mean
CIEDE2000 errors of 3.45 [26] which is unacceptable for most applications. To account for
Fresnel reflection a Saunderson correction is often used [36].

A four-flux approximation of the RTE has been used for modeling 2.5D (relief) prints. In
addition to the fluxes considered by the Kubelka Munk theory it considers also diffuse up and
down facing fluxes. Van Song et al. reported maximal CIE94 error rates of less than 2 [37,38].
Simonot et al. developed a four-flux model relying on a matrix formalism and extended it to
predict the bidirectional scattering distribution function of a stack of layered materials [39].

2.3. Neural-network-based models

Already more than a quarter of a century ago neural networks were used to invert optical printer
models (also called separation) in 2D printing, i.e. computing the tonal values necessary to
reproduce a given color [40] or to reproduce the same color as shown on a display [41]. Littlewood
et al. [42] used a one-hidden-layer feedforward network to model the relationship between tonal
values and color.

Shi et al. [43] concatenated a neural network of a backward spectral model (for separation)
and a forward spectral model optimizing for both spectral RMSE and the CIE76 color difference
formula for multiple illuminants. For the forward spectral model they used a fully-connected
feed-forward neural network with 4 hidden layers, each with 300 neurons. They reported mean
CIEDE2000 errors of the forward spectral model ranging between 1.5 and 2.5 but relatively large
maximum errors of approx. 12 for the considered illuminants.

3. Precondition and problem formulation

We assume that the 3D printing system can be controlled by all values in the M-dimensional
tonal space T = [0, 1]M , which is the input space of the proposed optical printer models. These
values do not represent the material ratios whose sum must be one for 3D printing. This unity
condition is also the reason why it is not necessary to consider a tonal value for the white printing
material since we can compute it from the other tonals. For instance, for a printing system
employing 5 printing materials CMYKW, the tonal value space T corresponds just to CMYK and
M = 4. To ensure the unity condition, the values in T must be converted to material ratios by a
transform H : T ↦→ [0, 1]M , with ∥H(t)∥1 ≤ 1,∀t ∈ T from which the fraction of white material
can be computed as follows tw(t) = 1 − ∥H(t)∥1. H is part of the 3D printing pipeline before
3D halftoning (see Fig. 2) and can be decomposed into two subsequent transforms H = P ◦ L,
where P(t) = (t1/max{∥t∥1, 1}, . . . , tM/max{∥t∥1, 1}) is a projection of the tonals to ensure the
unity condition. L : [0, 1]M ↦→ [0, 1]M can be the identity but we recommend using an invertible
transform similar to the transforms from nominal to effective tonals (e.g. 1D-per-tonal curves as
described in [14]). This aids the selection of printing patches to fit/train the optical printer model
because a uniform distribution of training values in T results in a more uniform distribution of
optical quantities.

Fig. 2. Multi-material 3D printing pipeline.

We propose two deep learning-based approaches to predict optical material properties from
tonal values: A Pure Deep Learning (PDL) model that is essentially a black-box without any
physical ground and the Deep-Learning-Linearized Cellular Neugebauer (DLLCN) model that
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uses deep-learning to multidimensionally compute effective tonals from nominal tonals. For the
sake of simplicity, we just use two optical quantities that state-of-the-art 3D printing systems can
both reproduce within physical limits to describe the approach: Spectral reflectance to predict
color and α for translucency [11]. It is worth mentioning that both approaches are not relying on
any special properties of these quantities except their boundedness. Therefore, we believe that
they can be canonically extended to predict other optical quantities if appropriate loss functions
are selected.

The optical printer models O : T ↦→ S × A investigated in this paper predict spectral
reflectances r ∈ S = [0, 1]N and translucency α ∈ A = [0, 1] from tonal values t ∈ T . Here N is
the number of considered wavelengths that is often set to N = 31 assuming a uniform sampling
of the visible wavelength range [400nm, 700nm] in 10nm steps.

4. Pure deep learning (PDL) model

Multi-path fully-connected neural network: The PDL model is a fully-connected neural
network that, as shown in Fig. 3(a), has multiple paths each corresponding to one predicting
task. Built upon the input layer (tonal features) is the "trunk" that consists of a number of hidden
layers, and it splits into two "branches" corresponding to the two tasks (the reflectance-predicting
task and the translucency-predicting task) each has its own hidden layers till its own output
layer. The trunk is to learn generic representations shared across tasks, and each branch is
to learn task-specific representations in order to make final predictions for the individual task.
Specifically in our model, the trunk has 4 hidden layers each has 200, 1500, 1500 and 1500
neurons respectively. The reflectance branch has one hidden layer with 200 neurons and an
output layer with N neurons corresponding to N-dimensional reflectance that is then converted to
3-dimensional CIELAB, and the translucency branch has one hidden layer with 30 neurons and
an output layer with 1 neuron corresponding to the α value.

Fig. 3. The structure of the PDL (a) and DLLCN (b) models.

Activation functions to enable non-linearity capacity: For hidden layers, nonlinear acti-
vation functions are used in order to enable non-linearity capacity in the model. Specifically
in our model, leaky Rectified Linear Unit (leaky-ReLU) activation function [44] is used. For
the top layers of the 2 branches, a sigmoid activation function is used to ensure the predicted
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values of reflectances and α are within (0, 1). To alleviate the saturation problem of the sigmoid
function σ(x) = 1/(1 + exp(−x)) causing too tiny gradients during training [45,46], we altered
it by ˜︁σ(x) = σ(x + σ−1(µt)), where µt is the training data’s average for the corresponding
quantity (reflectance value per wavelength, α). With this horizontally-shifted sigmoid, the neural
network’s output is closer to the training data, when initialized with small weights x as described,
for instance, in [45]. This reduces initial loss and the chance of overshooting to the saturation
regime of sigmoid.

5. Deep-learning-linearized cellular neugebauer (DLLCN) model

Figure 3(b) shows the structure of the DLLCN model. The DLLCN model is a composition of
two functions

DLLCN = CN ◦ DLL : T ↦→ S × A. (2)

The first function DLL : T ↦→ ˜︁T distorts the tonal value space aiming to multi-dimensionally
linearize the domain of the second function, the cellular Neugebauer model CN : ˜︁T ↦→ S × A

that predicts both reflectance and translucency. In this way, the degrees-of-freedom are reduced
to a convex combination of Neugebauer cell-primaries ensuring plausible results. We use a deep
neural network as the core of DLL.

5.1. Structure of the linearization function

The core of the DLL is a fully-connected neural network Z : T ↦→ RM , where M is the
dimensionality of the tonal value space T . It has 5 hidden layers with 200, 400, 800, 400, and 200
neurons respectively and an output layer with M neurons. In order to avoid cross-contamination
of tonals not present in the input, Z does not directly distort the tonal value space but computes
weights of the input tonals t ∈ T defining DLL as follows:

DLL(t) = C[0,1][Z(t) ⊙ t], (3)

where ⊙ is the Hadamard product (element-wise multiplication) and C[0,1] is an operator that
clips each entry to the range [0,1]. If, for instance, just two tonals corresponding to cyan and
magenta materials are used in the input, the definition of DLL in Eq. (3) prevents the usage of
any Neugebauer cell-primary with yellow or black material contribution.

Activation functions to enable non-linearity capacity: All hidden layers use leaky-ReLU
activation function, and the output layer uses the linear activation function.

5.2. Cellular Neugebauer Interpolation

A traditional cellular spectral Neugebauer model is canonically extended to predict translucency
by simply appending the translucency parameter α ∈ A to its cell primary reflectance. In
this way, the model can easily be extended to other optical quantities, since for any linearized
tonal value the cellular Neugebauer model performs just a multi-linear interpolation of the cell
primaries. For resource efficiency we recommend using just three grid points {0, 0.5, 1}M ⊂ T

for the cellular model.

6. Network design and learning strategy

6.1. Remarks on the neural networks design

The design of the neural networks for both models share the basic idea that the number of neurons
should increase through the first layers to allow higher layers to have more capacity to capture
high-level features of the tonal-optical relationship. Towards the output layer the number should
decrease because the number of neurons of the output layer is small and the hidden layers should
be able to summarize the features for making final predictions.
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We selected the number of layers and total number of neurons so that the neural networks have
enough capacity to learn even complex tonal-optical relationships. This design decision is critical
because a too large neural network is prone to overfitting given the limited amount of training
data. We selected these numbers to be most likely bigger than necessary to predict reflectance
and translucency and use the strategies described in Sections 6.2 and 6.3 to avoid overfitting.

6.2. Batch normalization

Batch Normalization (BN) is used on each hidden layer to reduce Internal Covariate Shift
(ICS) [47] and thus stabilize and accelerate the training. Batch Normalization helps tackle the
vanishing/exploding gradients problem, which typically occurs for deep neural networks [45]. It
also acts like a regularization technique, reducing generalization error [48].

6.3. Regularization to avoid overfitting

There are three major regularization techniques used in our approach:

1. Multitask learning [49], which allows samples to put more constraints on the part of a
model that is shared across multiple tasks [48]. In our proposed models, as shown in Fig. 3,
multitask learning is performed by simultaneously optimizing the reflectance-predicting
task, the color-predicting task and the translucency-predicting task.

2. Dropout [50], as a computationally inexpensive but powerful regularization technique,
is used on each layer in our models. The effectiveness of dropout comes from that it’s
approximately performing bagged ensemble on exponentially many thinned sub-networks
that share parameters [48,50].

3. Early stopping, probably the most commonly used form of regularization technique in
deep learning [48], is used in our model training. It considers a situation which is often
observed in large models [48] that the training error decreases over time, but gradually the
error on the validation set starts rising and the model starts overfitting. The training should
be terminated when such a situation occurs, and the model parameters should return to
the point where the validation loss is minimal. See Section 7.5 for more details of our
experiment settings.

6.4. Loss function

The loss function serves two purposes:

1. It should ensure a high accuracy of predicting reflectances and translucency.

2. It should ensure a high color accuracy for specified viewing conditions, such as those used
by the International Color Consortium (ICC) for defining the profile connection space [51].
These are the CIE D50 illuminant and the CIE 2◦ observer. For accurate color reproduction
under selected viewing conditions this loss is very important because Euclidean distances
in spectral space and perceived color differences are not well correlated (see e.g. [52]).

Therefore, our loss function has three parts:

1) Loss for reflectance-predicting task: For a predicted and measured reflectance rp, rm ∈ S

the loss is computed using the Root-Mean-Square Error (RMSE):

Eref(rp, rm) =

√︃
1
N
∥rp − rm∥

2
2 (4)
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2) Loss for color-predicting task: For above reflectances loss is computed by the CIEDE2000
formula [53]:

Ecol(rp, rm) = ∆E00(LAB(rp), LAB(rm)) (5)

where LAB : [0, 1]N ↦→ CIELAB is the function that computes CIELAB values from
reflectances assuming specified viewing conditions. We use the CIE D50 illuminant and
the CIE 2◦ observer.

3) Loss for translucency-predicting task: For a predicted and measured translucency αp,αm ∈

A the loss is computed as the absolute difference:

Etra(αp,αm) = |αp − αm |. (6)

Note that α was designed to be nearly perceptually uniform for a set of reference materials
with varying absorption and scattering coefficients and isotropic phase function under
front/side lit conditions [11]. Brunton et al. used also absolute α-differences to optimize
translucency in 3D printing [33].

The final loss function is a weighted average of the three loss functions:

E = Ecol + aEref + bEtra (7)

where the weights a, b ∈ R are hyper-parameters that should be selected based on the relative
magnitudes and importance of the loss functions. A color difference of CIEDE2000 = 1 is just
very slightly above the Just Noticeable Difference (JND) and almost not detectable in a typical
indoor lighting environment even if the colors are directly juxtaposed. A translucency difference
of α = 0.1 is also slightly above the JND for translucency [11]. Hence, to balance suprathreshold
color and translucency differences very close to the JND in Eq. (7), we have to set b = 10.
Tsutsumi et al. balanced CIEDE2000 and spectral RMSE linearly for spectral gamut mapping
and found a value of a = 50 to be optimal [54]. Their results show however that for a ∈ [20, 50]
spectral and color accuracy is almost constant. An independent hyper-parameter tuning based on
the validation data described in the experiments showed that a = 20 and b = 10 result in mean
CIEDE2000 and α-errors close to JND with small spectral RMSE. We therefore recommend
these values to achieve a good balance between color, spectral and translucency losses.

7. Experiments and results

The purpose of the experiments is to evaluate the accuracy and resource efficiency of both models
and to compare this with the traditional cellular Neugebauer (CN) model used, for instance, by
Brunton et al. [33] to reproduce jointly color and translucency in 3D printing. Results and
learning procedure can be reproduced as we show in Code 1 (Ref. [55]).

7.1. 3D printers and data sets

We have evaluated both models on two state-of-the-art material-jetting 3D-printers employing six
materials: the Stratasys J750 and the Mimaki 3DUJ-553. Both printers use Cyan (C), Magenta
(M), Yellow (Y), Black(K), White(W), Clear(Cl) build materials and one support material. The
Mimaki 3DUJ-553 printer was equipped with the MH100 CMYKWCl materials, and the Stratasys
J750 with Vivid CMY, Vero KCl and VeroPureWhite. The tonal value space T = CMYKG
has five dimensions, where G ∈ [0, 1] corresponds to the ratio of clear and white materials
within the unit volume not occupied by the CMYK materials. The smaller G the larger is the
fraction of white material. Very different halftoning algorithms were used for the two printers
taking into account different material opacities, absorption levels, droplet sizes and droplet
positioning capabilities of the machines, resulting in very different material arrangements and

https://doi.org/10.6084/m9.figshare.13095743
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optical properties for the same tonal values. It is worth mentioning that because of the high
opacity and high absorption of the Mimaki prints the halftoning algorithm always adds some
amount of clear material to avoid graininess and that this clear material has a slightly yellow
tinge.

For the transformation L introduced in Section 3 we used a two-dimensional transformation
per CMYK-tonal described in [33] and for G the identity.

Data was collected by printing flat targets with patches each corresponding to a special
tonal value. Reflectances were measured in 45/0 geometry with a Barbieri Spectro LFP qb
spectrophotometer equipped with a 19mm aperture of illumination and 2mm of detection to avoid
edge loss for translucent materials. The translucency parameter α was measured with a Barbieri
Spectro LFP according to [11]. The tonal values were selected for the initial purpose of fitting
and investigating the performance of different cellular Neugebauer models/sub-models, which is
the reason why the tonal value sets (reported here as 8-bit values) differ between printers.

Dataset for the Stratasys J750 We used a regular grid of tonal values {0, 64, 128, 191, 255}5 ⊂

CMYKG to print and measure 3125 patches in total.
Dataset for the Mimaki 3DUJ-553 The data was created by two Mimaki 3DUJ-553 printers

with slightly different settings (firmware and post process) and will be therefore treated separately.
We will refer to these printers as Mimaki 1 and Mimaki 2.

Mimaki 1: Samples were collected at 7 regular grid points in each of the CMYK dimensions
for G = 0, and five regular grid points in each of the CMYK dimensions for G=245, 253, 254
and 255 respectively (see Table 1 for the grid point locations). This leads to 74 + 54 ∗ 4 = 4901
patches in total. Since the samples do not form a regular grid, the CN and DLLCN can’t be used
and only the performance of the PDL model is evaluated.

Table 1. Dataset for Mimaki 1 (grid point locations)

G = 0 G = 245 G = 253 G = 254 G = 255

C 0,62,119,159,191,221,255 0,137,199,238,255 0,143,210,239,255 0,137,206,240,255 0,141,212,246,255

M 0,51,97,140,177,221,255 0,120,200,236,255 0,137,205,240,255 0,134,205,241,255 0,126,195,234,255

Y 0,90,115,128,148,171,255 0,172,224,244,255 0,184,225,244,255 0,184,236,250,255 0,161,224,250,255

K 0,75,142,170,203,230,255 0,200,237,249,255 0,193,241,252,255 0,190,241,253,255 0,155,236,252,255

Mimaki 2: Only opaque samples corresponding to G = 0 were collected. We used a regular
grid {0, 43, 85, 128, 170, 213, 255}4 ⊂ CMYK of tonal values. Another 1099 random samples
were also collected. Together, 74 + 1099 = 3500 patches were printed.

7.2. Training and test data

We split for each printer the tonal value set Q ⊂ T of printed and measured samples (see
Section 7.1) into two sets: The training/validation set P and the test set E with P ∩ E = ∅. P
contains always the set P0 of the necessary training samples of each model, i.e. the cellular
Neugebauer primaries for the DLLCN (see Sec. 5.2) and the Neugebauer primaries for the PDL
model. We first select 300 samples for E ⊂ Q \ P0. For the Stratasys and Mimaki 1 printers
Q \ P0 was split into 5 sets each corresponding to one of the five G-levels and 60 samples were
selected randomly from each of these sets for E. For the Mimaki 2 printer E was selected
randomly from the 1099 random samples. Note that for all tonals in Q, printed and measured
reflectances and α-values are available (ground truth).

In order to investigate the influence of the number of training samples on model performance,
samples in P are increased starting with P = P0 as follows: Pi+1 := {ti} ∪ Pi, where the tonal
value ti is randomly selected from Q \ {E ∪ Pi}. For the Mimaki 1 printer the new tonal value
ti is randomly selected from the set {(C, M, Y , K, G) ∈ Q \ {E ∪ Pi} | G = G(i mod 5)}. For the
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Mimaki 2 printer, ti is first randomly selected from the 1099 random samples not included in
E ∪ Pi. If all these 1099 samples are in E ∪ Pi it is selected randomly from Q \ {E ∪ Pi}.

The traditional CN model requires a regular grid. To allow a comparison with a smaller
amount of data, we used sub-grids as explained in the Supplement 1. For the non-aligned data of
the Mimaki 1 printer the CN and DLLCN model cannot be evaluated. Table 2 summarizes the
varying numbers of training samples for all three models.

Table 2. Number of samples used for training ( |Q |, |P | is the cardinality of Q and P)

Printer |Q | |P | for DLLCN and PDL |P | for CN

Stratasys 3125 300, 400, 576, 1024, 1280, 1600, 2000, 2500 only
PDL: 243, 350; only DLLCN: 500, 700

243, 576, 768, 1024, 1280,
1600, 2000, 2500

Mimaki 1 4901 200, 700, 1200, 1700, 2200, 2700 /

Mimaki 2 3500 500, 800, 1296, 1700, 2058, 2401 only PDL: 256;
only DLLCN: 300

256, 500, 750, 1296, 2058,
2401

7.3. Computing and evaluating predictions

For training the DLLCN and PDL models, P is split into two sets, the training set Pt and the
validation set Pv, with P = Pt ∪ Pv and P0 ⊂ Pt. Pt is used for training the model and the
validation set Pv is used for hyper-parameter training (e.g. for early stopping). Pv consists of 5%
randomly selected samples from P \ P0. The random splitting of P into Pt and Pv is performed
10 times resulting in 10 slightly differently trained models. Model predictions (reflectance, α) of
the 10 models for E are averaged and used as the final prediction to evaluate the performance of
the model trained on P. Results of such averaged predictions are less biased by a single specific
splitting of P.

7.4. Software and hardware setup

Our model is implemented with TensorFlow 2.2.0, and is trained on an NVIDIA GeForce RTX
2080 SUPER GPU on a PC that has 64 GB RAM memory and an Intel Core i9-9900K CPU
(3.6GHz). Training a model takes roughly 120s with 500 training samples, and roughly 290s
with 2500 training samples. Predicting on 300 samples takes roughly 0.03s.

7.5. Training method

Xavier normal initializer [45] is used to initialize neural network weights. Dropout rate is set
to 0.1 for PDL, and 0.05 for DLLCN. Adam optimizer [56] is used to train the models. The
number of training epochs is 15,000. Batch size is equal to the size of the training set. The initial
learning rate is 0.009. Learning rate decay is adopted, specifically, the learning rate is divided
by a factor of 3 if the loss on validation set has not gone down for 1000 epochs. Early stopping
is used during the training, specifically, the training is terminated if the loss on validation set
has not gone down for 2000 epochs, and the model is rolled back to the point where the loss on
validation set was minimal.

7.6. Results for the Stratasys printer

The benefit of using the machine learning-based models compared to the CN model can be seen
by looking at accuracy vs. resource efficiency: To achieve a similar mean CIEDE2000 accuracy
(see Fig. 4(a)) of the best result of the CN approach, which is CIEDE2000 = 2.4 corresponding to
2500 samples, the DLLCN approach only requires 500 samples which is a 5.0 times improvement
in data efficiency, and the PDL approach further reduces the required number of samples to 300
which is an 8.3 times improvement. If all approaches use 2500 samples, the DLLCN achieves

https://doi.org/10.6084/m9.figshare.13365434
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CIEDE2000 = 0.9 and the PDL approach CIEDE2000 = 0.4 as the mean prediction error, which
is a 2.7 and 6 times improvement in accuracy compared to the CN model. We see a similar
trend for the 90th percentile (see Fig. 4(b)), which is CIEDE2000 = 4 for the CN model at 2500
training samples and almost 2.2 as big as for the DLLCN model that has CIEDE2000 = 1.8. The
PDL approach achieves even CIEDE2000 = 0.7. To achieve a similar 90th percentile accuracy as
the CN model for 2500 samples, the DLLCN model requires only 700 and the PDL model 350
samples, which is an approx. 3.6 and 7.1 times improvement.

Fig. 4. Accuracy vs. dataset size plots for the Stratasys printer.

Mean and 90th percentile spectral RMSE as well as α errors follow the same trend as shown in
Fig. 4(c)-(f). Note that the 90th percentile α-errors of the DLLCN and PDL model are below the
just noticeable α-difference of approx. 0.1 for any considered training/validation set P (except
for |P | = 300 for DLLCN), indicating a sufficient prediction accuracy for nearly all applications.
The CN model needs 768 training samples to pass this threshold.

7.7. Results for the Mimaki 1 printer

For the Mimaki 1 printer only the PDL model can be evaluated as described in Sec. 7.1. Due
to the highly opaque white material and the resulting halftone method that uses almost always
a fraction of clear material to avoid graininess, the relationship between tonals and optical
properties of the resulting print is much more complex than for the Stratasys printer. Even though
the accuracy vs. resource efficiency curves in Fig. 5 show the same trend as for the Stratasys
printer, the absolute accuracy of the PDL model is worse. For the Mimaki 1 printer, 700 training
samples are required to reach an average CIEDE2000 error of 2 and an 90th percentile error of
4. For the Stratasys printer this accuracy was reached with only 350 training samples. The α
prediction is still below JND even for |P | = 200, the smallest number of training samples.
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Fig. 5. Accuracy vs. dataset size plots for the Mimaki 1 printer.

7.8. Results for the Mimaki 2 printer

For the Mimaki 2 printer the same halftone method was used as for the Mimaki 1 printer, i.e.
even though only opaque samples (G = 0) are considered the yellow-tinged clear material is used.
Similar as for the other printers, we observe in Fig. 6 a diminishing returns of error rate reduction
for the DLLCN and PDL model, i.e. in the beginning error rates drop strongly but the curve
flattens for more training samples.

As shown in Fig. 6(a), the DLLCN model needs just 800 samples and the PDL model only
256 samples to reach a similar average color accuracy of CIEDE2000 = 1.9 as the CN model
using 2401 samples. These are 3 and 9.4 times improvements in resources efficiency.

An interesting observation is that for the DLLCN model the spectral RMSE drops to a plateau
and becomes even worse than for the CN model if more than 1296 training samples are used
(See Fig. 6(c), (d)). This is because the degrees-of-freedom of the DLLCN model are limited
to the spectral space spanned by the Neugebauer cell-primaries. Due to the contribution of
the yellow-tinge clear material by the halftoning, some reflectances cannot be described by the
linearized cellular Neugebauer model. We tested also a DLLCN model with four grid points
(4GP) increasing the model’s degrees-of-freedom to reproduce reflectances. It can be seen that
even for the same number of samples the spectral RMSE is much smaller for the 4GP DLLCN
model confirming the above statement. Interestingly, average color errors are not as much
affected by the Neugebauer cell-primaries and both DLLCN models show similar performance
(see Fig. 6(a)), indicating the benefit of optimizing models w.r.t. to both color and reflectances
via multi-task learning. In contrast to the 4GP DLLCN model however, small improvements in
average color accuracy of the 3GP DLLCN model for larger training data are at the expense of
increased 90th percentile errors due to the model’s limited degrees-of-freedom (see Fig. 6(b)).
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Fig. 6. Accuracy vs. dataset size plots for the Mimaki 2 printer.

7.9. Visualization of spectral predictions

In Fig. 7, we visualize the spectral predictions corresponding to the median and 99th percentile
spectral RMSE error. For the latter case, the sRGB colors of its ground truth (GT) and its
prediction are also shown. The figure shows that even using small training data the spectral
predictions are quite consistent with the ground truths, and that the DLLCN and especially PDL
models perform better than the CN model.

Fig. 7. Spectral predictions using different training data sizes.
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8. Conclusion and future work

For optically characterizing multi-material 3D printers, we proposed two deep learning approaches,
the Deep-Learning-Linearized Cellular Neugebauer (DLLCN) approach and the Pure Deep
Learning (PDL) approach, and presented a learning strategy to avoid overfitting. Both approaches
outperform the standard cellular Neugebauer approach with large margins in terms of accuracy
and data efficiency in predicting joint color and translucency validated on two state-of-the-art
6-material 3D printers. For the Stratasys J750 3D printer, they require up to 8.3/10.3 times
fewer samples to achieve similar accuracy in color/translucency (α-value [11]) or are up to 6/4.6
times more accurate, when using the same amount of samples. For the Mimaki 3DUJ-553
printer, possessing a very complex tonal-optical relationship due to yellow-tinged clear material
contribution in the 3D-halftoning, they need up to 9.4 times fewer samples to reach a similar
color accuracy. Note that exactly the same model structures were used for both printers. Weights
and hyperparameters were automatically determined by the described learning strategy.

The proposed deep-learning-based models possess a few intrinsic advantages compared to
other phenomenological models. To achieve a sufficient accuracy in most applications they do
not require large regular grids whose node number increases exponentially with the number of
printing materials such as required by the cellular Neugebauer model. They can be updated with
more scattered data, which is e.g. interesting for improving prints in particular optical regions of
interest, e.g. colors and translucencies of prosthetic implants (teeth, eyes). Furthermore, they
learn the impact of material cross-contamination and post-process treatment (polishing, coating)
on the optical quantities of the resulting print. Both are difficult to measure and to consider by
RTE-based models.

Future work will exploit similarities between 3D printing systems of the same type to further
maximize resource efficiency of the optical characterization process. Even though such 3D
printers possess intra- and inter-printer variability, they share low-level features of the tonal-
optical relationship. To maximize resource efficiency, transfer learning [57] approaches shall
be developed requiring less training data by exploiting fully trained models fitted to a different
printer of the same type.
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