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Summary

Systems on the nanoscale can show behaviour that is strikingly different from the be-
haviour we expect for systems on the macroscopic scale. As a consequence, we can in
general not assume that macroscopic theories of matter can be used to describe the
properties of small systems. Thermodynamics was initially derived for systems with
number of molecules on the order of Avogadro’s number. In this work, we explore
the elements needed to apply thermodynamics to small systems, containing a much
smaller number of molecules. We utilize molecular simulations combined with theo-
retical descriptions for direct investigations of the systems. We focus on three central
questions: (1) How are thermodynamic properties affected by system size? (2) Can we
define a consistent thermodynamic framework for small systems? (3) Which compu-
tational tools and techniques can be applied to study small systems?

For the first question, we investigate two features of small systems: size- and shape-
dependent properties and ensemble in-equivalence. We show how thermodynamic
properties can be conveniently described by scaling laws, and discuss the implica-
tions of ensemble in-equivalence. For the second question, we compare two theoret-
ical descriptions that provide thermodynamic frameworks for small systems: Gibbs’
surface thermodynamics and Hill’s nanothermodynamics. We discuss the advantages
and limitations of both methods, and give examples of systems where one framework
is favored over the other. For the third question, we show how some statistical me-
chanical identities derived for macroscopic systems do not provide accurate predic-
tions for systems with a small number of molecules. We also discuss some tools and
techniques that can be trusted to provide accurate predictions of properties for small
systems.

In Article I, we present a new method for computation of chemical potential differ-
ences. The method is based on a sampling technique that computes grand canonical
particle fluctuations from sub-systems embedded in a larger reservoir. This sampling
technique is combined with an overlapping distribution method that extracts chem-
ical potential differences from the overlap between distributions of particle numbers
from two systems at different densities. The small sub-systems are non-periodic, which
means that their properties deviate from the classical thermodynamic description. We
therefore utilize scaling laws to calculate the size dependence of chemical potential
differences and eventually extract the value in the thermodynamic limit. In addition
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to computing chemical potential differences in the macroscopic limit directly from
molecular dynamics simulation, the new method allows for investigation of the size
dependence of intensive thermodynamic properties of small systems.

In Article II, we investigate how a small number of particles can induce an ensem-
ble dependence to the properties of grand canonical (open) and canonical (closed)
systems. We investigate cubic boxes with a surface energy, containing ideal gases or
particles interacting through interatomic potentials. For all the investigated small sys-
tems, we find clear differences between the properties in open and closed systems.
Through analytical derivation, we find that the properties of the ideal gases are af-
fected by two types of small-size effects. The first type arises from the surfaces, edges
and corners of the system, while the second type arises from avoiding assumptions
about the magnitude of the number of particles. We utilize the insight gained from
investigating the ideal gases to analyze ensemble dependence of systems with inter-
acting particles. For the systems with interacting particles, the difference in chemical
potential is qualitatively described by the analytic formula derived for the ideal gas
system, while the difference in pressure is not captured by the ideal gas model. The
work presented in this paper gives insight into the mechanisms behind ensemble in-
equivalence in small systems, and illustrates how simple statistical mechanical models
can provide useful information.

In Article III, we present a thermodynamic framework that represents an equa-
tion of state for pure fluids confined in small geometries. The total system consists
of a bulk phase in equilibrium with a surface phase. We base the equation of state
on an existing, accurate description of the bulk fluid, and use Gibbs’ framework for
surface excess properties to consistently incorporate contributions from the surface.
We demonstrate the equation of state for a Lennard-Jones spline fluid confined by a
spherical surface with a Weeks-Chandler-Andersen wall-potential. The pressure and
internal energy predicted from the equation of state are nearly within the accuracy
of the properties computed directly from molecular dynamics simulations. We also
investigate how the properties of the surface phase depend on the location of the di-
viding surface, and find that when the location is chosen appropriately, the properties
of highly curved surfaces can be predicted from those of a planar surface. A possible
application of the equation of state for confined fluids is prediction of thermodynamic
properties in porous media.
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Populærvitenskapelig sammendrag

Nanosystem er små samlinger av atomer som til sammen ikke er større enn en hun-
dretusendel av et sandkorn. Disse små systemene oppfører seg veldig annerledes enn
store system. Dette skjer fordi molekyler i nærheten av en overflate oppfører seg an-
nerledes enn molekylene i midten av systemet, i den delen vi kaller bulken. I store
system kan vi ofte se bort ifra bidraget til molekylene i nærheten av overflaten siden
de utgjør en så liten andel av det totale systemet. Mens i små system befinner mange
av molekylene seg ved overflaten til systemet, som gjør at de i mye større grad bidrar
til hvordan systemet oppfører seg.

De helt spesielle egenskapene til små system åpner en ny dimensjon av muligheter
for utvikling av teknologi. Nanoteknologi brukes for eksempel til å lage materialer
med stort overflateareal, slik som porøse materialer som brukes i solceller, batterier
og rensing av vann. Vi kan også spesialdesigne små nanopartikler med spesifikke
egenskaper. Nanopartikler av gull kan blant annet brukes som katalysatorer, som får
reaksjoner til å gå raskere, mens gull i bulk-form har ingen katalysatoregenskaper.
Nanopartikler har også en helt unik evne til å passere gjennom biologiske barriærer
i kroppen. De kan brukes til å transportere og levere medisin inni kroppen på en mer
målrettet måte vi gjør i dag. Men små system eksisterer ikke bare fordi mennesker har
laget de på en lab. Mange viruspartikler er under 100 nm i diameter. Noen av disse
består av en genetisk del plassert inni et beskyttene skall, og inni skallet kan trykket
bli tjue ganger høyere enn i et vanlig sykkeldekk. Viruset bruker det høye trykket til å
skyte den genetiske delen ut av skallet og inn i en celle. På den måten utnytter viruset
størrelsen sin til å lage de egenskapene det trenger.

Uansett om de små systemene er laget på laben eller i naturen så trenger vi mer
kunnskap om hvordan de fungerer. Gjennom arbeidet med denne doktoravhandlin-
gen har vi jobbet med å forstå små system bedre ved å undersøke de gjennom simu-
leringer. Simuleringene regner ut hvordan atomene inni nanosystemet oppfører seg.
Det gjør at vi kan se forskjellen mellom molekylene som er i bulken og de som er i
nærheten av overflaten. Vi kan tenke på simuleringene som et teoretisk mikroskop
som brukes til å se på atomene inni de små systemene. På den måten kan vi få svar på
hvordan og hvorfor små system oppfører seg sånn som de gjør, slik at vi kan utnytte de
spennende egenskapene i fremtidens teknologi.
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1 What are small systems?

A typical dimension for a nanosystem ranges from sub-nanometer to several hundred
nanometers. Systems on this size scale often behave in a way that is drastically differ-
ent from macroscopic systems. This can be utilized to produce nanoparticles with
highly specific properties. For instance, gold nanoparticles are excellent low tem-
perature catalysts, while macroscopic gold does not exhibit any catalytic properties.1

Nanoparticles are also being developed for treatment of diseases, where they are used
as delivery vehicles for pharmaceutical agents, due to their unique ability to cross bio-
logical barriers.2 Another category of nanosystems are fluids confined in small spaces.
Understanding of these systems is particularly important in porous media science,
which has a wide range of applications such as dye-sensitized solar cells,3 perovskite
solar cells,4 clean water production,5–7 CO2 capture8,9 and production of lithium-ion
batteries.10,11 Due to the small size of the pores, fluids confined inside the porous me-
dia often behave differently than fluids in bulk systems. For instance, capillary con-
densation can lead to the formation of a liquid phase at pressures below the satura-
tion pressure.12–15 Naturally occurring nanosystems also exist. Most virus particles
are on the nanometer scale, and amongst them are several that measure below 100
nm in diameter.16,17 For virus particles that consist of a virial genome encapsulated by
a nanometre-sized capsid, the genome is often so tightly packed that it exerts a high
internal pressure on the capsid. By utilizing atomic force microscopy, internal pres-
sures as high as 60 atm have been measured.18 It has therefore been suggested that
the pressure is a crucial part of the mechanism that drives the genome into the host.16

From the above examples, it is clear that the nanoscopic scale is not simply a
miniaturization of the macroscopic scale. However, there exist no overall accepted
size limit for when a system is regarded as "small".1 Instead, systems are often re-
garded as small when they show deviations from the description in the macroscopic
limit that can be attributed to their size. One feature of small systems that often re-
ceives specific attention is their non-extensivity. This arises when properties that are
regarded as extensive in the macroscopic limit are influenced by the size such that they
are no longer Euler homogeneous functions of degree one. However, non-extensivity
can also occur for macroscopic, long-range systems, i.e. systems where the range of
interactions is comparable with the size of the system.19–24 Examples of systems that
are governed by long-range interactions are two-dimensional fluids,25,26 plasmas27 or
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self-gravitating systems.28 Regardless of the cause of non-extensivity, it is clear that
non-extensive systems can display remarkable properties. In this work, we focus on
systems that are non-extensive due to their smallness. Gaining further insight into the
behaviour of such systems is important, both in understanding the role of the natu-
rally occurring small systems and in order to utilize small systems in nanotechnologi-
cal developments.

The aim of this thesis is to increase the general understanding of small systems
through investigations of their thermodynamic properties. We employ molecular dy-
namics (MD) and Monte Carlo (MC) simulations combined with theoretical descrip-
tions to shed light on how and why the properties deviate from the description in the
macroscopic limit. We also investigate different frameworks that can provide consis-
tent thermodynamic descriptions of the systems’ properties. One important criteria
for such a framework is that it should be applicable in predictive models such as equa-
tions of state (EoS).

The thesis is structured as a collection of articles, where the upcoming chapters
provide a general background to the work presented in the articles. Chapter 2 gives a
short introduction to thermodynamics of small systems, and contains three sections
that each are dedicated to a specific area of focus. In Chapter 3, we present the conclu-
sions made from this work together with perspectives and future work. Then follows
the scientific articles included in the thesis.
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2 Thermodynamics of small systems

Thermodynamics describes the behaviour of energy conversion in nature through re-
lations between energy, work and heat.29 It is a self-consistent framework of general
applicability and makes no reference to the microscopic constituents of the system. A
rationalization of thermodynamics based on microscopic mechanical laws is provided
by statistical mechanics.30 Statistical mechanics is a theoretical framework that con-
nects observable properties such as pressure, temperature, heat capacity and com-
pressibility of a many-body system to its microscopic constituents and their interac-
tions.

Thermodynamics was originally derived for systems in the macroscopic limit, where
the number of molecules is on the order of Avogadro’s number, i.e. 1024. Consequently,
the convenient description that thermodynamics provides for large scale systems does
not apply to small scale systems. Two immediate questions therefore arise: How can
we build a systematic thermodynamic theory that works for small systems? And how
should this thermodynamic theory be related to other theoretical descriptions of mat-
ter, such as statistical mechanics?

The work presented in this thesis focuses on three topics that can aid the devel-
opment of a thermodynamic theory for small systems. In Sec. 2.1, we discuss how the
behaviour of small systems and their thermodynamic properties depend on system
size. In Sec. 2.2, we discuss the definition of a consistent theoretical framework that
provides a connection between the thermodynamic properties. In Sec. 2.3 we inves-
tigate which computational tools and techniques can be applied to study systems on
the small-size scale.

2.1 How are thermodynamic properties affected by system size?

Macroscopic systems containing multiple molecules can be split into a bulk region
and a surface region. A molecule close to a surface will experience a different environ-
ment than a molecule located in the bulk. Take as an example a fluid in a container. In
this system, a molecule in the bulk region will be surrounded by other fluid molecules,
while a molecule close to the surface will interact with the container walls as well. Con-
sequently, the behaviour of the molecules in vicinity of the surface often deviates from
the behavior of the molecules in the bulk. In macroscopic systems, the ratio of surface

3



Figure 2.1: A comparison of the influence of the surface region in (a) a small and (b) a
large system. The blue particles are interacting with the surface while the red particles
feel no energetic contribution from the surface. In the small system, the size of the
region in which the molecules are affected by the surface is of the same order as the
system size. In the large system, the number of molecules in the surface region is
negligible compared to the number of molecules in the bulk region.

molecules to bulk molecules is usually small. The influence of the surface molecules
on the total properties of the fluid is therefore often neglected in macroscopic sys-
tems. Small systems, however, have much higher ratio of surface molecules to bulk
molecules. This difference is illustrated in Fig. 2.1. As a consequence, the thermody-
namic properties of small systems depend on the features of the surface, which results
in a deviation from the macroscopic description.

In this section, we focus on two topics that are central in the understanding of the
size dependence of thermodynamic properties. The first is the use of scaling laws to
characterize the different size effects, and the second is how these size effects depend
on the ensemble of the system.

2.1.1 Size-scaling

The high surface area-to-volume ratio is considered a characteristic feature of small
systems since the leading order small-size effects usually come from the surface area.
This means that including a description of how the properties depend on the sur-
face area often provides a sufficient description of the size dependence.31 However,
for non-planar surfaces, higher-order terms such as contributions from the curvature,
lines or edges of the system can have an additional impact on the thermodynamic
properties.32 For instance, prediction of nucleation rates of droplets from classical nu-
cleation theory has been shown to significantly improve after including curvature cor-
rections to the planar-wall surface energy.33
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The different contributions to the size dependence of a thermodynamic property
can be conveniently summarized by a scaling law.34 One example of a scaling law for
the general property, A, is the expansion of its density, a = A/V , in the system’s in-
verse characteristic size.32,35,36 The criteria for this scaling law is that the property A
is an extensive thermodynamic property, i.e. Euler homogeneous of first-order, in the
macroscopic limit. For a three-dimensional system, the inverse size can be defined as
L ≡ 3

p
V , such that a can be written as

a = A

V
= a0 + a1

L
+ a2

L2 + a3

L3 +·· · , (2.1)

where a0 corresponds to the value of a in the macroscopic limit, a1 is the first-order
size-scaling coefficient, a2 the second-order size-scaling coefficient, etc. In the scaling
law given by Eq. (2.1), all size-scaling coefficients depend on the shape of the system,
while the value in the macroscopic limit does not.

Scaling laws are central in the framework of morphometric thermodynamics.37 In-
stead of the general scaling law in Eq. (2.1), morphometric thermodynamics is based
on the more specific scaling law provided by Hadwiger’s theorem.38,39 This theorem
is valid for any functional that is translationally invariant, additive, and a continuous
functional of the shape. According to Hadwiger’s theorem, these functionals can be
written as a linear combination of the four Mikowski functionals: volume V = ∫

dV ,
surface area Ω = ∫

dΩ, the integral of the total curvature C = ∫
JdΩ and the integral

of the Gaussian curvature X = ∫
K dΩ. The total curvature is J = 1/R1 +1/R2 and the

Gaussian curvature is K = 1/(R1R2) where R1 and R2 are the principal radii of curva-
ture at a certain point on the surface. For a general property A that fulfills Hadwiger’s
criteria, the linear combination is

A = aV V +aΩΩ+aC C +aX X . (2.2)

In this expression, the geometric measurements V , Ω, C and X , depend on the shape
of the bounding container of the system, while the scaling coefficients aV , aΩ, aC and
aX , do not. This means that the scaling coefficients computed from a simple geometry
can be used to predict values of A for complex geometries as long as V , Ω, C and X
can be computed. Another difference between the scaling law based on Hadwiger’s
theorem and one given in Eq. (2.1) is that Hadwiger’s theorem states that there exists a
finite number of size-scaling coefficients.

To understand the implications of morphometric thermodynamics, we take as an
example the scaling law for the grand potential, Υ = U −T S −µN . U is the internal
energy, T is the temperature, S is the entropy, µ is the chemical potential and N is the
number of particles. We consider surfaces with constant J and K , such that C = J and
X = K . According to morphometric thermodynamics, the grand potential can then be
expressed as

ΥHadwiger =−pV +γ0Ω+υC J +υX K , (2.3)

where p is the pressure and γ0 is the surface energy of a planar wall. The terms υC

and υX are often referred to as rigidities.37 More details on thermodynamics for sur-
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faces and the significance of the surface energy are presented in Sec. 2.2.1. In de-
scriptions of thermodynamics for curved surfaces, the Helfrich40 expansion can be
used to express the surface energy of a non-planar surface as the surface energy of a
planar wall plus additional curvature corrections.41–45 The first-order curvature cor-
rection was discussed by Tolman,46 and second-order corrections were included by
Helfrich.40 Applying the Helfrich expansion for the surface energy in the expression
for the grand potential gives

ΥHelfrich =−pV +γ0Ω−δγ0 J + k

2
J 2 + k̄K +·· · , (2.4)

where δ is the Tolman length, k is the bending rigidity and k̄ is the Gaussian-curvature
rigidity. Comparing Eq. (2.3) to Eq. (2.4) shows that the bending rigidity is zero in the
framework of morphometric thermodynamics.

The validity of morphometric thermodynamics has been investigated for fluids of
hard spheres in contact with a hard, curved wall. König et al.37 investigated the sys-
tems using Rosenfeld’s fundamental measure theory (FMT)47,48 and concluded that
the four morphometric measures in Eq. (2.3) were sufficient to describe the influ-
ence of an arbitrarily shaped container on the fluid. However, Blokhuis49 came to
the opposite conclusion, i.e. the bending rigidity is not zero, by comparing the results
from three different approaches: (i) applying the same theoretical model as applied
by König et al.37 (ii) using an expansion of the FMT free energy to second order in the
curvature for the spherical and cylindrical interface and (iii) investigating results from
MD simulations by Laird et al.50,51 Blokhuis49 attributed the non-zero bending rigid-
ity to the restructuring of the molecules which occurs when the curvature changes.
Urrutia52 also found non-zero values of k from exact analytical expressions based on
cluster integrals. Blokhuis49 and Urrutia52 both point out that the magnitude of k is
small, and that it can be hard to distinguish it from zero. This challenge was also re-
ported by Laird et al.50 in their investigations of hard spheres at low packing fractions
through MD simulations, which showed that deviations from morphometric thermo-
dynamics were not resolvable within the statistical error. The system of hard spheres
confined by a hard wall at low packing fractions was later revisited by Davidchack and
Laird53 and they were able to conclude from high-resolution MD simulations that the
grand potential of a cylindrical wall deviates from the morphometric thermodynamic
description. For a spherical wall, the high-precision results were still insufficient to
resolve deviations from morphometric thermodynamics. These examples show that
size-scaling is a useful tool that can facilitate determination of thermodynamic prop-
erties across different length scales. However, extraction of size-scaling coefficients
beyond the first order in a consistent manner from simulations can be challenging.

In naturally occurring small systems, the small-size effects is an inherent part of
the system. When particle-wall interactions are included in simulations, they work as
models for the interfaces we can observe in real life systems. However, even when no
particle-wall interactions are explicitly included in the simulations, size effects can still
be present due to the finite size of the simulations box. When the goal is to extract bulk
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properties, this size effect is unwanted. A substantial amount of the research done on
size effects has therefore been focused on finding corrections for them. Scaling laws in
this setting are therefore often referred to as finite-size corrections. In addition to the
numerous theoretical descriptions,54–60 finite-size corrections have been investigated
to a large extent through simulations for both simple model fluids and for complex
molecular fluids.31,32,35,61–68

Sub-sampling techniques are a category of computational techniques that utilize
size-scaling to analyze thermodynamic properties. In these methods, sub-systems are
sampled from a periodic simulation box of finite size. By sampling the sub-systems
at different locations in the simulation box and throughout the simulation run, one
gets access to ensemble averages of grand canonical fluctuations in the number of
particles and the energy. Since the sub-systems are non-periodic, the fluctuations are
affected by a significant contribution from the surface. By sampling differently sized
sub-systems, scaling-laws can be used to analyze the size- and shape-dependence of
the fluctuations. This sub-sampling technique is illustrated in Fig. 2.2. For the sub-
sampled volumes, another type of finite-size effect, not captured by Eqs.(2.1)-(2.2) can
influence the fluctuations. This finite-size effect is an artefact that arises from the fi-
nite size of the simulation box. For a closed simulation box, a density change in the
sub-system can not occur without a corresponding density change in the reservoir.
This affects the fluctuations of the largest embedded small systems, since the sim-
ulation box is not functioning properly as a grand canonical reservoir at this point.
Including a correction for this finite-size effect in the scaling relations has been shown
to improve the accuracy of the extrapolation to the macroscopic limit.31,32,66,67,69–71

Fluctuations are interesting because they have a direct relation to a number of
thermodynamic properties. The origin of these connections is the coupling between
the second moments of the probability distribution of the grand canonical ensemble
and the fluctuations in the number of particles,

(kBT )2
(
∂2 lnΞ(µ,V ,T )

∂µ2

)
T,V

= 〈N 2〉−〈N〉2, (2.5)

where Ξ is the partition function of the grand canonical ensemble and kB is the Boltz-
mann constant. The brackets denote ensemble averages. The second moments are
in turn connected to a large variety of thermodynamic quantities. Consequently, sub-
sampling techniques have been used to calculate values in the macroscopic limit for
the magnetic susceptibility,63,72 the thermodynamic factor,35 partial molar proper-
ties,36 the isothermal compressibility,31 and chemical potential.66–68,73 Extraction of
the critical temperature and the critical exponents from particle fluctuations has also
been explored.63,64,74,75

In addition to extraction of properties in the macroscopic limit, sub-sampling meth-
ods have provided insight into the scaling relations for different thermodynamic prop-
erties. Strøm et al.31 presented a close inspection of which fluctuation-based proper-
ties can be described by Hadwiger’s theorem. The authors showed how properties
that do not fulfill the criteria of Hadwiger’s theorem can be expressed as combinations
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Figure 2.2: Illustration of the sub-sampling procedure where particle fluctuations are
calculated in spherical sub-systems inside the total simulation box. Differently sized
sub-systems are sampled in order to investigate how the fluctuations change when the
size of the system changes. From Bråten et. al. J. Chem. Inf. 2021 61 (2), 840-855.

of the ones that do. In their investigations of the size effects for the thermodynamic
properties of water, Strøm et al.31 focused on the scaling law based on the theorem by
Hadwiger truncated after the first-order size-scaling coefficient. For the density of A,
this compact scaling law is

a = aV + Ω

V
aΩ. (2.6)

By investigating the fluctuations computed from sub-sampled volumes of different
shapes (tetrahedron, cube, dodecahedron and sphere), Strøm et al.31 found that the
size-scaling coefficients in Eq. (2.6) are independent of shape. Holovko et al.76 showed
that Eq. (2.6) also can be used for more complex geometries through investigations of
thermodynamic properties of hard sphere fluids confined in random porous media.
They found that two different types of porous media have the same chemical potential
when they have the same porosity (corresponding to volume) and equal surface areas.
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2.1.2 Ensemble dependence

A system’s ensemble refers to how the system is connected to its surroundings. Some
of the common ensembles are the micro canonical ensemble, canonical ensemble,
grand canonical ensemble and the isobaric-isothermal ensemble.77 The micro canon-
ical ensemble (NV E) represents a system that is closed and isolated, such that it can
not exchange energy or particles with the surroundings. The canonical ensemble
(NV T ) represents a closed system connected to a heat bath, which means that it can
exchange energy with the surroundings. The grand canonical ensemble (µV T ) repre-
sents an open system connected to both a heat bath and a particle reservoir, such that
it can exchange energy and particles with the surroundings. The isobaric-isothermal
ensemble (N pT ) represents a closed system, connected to a heat bath, with a non-
constant volume.

In classical thermodynamics, it is well known that ensemble equivalence holds
for macroscopic systems with short-range interactions. This means that different en-
sembles predict compatible or equivalent equilibrium states for a given system.19,22

However, ensemble in-equivalence can occur when properties that normally are re-
garded as extensive in macroscopic systems are influenced by the small size such that
they become higher-order functions of size and shape. As a consequence, properties
such as the internal energy or other energy state functions such as the Helmholtz en-
ergy, Gibbs energy and the grand potential are no longer Euler homogeneous of degree
one.34 As we have seen in Sec. 2.1.1, this is often the case for small systems.

Occurrences of ensemble dependence have been investigated analytically, theo-
retically and through simulations. Miranda78 investigated analytical expressions for
small clusters of harmonic oscillators and for two level systems, and found differ-
ences between the properties in the canonical, micro canonical and grand canoni-
cal ensembles. Rubi et al.79 showed by theoretical investigations that the properties
of a single molecule under stretching are ensemble dependent. They compared the
properties a of molecule under isomeric conditions, where the end-to-end distance
of the molecule is controlled, and isotensional conditions, where the applied exter-
nal force is controlled. Bering et al.80 later showed that the in-equivalence between
these two ensembles can be detected from simulations of polymer chains. Ensemble
in-equivalence is not restricted to small systems. Deviations from Euler homogeneity
have also been observed for systems with long-range interactions.19–22,24

The Legendre transform is used in classical thermodynamics since it relates the
energy state function of one ensemble to that of another ensemble.30 The require-
ments for applying the Legendre transform are that the function is differentiable and
convex. Since ensemble in-equivalence occurs when a set of equilibrium states in
one ensemble can not be realized for another ensemble, it can give rise to convexity
anomalies in the energy state functions.19–22 For such systems, the energy state func-
tions of different ensembles are no longer connected through Legendre transforms.
The Legendre-Fenchel transform is a generalization of the Legendre transform that
reduces to the latter when the function is differentiable and convex. The Legendre-
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Fenchel transform has therefore been used to transform between different stretching
energies in investigations polymer chains,81 and to transform the Gibbs energy of a
deformable slit pore into the Helmholtz energy of a non-deformable slit pore.82

2.2 Can we define a consistent thermodynamic framework for
small systems?

It is clear that the behavior of small systems can deviate from the behavior of large,
macroscopic systems, and that we can in general not assume that the usual classi-
cal thermodynamic equations provide valid descriptions for such systems. With in-
creased interest in small systems in fields such as atmospheric science,83 biology16,17

and porous media science,84,85 there is a need for a consistent thermodynamic de-
scription that is not restricted to a particular type of small system. Such a description
will be crucial in the development of models with predictive abilities for the thermo-
dynamic properties of small systems, such as an EoS.

In this section we present two different formalisms that provide frameworks for
handling thermodynamic properties of systems influenced by small-size effects. The
first is the framework for surface excess properties derived by Gibbs.86 The second is
the framework developed by Hill,87 which is a consistent extension of classical ther-
modynamics that can be applied to small systems. We consider the properties for
systems of one component, but extension to mixtures is possible.

2.2.1 Gibbs’ surface thermodynamics

The foundations of the thermodynamic theory of interfaces was formulated by Gibbs.86

His theory describes the thermodynamics of a macroscopic system containing two
isotropic phases, α and β, separated by a heterogeneous interface region. Gibbs intro-
duced the concept of a dividing surface, which is a hypothetical sharp surface in the
region of heterogeneity between the two phases. The dividing surface provides a geo-
metrical separation of the two homogeneous phases, and has therefore no thickness.

Figure 2.3 shows an illustration of a real, heterogeneous interface region and the
geometrical dividing surface introduced by Gibbs. The energetic contribution from
the surface to the thermodynamic properties of the total system are described as sur-
face excess. The values of the surface excess properties are obtained by assigning to the
bulk phases the values they would have if the bulk phases continued uniformly up to
the dividing surface. Extensive properties of the total system are therefore expressed
as the sum of the bulk values on each side of the dividing surface plus a surface excess.

The properties of the two bulk phases are denoted by superscript "α" or "β", while
the surface excess properties are denoted by superscript "s". Since the dividing surface
is only a geometrical surface with no thickness and therefore has no volume, V s = 0,
the total volume of the system becomes

V =V α+V β. (2.7)
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Figure 2.3: An illustration of the two phases α and β separated by (a) a real, heteroge-
neous interface region and (b) the geometrical dividing surface introduced by Gibbs.

The total number of particles, the total entropy and the total internal energy are

N = Nα+Nβ+N s, (2.8)

S = Sα+Sβ+Ss, (2.9)

U =Uα+Uβ+U s. (2.10)

The excess number of particles divided by the surface area is often referred to as ad-
sorption, Γ= N s/Ω, while the excess entropy per area is η= Ss/Ω.

A central quantity in Gibbs’ surface thermodynamics is the surface energy, γ. The
surface energy equals the excess grand potential per area of the dividing surface.43 For
equilibrium systems, the temperature and the chemical potential must be the same
everywhere in the system, i.e. T = T α = T β = T s and µ = µα = µβ = µs. The pressure,
however, can be different in each phase. Hence, the internal energy of the total system,
consisting of the two phases separated by the dividing surface, becomes

U = T S −pαV α−pβV β+µN +γΩ. (2.11)

For planar surfaces, the term γΩ is proportional to the surface area. For non-planar
surfaces, the surface energy can be expressed as the planar-wall surface energy plus
higher-order correction terms that account for the curvature dependence. The scaling
law based on Hadwiger’s theorem (Eq. (2.3)) and the Helfrich expansion (Eq. (2.4)) are
examples of such expressions. As discussed in Sec. 2.1.1, extraction of the size-scaling
coefficients that account for the curvature can be challenging. This is further com-
plicated by the fact that both the contribution of a planar wall and the higher-order
correction terms can depend on the location of the dividing surface. Aasen et al.43 ap-
plied the Helfrich expansion to investigate the interface between a spherical droplet
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and the surrounding vapor, and found that the Tolman length is independent of the
choice of dividing surface while the rigidity constants are not. Reindl et al.88 investi-
gated several model fluids in contact with a curved wall and found that the accuracy
of Hadwiger’s depends on the location of the dividing surface.

An advantage of Gibbs’ surface thermodynamics is that it allows for splitting of the
total description of the system into a bulk phase and a surface phase. From Eqs. (2.7)-
(2.11), one can derive the Gibbs adsorption equation, which conveniently connects
the surface excess properties to the intensive properties of the total system.86,89 For
a given choice of dividing surface at a fixed position relative to the total volume, the
Gibbs adsorption equation is

dγ=−Γdµ−ηdT. (2.12)

This connection makes Gibbs’ surface thermodynamics an attractive framework for
description of the properties of confined fluids. For such systems, one must keep in
mind that the volume depends on the location of the dividing surface, which means
that care should be taken to ensure that it is chosen appropriately.50,53,90 It is also clear
that choosing a suitable scaling law for the surface excess properties is crucial in order
to obtain accurate predictions.

One limitation associated with using Gibbs’ surface thermodynamics as a ther-
modynamic framework for small systems is that it is ensemble independent. It there-
fore does not provide the tools for analyzing systems that are ensemble dependent.
Another limitation is that all size effects incorporated in the description are associ-
ated with geometric features of the system. This means that small-size contributions
that can not be directly associated with a contribution from the system’s geometry are
not captured by Gibbs’ surface thermodynamics. Gibbs’ thermodynamics of surfaces
is therefore not suitable as a thermodynamic framework for single macro-molecules
such as polymers or DNA-chains.

2.2.2 Hill’s nanothermodynamics

Hill’s description of thermodynamics for small systems was initiated by the work pub-
lished in 1962.91 He later published further elaborations and examples of applications
in text books.87 The framework is often referred to as nanothermodynamics.34

The derivation of Hill’s nanothermodynamics starts with a firm macroscopic foun-
dation by considering a collection of N equivalent, distinguishable, independent small
systems. All the small systems have a fixed center of mass and are described by a set
of three parameters corresponding to a thermodynamic ensemble. The small systems
are too small to be described by classical thermodynamics, but the properties of the
total collection they make up together can be described by classical thermodynamics.
For the collection of small systems, the total energy is a function of the total entropy,
the total volume, the total number of particles and the number of small system repli-
cas, Ut =Ut(St,Vt, Nt,N ). Here, the subscript "t" is included in order to indicate prop-
erties of the total collection of small systems. The exact differential of the total energy
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is found by considering small changes in all the independent variables of the system
as follows:

dUt =
(
∂Ut

∂St

)
Vt,Nt,N

dSt +
(
∂Ut

∂Vt

)
St,Nt,N

dVt

+
(
∂Ut

∂Nt

)
St,Vt,N

dNt +
(
∂Ut

∂N

)
St,Vt,Nt

dN , (2.13)

where the temperature, pressure and chemical potential are defined similarly as in
macroscopic thermodynamics:

T ≡
(
∂Ut

∂St

)
Vt,Nt,N

, (2.14)

p ≡−
(
∂Ut

∂Vt

)
St,Nt,N

, (2.15)

µ≡
(
∂Ut

∂Nt

)
St,Vt,N

, (2.16)

while the fourth differential is particular for the collection of small systems. The intro-
duction of the number of replicas as a variable gives rise to the conjugate variable E ,
which Hill named the subdivision potential.87 The subdivision potential is defined as

E ≡
(
∂Ut

∂N

)
St,Vt,Nt

, (2.17)

and describes the change in internal energy of the total system as the number of repli-
cas is changed while the total entropy, the total volume and the total number of par-
ticles are kept constant. The subdivision potential therefore corresponds to the en-
ergy associated with dividing the total collection of small systems into smaller pieces.
This subdivision process is illustrated in Fig. 2.4. Combining the above definitions
(Eqs. (2.14)-(2.17)) with Eq. (2.13) yields

dUt = T dSt −pdVt +µdNt +E dN . (2.18)

Since the internal energy of the total collection of small systems is an Euler homoge-
neous function of degree one, we get

Ut = T St −pVt +µNt +EN . (2.19)

Hill named the term E dN the subdivision energy.87 The introduction of this con-
jugate pair of variables reinstates the extensivity of the total collection of small system
replicas, but the internal energy of one small system can still be non-extensive. Hill
showed this by retrieving the properties of a single small system by computing the
averages of the total collection of small system replicas. The average properties of the
small systems can be expressed by dividing the total properties by the number of repli-
cas, which gives

U = Ut

N
, S = St

N
, V = Vt

N
, N = Nt

N
. (2.20)
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Figure 2.4: Three ensembles of small systems, where each blue circle is considered a
small system. The number of small systems increases from left to right, while keeping
the total entropy St, total volume Vt and total number of particles Nt constant.

These are average quantities per small system, but since all the small systems are
equivalent, they can also be viewed as ensemble averages for a single small system.
Inserting the identities in Eq. (2.20) in Eq. (2.19) yields the average internal energy of
one small system

U = T S −pV +µN +E . (2.21)

From Eqs. (2.18)-(2.21), it can be deduced that

dU = T dS −pdV +µdN , (2.22)

dE =−SdT +V dp −N dµ, (2.23)

which shows that when E is non-zero, the internal energy of the small system is not an
Euler homogeneous function of degree one.

The energy state functions of the various thermodynamic ensembles can also be
obtained from Eqs. (2.18)-(2.21). Similarly to the internal energy, the energy state
functions of the total collection of small systems become Euler homogeneous func-
tions of degree one, while the energy state functions for each small system do not.
Hill also showed that the fundamental connection between the energy state func-
tions and the partition functions remains valid for small systems. More details on the
derivation of these functions are found in the books by Hill87 or the extended expla-
nations presented by Bedeaux et al.34 A key part of the derivation of these functions
is that each thermodynamic ensemble is considered separately, such that the thermo-
dynamic properties always are ensemble specific. As a consequence, the subdivision
potential takes different forms for the different ensembles and new, ensemble specific
properties arise. Nanothermodynamics has therefore become an important tool in
research on ensemble in-equivalence.79–82

The advantage of the subdivision potential lies in its generality. It can describe all
types of contributions to the internal energy, without explicitly defining contributions
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from the system’s geometry, such as surface area, curvature, corners, edges, etc. Hill
therefore envisioned that his framework would be relevant for research on colloidal
particles, polymers, macro-molecules or in statistical mechanical descriptions of any
kind of finite system.87 Hill was to a large extent correct in these predictions. Nan-
othermodynamics has been used in research on polymer chains, both in the form of
theoretical descriptions79 and in simulation based investigations.80,81 Is has also been
used in theoretical investigations of the statistical mechanical description of an ideal
gas adsorbed on a spherical adsorbent.92 In addition, nanothermodynamics has sup-
ported the analysis of size-scaling of thermodynamic properties,31,36 and it has been
particularly important in investigations of transport in porous media.93–95 In fact, a
system does not even need to be small in order to apply Hill’s nanothermodynam-
ics. The subdivision potential can be used to describe any contribution to the internal
energy that is not captured by the natural variables of the system’s thermodynamic
ensemble. For instance, Campa et al.24 showed how Hill’s nanothermodynamics can
be applied to macroscopic, non-additive systems.

Hill also introduced the concept of excess properties to his framework by distin-
guishing between contributions that are of macroscopic order and those that are of
small order. The goal of this was to extract equations that only contain the small-order
terms, and in that way obtain a pure thermodynamics of smallness. A general property,
A, which is extensive in the macroscopic limit, is in Hill’s framework expressed as the
sum of a macroscopic contribution plus an excess contribution

A = A(0) + A(x). (2.24)

Hill discussed how the density of the excess contribution, A(x)/V , can be expanded
according to a scaling law that contains terms proportional to the inverse size, but he
also considered terms that are not connected to any geometrical feature of the sys-
tems, such as lnL. In contrast to the work by Gibbs, the excess properties in Hill’s
framework are not directly coupled to a surface. Hill showed how his framework can
be applied to spherical droplets in vapor in a way that does not require a dividing sur-
face. By introducing a dividing surface, the formalism by Hill becomes equivalent to
Gibbs’ description.87

Nanothermodynamics provides a firm theoretical framework for treatment of prop-
erties that are influenced by size effects. However, there are some challenges related
to application of Hill’s framework for computation of thermodynamic properties. A
consequence of the generality of E is that some insight into the origin of the small-
size effects is sacrificed. Since the subdivision potential is not coupled to a specific
feature of the system, computation of E from experiments or simulations can be dif-
ficult. For most systems, computation of the subdivision potential directly from the
definition given in Eq. (2.17) is not realistic. An alternative route to E is via the energy
state function. For systems such as ideal gases, where the energy state function can be
computed exactly from analytical expressions, the subdivision potential can also be
computed exactly.92,96 For systems containing interacting particles, thermodynamic
integration is a popular tool that has been used to compute the Helmholtz and Gibbs
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energies for slit pores82 and polymer chains.80,81 Another approach, often used in in-
vestigations of porous media, is the assumption that the energy state function can be
expressed as a sum of energy contributions that are attributed to different bulk phases,
surfaces and lines in the porous media.93–95,97

There have been efforts to connect the properties Hill’s framework to mechanical
properties, such as the mechanical pressure tensor. In the derivation of Hill’s frame-
work for a grand canonical system, a new pressure, p̂, arises. The new pressure is
called the integral pressure, and differs from the differential pressure, p. The subdivi-
sion potential in the grand canonical ensemble is a function of the difference between
these two pressures

E = (p − p̂)V. (2.25)

Rauter et al.94 investigated a bulk fluid in a slit pore at mechanical equilibrium and
computed the values of p̂ from the sum of a pressure contribution from the bulk fluid
and a contribution proportional to the fluid-solid surface energy. For this description
of the system, the authors showed analytically that p̂ equals the average tangential
pressure, while p equals the average of the trace of the mechanical pressure tensor.
Numerical investigations of fluid flow through a porous matrix have also resulted in
the same conclusion.97 However, the analytical analysis for the porous matrix has so
far been inconclusive.

2.3 Which computational tools and techniques can be applied
to study small systems?

In Sec. 2.1 we have seen that properties of small systems deviate from those of large
systems, and in Sec. 2.2 we have seen that it is possible to obtain a meaningful thermo-
dynamic description of these properties. In this section, we will discuss the computa-
tion of thermodynamic properties of small system. We present examples of identities
that are normally applied to systems in the macroscopic limit, which are not accu-
rate for small systems. We also discuss some computational and analytical tools that
can be trusted to provide accurate predictions of properties for small systems. The
discussion presented here is not a complete list of methods that can be utilized for
computation of properties of small systems. It is intended as suggestions to what one
should consider when evaluating whether a method is appropriate for investigations
of small systems.

Some ingrained definitions and relations from statistical mechanics have been de-
rived for the purpose of application in the macroscopic limit. They can therefore in-
clude approximations based on the assumptions that N →∞, which not necessarily
are valid for systems containing a small number of particles. One example is the clas-
sical virial theorem. For a system with Hamiltonian H (x), where x is the phase space
vector while xi and x j are specific components of the phase space vector, the classical

16



virial theorem states that 〈
xi

∂H

∂x j

〉
= δi j kBT, (2.26)

where δi j is the Kronecker delta.30 Tuckerman30 derived the above relation by com-
puting the ensemble average in Eq. (2.26) in the micro canonical ensemble. In this
derivation, the partition function of the uniform ensemble appears. In the partition
function of the micro canonical ensemble, the phase space integral is performed over
the constant-energy hypersurface, while for the uniform ensemble, the phase space
integral is performed over the volume enclosed by the constant-energy hypersurface.
Tuckerman30 points out that even though this means that the uniform and micro
canonical ensembles are associated with different numbers of microstates, the differ-
ence becomes vanishingly small in the macroscopic limit. Hence, for a micro canon-
ical ensemble, the classical virial theorem presented in Eq. (2.26) is only true for sys-
tems is in the macroscopic limit. The implications of this restriction was further inves-
tigated by Uline et al.,98 who investigated the validity of the generalized equipartition
theorem for small systems. The generalized equipartition theorem represents a spe-
cific application of the classical virial theorem. They found that the expressions for the
equipartiton theorems for the canonical and micro canonical ensemble are different,
but that the expressions become equivalent in the macroscopic limit. A consequence
of the violation of the generalized equipartition theorem is that while the kinetic en-
ergy is proportional to the temperature in the canonical ensemble, this is no longer
true in the micro canonical ensemble. Violations of the generalized equipartition the-
orem have also been investigated by simulations.99,100

Approximations based on the assumption that N → ∞ are also used in the clas-
sical derivation of the bulk properties of the ideal gas. In Tuckerman’s30 derivation of
these properties, he meticulously points out every time such an approximation is used
and provides the exact expressions before presenting relations based on approxima-
tions. Ensemble in-equivalence of several system types, such as ideal gas systems,96

harmonic oscillators and two-level systems,78 has been shown to occur as a result of
avoiding assumptions about the magnitude of N .

When approximations that only apply in the macroscopic limit are avoided, sta-
tistical mechanics provides a valuable tool for investigation of small-size effects. Hill
showed that the connection between the energy state functions and the partition func-
tions remains valid in his framework.87 Methods that utilize this connection are there-
fore attractive for analyzing small systems. Examples of methods that have a firm ba-
sis in statistical mechanics are methods based on fluctuations, such as the one pre-
sented in Sec. 2.1.1. Another category of fluctuation based methods are overlapping
distribution methods, which can extract thermodynamic properties from the overlap
between probability distributions of two different systems.101–103 In the canonical en-
semble, the Helmholtz energy can be computed from the overlap of two energy distri-
butions sampled from two systems at different temperatures. In the grand canonical
ensemble, the grand potential can be computed from the overlap of two distributions
in number of particles sampled from two systems at two different chemical potentials.
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These relations remain valid for small systems when Hill’s description for the energy
state function of the small system is applied.
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3 Conclusion and perspectives

This work set out to advance our understanding of thermodynamics of small systems.
Theoretical investigations have been used in combination with molecular simulations
to gain further insight into how and why the behavior of small systems deviates from
that of large systems. Three topics have been central in these investigations: (1) how
thermodynamic properties change with system size, (2) theoretical frameworks that
can consistently describe these effects and (3) which computational tools and tech-
niques can be trusted in investigations of small systems. The results of these investi-
gations have been published in three independent articles in peer-reviewed journals.
In this chapter, we recapitulate the main conclusions of the work by explaining how
the three main topics are relevant to each article. We also suggest directions for future
work.

3.1 Application to the articles

In Article I, we tested the application of a fluctuation-based, overlapping distribution
method for extraction of thermodynamic properties of small systems. The main fo-
cus was to investigate how properties that are normally regarded as intensive in the
macroscopic limit can become size dependent in small systems. From the overlap be-
tween distributions of particle numbers from two systems at different densities, one
can extract the difference in grand potential and the difference in chemical potential
between the two systems. In Article I, we utilized this to investigated the difference
in chemical potential of sub-systems sampled from a larger simulation box contain-
ing particles interacting through the Lennard-Jones potential. The sizes of the sub-
systems ranged from three particle diameters to the size of the simulation box. The
sub-systems do not have periodic boundaries, which means that the particle fluctua-
tions are influenced by a significant contribution from the small size. Since the small-
size effects are not coupled to any specific feature of the system, a suitable thermody-
namic framework for the sub-systems is Hill’s nanothermodynamics. Hill’s framework
also ensures consistent treatment of the statistical mechanical connection that relates
the fluctuations to the thermodynamic properties of the small systems. Before apply-
ing the overlapping distribution method to the sub-systems, we tested its performance
for small, grand canonical MC systems. A system with periodic boundaries was used
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as a reference. We found that the overlapping distribution method is equally reliable
for the small and large systems investigated in Article I.

Applying the overlapping distribution to differently sized sub-systems gives access
to how the difference in chemical potential is changing with size. From this, we iden-
tified a size-scaling relation that can be utilized to extract the chemical potential dif-
ference in the macroscopic limit. Hence, the method for computation of macroscopic
chemical potential differences presented in Article I provides an alternative to meth-
ods based on insertion of particles, which are known to become inefficient at higher
densities.

In Article II, we investigated the ensemble dependence of systems with a small num-
ber of particles. The main goal was to gain insight into the mechanisms behind en-
semble in-equivalence by comparing the thermodynamic properties of open (grand
canonical) and closed (canonical) systems. We investigated cubic boxes with a surface
energy that contained ideal gases or particles interacting through interatomic poten-
tials. The properties of the ideal gases were derived analytically. By avoiding assump-
tions that are only valid in the macroscopic limit, i.e. N →∞, we identified two types
of small-size effects to the properties of the ideal gases. The first type arises from the
surfaces, edges and corners of the system, while the second type arises from avoid-
ing assumptions about the magnitude of the number of particles. The latter effect is
only present for the properties in the closed system. The nanothermodynamic frame-
work by Hill is a suitable framework for the systems investigated in Article II since it
provides tools for analyzing ensemble dependence and for description of small-size
effects that are not connected to a specific geometrical feature of the system. For the
ideal gas systems, we fond that the differential pressure is not ensemble dependent
while the chemical potential is ensemble dependent.

We utilized the insight gained from investigating the ideal gases to analyze ensem-
ble dependence of small systems containing particles interacting through the Lennard-
Jones or the Weeks-Chandler-Andersen potential. We applied MC simulations to com-
pute the pressure and the chemical potential in these systems. We found that the
ensemble dependence of the chemical potential in the systems with the interacting
particles is qualitatively described by the analytic formula derived for an ideal gas sys-
tem. However, in contrast to the predictions of the ideal gas systems, the differential
pressure is ensemble dependent in the systems with interacting particles. This shows
that while some contributions to the ensemble dependence of systems with interact-
ing particles are captured by the ideal gas model, there are also some contributions
arising from inter-particle interactions. This was further investigated by analysing the
effect of increased excluded volume per particles and increased repulsive forces on the
system walls. We found that these two modifications of the system resulted in similar
responses in the ensemble dependent properties. This indicates that the magnitude
of the difference between the properties in open and closed systems is likely to be re-
lated to the restricted movement of the particles in the system. The work presented in
Article II illustrates the usefulness of models based on statistical mechanics and how
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they can provide insight into the mechanisms behind ensemble in-equivalence.

In Article III, we presented a consistent thermodynamic framework that represents
an EoS for pure, confined fluids. We applied MD simulations to investigate systems of
a Lennard-Jones spline fluid confined by a spherical surface with a Weeks-Chandler-
Andersen wall-potential. The EoS is based on a theoretical description in which the to-
tal system is decomposed into a bulk phase in equilibrium with a surface phase. Since
the small-size effects are connected to a specific geometric feature, Gibbs’ framework
for surface excess properties provides a suitable description of the systems investi-
gated in Article III. We used an existing, accurate description of the bulk fluid, and uti-
lized Gibbs’ framework to consistently incorporate contributions from the surface. In
the low-density limit, the properties of fluids with interacting particles can be approxi-
mated by the properties of an ideal gas. In order to ensure a consistent extrapolation to
low densities, we therefore included exact analytical expressions for the surface excess
properties of a confined ideal gas in the EoS-predictions. We found that the pressure
and internal energy predicted from the EoS are nearly within the accuracy of proper-
ties obtained directly from MD simulations.

The curvature dependencies of the thermodynamic properties of the surface phase
were analysed by the use of scaling laws. This allowed us to investigate how the curva-
ture corrections depended on the choice of dividing surface. We found that the choice
of dividing surface affects the magnitude of the planar-wall contribution and the first-
order size-scaling coefficient. We also showed how the surface properties of one di-
viding surface are related to those of another dividing surface.

We refer to the framework presented in Article III as Nano-EoS. Due to its ability
to efficiently and accurately capture the effect of confinement, a possible application
of the Nano-EoS is prediction of thermodynamic properties of fluids in porous media.
We expect the Nano-EoS to facilitate development of thermodynamic models for con-
fined fluids in general, and to shed new light on yet unresolved physical phenomena
in confined systems, such as changes in dynamic behavior and phase transitions of
e.g. confined water.

3.2 Future work

In this section, we present suggestions for future work within the topics: computation
of chemical potential differences, size-scaling, choice of dividing surface and choice
of thermodynamic framework for small systems.

In Article I, we demonstrated the method for computation of chemical potential
differences for pure Lennard-Jones fluids. Application of this method to multicom-
ponent systems and molecular systems has yet to be investigated. It is also possible
to compute the partial derivative of chemical potential with respect to density from
fluctuations in the number of particles. This can give access to chemical potential
differences through numerical integration.66–68 A comparison of the overlapping dis-
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tribution method presented in Article I and the methods based on computation of the
differential chemical potentials could illuminate the merits and drawbacks of the two
methods.

In Gibbs’s framework, we usually express surface properties of non-planar surfaces
as the surface properties of a planar wall plus additional curvature corrections, line
contributions and edge contributions. In Article III, we focused on Lennard-Jones
spline particles in contact with a spherical Weeks-Chandler-Andersen wall. Conse-
quently, we only investigated higher-order corrections to the surface excess proper-
ties arising from the curvature. Including higher-order corrections from e.g. lines and
edges would make the EoS applicable to a larger variety of shapes and sizes.

For the confined fluid investigated in Article III, both the planar-wall contribution
and the higher-order corrections depend on the choice of dividing surface. Choos-
ing a dividing surface that minimizes the higher-order corrections is convenient since
surface properties of a planar wall can then be used to describe properties of highly
curved surfaces. Tools for optimizing the choice of dividing surface would therefore
be useful.

We have seen that the theoretical frameworks by Hill and Gibbs are both good can-
didates for thermodynamic descriptions of small systems. For some systems, one of
the frameworks has clear advantages over the other. For instance, Hill’s framework
provides a useful description for single macro-molecules, while Gibbs’ framework is
often chosen in systems where properties can be clearly attributed to the presence of a
surface. However, in some systems, such as porous media, the choice might not be as
obvious. A comparison of the two methods applied to the same system could provide
further insight that could lead to a more robust thermodynamic description of small
systems.
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ABSTRACT: We present a new method for computing chemical
potential differences of macroscopic systems by sampling fluctuations in
small systems. The small system method, presented by Schnell et al.
[Schnell et al., J. Phys. Chem. B, 2011, 115, 10911], is used to create
small embedded systems from molecular dynamics simulations, in which
fluctuations of the number of particles are sampled. The sampled
fluctuations represent the Boltzmann distributed probability of the
number of particles. The overlapping region of two such distributions,
sampled from two different systems, is used to compute their chemical
potential difference. Since the thermodynamics of small systems is
known to deviate from the classical thermodynamic description, the
particle distributions will deviate from the macroscopic behavior as well.
We show how this can be utilized to calculate the size dependence of
chemical potential differences and eventually extract the chemical potential difference in the thermodynamic limit. The macroscopic
chemical potential difference is determined with a relative error of 3% in systems containing particles that interact through the
truncated and shifted Lennard-Jones potential. In addition to computing chemical potential differences in the macroscopic limit
directly from molecular dynamics simulation, the new method provides insights into the size dependency that is introduced to
intensive properties in small systems.

■ INTRODUCTION

Properties available from molecular simulations (MD) can be
sorted in two categories: mechanical properties and thermal
properties.1 The difference between these comes from how
they are connected to the partition function. Mechanical
properties are related to the derivative of the partition function,
while the thermal properties are functions of the partition
function itself.1 Examples of mechanical properties are
therefore the internal energy, pressure, and heat capacity,
while examples of thermal properties are Gibbs energy,
Helmholtz energy, and chemical potential.
The mechanical properties can be expressed as averages of

functions of phase space coordinates and can therefore be
calculated directly from the simulation trajectory.2 The thermal
properties cannot be expressed as such averages. This is
because they are related to the complete volume of phase space
accessible to the system, which can normally not be sampled in
MD.3 In order to calculate thermal properties, one must resort
to other alternatives than simply analyzing the simulation
trajectory. For the Gibbs energy or Helmholtz energy, there are
options such as thermodynamic integration4−8 or umbrella
sampling,9−11 while a common method for computation of
chemical potential is Widom’s particle insertion method.2,12,13

Another route to compute chemical potentials is found in the
overlapping distribution methods (ODMs).

The term ODM can be used to describe any method that
can extract thermodynamic properties from the overlap
between probability distributions of two different systems.2

The distributions represent the Boltzmann distribution of the
fluctuating properties of the system, which are ensemble-
dependent. In the canonical ensemble, where the number of
particles, volume, and temperature are constant, the energy will
fluctuate. In the isobaric−isothermal ensemble, where the
number of particles, pressure, and temperature are fixed, there
will be fluctuations in volume and energy. Grand canonical
systems, with constant chemical potential, volume, and
temperature will have fluctuations in energy and in the
number of particles. Naturally, the properties available from
the distributions will depend on the ensemble used in the
simulation.
For canonical systems, the Helmholtz energy difference is

accessible from the overlapping region of two energy
distributions. One version of the ODM that utilizes this is
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the acceptance ratio method presented by Bennett,14 who
presented strategies for estimating the difference in Helmholtz
energy between two canonical systems. Shirts et al.15 later
showed that it was possible to derive the same expressions
from maximum likelihood arguments. Frenkel and Smit2 also
illustrated how the method can be used to calculate excess
chemical potentials. This is achieved by considering two
canonical systems where the first contains N particles, and the
second contains N − 1 particles and one ideal gas particle. The
Helmholtz energy difference between these systems corre-
sponds to the change in Helmholtz energy in the first system
when one of its N particles is transformed to an ideal gas
particle. Hence, applying the ODM to the energy distributions
in these two systems returns the excess chemical potential of
the first system.
Even though the most frequent use of the method is

calculations of properties in the canonical ensemble,16,17 it is
not restricted to this. Bennett14 showed that it is possible to
develop analogous expressions for other ensembles. Recently,
Shirts18 introduced yet another convenient aspect of the
overlapping distributions by using them to determine whether
the desired thermodynamic ensemble is properly sampled in
the simulations. This ensemble consistency test can be applied
to molecular dynamics as well as Monte Carlo (MC)
simulations,19,20 and it can be used to evaluate simulations
performed in the canonical ensemble, isobaric−isothermal
ensemble, grand canonical ensemble, or the microcanonical
ensemble.
Whether the objective is to use the distributions to calculate

thermal properties or to test for ensemble consistency, the
starting point is the same: the statistical mechanical connection
that exists for every ensemble between its corresponding
energy state function and the partition function.
In this work, we will show how the ODM can be used to

extract the chemical potential difference of two small grand
canonical systems, directly from two MD simulations at
different densities. These small systems are generated by
placing subsystems at random locations inside the total
simulation boxes. The total simulation box can be canonical,
microcanonical, or isobaric−isothermal and works as a grand
canonical reservoir for the small embedded systems. Hence,
fluctuations in the number of particles that arise in the
subsystems will not depend on the ensemble of the MD
simulation box. These fluctuations represent the Boltzmann
distributions of the number of particles in small grand
canonical systems. The chemical potential difference between
two embedded systems is then available from the overlapping
region of two such distributions.
It is also possible to utilize the chemical potential differences

in the subsystems to obtain the chemical potential difference
for the total simulation boxes, that is, in the macroscopic limit.
When investigating these distributions, one must keep in mind
that they are calculated in small nonperiodic systems, which
means that their thermodynamic properties will deviate from
the classical macroscopic behavior. We will therefore use the
thermodynamics for small systems developed by Hill.21,22

Combined with the proper scaling laws, we are able to obtain
the chemical potential difference in the thermodynamic limit.
The idea of using finite-size scaling analysis to obtain

thermodynamic properties was explored already in the eighties
by Binder’s block analysis method.23 In his work, Binder
investigated how the probability distributions of the Ising
lattice model depend on system size, which in turn was utilized

to calculate the magnetic susceptibility in the thermodynamic
limit.23,24 Binder also extracted values of root-mean-square
magnetization and internal energy and explored the possibility
of identifying the critical temperature and the critical
exponents. This application was later investigated for the
two-dimensional Lennard-Jones (LJ) system for both one- and
two-phase systems.25−27

The method used to create the subsystems in this work is
known as the small system method (SSM), developed by
Schnell et al.,28 and it differs from Binder’s block analysis
method in the way the subsystems are created. Binder’s blocks
are created as cubic sections in a grid superimposed on the
simulation box, while the SSM creates subsystems by placing
them at random locations inside the simulation box. One
consequence of this difference is that the shape of the
subsystems is not restricted to being cubic.29

Binder focused largely on critical phenomena and the
method’s ability to extract properties in the critical point.
Lately, finite-size analysis of subsystems has received more
intention in the application to one-phase systems, further from
the critical point. It has been used to calculate enthalpies and
the thermodynamic factor,28 partial molar properties,30 and the
isothermal compressibility.29 For multicomponent systems, the
calculation of Kirkwood−Buff integrals31 has received much
attention due to the connection these integrals have to a
number of thermodynamic properties.32−38 One of the
properties available through the Kirkwood−Buff integrals is
the differential chemical potential, which upon numerical
integration can provide insights on how chemical potential
change with the density of the system.34,35 For one-component
systems, this can be achieved by investigating the isothermal
compressibility.37,38 The method we propose in this work does
not rely on numerical integration since the chemical potential
difference is directly available from the two simulations.
To the best of our knowledge, this is the first time an ODM

has been used to extract the properties for small systems. We
therefore investigate how well it performs for small grand
canonical systems with a MC approach before applying it to
the systems generated by the SSM.
For macroscopic systems, the chemical potential is known as

an intensive property, meaning that it does not depend on the
system size. The newly presented method gives insights on
how the chemical potential deviates from this intensive
behavior when the system becomes small enough. For
calculation of chemical potential differences in macroscopic
systems, the method will be particularly useful at high
densities, where moves that include insertion and deletion of
particles become very inefficient.1,2,39−41 Chemical potentials
calculated in finite periodic systems are also known to be rather
strongly dependent on size.13,42,43 This problem is avoided in
the method presented here since the macroscopic chemical
potential differences are not calculated directly but instead
extrapolated to the thermodynamic limit by the use of scaling
laws.

■ THEORY
In the following sections, we present the theoretical back-
ground needed for computation of chemical potential
differences from fluctuations in small grand canonical systems.
The treatment of the thermodynamics of small systems is
based on the formalism introduced by Hill.21 We will explain
how it can be used in combination with scaling laws to obtain
properties in the thermodynamic limit. We also explain how
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the SSM can be used to extract fluctuation in small systems
from molecular dynamics simulations. Lastly, we show how the
distributions corresponding to these fluctuations can be used
to calculate chemical potential differences.
Thermodynamics for Small Systems. The main differ-

ence between small systems and macroscopic systems is usually
the surface area-to-volume ratio. Since this ratio is much larger
for small systems, the effects of the surface become significant,
and the thermodynamic properties can no longer be directly
compared to those of macroscopic systems.21 This becomes
clear by studying the system’s extensive properties, which for
small systems will not be proportional to the volume, but
higher-order functions of size and shape. The smallness also
introduces a size dependence in the system’s intensive
properties, which is not present for macroscopic systems. As
a result, macroscopic thermodynamic equations cannot be
used to describe the properties in small systems.21,22

The formalism developed by Hill21 provides modified
versions of the macroscopic thermodynamic equations that
can be applied to small systems. In this derivation, Hill21

considered a collection of small systems that are all
equivalent, distinguishable, and independent. The ensemble
they make up together can therefore be considered macro-
scopic, and its differential energy can be expressed as

U T S p V Nd d d d d
i

n

i i
1

∑ μ= − + +
= (1)

where U is the system’s energy, T is the temperature, S is the
entropy, p is the pressure, V is the system’s volume, μi is the
chemical potential of component i, and Ni is the number of
particles of component i in the system. The property is
called the subdivision potential and is represented by different
functions for different ensembles. In the grand canonical
ensemble, it is given by p p V( )GC = − ̂ . The property p̂ is
known as the integral pressure, which is related to the
differential pressure p through the following equation
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The second term in the above equation is only of significant
magnitude when the system is small, which means that in the
thermodynamic limit, p̂(μ,V,T) = p(μ,V,T).
The two pressures are connected to different types of

mechanical work that arise from volume change of the total
ensemble, but the mechanisms behind these are not equal. The
differential pressure, p, is the one associated with the pressure
of a macroscopic system. The volume change mechanism
connected to p must therefore be equal to that of a
macroscopic system. This volume change is defined as the
change in total volume when changing the volume of all the
small system replicas. This represents the work done on the
surroundings by the volume change and will be the same
whether the systems in the ensemble are small or macroscopic.
The work connected to the integral pressure, p̂, however, is
unique for small systems. In this volume change, the volumes
of the small systems are kept constant, while the volume of the
total system is changed by adding one replica to the ensemble
of small systems. This is done while keeping the entropy and

number of particles in the total collection of small systems
constant, which means that these properties must be
redistributed over all the small systems, including the added
replica.
This explains the significance of the different terms in eq 2,

but in order to understand its origin, we must look to the
connection between the partition function and the energy state
function of the system. For a system in the grand canonical
ensemble, this is equal to the contribution to the internal
energy from the pressure−volume term. In small grand
canonical systems, Hill21 showed that this relation becomes

p V T V k T V T( , , ) ln ( , , )Bμ μ̂ = Ξ (3)

where kB represents the Boltzmann constant and Ξ is the grand
canonical partition function. The small system version of the
familiar equations for the entropy, pressure, and number of
particles in a grand canonical ensemble is
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where the brackets denote average values.
Size- and Shape-Dependent Properties. When investigat-

ing properties of small systems, it is convenient to use another
aspect introduced by Hill.21 He argued that a property’s small
size contribution can be treated as an excess property, meaning
that all dependent properties of a system can be split into a
macroscopic contribution and the contribution from finite-size
effects. A general property, A, can therefore be expressed as

A A Asmall= +∞ (5)

where A∞ is the macroscopic contribution and Asmall is the
finite-size contribution to A. In the thermodynamic limit, Asmall

becomes vanishingly small compared to A∞. Consequently, for
macroscopic systems, the property A can be regarded as
represented by A∞ only, and macroscopic thermodynamics is
applicable. For small systems, Asmall becomes significant, which
makes A depend on the system’s size and shape, and the
macroscopic thermodynamic equations are no longer directly
applicable.
In Hill’s21 treatment of small systems, only the dependent

properties of the system have a finite-size contribution. These
are the properties that are not fixed by the system’s ensemble.
For a grand canonical system, these are given in eq 4 and can
be expressed as

S V T S V T S V T

p V T p V T p V T

N V T N V T N V T
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∞

∞

∞

(6)

A theorem presented by Hadwiger44 provides more insights
into the meaning of the different terms in the above equations.
According to this theorem, any functional of a system that is
translationally invariant, additive, and continuous can be
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written as a sum of four contributions, where one is a constant
and the other three are proportional to V, V2/3, and V1/3,
respectively.45 The property A can therefore be written as

A V Va V a V a a( ) 2/3 s 1/3 e cα β γ= + + +∞ (7)

where α, β, and γ are geometric factors that depend on the
shape of the system. In the first term, a∞ can be understood as
the density of A in the thermodynamic limit A∞ = Va∞, which
means that the remaining terms represent Asmall. Equations
showing the same size and shape dependence have been
derived independently and shown to apply to fluids of hard
disks,46 LJ particles,47 and Weeks−Chandler−Anderson
particles.48

Hadwiger’s theorem can only be used if A is extensive, but it
is possible to define an alternative equation that applies to
intensive properties by dividing eq 7 by the volume

a V
A V
V

a
L
a

L
a

L
a( )

( ) s
2

e
3

cα β γ= = + + +∞
(8)

where we have defined the characteristic length L = V1/3.
Small System Method. For both macroscopic systems

and systems with finite-size effects, knowledge about the
fluctuations in energy and number of particles can give access
to a large number of thermodynamic properties. The
accessibility of these fluctuations depends on the simulation
method. Systems with a fluctuating number of particles can
normally not be created with MD simulations. In order to
simulate grand canonical systems, one can resort to MC
simulations, but these are computationally expensive, especially
for systems at higher particle densities. The SSM developed by
Schnell et al.28 offers an alternative way of creating systems
with a fluctuating number of particles. In this approach, the
grand canonical systems are not simulated directly but instead
created by sampling subvolumes from a larger reservoir. The
reservoir is typically a large simulation box, which can be
simulated using MD or MC. An ensemble average of such a
subsampled system is created by placing control volumes of
equal size at different locations inside the simulation box.
Some thermodynamic properties have a direct connection to

the fluctuations in the number of particles. The origin of these
connections is the identity of the second moments of the
probability distribution of a grand canonical ensemble
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(9)

These second moments are in turn connected to
thermodynamic quantities such as the thermodynamic factor,
the isothermal compressibility, the partial enthalpy, and the
partial internal energy.49 The fluctuations sampled from the
subsystem can therefore provide access to a variety of
thermodynamic properties. However, it must be kept in
mind that the subsampled system cannot be regarded as a
representation of the bulk due to the nature of its boundaries.
The subsampled system is nonperiodic, which means that it
will be affected by a significant contribution from the surface.
Since the subsystem represents a small system, its statistics will
be different from that of an equivalent system with periodic
boundaries. Its thermodynamic properties and the connections
between them must therefore be treated with the formalism
developed by Hill.21

Since the subsystems are created from control volumes
inside a reservoir, we can create systems for a range of different

sizes, as illustrated in Figure 1. By systematically changing the
size of the subsystem, one can evaluate how its properties

change with system size. Combined with the equations
provided by Hadwiger,44 the different contributions from the
different parts of the system’s geometry can be identified (see
eq 7). The most popular feature of this method has been its
ability to extract the macroscopic contribution, meaning the
value of a∞.28−30,32,48 If the main purpose is to extrapolate the
values calculated for the subsystems to the thermodynamic
limit, the term corresponding to the contribution from the
surface usually provides a sufficient description of the size
dependency. As a first approximation, eq 8 can therefore be
written as

a V a
V
a( ) s= + Ω∞

(10)

where we have used that α/L = Ω/V when Ω is the surface of
the system. This expression is particularly useful because it is a
straight line if a(V) is plotted as a function of the surface area-
to-volume ratio of the system it was calculated in. The
intersection is then equal to the macroscopic contribution.
When using scaling laws to describe size dependence of

thermodynamic properties, it is first important to understand
which properties will change with size and how this is affected
by the type of the system. One important factor to consider for
the subsampled systems in the SSM is that they all have the
same average particle density. Equation 6 shows that small
grand canonical systems will have a finite-size contribution in
the number of particles and therefore also to the particle
density. However, if this contribution is nonzero in the
subsampled systems, it will not appear in their calculated
densities. This is because the sampling approach forces the
average density of each subvolume to be equal to the reservoir
density. In the following, we will explain that if such a size
dependency does exist, it will appear in the values of the
chemical potentials of the subsystems.
It is important to point out that even though all subsampled

systems of different sizes have the same particle density, each
individual subsampled system does not have a constant

Figure 1. Particle fluctuations are calculated in spherical subsystems
inside the total simulation box. The size of the subsystem is gradually
increased in order to calculate how the fluctuations change when the
size of the system changes.
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density. The subsampled systems can exchange particles and
energy with the surroundings, and they maintain a constant
chemical potential due to their connection to the particle
reservoir represented by the simulation box. However, the
chemical potential does not necessarily remain fixed when the
size of the subsystem is changed.
This can be illustrated by considering a general case. We

consider two small grand canonical systems with equal average
particle density, n, and temperature, but different volumes

n n T T V V, ,1 2 1 2 1 2⟨ ⟩ = ⟨ ⟩ = ≠ (11)

Since the systems are grand canonical, their densities can
according to eq 5 be written as a sum of the macroscopic
contribution and a contribution from the small size

n n n n1 1
small

2 2
small+ = +∞ ∞

(12)

From eq 8, we see that nsmall should depend on the system
size. Since the two systems considered here have different sizes,
their small size contribution are likely to differ, giving n1

small ≠
n2
small. According to eq 12, the macroscopic contribution in the
two systems will not be equal either, giving n1

∞ ≠ n2
∞.

The macroscopic particle densities, n∞, do not depend on
size, but they depend on the chemical potential and
temperature. Since the temperature is the same in the two
systems, a difference in n∞ must arise from a difference in
chemical potential. This means that since n1

∞ and n2
∞ are

different, the two differently sized systems considered here
must also have different chemical potentials, that is, μ1 ≠ μ2.
Equation 12 is therefore more correctly expressed as
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This shows that keeping the particle density equal in all the
differently sized subvolumes imposes a difference in their
chemical potentials.
ODMs for Small Systems. We will now show how

combining fluctuations calculated from two independent
systems can be used to extract thermodynamic properties.
The fluctuations in the number of particles represent the

Boltzmann distributed probability of finding a certain number
of particles in the system. In a grand canonical system, this is
given by

P N V T
Q N V T N

V T
( , , )

( , , )exp( )
( , , )

μ
βμ

μ
| = Ξ (14)

where β = 1/kBT and Q represents the canonical partition
function.
This distribution is unique for a given set of chemical

potential, volume, and temperature. This means that if one of
these is changed, the total distribution will change. This feature
is utilized by a number of different methods, which all can be
placed in the category of ODMs.2,14−18 Common for all of
these is that they extract thermodynamic properties from the
overlapping region of two distributions sampled from two
different states. In this region, the ratio of the two probability
distributions gives access to thermodynamic properties
through the connection between their respective partition
functions and their corresponding energy state function.
Following the procedure of Shirts,18 we derive an expression

for the ratio of two probability distributions of the number of
particles, corresponding to two different grand canonical

systems. Moving forward, it must be kept in mind that the
goal is to derive a method that can be applied to small systems.
This means that we must use equations that take the small
system effects into account. Hill’s21 equations are convenient
because they are valid for small systems and for macroscopic
systems. This formalism does not require a separate set of
equations in the treatment of small systems since all of Hill’s
equations reduce to the corresponding macroscopic identities
when the systems become large enough.
Starting from eq 14, we see that Q is a function of N but not

of μ. This means that it is possible to perform two simulations
at different chemical potentials but otherwise identical
parameters (meaning T and V) and calculate the ratio of
their probability distributions as
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where the canonical partition function cancels because it has
no direct dependence on μ. Taking the natural logarithm of
this equation and inserting eq 3 gives

P N V T
P N V T

pV Nln
( , , )

( , , )
2

1

μ
μ

β β μ
|
| = − Δ ̂ + Δ

(16)

This expression is in the form of a straight line, α0 + α1N, if
the logarithm of the ratio of the probability distributions is
plotted as a function of the number of particles. The values of
Δμ = μ2 − μ1 and Δp̂ = p̂2 − p̂1 are then readily available since
the slope of this line is α1 = βΔμ, while the intersection with
the y-axis represents α0 = −βΔp̂V.
The calculation of the distributions is straightforward since

the only required information is the number of particles in the
systems throughout the simulations. The probabilities can also
easily be visualized by binning the particle numbers in
histograms. One can even calculate the ratio of the probability
distributions directly from the histograms in order to visually
inspect that it forms a straight line. Another alternative which
is more robust is to use the maximum likelihood approach.15

Using this method, the slope can be found from the maximum
likelihood expressions for the ratio of the probability
distributions. For the grand canonical ensemble, the maximum
likelihood expression becomes

L f N

f N
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∑

∑

α α α

α α
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+ +
=
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where f(x) is the Fermi function f(x) = [1 − exp(−x)]−1. The
expression only has one maximum, which means that it will
always converge, and it can be solved by any standard
technique for multidimensional optimization.18

The equations presented above can be used to calculate the
difference in pressure and chemical potential for two grand
canonical systems with different chemical potentials but
identical volume and temperature. The subsystems generated
by the SSM are examples of such systems. It is possible to
investigate the size dependence of Δμ and Δp̂by sampling
subsystems over the same size range in two reservoirs at
different chemical potentials. In addition, eq 10 can be used to

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://dx.doi.org/10.1021/acs.jcim.0c01367
J. Chem. Inf. Model. 2021, 61, 840−855

844



identify the values in the macroscopic limit as Δp̂∞ = Δp∞ and
Δμ∞.

■ SIMULATION DETAILS
All systems considered in this work consist of LJ particles that
interact via the truncated and shifted potential, with the cutoff
radius at 2.5. Unless otherwise specified, all values are
presented in reduced units. The critical point of the truncated
and shifted LJ system is at T = 1.086, p = 0.101, and ρ =
0.319.50 In all simulations, a temperature of T = 1.5 is used.
Four types of systems are investigated:

1. Small grand canonical system with nonperiodic, hard
walls. This is simulated using an in-house MC code.

2. Small grand canonical systems with nonperiodic walls,
interacting with the particles according to the LJ
potential. This is simulated using and in-house MC
code.

3. Grand canonical systems with periodic boundary
conditions (PBCs). This is simulated using and in-
house MC code.

4. Small subsampled systems generated from a large
reservoir simulated using the MD code LAMMPS.51

The first three system types are used to investigate how well
the ODM performs for small systems, compared to systems
with periodic boundaries. For these simulations, we use an in-
house MC code, with input chemical potentials μ = 0.33, μ =
0.73, and μ = 1.2. For systems of type 3, periodic boundaries
are used to remove finite-size effects in order to obtain the
system’s bulk properties. For the small systems, type 1 and type
2, the boundaries are treated in a way that introduces a
significant contribution from finite-size effects. This is achieved
by two different approaches. Systems of type 1 have hard walls,
which means that there is no explicit interaction between the
particles and the wall, but MC moves that attempt to move a
particle outside the simulation box are rejected. Systems of
type 2 have a LJ potential with a cutoff distance equal to 1 on
the boundaries. This means that any particle within a distance
rc
wall = 1 from one of the boundaries interacts with the wall
according to the LJ potential. All grand canonical MC systems

are cubic, and five different sizes are considered for the small
systems, L = 5, L = 6, L = 7, L = 8, and L = 9, while the
periodic system has a size of L = 9.
The fourth system type is used in the combination of the

SSM and ODM to calculate how the chemical potential
difference changes with the system size. The SSM reservoirs
are created from molecular dynamics simulations in the NVT
ensemble using the open source code LAMMPS.51 The
system’s configuration is stored from the trajectory every 50
time steps from a simulation with a total of one million time
steps. For each configuration, 100 randomly positioned points
are used to position the center of the small subsystems, giving a
total of 2 × 106 samples for each small system volume.
The subvolumes investigated are either spherical or cubic

and centered at randomly chosen points, pc = (xc, yc, zc). All
particles with position pp = (xp, yp, zp) satisfying (xp − xc)

2 +
(yp − yc)

2 + (zp − zc)
2 ≤ R2 are placed inside the sphere of

radius R. For the cubic system, the conditions of the particles’
position become (xp − xc) ≤ L/2, (yp − yc) ≤ L/2, and (zp −
zc) ≤ L/2. All particles satisfying these three conditions are
placed inside the cubic small system of box length L. We
investigate 200 differently sized small systems with sizes
increasing linearly with the reciprocal radius or reciprocal box
length.
One of the conditions for the SSM to work properly is that

the investigated state is sufficiently far from the critical point.
This is because fluctuations become very long ranging close to
the critical point and can therefore not be used to calculate
properties accurately.52 The simulations are therefore carried
out at a temperature of T = 1.5.
A second condition for the SSM to give reliable results is

that the differently sized subvolumes display a definitive linear
region as a function of inverse system size. This means that the
simulation box used as the reservoir must be large enough to
sample systems in this region. We therefore use cubic
simulation boxes containing 27,000 particles at three different
number densities, ρ = 0.70, ρ = 0.72, and ρ = 0.74. For these
three densities, the macroscopic chemical potential is
calculated with the Widom12 particle insertion method using

Figure 2. Chemical potential difference calculated from the ODM relative to the input value for different system sizes. Ω/V corresponds to the
surface area-to-volume ratio. The input value of Δμ is represented by the dashed line, while the symbols show the results from the ODM. The
circles represent systems with LJ potential on the boundaries, while the triangles represent systems enclosed by a hard wall. The squares represent
PBCs, which gives the value in the macroscopic limit. (a,b) corresponds to the input Δμ = 0.397, while (c,d) corresponds to Δμ = 0.841. All error
bars denote two standard deviations.
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an in-house MC code and cross-checked with the TREND
equation of state (EOS) provided by Thol et al.50

■ RESULTS

The purpose of the first section of the results is to investigate
the performance of the ODM in small systems compared to
how well it performs in a periodic system. Two small grand
canonical systems with the same size and temperature but
different chemical potentials will have different size effects. We
shall investigate whether this will influence the results from the
ODM. This section also elaborates on how the density should
be calculated in small systems.
The second section contains a description on how the SSM

is combined with the ODM to compute the size dependence of
chemical potential differences. This includes a guide on how to
choose the sizes of the subsampled systems in order to achieve
an accurate extrapolation to the thermodynamic limit.
ODM for Grand Canonical MC Systems. In order to

evaluate how well the combination of the SSM and ODM

works, we must first evaluate how well the ODM works for
small and large systems. This is performed by using the ODM
to calculate the chemical potential difference in different types
of grand canonical MC systems. The difference between the
system types is determined by the way its boundaries are
treated. The values of Δμ are calculated by using the maximum
likelihood version of the ODM, meaning that eq 17 is applied
to the particle numbers calculated from two simulations of
grand canonical MC systems. Since μ is one of the input values
of a grand canonical MC simulation, the true value of Δμ
corresponds to the difference between these two input values.
From the three absolute values of μ, two values of Δμ are

calculated: between the two states with the lowest values of μ
and between the lowest and the highest values of μ. The
standard deviations are computed from 500 bootstrap samples
of the total data set. Figure 2 shows the results from applying
the ODM to the system with PBC and to the two types of
small systems. Figure 2a,b corresponds to Δμ = 0.397, while
Figure 2c,d corresponds to Δμ = 0.841. The results are shown

Figure 3. (a) shows how the density in a system enclosed by a hard wall changes with the surface-to-volume ratio when the chemical potential and
temperature is kept constant. The triangles represent the hard wall systems, while the squares represent PBCs, which gives the value in the
macroscopic limit. (b) shows distributions in density for the largest system, L = 9, while (c) shows the one for the smallest system, L = 5.

Figure 4. (a) shows how the density in a system enclosed by a wall with a LJ potential changes with the surface-to-volume ratio when the chemical
potential and temperature are kept constant. The circles represent the LJ wall systems, while the squares represent PBCs, which gives the value in
the macroscopic limit. (b) shows distributions in density for the largest system, L = 9, while (c) shows the one for the smallest system, L = 5.
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as a function of the surface area-to-volume ratio, which is
proportional to the inverse system size. This means that the
largest systems are found to the left in the figures. The results
from the periodic systems represent the macroscopic values
and are therefore placed at Ω/V = 0. The PBC values are only
shown in Figure 2a,c since Δμ in both the hard wall system
and the LJ wall system approaches the same value in the
macroscopic limit.
The values of Δμ calculated from the ODM show no size

dependence for any of the systems considered, and the relative
error is below 2% for all systems.
A common criterion for evaluating the accuracy of a method

is that its mean value should be within two standard deviations
of the true value. Nearly all of the mean values are less than
two standard deviations from the true input value; the only
exception is the smallest LJ wall system for Δμ = 0.841 (Figure
2d). Since this evaluation is very much dependent on the
magnitude of the standard deviations, we investigate the origin
of their varying magnitudes.
In the following, we shall see that the magnitude of the

standard deviations can mainly be attributed to the choice of
the two states investigated. Shirts18 pointed out that if the
states are far apart, the overlapping region will be small and
there will be too few sampled data points, while if the states are
too close, the same distribution is essentially sampled from
both systems.
The distance between two sampled distributions is

determined by the system’s particle densities, which can be
size-dependent. The consequence is that this distance for small
systems is likely to differ from that of the macroscopic systems.
The actual width of the distributions is also likely to change
with both size and density. At high densities (ρ ≈ 0.7), small
systems usually have larger relative fluctuations than their
corresponding macroscopic system.28,32,48

Figures 3 and 4 show that both these effects are present for
both types of small systems considered here. Figures 3a and 4a
show that the density is size-dependent and that the size
dependence varies with the value of μ since higher values of μ
give steeper slopes. The result is that the distance between the
distributions increases when the systems become smaller. The
width of the distributions also changes with the system size.
Figures 3b and 4b show the density distributions for the largest
systems considered, with a size of L = 9. Figures 3c and 4c
show the density distributions for the smallest systems
considered, with a size of L = 5. Both types of small systems
show wider distributions for smaller systems.
The fact that both the mean value of the densities and the

width of the distributions change with size can explain the
variation in magnitude of the standard deviations seen in
Figure 2. The largest hard wall system shown in Figure 2c is
taken as an example. The distributions corresponding to this
system are shown in Figure 3b, where the curves correspond-
ing to the highest and lowest values of μ have almost no
overlap. This means that there is very little data to calculate Δμ
from, which gives this value of Δμ the largest standard
deviation in Figure 2c. When the system becomes smaller, as
shown in Figure 3c, the distance between the peaks becomes
larger, but at the same time, the distributions become wider.
This increases the overlap, which reduces the magnitude of the
standard deviations.
We conclude that different factors contribute to the

magnitude of the standard deviations in different ways and
sometimes cancel. Fortunately, the same factors have no

significant effect on the mean values since they all have a
relative error below 2%. For the systems considered here, the
values of Δμ calculated from the ODM are equally reliable for
systems with finite-size effects and for systems with periodic
boundaries.

Calculation of the Density in Small Systems with a Wall
Potential. When calculating properties that include the
system’s volume, it is common to use the full volume of the
simulation box. For a system with periodic boundaries, this is
unproblematic. However, if the system is small and has a wall
potential, this choice might introduce errors. The reason for
this is that the simulation volume is not always equal to the
volume available to the center of masses of the particles. This
effect has been discussed in a paper by Reiss and Reguera,53

where they investigate how neglecting the difference between
these volumes can lead to errors in pressures calculated by the
virial.
They present results from a simple system consisting of hard

spheres with radius ξ inside a spherical simulation volume. The
particles interact with the wall such that the center of mass of
each particle will never be closer to the wall than a distance
equal to the particles’ radius ξ. As a result, the movement of
the particles is restricted to a smaller volume than the total
simulation volume. Since the virial refers to the volume
available to the center of masses of the particles, it results in
incorrectly computed pressures when the total simulation
volume is used.
The same principles apply when the density of a system is

calculated. To get a proper representation of the density
experienced by the particles, the volume available to their
center of masses should be used. For the hard wall system
considered in this work, no correction is needed since the
particles do not actually interact with the wall. The particles are
allowed to move around in the total simulation volume, but
every MC move that attempts to move the center of mass of a
particle outside the simulation box is rejected.
For the systems with the LJ wall, however, such a correction

must be incorporated. For the case considered by Reiss and
Reguera,53 finding the volume available to the particles’ center
of mass is a trivial task. The radius of the spherical simulation
box is simply reduced by ξ. The equivalent distance in the
system considered here is the collision radius σwall‑particle

between the LJ particles and the LJ wall. This distance is not
as rigid as the radius of a hard sphere, but it still gives an
indicator of the density experienced by the particles. The
densities presented in Figure 4a are therefore calculated by
using the corrected box length Lcorr = L − 2σwall‑particle. They are
still plotted as a function of the size of the total simulation box
volume, meaning that Ω/V is calculated from the noncorrected
L. Since the effect a system’s wall potential has on its properties
is not the main topic of this work, the density calculations will
not be discussed further.

Combining the ODM and SSM. When choosing which
system sizes to investigate with the SSM, the most important
criterion is that the fluctuations in the subvolumes must
represent grand canonical fluctuations. For certain subvolume
sizes, this criterion has previously been confirmed by
comparing the fluctuations sampled in a closed simulation
box to ones computed in subvolumes in true grand canonical
reservoirs.47,48 In this region, the properties must display a
clear linear behavior as a function of inverse system size. This
means that the total simulation box must be large enough to
act as a grand canonical reservoir for the relevant system sizes.
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Knowing exactly when the reservoir is large enough is not
always a trivial task since this can vary for different types of
systems. After calculating the properties, it can also be
challenging to identify the linear region. Before evaluating
the results of the SSM combined with the ODM, we will
therefore present a few tools that can be used to identify the
linear region for properties calculated from fluctuations in
systems sampled using the SSM. All reported relative errors in
the following sections are calculated with respect to the Thol et
al.50 EOS, unless otherwise specified.
How to Identify the Linear Region. Properties in the SSM

are calculated from the fluctuations in the number of particles
and sometimes also fluctuations in energy.30 In this work, we
will only consider properties calculated from fluctuations in the
number of particles.
When the particle fluctuations are affected by size, the

properties calculated from these fluctuations share that size
dependence. This means that if it is possible to identify the
system sizes that display a linear region for the particle
fluctuations, other properties are expected to behave linearly
within the same region. The fluctuation in the number of
particles is represented by the property

N N
V V

2 2
sν ν ν= ⟨ ⟩ − ⟨ ⟩ = + Ω∞

(18)

This scaling law only describes small size contributions
proportional to the surface area. This means that size effects
originating from other parts of the system’s geometry, such as
curvature, edges, and corners, are not described. System sizes
that have a significant contribution from one of these small size
effects should therefore not be included in the extrapolation.
In the other end of the size scale, the fluctuations in the

largest subvolumes will be affected by the limited size of the
reservoir. A density change in a small subsystem cannot
happen without a corresponding density change in the
reservoir.29 This means that as long as the reservoir is closed,
it will not act as a proper grand canonical reservoir for the
largest subvolumes.46−48

In order to identify the linear region, two questions must be
answered: (1) What is the smallest volume that is not affected
by other finite-size effects than surface area? (2) What is the

largest volume that is not affected by the finite size of the
reservoir? All volumes in between these limits should be used
for extrapolation in combination with scaling laws such as eq
10.
Now, we will show how these questions can be answered for

the particle fluctuations calculated in subsystems embedded in
simulation boxes at the three different densities considered
here ρ = 0.70, ρ = 0.72, and ρ = 0.74. Figure 5 shows the
property ν, given by eq 18, as a function of the surface-to-
volume ratio.
In order to answer the first of the two questions introduced

above, one must look for signs that other finite-size effects than
those proportional to the surface area are present.
In Figure 5, the smallest volumes are found at the right side

at the highest values of Ω/V. In this region, we observe that the
fluctuations display a wavy behavior, which indicates the
influence by higher-order terms,48 as shown in eq 8. Exactly
where the wavy region begins depends on the density of the
system. This is because higher densities normally cause larger
size effects due to a larger number of the particles closer to the
surface.46

When the aim is to combine the fluctuations in the ODM, a
common limit for the linear region should be chosen for the
three densities, and it should be based on the behavior of the
system with the highest density since this is most influenced by
the higher-order terms. The wavy region for the highest
density disappears around Ω/V = 1.0 for both spherical and
cubic subvolumes, which means that subvolumes with a size
corresponding to values of Ω/V > 1.0 should not be included
in the extrapolation.
The other end of the linear region, representing the largest

subvolumes, can sometimes be more challenging to determine
visually. This is because the impact of the closed reservoir is
gradually introduced as the systems become larger. Figure 5
shows that the values of the fluctuations all approach zero in
this limit because the reservoir is not able to create large
enough fluctuations. Visual inspection alone does not give a
clear answer to which value of Ω/V the fluctuations start to
approach zero. However, it seems to appear at smaller volumes
for the system with the lowest density since the fluctuations are

Figure 5. How the value of ν given by eq 18 changes with the surface-to-volume ratio of the subsystem it was calculated in. For the three different
curves, the density is constant, equal to that of the reservoir. (a) shows the fluctuations calculated in spherical subvolumes, while (b) shows the
fluctuations calculated in cubic subvolumes.
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larger here, which might be more challenging for the closed
simulation box to satisfy.
Since this limit behaves differently for different types of

systems and is less apparent than the wavy region, it is helpful
to take advantage of some extra tools to identify it. Some
general guidelines for identifying this limit have previously
been proposed by Cortes-Huerto et al.35 and Rovere et al.27

These limits are based on the size of the subvolumes relative to
the volume of the simulation box, V0, and correspond to (V/
V0)

1/3 = 0.3 and (V/V0)
1/3 = 0.25, respectively. The most

conservative subvolume sizes identified by these suggested
limits are based on the system with the highest density (ρ =
0.74) since this is the one with the smallest simulation box. For
spherical subvolumes, the above limits translate to Ω/V ≈ 0.49
and Ω/V ≈ 0.58, and for cubic subvolumes, they correspond to
Ω/V ≈ 0.60 and Ω/V ≈ 0.72.
We note that these generalized guidelines do not properly

represent the situation investigated here since they allow for
larger subvolumes when the simulation box is larger. As
explained above, Figure 5 shows that the fluctuations in the
largest simulation box are the ones most affected by its finite
size. In addition, the suggested limits are based on the behavior
of fluctuations in cubic subvolumes. Since it has previously
been shown that the location of the linear region is dependent
on the shape of the subvolumes,29,48 it is possible that the
predicted limit for a spherical subsystem might not reflect the
true location of the linear region. In the following, we therefore
investigate two additional tools that can be used directly for
the systems under investigation.
One simple option is to fit a straight line to the data points

and evaluate at which point the residual, meaning the
difference between the fitted line and the actual data points,
starts to deviate. The coefficient of determination, also known
as R2, provides an indicator of how well a model describes the
data points.54 If there is complete overlap between the model
and the data points, the value of R2 is equal to 1, while if R2 is
closer to 0, the data points are uncorrelated and cannot be
described by the model.
Figure 6 shows how the coefficient of determination changes

as a function of data points included in the linear fit. The
values of R2 are shown as functions of the surface area-to-

volume ratio, which means that the number of data points
included in the linear fit increases to the left in the figure. The
first values of R2 (furthest to the right in Figure 6) are
calculated based on a linear fit of the data points between Ω/V
= 1.0 and Ω/V = 0.8 in Figure 5. The remaining data points are
then included in the fitting one by one, and R2 is recalculated
based on the new linear fit.
We observe that when more data points are included in the

fitting, the values of R2 initially approach 1. However, at one
point, the R2-values start to deviate. This means that we have
reached the regime where the simulation box no longer
functions as a proper grand canonical reservoir. For systems
with the lowest density, this deviating behavior is observed to
start for smaller subvolumes, where it is more challenging for
reservoirs to satisfy the fluctuations in their subvolumes. We
therefore choose the limit based on the curve for the lowest
density, which starts to deviate from 1 around Ω/V = 0.57 for
the spherical subvolumes and for Ω/V = 0.72 for cubic
subvolumes.
A more advanced alternative is to compare the results found

by linear fitting to values extracted by an equation that
explicitly includes the effect of the finite size of the simulation
box. The possibility of including effect in scaling equations has
been explored to a large extent in the literature.35,37,46,48,55,56

One such equation was proposed by Strøm et al.29 and is given
by
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(19)

This equation is derived by assuming that ν = 0 for V/V0 =
1, which only is valid for subvolumes of the same shape as the
reservoir. We apply eq 19 to the fluctuations calculated in the
cubic subvolumes with size 0.4 < Ω/V < 1.0. The largest
subvolumes (Ω/V < 0.4) are not included in the fitting of eq
19 since this resulted decreased accuracy in the values of ν∞.
We believe that this can be explained by two factors. The first
is that the fluctuations in larger systems usually converge more
slowly than their smaller counterparts.25,26 The second is that
fluctuations in subvolumes of a size comparable to the total

Figure 6. Coefficient of determination, R2, calculated from a fitted straight line to the data points shown in Figure 5. The values are shown as a
function of the surface-to-volume ratio, which means that the value with most included data points is found to the left. The first value of R2 is
calculated based on a linear fit of the data points between Ω/V = 1.0 and Ω/V = 0.8 and then gradually updated as more data points are included in
the linear fit. (a) shows the case for spherical subvolumes, while (b) represents cubic subvolumes.
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simulation box can become influenced by its periodic
boundaries.47

The relative errors of ν∞ extracted from eq 19 are below 1%
for all densities investigated. This means that the values of ν∞

obtained from this fit can be compared with the values
extracted from the linear fitting and thereby work as a quality
check for the limits identified by analyzing R2. The ν∞-value
obtained from eq 19 differs by 4% from the value obtained
from linear fitting to spherical volumes in the range 0.57 < Ω/
V < 1.0 and by 6% from linear fit to cubic subvolumes in the
range 0.72 < Ω/V < 1.0. It is also possible to systematically
vary the limits until we reach the minimum difference between
the values extracted from the two types of curve fitting. By
changing the lower limit of Ω/V to 0.60 for spherical
subvolumes and to 0.78 for cubic subvolumes, this difference
is reduced by 1%-point. Changing the limits beyond these
values does not decrease the difference further.
We note that an equation similar to eq 19, which also takes

the finite size of the simulation box into account, has been
developed by Cortes-Huerto et al.35 and that this equation
should work for the same purpose as described above.
Figure 7 shows eq 19 fitted to all fluctuations computed in

cubic subvolumes 0.4 < Ω/V < 1.0 and the line resulting from

linear fitting between Ω/V = 0.78 and Ω/V = 1.0. The two
lines show good overlap in the region between the dashed
lines, which indicate the region used for the linear fit.
In conclusion, a simple analysis of R2 based on the linear fit

is able provide good estimates for the location of the linear
region. These estimates can be further improved by utilizing an
equation that explicitly includes the effect of the finite size of
the simulation box, but the effect of this additional step was
marginal for the systems investigated here. The final limits
identified by this method correspond to slightly smaller
subvolumes than those of the previously suggested general
limits.27,35 In the following analysis of chemical potential, we
therefore analyze the regions 0.60 < Ω/V < 1.0 for spherical
subvolumes and between 0.78 < Ω/V < 1.0 for cubic
subvolumes.

Calculating Chemical Potential Differences from the SSM.
Now, we will show how the distributions in the subsystems are
used to calculate their chemical potential differences. Figure 5
shows the fluctuations that represent the distributions, which
we apply the ODM to. Also here we use the maximum
likelihood approach, which means that we apply eq 17 to the
particle distributions in two subvolumes of equal size, sampled
from two reservoirs at different densities. From the three
densities available, Δμ is computed for the two systems with
the lowest densities and for the systems with the lowest and
the highest densities. Standard deviations for each value of Δμ
are calculated from 20 bootstrap samples. For some of the
largest subvolumes, the distributions become too far apart for
the ODM analysis to converge. The 20 largest subvolumes are
therefore not included in the following analysis. In the linear
region for the cubic subvolumes, 0.78 < Ω/V < 1.0, the values
calculated in both spherical and cubic subvolumes overlap. The
figures presented in this section therefore only contain results
from spherical subvolumes, while the corresponding figures for
the cubic subvolumes are found in the Supporting Information.
Relative errors for the values in the thermodynamic limit are
presented for both cubic and spherical subvolumes.
Figure 8 shows that the values of Δμ increase with the

subvolume size and that they clearly approach the correct value

in the thermodynamic limit (Ω/V → 0). Accurate estimates of
values in the thermodynamic limit are calculated from the EOS
by Thol et al.50 The ones calculated using the Widom particle
insertion method show only a 0.6% deviation from these and
are therefore not included in the figure. In the following, the
reported relative errors are therefore calculated with respect to
the values obtained from the EOS by Thol et al.50

Before proceeding to investigate the accuracy of the results,
one important question must be answered. How is it possible
that the chemical potential inside a subvolume differs from the
chemical potential in the particle reservoir to which it is
connected?

Figure 7. How the value of ν given by eq 18 changes with the surface-
to-volume ratio of the cubic subsystem it was calculated in. For the
three different curves, the density is constant, equal to that of the
reservoir. The full gray line shows the result of linear fitting to the data
points between the dashed lines, while the full black curve shows the
result of fitting eq 19 to the data points between 0.4 < Ω/V < 1.0.

Figure 8. Chemical potential difference as a function of the surface-
to-volume ratio. The values of Δμ were calculated by using
fluctuations generated from spherical subvolumes in two separate
reservoirs with different densities, combined in the maximum
likelihood approach of the ODM. Error bars representing two
standard deviations are included, but they are smaller than the
markers.
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The answer to this is that the reservoir and the subsystems
have different types of boundaries. The reservoir has periodic
boundaries, which make it behave as a macroscopic system.
The subsystems, however, do not have periodic boundaries,
which introduces a surface effect to their properties. We have
already shown that grand canonical systems can have a size-
dependent density, and we have explained that if this is the
case for the subsystems sampled with the SSM, the size
dependence will not appear in the densities. The sampling
procedure forces all subsystems to have the same average
density, which means that the size dependence instead
modifies the values of the chemical potentials. Hence, the
chemical potential inside subsystems will be size-dependent
and different from the chemical potential of the reservoir.
The dashed lines in Figure 8 show the limits of the linear

region, which means that between these lines, we find values of
ν that scale linearly with the surface area-to-volume ratio. For
the volumes that are too large for this region (Ω/V < 0.60), Δμ
displays a more rapid change. While the values of ν in Figure 5
decreased at this point, the values of Δμ in Figure 8 instead
increased more rapidly when approaching larger subsystems.
This can be attributed to the fact that the fluctuations become
too small at this point since too small fluctuations correspond
to too narrow distributions, which results in higher values of
Δμ.18
The full black lines in Figure 8 show the straight lines fitted

to the data points between the dashed lines. According to eq
10, the intersection of this line corresponds to the value in the
thermodynamic limit. The relative errors of Δμ∞ are calculated
with respect to the EOS by Thol et al.50 and correspond to 8
and 10% (10 and 12% for the cubic subvolumes). The relative
error is larger than what we can expect when using the ODM
separately since it was shown to give relative errors below 2%
for different types of small systems.
It is possible to improve the accuracy of the extrapolated

value by plotting the data differently. When using the SSM, it
has been shown that the quality of the extrapolated value
depends mostly on the quality of the linear fit.48 Some
properties have earlier been shown to have a more clear linear
region if they are plotted as their inverse. This was the case for
the partial enthalpies30 and for the thermodynamic factor.32

Common for both of these properties is that they are partial
derivatives with respect to the number of particles. Since the
chemical potential also is a partial derivative with respect to
number of particles, it is interesting to see how its inverse
behaves.
This idea can be further substantiated by investigating the

connection between the partial derivative of chemical potential
with respect to density and the particle fluctuations. The
relation comes from combining eqs’s 3, 4, and 9 and is given by
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which upon integration becomes
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It can here be argued that even though the values of ν∞ and
νs depend on density, the scaling of ν as a function of Ω/V

remains linear. This suggests that 1/Δμ also will scale linearly
as a function of Ω/V.
Figure 9 shows the values of 1/Δμ as a function of the

surface-to-volume ratio. This curve shows a more clear linear

behavior than the ones in Figure 8. By using the same system
sizes in the curve fitting, the relative errors of the extrapolated
values of Δμ are reduced to 2 and 3% (3 and 4% for cubic
subvolumes). This is closer to the accuracy we can expect from
the ODM, and it is similar to previously reported accuracies for
other properties calculated by the SSM.29

Histogram versus the Maximum Likelihood Approach of
the ODM. In early applications of the ODM, histograms were
used to calculate the distributions and their overlaps.2,14,16,17

The maximum likelihood approach by Shirts et al.15 is able to
use the complete set of data of particle numbers instead of
reducing these to histograms, which usually provides more
precise and accurate results.18 However, the maximum
likelihood approach includes an optimization step that is
much more demanding with respect to both computational
time and memory, compared to simply sorting the particle
numbers in histograms. In this section, we will investigate if it
is possible reduce time and computational cost, without loss of
accuracy, by replacing the maximum likelihood approach with
the original histogram version of the ODM.
Another convenient aspect with histograms is that they make

it possible to visually inspect the distributions. Figure 10a
shows the distributions in the largest (Ω/V = 0.60) subsystem
included in the curve fitting, and Figure 10b shows the smallest
(Ω/V = 1.0) subsystem included in the curve fitting. The size
of the x- and y-axis ranges is equal in Figure 10a,b for the total,
as well as the inset figures. This makes it possible to directly
compare the features of the distributions. We observe that the
distributions in the smallest subsystem have poorer statistics
than the distributions in the largest subsystem. For systems
with such a low number of particles, the histograms will deviate
more from a smooth curve, which can introduce inaccuracies
in the properties calculated from the overlap. There is,

Figure 9. Inverse chemical potential difference as a function of the
surface area-to-volume ratio. The values of Δμ were calculated by
using fluctuations generated from spherical subvolumes in two
separate reservoirs with different densities, combined in the maximum
likelihood approach of the ODM. Error bars representing two
standard deviations are included, but they are smaller than the
markers.
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however, a simple solution to this problem. As suggested by
McDonald and Singer,16 a Gaussian curve can first be fitted to
the distributions before calculating the ratio of the overlap.
The fitted Gaussian curves are displayed in Figure 10, together
with the histograms calculated directly from the particle
numbers.
The results of applying the above described method for

calculation of Δμ are shown in Figure 11. By comparing this to

the results obtained from the maximum likelihood version of
the ODM (Figure 9), we can see that the histogram method
introduces larger variations in the values of Δμ. However, the
relative error of the extrapolated value is only increased by 1%-
point. This means that even though the accuracy of a single
data point calculated from histograms generally is lower than
the one obtained from the maximum likelihood approach, it
does not have a large effect on the results from the curve

fitting. As long as the uncertainties introduced by the
histogram approach do not lead to a change in trend of the
data, it will act as randomly distributed noise, which eventually
is canceled out in the curve fitting.
Consequently, if the goal is to obtain the value of Δμ in the

thermodynamic limit, the histogram approach and the
maximum likelihood approach works almost equally well for
the systems considered here. However, if the main interest is
properties for a specific system size, the maximum likelihood
method is more likely to determine this value with higher
accuracy.

Scope and Limitations. Computational methods for
chemical potential differences are a field that is being
continuously explored. One of the most popular methods for
these investigations is the Widom particle insertion method,12

which is often used as a benchmark reference when new
methods are presented.39−41,47 It is well known that the steps
involving insertion or deletion of particles used in the Widom
method become inefficient at higher densities. The same goes
for related grand canonical particle insertion schemes such as
the Gibbs ensemble MC method which often is used to
investigate phase equilibria.47 The branch of methods that
instead compute chemical potential differences from fluctua-
tions sampled from subsystems thus have an advantage at
higher densities.
In addition to the relations used to extract Δμ in this work,

there also exists a connection between the differential chemical
potential and the fluctuations, given by eq 20. Absolute values
of chemical potential have previously been successfully
extracted from this method for both one-component38 and
multicomponent systems.35,37 Both the method based on the
differentials of μ and the one presented here are able to
provide absolute values when used in combination with
another method that allows one to calculate the chemical
potential at a reference state point.
One important difference between the two methods is that

the method based on the differentials of μ involves numerical
integration. It is therefore necessary to sample a large enough
range of different densities in order to provide accurate values
of μ. The method presented here is able to extract values of Δμ
directly from two simulations.

Figure 10. Histograms of particle distributions representing the fluctuations shown in Figure 5. (a) shows the distribution of number of particles in
the largest volume in the linear region, corresponding to Ω/V = 0.60, while (b) shows the ones for the smallest volume in the linear region,
corresponding to Ω/V = 1.0. The dotted lines represent the Gaussian curves fitted to the histogram data.

Figure 11. Inverse chemical potential difference as a function of the
surface-to-volume ratio. The values of Δμ were calculated by using
fluctuations generated from spherical subvolumes in two separate
reservoirs with different densities, combined in the histogram
approach of the ODM. Error bars representing two standard
deviations are included, but they are smaller than the markers.
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Another important difference is that the method based on
the differentials of μ can explicitly include the effect of the
finite size of the simulation box in the scaling laws used to
extract (∂μ/∂ρ)T,V. In contrast, the method presented here is
only able to use these scaling laws to identify the subvolumes
that are not affected by this feature. We have shown that
explicitly including this effect returns a value of ν∞ with a
relative error below 1%. Based on a similar analysis,29 this
could suggest that even larger simulation box sizes are needed
to further decrease the relative error computed by the method
presented in this work.
Further work with the method presented here involves

extension to multicomponent systems and investigation of its
application to molecular fluids.

■ CONCLUSIONS
We have presented a new method for computation of chemical
potential differences, in both small and large systems, from
molecular dynamics simulations. The new method can be seen
as an extension of the SSM, which uses small subsystems
embedded in a larger simulation box to calculate distributions
of the number of particles. This method, which until now has
been used to calculate enthalpies and the thermodynamic
factor,28 partial molar properties,30 Kirkwood−Buff inte-
grals,32,33 and the isothermal compressibility,29 has been
extended to calculate chemical potential differences. This
new feature was obtained by combining the SSM with an
ODM. As the name suggests, the ODM uses the overlap of
distributions from two different simulations to calculate
thermodynamic properties. For systems with a fluctuating
number of particles, one of the available properties is the
chemical potential difference.
Before applying the ODM to the distributions created from

the SSM, it was necessary to investigate how well the ODM
performs for small systems. This was done by applying the
ODM to particle distributions generated by two grand
canonical MC simulations with different input values of μ,
but otherwise identical parameters. Two different types of
small systems were investigated, and a system with periodic
boundaries was used as a reference. The values of Δμ
calculated from the ODM for all of these systems had a relative
error below 2%, which means that the ODM can be regarded
as equally reliable for both the small and large systems
investigated in this work.
The SSM generates small systems of a range of different

sizes, which means that it can give insights on how an intensive
property such as the chemical potential starts depending on the
system size when the system becomes small enough. As a result
of this, the chemical potential difference can be calculated as a
function of the system size. Combined with a scaling law based
on Hadwiger’s44 theorem, the values of Δμ can be extrapolated
from the small systems to the thermodynamic limit. We also
have presented tools that will be helpful in determining which
system sizes should be included in this extrapolation.
Compared to methods based on insertion of particles, the
fluctuation-based methods have an advantage when it comes to
extracting thermodynamic properties at high densities. The
particular method presented here also provides an option that
is independent of numerical integration.
When using the ODM, there are two options for extracting

information from the overlap of the distributions. The
fluctuations in number of particles can either be stored in
histograms before the overlap of these is computed, or a

maximum likelihood approach can be used on the complete
data set. We have shown that these methods work almost
equally well for determining the value of Δμ in the
thermodynamic limit since they both provide values with a
relative error below 4%. The maximum likelihood approach is
able to determine this value with 1%-point higher accuracy.
The small difference is mainly because random noise is
canceled out in the curve fitting. If the main interest is one
value of Δμ for a specific system size, the maximum likelihood
approach will probably provide a more accurate result.
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Figure S1: Chemical potential difference as a function of surface to volume ratio. The
values of ∆µ were calculated by using fluctuations generated from cubic sub-volumes in two
separate reservoirs with different density, combined in the maximum likelihood approach of
ODM. Error bars representing two standard deviations are included, but they are smaller
than the markers.
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Figure S2: The inverse chemical potential difference as a function of surface area to vol-
ume ratio. The values of ∆µ were calculated by using fluctuations generated from cubic
sub-volumes in two separate reservoirs with different density, combined in the maximum
likelihood approach of ODM. Error bars representing two standard deviations are included,
but they are smaller than the markers.
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Figure S3: The inverse chemical potential difference as a function of surface to volume ratio.
The values of ∆µ were calculated by using fluctuations generated from cubic sub-volumes in
two separate reservoirs with different density, combined in the histogram approach of ODM.
Error bars representing two standard deviations are included, but they are smaller than the
markers.
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ABSTRACT

Small systems have higher surface area-to-volume ratios than macroscopic systems. The thermodynamics of small systems therefore deviates
from the description of classical thermodynamics. One consequence of this is that properties of small systems can be dependent on the
system’s ensemble. By comparing the properties in grand canonical (open) and canonical (closed) systems, we investigate how a small number
of particles can induce an ensemble dependence. Emphasis is placed on the insight that can be gained by investigating ideal gases. The
ensemble equivalence of small ideal gas systems is investigated by deriving the properties analytically, while the ensemble equivalence of small
systems with particles interacting via the Lennard-Jones or the Weeks–Chandler–Andersen potential is investigated through Monte Carlo
simulations. For all the investigated small systems, we find clear differences between the properties in open and closed systems. For systems
with interacting particles, the difference between the pressure contribution to the internal energy, and the difference between the chemical
potential contribution to the internal energy, are both increasing with the number density. The difference in chemical potential is, with the
exception of the density dependence, qualitatively described by the analytic formula derived for an ideal gas system. The difference in pressure,
however, is not captured by the ideal gas model. For the difference between the properties in the open and closed systems, the response of
increasing the particles’ excluded volume is similar to the response of increasing the repulsive forces on the system walls. This indicates that
the magnitude of the difference between the properties in open and closed systems is related to the restricted movement of the particles in the
system. The work presented in this paper gives insight into the mechanisms behind ensemble in-equivalence in small systems, and illustrates
how a simple statistical mechanical model, such as the ideal gas, can be a useful tool in these investigations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0076684

I. INTRODUCTION

The effect a system’s finite size can have on its proper-
ties is an important factor to consider when investigating sys-
tems through simulations.1 Initially, finite size effects in simula-
tions were unwanted since the main goal of the simulations was
to extract macroscopic properties. Research on finite size effects
was therefore mainly focused on finding corrections for them so
that the properties in the thermodynamic limit could be extracted.
In addition to the numerous theoretical descriptions,2–8 finite size
effects have been investigated to a large extent through simula-
tions for both simple model fluids and for complex molecular
fluids.9–20

With increased interest in nanosized systems in fields such as
biology,21,22 atmospheric science,23 and porous media science,24,25 it
becomes important to understand how these finite size effects are
not only artifacts in simulations, but also significant contributions
to the behavior of small systems. In naturally occurring nanosized
systems, the small size effect is an inherent part of the system. To
get a complete understanding of the behavior of such systems, we
need a proper description of the finite size effects. An essential part
of this development is to have a thermodynamic description that
applies on a small size scale. This was provided by Hill26 through
an extension of classical thermodynamics that can be applied to
small systems, often referred to as nanothermodynamics. Nanoth-
ermodynamics has been used in different works to describe small

J. Chem. Phys. 155, 244504 (2021); doi: 10.1063/5.0076684 155, 244504-1

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

systems, such as in the description of transport in porous media,27,28

stretching and breaking of polymer chains,29,30 and in the use of
sub-sampling techniques for computation of macroscopic thermo-
dynamic properties.14,19,20

The objective of this paper is to demonstrate how investiga-
tions of a simple model system can be used in combinations with
Hill’s26 nanothermodynamics to gain more insight into the behavior
of small systems. More specifically, we investigate whether small
confinement can lead to a difference in the properties of open and
closed systems.We consider single-phase systems that are inherently
identical except for their boundaries. The open system considered
here is in the grand canonical ensemble and can exchange parti-
cles and energy with the surroundings, while the closed system is
in the canonical ensemble and can exchange only energy with the
surroundings.

If the two ensembles predict compatible or equivalent equilib-
rium states for a given system, we refer to this system as ensemble
equivalent.31,32 In classical thermodynamics, it is well known that
ensemble equivalence holds for macroscopic systems with short
range interactions. However, it is also known that systems with
a small number of particles can be ensemble in-equivalent. This
can occur when properties that are regarded extensive in the ther-
modynamic limit are influenced by finite size effects and become
non-extensive. It is not surprising that Hill’s26 formalism, where
the thermodynamic properties have been derived for each ensemble
separately, has gained some interest in the research on ensemble in-
equivalence. Rubi, Bedeaux, and Kjelstrup33 used Hill’s26 framework
in a theoretical investigation of the properties of a single molecule
under isomeric and isotensional conditions.33 Bering et al.29 later
showed that the in-equivalence between these two ensembles can be
detected in simulations of polymer chains.

Systems with a large number of particles can also be ensem-
ble in-equivalent. A substantial amount of the research carried out
on ensemble in-equivalence has focused on systems with long-range
interactions.31,32,34–36 The main interest of these studies has been the
non-additive rather than the non-extensive nature of the system’s
properties. Additivity is closely related to extensivity, but their
definitions are different. A thermodynamic property f is extensive
if it is Euler homogeneous of degree one with respect to the variable
x, meaning that f (2x) = 2 f (x). If a property f is additive, it means
that if the total system is split into i sub-parts, the total property is
the sum of all its sub-parts, ftot = f1 + f2 + ⋅ ⋅ ⋅ + fi. If a property is
non-additive, there is an additional contribution from the inter-
action between the sub-parts, fint. This means that a system can
be non-additive and still be extensive if the contribution from the
interactions scales with system size.31 Hence, additive properties are
always extensive, and non-extensive properties are non-additive, but
not necessarily the other way around. This was used by Campa
et al.,36 who showed how Hill’s26 nanothermodynamics can be
applied to macroscopic non-additive systems.

Models based on statistical mechanics can provide insight into
the mechanisms behind ensemble in-equivalence. In this work, the
ideal gas model represents an important case because it has no
inter-particle interactions. Studying the ideal gas can possibly reveal
ensemble in-equivalence arising from other sources than long-range
interactions. Another motivation for studying ideal gases is that
previous investigations of their finite size effects have been shown
to also apply to systems with interacting particles.13,37,38

When investigating model systems with a small number of
particles, it is important to keep in mind that some ingrained def-
initions and relations from statistical mechanics use approximations
based on the assumptions that N → ∞, where N is the number
of particles. One example is the proof of the virial theorem, for
which Tuckerman39 briefly discussed the necessary assumption
made about the number of microstates associated with different
ensembles. The equipartition theorem has also been shown to
break down for small particle numbers in systems containing hard
spheres,40 and later for particles interacting via intermolecular
potentials.41,42 Miranda43 showed that avoiding assumptions about
the magnitude of N in the derivation of the properties of small clus-
ters of harmonic oscillators, and two-level systems, results in differ-
ences between the properties in the canonical, microcanonical, and
grand canonical ensembles.

Approximations based on the assumption that N → ∞ are also
used in the classical derivation of the bulk properties of the ideal gas.
In this paper, we derive the properties of an ideal gas in a small sys-
temwith a surface energy, without assuming thatN → ∞, and inves-
tigate how finite size contributions to the thermodynamic properties
arise when the system is small. We find that some finite size terms
arise from surface effects and some arise from avoiding approxima-
tions about themagnitude of the number of particles. Similar models
have been used previously to investigate ideal gas mixtures with sur-
face energy,44 and the adsorbed phase on a spherical adsorbent.45
Here, we take it one step further by presenting a direct comparison
of the properties in an open and closed system.We also compare the
results of the ideal gas with the results fromMonte Carlo (MC) sim-
ulations of the system with Lennard-Jones (LJ) particles and systems
with Weeks-Chandler-Andersen (WCA) particles.

II. THERMODYNAMICS OF SMALL SYSTEMS

Finite size effects in small systems are usually a result of surface
area-to-volume ratios larger than those of macroscopic systems.
For small systems, the effects of the surface can be a significant
contribution to the thermodynamic properties. As a consequence of
this, properties that normally are regarded as extensive in macro-
scopic systems can become higher order functions of size and shape
in small systems, while properties that are normally regarded as
intensive in macroscopic systems can become size dependent if the
system is small.26

Classical macroscopic thermodynamic equations cannot be
used to describe the properties in small systems, but the framework
developed by Hill26 provides an extension of the systematic structure
of thermodynamics that applies to small systems. Instead of consid-
ering one single small system, Hill26 investigated a collection of small
systems that are all equivalent, distinguishable, and independent.
By introducing a new extensive variable 𝒩, equal to the number
of small system replicas, the differential energy of the collection of
small systems can be expressed as

dUt = TdSt − pdVt + n∑
i=1 μidNi,t +ℰd𝒩, (1)

whereU t is the energy, T is the temperature, St is the entropy, p is the
pressure,V t is the volume, μi is the chemical potential of component
i, andN i,t is the number of particles of component i, where subscript
t stands for the total collection of small system replicas. The property
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ℰ is called the subdivision potential and represents the change inU t
as we change the number of replicas at constant St,V t, andN i,t. From
this starting point, Hill26 retrieved the properties of a single small
system by computing the averages of the total collection of small
system replicas.

A key part of this derivation is that each thermodynamic
ensemble is considered separately. As a consequence, the expression
for the subdivision potential takes different forms for the different
ensembles, which, in turn, gives rise to some unique small system
properties. In the canonical ensemble, the subdivision potential is

ℰ(N,V ,T) = F(N,V ,T) + p(N,V ,T)V − μ(N,V ,T)N, (2)

where F represents the energy state function of the canonical ensem-
ble. The subdivision potential in the grand canonical ensemble is
represented by

ℰ(μ,V ,T) = Υ(μ,V ,T) + p(μ,V ,T)V , (3)

where υ represents the energy state function of the grand canonical
ensemble. The subdivision potential in grand canonical systems is
also connected to one of the unique small system properties through
ℰ(μ,V ,T) = (p − p̂)V , where p̂ is known as the integral pressure.
For more details on the derivation of these properties, we refer to the
books by Hill46 or the extended explanations presented by Bedeaux,
Kjelstrup, and Schnell.44

III. IDEAL GAS IN A SMALL SYSTEM WITH SURFACE
ENERGY

In this section, we derive the thermodynamic properties of
an ideal gas in a small confinement from the partition function of
the system. Many steps of the derivation are based on well-known
derivations of the properties of an ideal gas.39 Therefore, only the
outlines are provided here, while the full derivation can be found in
the supplementary material.

In derivations of properties of macroscopic systems, it is nor-
mally assumed that N → ∞, which justifies the use of approxima-
tions such as Stirling’s approximation, N! ≈ (N/e)N . We will here
avoid this assumption such that the final equations appropriately
describe systems with a small number of particles.

A. The system
The system we consider here is a three-dimensional box with

volume equal to L3. The ideal gas particles do not interact with each
other, but they can interact with the boundaries of the system. This
means that the energy of the particles will depend on whether they
are located close to the boundary of the system or not. When the
particles are closer than a distance δ from a wall of the system, they
experience a potential energy contribution Us from that wall. This
means that if a particle is close to an edge, it experiences a potential
energy of 2Us, and if it is close to a corner, it experiences a poten-
tial energy of 3Us. The system and the different potential energy
zones are illustrated in Fig. 1. The potential energy is included in
the Hamiltonian through the Heaviside function

H(x) = ⎧⎪⎪⎨⎪⎪⎩
0 if x < 0,

1 if x ≥ 0.

FIG. 1. Illustration of the cubic simulation box with surface energy Us experienced
by particles closer than a distance δ from each wall. Particles close to the sides
(light blue regions) experience a potential energy contribution of Us, while particles
close to the edges (medium blue regions) experience a potential energy contribu-
tion of 2Us, and particles close to the corners (dark blue regions) experience a
potential energy contribution of 3Us.

The Hamiltonian as a function of the particles’ momenta p and
positions r then becomes

ℋ(p, r) = N∑
i=1

3∑
α=1(

p2αi
2mi

+Us[H(δ − αi) +H(αi − (L − δ))]), (4)

where m is the particle mass, β = 1/kBT, where kB is the Boltzmann
constant, and α = (x, y, z) are the Cartesian coordinates.

1. Properties of a confined ideal gas in a closed system
The partition function of the closed system (canonical ensem-

ble), computed from the Hamiltonian in Eq. (4), becomes

Q(N,V ,T) = 1
N!h3N ∫

D(V) ∫ dNrdNp exp(−βℋ(p, r))
= 1
N!h3N ∫

D(V)d
Nr exp(−βUs

N∑
i=1

3∑
α=1 [H(δ − αi)

+ H(αi − (L − δ))])
×∫ dNp exp(−β N∑

i=1
3∑

α=1
p2αi
2mi

), (5)
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where h is Planck’s constant. Since there are no interactions between
the particles, the integrals can be split into identical one-dimensional
one-particle integrals. The integral over momenta and the integral
over spatial coordinates can be solved separately. The integral over
momenta becomes 1/Λ3, where Λ = √

h2β/2πm is the de Broglie
wavelength. The one-dimensional one-particle spatial integral can
be split in three parts, where two of these integrals represent the
regions that are influenced by the wall potential and one is the region
that is not affected by Us.

The final expression for the partition function then becomes

Q(N,V ,T) = 1
N!

( L
Λ
(1 − 2δ

L
(1 − exp(−βUs))))3N . (6)

It is convenient to express the canonical partition function
in terms of the one-particle canonical partition function,
related to the canonical partition function through Q(N,V ,T)= Q(V ,T)N/N!, where Q(V ,T) is given by

Q(V ,T) = V
Λ3 (1 − 2δ

L
(1 − exp(−βUs)))3. (7)

The properties of a closed system are calculated from the
known connection between the partition function and the energy
state function. The energy state function of the closed system is the
Helmholtz energy, which becomes

F(N,V ,T) = −kBT ln Q(N,V ,T)= kBT(ln N! −N ln Q(V ,T)). (8)

The expressions for entropy, pressure, and chemical potential are
found by differentiating the Helmholtz energy. By combining these
identities, we can also find the expression for the subdivision
potential shown in Eq. (2).

The properties in the closed system are split into three parts,
where one represents the well-known bulk contribution, another
describes the contribution from the surface energy, and the last
arises from the exact treatment of the factorial term,

𝒜(N,V ,T) =𝒜(N,V ,T)bulk +𝒜(N,V ,T)surf +𝒜(N,V ,T)fac.
(9)

The different contributions to the thermodynamic properties are
presented in Table I, where we assume that the surface energy Us is

independent of N, V , and T such that its partial derivatives become
zero. The complete derivation and the expressions for the thermo-
dynamic properties including the partial derivatives are presented in
the supplementary material.

The properties presented in Table I show clear characteristics
of small systems. The properties that are regarded as intensive in
the thermodynamic limit are size dependent, and the properties that
are regarded extensive in the thermodynamic limit are not directly
proportional to system size. If Us is non-zero, all properties
in the closed system become non-extensive due to the 1/L
dependence of the surface terms. If Us = 0, only the properties that
have non-zero factorial terms 𝒜(N,V ,T)fac ≠ 0 are influenced by
the small number of particles.

2. Properties of a confined ideal gas in an open system
The partition function of an open system (grand canonical

ensemble) is

Ξ(μ,V ,T) = ∞∑
N=0 exp(βμN)Q(N,V ,T)

= ∞∑
N=0

(exp(βμ)Q(V ,T))N
N!

. (10)

By using exp(a) = ∑∞
N=0 aN/N!, we get

Ξ(μ,V ,T) = exp(exp(βμ)Q(V ,T)), (11)

and the energy state function of the open system is

Υ(μ,V ,T) = −kBT lnΞ(μ,V ,T)= −kBT exp(βμ)Q(V ,T). (12)

The entropy, pressure, and number of particles in the open sys-
tem are calculated from partial derivatives of the energy state func-
tion, and the subdivision potential is computed from Eq. (3). From
Hill’s26 thermodynamics for small systems, we also have the integral
pressure p̂ = −Υ(μ,V ,T)/V .

The properties of the open system are represented by three
contributions, but in contrast to the closed system, none of these
arise from factorial terms. The total properties are given as a sum of

TABLE I. Thermodynamic properties of an ideal gas confined in a closed cubic box with surface energy Us experienced by all particles within a distance δ from each wall.

𝒜(N,V ,T) 𝒜(N,V ,T)bulk 𝒜(N,V ,T)surf 𝒜(N,V ,T)fac
F(N,V ,T) NkBT(ln(N

VΛ
3) − 1) −3 NkBT ln(1 − 2δ

L (1 − exp(−βUs))) kBT(ln N! −N ln(N
e ))

S(N,V ,T) NkB(ln(V
N

1
Λ3 ) + 5

2) NkB(3 ln(1 − 2δ
L (1 − exp(−βUs))) + 2δ

L
3βUs exp(−βUs)

1− 2δ
L (1−exp(−βUs))) −kB(ln N! −N ln(N

e ))
p(N,V ,T) NkBT

V
NkBT
V ( 2δ

L
1−exp(−βUs)

1− 2δ
L (1−exp(−βUs))) ⋅ ⋅ ⋅

μ(N,V ,T) kBT ln(N
VΛ

3) −3kBT ln(1 − 2δ
L (1 − exp(−βUs))) kBT( 1

N!
∂N!
∂N − ln N)

ℰ(N,V ,T) ⋅ ⋅ ⋅ NkBT( 2δ
L

1−exp(−βUs)
1− 2δ

L (1−exp(−βUs))) NkBT( ln N!
N + 1 − 1

N!
∂N!
∂N )
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TABLE II. Thermodynamic properties of an ideal gas confined in an open cubic box with surface energy Us experienced by
all particles within a distance δ from each wall.

ℬ (μ,V ,T) ℬ (μ,V ,T)bulk ℬ (μ,V ,T)surf, 1
Υ(μ,V ,T) −kBT exp(βμ) V

Λ3 ⋅ ⋅ ⋅
S(μ,V ,T) kB exp(βμ) V

Λ3 ( 5
2 − βμ) kB exp(βμ) V

Λ3 ( 2δ
L

3βUs exp(−βUs)
1− 2δ

L (1−exp(−βUs)))
p(μ,V ,T) kBT exp(βμ) 1

Λ3 kBT exp(βμ) 1
Λ3 ( 2δ

L
1−exp(−βUs)

1− 2δ
L (1−exp(−βUs)))

N(μ,V ,T) exp(βμ) V
Λ3 ⋅ ⋅ ⋅

ℰ(μ,V ,T) ⋅ ⋅ ⋅ kBT exp(βμ) V
Λ3 ( 2δ

L
1−exp(−βUs)

1− 2δ
L (1−exp(−βUs)))

p̂(μ,V ,T) kBT exp(βμ) 1
Λ3 ⋅ ⋅ ⋅

a bulk contribution and a surface contribution, which is multiplied
with an additional surface contribution

ℬ (μ,V ,T) = [ℬ (μ,V ,T)bulk +ℬ (μ,V ,T)surf, 1]ℬ (μ,V ,T)surf, 2,
(13)

where

ℬ (μ,V ,T)surf, 2 = (1 − 2δ
L
(1 − exp(−βUs)))3. (14)

The other two contributions to Eq. (13) are presented in
Table II, where we again have assumed that the partial derivatives
of Us are zero.

In contrast to the closed systems, the small size contributions
in the open systems are only present if Us is non-zero. Us = 0
means that all size effects vanish and only the bulk contribution
remains.

B. Comparing properties of a confined ideal gas
in open and closed systems

When dUs = 0, the properties in the open and closed systems
can easily be compared at the same density, meaning that

N
V

= N(μ,V ,T)
V

= exp(βμ) 1
Λ3 (1 − 2δ

L
(1 − exp(−βUs)))3. (15)

By inserting this expression into the identities shown in Tables I
and II, we can directly compare the energy state functions, entropy,
pressure, chemical potential, and subdivision potential of the open
and closed systems.

It becomes clear that when the wall potential is independent
of the ensemble variables (dUs = 0), the difference between the
properties of an ideal gas in the open and closed systems arises
from the factorial terms given in the last column of Table I. This
means that this difference is simply an effect of a small number of
particles and not an effect of the surface. The surface effect does

change the thermodynamic properties in both systems, meaning
that they have different values than they would have in a bulk sys-
tem, but this surface effect is the same in the open and the closed
systems.

The surface energy, Us, can in theory depend on temperature,
system size, the number of particles and chemical potential. Strøm,
Bedeaux, and Schnell45 showed how it is possible to define Us such
that it depends on the surface area of an adsorbed phase. Since sys-
tems with this type of behavior is beyond the scope of this paper, we
will not investigate this further here.

All factorial terms in the last column of Table I can be solved
in an exact manner using the gamma function and the polygamma
function, but approximations can be helpful to get insight into the
form and magnitude of these terms. If we evaluate these terms with
the regular Stirling’s approximation, N! ≈ (N/e)N , which is nor-
mally used to derive properties in the thermodynamic limit, all fac-
torial terms become zero. We therefore use a more accurate version
of Stirling’s approximation

N! ≈ √
2πN(N

e
)N , (16)

which we refer to as “Stirling enhanced.” Figure 2 shows that when
the number of particles becomes small, it is crucial to compute fac-
torials with a more accurate expression than the regular Stirling’s
approximation. The gamma function is exact for discrete numbers,
but Stirling enhanced is a good representation, as long as the average
number of particles is larger than one.

Using Eq. (16) results in the approximations for the factorial
terms for the entropy,

S(N,V ,T)fac = −kB(ln N! −N ln(N
e
)) ≈ −kB(12 ln(2πN)), (17)

and the chemical potential,

μ(N,V ,T)fac = kBT( 1
N!

∂N!
∂N

− ln N) ≈ kBT(12 1
N
). (18)
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FIG. 2. The factorial computed from exact expressions and approximations. Γ(N+ 1) represents the gamma function, which gives exact values of the factorial for
discrete numbers.

The factorial contribution to the entropy is clearly increas-
ing with the number of particles, while the factorial contribu-
tion to the chemical potential is decreasing with the number of
particles.

IV. SIMULATION DETAILS

We use an in-house MC code, and all the presented values and
results are given in reduced LJ units. We investigate systems with
particles interacting via two types of potentials:

1. LJ particles interacting via the truncated and shifted potential
with the cutoff radius at rc = 2.5.

2. Particles interacting through the WCA potential,47 which is
the LJ potential truncated and shifted at rc = 21/6σ.

The simulation boxes are cubic, and we investigate three types
of boundary conditions:

1. The particles are confined by a hard wall. This means that the
particles do not interact with the walls, but moves attempting
to displace a particle outside the walls are rejected.

2. The wall is hard, and the particles closer than a distance δ = 1
from each wall experience an additional potential energy of (a)
Us = 1 or (b) Us = 3.

3. Periodic boundary conditions (PBCs). In order to compare to
bulk properties.

The different combinations of simulation settings are presented
in Table III.

TABLE III. Simulation settings for different boundary conditions (BCs) and interac-
tion potentials (IPs) investigated. L is the simulation box length, T represents the
temperature, n represents the number density, and μ is the chemical potential.

BC IP L T n μ

1 LJ 3, 5, 7, 9 3 0.025–0.750 −7.0–7.5
1 WCA 3, 5, 7, 9 3 0.025–0.750 −7.0–13.5
2 (a) LJ 3, 5, 7, 9 3 0.025–0.750 −7.0–7.5
2 (b) LJ 3, 5, 7, 9 3 0.025–0.750 −4.0–10.5
3 LJ 15 3 0.025–0.750 −7.0–7.5

We run all simulations in five parallels for 106 cycles after
equilibration. The number of trial moves (i.e., attempts to modify
the system) carried out in each cycle has a lower limit of 20 but is
otherwise equal to the number of particles. In the closed system,
the chemical potential is computed using Widom’s48 test particle
insertion method, which is sampled ten times the number of
particles in the system, every cycle of the simulation. The pressure
in both the open and the closed system is computed using the virial
equation, which is sampled every cycle of the simulation.

V. RESULTS AND DISCUSSION

In this section, we present predictions for the ideal gas systems
and the results from the MC simulations of systems with interacting
particles.

A. Ideal gas
For the ideal gas, the results are computed in systems with

Us = 1 and δ = 1 in order to analyze the small size contribution
from both the surface terms and the factorial terms. We discuss
in detail the ideal gas predictions for system sizes corresponding
to the two smallest systems investigated by simulations. Figure 3
shows the energy state functions, entropy, pressure, and chemical
potential as functions of density, n, for a system with size L = 3.
For the presented densities, a system size of L = 3 corresponds to
particle numbers between ∼3 and 20. Entropy, pressure, and chemi-
cal potential show clear deviations from macroscopic values in both
the open and the closed systems. The Helmholtz energy in the closed
system also shows clear deviations from bulk values. Interestingly,
we see that the relationship between Υ and n is the same in a
small system and in a macroscopic system. In addition, the relation-
ship between p̂ and n in a small system is equal to the relationship
between p and n in a macroscopic system. A similar result was found
for the integral and differential surface tensions of the adsorbed
phase investigated by Strøm, Bedeaux, and Schnell.45 The entropy
in the open system is larger than the entropy in the closed system.
This was also the case for the properties of the harmonic oscillators
and the two-level systems presented by Miranda,43 who found a
higher entropy for the grand canonical systems than the canonical
systems.

Figures 3(b) and 3(d) also clearly show the predictions of
Eqs. (18) and (17) since the difference between the entropies in the
two systems is increasing with density, while the difference between
their chemical potentials is decreasing with density. This difference,
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FIG. 3. (a)–(d) Energy state functions, entropy, pressure, and chemical potential as functions of number density of an ideal gas in a small cubic box with sides L = 3. The
surface energy is Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.

for both the entropy and the chemical potential, is decreasing as the
system becomes larger. Figure 4 shows the energy state functions,
entropy, pressure, and chemical potential for an ideal gas system
with size L = 5. For the presented densities, this corresponds to
particle numbers between ∼12 and 100. We see that already at this
size, the difference between the properties in the two ensembles
is barely visible. Further increasing the size of the system gives
properties that are visually indistinguishable for the ranges on the
y axis considered here.

The subdivision potential is a central property of the nanoth-
ermodynamic description presented by Hill.26 Equations (1)–(3)

show that when the subdivision potential is zero, the nanothermo-
dynamic description reduces to the macroscopic thermodynamic
equations. The concept of the subdivision potential has received
much attention in attempts to describe the thermodynamics of small
systems.28,44,45 However, with the exception of the work on spherical
adsorbents by Strøm, Bedeaux, and Schnell,45 its numerical values
are usually not presented. For the ideal gas systems with sizes L = 3
and L = 5, the subdivision potential is shown in Fig. 5, where we can
see that this property is also ensemble dependent.

The equations presented in Tables I and II, and the visual-
ization of these in Figs. 3 and 4 show that an ideal gas in a cubic
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FIG. 4. (a)–(d) Energy state functions, entropy, pressure, and chemical potential as functions of number density of an ideal gas in a small cubic box with sides L = 5. The
surface energy is Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.

box is ensemble in-equivalent when the number of particles is small
enough. It is, in general, not possible to give a universal limit for
when N is small enough for these differences to become significant.
The model presented here is one example of an ideal gas system that
can be used to investigate finite size effects of this kind. Similar mod-
els can be derived for other geometries and dimensions, which can
affect the magnitude of the surface terms and thereby change the
relative importance of the factorial terms. The magnitude of the sur-
face terms depends on the number of particles, the size and shape,
Us and δ, while the magnitude of the factorial terms only depends
on the number of particles. However, the relative influence of the
factorial terms will, of course, depend on the size and shape, Us

and δ.

Some general remarks that can be made are that the ensemble
in-equivalence of the ideal gases does not depend on the surface
energy as long as this surface energy does not depend on N, μ,
V , or T. It is also not a result of long-range interactions since the
ideal gas particles have no inter-particle interactions. In Sec. V B, we
investigate how the results for the ideal gases can be used to gain
insight into the ensemble equivalence for open and closed small
systems with interacting particles.

B. Interacting particles
In this section, we investigate the properties of open and closed

systems computed from MC simulations. Before we compare these
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FIG. 5. Subdivision potential as a function of number density of an ideal gas in a small cubic box with sides (a) L = 3 and (b) L = 5. The surface energy is Us = 1 and is
experienced by all particles within a distance δ = 1 from each wall.

results with those predicted by the ideal gas model, we discuss dif-
ferent methods for computation of average values in small systems.
Error bars corresponding to two standard deviations are included in
all figures with markers, but they are smaller than the marker size.

1. Computing averages in small systems
The macroscopic definitions used for computation of thermo-

dynamic properties from simulations do not always apply to small
systems.44 One of the reasons for this is that the volume is often
not uniquely defined for systems with significant surface effects.
For homogeneous systems with periodic boundary conditions, the
volume available to the center of masses of the molecules is equal to
the full volume of the simulation box. For small confined systems,
these two volumes often differ, which can affect the computation
of the properties that depend on the system’s volume. How to get
a proper representation of volume dependent properties has been
widely discussed, and new methods have been proposed for compu-
tation of both the pressure and the density of small systems.20,27,28,49

The definition of system volume will also clearly affect the properties
presented in this work. However, it should not affect the comparison
between the properties in open and closed systems as long as their
volumes are equally defined.

Something that can affect this comparison is the method used
for computation of mean values. For the open system, two ways of
computing the mean density are compared. The first is the arith-
metic mean, which is the sum of all the sampled values, divided by
the number of sampled values. This is also referred to as the average
or the sample mean. Another alternative is the population mean
or expected value, which is the number that is most likely to
be observed during the simulations. For large systems, these two
ways of computing the mean value should be equivalent. For small
systems, however, the density distributions of the open system will

have a cutoff at low densities since we cannot have a number of
particles below zero.

In order to investigate how this influences the comparison of
the properties in open and closed systems, we compare the two
methods for the open LJ systems with Us = 1. Figure 6, which dis-
plays some selected density distributions for this system with size
L = 3, illustrates this effect. The population mean is extracted from
the dashed lines, which are computed by fitting a Gaussian curve to

FIG. 6. Distribution of the number density for an open system with LJ particles for
a few selected chemical potentials in a system with L = 3. The surface energy is
Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.
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the distributions. For extracting the population mean, two different
methods of curve fitting are tested. In the first method, all data points
from the density distributions are included in the fit, while in the
second approach, we only include the data points that are available
symmetrically around the maximum value of each distribution. The
two methods are found to give the same results within the statistical
accuracies, and we therefore only present the population mean
densities extracted from the symmetrical fit.

The black solid lines in Fig. 6 represent the arithmetic mean,
which clearly do not fit the peaks of the distributions for low
densities. It is also clear that the Gaussian curves do not fit the
distributions perfectly but, instead, are shifted toward lower
densities. The population mean density becomes lower than the
arithmetic mean density, and the comparison of the properties in the
open and closed systems is clearly influenced by the method used to
compute the mean density.

This also becomes clear from Fig. 7, which shows the pres-
sure and the chemical potential as functions of the density for
small open and closed LJ systems with sizes L = 3 and Us = 1.
In the low density region, the difference between the densities
computed from the arithmetic mean and the ones computed from
the population mean is visible. For high densities, the two methods
give overlapping densities.

Both methods still show that there is a difference between
the chemical potentials in open and closed systems and that the
trend is similar to that predicted by the ideal gas model in Fig. 3.
Figure 7(a) also shows a slight difference between the pressures at
higher densities, which is a feature not described by the ideal gas
model. Since the main focus of this section is to investigate the
differences between the arithmetic mean and the population mean,
we discuss the deviations from the ideal gas model in more detail in
Sec. V B 2.

Figure 8 shows the pressure and the chemical potential as
functions of density in open and closed systems with size
L = 5. Already at this size, the mean densities are close to indistin-
guishable.

For better visualization of the difference between the properties
in open and closed systems, we fit a quadratic spline function to the
data points displayed in Figs. 7 and 8 and the other investigated
system sizes (L = 7, 9), as well as the system with PBCs. Since the
spacing between the data points on the y axis is increasing in the high
density region for the pressure and in the low density region for the
chemical potential, we fit the spline functions only to the densities
between n = 0.1–0.7 in order to reduce the chance of overfitting. The
differences between the properties in the open and closed systems,
based on these spline functions, are shown in Fig. 9 for the pressure
and in Figs. 9 and 10 for the chemical potential. The predictions of
the ideal gas model, shown in Tables I and II, are also included in the
figure.

Also here we see a clear difference between the mean density
computed by the arithmetic mean and the one computed by the
population mean, as they give different trends as functions of the
density. For both properties, the population mean gives less
systematic results and displays larger fluctuations than those found
by using the arithmetic mean. As shown in Fig. 6, neither of the
methods perfectly describes the expected number of particles. The
arithmetic mean does not fit the peak of the distribution, and the
Gaussian curve, used to extract the population mean, does not fit
the tails of the distribution. Due to the additional curve fitting step,
the population mean becomes the less convenient method among
the two. When we have such a low number of data points available,
curve fitting can quickly induce errors. In the following, we therefore
consider only the results represented by the arithmetic mean
density.

FIG. 7. (a) Pressure and (b) chemical potential as functions of number density of a LJ fluid in a small cubic box with sides L = 3, computed from MC simulations. The surface
energy is Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.
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FIG. 8. (a) Pressure and (b) chemical potential as functions of number density of a LJ fluid in a small cubic box with sides L = 5, computed from MC simulations. The surface
energy is Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.

FIG. 9. How the difference in pressure of a LJ fluid in open and closed systems varies with arithmetic mean density (a) and population mean density (b) for differently sized
small cubic boxes. The surface energy is Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.

2. Properties in open and closed systems
with interacting particles

In this section, we investigate how the pressure and the chem-
ical potential differ in open and closed systems for different bound-
ary conditions and particle types investigated by simulations. The
results presented in Sec. VI already show that the properties in
open and closed systems are different when the systems are small

enough. Comparing Figs. 3(c) and 3(d) to Fig. 7 for size L = 3 and
Figs. 4(c) and 4(d) to Fig. 8 for size L = 5 shows that in the low den-
sity region, the pressure and chemical potential of the interacting
systems are similar to the values predicted by the ideal gasmodel. For
the more dense systems, where the effects of crowding and coopera-
tivity become important, we see larger differences. Figures showing
computed values for all systems sizes, types of boundary conditions,
and particle interactions are found in the supplementary material.
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FIG. 10. How the difference in chemical potential of a LJ fluid in open and closed systems varies with arithmetic mean density (a) and population mean density (b) for
differently sized small cubic boxes. The surface energy is Us = 1 and is experienced by all particles within a distance δ = 1 from each wall.

Figures 9 and 10 show that the differences between the prop-
erties in the open and closed systems cannot be fully explained by
the ideal gas model. For the chemical potential difference, the trend
of the interacting particles is very similar to the one predicted by
the ideal gas model, which could indicate that this difference is
partly described by the factorial terms. The contributions from the
interactions between the particles can be investigated separately by
subtracting the ideal gas prediction from the total property com-
puted from simulations. To directly compare the magnitude of this
contribution for the pressure and the chemical potential, the prop-
erties need to be evaluated for the same units. We therefore consider
the conjugate pairs in the expression for the internal energy of the
system, divided by the volume

u = sT − p + μn, (19)

where u = U/V and s = S/V .
The differences investigated are

Δ(−p) = Δ(−p)IG + Δ(−p)int= [(−p(N,V ,T)) − (−p(μ,V ,T))]IG+[(−p(N,V ,T)) − (−p(μ,V ,T))]int (20)

and

Δ(μn) = Δ(μn)IG + Δ(μn)int= [μ(N,V ,T)n − μn(μ,V ,T)]IG+[μ(N,V ,T)n − μn(μ,V ,T)]int, (21)

where the subscript “IG” refers to the ideal gas contribution and
“int” refers to the contribution from particle interactions. This is also
often referred to as the residual contribution.

Figure 11 shows Δ(−p) and Δ(μn) for the four different sizes
investigated for the systemwith LJ particles andUs = 1. The values of
Δ(−p) show clear linear trends for all system sizes, while the values
of Δ(μn) are almost constant for low densities, with an increasing
slope at higher densities. The ideal gas contribution to these prop-
erties shows very little dependence on density: Δ(−p)IG = 0, while
Eq. (18) shows that Δ(μn)IG is approximately constant for differ-
ent densities when the volume is constant. The density dependence
shown in Fig. 11 must therefore be related to contribution from the
particle interactions, Δ(−p)int and Δ(μn)int.

This contribution becomes more important at higher densi-
ties, which could indicate that it is related to the particles’ excluded
volume. The excluded volume of a particle is the volume that is
inaccessible to other particles in the system due to the presence of
the first particle. At higher densities, a larger portion of the system
will be occupied by the particles’ excluded volume. At higher densi-
ties, a larger portion of the system’s volume will be occupied by the
particles’ excluded volume. This is similar to the results found from
simulations of stretching of polymer chains performed by Bering
et al.29 In the comparison between isomeric stretching and isoten-
sional stretching they find that for small forces, the molecules are
in what they call an entropic regime. In this regime, the molecule
has numerous degrees of freedom for movements, and the system is
ensemble equivalent. As the molecule becomes more stretched out,
the properties computed in the isomeric and the isotensional ensem-
bles start to differ. This could indicate that restricted movement
of particles causes related to ensemble in-equivalence. We further
explore this by investigating the effect of changing the interactions
between the particles and the wall and the effect of changing the
interparticle interactions.
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FIG. 11. How the difference in pressure (a) and the chemical potential (b), in open and closed systems varies with density. The simulation box sizes are L = 3, 5, 7, 9. The
particles are interacting through the truncated and shifted LJ potential, and the surface energy is Us = 1, which is experienced by all particles within a distance δ = 1 from
each wall.

First, we investigate how the value of the surface energy, Us,
influences the difference between the properties in the open and
closed systems. Higher values of Us means that the particles are less
likely to be positioned close to the system walls. For better readabil-
ity, the following figures (Figs. 12 and 13) only show the results of
the two smallest systems. Figure 12 shows how Δ(−p) and Δ(μn)
depend on the density for Us = 0, Us = 1, and Us = 3. As the surface

energy is increasing, the values ofΔ(μn) become larger. For the pres-
sure, however, the difference still shows a linear trend, but it is not
increasing with Us. As Us becomes larger, these lines, instead, show
a slight decrease in the slope and an increase in the intersection with
the y axis.

By changing the interparticle interactions, the excluded volume
also changes. The WCA potential is a purely repulsive potential,

FIG. 12. How the difference between pressure (a) and the chemical potential (b) in open and closed systems varies with density. The simulation box sizes are L = 3, 5. The
particles are interacting through the truncated and shifted LJ potential, and the surface energies are Us = 0 (dashed lines), Us = 1 (dotted lines), or Us = 3 (dashed-dotted
lines), which is experienced by all particles within a distance δ = 1 from each wall.
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FIG. 13. How the difference between pressure (a) and the chemical potential (b) in open and closed systems varies with density. The particles are interacting through the
truncated and shifted LJ potential (dashed lines) or the WCA potential (dotted lines). The simulation box sizes are L = 3, 5. There is no surface energy (Us = 0).

and since it consists of the LJ potential truncated and shifted at
its minimum, it has a larger excluded volume than the LJ poten-
tial. Figure 13 compares the values of Δ(−p) and Δ(μn) for the LJ
systems and the WCA systems with Us = 0. Figure 13 shows that
similar to a larger excluded volume is similar to increased repulsive
forces close to the walls. The values of Δ(μn) are larger for theWCA
systems than they are for the LJ systems, and the change in the slope
of Δ(−p) is more visible in this plot.

This indicates that, for the systems investigated here, the
contribution from particle interactions to the difference between the
properties in open and closed systems is related to restrictions in the
movement of particles. As the movements of the particles become
more restricted, the difference in the chemical potential shows a
stronger dependence on density. The pressure, on the other hand,
becomes less dependent on density and is, instead, approaching a
constant value. At this stage, it is unclear why Δ(−p) and Δ(μn)
respond differently to these changes. It is possible that the pressure
difference is affected by crowding and cooperativity in a way that is
not described by the restriction in movement of the particles alone.
Or, it could be related to the fact that N is a canonical variable and
μ is a grand canonical variable, while p is neither a canonical nor
a grand canonical variable. This can be further studied by inves-
tigating the effect of restrictions in particle movement for pairs of
ensemble variables of other dual statistical ensembles, such asU and
T in the microcanonical and canonical ensemble or V and p in the
canonical and the isobaric–isothermal ensemble. However, this falls
beyond the scope of the present work.

VI. CONCLUSION

The thermodynamics of small systems is known to deviate from
that of bulk systems. One consequence of this is that the properties
can become ensemble dependent. We investigate the ensemble

equivalence of open (grand canonical) and closed (canonical)
ensembles for small systems containing ideal gas particles and for
systems containing particles interacting via either the LJ or theWCA
potentials.

Ideal gas systems are investigated analytically by deriving the
properties from the respective partition functions. A surface con-
tribution is introduced to the ideal gas particles’ potential energy
through a surface energy Us experienced by particles closer than
a distance δ from each wall. The purpose of this is to investigate
whether the behavior of a simple model system can provide insight
into the ensemble in-equivalence of more complex systems with
interacting particles. For the ideal gas, we find that the properties
in open and closed ensembles are not equivalent. The ensemble
in-equivalence is not a consequence of the surface energy since the
surface contribution to the ideal gas properties is equivalent in the
open and closed systems. The difference between the properties of
the ideal gas in the open and closed systems is, instead, a result of
factorial terms that appear in the properties of the closed system.
These terms only depend on the number of particles and are
direct consequences of avoiding assumptions about N → ∞, such as
Stirling’s approximation.

The systems with interacting particles are investigated through
MC simulations. With a small number of particles, the systems
investigated through simulations have different pressures and chem-
ical potentials in the open and closed systems. We find that the
magnitude of the difference between the properties in the open and
closed systems of a given volume depends on the surface energy Us,
the interatomic interactions, and the density. This deviates from the
prediction of the difference between the properties in the open
and closed systems of the ideal gas, which for a given volume is
independent of Us and approximately independent of density. For
the interacting particles, we also find that increasing the particles’
excluded volume, and increasing the repulsive forces close to the
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walls, results in similar responses in the differences between proper-
ties in open and closed systems. This indicates that the contribution
to ensemble in-equivalence, which is not explained by the ideal gas
model, is connected to the restricted movement of particles in the
systems and that system features that increase this restriction can
lead to larger differences between the properties in the open and
closed systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the full derivation of the
properties of the ideal gases and the computed thermodynamic
properties for all systems investigated through simulations.
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I. FULL DERIVATION OF IDEAL GAS IN A SMALL SYSTEMWITH SURFACE

ENERGY

A. Partition function

We derive the thermodynamic properties of an ideal gas in a small confinement from the parti-

tion function of the system. In contrast to the derivation for macroscopic systems, where we safely

can assume that N → ∞, where N is the number of particles, we here avoid such assumptions

in order for the equations to apply to systems with small number of particles. One example of

such an assumption is Stirling’s approximation. We consider the canonical and grand canonical

ensembles. The particles in the ideal gas will not interact with each other, but they will interact

with the boundaries of the system. This means that the energy of these particles will depend on

whether they are located close to the boundary of the system or not.

The system is a three dimensional canonical system of size equal to L3. When the particles

are closer than a distance δ from the walls of the system, they experience a potential energy con-

tributionU s from that wall. This potential energy is therefore included in the Hamiltonian through

the Heaviside function

H(x) =





0, if x< 0

1, if x≥ 0

The Hamiltonian as a function of the particle’s momenta p and position r then becomes

H (p,r) =
N

∑
i=1

3

∑
α=1

(
p2

αi
2mi

+U s[H(δ −αi)+H(αi− (L−δ ))
])

, (1)

where m is the particle mass, β = 1/kBT , where T is the temperaure, and α = (x,y,z). The

partition function becomes

Q(N,V,T ) =
1

N!h3N

∫

D(V )

∫
dNrdNpexp(−βH (p,r))

=
1

N!h3N

∫

D(V )
dNrexp

(
−βU s

N

∑
i=1

3

∑
α=1

[
H(δ −αi)+H(αi− (L−δ ))

])

×
∫

dNpexp

(
−β

N

∑
i=1

3

∑
α=1

p2
αi

2mi

)
(2)
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where h is Planck’s constant. The integrals can be split into identical one-particle integrals

since there are no interactions between the particles.

Q(N,V,T ) =
1
N!

([∫

D(V )
dr1 exp

(
−βU s

3

∑
α=1

[
H(δ −α1)+H(α1− (L−δ ))

])
]

×
[∫

D(V )
dr2 exp

(
−βU s

3

∑
α=1

[
H(δ −α2)+H(α2− (L−δ ))

])
]
. . .

[∫

D(V )
drN exp

(
−βU s

3

∑
α=1

[
H(δ −αN)+H(αN− (L−δ ))

])
])

×
([

1
h3

∫
dp1 exp

(
−β

3

∑
α=1

p2
α1

2m1

)][
1
h3

∫
dp2 exp

(
−β

3

∑
α=1

p2
α2

2m2

)]
. . .

[
1
h3

∫
dpN exp

(
−β

3

∑
α=1

p2
αN

2mN

)])

=
1
N!

[∫

D(V )
drexp

(
−βU s

3

∑
α=1

[
H(δ −α)+H(α− (L−δ ))

])
]N

×
[

1
h3

∫
dpexp

(
−β

3

∑
α=1

p2
α

2m

)]N

(3)

Each of the integrals inside the square brackets can be split in three dimensions. First we rewrite

the integral over momenta as

1
h3

∫
dpexp

(
−β

p2

2m

)
=

1
h3

∫ ∞

−∞
dpx exp

(
−β

p2
x

2m

)∫ ∞

−∞
dpy exp

(
−β

p2
y

2m

)∫ ∞

−∞
dpz exp

(
−β

p2
z

2m

)

=

[
1
h

∫ ∞

−∞
dpexp

(
−β

p2

2m

)]3

(4)

This can be solved by using

∫ ∞

−∞
dyexp

(
−αy2)=

√
π
α

(5)

which gives

3



[
1
h

∫
dpexp

(
−β

p2

2m

)]3

=

[√
2πm
βh2

]3

=
1

Λ3 (6)

where Λ =
√

h2β/2πm is the de Broglie wavelength.

The spatial integral can be rewritten as

∫

D(V )
drexp

(
−βU s

3

∑
α=1

[
H(δ −α)+H(α− (L−δ ))

])
=

∫ L

0
dxexp

(
−βU s[H(δ − x)+H(x− (L−δ ))

])

×
∫ L

0
dyexp

(
−βU s[H(δ − y)+H(y− (L−δ ))

])

×
∫ L

0
dzexp

(
−βU s[H(δ − z)+H(z− (L−δ ))

])

=

[∫ L

0
dxexp

(
−βU s[H(δ − x)+H(x− (L−δ ))

])
]3

(7)

This can be solved by splitting it in three parts

∫ L

0
dxexp

(
−βU s[H(δ − x)+H(x− (L−δ ))

])

=
∫ δ

0
dxexp(−βU s)+

∫ L−δ

δ
dxexp(0)+

∫ L

L−δ
dxexp(−βU s)

= L−2δ +2δ exp(−βU s)

= L−2δ (1− exp(−βU s))

= L
(

1− 2δ
L

(
1− exp(−βU s)

))

(8)

The final expression for the partition function then becomes

Q(N,V,T ) =
1
N!

(
L
Λ

(
1− 2δ

L

(
1− exp(−βU s)

))
)3N

(9)

It is convenient to express the canonical partition function in terms of the one particle canonical

partition function Q(N,V,T ) = Q(V,T )N/N!, where Q(V,T ) is

Q(V,T ) =
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

(10)
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B. Properties in the canonical ensemble

We calculate the properties in the canonical ensemble from their known connection to the

partition function and free energy.

The Helmholtz energy becomes

F(N,V,T ) =−kBT lnQ(N,V,T ) = kBT (lnN!−N lnQ(V,T ))

= kBT
{

lnN!−N ln
V
Λ3 −3N ln

(
1− 2δ

L

(
1− exp(−βU s)

))}

= kBT
{
N ln

(
N
e

)
−N ln

V
Λ3 −3N ln

(
1− 2δ

L

(
1− exp(−βU s)

))

−N ln(
N
e
)+ lnN!

}

= NkBT

{
ln
(
N
V

Λ3
)
−1−3ln

(
1− 2δ

L

(
1− exp(−βU s)

))
}

+ kBT
(

lnN!−N ln
(
N
e

))

(11)

We find expressions for entropy, pressure and chemical potential by differentiating the equation

for Helmholtz free energy.

S(N,V,T ) =−
(

∂F(N,V,T )
∂T

)

N,V

= NkB

{
ln
(
V
N

1
Λ3

)
+

5
2
+3ln

(
1− 2δ

L

(
1− exp(−βU s)

))

+
2δ
L

3
(

βU s− 1
kB

(
∂U s

∂T

)
N,V

)
exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}
− kB

(
lnN!−N ln

(
N
e

))

(12)

p(N,V,T ) =−
(

∂F(N,V,T )
∂V

)

N,T

=
NkBT
V

{
1+

2δ
L

1−
(
1+3βV

(
∂U s

∂V

)
N,T

)
exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
} (13)
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µ(N,V,T ) =
(

∂F(N,V,T )
∂N

)

V,T

= kBT

{
ln
(
N
V

Λ3
)
−3ln

(
1− 2δ

L

(
1− exp(−βU s)

))

+
2δ
L

3βN
(

∂U s

∂N

)
V,T

exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

+ kBT
(

1
N!

∂N!
∂N
− lnN

)

(14)

By combining the above identities we can also find an expression for the subdivision potential,

which in the canonical ensemble is expressed as

E (N,V,T ) = F(N,V,T )+ p(N,V,T )V −µ(N,V,T )N

= NkBT

{
2δ
L

1−
(

1+3β
(
V
(

∂U s

∂V

)
N,T

+N
(

∂U s

∂N

)
V,T

))
exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

+NkBT
(

lnN!
N

+1− 1
N!

∂N!
∂N

)
(15)

1. ConstantU s in the canonical ensemble

If we assume that the energy U s is constant and that its partial derivatives are zero, we get

S(N,V,T ) =−
(

∂F(N,V,T )
∂T

)

N,V

= NkB

{
ln
(
V
N

1
Λ3

)
+

5
2
+3ln

(
1− 2δ

L

(
1− exp(−βU s)

))

+
2δ
L

3βU s exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}
− kB

(
lnN!−N ln

(
N
e

))
(16)

p(N,V,T ) =−
(

∂F(N,V,T )
∂V

)

N,T

=
NkBT
V

{
1+

2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
} (17)

6



µ(N,V,T ) =
(

∂F(N,V,T )
∂N

)

V,T

= kBT

{
ln
(
N
V

Λ3
)
−3ln

(
1− 2δ

L

(
1− exp(−βU s)

))
}

+ kBT
(

1
N!

∂N!
∂N
− lnN

)
(18)

E (N,V,T ) = F(N,V,T )+ p(N,V,T )V −µ(N,V,T )N

= NkBT

{
2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

+NkBT
(

lnN!
N

+1− 1
N!

∂N!
∂N

)
(19)

C. Macroscopic properties in the canonical ensemble

In the thermodynamic limit N → ∞ and 1/L→ 0, the expressions returns the macroscopic

identities for all the thermodynamic properties properties.

Q(N,V,T ) =
1
N!

(
V
Λ3

)N

(20)

F(N,V,T ) = NkBT
(

ln
(
N
V

Λ3
)
−1
)

(21)

S(N,V,T ) = NkB

(
ln
(
V
N

1
Λ3

)
+

5
2

)
(22)

p(N,V,T ) =
NkBT
V

(23)

µ(N,V,T ) = kBT ln
(
N
V

Λ3
)

(24)

7



D. Properties in the grand canonical ensemble

We now consider the fluctuating properties in the grand canonical ensemble, where the chemi-

cal potential, volume and temperature is controlled.

The partition function for the grand canonical ensemble is given by

Ξ(µ,V,T ) =
∞

∑
N=0

exp(β µN)Q(N,V,T ) =
∞

∑
N=0

(exp(β µ)Q(V,T ))N

N!
(25)

By using

exp(a) =
∞

∑
N=0

aN

N!
(26)

we get

Ξ(µ,V,T ) = exp(exp(β µ)Q(V,T ))

= exp

(
exp(β µ)

V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3
)

(27)

The free energy of the grand canonical ensemble is given by the grand potential which becomes

ϒ(µ,V,T ) =−kBT lnΞ(µ,V,T )

=−kBT exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3 (28)

We can calculate entropy, pressure and number of particles from partial derivatives of the free

energy

S(µ,V,T ) =−
(

∂ϒ
∂T

)

µ,V

= kB exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

5
2
−β µ +

2δ
L

3
(

βU s− 1
kB

(
∂U s

∂T

)
µ,V

)
exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(29)

8



p(µ,V,T ) =−
(

∂ϒ
∂V

)

µ,T

= kBT exp(β µ)
1

Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

1+
2δ
L

1−
(
1+3βV

(
∂U s

∂V

)
µ,T

)
exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(30)

N(µ,V,T ) =−
(

∂ϒ
∂ µ

)

V,T

= exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

1− 2δ
L

3
(

∂U s

∂ µ

)
V,T

exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(31)

By combining the above identities we can also find an expression for the subdivision potential,

which in the canonical ensemble is expressed as

E (µ,V,T ) = ϒ(µ,V,T )+ p(µ,V,T )V

= kBT exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

2δ
L

1−
(
1+3βV

(
∂U s

∂V

)
µ,T

)
exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(32)

1. ConstantU s in the grand canonical ensemble

If we assume that the energy U s is constant and that its partial derivatives are zero, we get

S(µ,V,T ) =−
(

∂ϒ
∂T

)

µ,V

= kB exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

5
2
−β µ +

2δ
L

3βU s exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(33)

9



p(µ,V,T ) =−
(

∂ϒ
∂V

)

µ,T

= kBT exp(β µ)
1

Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

1+
2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(34)

N(µ,V,T ) =−
(

∂ϒ
∂ µ

)

V,T

= exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3 (35)

E (µ,V,T ) = ϒ(µ,V,T )+ p(µ,V,T )V

= kBT exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(36)

E. Macroscopic properties in the grand canonical ensemble

In the thermodynamic limit N → ∞ and 1/L→ 0, the expressions returns the macroscopic

identities for all the thermodynamic properties properties.

Ξ(µ,V,T ) = exp
(

exp(β µ)
V
Λ3

)
(37)

ϒ(µ,V,T ) =−kBT exp(β µ)
V
Λ3 (38)

S(µ,V,T ) = kB exp(β µ)
V
Λd

(
5
2
−β µ

)
(39)

p(µ,V,T ) = kBT exp(β µ)
1

Λ3 (40)

N(µ,V,T ) = exp(β µ)
V
Λ3 (41)

10



F. Comparing properties

Properties in the canonical and grand canonical ensemble can easily be compared for the case

of dU s = 0 if we investigate the properties at the same density, meaning that N/V in the canonical

ensemble is equal to the N(µ,V,T )/V in the grand canonical ensemble.

1. Number of particles

N(µ,V,T ) = exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

(42)

Rewritten as an expression for chemical potential in the grand canonical ensemble gives

µ = kBT

{
ln
(
N(µ,V,T )

V
Λ3
)
−3ln

(
1− 2δ

L

(
1− exp(−βU s)

))
}

(43)

2. Chemical potential

µ(N,V,T ) = kBT

{
ln
(
N
V

Λ3
)
−3ln

(
1− 2δ

L

(
1− exp(−βU s)

))
}

+ kBT
(

1
N!

∂N!
∂N
− lnN

)

= µ + kBT
(

1
N!

∂N!
∂N
− lnN

)
(44)

3. Free energy

F(N,V,T ) = NkBT
{

ln
(
N
V

Λ3
)
−1−3ln

(
1− 2δ

L

(
1− exp(−βU s)

))
}

+ kBT
(

lnN!−N ln
(
N
e

))

= NkBT
{

β µ(N,V,T )−
(

1
N!

∂N!
∂N
− lnN

)
−1

}
+ kBT

(
lnN!−N ln

(
N
e

))

= µ(N,V,T )N−NkBT +NkBT
(

lnN!
N

+1− 1
N!

∂N!
∂N

)

(45)

11



ϒ(µ,V,T ) =−kBT exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

=−N(µ,V,T )kBT

=−NkBT

= F(N,V,T )−µ(N,V,T )N−NkBT
(

lnN!
N

+1− 1
N!

∂N!
∂N

)

(46)

4. Entropy

S(N,V,T ) = NkB

{
ln
(
V
N

1
Λ3

)
+

5
2
+3ln

(
1− 2δ

L

(
1− exp(−βU s)

))

+
2δ
L

3βU s exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}
− kB

(
lnN!−N ln

(
N
e

)) (47)

S(µ,V,T ) = kB exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

5
2
−β µ +

2δ
L

3βU s exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= N(µ,V,T )kB

{
ln
(

V
N(µ,V,T )

1
Λ3

)
+

5
2
+3ln

(
1− 2δ

L

(
1− exp(−βU s)

))

+
2δ
L

3βU s exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= NkB

{
ln
(
V
N

1
Λ3

)
+

5
2
+3ln

(
1− 2δ

L

(
1− exp(−βU s)

))

+
2δ
L

3βU s exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= S(N,V,T )+ kB

(
lnN!−N ln

(
N
e

))

(48)

5. Pressure

p(N,V,T ) =
NkBT
V

{
1+

2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

(49)
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p(µ,V,T ) = kBT exp(β µ)
1

Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

1+
2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= kBT
N(µ,V,T )

V

{
1+

2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

=
NkBT
V

{
1+

2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= p(N,V,T )

(50)

6. Subdivision potential

E (N,V,T ) = NkBT

{
2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

+NkBT
(

lnN!
N

+1− 1
N!

∂N!
∂N

) (51)

E (µ,V,T ) = kBT exp(β µ)
V
Λ3

(
1− 2δ

L

(
1− exp(−βU s)

))3

×
{

2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= N(µ,V,T )kBT

{
2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= NkBT

{
2δ
L

1− exp(−βU s)

1− 2δ
L

(
1− exp(−βU s)

)
}

= E (N,V,T )−NkBT
(

lnN!
N

+1− 1
N!

∂N!
∂N

)

(52)

7. Energy

E(N,V,T ) = TS(N,V,T )− p(N,V,T )V +µ(N,V,T )N+E (N,V,T ) (53)
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E(µ,V,T ) = TS(µ,V,T )− p(µ,V,T )V +µN(µ,V,T )+E (µ,V,T )

= TS(N,V,T )+ kBT
(

lnN!−N ln
(
N
e

))
− p(N,V,T )V

+µ(N,V,T )− kBT
(
N

1
N!

∂N!
∂N
−N lnN

)

+E (N,V,T )− kBT
(

lnN!+N−N
1
N!

∂N!
∂N

)

= E(N,V,T )

(54)
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II. ADDITIONAL FIGURES

A. Results of LJ Simulations

1. With surface energyU s = 1

Figures 1-4 show the pressure and chemical potential for LJ particles in systems with surface

energyU s = 1 experienced by all particles within a distance δ = 1 from any wall, for system sizes

L= 3,5,7,9. Figure 5 shows the potential energies of these systems.
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FIG. 1. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 3, computed from MC simulations. The surface energy is U s = 1 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 2. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 5, computed from MC simulations. The surface energy is U s = 1 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 3. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 7, computed from MC simulations. The surface energy is U s = 1 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 4. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 9, computed from MC simulations. The surface energy is U s = 1 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 5. Potential energy as a function of number density of a LJ fluid in a small cubic box with sides L= 3

(a), L = 5 (b), L = 7 (c) and L = 9 (d), computed from MC simulations. The surface energy is U s = 1 and

is experienced by all particles within a distance δ = 1 from any wall. The temperature is T = 3.
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2. With surface energyU s = 3

Figures 11-14 show the pressure and chemical potential for LJ particles in systems with surface

energyU s = 3 experienced by all particles within a distance δ = 1 from any wall, for system sizes

L= 3,5,7,9. Figure 15 shows the potential energies of these systems.
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FIG. 6. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 3, computed from MC simulations. The surface energy is U s = 3 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 7. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 5, computed from MC simulations. The surface energy is U s = 3 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 8. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 7, computed from MC simulations. The surface energy is U s = 3 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 9. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 9, computed from MC simulations. The surface energy is U s = 5 and is experienced by all

particles within a distance δ = 1 from any wall. The temperature is T = 3.
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FIG. 10. Potential energy as a function of number density of a LJ fluid in a small cubic box with sides L= 3

(a), L = 5 (b), L = 7 (c) and L = 9 (d), computed from MC simulations. The surface energy is U s = 3 and

is experienced by all particles within a distance δ = 1 from any wall. The temperature is T = 3.
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3. With no surface energy

Figures 1-4 show the pressure and chemical potential for LJ particles in systems with no surface

energy, U s = 0, for system sizes L = 3,5,7,9. Figure 5 shows the potential energies of these

systems.
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FIG. 11. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 3, computed from MC simulations. The surface energy is U s = 0 and, the temperature is

T = 3.
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FIG. 12. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 5, computed from MC simulations. The surface energy is U s = 0 and, the temperature is

T = 3.
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FIG. 13. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 7, computed from MC simulations. The surface energy is U s = 0 and, the temperature is

T = 3.
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FIG. 14. Pressure and chemical potential as a function of number density of a LJ fluid in a small cubic box

with sides L = 9, computed from MC simulations. The surface energy is U s = 0 and, the temperature is

T = 3.
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FIG. 15. Potential energy as a function of number density of a LJ fluid in a small cubic box with sides L= 3

(a), L= 5 (b), L= 7 (c) and L= 9 (d), computed from MC simulations. The surface energy is U s = 0 and,

the temperature is T = 3.
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B. Results of WCA Simulations

1. With no surface energy.

Figures 16-19 show the pressure and chemical potential for WCA particles in systems with no

surface energy, U s = 0, for system sizes L = 3,5,7,9. Figure 20 shows the potential energies of

these systems.
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FIG. 16. Pressure and chemical potential as a function of number density of a WCA fluid in a small cubic

box with sides L = 3, computed from MC simulations. The surface energy is U s = 0 and, the temperature

is T = 3.
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FIG. 17. Pressure and chemical potential as a function of number density of a WCA fluid in a small cubic

box with sides L = 5, computed from MC simulations. The surface energy is U s = 0 and, the temperature

is T = 3.
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FIG. 18. Pressure and chemical potential as a function of number density of a WCA fluid in a small cubic

box with sides L = 7, computed from MC simulations. The surface energy is U s = 0 and, the temperature

is T = 3.
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FIG. 19. Pressure and chemical potential as a function of number density of a WCA fluid in a small cubic

box with sides L = 9, computed from MC simulations. The surface energy is U s = 0 and, the temperature

is T = 3.
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FIG. 20. Potential energy as a function of number density of a WCA fluid in a small cubic box with sides

L= 3 (a), L= 5 (b), L= 7 (c) and L= 9 (d), computed from MC simulations. The surface energy isU s = 0

and, the temperature is T = 3.
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ABSTRACT

Fluids confined in small volumes behave differently than fluids in bulk systems. For bulk systems, a compact summary of the system’s thermo-
dynamic properties is provided by equations of state. However, there is currently a lack of successful methods to predict the thermodynamic
properties of confined fluids by use of equations of state, since their thermodynamic state depends on additional parameters introduced by
the enclosing surface. In this work, we present a consistent thermodynamic framework that represents an equation of state for pure, confined
fluids. The total system is decomposed into a bulk phase in equilibrium with a surface phase. The equation of state is based on an existing,
accurate description of the bulk fluid and uses Gibbs’ framework for surface excess properties to consistently incorporate contributions from
the surface. We apply the equation of state to a Lennard-Jones spline fluid confined by a spherical surface with a Weeks–Chandler–Andersen
wall-potential. The pressure and internal energy predicted from the equation of state are in good agreement with the properties obtained
directly from molecular dynamics simulations. We find that when the location of the dividing surface is chosen appropriately, the properties
of highly curved surfaces can be predicted from those of a planar surface. The choice of the dividing surface affects the magnitude of the
surface excess properties and its curvature dependence, but the properties of the total system remain unchanged. The framework can pre-
dict the properties of confined systems with a wide range of geometries, sizes, interparticle interactions, and wall–particle interactions, and
it is independent of ensemble. A targeted area of use is the prediction of thermodynamic properties in porous media, for which a possible
application of the framework is elaborated.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0096875

I. INTRODUCTION

The behavior of fluids is known to change when they are con-
fined in small geometries. In porous materials, for instance, a liquid
phase can form through capillary condensation at pressures below
the saturation pressure.1–4 A popular example in the literature is
confined water, where changes in both the dynamic behavior and
phase transitions have been observed.5–7 Molecular dynamics (MD)
and Monte Carlo simulations, as well as density functional theory,
are popular tools that have been used with great success to gain
insight into how the fluid behavior is influenced by confinement.8–13

There is, however, a need for a compact and predictive thermo-
dynamic description of confined fluids that can be used to shed

further light on the intriguing results obtained from simulations and
experiments.

Equations of state (EoSs) provide a summary of a system’s
thermodynamic properties. For homogeneous fluids in macroscopic
systems, the temperature, mass density, and composition are usu-
ally sufficient to characterize the thermodynamic state of the fluid.
In confined systems, additional knowledge about features such as
the system’s geometry and wall–fluid interactions are needed since
this can lead to wall-adsorption, layering, and disjoining effects.8–11

For simple systems, such as ideal gas systems14 or systems contain-
ing a small number of particles,15 the effects of confinement can
be included in exact expressions for the thermodynamic properties.
For fluids with interacting particles, cubic EoSs are popular tools

J. Chem. Phys. 156, 244504 (2022); doi: 10.1063/5.0096875 156, 244504-1

Published under an exclusive license by AIP Publishing



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

that have been used extensively in process simulations, optimiza-
tion studies, and solubility predictions.16,17 There have been efforts
to develop cubic EoSs for confined systems. Zarragoicoechea and
Kuz18 derived the van der Waals (vdW) EoS for a square-section
nano-pore of infinite length18 that predicted a shift in the critical
point.19 Travalloni et al. later introduced wall–fluid interactions to
the vdW EoS.20,21

One major challenge in the development of cubic EoSs for
confined systems is that the experimental characterization of flu-
ids in nano-geometries is difficult. Challenges associated with the
validation of the EoS is an issue for all types of EoSs that depend
on parameters obtained from experiments.22 Instead of parametriz-
ing the experimental properties of confined fluids, it can, therefore,
be advantageous to base the EoSs on fluids described by inter-
action potentials. This makes it possible to test the EoS predic-
tions by comparing them with properties computed directly from
molecular simulations in well-defined geometries. For instance,
the thermodynamic properties of the hard-sphere fluid in random
porous media have been successfully represented by scaled particle
theory.23 This description has later been applied in investigations
of the properties of various fluids confined in random porous
media, such as the Lennard-Jones (LJ) fluid,24 polydisperse square-
well chain fluids,25 and fluids with particles interacting through a
hard-sphere Morse potential.26

In this work, we formulate a general thermodynamic descrip-
tion that applies to fluids with a wide variety of interparticle
interactions confined in systems with a wide range of wall–fluid
interactions, geometries, and sizes. Since the EoS should return to
the bulk description when the system is large enough, we base the
EoS on an existing bulk description and show how surface contribu-
tions can be incorporated. The surface contributions arise from
interactions between the fluid and the enclosing surface, which
become increasingly relevant as the number of particles and vol-
ume decrease. A consequence of this is that, for sufficiently
small systems, properties that are extensive in macroscopic sys-
tems are no longer Euler homogeneous of degree one.27 The
nanothermodynamic framework developed by Hill28 is a consis-
tent extension of classical thermodynamics that can be applied to
such systems. Nanothermodynamics has been used in various stud-
ies to understand the behavior of small systems, like stretching and
breaking of polymer chains29,30 and transport in porous media.31–33

In addition, nanothermodynamics has supported the analysis of
size-scaling of thermodynamic properties, which is crucial for
the computation of macroscopic properties from sub-sampling
techniques.34–36 In order to use the framework of Hill28 to gain
insight into the behavior of small systems, the underlying physical
description of the system is required. In this work, we derive such
a physical description by employing the framework of excess vari-
ables developed by Gibbs.37 We split the thermodynamic description
of a small system into a bulk phase and an excess, small-size con-
tribution. The leading order small-size contribution usually comes
from the system’s surface area. We emphasize that line- and edge-
contributions can also be relevant,38,39 but such a discussion is
beyond the scope of the present work. For system sizes where the
total confined system can be described as a bulk phase and an excess
surface phase, the formalism presented here provides a consistent
framework that represents an EoS for confined systems. In par-
ticular, we show that the EoS reproduces results from molecular

simulations of confined fluids that are nearly within the simulation
accuracy.

II. THEORETICAL FRAMEWORK

In this section, we present a thermodynamic framework to
describe confined fluids. The thermodynamic description of the sys-
tem is split into a bulk phase and an excess surface phase. We
consider the case where there is local equilibrium in both the bulk
phase and the surface phase. In the following, properties with no
subscript refer to the total system, properties with subscript “b” refer
to the bulk phase, while properties with subscript “s” refer to the
excess surface phase. We formulate the internal energy,U, as a func-
tion of the entropy, S, number of particles, N, and volume, V , for
the bulk phase or area, Ω, for the surface phase. The volume of the
total system is defined as the bulk volume, V = Vb, and the area of
the total system is defined as the surface phase area, Ω = Ωs. The
entropy, number of particles, and internal energy are split into a bulk
contribution and an excess surface contribution as follows:

N = Nb +Ns = Nb + ΓΩ, (1)
S = Sb + Ss = Sb + ηΩ, (2)

U(N,V , S) = Ub(Nb,V , Sb) +Us(Ns,Ω, Ss), (3)

where Γ is the excess number of particles per area, which is also
referred to as the adsorption, and η is the excess entropy per
area. The surface phase described by the excess variables is an
autonomous thermodynamic system. This means that the surface
phase has its own temperature, Ts, and chemical potential, μs. When
the bulk phase is not in equilibrium with the surface phase, the bulk
temperature, Tb, and the bulk chemical potential, μb, can differ from
those of the surface phase. This leads to the following expressions for
the internal energy of the bulk phase:

Ub = TbSb − pbV + μbNb, (4)

and the internal energy of the surface phase:

Us = TsSs + γΩ + μsNs, (5)

where p is the pressure and γ is the surface energy.
In the following, we consider the situation where the bulk

phase is in equilibrium with the surface phase, meaning that Tb = Ts
and μb = μs. Under these circumstances, we define the pressure and
chemical potential in the system as follows:

p ≡ pb = −(∂Ub

∂V
)
Nb ,Sb

, (6)

μ ≡ μb = (∂Ub

∂Nb
)
V ,Sb

, (7)

and the internal energy of the total confined system becomes

U = TS − pV + μN + γΩ. (8)

A central quantity in the framework presented in this work is the
bulk density,
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ρb = Nb

V
= N − ΓΩ

V
, (9)

which for confined systems usually differs from the total density,
ρ = N/V .

A key advantage with the above formulation is that intensive
properties of the total confined system can be determined by consid-
ering the properties of the bulk phase as a function ofT and ρb. In the
formalism presented in this work, the bulk density can be computed
from Eq. (9) when the total number of particles, the adsorption, and
the system’s geometry are known. To determine the total entropy
and the total internal energy of the confined fluid, one also needs the
excess entropy and the surface energy.

We shall hereby refer to the framework for computation of the
properties of confined fluids as the “Nano-EoS.” In Sec. II A, we
explain how the properties of the bulk phase of the confined fluid
can be computed from a bulk-EoS. In Sec. II B, we explain how the
properties of the surface phase of a confined fluid in equilibrium
can be computed when the adsorption is known. All thermodynamic
properties computed from either theNano-EoS or the bulk-EoS have
superscript “EoS.”

The Nano-EoS presented in this work is independent of
the ensemble since Ub(Nb,V , Sb) and Us(Ns,Ω, Ss) are both
Euler homogeneous of degree one. The energy state functions
for various ensembles are, therefore, accessible from Legendre
transformations of the internal energy of each phase. Ensemble
dependence has been observed for both the pressure and the chem-
ical potential in small systems.14 However, we do not consider
ensemble effects here since, for the system types we investigate,
the Nano-EoS is expected to break down at system sizes larger
than those where ensemble effects are relevant. See Bråten et al.14
for a detailed discussion of when ensemble dependence becomes
relevant.

A. Bulk properties
For a given bulk density, the properties of the bulk phase can be

extracted from a bulk-EoS. The bulk internal energy is, therefore,

UEoS
b = UEoS

b (Nb,V ,T). (10)

Other properties of the bulk phase, such as energy state functions or
entropy, can be computed from equivalent relations. Note that the
internal energy extracted from a bulk-EoS is often normalized by the
number of particles as follows:UEoS

b (Nb,V ,T)/Nb. The bulk internal
energy of the confined system is, therefore, computed bymultiplying
the bulk prediction with Nb.

B. Surface excess properties
A prerequisite for computing surface excess properties is to

define the location of the dividing surface. There are many different
choices available, and for the system types we consider, the location
of the dividing surface determines the value of V , and for curved
surfaces, it also affects Ω. The choice of the dividing surface influ-
ences the decomposition into bulk and surface contributions. Some
properties are invariant regardless of the choice of the dividing sur-
face, such as the total internal energy of the confined fluid. Details on
how the surface excess properties for different choices of the dividing
surface are related to each other are presented in Sec. II B 2.

The surface phase is the excess with respect to a bulk phase
at ρb and T. For equilibrium systems, the surface excess properties
are, therefore, considered as functions of these two variables. Our
starting point for the computation of surface excess properties is the
adsorption, which is computed from the following relation:

Γ = N − ρbV
Ω

. (11)

Adsorption is related to the other surface excess properties and the
intensive properties of the total system through the Gibbs adsorp-
tion equation.37 For a given choice of the dividing surface at a fixed
position relative to the total volume, the Gibbs adsorption equation
is given by

dγ = −Γdμ − ηdT. (12)

At constant temperature, Eq. (12) becomes

dγ = −Γdμ. (13)

When the adsorption and the chemical potential are known for a
range of bulk densities, Eq. (13) can be used to compute the dif-
ferential surface energy. By using the fact that the surface energy is
zero at zero density, the absolute value of the surface energy can be
computed.

At constant chemical potential, Eq. (12) can be rewritten as an
expression for the excess entropy per area as follows:

η = − ∂γ
∂T

∣
μ
. (14)

From Eq. (14), it is apparent that η as a function of the bulk density
can be readily computed from the temperature dependence of the
surface energy when one knows how the chemical potential depends
on the bulk density and the temperature.

The excess internal energy becomes

UEoS
s = TηΩ + γΩ + μΓΩ. (15)

1. Curvature dependence of surface properties
The surface excess properties depend on the geometry of

the surface. For nonplanar surfaces, the surface properties can be
expressed as the surface properties of a planar wall plus additional
curvature corrections.38,39 The adsorption for a spherical surface
with radius R is expressed as follows:

Γ(R) = Γ0 + Γ1
R

+ ( 1
R2 ), (16)

where Γ0 refers to the adsorption at a planar wall, Γ1 is the first-
order curvature correction to the adsorption, and  (1/R2) refers
to the higher-order terms. Both the surface energy and the excess
entropy per area can be expressed by equations similar to Eq. (16)
and become

γ(R) = γ0 + γ1
R

+ ( 1
R2 ), (17)

η(R) = η0 + η1
R

+ ( 1
R2 ). (18)
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In this work, we only investigate the first-order corrections, but
higher-order corrections are also possible.40,41 For the systems con-
sidered here, R is independent of T and μ. This means that γ0 and γ1
can be computed from Eq. (13) when Γ0 and Γ1 are known, and that
η0 and η1 can be computed from Eq. (14) when γ0 and γ1 are known.

The capillary approximation (CA) states that the surface prop-
erties of a curved surface are equal to those of a planar surface.When
the curvature corrections are small compared to the planar-wall con-
tribution, the capillary approximation may provide a satisfactory
description of the surface excess properties. In Sec. V, we discuss
when the capillary approximation holds for confined fluids.

2. Shifting the location of the dividing surface
For the system types we consider, the volume of the system

depends on the location of the dividing surface. Consequently,
Γ, η, and γ will also depend on the location of the dividing
surface.40,42 In this section, we show how the surface properties
of one dividing surface are related to those of another dividing
surface.

In simulations, the fluid particles are confined by a wall. For
spherical systems, this wall is located at the enclosing surface, Ω̃, at
a distance R̃ from the center of the sphere. This enclosing surface
corresponds to the volume Ṽ . For a box-shaped system, with a wall
located at one of the sides, the surface area of this wall is independent
of the dividing surface, Ω̃ = Ω, and the volume defined by the loca-
tion of the wall is Ṽ = L̃Ω. The location of the dividing surface can be
specified as the distance from the enclosing wall, dwall, which will be
called the wall-thickness. Its sign is positive when V < Ṽ , cf. Fig. 1.
For a wall-thickness dwall = 0, the volume and area corresponding to
the dividing surface are Ṽ and Ω̃, respectively. Surface excess prop-
erties computed for this choice of dividing surface are marked by a
tilde.

In some expressions for surface excess properties, a dividing
surface located at dwall = 0 is implicit for the system types investi-
gated in this work. These are the excess functions for adsorption
and the excess entropy, and the surface energy computed from the
Kirkwood–Buff43 (KB) equation. The respective excess functions for
adsorption and the excess entropy are as follows:

Γ̃ = 1
Ω̃∫

Ṽ
[ρ(ξ) − ρb]dṼ , (19)

η̃ = 1
Ω̃∫

Ṽ
[s(ξ) − sb]dṼ , (20)

where ξ is the coordinate normal to the wall, ρ(ξ) is the number
density profile, s(ξ) is the entropy density profile, and sb is the bulk
entropy density. The KB equation utilizes the pressure anisotropy
close to the surface and relates the surface energy to the pressure
tensor profiles. For a box-shaped system, the surface energy can be
computed from the KB equation as follows:

γ̃ = ∫ L̃

0
[pN(ξ) − pT(ξ)]dξ, (21)

where pN and pT are the normal and tangential components of the
pressure tensor, respectively. The normal component of the pressure
tensor is equal to the bulk pressure, pN(ξ) = pb.

32 The KB equation
can also be defined for curved surfaces, but accurate computation

FIG. 1. Illustrations of (a) the spherical system and (b) a cross section of the
planar-wall system investigated in this work. The dividing surface is located at
R for the spherical system and at L for the planar-wall system, while the WCA-
wall is located at R̃ for the spherical system and at L̃ for the planar-wall system.
The wall-thickness, dwall, is the distance between the dividing surface and the
wall. (b) illustrates the section between L̃x/2 and L̃x of the system investigated
by MD simulations, which means that L̃ in the figure corresponds to L̃x/2 in the
simulations.

of pressure tensors in the vicinity of curved surfaces remains an
unresolved topic.11,44–47

The surface properties for dwall = 0 are related to the surface
properties for a dividing surface located at dwall ≠ 0. For a planar
wall, these relations are

Γ̃0 − Γ0 = −ρbdwall, (22)
γ̃0 − γ0 = pbdwall, (23)
η̃0 − η0 = −sbdwall, (24)

and the relations for the curvature corrections of a spherical surface
are

Γ̃1 − Γ1 = ρbd
2
wall − 2dwallΓ0, (25)

γ̃1 − γ1 = −pbd2wall − 2dwallγ0, (26)

η̃1 − η1 = sbd
2
wall − 2dwallη0. (27)
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Equations (22)–(26) provide general relations between the sur-
face excess properties for two dividing surfaces separated by a
distance dwall. In this work, we apply them to the specific case where
Γ̃, γ̃, and η̃ correspond to a dividing surface located at dwall = 0. Fur-
ther details about the derivation of Eqs. (22)–(26) are given in the
supplementary material.

3. Surface properties in the low-density limit
For low-density systems, the calculation of statistical averages

from molecular simulations requires considerable computational
effort. Exact analytical expressions that provide a consistent descrip-
tion of the system’s properties at low densities are, therefore, useful.
In the low-density limit, the properties of fluids with interacting par-
ticles can be approximated by the properties of an ideal gas. In this
section, we show how the surface excess properties of a confined
ideal gas can be computed analytically.

The ideal gas particles do not interact with each other, but they
do interact with the enclosing wall. The interaction energy between
the particles and the wall is given by the wall-potential W(ξ). In
the region where the wall-potential is zero, the potential energy of
the system is zero, and the density is equal to the bulk density. The
density profile for the coordinate normal to the wall is48

ρIG(ξ) = ρb exp(−W(ξ)
kBT

). (28)

Combining Eq. (28) with Eq. (19) yields the expression for the
adsorption of an ideal gas,

Γ̃IG = 1
Ω̃∫

Ṽ
[ρIG(ξ) − ρb]dṼ

= ρb
1
Ω̃∫

Ṽ
[exp(−W(ξ)

kBT
) − 1]dṼ. (29)

Since the integral in the above expression is independent of den-
sity, the adsorption becomes a first-order linear function of the bulk
density, where the slope is

α̃ = 1
Ω̃∫

Ṽ
[exp(−W(ξ)

kBT
) − 1]dṼ. (30)

This slope depends on the temperature and the geometry of the sys-
tem, but it is independent of the bulk density. The differential of
α̃ with respect to temperature is

dα̃
dT

= 1
Ω̃∫

Ṽ
exp(−W(ξ)

kBT
)W(ξ)
kBT2 dṼ. (31)

Further details about the computation of α for different choices of
the dividing surface are presented in the supplementary material.

The following equations are valid for any choice of the divid-
ing surface and we, therefore, omit the tilde. The adsorption of the
confined ideal gas is given by

ΓIG = αρb, (32)

and the surface energy can be obtained from Gibbs adsorption
equation at constant temperature as follows:

dγIG = −ΓIGdμIG. (33)

The integration variable μIG can be substituted for ρb through the
expression for the chemical potential of an ideal gas as follows:

μIG = kBT ln(ρbkBT
p0

) + μ0(T), (34)

where p0 is the pressure of the standard state and μ0 is the reference
chemical potential. More details on the choice of the reference state
are presented in the supplementary material. The differential chem-
ical potential at constant temperature becomes dμIG = kBTρ−1b dρb,
and since the surface energy is zero at zero density, integration of
Eq. (33) yields

γIG = −kBTαρb. (35)

Similar to the expression for adsorption, the surface energy of the
ideal gas is a first-order linear function of ρb. This implies the
following simple relationship: γIG = −kBTΓIG.

The excess entropy of the confined ideal gas is computed from
the Gibbs adsorption equation at constant chemical potential, pre-
sented in Eq. (14). Differentiating the surface energy of the ideal gas
with respect to temperature at constant chemical potential yields

ηIG = − ∂γIG
∂T

∣
μIG

= ρb(kBT dα
dT

− α
dμ0
dT

) − kBαρb ln(ρbkBT
p0

). (36)

In contrast to the adsorption and the surface energy, the excess
entropy is not a first-order linear function of the bulk density.
The excess entropy for a confined ideal gas consists of one term
that is linear in ρb and one term that contains the nonlinearity
ρb ln(ρbkBT/p0). The last term comes from the nonlinear relation
between the density and the chemical potential.

III. COMPUTATIONAL DETAILS

We compute the thermodynamic properties of a confined fluid
directly from MD simulations. This includes the properties of the
total system, the bulk phase, and the surface phase. To investigate
the impact of curvature on the surface excess properties, we compute
the values for systems with a planar wall and in spherical systems.
In the following, all the values and results presented are in reduced
LJ units.

A. Simulation details
The MD simulations are performed with the simulation pack-

age Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS).49 The LAMMPS simulation input files are openly
available, with the download details provided in the data avail-
ability statement. For the interparticle interactions, we employ the
Lennard-Jones spline (LJs) potential.50 See Hafskjold et al.51 for a
detailed discussion on the properties of systems containing parti-
cles interacting via the LJs potential. The interactions between the
fluid and the wall are described by the Weeks–Chandler–Andersen
(WCA) potential.52 The WCA potential is a purely repulsive poten-
tial that is equal to the LJ potential truncated and shifted at
rc = 21/6σwall, where we use σwall = 1. The volume of the simulation
box is Ṽ , which is defined by the location of the walls. We con-
sider one system with planar walls with dimensions Ṽ = L̃xLyLz ,
where L̃x = 40 and Ly = Lz = 20, and three differently sized spherical
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systems with radius R̃ = 5, 10, 15. The spherical systems have a
WCA-wall located at R̃. The system with planar walls has a WCA-
wall located at each end of L̃x and periodic boundary conditions
in the other directions. Both system types are illustrated in Fig. 1.
For all systems, we investigate values of N/Ṽ ranging from 0.05 to
0.80. The simulations are run in five parallels, which consist of 20× 106 time steps each forN/Ṽ ≤ 0.45, and 2 × 106 time steps each for
N/Ṽ > 0.45. The size of a time step is Δt = 0.002 and the prop-
erties are sampled every hundred time step. All densities, geome-
tries, and sizes are investigated for five different temperatures:
T = 1.90, 1.95, 2.00, 2.05, 2.10. The pressure is computed from the
virial expression.

B. Bulk equation of state
The bulk-EoS for the LJs fluid used in this work is obtained

from the uv-theory of vanWesten and Gross,53 accessed through the
open-source thermodynamic software Thermopack.53 More details
about the bulk-EoS based on uv-theory for LJs can be found in
Ref. 54.

C. Application of the Nano-EoS
The flowchart presented in Fig. 2 explains the procedure for

computing the thermodynamic properties of a confined fluid when

FIG. 2. Flowchart for computing thermodynamic properties of a confined fluid when
N, T , the fluid’s bulk properties and the surface excess, properties are known. The
initial input is shown in the blue circles, explanations for each computation step
are presented in the yellow boxes, and the computed properties are shown in the
green hexagons.

N,T, the fluid’s bulk properties and the surface excess properties, are
known. The procedure shown in the figure can be used to predict the
properties of confined fluids at equilibrium.

IV. RESULTS—MOLECULAR SIMULATIONS
OF CONFINED FLUIDS

In this section, we present the step-by-step procedure used for
the computation and parametrization of the surface excess proper-
ties. This represents the “developer perspective” of the Nano-EoS.
When the surface excess properties are computed and parameter-
ized, they can be utilized to predict the thermodynamic properties of
systems of any density within the range of validity of the Nano-EoS
by following the procedure presented in Fig. 2. This represents the
“user perspective” of the Nano-EoS, which is demonstrated in Sec. V.
The presented results have been computed using a wall-thickness
dwall = 1. In the presentation of the results, the sphere sizes are
referred to by the radius given by the location of the wall, R̃. In
Sec. VI A, we discuss how the choice of dividing surface impacts
the computation of thermodynamic properties from the Nano-EoS.
Error bars corresponding to two standard deviations are included in
Figs. 4, 5, 8, and 13–16.

A. Computation of the bulk properties
from simulations

To compute bulk properties from molecular simulations, one
needs the location of the bulk region. The bulk region is here defined
as the region of the system where the local contributions from the
wall are negligible, e.g., that thermodynamic properties such as the
density and the pressure are locally isotropic. When the location of
the bulk region is known, the bulk number density, bulk internal
energy density, and bulk pressure are easily computed from molec-
ular simulations. Note that the bulk region in the simulations is not
the same as the bulk phase in the Nano-EoS framework. The prop-
erties of the bulk phase in the Nano-EoS framework are equal to
the properties in the bulk region extrapolated to the entire system
volume.

The limits of the bulk region are identified from the system’s
density profiles. Figure 3 shows the density profiles in the x-direction
for the system with planar walls and in the r-direction for the spher-
ical systems. All systems show oscillatory profiles close to the wall
that become more distinct with increasing density. The oscillatory
behavior is due to structural changes close to the wall, which depend
on the type of confinement, the type of fluid, and the size of the
system.33,56,57

For the system with planar walls, the density profiles are all
uniform for 20 < x < 30, which makes it possible to identify one
common bulk region for all the total densities. This is not possible
for the spherical systems, since they do not always have a well-
defined bulk region. For the spherical systems, the limits of the bulk
region are, therefore, defined individually for each of the total den-
sities investigated. The limits of the bulk regions are represented by
dashed lines in Fig. 3. In the computation of the bulk density, bulk
pressure, and bulk energy density, the data points in the region r ≤ 1
are discarded due to a large degree of noise. While a validation of
the Nano-EoS framework requires a bulk region, we will show in
Sec. V that its predictions extrapolate very well beyond this regime.
The parametrization of the surface excess properties presented
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FIG. 3. Density profiles for a few selected total densities for (a) a planar wall and spherical systems with (b) R̃ = 15, (c) R̃ = 10, and (d) R̃ = 5, for T = 2.0. Since the
planar-wall system is symmetrical around the center of the simulation box, the figure shows the average of the two symmetrical parts. The left side of the profiles of the
spherical systems corresponds to the smallest spherical bins in the center of the simulation box.

in Sec. IV B thereby allows us to compute the bulk and surface
properties of systems that do not have well-defined bulk regions.

B. Computation of the surface excess
properties from simulations

Surface properties are computed using the formalism presented
in Sec. II B. For better readability, the surface properties are only
presented for T = 1.9, 2.0, 2.1. Equations (32), (35), and (36) show
that the adsorption and the surface energy do not depend on the
reference state while the excess entropy does depend on the reference
state.

In order to extract the surface excess properties at arbitrary
densities, all the surface excess properties must be parameterized.
For the adsorption and the surface energy, we use fifth- and ninth-
degree polynomials, respectively. For the excess entropy, we use a
ninth-degree polynomial plus the nonlinear term ρb ln(ρbkBT/p0)
multiplied with a constant coefficient. The constant term is set to
zero for all polynomials in order to ensure that all surface excess
properties are zero at zero density. At low densities, the first-order
coefficients of the polynomials will dominate, such that the surface
properties of the LJs fluid can be approximated by those of the ideal
gas presented in Sec. II B 3. In the fitting process, the first-order coef-
ficients are, therefore, set to the predictions provided by the ideal gas
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model. The first-order coefficients of the adsorption and the surface
energy curves are given by Eqs. (32) and (35), respectively. For the
excess entropy curve, both the first-order coefficient and the coef-
ficient of the nonlinear term are given by Eq. (36). The coefficients
for the parameterized curves of all the surface excess properties are
available in the supplementary material.

1. Surface properties of a planar wall
The adsorption is computed from Eq. (11) by combining the

bulk densities identified in Sec. IV A and the total densities com-
puted using the volume defined by the dividing surface. Figure 4
shows the adsorption as a function of bulk density, where the fit-
ted curves are represented by solid lines. The adsorption for purely
repulsive walls in contact with fluids interacting through poten-
tials containing both attractive and repulsive parts have previously
been studied in detail.8,11,56 For such systems, the adsorption at
low densities is governed by the attractive interparticle interac-
tions, which favor accumulation of the particles in the bulk region.
At higher densities, the repulsive interactions dominate, which
favor accumulation of the particles at the wall since this min-
imizes each particle’s excluded volume. We emphasize that the
values of the surface excess properties depend on the location
of the dividing surface. Whether the computed adsorption curves
reflect the above-described behavior, therefore, depends on the
choice of dividing surface. Figure 4 shows that a dividing surface at
dwall = 1 reflects this behavior since the adsorption is negative at
low densities and positive at higher densities for all the investigated
temperatures.

When the parameterized adsorption is known as a function of
the bulk density, the surface energy can be computed from the Gibbs
adsorption equation [Eq. (13)]. The surface energy is also computed
from the KB equation [Eq. (21)], combined with Eq. (23) in order to
extract the surface energy for a dividing surface at dwall = 1. Figure 5
shows the surface energies computed from the Gibbs adsorption
equation and from the KB equation. The black dotted lines show

FIG. 4. Adsorption as a function of bulk density for the LJs fluid in contact with a
planar wall with a WCA wall-potential. The fitted curves are represented by solid
lines. The dividing surface is located at dwall = 1.

FIG. 5. Surface energy as a function of bulk density for the LJs fluid in contact with
a planar wall with a WCA wall-potential. The curves fitted to the surface energy
computed from the Gibbs adsorption equation are represented by black dotted
lines. The dividing surface is located at dwall = 1.

the curves fitted to the surface energies computed from the Gibbs
adsorption equation. In the Nano-EoS, we use the surface energies
computed from the Gibbs adsorption equation, since computing all
the surface excess properties with the adsorption as a starting point
results in a more consistent framework. A comparison with the sur-
face energies computed from the KB equation works as a quality
check for the surface energies computed from the Gibbs adsorption
equation. With the exception of the data points at the two high-
est densities, the prediction of the surface energy from the Gibbs
adsorption equation is within two standard deviations of the values

FIG. 6. Surface energy of the LJs fluid in contact with a planar wall with a WCA wall-
potential, as a function of temperature. The surface energies at constant chemical
potential are computed from the fitted curves in Fig. 5. The dividing surface is
located at dwall = 1.
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computed using the KB equation. The increased deviation between
the two methods observed at higher densities probably comes from
the numerical integration of the Gibbs adsorption equation. This can
be due to inaccuracies in the parameterized adsorption or the bulk
chemical potential predicted from the bulk-EoS.

As shown in Eq. (14), the excess entropy is related to the tem-
perature dependence of the surface energy at constant chemical
potential. For most fluids, the relation between the chemical poten-
tial and density is temperature dependent. We, therefore, use the
bulk-EoS to extract the bulk densities at different temperatures cor-
responding to a constant chemical potential. The surface energies
at these densities are extracted from the surface energy polynomial,
since these states are not represented by the discrete data points
computed directly from simulations. Figure 6 shows the surface
energies as functions of the temperature for a few selected chemi-
cal potentials. For the small temperature range considered here, the
surface energy can be approximated as a first-order linear function
of the temperature. This means that the excess entropy at T = 2.0
can be extracted from the negative slope of the dashed lines in Fig. 6.
The resulting excess entropy as a function of bulk density is shown
in Fig. 7 where the dotted black line is the fitted curve.

2. Curvature dependence of surface properties
We will next investigate the magnitude of the curvature depen-

dence of the adsorption, surface energy, and excess entropy. Figure 8
shows the adsorption in the spherical systems and the parameter-
ized planar-wall adsorption curve for T = 2.0. The data points show
no observable deviation from the planar-wall curve, which suggests
that the curvature dependence of the surface excess properties is very
small. This is convenient, since it means that the surface properties
of a planar wall can be used to describe properties of fluids confined
by highly curved surfaces. The curves fitted to the adsorption of the
small systems are also shown in Fig. 8, but the deviation from the
planar-wall adsorption is barely visible. Since only the two lowest

FIG. 7. Excess entropy as a function of bulk density for the LJs fluid in contact with
a planar wall with a WCA wall-potential. The fitted curve is represented by a black
dotted line. The dividing surface is located at dwall = 1.

FIG. 8. Adsorption as a function of bulk density for the LJs fluid confined in small
spherical systems with a WCA wall-potential. The fitted curves are represented
by solid lines. The temperature is T = 2.0 and the dividing surface is located at
dwall = 1.

densities for the spherical system with R̃ = 5 have well-defined bulk
regions, we do not parameterize the adsorption for this size.

The first-order curvature correction of the adsorption, Γ1, can
be extracted from the adsorption as a function of 1/R. Figure 9 shows
the adsorption, extracted from the fitted curves, for a few selected
densities as a function of the inverse radius. The adsorptions for
each system are extracted from the fitted curves since they must be
compared at constant density, which is not represented by the dis-
crete data points obtained directly from the simulations. The system
with planar walls has an infinitely large radius, which corresponds

FIG. 9. Adsorption for the LJs fluid in contact with a wall with a WCA wall-potential,
as a function of the inverse radius. The adsorption for the differently curved sur-
faces are extracted from the fitted curves in Fig. 8. The temperature is T = 2.0 and
the dividing surface is located at dwall = 1.
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FIG. 10. First-order curvature correction of the adsorption as a function of bulk
density for the LJs fluid in contact with a wall with a WCA wall-potential. The fitted
curves are represented by black dotted lines. The dividing surface is located at
dwall = 1.

to 1/R = 0. Figure 9 shows that the adsorption can be approximated
as a first-order linear function of 1/R, which means that a first-
order correction sufficiently describes the curvature dependence of
the adsorption for the spherical systems investigated in this work.
The first-order curvature corrections, extracted from the slopes of
the dashed lines in Fig. 9, are shown in Fig. 10 as functions of the
bulk density.

All surface excess properties can be split into the planar-wall
contribution and the curvature corrections. This means that γ1 can

FIG. 11. First-order curvature correction of the surface energy as a function of bulk
density for the LJs fluid in contact with a wall with a WCA wall-potential. The fitted
curves are represented by black dotted lines. The dividing surface is located at
dwall = 1.

FIG. 12. First-order curvature correction of the excess entropy as a function of
bulk density for the LJs fluid in contact with a wall with a WCA wall-potential. The
fitted curve is represented by black dotted line. The dividing surface is located at
dwall = 1.

be computed from Eq. (13), i.e., dγ1 = −Γ1dμ, and η1 can be com-
puted from Eq. (14), i.e., η1 = − ∂γ1/∂T∣μ. The first-order curvature
corrections of the surface energy and excess entropy are displayed
as functions of bulk density in Figs. 11 and 12, respectively. For
bulk densities below ρb = 0.4, the first-order curvature corrections
to all the surface excess properties have absolute values <0.01, which
indicates that the capillary approximation is excellent in this density
range. The curvature corrections of the surface excess properties are
parameterized with the same functions as those used for the planar-
wall properties. We do not include predictions from the ideal gas in
the parametrization of the curvature corrections of the surface excess
properties.

V. RESULTS—VALIDATION OF THE NANO-EOS

Wewill next present the predictions of the Nano-EoS and com-
pare these to the values computed directly from theMD simulations.
Emphasis is placed on the internal energy and the pressure. The sur-
face internal energy, Us, is a combination of all the surface excess
properties, which means that it provides insight into the effect of
confinement on the state of the fluid. Accurate pressure predic-
tions are key in analyzing the driving forces of transport in porous
media.31–33 The superscript “sim” refers to properties computed
directly from simulations.

A. Pressure
The pressure computed from simulations and the predictions

of the Nano-EoS are presented in Fig. 13 as functions of the total
density. The large degree of overlap between the predictions from
the Nano-EoS and the simulation data confirms that the pressure of
the confined system can be determined as a function of T and ρb.
The accuracy of the pressure prediction, therefore, mainly depends
on the accuracy of the predicted bulk density. The absolute error
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FIG. 13. Pressure as a function of the total density for the LJs fluid confined in a
small spherical cavity with a WCA wall-potential. The colored solid lines represent
the Nano-EoS predictions including curvature corrections while the dashed lines
represent the predictions using the capillary approximation. The gray line shows
the pressure for a bulk system with density ρ. The temperature is T = 2.0 and the
dividing surface is located at dwall = 1.

of the bulk density is the difference between predictions from the
Nano-EoS and the simulation results, Δρb = ∣ρEoSb − ρsimb ∣. For all sys-
tem sizes and the whole range of densities considered in this work,
Δρb < 0.001.

B. Internal energy
The bulk internal energy, Usim

b , is computed by multiplying the
value of V with the internal energy density in the bulk region, which
can only be computed for systems with well-defined bulk regions.
Figure 14 shows the bulk internal energy normalized by the number
of particles as a function of the total density. Similar to the pres-
sure, the Nano-EoS predictions of the bulk internal energy mainly
depends on the accuracy of the predicted bulk density. The accuracy
of the predictions of both the pressure and the bulk internal energy,
therefore, indicates that the parameterized adsorption presented in
Sec. IV B gives an accurate representation of the adsorption in the
small systems. However, the results presented in Figs. 13 and 14 give
no validation of whether the curvature correction is valid beyond the
range of bulk densities available from simulations.

The surface internal energy, Usim
s = Usim −Usim

b , is also only
accessible for systems with a well-defined bulk region. Figure 15
shows the surface internal energy per number of particles as a
function of the total density. Since the surface internal energy is
normalized by the number of particles, the curves approach zero
abruptly at very low densities. The large degree of overlap between
the Nano-EoS predictions and the simulation results indicates that
the Nano-EoS framework correctly represents the small-size contri-
butions of the confined fluid. For the two largest spherical systems
at total densities below ρ = 0.5, the predictions of UEoS

s /N using

FIG. 14. Bulk internal energy [Eq. (4)] per number of particles as a function of
total density for the LJs fluid confined in a small spherical cavity with a WCA wall-
potential. The colored solid lines represent the Nano-EoS predictions including
curvature corrections while the dashed lines represent the predictions using the
capillary approximation. The gray line shows the internal energy per number of
particles for a bulk system with density ρ. The temperature is T = 2.0 and the
dividing surface is located at dwall = 1.

the capillary approximation are almost indistinguishable from the
predictions including curvature corrections. For R̃ = 5, the predic-
tion using the capillary approximation is closer to the simulation
results than the prediction of the Nano-EoS including the curvature

FIG. 15. Surface internal energy [Eq. (5)] per number of particles as a function
of the total density for the LJs fluid confined in a small spherical cavity with a
WCA wall-potential. The colored solid lines represent the Nano-EoS predictions
including curvature corrections while the dashed lines represent the predictions
using the capillary approximation. The temperature is T = 2.0 and the dividing
surface is located at dwall = 1.
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corrections. This could be due to an overestimation of the cur-
vature correction of the surface excess properties. One factor that
could lead to this overestimation is that ideal gas predictions are
not included in the parametrization of the curvature corrections.
The fitting procedure is, therefore, more sensitive to the inac-
curacies of the curvature corrections computed at low densities.
One likely source of these inaccuracies is the excess entropy. Fig-
ures 5 and 11 show that the surface energy and its curvature
dependence have very small temperature dependencies at low den-
sities. This means that accurate computation of the excess entropy
from η = − ∂γ/∂T∣μ becomes challenging at low densities. It is
also possible that higher-order curvature corrections are needed to
accurately describe the surface excess properties for a system this
small.

The total internal energy, Usim, is accessible for all system sizes.
Figure 16 shows the internal energy per number of particles as a
function of the total density. The absolute error of U/N is the differ-
ence between the Nano-EoS prediction and the simulation results,
Δ(U/N) = ∣(U/N)EoS − (U/N)sim∣. For the whole range of densi-
ties considered in this work, the absolute error is Δ(U/N) < 0.02 for
all system sizes. This shows that the parameterized surface excess
properties and their curvature corrections extrapolate well beyond
the regime of systems with well-defined bulk regions. The over-
lap is surprisingly good for R̃ = 5, given that no simulation data
from this system are included in the parametrization of the sur-
face excess properties. Similar to the predictions of the surface
internal energy, the capillary approximation remains a good approx-
imation for UEoS/N for the two largest systems at total densities
below ρ = 0.5.

FIG. 16. Internal energy [Eq. (8)] per number of particles as a function of total
density for the LJs fluid confined in a small spherical cavity with a WCA wall-
potential. The colored solid lines represent the Nano-EoS predictions including
curvature corrections while the dashed lines represent the predictions using the
capillary approximation. The gray line shows the internal energy per number of
particles for a bulk system with density ρ. The temperature is T = 2.0 and the
dividing surface is located at dwall = 1.

VI. DISCUSSION—USE AND RANGE OF VALIDITY
OF THE NANO-EOS

In the following, we discuss how the choice of the dividing
surface influences the applicability of the framework (Sec. VI A),
the expected range of validity of the Nano-EoS (Sec. VI B), and its
application to porous media (Sec. VI C).

A. Impact of choice of the dividing surface
The magnitude of both the planar-wall values and the curva-

ture corrections of the surface excess properties depends on the
choice of the dividing surface.58,59 To get more insight on this, we
investigate how the choice of the dividing surface impacts the accu-
racy of the Nano-EoS. The adsorption computed from one choice
of the dividing surface can easily be converted to another, arbitrary
choice. We use Eqs. (22)–(26) presented in Sec. II B 2 to compute
the surface excess properties for a dividing surface at dwall = 0. This
definition of system volume includes a region close to the walls
with very low probability of being occupied by particles. This is
clearly visible from the density profiles in Fig. 3, which are zero
close to the wall for all system shapes and sizes. As a consequence,
the adsorption becomes negative for the whole density range when
dwall = 0. From Eqs. (22)–(26), it is also clear that the absolute val-
ues of the planar wall contribution and the curvature correction of
all surface excess properties are larger for dwall = 0 than for dwall = 1.
This means that the capillary approximation no longer provides a
satisfactory description of the surface excess properties.

The total density is also affected by the choice of dividing sur-
face. Using dwall = 1 is a more convenient choice since it provides
a more realistic representation of the actual region that the particles
are most likely to occupy. This provides more intuitive results for the
adsorption and the total density, e.g., a density that is closer to the
actual density in the volume occupied by particles. The bulk density,
pressure, and total internal energy predicted by the Nano-EoS, how-
ever, are not affected by the location of the dividing surface. Figures
showing all surface excess properties, their curvature corrections, the
different internal energy contributions, and the pressure for dwall = 0
at T = 2.0 are presented in the supplementary material. Many other
choices for the dividing surface exist, probably including more opti-
mal choices than dwall = 1, but we do not investigate the choice of the
dividing surface further here.

B. Expected accuracy and range of validity
In the Nano-EoS framework, the effect of confinement is

included in the confined fluid’s internal energy. For ensemble equiv-
alent systems, the energy state functions for various ensembles are
accessible from Legendre transformations of the internal energy.
When the energy state function of a system is known, the full ther-
modynamic description of that system is accessible. We, therefore,
expect the accuracy of the predictions of the entropy, enthalpy, and
energy state functions such as Helmholtz energy or Gibbs energy to
be comparable to the accuracy of the internal energy predictions pre-
sented in this work. The intensive properties of the confined fluid
depend on the bulk density and the temperature. The accuracy of
the predictions of intensive properties, such as the chemical poten-
tial and compressibility, is, therefore, expected to be comparable to
the accuracy of the pressure predictions presented in this work.
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In this work, we consider pure fluids, but extension to mix-
tures is also possible. The framework can also be extended to other
geometries by including the appropriate curvature corrections, line
contributions, and edge contributions.39 However, if the interac-
tions between the wall and the particles cannot be approximated
by a smooth potential, more complex shape effects, e.g., inaccessi-
ble regions or energetically favored hotspots, can arise, which are
not so easily captured by size and shape corrections.13 Such com-
plex shape effects only come into play when the confined system is
small enough. This lower size limit depends on both the interparticle
interactions and the wall–particle interactions. Other effects that can
occur for very small systems are surface–surface interactions, which
lead to disjoining pressure effects.60 We expect that further modi-
fications of the framework and methodology are necessary for the
Nano-EoS to extrapolate well to these situations.

An alternative framework for describing the thermodynamics
of small systems is the nanothermodynamics developed by Hill.28
Instead of introducing specific contributions from, e.g., the sur-
face or the curvature, Hill’s formalism provides a general frame-
work for the thermodynamics of a system influenced by small size
effects. For confined fluids, the thermodynamic functions suggested
by Hill, therefore, provide descriptions of the whole system, with
the bulk and surface combined. A key part of the derivation of
Hill’s nanothermodynamics is that each thermodynamic ensemble
is considered separately. As a consequence, new ensemble-specific
properties that are unique to small systems arise. Hill showed how
his framework can be applied to spherical droplets in vapor in a
way that does not require a dividing surface. By introducing a divid-
ing surface, Hill claims that his formalism is equivalent to Gibbs’
description.28 A possibility for future work is, therefore, to compare
Hill’s formalism with the framework presented here. This can pro-
vide further insight into the ensemble-specific properties introduced
by Hill.

C. Use of the Nano-EoS in porous media
For systems with LJs particles in contact with a spherical surface

with a WCA wall-potential at T = 2.0, the functions for the sur-
face excess properties provided in the supplementary material can
be used directly to predict properties of systems in equilibrium. A
possible application of the Nano-EoS is to predict thermodynamic
properties in porous media. To explain how the Nano-EoS can be
used for this purpose, we use the porous medium depicted in Fig. 17
as an example. This example represents a single-component system
with a gradient in thermodynamic properties such as T and ρ in the
z-direction but not in the x- and y-directions.

We consider a slab of width Δzi, which we refer to as a repre-
sentative elementary volume (REV), denotedwith subscript i. Across
the REV, the gradients in thermodynamic properties are sufficiently
small to invoke the assumption of local equilibrium. Local equilib-
rium in this context means that the thermodynamic properties of
the fluid in the slab can be described by the equations elaborated
in Sec. II. This includes thermal and chemical equilibrium between
the fluid, the solid, and the surface between these two phases within
the slab. Discussions of the criteria for defining an REV in a porous
medium can be found in Refs. 61 and 62.

We assume that the average number of particles, N i, and the
temperature, Ti, inside the slab are available, which is usually the

FIG. 17. Illustration of a fluid (blue) in a porous medium (gray). When local equilib-
rium is assumed in the REV (red dash), the Nano-EoS can be used to compute the
state of the fluid for the number of particles, Ni , and temperature T i , where sub-
script i refers to control volume i. In the control volume, the volume of the confined
fluid is the blue region. The surface region is the interface between the blue and
gray region. The exact values of V i and Ωi depend on the dividing surface.

case for porous media examined by molecular simulations. After
defining the dividing surface between the fluid and solid, the volume,
V i, and the area, Ωi within the slab as well as the average curva-
ture can be computed.With these variables available, combined with
the assumption of local equilibrium in the REV, thermodynamic
properties such as the local pressure and chemical potential can be
computed by using the algorithm described in Fig. 2. This requires
as necessary inputs the bulk-EoS and a function for the adsorp-
tion. The use of the framework as presented in Sec. II assumes that
line and edge contributions to the internal energy can be neglected.
The results shown in Sec. V indicate that at least for some types of
wall–particle interactions, the capillary approximation works well
such that the influence of curvature can be neglected.

VII. CONCLUSIONS

Equations of state (EoSs) provide a compact way to describe
the thermodynamic state of a fluid. For bulk systems, the thermo-
dynamic state of a fluid can be predicted from an EoS when the
temperature, mass density, and composition are provided. When a
fluid is confined in a small enough space, its properties will deviate
from the bulk behavior due to the interactions between the fluid par-
ticles and the wall. Hence, for fluids under confinement, the impact
of the enclosing surface on the fluid properties must be included in
the EoS. In this work, we have presented a theoretical framework
that describes the thermodynamic state of a confined fluid at equi-
librium. The framework applies to a wide variety of interparticle
interactions, wall–fluid interactions, and system geometries, and it is
independent of the system’s ensemble. When the underlying phys-
ical description of the fluid is provided, the framework presented
represents an EoS for confined fluids. We refer to the proposed EoS
for confined fluids as the “Nano-EoS.” In the Nano-EoS, the descrip-
tion of the total confined system is split into a bulk phase and an
excess surface phase. The properties of the bulk phase are described
by a bulk-EoS and the properties of the surface phase are described
by Gibbs’ framework for excess variables. For equilibrium systems,
these two phases have the same temperature and chemical potential.
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Intensive properties of the total system such as chemical potential
and pressure are, therefore, accessible from the properties of the bulk
phase at ρb and T.

We have demonstrated the application of the Nano-EoS for
a LJs fluid in contact with spherical surfaces with a WCA wall-
potential. For this system, the Nano-EoS predicts values for the
internal energy and pressure that are in good agreement with the val-
ues computed directly from MD simulations. Since the framework
is ensemble independent, the energy state functions for any ensem-
ble can be computed from Legendre transformations of the internal
energy. Potential applications, therefore, include the prediction of
the properties in control volumes at local equilibrium in a larger,
nonequilibrium system.

The location of the dividing surface determines the volume of
the system, and for curved surfaces, it also determines the surface
area. The magnitude of the surface excess properties are, therefore,
highly dependent on the choice of the dividing surface. We have
investigated two choices for the dividing surface: one located at the
origin of the wall potential, i.e., dwall = 0, and one located a dis-
tance dwall = 1 from the origin of the wall potential. We found that a
dividing surface located at dwall = 1 returns lower absolute values for
the surface excess properties and their curvature dependence than
dwall = 0. Choosing a dividing surface that gives a small curvature
dependence is convenient since it means that properties of highly
curved surfaces can be accurately described by the properties of a
planar surface. In other words, the so-called capillary approximation
becomes increasingly valid.

In the low-density limit, the thermodynamic properties of a
confined fluid with interacting particles approach those of a confined
ideal gas. We have, therefore, derived exact analytical expressions
for the surface excess properties of a confined ideal gas. The sur-
face properties of the ideal gas are included in the Nano-EoS in
order to ensure consistent extrapolation to the low-density limit.
However, for confined fluids at low densities, the ideal gas pre-
dictions can also be used as an independent EoS to predict fluid
properties.

SUPPLEMENTARY MATERIAL

The supplementary material contains the coefficients for the
parameterized curves of the surface excess properties and details
about reference states for the thermodynamic properties and about
the impact of the choice of the dividing surface, including the deriva-
tion of equations presented in Sec. II B 2 and extra figures showing
the results for a dividing surface located at dwall = 0.
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I. COEFFICIENTS FOR THE FITTED CURVES OF THE SURFACE EXCESS

PROPERTIES

The text files containing the coefficients for the parametrized curves of the surface excess prop-

erties are openly available in Zenodo at https://doi.org/10.5281/zenodo.6478153.

The coefficients for the fitted curves for the planar-wall values and the first order curvature

correction of the adsorption are presented in Tabs. I-II, the surface energy are presented in Tabs. III-

IV and the excess entropy are presented in Tabs. V-VI.

TABLE I. Adsorption at a planar wall for dwall = 1. Γ0(ρb) = a+bρb+ cρ2
b +dρ3

b + eρ4
b + fρ5

b .

Coefficient T = 1.90 T = 1.95 T = 2.00 T = 2.05 T = 2.10

a 0.00000 0.00000 0.00000 0.00000 0.00000

b 0.00953 0.01061 0.01167 0.01271 0.01373

c -0.77594 -0.77913 -0.68662 -0.67603 -0.61297

d 1.58877 1.85142 1.52426 1.67399 1.52440

e 0.65174 0.01663 0.45928 0.03662 0.14695

f -1.17268 -0.78121 -0.99936 -0.72281 -0.74751

TABLE II. Curvature correction of adsorption for dwall = 1. Γ1(ρb) = a+bρb+ cρ2
b +dρ3

b + eρ4
b + fρ5

b .

Coefficient T = 1.90 T = 1.95 T = 2.00 T = 2.05 T = 2.10

a -0.00000 0.00000 0.00000 0.00000 -0.00000

b 0.00234 0.00252 0.00243 0.00264 0.00240

c 0.59258 1.01846 0.30837 0.91722 0.65325

d -3.57623 -6.20226 -1.76525 -5.72320 -4.19085

e 6.11202 11.13465 2.81099 10.56513 7.76629

f -3.10120 -6.15928 -1.25426 -5.95611 -4.32248
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TABLE III. Surface energy at a planar wall for dwall = 1.

γ0(ρb) = a+bρb+ cρ2
b +dρ3

b + eρ4
b + fρ5

b +gρ6
b +hρ7

b + iρ8
b + jρ9

b .

Coefficient T = 1.90 T = 1.95 T = 2.00 T = 2.05 T = 2.10

a -0.00000 -0.00000 -0.00000 -0.00000 -0.00000

b -0.01810 -0.02069 -0.02335 -0.02606 -0.02884

c 0.79764 0.82444 0.74374 0.75345 0.69847

d -2.46990 -2.71141 -2.29608 -2.44545 -2.22945

e 9.01100 10.27818 8.48987 9.26126 8.37120

f -19.13788 -25.17417 -19.77913 -23.65633 -21.57274

g 7.89549 24.70527 13.67004 24.72495 21.71918

h 37.60841 10.04141 23.73384 5.09139 6.85787

i -68.82404 -44.94288 -54.89324 -38.29630 -38.26827

j 31.14794 22.83272 26.11509 20.17619 19.92676

TABLE IV. Curvature correction of surface energy for dwall = 1.

γ1(ρb) = a+bρb+ cρ2
b +dρ3

b + eρ4
b + fρ5

b +gρ6
b +hρ7

b + iρ8
b + jρ9

b .

Coefficient T = 1.90 T = 1.95 T = 2.00 T = 2.05 T = 2.10

a -0.00000 -0.00000 -0.00000 -0.00000 -0.00000

b 0.00122 0.00199 -0.00089 0.00062 0.00029

c -0.74878 -1.22507 -0.43169 -1.14014 -0.85168

d 5.15959 7.89918 2.90677 7.15125 5.45051

e -24.66515 -36.52158 -13.78938 -32.33381 -24.62024

f 87.37120 131.62091 47.50878 117.36194 89.14947

g -197.24404 -308.73075 -102.86574 -279.40818 -210.81669

h 270.57019 443.51280 134.33716 407.52302 304.95926

i -204.38948 -354.61489 -95.59716 -332.06190 -246.42347

j 63.32314 118.73029 26.96516 113.34687 83.05037
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TABLE V. Excess entropy at a planar wall for dwall = 1.

η0(ρb) = a0ρb ln(ρbkBT/p0)+a+bρb+ cρ2
b +dρ3

b + eρ4
b + fρ5

b +gρ6
b +hρ7

b + iρ8
b + jρ9

b .

Coefficient T = 2.00

a0 -0.01167

a -0.00000

b 0.06227

c -1.97010

d 18.57721

e -63.59549

f 157.14109

g -287.74132

h 334.86606

i -225.36134

j 67.78789

TABLE VI. Curvature correction of excess entropy for dwall = 1.

η1(ρb) = a0ρb ln(ρbkBT/p0)+a+bρb+ cρ2
b +dρ3

b + eρ4
b + fρ5

b +gρ6
b +hρ7

b + iρ8
b + jρ9

b .

Coefficient T = 2.00

a0 0.04696

a 0.00000

b 0.21944

c -0.00220

d -6.87929

e 23.51825

f -32.80236

g 58.07848

h -143.46949

i 181.16751

j -80.92004
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II. REFERENCE STATES FOR THERMODYNAMIC PROPERTIES FROM

EQUATIONS OF STATE

In our work we use the following expressions for the ideal gas contribution to the energy,

entropy and chemical potential

UIG = Nu0(T ), (S.1)

SIG = NkB ln
(
V
N

p0
kBT

)
+Ns0(T ), (S.2)

FIG =−NkBT ln
(
V
N

p0
kBT

)
+N f0(T ), (S.3)

HIG = pV +Nh0(T ), (S.4)

µIG = kBT ln
(
N
V
kBT
p0

)
+µ0(T ) (S.5)

where the subscript 0 signifies the reference state of the thermodynamic properties. The expres-

sions for the reference state of the internal energy and the entropy are

u0(T )= u00+
∫ T

T0
CVdT

= u00−
3
2
kBT0+

3
2
kBT, (S.6)

and

s0(T )= s00+
∫ T

T0

CV

T
dT + kB ln

T
T0

= s00+
5
2
kB ln

T
T0
. (S.7)

The reference states of the Helmholtz energy, enthalpy and chemical potential are expressed as

functions of u0(T ) and s0(T ). The reference state for the Helmholtz energy is

f0(T )= u0(T )−Ts0(T )

= u00−
3
2
kBT0+

3
2
kBT −Ts00−

5
2
kBT ln

T
T0
, (S.8)

the reference state for the enthalpy is

h0(T )= u0(T )

= u00−
3
2
kBT0+

3
2
kBT, (S.9)

and the reference state for the chemical potential is

µ0(T )= kBT +u0(T )−Ts0(T )

=
5
2
kBT +u00−

3
2
kBT0−Ts00−

5
2
kBT ln

T
T0
. (S.10)
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The differential of the reference chemical potential with respect to temperature is

dµ0

dT
=

5
2
kB ln

T0
T

− s00. (S.11)

This differential occurs in the expression for the excess entropy of the confined ideal gas. In this

work we use reduced LJ units, where T0 = 1[−], p0 = 1[−], u00 = (3/2)kBT0[−] and s00 = 0[−].
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III. SHIFTING THE LOCATION OF THE DIVIDING SURFACE

We show how the surface properties of a spherical dividing surface located at R̃ = R+σ are

related to the surface properties of a dividing surface located at R. We investigate the relations

for the adsorption by first deriving those of a planar wall, and then deriving the relations for the

curvature corrections. The formulas presented here are general for two dividing surfaces separated

by a distance σ . In the paper, we apply it to the case where σ = dwall such that R̃ represents the

case where dwall = 0.

In the following we use that the bulk number density, ρb, and the total number of particles

N = ρbV +Γ Ω , are independent of the dividing surface

ρbṼ + Γ̃ Ω̃ = ρbV +Γ Ω . (S.12)

A. Planar wall

For a planar surface located at L we have

V = L3, Ω̃ = L2, Γ = Γ0. (S.13)

For a planar surface located at L̃= L+σ we have

Ṽ = L2(L+σ), Ω̃ = L2, Γ̃ = Γ̃0. (S.14)

For a planar wall, the surface area does not depend on the location of the dividing surface, Ω = Ω̃ ,

such that Eq. (S.12) becomes

Γ̃0−Γ0 =
1
Ω

ρb(V −Ṽ ) =−ρbσ . (S.15)

B. Spherical wall

For a spherical surface located at R we have

V =
4
3

πR3, Ω = 4πR2, (S.16)

and the adsorption is

Γ = Γ0+
Γ1
R
. (S.17)
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For a spherical surface located at R̃= R+σ we have

Ṽ =
4
3

π(R+σ)3, Ω̃ = 4π(R+σ)2, (S.18)

and the adsorption is

Γ̃ = Γ̃0+
Γ̃1

R+σ
. (S.19)

For a spherical system, Eq. (S.12) becomes

ρb
4
3

π(R+σ)3+ Γ̃ 4π(R+σ)2 = ρb
4
3

πR3+Γ 4πR2, (S.20)

which can be simplified to

ρb

3

(
(R+σ)3−R3

)
= ΓR2− Γ̃ (R+σ)2 . (S.21)

Expanding the adsorption into the planar-wall contribution and the curvature correction according

to Eqs. (S.17) and (S.19), and using the relation for the planar-wall contribution in Eq. (S.15)

results in the following:

−ρb

(
Rσ +

2
3

σ2
)

=−Γ0
(
Rσ +σ2)+Γ1R− Γ̃1 (R+σ) , (S.22)

which can be rewritten to

Γ̃1−Γ1 = ρbσ2−2σΓ0+
1
R

(
ρb

2
3

σ3−Γ0σ2− Γ̃1σ
)
. (S.23)

Since terms proportional to R−1 do not occur in the first order curvature correction, the relation

for the curvature corrections of the adsorption becomes

Γ̃1−Γ1 = ρbσ2−2σΓ0. (S.24)

C. Surface energy and excess entropy

Equivalent relations for the planar-wall contribution and the curvature correction of the surface

energy can be derived by using that the bulk pressure, pb, and the total grand free energy, U −
TS−µN =−pV + γΩ , are independent of the dividing surface. For a planar wall, the relation for

the surface energy is

γ̃0− γ0 = pbσ , (S.25)
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while the relation for the curvature correction is

γ̃1− γ1 =−pbσ2−2σγ0. (S.26)

Equivalent relations for the planar-wall contribution and the curvature correction of the excess

entropy can be derived by using that the bulk entropy density, sb, and the total entropy, S= sbV +

ηΩ , are independent of the dividing surface. The relation for the excess entropy of a planar wall

is

η̃0−η0 =−sbσ , (S.27)

where sb is the bulk entropy density. The relation for the curvature correction is

η̃1−η1 = sbσ2−2ση0. (S.28)

D. Ideal gas

For a confined ideal gas, the adsorption for a dividing surface corresponding to Ω̃ and Ṽ is

Γ̃IG = α̃ρb, where

α̃ =
1

Ω̃

∫ [
exp
(
−W (ξ )

kBT

)
−1
]
dṼ . (S.29)

The slope α can be computed for other choices of dividing surface through Eq. (S.12). For a

planar wall, the relation is

α̃0−α0 =−σ , (S.30)

and for a spherical wall, the relation is

α = α̃ +σ +
1
R

(
σ2+2σα̃

)
+

1
R2

(
σ3

3
+σα̃

)
(S.31)

We do not approximate α for a spherical surface as the planar wall contribution plus curvature

corrections.
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IV. EXTRA FIGURES

A. Surface excess properties of a planar wall at dwall = 0

Figures S1-S3 show the planar-wall contributions to the adsorption, surface energy and ex-

cess entropy computed for a dividing surface located at dwall = 0. In Figs. S1-S3, the square

markers and the full lines are computed directly from the simulation data, while the dashed lines

are computed by utilizing the surface excess properties of a dividing surface located at dwall = 1

combined with Eqs. (S.15), (S.25) and (S.27). The deviations between the properties computed

by these two approaches arise from uncertainties occurring in the different terms in Eqs. (S.15),

(S.25) and (S.27), such as the prediction of ρb, pb and sb, as well as the surface excess properties

extracted from the curve fitting.

0.0 0.2 0.4 0.6 0.8
ρb

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

̃
Γ 0

T=2.0
T=2.0, shifted from dwall=1

FIG. S1. Adsorption as a function of bulk density for the LJs fluid in contact with a planar wall with a WCA

wall-potential. The dividing surface is located at dwall = 0. The dashed line is computed from Eq. (S.15).
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0.0 0.2 0.4 0.6 0.8
ρb

0

1

2

3

4

5

6

7

̃
γ 0

T=2.0, KB eq.
T=2.0, Gibbs ads. eq.
T=2.0, shifted from dwall=1

FIG. S2. Surface energy as a function of bulk density for the LJs fluid in contact with a planar wall with

a WCA wall-potential. The dividing surface is located at dwall = 0. The dashed line is computed from

Eq. (S.25).

0.0 0.2 0.4 0.6 0.8
ρb

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

̃
η 0

T=2.0
Shifted from dwall=1

FIG. S3. Excess entropy as a function of bulk density for the LJs fluid in contact with a planar wall with

a WCA wall-potential. The dividing surface is located at dwall = 0. The dashed line is computed from

Eq. (S.27).
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B. Curvature corrections of the surface excess properties of a surface at dwall = 0

In Figs. S4-S6, the curvature correction of the adsorption, surface energy and excess entropy

computed for a dividing surface located at dwall = 0 are displayed. In Figs. S4-S6, the full lines

are computed directly from the simulation data, while the dashed lines are computed by utilizing

the curvature corrections of the surface excess properties of a dividing surface located at dwall = 1

combined with Eqs. (S.24), (S.26) and (S.28).

0.0 0.2 0.4 0.6 0.8
ρb

0.0

0.1

0.2

0.3

0.4

0.5

̃
Γ 1

T=2.0
T=2.0, shifted from dwall=1

FIG. S4. Curvature correction for the adsorption of the LJs fluid in contact with a wall with a WCA wall-

potential, as a function of bulk density. The dividing surface is located at dwall = 0. The dashed line is

computed from Eq. (S.24).
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−6
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−3

−2

−1
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̃
γ 1

T=2.0
T=2.0, shifted from dwall=1

FIG. S5. Curvature correction for the surface energy of the LJs fluid in contact with a wall with a WCA

wall-potential, as a function of bulk density. The dividing surface is located at dwall = 0. The dashed line is

computed from Eq. (S.26).

0.0 0.2 0.4 0.6 0.8
ρb

−0.4
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−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

̃
η 1

T=2.0
Shifted from dwall=1

FIG. S6. Curvature correction for the excess entropy of the LJs fluid in contact with a wall with a WCA

wall-potential, as a function of bulk density. The dividing surface is located at dwall = 0. The dashed line is

computed from Eq. (S.28).
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C. Nano-EoS predictions for dwall = 0

Figures S7-S11 shows the adsorption, pressure, bulk internal energy, surface internal energy

and total internal energy. The markers represent properties computed directly from simulations,

while the lines shows the Nano-EoS predictions. In the Nano-EoS predictions, the surface excess

properties of a dividing surface located at dwall= 0 are computed from the surface excess properties

of a dividing surface located at dwall = 1 combined with Eqs. (S.15), (S.25), (S.27), (S.24), (S.26)

and (S.28).

0.0 0.2 0.4 0.6 0.8
ρb

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

̃ Γ

Planar wall
R̃̃5
R̃̃10
R̃̃15
R̃̃10
R̃̃15

FIG. S7. Adsorption as a function of bulk density for the LJs fluid confined in small spherical systems with

a WCA wall-potential. The temperature is T = 2.0 and the dividing surface is located at dwall = 0.
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FIG. S8. Pressure as a function of the total density for the LJs fluid confined in a small spherical cavity with

a WCA wall-potential. The full lines represent the Nano-EoS predictions including curvature corrections

while the dashed lines represent the predictions of the capillary approximation. The gray full line shows the

pressure for a bulk system with density ρ . The temperature is T = 2.0 and the dividing surface is located at

dwall = 0.
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FIG. S9. Bulk internal energy per number of particles as a function of total density for the LJs fluid confined

in a small spherical cavity with a WCA wall-potential. The colored full lines represent the Nano-EoS

predictions including curvature corrections while the dashed lines represent the predictions of the capillary

approximation. The gray full line shows the internal energy per number of particles for a bulk system with

density ρ . The temperature is T = 2.0 and the dividing surface is located at dwall = 0.
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FIG. S10. Surface excess internal energy per number of particles as a function of total density for the LJs

fluid confined in a small spherical cavity with a WCA wall-potential. The colored full lines represent the

Nano-EoS predictions including curvature corrections while the dashed lines represent the predictions of

the capillary approximation. The temperature is T = 2.0 and the dividing surface is located at dwall = 0.
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FIG. S11. Internal energy per number of particles as a function of total density for the LJs fluid confined

in a small spherical cavity with a WCA wall-potential. The full lines represent the Nano-EoS predictions

including curvature corrections while the dashed lines represent the predictions of the capillary approxima-

tion. The gray full line shows the internal energy per number of particles for a bulk system with density ρ .

The temperature is T = 2.0 and the dividing surface is located at dwall = 0.
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